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FOREWORDFOREWORDFOREWORDFOREWORD
 

As part of its mandate to ”provide a safe and healthful workplace for working women and 
men,” the National Institute for Occupational Safety and Health (NIOSH) critically evaluates 
the scientific data on potentially hazardous occupational exposures or work 

conditions and makes recommendations that address measures for minimizing the risk from the 
hazard. This document, Hazard Review: Health Effects of Occupational Exposures to Asphalt, is an 
evaluation of the health effects and other relevant data that have become available since publication 
of the 1977 NIOSH document Criteria for a Recommended Standard: Occupational Exposure to 
Asphalt Fumes. It includes an assessment of chemistry, health, and exposure data from studies in 
animals and humans exposed to raw asphalt, paving and roofing asphalt fume condensates, and 
asphalt-based paints. Most important, the document serves as a basis for identifying future research 
to reduce occupational exposures to asphalt. 

The complex chemical composition of asphalt makes it difficult to identify the specific component(s) 
responsible for adverse health effects observed in exposed workers. Known carcinogens have been 
found in asphalt fumes generated at worksites. Observations of acute irritation in workers from 
airborne and dermal exposures to asphalt fumes and aerosols and the potential for chronic health 
effects, including cancer, warrant continued diligence in the control of exposures. 

NIOSH and its labor and industry partners are making great strides in reducing worker exposures to 
paving and roofing asphalt fumes. The partnership has succeeded because the partners set aside key 
differences to focus on the development of engineering and other control measures to reduce 
workplace exposures. A major success occurred when 100 percent of the asphalt paving industry 
voluntarily agreed to install new controls on all new highway pavers produced after July 1997— 
effectively reducing asphalt fume exposure. Other aspects of the partnership have encouraged 
collaborative laboratory and field research and the development of communication materials for 
workers and contractors on methods for reducing workplace exposures. Representatives of industry, 
labor, government, and academia met in Cincinnati, OH, on September 11 and 12, 2000, and 
identified research needed to assess completely the health risks associated with exposure to asphalt. 
Through these and other efforts of the partnership, effective workplace measures can be implemented 
to reduce worker exposure to asphalt fumes. 

Linda Rosenstock, M.D., M.P.H. 
Director, National Institute for Occupational Safety and Health 
Centers for Disease Control and Prevention 
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EXECUTIVE SUMMARY
 

In 1977, the National Institute for Occupational Safety and Health (NIOSH) reviewed the 
available data on the health effects of occupational exposure to asphalt and asphalt fumes. 
NIOSH determined the principal adverse health effects to be irritation of the serous membranes 

of the conjunctivae and mucous membranes of the respiratory tract. NIOSH also acknowledged that 
evidence from animal studies indicated that asphalt left on the skin for long periods of time could 
result in local carcinomas but that no comparable reports of these effects existed for humans. On the 
basis of this evidence, NIOSH recommended an exposure limit (REL) for asphalt fumes of 5 
milligrams per cubic meter of air (5 mg/m3) measured as total particulates during any 15-minute 
period. In testimony to the Department of Labor in 1988, NIOSH recommended that asphalt fumes 
also be considered a potential occupational carcinogen. Since then, additional data have become 
available from studies of animals and humans exposed to asphalt, paving and roofing asphalt fume 
condensates, and asphalt-based paints. This document evaluates the health effects data that have 
become available since publication of the 1977 NIOSH criteria document; it also assesses exposures 
associated with occupations that involve the use of roofing and paving asphalts and asphalt-based 
paints. 

Asphalt is a dark brown to black, cementlike semisolid or solid produced by the nondestructive 
distillation of crude oil during petroleum refining. The three major types of asphalt products are 
paving asphalts, roofing asphalts, and asphalt-based paints. Performance specifications—not 
chemical composition—direct the type of asphalt produced. Most of the asphalt produced in the 
United States is used in paving and roofing operations. Only about 1% is used for waterproofing, 
damp-proofing, insulation, paints, or other activities and products. Approximately 300,000 workers 
are employed at hot-mix asphalt facilities and paving sites; an estimated 50,000 workers are 
employed in asphalt roofing operations; and about 1,500 to 2,000 workers are exposed to asphalt 
fumes in approximately 100 roofing manufacturing plants. 

The exact chemical composition of asphalt depends on the chemical complexity of the original crude 
petroleum and the manufacturing processes. The proportions of the chemicals that constitute  asphalt 
(mainly aliphatic compounds, cyclic alkanes, aromatic hydrocarbons, and heterocyclic compounds 
containing nitrogen, oxygen, and sulfur atoms) can vary because of significant differences in crude 
petroleum from various oil fields and even from various locations within the same oil field. Further 
analysis of the chemical data indicates that paving and roofing asphalts are qualitatively and 
quantitatively different; therefore, the vapors and fumes from these asphalt products may also be 
different. Other factors that increase the variability of asphalt vapors and fumes include temperature 
and mixing during the manufacturing process, and temperature and extent of mixing during 
laboratory generation or field operations. Studies indicate that the composition of asphalt fumes 
generated in the laboratory may differ qualitatively and quantitatively from asphalt fumes generated 
during field operations. However, one study showed that it is possible to generate asphalt fumes in 
the laboratory that are representative of field fumes. 

Data are limited regarding the presence of carcinogens in asphalt fumes generated at U.S. worksites. 
The occasional detection of benzo(a)pyrene, B(a)P, in asphalt fumes generated at worksites as well 
as the more frequent detection of B(a)P and other carcinogenic polycyclic aromatic compounds in 
laboratory-generated asphalt fumes indicate that under some conditions, known carcinogens are 
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likely to be present. Moreover, asphalt fumes generated at high temperatures are probably more 
likely to generate carcinogenic polycyclic aromatic hydrocarbons (PAHs) than fumes generated at 
lower temperatures. 

Studies of the acute toxic effects of asphalt fume exposures in workers have repeatedly reported 
irritant symptoms of the serous membranes of the conjunctivae (eye irritation) and the mucous 
membranes of the upper respiratory tract (nasal and throat irritation). These health effects are best 
described in asphalt road pavers and typically appear to be mild in severity and transient in nature. 
Similar symptoms were also reported in workers exposed to asphalt fumes during the manufacture 
of asphalt roofing shingles and fluorescent lights, the insulation of cables, and exposure to a 
malfunctioning light fixture in an office environment. Workers employed in five segments of the 
asphalt industry (hot-mix plants, terminals, roofing, paving, and roofing manufacturing) experienced 
mild transient symptoms of nasal and throat irritation, headache, and coughing. In addition to 
mucosal irritation, workers with differing occupational exposures to asphalt fumes (e.g., paving 
operations, insulation of cables, and manufacturing of fluorescent light fixtures) also reported skin 
irritation, pruritus, rashes, nausea, stomach pain, decreased appetite, headaches, and fatigue. Such 
nonspecific symptoms require further investigation to clarify and establish the nature of causal 
relationships with asphalt fume exposure. 

Results from recent studies indicated that some workers involved in asphalt paving operations 
experienced lower respiratory tract symptoms (e.g., coughing, wheezing, and shortness of breath) 
and pulmonary function changes. Irritant symptoms were noted in workers involved in open-air 
paving operations whose average personal exposures were generally below 1.0 mg/m3 total 
particulates and 0.3 mg/m3 benzene-soluble particulates calculated as a full-shift time-weighted 
average (TWA). Although an exposure-response relationship has not yet been established in these 
studies, the identification of health effects related to higher mean personal exposures during 
underground asphalt paving* indicates that such a relationship may exist. Bronchitis that is possibly 
related to lower respiratory tract irritation has also been reported among asphalt workers and 
highway maintenance workers; however, the data are insufficient to conclude that the bronchitis was 
caused by occupational exposure to asphalt fumes. 

A recent meta-analysis of epidemiologic studies of roofers indicates an excess of lung cancer among 
roofers, but it is uncertain whether this excess is related to asphalt and/or to carcinogens such as coal 
tar or asbestos. Data from studies in animals and in vitro assays indicate that laboratory-generated 
roofing asphalt fume condensates are genotoxic and produce skin tumors in mice.  Known 
carcinogenic PAHs have been identified in roofing asphalt fumes. 

In contrast to the studies of roofers, epidemiologic studies of pavers exposed to asphalt fumes have 
yielded contradictory results regarding lung cancer. Although some of the studies reported an 
elevated risk for lung cancer among pavers exposed to asphalt, design limitations of these studies 
precluded any strong conclusions. Confounders included smoking and coexposure to coal tar and 
other potential lung carcinogens (e.g., diesel exhaust, silica, and asbestos). Furthermore, a recently 

*Total particulate or benzene-soluble particulate measurements were up to 10 times higher than measurements taken 
during open-air paving, but they were still below 2.2 mg/m3. 
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conducted meta-analysis of these studies failed to find overall evidence for a lung cancer risk among 
pavers exposed to asphalt. However, carcinogenic PAHs have been detected in asphalt paving 
fumes—although at lower concentrations than those found in fumes from roofing asphalt. No 
published data examine the carcinogenic potential of paving asphalt fumes or fume condensates in 
animals. 

A few studies reported an association between cancer at sites other than the lungs (e.g., bladder, 
kidneys, brain, and liver) with occupations having potential exposure to asphalt. Since the 
interpretation of these findings is limited by the study designs and the lack of good exposure data 
and consistent findings, no association can be made at this time. Further confirmation is needed by 
studies with better control of confounding variables and better identification of asphalt exposures. 

Conflicting results were obtained when raw roofing asphalts were applied dermally to mice. In one 
study, the raw roofing asphalt was weakly carcinogenic and caused malignant skin tumors in mice. 
In the other study, the raw roofing asphalt was not carcinogenic. Available data also indicate that 
several formulations of asphalt-based paints cause benign and malignant skin tumors in mice. 
However, these paints were not mutagenic in the Ames Salmonella mutagenicity assay, either with 
or without metabolic activation. Several other asphalt-based paints caused the formation of DNA 
adducts in the skin and lungs of treated mice and in fetal and adult human skin cultures. 

ConclusionsConclusionsConclusionsConclusions 

In this hazard review, NIOSH has evaluated the scientific evidence concerning the potential health 
effects of occupational exposure to asphalt. On the basis of available data from studies in animals 
and humans, as well as in in vitro studies, NIOSH concludes the following about the acute health 
effects of asphalt exposure: 

•	 The findings of this hazard review continue to support the assessment of the 1977 NIOSH 
criteria document on asphalt fumes, which associated exposure to asphalt fumes from 
roofing, paving, and other uses of asphalt with irritation of the eyes, nose, and throat. 
Furthermore, in studies conducted since the publication of the 1977 criteria document, these 
symptoms have also been noted among workers exposed to asphalt fumes at geometric mean 
concentrations generally below 1 mg/m3 total particulates and 0.3 mg/m3 benzene-soluble or 
carbon disulfide-soluble particulates, calculated as a full-shift TWA. Recent studies also 
report evidence of acute lower respiratory tract symptoms among workers exposed to asphalt 
fumes. These data are currently being further analyzed to assess the relationship between 
lower respiratory tract symptoms and asphalt fume exposure. The available data on chronic 
pulmonary effects (such as bronchitis) are insufficient to support an association with asphalt 
fume exposures. 

In 1988, NIOSH recommended to OSHA that asphalt fumes be considered a potential occupational 
carcinogen based on the results of an animal study in which laboratory-generated roofing asphalt 
fume condensates induced malignant skin tumors in mice. Since then, investigators have described 
differences in chemical composition, physical characteristics, and biological activitybetween asphalt 
fumes collected in the field and those generated in the laboratory. The relevance of these differences 
in ascribing adverse health effects in humans is unknown. Data from studies in humans indicate that 
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some workers exposed to asphalt fumes are at an elevated risk of lung cancer; however, it is 
uncertain whether this excess is related to asphalt and/or other carcinogens in the workplace. 
Although carcinogenic PAHs have been identified in asphalt fumes at various worksites, the 
measured concentrations and the frequency of their occurrence have been low. 

Based on evaluation of these data, the following conclusions were drawn regarding the 
carcinogenicity of asphalt under several conditions of use: 

•	 Data regarding the potential carcinogenicity of paving asphalt fumes in humans are limited. 
Only one study identified B(a)P in field fumes, but it was unclear whether paving asphalt 
fumes were the source of the B(a)P.  Chrysene has been identified only in laboratory-
generated paving asphalt fumes. The available data from studies in humans have not 
provided consistent evidence of carcinogenic effects in workers exposed to asphalt fumes 
during paving operations. No animal studies have examined the carcinogenic potential of 
either field- or laboratory-generated samples of paving asphalt fume condensates. Although 
genotoxicity assays (but no carcinogenicity assays) using laboratory-generated and field-
generated (storage tank paving asphalt) fumes have been conducted, only the laboratory-
generated fumes were genotoxic. Therefore, NIOSH concludes that the collective data 
currently available from studies on paving asphalt provide insufficient evidence for an 
association between lung cancer and exposure to asphalt fumes during paving. The available 
data, however, do not preclude a carcinogenic risk from asphalt fumes generated during 
paving operations. 

•	 The results from epidemiologic studies indicate that roofers are at an increased risk of lung 
cancer, but it is uncertain whether this increase can be attributed to asphalt and/or to other 
exposures such as coal tar or asbestos.  Data from experimental studies in animals and 
cultured mammalian cells indicate that laboratory-generated roofing asphalt fume con­
densates are genotoxic and cause skin tumors in mice when applied dermally. Furthermore, 
a known carcinogen, B(a)P, was detected in field-generated roofing fumes. The collective 
health and exposure data provide sufficient evidence for NIOSH to conclude that roofing 
asphalt fumes are a potential occupational carcinogen. 

•	 The available data indicate that although not all asphalt-based paint formulations may exert 
genotoxicity, some are genotoxic and carcinogenic in animals. No published data examine 
the carcinogenic potential of asphalt-based paints in humans, but NIOSH concludes that 
asphalt-based paints are potential occupational carcinogens. 

