BRYDE'S WHALE (Balaenoptera edeni): Northern Gulf of Mexico Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Bryde's whales are distributed worldwide in tropical and sub-tropical waters. In the western Atlantic Ocean, Bryde's whales are reported from off the southeastern United States and the southern West Indies to Cabo Frio, Brazil (Leatherwood and Reeves 1983). Most of the sighting records of Bryde's whales in the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) are from NMFS abundance surveys that were conducted during the spring (Figure 1; Hansen *et al.* 1995, 1996; Mullin and Hoggard 2000; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). However, there are stranding records from throughout the year (Würsig *et al.* 2000). It has been postulated that the Bryde's whales found in the northern Gulf of Mexico may represent a resident stock (Schmidly 1981; Leatherwood and Reeves 1983), but there is no information on stock differentiation. The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic, and/or behavioral data are needed to provide further information on stock delineation. #### POPULATION SIZE The best abundance estimate available for northern Gulf of Mexico Bryde's whales is 15 (CV=1.98) (Mullin 2007; Table 1). This estimate is pooled from summer 2003 and spring 2004 oceanic surveys covering waters from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ). # Earlier abundance estimates Estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to sighting data. From 1991 through 1994, linetransect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Figure 1. Distribution of Bryde's whale sightings from SEFSC spring vessel surveys during 1996-2001 and from summer 2003 and spring 2004 surveys. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100m and 1,000m isobaths and the offshore extent of the U.S. EEZ. Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. EEZ (Hansen *et al.* 1995). Annual cetacean surveys were conducted along a fixed plankton-sampling trackline. Survey effort-weighted estimated average abundance of Bryde's whales for all surveys combined from 1991 through 1994 was 35 (CV=1.10) (Hansen *et al.* 1995; Table 1). Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for Bryde's whales in oceanic waters, pooled from 1996 to 2001, was 40 (CV=0.61) (Mullin and Fulling 2004; Table 1). ## **Recent surveys and abundance estimates** During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start was surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for Bryde's whales in oceanic waters, pooled from 2003 to 2004, was 15 (CV=1.98) (Mullin 2007; Table 1), which is the best available abundance estimate for this species in the northern Gulf of Mexico. | Table 1. Summary of abundance estimates for northern Gulf of Mexico Bryde's whales. Month, | | | | |---|----------------|-------------------|------| | year and area covered during each abundance survey, and resulting abundance estimate (N _{best}) | | | | | and coefficient of variation (CV). | | | | | Month/Year | Area | N _{best} | CV | | Apr-Jun 1991-1994 | Oceanic waters | 35 | 1.10 | | Apr-Jun 1996-2001 (excluding 1998) | Oceanic waters | 40 | 0.61 | | Jun-Aug 2003, Apr-Jun 2004 | Oceanic waters | 15 | 1.98 | # **Minimum Population Estimate** The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Bryde's whales is 15 (CV=1.98). The minimum population estimate for the northern Gulf of Mexico is 5 Bryde's whales. ### **Current Population Trend** There are insufficient data to determine the population trends for this stock. The pooled abundance estimate for 2003-2004 of 15 (1.98) and that for 1996-2001 of 40 (CV=0.61) are not significantly different (P>0.05) from each other but due to the imprecision of the estimates, the power to detect a difference is low. The abundance estimate for 1991-1994 was 35 (CV=1.09). These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of Bryde's whale abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance. # CURRENT AND MAXIMUM NET PRODUCTIVITY RATES Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995). # POTENTIAL BIOLOGICAL REMOVAL Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 5. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Bryde's whale is 0.1. #### ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Annual human-caused mortality and serious injury is unknown for this stock. There is no documented mortality or serious injury associated with commercial fishing. During 2009 there was 1 known Bryde's whale mortality as a result of a ship strike. For the period 2005 through 2009, the minimum annual rate of human-caused mortality and serious injury to Bryde's whales due to ship strikes was 0.2 per year. Detected mortalities should not be considered an unbiased representation of human-caused mortality. Detections are haphazard and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality which is almost certainly biased low. #### **Fisheries Information** The level of past or current, direct, human-caused mortality of Bryde's whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There has been no reported fishing-related mortality or serious injury of a Bryde's whale by this fishery during 1998-2009 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison *et al.* 2009; Garrison and Stokes 2010). #### Other Mortality During 2009 a Bryde's whale was found floating in the Port of Tampa (Florida). The whale had evidence of premortem and postmortem blunt trauma, and was determined to have been struck by a ship, draped across the bow and carried into port. The whale was a lactating female and measured 12.65 m in length (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). There were no reported strandings of Bryde's whales in the Gulf of Mexico during 1999-2005 nor during 2007-2008. One Bryde's whale calf live-stranded in Sandestin, Florida, during November 2006. No evidence of human interaction was detected for this stranded animal (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 17 November 2010). Stranding data probably underestimate the extent of human-caused mortality and serious injury because not all of the marine mammals which die or are seriously injured from human interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of vessel collision, entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interactions. #### STATUS OF STOCK The status of Bryde's whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this stock. Total human-caused mortality and serious injury for this stock is not known but one human-caused mortality was documented during 2009. This is a strategic stock because the average annual human-caused mortality and serious injury exceeds PBR. #### REFERENCES CITED - Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6, 73 pp. - Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press. 432 pp. - Fairfield Walsh, C. and L. P. Garrison. 2006. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2005. NOAA Tech. Memo. NMFS-SEFSC-539, 52 pp. - Fairfield-Walsh, C. and L. P. Garrison. 2007. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2006. NOAA Tech. Memo. NMFS-SEFSC-560, 54 pp. - Fairfield, C. P. and L. P. Garrison. 2008. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2007. NOAA Tech. Memo. NMFS-SEFSC-572, 62 pp. - Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. - Garrison, L. P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 57 pp. - Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. - Garrison, L. P., L. Stokes and C. Fairfield. 2009. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2008. NOAA Tech. Memo. NMFS-SEFSC-591, 63 pp. - Garrison, L. P. and L. Stokes. 2010. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2009. NOAA Tech. Memo. NMFS-SEFSC-607, 64 pp. - Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95- - 25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149. - Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. *In:* R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. - Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco. 302 pp. - Maze-Foley, K. and K. D. Mullin. 2006. Cetaceans of the oceanic northern Gulf of Mexico: Distributions, group sizes and interspecific associations. J. Cetacean Res. Manage. 8(2): 203-213. - Mullin, K. D. 2007. Abundance of cetaceans in the oceanic Gulf of Mexico based on 2003-2004 ship surveys. 26 pp. Available from: NMFS, Southeast Fisheries Science Center, P.O. Drawer 1207, Pascagoula, MS 39568. - Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. *In:* R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. - Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mamm. Sci. 20(4): 787-807. - Schmidly, D. J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp. - Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. NOAA Tech. Memo. NMFS-OPR-12, 93 pp. - Würsig, B., T. A. Jefferson and D. J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A&M University Press, College Station. - Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp.