Advanced Technology Vehicles: Overview and Constraints

John German, ICCT

EIA Energy Conference

April 26, 2011

Where Does the Energy Go?

http://www.fueleconomy.gov/FEG/atv.shtml

Efficiency/CO2 Reduction Strategies

Joint-Agency TAR: Technology Packages

- Major CO₂-reduction potential from emerging technologies by 2025
 - US EPA's OMEGA used many technology packages, 19 vehicle classes to evaluate scenarios
 - Increasing costs from incremental efficiency, to hybrid, and to electric technology

Rated gCO₂/mile reduction (from 2008 baseline)

Price in figure refers to the incremental cost to the consumer due to the new technology packages; technology packages include many different technologies; technology labels are approximate for illustration; grid electricity applies US EPA 4 assumptions and accounting method for US electric grid (558 gCO₂e/kWh) for electric and plug-in hybrids

Technology costs: Near- vs. Long-term

Technology availability increases - and its costs decrease - over time

- Incremental vehicle costs and percent improvements are in reference to MY2008 baseline
- Data from US EPA/NHTSA 2012-2016 rulemaking and EPA/NHTSA/CARB TAR for 2020

Next-generation Gasoline Engines

Fiat MultiAir Digital Valve Actuation

Dual-loop high/low pressure cooled exhaust gas recirculation

Turbo-Boosted EGR Engines

- Highly dilute combustion – considerable efficiency improvement
- Advanced ignition systems required

Terry Alger, Southwest Research Institute, "Clean and Cool", Technology Today, Summer 2010

Lightweight materials offer great potential

Material composition of lightweight vehicle body

Also incremental improvements in aerodynamics and tire rolling resistance

Slide 8

US Joint-Agency TAR: Mass

- In 2020-2025 timeframe, Recutation will be a core technology
 - Looked at many studies (e.g., US DOE, Sierra Research, MIT, Lotus)
 - Mass reduction typically deployed before hybrid; with increasing cost
 - Various technical studies suggest feasible levels of mass reduction of 20-35%
 - Every TAR scenario for 2025 found average vehicle mass reduction of 14-26%

Post-TAR: Ongoing Work

- Lotus/FEV mass-reduction crash simulation work
 - CARB/EPA/NHTSA collaboration
 - Computer-Aided Engineering (CAE)
 - Simulate vehicle in front, side, offset crashes
 - Lotus: Validate crashworthiness of 30% + mass-reduced vehicle (high development case)
 - FEV: Validate crashworthiness of HSS vehicle (low development case)
 - Completion in winter/spring 2011
- FEV also updating cost assessments

Hybrid Technology Advances

- Synergies with other technologies and optimized control strategies
 - Engine (Atkinson, Miller, lean-cruise, digital valve); optimization of engine and transmission operation; mass-reduction; dual-clutch transmission
- New P2 hybrid single motor with two clutches
 - Pre-transmission clutch: engine decoupling and larger motor
 - Nissan, VW, Hyundai, BMW, and Mercedes
 - Approximately 1/3 lower cost than input powersplit with 90-95% of benefits
- High-power Li-ion batteries smaller, lighter, and lower cost

Nissan Fuga/M35 parallel hybrid layout

Synergies Between Parallel Hybrid and DCT DCT: Dual-clutch automated manual

Problem	Solution		
DCT has problems launching the vehicle	Launch vehicle using high torque from electric motor		
Limited space for electric motor between engine and transmission	Mount motor on the rear of the DCT		

- GETRAG PowerShift® Doppelkupplungsgetriebe GETRAG PowerShift Dual-Clutch Transmission Elektrisch betriebener
- Hinterachsantrieb Electrical rear Axle Drive
- 3. E-Maschine E-machine
 - Leistungselektronik Power Electronics
 - Motor Engine

1.

2

5.

The electric motor is mounted parallel to the transmission shafts and is connected via an electro-magnetic clutch that allows it to connect to either of the two gear sets.

EPA/NHTSA 2025 Technology Assessments

Scenario: 2025 Levels	Technology Path Focus	Mass Reduction	HEV Penetration	PHEV Penetration	EV Penetration	Preliminary Per-Vehicle Cost Estimates (\$)	Monetary estimate of lifetime fuel saving (\$)	Payback Period (years)
3%/year	HEV	15%	11%	0%	0%	\$930	\$5,930	1.6
17	All	18%	3%	0%	0%	\$850	\$5,950	1.5
47 mpg	ICE & lightweight	18%	3%	0%	0%	\$770	\$5,970	1.4
190 gCO ₂ /mi	PHEV/EV/HEV	15%	25%	0%	0%	\$1,050	\$5,950	1.9
4%/year	HEV	15%	34%	0%	0%	\$1,700	\$7,600	2.5
	All	20%	18%	0%	0%	\$1,500	\$7,500	2.2
51 mpg	ICE & lightweight	25%	3%	0%	0%	\$1,400	\$7,600	1.9
$1/3 \text{ gCO}_2/\text{m}$	PHEV/EV/HEV	15%	41%	0%	4%	\$1,900	\$7,200	2.9
5%/year	HEV	15%	65%	0%	1%	\$2,500	\$9,000	3.1
	All	20%	43%	0%	1%	\$2,300	\$9,000	2.8
56 mpg	ICE & lightweight	25%	25%	0%	0%	\$2,100	\$9,100	2.5
158 gCO ₂ /mi	PHEV/EV/HEV	15%	49%	0%	10%	\$2,600	\$8,100	3.6
6%/year	HEV	14%	68%	2%	7%	\$3,500	\$9,700	4.1
	All	19%	43%	2%	7%	\$3,200	\$9,800	3.7
62 mpg	ICE & lightweight	26%	44%	0%	4%	\$2,800	\$10,200	3.1
143 gCO ₂ /m1	PHEV/EV/HEV	14%	55%	2%	14%	\$3,400	\$9,100	4.2

EPA/NHTSA Joint NOI Regarding Light-duty Vehicle Standards for the 2017-2025 Model Years

Are We Looking the Wrong Way?

Output	Exhaust loss	Cooling loss	Others			
26%	29%	29%	16%			
100%						

Fig. 2 Example of heat balance in a conventional engine

- Combustion work focuses on raising output efficiency over typical driving cycles
 – From roughly 20% to 35%
- Heat losses are the 800-pound gorilla in the closet

HD: National Academy of Sciences study

- NAS study (March 2010) was commissioned as a result of the 2007 EISA
- Fuel consumption reduction potential close to 50% for most vehicle types

Source: TIAX (2009) Assessment of Fuel Economy Technologies for Medium- and Heavy-Duty Vehicles

Significance of Fuel Cell and Electric Vehicles

Fuel cell and electric vehicle technology have the potential to concurrently help solve the problems of air pollution, global warming, and limited energy resources

The Liquid Fuel Advantage

ENERGY FUTURE: Think Efficiency American Physical Society, Sept. 2008, Chapter 2, Table 1

	Energy density	/ per volume	Energy density per weight		
	kWh/liter	vs gasoline	KWh/kg	vs gasoline	
Gasoline	9.7		13.2		
Diesel fuel	10.7	110%	12.7	96%	
Ethanol	6.4	66%	7.9	60%	
Hydrogen at 10,000 psi	1.3	13%	39	295%	
Liquid hydrogen	2.6	27%	39	295%	
NiMH battery	0.1-0.3	2.1%	0.1	0.8%	
Lithium-ion battery (present time)	0.2	2.1%	0.14	1.1%	
Lithium-ion battery (future)			0.28 ?	2.1%	

Electricity versus Hydrogen

- Both are energy carriers can be dirty or clean, depending on how created
- Neither will replace gasoline internal combustion for a long time

	Advantages	Needed improvements
Electricity	 Existing infrastructure ??? Battery charge/discharge losses lower than fuel cell losses 	 Driving range – energy storage breakthrough Lower carbon grid Safe place to plug in Charge time 15 min = 440v x 1,000 amp
Hydrogen	 90% of energy from air Remote generation (wind, geothermal, waves, solar) Cogeneration – heat and electricity for home, fuel for car 	 Breakthrough in hydrogen storage and delivery Better ways to create hydrogen New infrastructure

Natural Market Barriers

- Need for technological advances
- Learning by doing
- Scale economies
- Resistance to novel technologies
- Lack of diversity of choice
- Chicken or egg?
 - Lack of fuel availability
 - Lack of vehicles to use new fuel

DOE's hydrogen study estimated transition costs of \$25-40 billion

In gauging the potential for advanced vehicles, remember that the competition is changing....

A Critical Barrier to E85.....Reduced Energy Density

	Fuel Type					
Performance Specification	Diesel	Gasoline	E10	E85	Butanol	
Megajoules/litre	40.9	32.0	28.06	19.59	29.2	

BTU/U.S. gallon	147,000	125,000	120,900	84,400	104,800	
		******	*******			
RON		91-98	93	129	96	
MON		81-89	85	96	78	

300 mile range on gasoline drops to 215 miles on E85

Next-Generation Biofuel Pathways

- Multiple pathways possible from non-food biomass.
- Many pathways result in fuels that are fungible with today's fuels.
- Some examples for liquid transportation fuels are shown here.

New Customer Discounting of Fuel Economy Benefits

Turrentine & Kurani, 2004

In-depth interviews of 60 California households' vehicle acquisition histories found *no evidence* of economically rational decision-making about fuel economy.

- Out of 60 households (125 vehicle transactions)
 9 stated that they compared the fuel economy of vehicles in making their choice.
- 4 households knew their annual fuel costs.
- None had made any kind of quantitative assessment of the value of fuel savings.

Consumers are, in general, LOSS AVERSE 2002 Nobel Prize for Economics (Tversky & Kahnemann, J. Risk & Uncertainty 1992

- Uncertainty about future fuel savings makes paying for more technology a risky bet
 - What MPG will I get (your mileage may vary)?
 - How long will my car last?
 - How much driving will I do?
 - What will gasoline cost?

"A bird in the hand is worth two in the bush."

- What will I give up or pay to get better MPG?

Causes the market to produce less fuel economy than is economically efficient

2002 NAS/NRC CAFE Report Technology Cost Curves

The implications of a 3-year payback requirement and uncertainty+loss aversion are the same.

New Consumer Discounting is Fixable

- Increase fuel taxes
- Feebates: Pay manufacturers and consumers up front for value of the fuel savings

Uncertainties Larger Barrier for PHEVs

- How much am I going to save on fuel?
- How much will I pay for electricity?
- How often do I need to plug in?
- How much hassle will it be to plug in?
- Can I be electrocuted in the rain or if I work on my vehicle?
- What will it cost to install recharging equipment?
- How long will the battery last?
 - And how much will it cost to replace it?
- How reliable will the vehicle be?
- What will the resale value be?
 - Especially since the next owner also has to install recharging equipment
- What kind of PHEV is best for me?
 - Would a blended strategy be better than electric-only operation?
 - What amount of AER would be best for my driving?
 - What if I move or change jobs?

It's bad enough to spend \$300 on a Betamax but \$30,000+ ?

Capitol Investments and Leadtime

Capitol Intensity

Exhibit 5

Capital intensity of abatement by economic sector - 2030

* The additional upfront capital investment compared to the baseline case divided by the total amount of emissions avoided during the lifetime of the investment. For measures where upfront investments decrease over time with a learning rate, the weighted average investment over time has been used.

Source: McKinsey Global GHG Abatement Cost Curve v2.0

The Real Barrier - Leadtime

- Too many technology options, each with uncertain costs and benefits
- Must allow time to ensure quality and reliability
 Rigorous product development process
 - Prove in production on a limited number of vehicles
 - Spread across fleet 5-year minimum product cycles
 - Enormous capitol costs
- Longer leadtime is needed for new technologies

Real Cost of Driving

Real Gasoline Price

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

New Vehicle Fuel Economy

New Vehicle MPG (CAFE values) Combined car and light truck

New Vehicle Gasoline Cost per Mile

Real Fuel Cost - % of Disposable Income

Forecasted Per Capita Disposable Income from AEO2009 April 2009 update

Future Directions

- Hybrid costs are dropping and synergies are developing
 - Mass market acceptance likely within 15 years
- Gasoline engines and gasoline-electric hybrids are improving rapidly – raising bar for other technologies
 - Especially a problem for diesels & PHEVs
- No silver bullet
 - Energy and GHG so immense we must do everything avoid trap of single solutions
- Consumer risk/loss aversion challenges:
 - Most customers will continue to value performance, features, and utility higher than fuel savings
 - More difficult to implement advanced technology

Technology du jour

- 25 years ago Methanol
- 15 years ago Electric vehicles
- 10 years ago Hybrid/electric vehicles
- 6 years ago Fuel cell vehicles
- 4 years ago Ethanol
- **Today BEVs and PHEVs**
 - What's next?

Extremely disruptive and wasteful

Thank You