Current data are considered insufficient for quantifying the acute and chronic health risks of 
exposure to asphalt, asphalt-based paint, or asphalt fumes and vapors. However, data from at least 
two studies of acute effects are currently being evaluated to determine their usefulness in deriving 
an REL. Additional studies of workers exposed to asphalt fumes, vapors, and aerosols (e.g., during 
paving, roofing, and painting operations) are needed to better characterize exposures and to evaluate 
the risk of chronic disease, including lung cancer. Also required are experimental animal studies that 
use laboratory generation methods to produce fumes and vapors representative of asphalt roofing and 
paving operations. Until the results of these studies become available, NIOSH recommends 
minimizing possible acute or chronic health effects from exposure to asphalt, asphalt fumes and 
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vapors, and asphalt-based paints by adhering to the current NIOSH REL of 5 mg/m3 during any 15­
min period and by implementing the following practices: 

•	 Prevent dermal exposure. 
•	 Keep the application temperature of heated asphalt as low as possible. 
•	 Use engineering controls and good work practices at all work sites to minimize worker 

exposure to asphalt fumes and asphalt-based paint aerosols. 
•	 Use appropriate respiratory protection (see Appendix C). 
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SELECTED ABBREVIATIONS
 

AC asphalt cement 
AI Asphalt Institute 
AREC Asphalt Roofing Environmental 

Council 
ARMA Asphalt Roofing Manufacturers’

 Association 
ASTM American Society for Testing and

 Materials 
B(a)P benzo(a)pyrene 
CAS Chemical Abstracts Service 
CI confidence interval 
DNA deoxyribonucleic acid 
FHWA Federal Highway Administration 
GC/FID gas chromatography with flame ion­

  ization detector 
GC/MS gas chromatography/mass spec­

trometry 
GM geometric mean 
HMA hot-mix asphalt 
HMW highway maintenance workers 
HPLC high-performance liquid chro­

  matography 
IARC International Agency for Research

 on Cancer 
LC liquid chromatography 
NAPA National Asphalt Pavement Asso­

  ciation 
NMR nuclear magnetic resonance 
NMRD nonmalignant respiratory disease 
OR odds ratio 
PAC polycyclic aromatic compound 
PAH polycyclic aromatic hydrocarbon 
PEFR peak expiratory flow rate 
PMR proportional mortality ratio 
REL recommended exposure limit 
RR relative risk 

RTECS Registry of Toxic Effects of Chem­
ical Substances 

SCE sister chromatid exchange 
SEM standard error of mean 
SIR standardized incidence ratio 
SMR standardized mortality ratio 
STEL short-term exposure limit 
TLV® threshold limit value 
TPA 12-O-tetradecanoylphorbol-13­

  acetate 
TWA time-weighted average 
VOC volatile organic compound 

cm centimeter 
g  gram  
g/mL grams per milliliter 
hr hour 
in/ft inches per foot 
L/min liters per minute 
mg milligram 
mg/m3 milligrams per cubic meter 
min minute 
mL milliliter 
mV millivolt 
ng/cm2 nanograms per square centimeter 
nm nanometer 
sec second 

°C degrees Celsius 
°F degrees Fahrenheit 
% percent 
wt % weight percent 
µg microgram 
µg/m3 micrograms per cubic meter 
µL microliter 
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GLOSSARY OF TERMS
 

Aggregate: Graduated fragments of hard, inert 
mineral material that are mixed with asphalt. 
Aggregate includes sand, gravel, crushed 
stone, and slag [Stein 1980]. 

Asphalt (CAS number 8052-42-4): The 
product of the nondestructive distillation of 
crude oil in petroleum refining; it is a dark 
brown to black cement-like semisolid or solid. 
Depending on the crude oil used as a 
feedstock, the distillation residuum may be 
further processed, typically by air blowing 
(sometimes with a catalyst) or solvent precipi­
tation, to meet performance specifications for 
individual applications [AI 1990b].  It is a 
mixture of paraffinic and aromatic hydro­
carbons and heterocyclic compounds contain­
ing sulfur, nitrogen, and oxygen [Sax and 
Lewis 1987]. 

Asphalt cement: Asphalt that is refined to 
meet specifications for paving, roofing, in­
dustrial, and special purposes [AI 1990b]. 

Asphalt, cutback: An asphalt liquefied by the 
addition of diluents (typically petroleum 
solvents).  Cutback asphalts are used in both 
paving and roofing operations depending on 
whether a paving or roofing asphalt is lique­
fied [AI 1990b; Roberts et al. 1996; Speight 
1992a]. 

Asphalt, emulsified: A mixture of two nor­
mally immiscible components (asphalt and 
water) and an emulsifying agent (usually soap, 
but may be starch, glue, gum, colloidal clay, 
or other materials with similar properties) that 
allows the asphalt and water to mix.  Emul­
sified asphalts are either cationic (electro­
positively charged micelles containing asphalt 
molecules or anionic (electro-negatively 
charged micelles containing asphalt mole­
cules) depending on the emulsifying agent. 
Emulsified asphalts are used for seal coats on 
asphalt pavements, built-up roofs, and for 
other waterproof coverings.  Emulsified 

asphalts are also called asphalt emulsions [AI 
1990b; Roberts et al. 1996; Speight 1992a; 
Stein 1980]. 

Asphalt fumes: The cloud of small particles 
created by condensation from the gaseous 
state after volatilization of asphalt [NIOSH 
1977a]. 

Asphalt-based paints: A specialized cutback 
asphalt product that can contain small 
amounts of other materials such as lampblack, 
aluminum flakes, or mineral pigments. They 
are used as a protective coating in water­
proofing operations and other similar ap­
plications [AI 1990b]. 

Asphalt, hot mix (HMA): Paving material 
that contains mineral aggregate coated and 
cemented together with asphalt cement [AI 
1990b]. 

Asphalts, liquids: These are asphalts that are 
liquids at ambient temperatures. Liquid 
asphalts include cutback and emulsified 
asphalts [Roberts et al. 1996; Speight 1992a]. 

Asphalt, mastic: A mixture of asphalt and fine 
mineral material in such proportions that it 
may be poured hot into place and compacted 
by hand-troweling to a smooth surface [AI 
1990b].  It is similar to hot-mix asphalt, but it 
is a finer aggregate. 

Asphalt, oxidized (blown or air-refined) 
[CAS number 64742-93-4]: Asphalt treated 
by blowing air through it at elevated temper­
atures to produce physical properties required 
for the industrial use of the final product. 
Oxidized asphalts are typically used in roofing 
operations, pipe coating, undersealing for 
Portland cement concrete pavements, hy­
draulic applications, membrane envelopes [AI 
1990b], and the manufacture of paints 
[Speight 1992a]. 
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Asphalt, roofing: Asphalt that is refined or 
processed to meet specifications for roofing. 

Asphalt, paving: Asphalt that is refined to 
meet specifications for paving. 

Bitumen: The term more commonly used in 
Europe to refer to asphalt. 

Coal tar: A tar that contains polycyclic aromatic 
compounds and is produced by the destructive 
distillation of bituminous coal [Bingham et al. 
1980].  Distillation of coal-tar produces a variety 
of compounds such as coal tar pitch, creosote, 
and other chemicals or oils [NIOSH 1977b]. It is 
used in roofing, roads, waterproofing, paints, 
pipe coatings, sealants, insulation, and pesticides 
[Sax and Lewis 1987]. 

Coal tar pitch (CTP): A black or dark brown 
cementitious solid that is obtained as a residue 
in the partial evaporation or fractional dis­
tillation of coal tar [Bingham et al. 1980]. 
CTP is used in coatings, paints, roads, roofing, 
coal briquettes, and sealants [Sax and Lewis 
1987]. 

Coal tar pitch volatiles (CTPV): Volatile 
matter emitted into the air when coal tar, coal 
tar pitch, or their products are heated [NIOSH 
1977b]. 

Fog coat: Light application of slow-setting 
asphalt emulsion diluted with water.  Fog 
coats are used to renew old asphalt surfaces 
and seal small cracks and surface voids [Stein 
1980]. 

International Agency for Research on 
Cancer (IARC) categorization of agents as 
to their carcinogenicity: 

Group 1—The agent is carcinogenic to 
humans. 

Group 2A—The agent is probably 
carcinogenic to humans. 

Group 2B—The agent is possibly 
carcinogenic to humans. 

Group 3—The agent is not classifiable as 
to its carcinogenicity to humans. 

Group 4—The agent is probably not 
carcinogenic to humans. 

Penetration macadam: Roadway consisting 
of a liquid asphalt sprayed onto a coarse ag­
gregate (usuallycrushed gravel, slag, or stone) 
of uniform size [Stein 1980]. 

Polycyclic aromatic compound (PAC):  A 
class of chemical compounds that contains 
two or more fused benzenoid rings.  This 
class of compounds includes polycyclic 
aromatic hydrocarbons (PAHs) and hete­
rocyclic derivatives where one or more of the 
carbon atoms in the benzenoid rings have 
been replaced by a heteroatom of nitrogen 
(N-PAC), oxygen (O-PAC), or sulfur (S­
PAC) [Vo-Dinh 1989]. 

Polycyclic aromatic hydrocarbons (PAH): A 
class of chemical compounds that only contain 
carbon and hydrogen in two or more fused 
benzenoid rings [Vo-Dinh 1989]. 

Prime coat: Application of a viscous liquid 
asphalt by spraying onto an absorbent surface. 
It is used to prepare an untreated base for an 
asphalt overlay.  The prime penetrates the 
base, filling voids, and hardens the top so that 
the asphalt overlay will bond [Stein 1980]. 

Seal coat: A liquid asphalt treatment used to 
waterproof and improve the texture of an 
asphalt wearing surface.  Many seal coats are 
covered with an aggregate [Stein 1980]. 

Slurry seal: A mixture of a slow-setting emul­
sified asphalt, fine aggregate, and mineral fil­
ler with enough water added to form a slurry 
[Stein 1980]. 
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Surface treatments: The addition of an 
asphaltic material to any road surface, with or 
without a covering of aggregate, that increases 
the thickness of the surface by less than 1 inch 
[Stein 1980]. 

Tack coat: A light application (usually by 
spraying) of a liquid asphalt cement to an 
existing pavement so that a bond can form 
with the new asphalt pavement [FAA 1991]. 
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1 Introduction
 

1.1 Purpose 

In 1977, the National Institute for Occu­
pational Safety and Health (NIOSH) re­

viewed the available health effects data on 
occupational exposure to asphalt and asphalt 
fumes. NIOSH determined that the principal 
adverse health effects were irritation of the 
serous membranes of the conjunctivae and the 
mucous membranes of the respiratory tract 
[NIOSH 1977a]. Evidence from animal 
studies indicated that asphalt left on the skin 
for long periods of time could result in local 
carcinomas, but no comparable reports of such 
effects had been reported for humans exposed 
to asphalt or asphalt fumes. At that time, 
NIOSH recommended that occupational ex­
posure to asphalt fumes be controlled so that 
employees were not exposed to airborne par­
ticulates at a concentration greater than 
5 milligrams per cubic meter of air (5 mg/m3) 
determined during any 15-min period.1 Since 
then, additional data from studies on both 

1When large amounts of dust are present in the work 
environment, use of the gravimetric method may lead to 
erroneously high estimates for asphalt fumes.  Where 
resolution of such problems becomes necessary, a more 
specific procedure involving solvent extraction and 
gravimetric analysis should be employed for the 
determination of asphalt fumes [NIOSH 1977a]. 

animals and humans exposed to asphalt, pav­
ing and roofing asphalt fume condensates, and 
asphalt-based paints have become available. 
This report provides a review and evaluation 
of these new data, as well as other in­
formation. It is expected that this report will 
serve as a basis for identifying future research 
needs. 

1.2 Scope 

The information in this document assesses the 
health hazards associated with occupational 
exposure to asphalt. Chapter 2 presents in­
formation about the uses of asphalt and the 
number of workers potentially exposed to 
asphalt during paving and roofing operations 
and during the manufacturing of asphalt roof­
ing products. Chapter 3 describes the chemical 
and physical properties of asphalt, production 
methods, similarities and differences between 
paving and roofing asphalts and asphalt-based 
paints, and the representativeness of field- and 
laboratory-generated asphalt fumes. Chapter 4 
discusses exposure monitoring methods, ex­
tent of worker exposure, and estimates of 
biological responses in asphalt-exposed work­
ers. Subsequent chapters describe the effects 
of exposure to asphalt and asphalt fumes on 
humans and animals, conclusions, recom­
mendations, and needed research. 
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2 Background
 

2.1	 Number of Workers Poten-
tially Exposed 

About 3,600 hot-mix asphalt facilities and 
7,000 paving contractors employ nearly 

300,000 workers in the United States [Asphalt 
Paving Environmental Council (APEC) 1999]. 
Currently, the industry estimates that about 
50,000 on-roof workers are exposed to asphalt 
fumes during, on the average, 40% of their 
working hours. Approximately 1,500 to 2,000 
employees are exposed to asphalt fumes in ap­
proximately 100 roofing manufacturing plants 
[Asphalt Roofing Environmental Council 
(AREC) 1999]. 

2.2 	Uses 

Asphalt is commercially valuable because of 
its adhesive properties, flexibility, durability, 
water resistance, and ability to form strong co­
hesive mixtures with mineral aggregates. Most 
of the asphalt produced in the United States is 
used in paving and roofing. Only about 1% is 
used for other purposes, such as water­
proofing, damp-proofing, insulation, and 
paints [Asphalt Institute (AI) 1990a]. Of the 
three types of asphalt products (asphalt paving 
cements, cutback asphalts, and asphalt 
emulsions) applied in U.S. paving operations, 
asphalt paving cements account for 85% of the 
total. Cutback asphalts and asphalt emulsions 
for road sealing and maintenance account for 
4% and 11%, respectively, of the total [AI 
1990a]. 

There are three basic grades of roofing 
asphalt. 

•	 Saturant grade asphalt, a nonoxidized 
“straight reduced” asphalt or asphalt flux 
(typically an AC–10 or AC–20 grade ma­
terial) used to manufacture saturated or­
ganic felt plies for built-up-roof (BUR) 
systems, organic felt shingles, and other 
roofing materials such as roll roofing. 

•	 Coating grade asphalt, an oxidized as­
phalt used to manufacture roofing ma­
terials for a variety of roofing systems, 
such as asphalt shingles, polymer-
modified bitumen roofing, felts, and roll 
roofing products. 

•	 Mopping grade asphalt, an end-product 
that is melted and used in the con­
struction of BUR systems and some 
modified bitumen systems. In the United 
States, mopping-grade roofing asphalts 
are classified into four types on the basis 
of their softening point temperature and 
resistance to flow (Table 2–1). The spe­
cific type applied to a roof is determined 
by roof grade or slope. Type I roofing 
asphalt, often referred to as “dead level,” 
has a low softening point and is applied 
on surfaces having a grade of 0.5 inches 
per foot (in/ft) or less. Types II and III are 
typically applied on roofs having slopes 
of 0.5 to 1.5 and 1 to 3 in/ft, respectively. 
Type IV (a hard asphalt with a high 
softening point) is applied on roofs with 
a grade of 2 to 6 in/ft [American Society 
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for Testing Materials (ASTM) 1997]. For 
further information, see section 3.2.2.2. 

Each of these three grades of asphalt— 
saturant, coating, or mopping—is also used in 
the manufacture of a variety of miscellaneous 
asphalt roof coating and sealant products. 
Asphalt roofing shingles, roll goods, underlay­
ment felts, and roof coatings, cements, and 

mastics do not require heating during installa­
tion, and therefore workers are not exposed to 
asphalt fumes. 

Information on asphalt-based paints can be 
found in section 3.2.3. Additional uses and 
applications of asphalt are provided in 
Appendix A. 

Table 2–1. Types of mopping-grade roofing asphalts

     Roofing asphalts Description 

Type I or dead level Relatively susceptible to flow at roof temperatures.  Can be used on slopes up to 2%.
    Softening point 57 to 66 /C (135 to 151 °F). 

Type II or flat Moderately susceptible to flow at roof temperatures.  Can be used on slopes up to 4%. 
    Softening point 70 to 80 /C (158 to 176 °F). 

Type III or steep Relatively nonsusceptible to flow at roof temperatures.  Can be used on slopes up to 25%.
    Softening point 85 to 96 /C (185 to 205 °F). 

Type IV or special steep Relatively nonsusceptible to flow at roof temperatures.  Can be used on slopes up to 50%.
    Softening point 99 to 107 /C (210 to 225 °F). 

Source: Asphalt Roofing Manufacturers Association (ARMA) [1996]. 
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3 Physical and Chemical Properties
 

This chapter describes the physical and 
chemical properties of asphalt products. 

Section 3.1 discusses physical and chemical 
properties and how manufacturing processes 
influence the chemical composition of asphalt 
products and how chemical composition, in 
turn, influences physical properties. Section 
3.2 describes the different types and uses of 
asphalt products. Section 3.3 notes the use of 
asphalt modifiers and additives. Section 3.4 
examines vapors and fumes and the dif­
ferences in their chemical composition, as 
well as the difficulties involved in producing 
asphalt fumes in the laboratory that are 
representative of fumes produced in the field. 
Section 3.5 discusses the usefulness of various 
analytical sampling and analysis methods used 
to characterize asphalt exposures, and section 
3.6 is a brief summary. 

3.1 Properties 

Table 3–1 is a summary of the physical prop­
erties, chemical names and synonyms, and 
numbers from the Chemical Abstract Service 
(CAS) and the Registry of Toxic Effects of 
Chemical Substances (RTECS) for asphalt, 
asphalt fumes, and asphalt-based paints. 

Asphalt is the residuum produced by the dis­
tillation of crude petroleum at “atmospheric 
and under reduced pressures in the presence or 
absence of steam” [Puzinauskas and Corbett 
1978]. Performance specifications (physical 
properties) and not chemical composition di­
rect asphalt production. To meet performance 
specifications, asphalt may be air blown or 
further processed by solvent precipitation or 
propane deasphalting. In addition, the products 

of other refining processes may be blended 
with asphalt to achieve the desired perform­
ance specifications. Therefore, the exact 
chemical composition of asphalt depends on 
the chemical complexity of the original crude 
petroleum plus the manufacturing processes 
involved in creating the product. 

Crude petroleum consists mainly of aliphatic 
compounds; cyclic alkanes; aromatic hydro­
carbons; heterocyclic compounds containing 
nitrogen, oxygen, and sulfur atoms; and 
metals, e.g., iron, nickel, and vanadium. The 
proportions of these chemicals can vary great­
ly because of significant differences in crude 
petroleum from oil field to oil field or even 
from different locations in the same oil field 
[AI 1990a]. Consequently, because of their 
complexity, no two asphalts are chemically 
identical, and chemical analysis cannot be 
used to define the exact chemical structure or 
chemical composition of asphalt. 

Elemental analyses indicate that most asphalts 
contain 79 to 88 weight percent (wt %) car­
bon, 7 to 13 wt % hydrogen, traces to 8 wt % 
sulfur, 2 to 8 wt % oxygen, and traces to 3 wt 
% nitrogen (see the examples in Table 3–2) 
[Speight 1992a]. Although heteroatoms (i.e., 
nitrogen, oxygen, and sulfur) make up only a 
minor component of most asphalts, they pro­
foundly influence the differences in the phys­
ical properties of asphalts from different crude 
petroleum sources. The heteroatoms cause dif­
ferences in physical properties by forming 
functional groups and imparting polarity to the 
asphalts; in turn, these functional groups and 
differences in polarity cause a variety of 
chemical interactions among asphalt mole­
cules [Roberts et al. 1996; Speight 1992a]. 
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Table 3–1.  Physical properties and other information regarding asphalt
[Sax and Lewis 1987], asphalt fumes, and asphalt-based paints

        General
     information Asphalt        Asphalt fumes       

Asphalt
paints 

CAS number 
RTECS number 
Synonyms 

Physical state at room
   temperature 

Solubility in water
   at 20 °C 
Solubility in organic
   solvent 

8052-42-4 
CI99000 
Asphaltum, asphalt cement, asphalt emulsion,
   bitumen, air-blown asphalt, cutback asphalt,
   oxidized asphalt,* paving asphalt, petroleum
   asphalt, petroleum bitumen, road asphalt,
   roofing asphalt 
Black or dark-brown solid or viscous liquid 

Insoluble 

Partially soluble in aliphatic organic solvents;
   soluble in carbon disulfide 

None 
None 
Bitumen fume 

Varies from light straw-
   or amber-colored low
   viscosity liquid to black
   or dark-brown solid or
   viscous liquid 
Insoluble 

Same as asphalt 

None 
None 
Bitumen paint  

Black or dark-
   brown vis-
   cous liquid 

Insoluble 

Same as 
   asphalt 

CAS=Chemical Abstract Service. 
RTECS=Registry of Toxic Effects of Chemical Substances. 
*CAS number 64742-93-4. 

Table 3–2.  Elemental analysis of asphalts from different crude
petroleum sources (adapted from Speight 1992a) 

Crude Carbon, Hydrogen, Nitrogen, Sulfur, Oxygen, Vanadium, Nickel,  
sources wt % wt % wt % wt % wt % ppm  ppm    

Mexican
    blend 83.77 9.91 0.28 5.25 0.77 180 22 
Arkansas-
    Louisiana 85.78 10.19 0.26 3.41 0.36 7 0.4 
Boscan 82.90 10.45 0.78 5.43 0.29 1380 109 
California 86.77 10.94 1.10 0.99 0.20 4 6 

3.2  Types and Uses of Asphalt 3.2.1.1  Manufacturing Processes 

To produce a paving  asphalt, crude petroleum 
3.2.1  Paving Asphalts is heated from 340 to 400 °C (644 to 752 °F) 

and  introduced at atmospheric pressures into Paving asphalts are manufactured to  meet per- a distillation tower in which the most volatile formance specifications that are based on the components will vaporize. The volatile com-physical properties of the asphalt product and ponents rise in the distillation tower and not on chemical properties. 
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slowly cool. More volatile components will 
rise higher in the tower than less volatile com­
ponents. When temperatures drop below the 
boiling point of a specific component, that 
component will condense and be collected in 
a tray. The remaining residuum is called 
“straight-reduced asphalt” [Federal Aviation 
Administration (FAA) 1991; Roberts et al. 
1996; Speight 1992a]. 

However, because distillation is an inefficient 
separation process, considerable amounts of 
volatile components may remain in the re­
siduum. Components with higher boiling points 
may need to be removed to meet the desired 
physical specifications. The residuum may be 
transferred to a vacuum distillation tower in 
which the distillation process is repeated at a 
reduced pressure. As pressure is reduced, the 
less-volatile components can vaporize at lower 
temperatures, and cracking (thermally breaking 
apart the asphalt molecules) is less likely to 
occur. The resulting residuum may be used to 
produce a “vacuum-processed asphalt.” If steam 
is used during distillation, the resulting residuum 
is called a “vacuum-processed, steam-refined 
asphalt” [FAA 1991; Roberts et al. 1996; 
Speight 1992a]. 

While physical properties may change dra­
matically during the manufacturing process, 
the chemical nature of an asphalt does not 
change unless thermal cracking occurs. Rais­
ing the temperature to 400 to 565 °C (752 to 
1049°F) will increase the likelihood of crack­
ing and cause the more-volatile components 
(and even the components with higher boiling 
points) to be released from the residuum 
[Roberts et al. 1996; Speight 1992a]. 

Other common manufacturing processes in­
clude solvent precipitation, air blowing, and 
blending of asphalts or crude petroleum from 
different sources. Solvent precipitation (usual­
ly using propane or butane) removes high­
boiling-point components from vacuum-
processed asphalt; these components are then 
used to make other products. Solvent 
precipitation results in a harder asphalt that is 

less resistant to temperature changes. This as­
phalt is often blended with straight-reduced or 
vacuum-processed asphalts. Paving asphalt is 
not usually air blown, but air can be intro­
duced to a vacuum-processed asphalt to form 
a more viscous product that is more resistant 
to weather and temperature changes. The air-
blowing process can be a continuous or a 
batch operation. Because a continuous opera­
tion is faster and results in a softer asphalt, it 
is preferred for processing paving asphalts. 
Crude petroleum from different sources can be 
blended before refining so that the resulting 
asphalt meets required specifications; similar­
ly, a higher viscosity asphalt can be blended 
with a lower viscosity asphalt to produce an 
asphalt of intermediate viscosity [Roberts et 
al. 1996; Speight 1992a]. 

3.2.1.2 Types, Uses, and Grades 

Three types of asphalt are used in paving: as­
phalt cements, cutback asphalts, and emul­
sified asphalts. Cutback and emulsified as­
phalts also are called liquid asphalts because 
they are liquid at ambient temperatures 
[Roberts et al. 1996; Speight 1992a]. 

Asphalt cement refers to a straight-reduced or 
vacuum-processed asphalt manufactured ac­
cording to paving specifications. Asphalt ce­
ments are used mainly as binders (4% to 10% 
of the mixture) in hot-mix asphalts and serve 
to hold the aggregate together [Roberts et al. 
1996; Speight 1992a]. The asphalt cement is 
heated to about 149 to 177°C (300 to 350 °F) 
and mixed with mineral aggregate heated from 
143 to 163 °C (290 to 325 °F). Once trans­
ported to the worksite, the hot-mix asphalt is 
applied to the roadway. The temperature at ap­
plication is generally between 112 and 
162 °C (235 and 325 °F) [AI 1990a; FAA 
1991; Roberts et al. 1996; Speight 1992a]. 

The grade of asphalt cement is measured by 
either penetration or viscosity and depends on 
the amount of the higher boiling-point com­
ponents that have been removed from the 
residuum. Penetration grade is determined by 
the depth a standard needle will sink in a 
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sample  of asphalt cement at a given temper-
ature, for a given time, and under a given load. 
There are five penetration grades: 40–50, 
60–70, 85–100, 120–150, and 200–300 dmm 
(0.1 mm).  The hardest asphalt cement 
(40–50 dmm) will allow the least penetration, 
while the softest (200-300 dmm) will allow 
the most penetration. 

Viscosity grade  can  be based on the original 
asphalt  cement (AC-2.5, AC-5, AC-10, 
AC-20, AC-30, and AC-40) or on the asphalt 
residue (AR-4000, AR-8000, and AR-16000). 
Asphalt residue is asphalt cement aged in a 
rolling-thin-film oven. Both the AC number 
and the AR number indicate viscosity in hun-
dreds of poises (gram per centimeter second) at 
60 °C (140 °F) [Roberts et al. 1996; Speight 
1992a]. Performance grades as defined by the 
Strategic Highway Research Program  [Roberts 
et  al. 1996] are not included here because this 
information adds little to understanding the 
health effects of asphalt exposures. 

To achieve the same density of the final pave-
ment, a harder asphalt cement requires more 
compaction by a roller than does a softer (i.e., 
less-viscous) asphalt cement or it must be laid 
at a higher temperature [FAA 1991; Roberts et 
al. 1996; Speight 1992a]. Even if two asphalt 
cements have the same penetration or viscosity 
grades  at one temperature, they may not have 
the same grade at a different temperature when 
the underlying chemistries of the  two are 
different [Roberts et al. 1996; Speight 1992a]. 

A cutback asphalt is made by adding a diluent 
(typically  a petroleum distillate) to an  asphalt 
cement. Because cutback asphalts are liquids 
at  or near ambient temperatures, they are often 
applied by spraying them on a surface. Cut-
back asphalts are graded depending  on their 
viscosity at 60 °C (140 °F). Cutback asphalts 
are further classified according to the type  of 
solvent used to liquefy the asphalt cement. 
Rapid-curing cutback asphalts are made by 
adding gasoline or naphtha and are mainly 

used as surface treatments, seal coats, and tack 
coats. Kerosene is added to produce medium-
curing cutback asphalts, and diesel or other 
gas oils are added to produce slow-curing
cutback asphalts. Medium- and slow-curing 
cutback asphalts are used mainly as surface 
treatments, primer coats, tack coats, mix-in-
place road mixtures,  and patching mixtures 
[Roberts et al. 1996; Speight 1992a]. 

Emulsified asphalt is a mixture of two normally 
immiscible components (asphalt cement and 
water) and an emulsifying agent (soap  is  an 
example). Since emulsified asphalts are liquids, 
they  are often applied at ambient  temperatures 
up to 150 °C (300 °F) simply by spraying them 
on a surface. Emulsified asphalts are graded as 
either cationic (electro-positively charged mi-
celles containing asphalt molecules) or anionic  
(electro-negatively charged micelles containing 
asphalt molecules), depending on the emul-
sifying agent. Emulsified asphalts are further 
graded on the basis of their setting rate,  i.e., 
rapid, medium, or slow. Rapid-setting grades 
are used for surface treatments, seal coats, and 
penetration macadams; medium-setting grades 
are used for patching mixtures; and slow-
setting grades are used in mix-in-place road 
mixtures, patching mixtures, tack coats, fog 
coats, slurry sealants, and soil stabilizers
[Roberts et al. 1996; Speight 1992a]. 

3.2.2  Roofing Asphalts 

Roofing asphalts are manufactured to meet 
roofing  performance specifications on the
basis of the physical  properties and not the 
chemical properties of the asphalt product. 

3.2.2.1  Manufacturing Processes 

Although straight-reduced or vacuum-proc-
essed asphalts are used to make roofing
products, much of the asphalt used in roofing 
operations is made by air blowing these asphalts. 
Air-blown asphalts are called oxidized asphalts, 
air-refined asphalts, or roofing asphalts. In the 
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Table 3–3. Changes in physical properties and chemical classes in a straight-reduced 
Arkansas asphalt with increasingly longer air-blowing times (T0<T1<T2<T3) 

(adapted from Speight 1992a) 

Ashphalt properties             T0 T1 T2 T3 

Physical properties:
    Softening point, °C 54.4 85 96.1 173.3
    Penetration, mm/10 (0.1 mm) 36 13 9 1 
Chemical class, wt %:
    Asphaltenes 14.8 26.9 31.4 51.3
    Hard resins 45.5 36.6 36.1 19.6
    Soft resins 25.0 22.3 20.9 16.9
    Oils 12.3 11.9 10.0 11.1
    Waxes 2.5 2.0 1.8 1.6 
Total 100.0 99.7 100.2 100.5 

NOTE:  T0 is equivalent to nonoxidized asphalt (no air-blowing time). 

8 Health Effects of Occupational Exposure to Asphalt 

air-blowing process, asphalt hardens as it comes 
into contact with air at 204  to  288 °C (400 to 
550 °F [Corbett 1979]).  Once the asphalt has 
the  desired specifications, it is either held in stor­
age tanks at elevated temperatures or is cooled 
before it is  pumped into storage containers, 
where it solidifies. The air-blowing  process can 
be a continuous or a batch operation. A batch 
operation is slower and produces a harder 
asphalt,  and is preferred for processing roofing 
asphalts [Puzinauskas and Corbett 1978; Corbett 
1979; Roberts et al. 1996; Speight 1992a]. 

Air blowing combines oxygen with the hy­
drogen in the asphalt to produce water vapor. 
This decreases saturation and increases cross-
linkages within and among different asphalt 
molecules. The process is exothermic (pro­
duces heat) and may include a series of chem­
ical reactions, such as oxidation, conden­
sation, dehydration, dehydrogenation, and 
polymerization.  These reactions cause the 
amount of asphaltenes (hexane-insoluble ma­
terials) in the asphalt to increase, the amounts 
of polar aromatics (hard resins), cycloalkanes, 
and nonpolar aromatics to decrease (soft 

resins), while the amount of aliphatic com­
pounds (oils and waxes) remains about the 
same (Table 3–3); the oxygen content of the 
asphalt increases (Moschopedis and Speight 
1973; Corbett 1975; Puzinauskas and Corbett 
1978; Boduszynski 1981; Roberts et al. 1996; 
Speight 1992a].   

The  effect of air blowing also can be facilitated 
with chemical compounds. Ferric chloride, 
aluminum chloride, zinc chloride, phosphorus 
pentoxide, copper sulfate, or boric acid have 
been used to  produce catalytic asphalts. More­
over, sulfur or chlorine can be added to the 
asphalt to react with hydrogen, yielding hy­
drogen sulfide or hydrogen chloride, re­
spectively [Puzinauskas and Corbett 1978; Cor­
bett 1979; Roberts et al. 1996; Speight 1992a]. 

Roofing asphalt specifications also can be in­
fluenced by blending crude petroleum from 
various sources or asphalts. Crude petroleum 
can be blended before refining and air blowing 
to meet needed specifications; similarly, a 
high-viscosity roofing asphalt can be blended 
with a low-viscosity roofing asphalt to pro­
duce an intermediate-viscosity roofing asphalt 
[Speight 1992a]. 
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3.2.2.2  Types, Uses, and Grades 

Although the focus in this section is on BUR 
products, a variety of asphalts are  used in 
roofing products. The asphalts used to pro-
duce shingles, roll goods, felts, and under-
layments may or may not be air blown and are 
shipped hot and kept hot until they  are used in 
a manufacturing process [AREC 1999]. 

Most of the air-blown asphalt used for roofing 
is shipped as solid kegs in cardboard cartons 
and heated in a kettle at the worksite until it 
becomes a liquid. Asphalt also may  be  de-
livered as a hot liquid in a tanker truck, but 
this practice is becoming less common be-
cause of higher costs, regulatory constraints, 
and product supply considerations. Asphalt 
delivered by tanker may be also heated to the 
desired temperature in the tanker or trans-
ferred to a  kettle for heating, after which it is 
pumped to the roof [AREC 1999]. 

Some cutback and emulsified asphalts are also 
used in roofing operations [Speight 1992a]. 
Although these asphalts represent only a small 
amount of the asphalt used in roofing, a recent 
study suggests their use may  be increasing 
[Herbert et al. 1995]. 

Mopping-grade roofing asphalts in the United 
States  are  classified  into four types—I, II, III, 

and IV—based on increasing hardness. The 
type of asphalt to be  used  is determined by the 
grade or slope  of the roof. Type I roofing 
asphalt, often called “dead  level,” has the low-
est softening point and is used  on surfaces 
with a grade of 0.5 in/ft  or  less. Types II and 
III roofing asphalts are typically used  on roofs 
with grades of 0.5 to 1.5 and 1  to  3  in/ft, 
respectively. Type IV roofing asphalt has the 
highest softening point and is used  on roofs 
with a grade of 2 to 6 in/ft [ASTM 1997]. 

A mopping-grade roofing asphalt is best 
applied when the asphalt is at its equiviscous 
temperature, or the temperature at which the 
viscosity of the asphalt is either 125±25 
centistokes for hand mopping or 75±25 
centistokes for mechanical  spreaders [Intec 
1998]. Table 3–4 lists  recommended appli-
cation temperatures for mopping-grade roof-
ing asphalts [AI 1990a, Appendix C]. How-
ever, to achieve these application temper-
atures, the asphalt must be heated to even 
higher temperatures in the kettle. During 
recent surveys of roofing  operations in  which 
Type  III roofing asphalts were used, the kettles 
were often maintained at 288 °C
(550 °F). Several kettlemen stated that if the 
demand on the roof for asphalt is high, they 
will heat the asphalt to  316 °C (600 °F) 
[Hayden 1998; Mead 1998]. 

 

Table 3–4.  Recommended application and maximum heating temperatures 
used with mopping-grade roofing asphalts 

wwww Recommended application temperatures  Recommended maximum heating temperature† 

Type °F °C °F °C 

I 
II 
III 
IV 

330–355 
365–390 
395–420 
430–445 

166–179 
185–199 
202–216 
221–229 

475 
500 
525 
525 

246 
260 
274 
274 

wAdapted from AI [1990a, Appendix C] and AREC [1999]. 
†Adapted from AREC [1999]. 

Care must be exercised when operating kettles     at high temperatures. Temperatures in excess  
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of the flash point of the  asphalt can result in 
fires that cause serious burns. If not quickly 
extinguished, kettle fires can spread rapidly  to 
the exterior of the kettle and engulf equip­
ment, including propane tanks (and gasoline 
tanks on some models), with catastrophic re­
sults. An explosion  hazard may be created 
when the kettle lid is closed and the at­
mosphere in the headspace of the kettle is 
within explosive limits [AREC 1999]. 

3.2.3  Asphalt-Based Paints 

Asphalt-based paints are specialized cutback 
asphalt products that may contain a small 
amount of lampblack, aluminum  flakes, or 
mineral pigments. Asphalt-based paints are 
used as protective coatings in waterproofing 
operations and in other similar applications 
[AI 1990b]. The asphalt used to make an 
asphalt-based paint may or may not be air 
blown [Speight 1992a,b]; the only require­
ment is that the final product has the flow and 
drying characteristics of a paint. Basically, 
asphalt-based paints may be applied at or near 
ambient temperatures by spraying or brushing. 
Once the asphalt-based paint is  applied to a 
surface, it should not flow, and it should 
harden quickly. This is achieved either by 
manipulating the manufacturing process or by 
the addition of diluents. 

3.3 Asphalt Modifiers and
 Additives 

Although the subject of asphalt modifiers and 
additives is beyond the scope  of this docu­
ment, it would be remiss not to mention their 
use because a worker may be exposed to a 
modifier or an additive or even to their 
decomposition products, and their presence in 
asphalt may affect the composition of asphalt 
fumes.  Asphalt modifiers and additives are 
used to enable asphalt  products to meet 
desired performance specifications and serve a 
variety of functions, as described in Table 3–5 
[Roberts et al. 1996; Speight 1992a]. 

3.4 Asphalt Vapors and Fumes 

When asphalt products are heated, vapors are 
released; as these vapors cool, they  condense. 
By  definition, the condensate is asphalt fume; 
however, because the components in the vapor 
do not condense all at once,  workers are ex­
posed not only to asphalt fumes, but also to 
vapors. The physical nature of fumes  and 
vapors has not been well characterized, but 
fumes should be fairly  viscous. When liquid 
asphalt products are used at ambient temper­
atures, workers are exposed to the liquid prod­
uct and to vapors, but not to fumes.  Fume 
particles may collide and stick together, 
making it difficult to characterize fume par­
ticle size. Some of the vapors  may condense 
only to the liquid phase, thus forming a 
viscous liquid containing some solids. 

3.4.1 Cutback Asphalts, Emulsified 
Asphalts, and Asphalt-Based 
Paints 

Cutback asphalts, emulsified asphalts, and 
asphalt-based paints are  liquids and are ap­
plied at or near ambient temperatures [Roberts 
et al. 1996; Speight 1992a]. Because these 
products are liquids, workers may be exposed 
through both  respiratory and dermal contact. 
These products are applied in a variety of 
ways, including by spraying, and if the spray 
nozzle becomes clogged, a worker may face 
increased dermal exposure and clothing  con­
tamination when cleaning the nozzle. Petro­
leum distillates added to asphalt products can 
dry the skin, weakening the protective barrier 
skin provides and facilitating the entry of 
various compounds into the body. Further­
more, petroleum distillates introduce the 
hazard  of exposure to volatile organic com­
pounds (VOCs). 
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Table 3–5.  Asphalt modifiers and additives (adapted from Roberts et al. 1996 
with information from Speight 1992a)

             Type Examples           

1.  Antioxidants 

2.  Antistripping agents 

3.  Combinations 
4.  Extenders 

5.  Fibers 

 6.  Fillers 

 7.  Hydrocarbons 

 8.  Oxidants 
 9.  Plastics 

10. Rubbers: 
Block copolymers  
Natural latex 
Reclaimed 
Synthetic latex 

11.  Waste materials 

12.  Miscellaneous 

Calcium salts 
Carbon 
Lead compounds 
Amines 
Lime 
Blends of plastics (9) and rubbers (10) 
Lignin 
Sulfur 
Manufactured:   

Cellulose 
Fiberglass 
Mineral 
Polyester 
Polypropylene 

Natural: 
Asbestos 
Rock wool

Carbon black 
Mineral filler:  

Crusher fines 
Fly ash 
Lime 
Portland cement

Hard and natural asphalts 
Recycling and rejuvenating oils
Manganese salts
Ethylene acrylate copolymers 
Ethylene propylene 
Ethyl-vinyl-acetate 
Polyethylene/polypropylene 
Polyolefins 
Polyvinyl chloride 
Natural rubber 
Styrene-butadiene 
Polychloroprene latex 
Styrene-butadiene-styrene, styrene-isoprene-styrene 
Crumb-rubber-modifier 
Glass 
Recycled tires 
Roofing shingles 
Coal liquefaction products 
Components of shale oil 
Deicing calcium chloride granules 
Petroleum distillates: 

Diesel and other gas oils 
Gasoline 
Kerosene 
Naphthas 
Stoddard solvent 

Shale oil residues 
Silicones 
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The composition of the vapors released from 
these asphalt products during drying can be 
explained with Raoult’s Law: The compo­
sition of the vapor phase above a solution is 
directly proportional to the mole fraction and 
vapor pressure of each component in the so­
lution. Other factors influencing the com­
position of the  vapor phase are that (1) as 
temperature increases, vapor pressure in­
creases, which may allow appreciable quan­
tities of certain compounds to exist in the 
vapor phase, and (2) the chemical composition 
of a chemical class will generally increase in 
complexity in the  vapor phase. Generally, the 
smaller compounds in a given chemical class 
will have higher vapor pressures. 

As liquid asphalt products harden from the 
outside surface in, the added diluents slowly 
evaporate from the outside surface, thus trap­
ping part of the diluent inside the asphalt 
layer. However, if these asphalt products are 
heated even slightly,  not only will the same 
compounds vaporize faster, but higher con­
centrations  of the same compounds will va­
porize along with other compounds that do not 
vaporize appreciably at ambient temperatures. 
In the absence of significant  increases in 
temperature, these asphalt products are ex­
pected to release primarily vapors from the 
evaporating solvent. 

No reports discussing the chemical analysis  of 
cutback asphalts or emulsified asphalts  were 
found. However,  Robinson et al. [1984] re­
ported  on the analysis of select polycyclic 
aromatic compounds (PACs) in several 
a  s  p  h  a  l  t  - b  a  s  e  d  pa in t s  u  s  i  n  g  ga  s  
chromatography-mass spectroscopy (GC/MS). 
Benz[a]anthracene, benzo[a]pyrene (B(a)P), 
benzo[e]pyrene, chrysene, and phenanthrene 
were measured, but only trace amounts of 
phenanthrene (<0.01%) were detected. 

3.4.2 Comparison of Vapors and 
Fumes from Paving and Roof-
ing Asphalts 

Information presented in the previous section 
indicates that (1) higher temperatures increase 
the chemical complexity  of  paving and roof­
ing asphalts, (2) paving and roofing vapors 
and fumes are chemically  more  complex than 
liquid asphalt vapors and fumes, (3) vapors 
and fumes from paving asphalts are different 
from those of roofing asphalts because of dif­
ferences in application temperatures, i.e., roof­
ing asphalts  are applied at higher temperatures 
(166 to 229 °C [340 to  455 °F]) than paving 
asphalts (112 to 162 °C [235 to 325 °F]), and 
(4) differences in manufacturing processes af­
fect the composition of asphalt and conse­
quently the composition of  fumes. Compared 
to air-blown roofing asphalts, nonoxidized as­
phalts generally contain more aliphatic  com­
pounds, about the same amount of cyclo­
alkanes and nonpolar aromatics, and smaller 
amounts of polar aromatic compounds and 
asphaltenes (Table 3–3). This does not mean, 
however, that air-blown roofing asphalts 
contain more aromatics than nonoxidized 
asphalts. 

Differences in the way paving and roofing 
asphalts are handled also probably influence 
the composition of vapors and fumes. For ex­
ample, a hot-mix asphalt begins to cool from 
the moment it leaves  the plant and may not be 
used immediately  when it arrives at a work-
site, whereas roofing asphalts are heated 
continuously and stirred occasionally at a 
worksite until they are needed. 

Using GC/MS, several investigators reported 
on chemical analyses of paving and roofing 
asphalt fumes [Reinke and Swanson 1993; 
Niemeier et al. 1988; Lunsford and Cooper 
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1989; Hatjian et al. 1995a, 1997]. Others have 
used liquid chromatography (LC) methods to 
analyze for polycyclic aromatic hydrocarbons 
(PAHs)  in  asphalt vapors and fumes. Because 
of methodology limitations, LC  methods should 
not have been used to analyze PAHs in asphalt 
fumes; therefore, results from these studies are 
not discussed here.  However, LC  methods and 
their limitations are discussed in section 3.5. 

Reinke and Swanson [1993]  collected paving 
asphalt fumes from  a straight-reduced, 
vacuum-processed  85-100 grade asphalt 
cement. Using the NIOSH protocol [Thayer et 
al. 1981; Sivak et al. 1989], the authors 
collected fumes  from a storage tank at a hot-
mix plant at a temperature of 149 °C (300 °F) 
and from laboratory  generation at temper-
atures of 149 and 316 °C (300 and 601 °F). 
The fume samples were then analyzed for 
selected PACs (Table 3–6). The results in-
dicate that only two- and three-ring PACs 
were present  in  the fumes from the storage 
tank, but that the chemical classes identified in 
the laboratory-generated fumes were mostly 
two- and three-ring PAHs and a few three-ring 
sulfur-PACs (S-PACs) and four-ring PAHs. 
Several of the four-ring PAHs are carcino-
genic, i.e., benz[a]anthracene and chrysene. 
Methylated chrysenes, pyrenes, and fluoran-
thenes were also detected and may be of con-
cern because of their structural relationship to 
known carcinogens. The concentration of 
four-ring PAHs was highest  in fumes gen-
erated in the laboratory at the  highest tem-
perature. However, the concentration of two-
ring PAHs was  lowest in laboratory fumes 
generated at the highest temperature, most 
abundant in fumes from the storage tank, and 
lower  in the fumes generated in the  laboratory 
at the ambient temperature of the storage tank. 

In the laboratory tests, once the asphalt melt-
ed, the mixture was stirred constantly until it 
reached the desired temperature. The higher 
the generation temperature, the longer the 
mixture had to be stirred before the desired 

temperature was reached, which caused more 
of the two-ring PAHs to reach the  surface of 
the liquid and escape before collection of the 
fumes began.  This stirring procedure might 
explain why some three-ring PACs were 
found in the  laboratory-generated fumes, but 
not in the fumes from the storage tank. In the 
storage tank, not enough of the three-ring 
PACs were brought  to  the surface to escape in 
sufficient concentrations to be detected. Of 
interest is that  a summation of the measured 
PAHs (Table 3–6) only accounts for 0.8% to 
1.3% of the total asphalt fumes, assuming  the 
density of asphalt to  be 1 gram per milliliter 
(g/mL) [Speight 1992a]. This is not surprising 
since aliphatic compounds compose the 
majority of the compounds present in asphalt 
fumes. 

Thayer et al. [1981] and Niemeier et al. [1988] 
collected asphalt fumes generated in the 
laboratory from  Type I and Type III roofing 
asphalts and Type I and  Type  III roofing coal-tar 
pitches. The fumes were generated at
temperatures of 232 and 316 °C (450 and 
601 °F) and analyzed for PAHs by GC/MS. The 
results of the analysis and information regarding 
which PAHs are considered carcinogenic are 
given in Table 3–7. The results indicate that 
asphalt fumes had much lower concentrations of 
PAHs than the coal-tar-pitch fumes and con-
sisted mainly of two- to  four-ring PAHs with 
small amounts of five-ring PAHs. Concen-
trations of two-, three-, and some four-ring 
PAHs were generally  lowest in the laboratory 
fumes generated at the highest temperatures. 
Concentrations of the two-,  three- and some 
four-ring PAHs decreased before collection 
began, because the laboratory-generated fumes 
were allowed to escape until the entire mixture 
reached the desired temperature. Moreover, once 
the asphalt melted, the mixture was stirred con-
stantly, causing more of the two-, three-, and 
four-ring PAHs to reach the surface of the liquid 
and escape before collection began. 
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Table 3–6. Chemical analysis by GC/MS of storage-tank and laboratory-generated paving asphalt
fume condensates, mg/mL per sample (adapted from Reinke and Swanson 1993) 

Laboratory fumes 
               Chemical  analyte Tank fumes at 149 ////C (300 °F) 149 ////C (300 °F) 316 ////C (601 °F) 

Naphthalene 2.1 1.6 0.1 
Acenaphthene 0.12 0.03 — 
Fluorene 0.12  0.22 0.09 
Phenanthrene 0.15 0.47 0.27 
Anthracene 0.13 0.46 0.03 
Fluoranthene — 0.02 — 
Pyrene — 0.03 0.07 
Chrysene — 0.02 — 
Benz[a]anthracene and chrysene —   — 0.11 
Methyl naphthalenes 4.90  5.2 0.4 
Methyl fluorenes 0.17 0.36 0.16 
Methyl phenanthrenes and anthracenes 0.22 1 1.4 
Methyl pyrenes or fluoranthenes —   — 0.15 
Methyl chrysenes —   — 0.11 
Dibenzothiophene 0.09 0.57 0.24 
Methyl dibenzothiophenes 0.15 1.1 0.72 
“C2" alkyl dibenzothiophenes 0.17 1.3 1.1 
“C3" alkyl dibenzothiophenes 0.1 0.88 0.85 
Benzo[a]naphthothiophenes — 0.03 0.12 
Methyl benzo[b]naphthothiophenes — 0.06 0.33 
“C2" alkyl benzo[b]naphthothiophenes — 0.04 0.35 
“C3" alkyl benzo[b]naphthothiophenes — 0.03 0.37 

—Not reported. 
NOTE:  Asphalts were straight-reduced, vacuum-processed, 85-100 grade. 
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Also, the higher the generation temperature, the 
longer the mixture would be stirred  before the 
desired temperature was reached. 

Because concentrations  of the remaining four-
and  five-ring PAHs were low and similar in 
amount at the two generation temperatures, 
similar trends in concentration  were not ob­
servable. Air blowing appears to have  had little 
effect on concentrations of the higher molecular 
weight PAHs, but decreased concentrations of 
the lower molecular weight PAHs (Table 3–7). 

Niemeier et al. [1988]  reported that analysis by 
nuclear magnetic resonance spectroscopy 
(NMR) indicated that asphalt fume condensates 
were less than 1% aromatic  and more  than 99% 
aliphatic, whereas the coal-tar-pitch 

condensates were more than 90% aromatic. 
Assuming 13C NMR was used, these percentages 
are indicative of the carbon atom character. 
These results  also indicate that in asphalt fumes, 
most of the carbon atoms are contained in 
aliphatic groups, while in the coal-tar-pitch 
condensates, most of the carbons are contained 
in aromatic groups. 

Sivak et al. [1989, 1997] heated Type III roofing 
asphalt from the same lot  used by Niemeier et al. 
[1988] at 316 °C (601 °F), generated fume 
condensates, and separated them into fractions 
by high-performance liquid chromatography 
(HPLC) [Belinky et al. 1988]. Using GC/MS, 
Lunsford and Cooper [1989] characterized the 
chemical classes present  in these asphalt fume 
fractions. Results (Table 3–8) indicate the
 relative  
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Table 3–7.  Mean concentration of 18 PAHs determined by GC/MS in skin painting
 solutions,  µg/mL (adapted from Niemeier et al. 1988 and Thayer et al. 1981) 

Solutions containing roofing asphalt Solutions containing roofing
fume condensates coal-tar-pitch fume condensates 

Type I Type III Type I Type III 

PAH       232 °C 316 °C 232 °C 316 °C 232 °C 316 °C 232 °C 316 °C 

Naphthalene 22 4 17 49 >1800 1770 288 620 
Fluorene 36 22 39 28 ND 740 ND ND 
Carbazole 20 1 6 ND 1980 1450 540 1400 
Anthracene/phenanthrene 180 53 300 69 >960 2960 >2580 >5200 
Fluoranthene 86 10 97 7 >2940 2350 >960 >2800 
Pyrene 70 9 63 8 >2070 1790 >720 >2300 

 Benz[a]anthraceneu 11 10 8 6 570 330 330 800 
Chrysene/triphenylene† 25 19 13 14 460 300 290 710 
Benzofluoranthenes‡ 2 4 5 ND 230 230 250 250 
Benzo[e]pyrene 6 8 4 1 42 51 45 46 

 B(a)Pu 2 2 3 ND 96 85 102 90 
Indeno[cd]pyrene§ 3  3  2  ND  33  2  11
Benzo[ghi]perylene 1 2 1 ND 28 2 7 1 

 Dibenzanthracenesuu 2 ND 2 ND 12 ND 4 ND 
Coronene ND ND ND ND ND ND ND ND 
Dibenzopyrenes†† ND ND ND ND ND ND ND ND 

ND=not detected. 
uIncluded in IARC Cancer Review Group 2A.  (Probably carcinogenic to humans.) 
†Classified by NIOSH as a potential occupational carcinogen; included in IARC Cancer Review Group 3. (Not classifiable as to its carcinogenicity      
 to humans.) 
‡Benz[e]acephenanthrylene (benzo[b]fluoranthene), benzo[j]fluoranthene, and benzo[k]fluoranthene are specific compounds included in IARC      Cancer 
Review Group 2B.  (Possibly carcinogenic to humans.) 
§Included in IARC Cancer Review Group 2B. 
uuDibenz[a,h]anthracene included in IARC Cancer Review Group 2A. 
††Benzo[rst]pentaphene (dibenzo[a,i]pyrene); dibenz[b,def]chrysene (dibenzo[a,h]pyrene); dibenzo[def,p] chrysene (dibenzo[a,l]pyrene); and
    naphtho[1,2,3,4-def] chrysene (dibenzo[a,e]pyrene) are specific compounds included in IARC Cancer Review Group 2B. 
NOTE:  232 °C=450 °F; 316 °C=601 °F. 

 7  

abundance of each compound class in the frac-
tions, but not in the classes. The results also 
indicate that many of the compounds are ali-
phatic and many compound classes contain
alkylated isomers. Fraction A constituted
64.1% of the asphalt fume condensate, while
fractions B, C, D, and E constituted 8.3%, 
10.5%, 11.5%, and 5.6%, respectively. Most
compound classes were found in more than
one fraction, indicating the complexity created
by the addition of alkyl groups and the
presence of many different isomers for each
compound class. Despite this complexity, only
fractions B and C caused tumors in a mouse-
skin painting study (see section 6.2.1). Fraction
B contained mainly alkylated two- and three-
ring PAHs, oxygen-PACs (O-PACs), and S-

PACs; a few alkylated four-ring PAHs (py-
renes and fluoranthenes); and a variety of
ketones. Little is known about the toxicity of
most of these compounds except that some O-
PACs may cause cancer and some S-PACs
may cause mutations [Tennant and Ashby
1991; Pelroy et al. 1983; McFall et al. 1984].
The two- and three-ring O-PACs were not
detected in fraction C, but the other PACs and 
ketones found in fraction B were also found in 
fraction C. Fraction C also contained alkylated
and unalkylated isomers of chrysene and
benz[a]anthracene, a few four-ring S-PACs
with and without alkyl groups attached, a wide
variety of ketones, and alkanoic acids. 
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Table 3–8. Analysis by GC/MS of chemical composition of asphalt fume fractions A-E from
Type III roofing asphalt fumes collected during laboratory generation at 316 °C (601 °F) (adapted

from Lunsford and Cooper 1989)

  Compound classuuuu  A 

Fraction†

 C   B  D  E 

Hydrocarbons: 
Alkanes, C9 - C27 
Alkenes/cycloalkanes 
Benzenes, C2 - C8 
Indanes, C0 - C4 
Indenes, C0 - C3 
Naphthalenes, C0 - C5 
Biphenyls, C0 - C2 
Fluorenes, C0 - C3 
Anthracenes/phenanthrenes, C0 - C4 
Pyrenes/fluoranthenes, C0 - C2 
Chrysenes/benz[a]anthracenes, C0 - C2 

Sulfur-containing compounds: 
Benzothiophenes, C0 - C9 
Dibenzo-/naphthothiophenes, C0 - C4 
Tricarbocyclic fused-ring thiophenes, C0 - C1 
Hydroxybenzenethiols, C0 - C4 

Oxygen-containing compounds: 
Benzofurans, C0 - C2 
Dibenzofurans, C0 - C2 
Acetophenones, C0 - C3 
Fluorenones, C0 - C3 
Dihydroindenones, C0 - C4 
Cycloalkenones, C6 - C11 
Dihydrofuranones 
Isobenzofuranones, C0 - C3 
Phenols, C0 - C4 
Naphthols, C0 - C2 
Furanones, C1 - C3 
Alkanones, C8 - C22 
Alkanoic acids, C5 - C14 
Benzoic acids, C0 - C4 

Nitrogen-containing compounds: 
Carbazoles, C0 - C4 
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!!Not observed. 
uDegree of alkyl substitution given by Cn, where subscript=number of substituent carbon atoms. 
†Relative abundance across fractions, but not classes, indicated by +++ > ++ > +. 
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Chrysene and benz[a]anthracene are known 
carcinogens, but little is known about the 
toxicity of the other observed PACs except 
that some S-PACs may cause mutations 
[Pelroy et al. 1983; McFall et al. 1984]. Many 
alkylated isomers of PACs have been 
identified in asphalt fumes, but although little 
is known about their carcinogenic and geno­

toxic activity, these PACs are a cause for 
concern because of their structural similarity to 
known carcinogens and genotoxins. 

Probably because an air-blown roofing asphalt 
was used, numerous oxidized compounds 
were found; however, if paving fumes had 
been studied, it is possible that not as many 
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oxidized compounds would have been de­
tected. The presence of alkanoic acids prob­
ably indicates that the starting crude petroleum 
source contained aldehydes because aldehydes 
are easily oxidized to carboxylic acids. 
Because of the process (addition of ferric 
chloride and air blowing) used to prepare the 
roofing asphalt, it is unlikely that very many 
aldehydes survived the manufacturing process. 
However, if any of the aldehydes did survive, 
it is unlikely that workers would have been 
exposed to them in the field, because 
aldehydes are easily oxidized at ambient 
temperatures, and the elevated temperatures 
needed at a field site would only hasten the 
oxidation process. While it is more likely that 
aldehydes would not oxidize as easily during 
manufacturing of paving asphalts, it is also 
likely most of the aldehydes would oxidize 
before asphalt pavers could be exposed. 
Because only a few nitrogen-containing 
compounds were found, the asphalt may have 
been manufactured from a crude petroleum 
containing low amounts of nitrogen; therefore, 
other asphalts with a higher nitrogen content 
may yield more nitrogen-containing 
compounds. 

Hatjian et al. [1995a, 1997] reported on the 
GC/MS analysis of nine PAHs in personal­
breathing-zone air samples. The samples were 
collected from two sets of asphalt pavers (P1 
and P2), two sets of asphalt roofers (R1 and 
R2), manual laborers (M) who had no apparent 
occupational exposure to PAHs, and office 
workers (C) who were used as controls. The 
median percentage for each PAH determined, 
the number of rings in each PAH, and the 
number of samples for each group are given in 
Table 3–9. No results for the control group are 
included in Table 3–9 because none of the 
samples contained detectable amounts of any 
of the measured PAHs. 

Naphthalene accounted for 80% to 90% of the 
measured PAH exposure for each group, ex­
cept in group R2 (60%). Naphthalene, ace­
naphthene, and phenanthrene accounted for 
98% to 99% of the measured PAH exposure 
for each group, with the exception of groups 
R1 and R2 (94% and 84%, respectively).  The 
four- and five-ring PAHs each accounted for 
less than 1% of the measured PAH exposure 
for all groups except R1 and R2.  For group 
R1, the four- and five-ring PAHs (except 
pyrene) each accounted for less than 1% of the 
measured PAH exposure; pyrene accounted 
for 1%. For group R2, benz[a]anthracene and 
pyrene accounted for 2% and 7% of the 
measured PAH exposure, respectively, while 
the five-ring PAHs accounted for less than 1% 
each. Because roofing asphalts are heated to 
hotter temperatures and applied at higher 
temperatures than paving asphalts, which 
increases the amount of the larger PAHs in the 
fumes, the median percentage values for two-
and three-ring PAHs were lower (Table 3–10). 

Table 3–10 contains a summary of the PAH 
data and smoking habits for each group. For 
each PAH, a mean concentration was calcu­
lated on the basis of a 3-day geometric mean 
of the air samples expressed as an 8-hour time-
weighted average (TWA). These mean 
concentrations were summed for different 
groups of PAHs: all PAHs (3 nine PAHs), all 
PAHs except naphthalene (3 eight PAHs), 
and four- and five-ring PAHs (3 four- and 
five-ring PAHs). Summations of four- and 
five-ring PAHs were not calculated for groups 
other than roofers, nor were summations of 
mean concentrations calculated for the control 
group because in both instances there were not 
enough data recorded at detectable levels to 
allow these calculations. 

B(a)P was detected in personal-breathing-zone 
samples as follows: manual laborers (5.9% of 
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Table 3–10. Summary of smoking habits, asphalt temperatures, and summed individual geometric 
 mean ±SEM concentrations for different groups of PAHs, ng/m3 

(adapted from Hatjian et al. 1995a, 1997) 

 Group 

  
Smokers 

No. %

Asphalt 
temperature 

 °C  °F 333   3 9 PAHs uuuu 3333 8 PAHs

333  3 4- and 5-ring

PAHs 

Controls (office workers)† 

Manual laborers 
Asphalt pavers: 

P1 
P2 

Asphalt roofers: 
R1 
R2 

3
 4 

2 
5 

2 
3 

 50 
27 

33 
50 

22 
75 

NA 
NA 

NL 
150–180 

300 
190 

NA 
NA 

NL 
302–356 

572 
374 

NC 
448 ±71.2 

1584 ±454 
2100 ±501 

442 ±109 
2120 ±680 

NC 
72.2 ±16.1 

285 ±79.0 
223 ±44.6 

107 ±24.7 
55 ±255 

NC 
NC 

NC 
NC 

35.2 ±7.0 
69.1 ±24.3 

Abbreviations:  NA=not applicable; NC=not calculated, “not enough with detectable levels;” NL=not listed. 
uAll measured PAHs excluding naphthalene. 
†Only static air samples were collected. 
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Table 3–9. Median percentage of TWA concentrations of nine PAHs determined in 
personal-breathing-zone samples (adapted from Hatjian et al. 1995a, 1997)

 PAH and number of rings 
Group M 

(n=34) 
Group P1 

(n=18) 
Group P2 

(n=30) 
Group R1 

(n=27) 
Group R2 

(n=12) 

Naphthalene (2) 90 84 88 80 60 
Acenaphthene (3) 5 8 4 5 4 
Phenanthrene (3) 3 7 7 9 20 
Pyrene (4) <1 <1 <1 1 7 
Benz[a]anthracene (4) <1 <1 <1 <1 2 
Benzo[b and k]fluoranthene (5) <1 <1 <1 <1 <1 
B(a)P (5) <1 <1 <1 <1 <1 
Dibenz[a,h]anthracene (5) <1 <1 <1 <1 <1 

Abbreviations: M=manual laborer group; n=number of samples; P1 and P2=paver groups 1 and 2; R1 and R2=roofer groups 1 and 2. 
NOTE:  Group C (control group) not included since none of the samples contained detectable amounts of the measured PAHs. 

the samples), group P1 (5.6%), group P2 
(3.3%), group R1 (28%), group R2 (25%), and 
the  control group (<1%). The highest B(a)P 
concentrations were 0.17 [Hatjian 1995], 0.02 
and 0.20 :g/m3 for manual laborers, pavers, 
and roofers, respectively.  Hatjian et al. [1995a, 
1997] stated that the manual laborers had no 
apparent occupational exposure to B(a)P. Their 
reported exposures probably resulted from the 
environment, an unidentified source, or a 
sampling and analytical error. The authors did 

not provide background concentrations of 
PAHs downstream of the paving or roofing 
operations. However, in his review of the 
NIOSH draft hazard review, Hatjian [1999] 
stated that “background concentrations of 
PAHs downstream of the roofing operations in 
Hatjian’s studyshowed non-detectable levels of 
B(a)P on the day of monitoring the roofing 
operation.” 
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When reviewing these data, consideration must 
be  given to B(a)P concentration and sampling 
variability. Since the highest B(a)P concen-
tration for a paver was only twice the reported 
detection limit for B(a)P, this determination is 
not reliable.  Among all the groups, only one 
roofer had more than one of three personal-
breathing-zone samples with detectable con-
centrations of B(a)P [Hatjian 1995]. 

Environmental and personal factors as well as 
work practices could contribute to pavers’ and 
roofers’ exposures to  B(a)P. For example, 22% 
to 75% of the workers in the paving  and 
roofing groups were smokers, and at least one 
paving group was exposed to diesel exhaust.  In 
addition, the highest B(a)P concentration for a 
roofer may be atypically high because of work 
practices at both roofing sites (workers knelt 
while spreading roofing asphalt with a trowel 
or brush) and the high kettle temperature 
(300 °C [572 °F] at the R1 site).  This tem-
perature is about 70 °C (158 °F) higher than the 
highest recommended temperature for roofing 
application (Table 3–4). 

3.4.3 F ie ld-Generated Versus
Laboratory-Generated Asphalt
Fumes 

When a large quantity of an asphalt fume is 
needed, collecting the  fumes in a laboratory 
setting is more practical than collecting  fumes at 
worksites. Niemeier et al. [1988], Lunsford and 
Cooper [1989], and Reinke and Swanson [1993] 
studied asphalt  fumes generated in the 
laboratory using the procedure described in 
section 3.4.2.  This procedure involves placing 
asphalt in a  vessel, heating it, and stirring it at 
least 200 revolutions per minute once it had 
melted sufficiently. The fumes were allowed to 
escape until the desired temperature was 
reached, at which point collection began by 
pulling air at 10 liters  per minute (L/min) 
through a series of cold traps. (This procedure 
could account for the differences in chemical 
composition often noted between asphalt fumes 
collected in  the field and those generated in the 
laboratory.)  The fumes were collected  for at 

 
 

least 8 hours. 

The following studies evaluated under what 
conditions laboratory-generated asphalt fumes 
could mimic asphalt fumes generated in the 
field. 

Kriech and  Kurek [1993] showed how genera-
tion conditions can affect the composition of 
fumes. Using a variety of analytical techniques 
(gas chromatography with flame ionization 
detection [GC/FID],  gas chromatography with 
flame photometric detection [GC/FPD], gas 
chromatography with atomic emission detection 
[GC/AED], and GC/MS), they compared asphalt 
fumes generated in the laboratory with fume 
samples collected from  the headspace in a 
storage tank at a hot-mix plant  (paving asphalt), 
from the headspace in kettles (roofing  asphalt), 
and from  personal-breathing-zone samples. 
Both the field and laboratory fumes were 
collected with a series of cold traps,  while the 
personal-breathing-zone samples were collected 
at the field sites on a  membrane  filter  backed up 
with a sorbent tube. 

Kriech and Kurek concluded that temperature, 
rate of stirring, and pulling versus pushing the 
collection air all affected the chemical compo-
sition of the fumes. Based on simulated distill-
ation  data and analyses of high-molecular-
weight S-PACs, they also concluded that the 
storage-tank samples resembled the personal-
breathing-zone samples  more closely than did 
the laboratory-generated samples. However, the 
S-PAC  data  also indicated that the storage-tank 
samples contained more S-PACs than  the 
personal-breathing-zone samples. 

Similarly, Reinke and Swanson [1993]  con-
sidered asphalt fumes collected from a storage 
tank at a hot-mix plant to be  representative of 
asphalt fumes from a field paving site.  How-
ever, Reinke and Swanson [1993] did not give a 
detailed analysis of the  storage-tank samples or 
the personal-breathing-zone samples. Therefore, 
these questions remain: Are storage-tank fumes 
truly representative of the asphalt fumes to 
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which workers are exposed in the field? Are 
storage-tank fumes more representative of field 
fumes than of fumes generated in the laboratory 
using the NIOSH protocol [Thayer et al. 1981; 
Sivak et al. 1989]? 

In another study, Brandt et al. [1985]  collected 
field  and laboratory asphalt fume samples and 
analyzed them for total particulates, the benzene-
soluble fractions of total particulates, and PAHs. 
In the field, point-emission and personal­
breathing-zone (using personal-type samplers) 
samples were collected  at both roofing and 
paving operations, while the laboratory samples 
were collected under a variety of conditions. The 
intent was to identify the conditions under which 
asphalt fumes generated in the laboratory would 
be similar to those collected at actual worksites. 

Results indicated that temperature and heating 
time  affected chemical composition of the 
fumes. Higher temperatures and longer heating 
times resulted in higher exposures to  total and 
benzene-soluble particulates and changed the 
chromatographic elution profiles  of the PAHs. 
Comparing  analyses of the field samples and the 
laboratory-generated samples led Brandt et al. to 
conclude that their “laboratory rig” could
produce laboratory fumes representative of field 
fumes. In this study, fumes were collected when 
the center of the sampler was placed 13 cm 
above the level of the asphalt. Brandt et al. felt 
this distance prevented the sampler from
influencing the chemical equilibrium above the 
asphalt surface when the sampler flow rate  was 
2 L/min. Collection times had to be short (15 to 
60 minutes), and generation temperature had to 
be close to that used in the field. 

 

 

3.5 Analytical Sampling and 
Analysis Methods 

This section is not intended to be an  all-
inclusive list  of the analytical sampling and 
analysis methods available for characterizing 
asphalt vapor and fume exposures. Most of the 

methods are nonspecific, and none can be used 
to characterize total asphalt fume exposure. 

3.5.1 Total and Respirable Particulates 

NIOSH Method 0500 can be used to determine 
total particulates, and NIOSH Method 0600 can 
be used to determine respirable particulates 
[NIOSH 1994]. The only difference between 
these two methods is that NIOSH Method 0600 
uses a size-selective inlet. Both methods are 
nonspecific; consequently, whatever is deposited 
on the sampling medium and remains until the 
sample is analyzed is included in the
determination. Moreover, when matrices such as 
an asphalt fume are sampled, air stripping can 
cause volatile fume components to be lost from 
the sampling medium. Because both methods 
use  a membrane filter as the sampling medium, 
these methods are not useful for collecting 
vapors. 

 

3.5.2 Benzene-Soluble Fraction of
Total Particulates 

 

NIOSH Method 5042 can be used to determine 
both total particulates  and the benzene-soluble 
fraction of total particulates employing a single 
sampler [NIOSH 1998]. Previously, benzene 
solubles and total particulates were determined 
using different samplers, thus making a 
comparison of results questionable. Also, the 
methods used to determine benzene solubles 
were originally developed for  coal-tar-pitch 
volatiles, and the results were correlated to 
adverse health effects [Occupational 
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Safety and Health Administration (OSHA) 
Method 58, 1986]. 

These methods of determining  benzene solubles 
have commonly been used with other matrices 
where the results  were only suspected of relating 
to an adverse health  effect. These methods are 
nonspecific because most organic compounds 
are soluble in benzene and because asphalt 
fumes contain many organic compounds and 
compound classes not found in coal-tar-pitch 
volatiles. Anything  in addition to asphalt fumes 
that is deposited on the sampling medium and is 
benzene soluble will interfere with the
determination. Air stripping can cause volatile 
fume components to be lost from the sampling 
medium. Because NIOSH Method 5042 uses a 
membrane filter for the sampling medium, it is 
not useful for collecting vapors. 

 

3.5.3 Polycyclic Aromatic Hydro-
carbons 

NIOSH Method 5506 uses liquid chroma-
tography with ultraviolet and fluorescence 
detection  (LC/UV/Fl) to determine selected 
PAHs, and NIOSH Method 5515 uses gas 
chromatography with a flame ionization de-
tector (GC/FID) to determine selected PAHs 
[NIOSH 1998; NIOSH 1994]. In NIOSH Meth-
od 5506, some of the PAHs (acenaphthene, 
acenaphthylene, anthracene, chry-
sene, fluorene, naphthalene, and phenanthrene) 
are determined by  UV detection, and the other 
P A  H  s  (  b  e  n  z [ a  ]  a  n  t h  r a c e n  e  ,
benzo[b]fluoranthene, benzo[k]fluoranthene, 
benzo[ghi]perylene, B(a)P, benzo[e]pyrene, 
dibenz[a,h]anthracene, fluoranthene, 
indeno[1,2,3-cd]pyrene, and pyrene) are de-
termined by fluorescence. NIOSH  Methods 
5506 and 5515 have been used to determine 
selected PAHs in matrices that contain only a 
few alkylated PAHs in relatively low con-
centrations compared with the unalkylated 

 

PAHs of interest, and possibly a few alkylated 
and unalkylated N-, O-, and S-PACs.  These 
matrices would include most  coal derived 
products and combustion by-products.  How-
ever, because asphalt fumes are composed of 
many alkylated isomers (e.g., mono, di, tri, and 
tetra-methyl) of PAHs, along with O-PACs and 
S-PACs, with the exception of naphthalene and 
some 3-ring PAHs, they are so chemically 
complex that they cannot be separated into 
discrete compounds (see section 3.4.2).  The 
greater the lack of resolution between com-
pounds, the less reliable are the quantification 
results.  Because of the poor resolution ob-
tained with asphalt fume samples, quanti-
fication is unreliable when these or other HPLC 
or GC/FID methods are used. 

Also, the limitations of NIOSH  Methods 5506 
and 5515 require that an alternative method 
(such as  GC/MS)  be used to confirm the identity 
of any suspected PAHs, including naphthalene 
and other possible baseline resolved PAHs.  Any 
compounds reported using NIOSH Methods 
5506 and 5515, or similar methods, are tentative 
identifications at best, and the more  complex  the 
matrix, the more  unreliable  these identifications 
become.  Furthermore, since chromatographic 
software programs assign peak identification 
based on  the largest peak in a given time 
window and  not on retention time, the wrong 
peak may be assigned and analyzed.  Since these 
methods use a gradient elution (e.g., the mobile-
phase composition varies during the chromato-
graphic run), retention  times may vary, thus, 
further complicating  the selection of the correct 
peak for identification and analysis. For reasons 
stated  above, these problems can be overcome 
for matrices consisting of coal-derived products 
or combustion by-products. However, for
asphalt fumes, these are formidable problems, 
because the alkylated PAHs are more abundant 
and are in higher concentrations than the PAHs 
of interest. 
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Figure 3–1.  Typical asphalt fume chromatogram 
obtained using liquid chromatography with fluorescene 
detection. 
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Figure 3–1 shows a typical asphalt fume chro­
matogram obtained usingliquid chromatography 
and a fluorescence detector. Figure 3–1 in­
dicates base line resolution is not achieved; 
hence, this analytical technique should not be 
used for determining the  concentration of PAHs 
in asphalt fume samples. Therefore, excluding 
results for naphthalene and some 3-ring PAHs, 
the analytical results for PAHs previously
reported using NI OSH Method 5506 or similar 
HPLC  methods are unreliable. Moreover, since 
many  previously  reported studies do not include 
chromatograms or sufficient experimental de­
tails, the methodology and data cannot be 
critically reviewed; therefore, results for
n a p h t h a l e  n  e  a n d  3 - r i n g  P A H s
should also be considered suspect. Furthermore, 
tangent skimming along the oscillations in the 
chromatogram for resetting the baseline would 
not be meaningful, because the remaining peak 
is too small and the peak widths are too wide to 
represent a single compound. 

While NIOSH Method 5506 does not allow for 
varying the fluorescence excitation and
emission wavelengths, these wavelengths can be 
varied  to improve sensitivity; however, varying 
these wavelengths will introduce added
concerns. If the fluorescence response at the 
new wavelength is not roughly zero, the
accompanying autozero that occurs will distort 
the chromatogram, and the data. For these 
reasons, PAH analyses in  asphalt fumes by 
HPLC/fluorescence techniques are considered 
unreliable. 

 

 
 

 

 

 

The UV chromatogram obtained by using
NIOSH Method 5506 is even more complex 
because all  the PACs and other chemical classes 
in the asphalt fume sample absorb UV light at 
the wavelength being monitored (254
nanometers [nm]). NIOSH Method 5515 would 
produce an even more complex chromatogram 
since the FID responds to everything passing 
through it. 

Because of these limitations and a growing 
concern that all PACs in asphalt fume  may play 
a role in adverse health effects, a method is 
needed  to monitor  all PAC material. A NIOSH 
investigation used a modification of  NIOSH 
Method 5506 (i.e., Method 5800) to monitor all 
PAC material in asphalt fumes [Hanley and 
Miller 1996a,b; Almaguer et al. 1996; Miller 
and Burr 1996a,b, 1998; Kinnes et al. 1996; 
NIOSH 1998]. Basically, the same analytical 
equipment is used, except the LC column has 
been removed and the UV detector has  been 
replaced with a second fluorescence detector. 
Because no LC column is used, the entire 
sample reaches the flow cell at once, resulting in 
a rapid and sensitive analysis of the sample. The 
two fluorescence detectors monitor different 
excitation and emission wavelengths. One set of 
wavelengths is more sensitive to two- and three-
ring  PACs, and the second set of wavelengths is 
more sensitive to four-ring and higher ring 
PACs. 

 

 

3.3.3.3.5.5.5.5.44 44 Selected Solvent MethodsSelected Solvent Methods Selected Solvent MethodsSelected Solvent Methods

NIOSH Method 1550 can be used to determine 
exposure to naphthas [NIOSH 1994]. The term 
naphthas includes petroleum ether, rubber
solvent, petroleum naphtha,  VM&P naphtha, 
mineral spirits, Stoddard solvent, kerosene, and 
coal tar naphtha. This method may be useful 
because some liquid asphalt products contain 
petroleum distillates for which exposure limits 
have been established. The samples are collected 
on a sorbent tube and analyzed using GC/FID. 
Because these solvent mixtures are chemically 
complex  and the components elute over a wide 
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temperature range, interferences from other
substances are possible. 

Other NIOSH methods can be used to determine 
selected solvents that may be present  in  asphalt 
vapors and fumes [NIOSH 1994]. NIOSH
Methods 1300 and 1301 have been used to
determine ketones, and NIOSH Method 1501 
has been used to determine  total PAHs [Hanley 
and Miller 1996a,b; Almaguer et al. 1996]. 

 

 
 

3.6 Conclusions 

An analysis of the chemical data indicates 
that paving and roofing asphalts are
qualitatively and quantitatively different; 
therefore, the vapors and fumes from these 
asphalt products may also be presumed to be 
different. Chemical composition of asphalt 
vapors and  fumes varies and depends on 
crude petroleum sources, type of asphalt, 
temperature  and mixing during the
manufacturing process, and temperature and 
extent of mixing during either laboratory 
generation or field operations. Although 
asphalt vapors and fumes have not been well 
characterized, the analysis of selected PAHs 
in asphalt vapors and fumes from asphalt 
products has been of interest. Many studies 
have been directed to the identification of 
PAHs in asphalt fume samples. The most 
meaningful  of these studies used GC/MS for 
the analysis. PAH data obtained by HPLC/ 
fluorescence techniques are not included, be-
cause the PAH identifications are uncertain 
and the results unreliable, see section 3.5.3. 

Robinson et al. [1984]  used GC/MS to analyze 
several asphalt-based paints for chrysene,
benz[a]anthracene, B(a)P, benzo[e]pyrene, and 
phenanthrene; they detected only phenanthrene 
(0.01%). Several other investigators have
reported on the chemical analysis of paving and 
roofing asphalt fumes [Niemeier et al.  1988; 
Lunsford and Cooper 1989; Reinke and
Swanson 1993; Hatjian et al. 1995a, 1997]. Low 

 

 

 

 

 

levels of carcinogenic  PAHs have been detected 
in  laboratory-generated asphalt fumes. Reinke 
and Swanson [1993] detected  0.02 µg/m3 

chrysene in fumes generated in the laboratory at 
149 °C (300 °F). Niemeier et al. [1988] meas-
ured low concentrations of several carcinogenic 
PAHs in roofing asphalt fumes generated in the 
laboratory at both 232 and 316 °C (450 and 651 
°F). Most of the PAHs in the Niemeier et al. 
study were two-, three-, and four-ring PAHs. 
Lunsford and Cooper [1989] reported finding 
two- to four-ring  PAHs along with many 
alkylated PAHs, O-PACs with and without alkyl 
groups, and S-PACs with and without alkyl 
groups in laboratory-generated asphalt fume 
fractions that caused tumors in a  mouse-skin-
painting study. The presence of O-PACs and S-
PACs is a cause for concern, since some O-
PACs  may cause cancer, and some  S-PACs  may 
cause mutations [Tennant and Ashby 1991; 
Pelroy et al. 1983; McFall et al. 1984].  Also, 
because little is known about the carcinogenic 
and genotoxic activity  of most of the alkylated 
PACs, these PACs are a cause for concern 
because of their structural similarity to known 
carcinogens and genotoxins. 

Few  studies have been directed at the iden-
tification and measurement of PAHs in asphalt 
fumes generated at U.S. worksites. Reinke and 
Swanson [1993] collected paving  asphalt fumes 
from a storage tank at 149 °C (300 °F) at a hot-
mix plant (Table 3-6). Although they had 
detected chrysene in laboratory-generated 
asphalt fumes, they did not detect chrysene in 
asphalt fumes collected from the storage tank, 
and although two- and three-ring PAHs were 
found in the storage tank fumes, four-ring PAHs 
were not. 

Hatjian et al. [1995a, 1997] reported on a 
GC/MS analysis for selected PAHs in asphalt 
paving and roofing fumes collected at several 
worksites. Two- and three-ring PAHs accounted 
for 99% of PAH exposures in the two paving 
asphalt groups. In the two roofing asphalt 
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groups, two- and three-ring  PAHs accounted for 
84% and 94% of PAH exposures, respectively. 
Naphthalene accounted for 60% to 90% of PAH 
exposures  for all work groups. B(a)P was 
detected in less than 6% of the personal­
breathing-zone air samples from asphalt road 
pavers and manual laborers who had no
occupational exposure to PAHs and in 28% or 
25% of the personal-breathing-zone air samples 
obtained from asphalt roofers, R1 and R2, 
respectively. 

In a NIOSH study, environmental samples from 
paving operations were analyzed for PACs as a 
class, but no individual PAHs were determined 
[Hanley and Miller 1996a,b; Almaguer et al. 
1996; Miller and Burr 1996a,b, 1998; Kinnes et 
al. 1996]. 

While data regarding the presence of carcin­
ogens in asphalt  fumes generated at U.S. 
worksites are limited, the occasional detection of 
B(a)P at these sites  [Hatjian et al. 1995a, 
1997] and more frequent detection of B(a)P and 
other carcinogenic PAHs in laboratory-generated 
asphalt fumes indicate that under

 

 

some conditions, known carcinogens are likely 
to  be  present [Niemeier et al. 1988; Lunsford 
and Cooper 1989; Reinke and Swanson 1993]. 
Moreover, asphalt  fumes generated at high 
temperatures are probably more hazardous than 
fumes generated at  lower temperatures. Because 
asphalt fume samples collected in the  field have 
not been well characterized, additional research 
is needed to better characterize them.  Also, 
laboratory generation methods need to be 
evaluated to  identify those that produce asphalt 
fume samples representative of fumes to which 
workers are exposed. 

The presence of numerous alkylated PAHs, O-
PACs, and S-PACs in asphalt fumes is cause for 
concern. Although  little is known about their 
toxicologic  activity, their structural similarity  to 
known carcinogens and  genotoxins is 
troublesome.  If these compounds are a health 
concern, new sampling and analytical methods 
specifically for these compounds would need to 
be developed.  Given the chemical complexity 
of asphalt fume samples, the most likely 
methods would utilize GC/MS techniques. 

Various NIOSH methods have been used for 
characterizing asphalt vapor and fume ex­
posures. However, most of the methods are 
nonspecific, and none are useful for charac­
terizing total asphalt fume exposure. New or 
improved analytical sampling methods need to 
be developed. 
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4.1 

4 Exposure
 

The first part of this chapter discusses three 
air sampling methods—total particulate, 

benzene-soluble particulate fraction, and PAHs, 
all of which have been used in recent NIOSH 
investigations to evaluate occupational 
exposures to asphalt fumes [Almaguer et al. 
1996; Hanley and Miller 1996a,b; Kinnes et al. 
1996; Miller and Burr 1996a,b, 1998]. Table 
4–1 provides a summary of these sampling and 
analytical methods. In addition, worker exposure 
data from studies evaluating asphalt refining, 
hot-mix asphalt plants, road paving, roofing 
(both manufacturing and installation), flooring, 
and waterproofing are reviewed and summarized 
in Appendix B. 

Methods for Analyzing 

Workplace Air and Dermal 
Exposures 

A variety of sample collection and analytical 
methods are available for evaluating exposures 
to asphalt fumes in the workplace. Two meth­
ods frequently employed measure either total 
particulates or the benzene-soluble fraction of 
total particulates. Unfortunately, neither of 
these methods measures exposure to distinct 
chemical components or even a distinct class of 
chemicals, making it difficult to relate specific 
components to possible health effects. For ex­
ample, many organic compounds are soluble in 
benzene, and any dust or aerosols may con­
tribute to total particulate concentrations. In an 
attempt to characterize asphalt fumes more 
accurately, investigators have developed meth­
ods to measure individual unsubstituted PAHs, 
such as acenaphthylene, anthracene, and naph­
thalene;  total PACs; or other potentially irritat­
ing substances, such as sulfur-containing com­
pounds. These methods are described below. 

4.1.1 Total Particulates as an 
Indicator of Asphalt Fumes 

Total particulates are a measure of all airborne 
particulates that can be collected on a tared 
(weighed) sample filter. Several current oc­
cupational exposure limits for asphalt fumes are 
expressed as total particulates. In a study at an 
asphalt hot-mix plant, the size distribution of 
approximately 95% to 98% of the asphalt par­
ticles was shown to be between 1 and 5 µm in 
diameter, while at an asphalt paving site, where 
samples were collected above the screed auger 
of the paver vehicle, approximately 76% of the 
particles were between 1 and 5 µm in diameter 
[Hicks 1995]. These data indicate that asphalt 
fumes are composed of relatively small particles 
and may be collected equallywell using the more 
traditional sampling method (closed-face, 37-mm 
sampling cassettes) or inhalable samplers. How­
ever, further research is warranted to define the 
various size fractions of asphalt fumes at paving 
and other worksites where asphalt is used. 

In the 1977 criteria document, NIOSH estab­
lished a recommended exposure limit (REL) of 
5 mg/m3 as a 15-min ceiling limit2 for asphalt 
fumes measured as total particulates. The 
NIOSH REL was intended to protect workers 
against acute effects of exposure to asphalt 
fumes, including irritation of the serous mem­
branes of the conjunctivae and the mucous 
membranes of the respiratory tract.  In 1988, 
NIOSH (in testimony to the Department of 
Labor) recommended that asphalt fumes should 
be considered a potential occupational 
carcinogen [NIOSH 1988]. 

2See footnote 1 in chapter 1. 
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Table 4-1. Examples of sampling and analytical methods for characterizing 
occupational exposure to asphalt fumes [NIOSH 1994]

          Substance    Sample media    Analytical method Additional information 

Total particulates 

Benzene-soluble particulates 

Polycyclic aromatic com­
   pounds and sulfur com­
   pounds 

Tared PVC filter (37-mm diam, 0.8-µm
   pore size) or tared Zefluor filter
   (37-mm  diam, 1-µm  pore size) 

Tared PTFE filter (3-mm diam, 1-µm
   pore size) 

PTFE filter (37-mm diam, 2-µm pore
   size), followed by an ORBO 42
   sorbent tube 

Tared filter (either PVC or PTFE) is
   gravimetrically analyzed.  Note: filters
   should be allowed to equilibrate in an
   environmentally controlled weighing
   area or chamber.  The LOD and LOQ
   for total particulates were 0.04 and
   0.13 mg per sample, respectively. 

The PTFE filters are rinsed with benzene,
   leachate collected and evaporated, and
   residue weighed to report benzene­
   soluble fraction. The LOD and LOQ
   for benzene solubles were 0.04 and
   0.14 mg per sample, respectively. 

After collection, asphalt fume samples
   are extracted with hexane and then
   eluted through a solid-phase extraction
   column to separate aliphatic and aro­
   matic compounds from compounds
   with polar functional groups.  PACs are
   quantitated using reversed-phase liquid
   chromatography with fluorescence

­   detection.  Since excitation and emis
   sion wavelengths are not the same for
   all PACs, two sets of excitation and
   emission wavelengths are used. Sulfur
   compounds are subsequently analyzed
   by GC with sulfur chemiluminescence

    detection. 

NIOSH Sampling and Analytical  Meth­
   od No. 5042 for TP and benzene­
   soluble fraction (asphalt fumes) recom­
   mends using a  tared PTFE filter.  This 
   allows simultaneous measurement of
   both TP and BSP. 

Organic compounds are generally soluble
   in benzene.  Sampling for BSP (or TP)
   assumes that the process producing the
   asphalt fumes is the predominant con­
   tributor to air  pollution at the worksite. 

NIOSH Sampling and Analytical Method
   No. 5800 contains more  details on
   collection and analysis of PACs.  This
   method  is similar to NIOSH Sampling
   and Analytical Method No. 5506,

    Polynuclear Aromatic Hydrocarbons.
   Opaque filter cassettes and sorbent
   tube holders are recommended to

    prevent degradation of PACs by UV.
   For more information, refer to section
 3.5.3. 

Abbreviations:  BSP=benzene-soluble particulates; GC=gas chromatography; HPLC=high-performance liquid chromatography; LOD=limit of detection; LOQ=limit of quantitation; PTFE=polytetra-fluoroethylene 
(Teflon®); PVC=polyvinyl chloride; TP=total particulates; UV=ultraviolet radiation. 
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Currently, no OSHA standard exists for asphalt 
fumes. In a 1988 proposed rule on  Air  Con­
taminants, OSHA proposed a PEL of 
5 mg/m3 as an 8-hr time-weighted average 
(TWA) for asphalt fume exposures in general 
industry.  This proposal was based on a pre­
liminary finding that asphalt fumes should be 
considered a potential carcinogen [53 Fed. Reg. 
21193 (1988)].  In 1989, OSHA announced that 
it would delay a final decision on the 1988 
proposal because of complex and conflicting 
issues submitted to the record [54 Fed. Reg. 
2679 (1989)].   In  1992, OSHA published anoth­
er proposed rule for asphalt fumes that included 
a PEL of 5 mg/m3  (total particulates) for general 
industry, construction, maritime, and agriculture 
[57 Fed. Reg. 26182 (1992)].  Although OSHA 
invited comment on all of the alternatives, its 
proposed standard for asphalt fumes would 
establish a PEL of 5 mg/m3 (total particulates) 
based  on avoidance of adverse respiratory ef­
fects. The OSHA docket is  closed, and OSHA 
has not scheduled any further action. 

The current American Conference of Gov­
ernmental Industrial Hygienists (ACGIH) 
threshold limit value (TLV®) for asphalt fumes 
is 0.5 mg/m3 (8-hr TWA) as a benzene-soluble 
aerosol (inhalable fraction) or equivalent method 
with an A4 designation, indicating that it is not  
classifiable as a human carcinogen [ACGIH 
2000]. Irritation is the critical effect. 

4.1.2 Benzene-Soluble Particulate
Fraction 

 

The benzene-soluble particulate fraction is that 
portion of total particulates that is soluble in 
benzene. Organic compounds are generally 
soluble in benzene, whereas inorganic com­
pounds are not. Historically, this particulate 
fraction has been used to differentiate between 
asphalt fumes and other nonasphalt particulates 
present, such as road dust, at paving sites. Of 
course, sampling for benzene solubles (or total 
particulates) assumes that asphalt fumes (as 
opposed to diesel engine exhaust, for example) 

are the predominant or sole contributor to air 
pollution at a worksite.  NIOSH Sampling and 
Analytical Method 5042 contains further details 
on the collection and analysis of total partic­
ulates and benzene solubles. 

In the past, because of concerns with the car­
cinogenicity of benzene, other solvents (such as 
cyclohexane, acetonitrile, and methylene chlo­
ride) have been used in place of benzene to 
measure the soluble fraction of a particular 
matrix. When sampling asphalt fumes, how­
ever, it is difficult to compare the results be­
cause  the  extraction capability of these  solvents 
varies. For example, carbon disulfide may not 
be as effective as benzene for extracting the 
polar compounds  in the fumes. NIOSH re­
searchers believe that benzene provides the best 
overall solubility for asphalt fumes. 

4.1.3 Polycyclic Aromatic Hydrocar-
bons and Polycyclic Aromatic 
Compounds 

In many asphalt fume studies, researchers have 
attempted to analyze individual PAHs using 
either LC/UV/FID or GC/FID. Although this 
approach has been successful in many matrices 
containing PAHs, studies of asphalt fumes have 
shown that these fumes contain a complex 
mixture of PACs, a class of chemical com­
pounds that contain two or more fused aromatic 
rings. NIOSH researchers believe that, on an 
individual basis, these  PACs cannot be easily 
separated or quantified (see section 3.5.3). 

In  response to this analytical dilemma,  NIOSH 
researchers developed a flow-injection method 
(NIOSH Method 5800) to measure the total 
PAC content of asphalt fumes [Miller and Burr 
1998, Appendix A]. After  it is collected, the 
asphalt fume sample is extracted from the 
sampling  filter  with hexane. This extract is then 
eluted through a solid-phase extraction column 
to separate the aliphatic and aromatic 
compounds. The aromatic compounds are then 
extracted from the aliphatic compounds using  a 
liquid-liquid extraction procedure. 
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Because the excitation and emission wave­
lengths are not the same for all PACs, two sets 
of excitation and emission wavelengths were 
used in seven asphalt paving studies conducted 
by  NIOSH [Almaguer et al. 1996; Hanley and 
Miller 1996a,b; Kinnes et al. 1996; Miller and 
Burr 1996a,b, 1998]. One  set of wavelengths 
(254-nm excitation, 370-nm emission) is more 
sensitive for two-ring  and three-ring compounds 
(the lower molecular weight PACs); the second 
set of wavelengths (254-nm excitation, 400-nm 
emission) is more sensitive  for four-ring and 
higher compounds (the higher molecular weight 
PACs). It should be noted that other researchers 
[Kriech et al. 1999; Kurek et al. 1999] are using 
similar techniques for measuring  the presence or 
absence of four- to six-ring PACs in asphalt 
fumes.  No occupational exposure limits have 
been established for  total PACs associated with 
asphalt fumes. NIOSH Sampling and Analytical 
Method 5800 contains further details on the 
collection and analysis of PACs. 

4.2 Occupational Exposure Data, 
Air and Dermal Wipe Sam-
pling 

Comparing historical occupational exposure 
data from asphalt  fume studies can be com­
plicated by many factors, including the complex 
and variable nature of the asphalt itself,  the  lack 
of a single chemical substance accepted as 
representative of asphalt fume exposure, and the 
use of different sampling and analytical
methods. This last factor is important in terms of 
assessing exposures because such differences 
can affect what markers are measured for asphalt 
fume exposure and how comparable the results 
of different studies are. For example, studies of 
asphalt fumes may report individual PAHs or 
total PAHs, but the analytical methods used to 
obtain results may vary in  accuracy and PAH 
identifications are unreliable (see section 3.5). 
Also, when solvents other than benzene, such as 
cyclohexane or acetonitrile, are used  to  obtain 
the soluble fraction of total particulates,

 

 

the results cannot be  compared easily because 
the extraction ability of these solvents varies. 

Because of the potential problems encountered 
when combining results from  studies in which 
sampling and analytical methods differ, environ­
mental data obtained from studies  of asphalt 
refining, hot-mix asphalt plants, road paving, 
roofing, flooring, and waterproofing are sum­
marized by topic in Appendix B. Analysis of 
these data indicated that  the highest personal 
total particulate exposures were measured during 
asphalt flooring and waterproofing activities (1.1 
to 42 mg/m3), followed by roofing products 
manufacturing (0.07 to 15 mg/m3), asphalt 
refining (0.3 to 14 mg/m3), roofing application 
(0.04 to 13 mg/m3), activities at  hot-mix  asphalt 
plants (0.1 to 7.2 mg/m3), and road paving  (0.1 
to 5.6 mg/m3). Personal exposures to  benzene-
soluble particulates followed  a similar pattern, 
with the highest exposures once again being 
measured during asphalt flooring and water­
proofing activities (0.8 to 14 mg/m3), followed 
by asphalt refining (0.03 to 13  mg/m3), roofing 
application (0.04 to 6.9 mg/m3), road paving 
(0.03 to 4.4 mg/m3), and roofing products man­
ufacturing (0.01 to 3.7 mg/m3). The following 
section discusses several recent asphalt exposure 
studies in greater detail. 

4.2.1 NIOSH/FHWA Evaluation of 
Asphalt Paving Workers 

Between 1994  and 1997, seven surveys [Al­
maguer et al. 1996; Hanley and Miller 1996a,b; 
Kinnes et al. 1996; Miller and Burr 1996a,b, 
1998] were completed as part of an interagency 
agreement between NIOSH and the Federal 
Highway Administration (FHWA) of the U.S. 
Department of Transportation. The objectives 
were to (1) develop and field test new methods 
of characterizing asphalt fume exposures and 
(2) identify potential health effects associated 
with asphalt exposures (health effects are 
discussed in section 5). 

At each NIOSH survey  site, full-shift personal­
breathing-zone samples were collected from the 
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paving crew, which typically consisted of six to 
10 workers, for total  particulates and the 
benzene-soluble particulate fraction. Table 4–2 
shows that average personal-breathing-zone air 
concentrations for both total particulates and 
benzene solubles were below 0.5 mg/m3, TWA. 
Table 4–3 shows personal-breathing-zone air 
concentrations for PACs that were collected and 
analyzed using a method similar to NIOSH 
Sampling  and Analytical Method No. 5506 (see 
Table 4–1 and section 3.5.3 for more in-
formation). Two spectrofluorometric emission 
wavelengths were used in the PAC analyses. 
These were 370 nm, which is more sensitive to 
the lower molecular weight, two–ring and 
three–ring PAC compounds (termed PAC370); 
and 400  nm,  which is more sensitive for the 
higher molecular weight, four–ring and larger 
compounds (referred to as PAC400). In these 
studies, concentrations of PAC370 always ex-
ceeded concentrations of PAC400, implying that 
the  lower molecular weight, two- and three-ring 
PACs (postulated by NIOSH investigators to be 
more responsible for irritant effects) may be 
more abundant in asphalt fumes. 

In  addition to the personal-breathing-zone sam-
ples, area air samples were collected over the 
screed auger section of the paver vehicle and 
analyzed for total particulates, respirable par-
ticulates, benzene solubles, and total hydro-
carbons.  Area air samples were also collected 
for VOCs, carbon monoxide, hydrogen sulfide, 
sulfur dioxide, and ozone, substances which 
NIOSH investigators theorized could also be 
present during road paving. 

Area air sampling results for respirable and 
total particulates, benzene-soluble particulates, 
and total hydrocarbons are summarized in 
Table 4–4. Across the seven paving  sites, area 
concentrations of respirable particulates at the 
screed auger ranged from 0.055 to 0.97 mg/m3 , 
total VOCs (measured as either n-hexane or 
Stoddard solvent) ranged from 0.5 to 30 mg/m3 , 
and concentrations of selected individual VOCs 
(benzene, toluene, xylene, and methyl isobutyl 
ketone) were generally less than 1 part per 
million (ppm). At some sites, area con-

centrations of carbon monoxide ranged up  to 
1,000 ppm where gasoline–powered equip-
ment, such as vibrating tampers or portable 
generators, was in use. At all survey  locations, 
concentrations of hydrogen sulfide and sulfur 
dioxide were not detected. 

4.2.2 NIOSH Evaluation of Asphalt
Paving among Tunnel Workers 

 

In 1996, NIOSH evaluated exposures of paving 
crews working  within the Third Harbor Tunnel 
in Boston, MA [Sylvain and Miller 1996]. The 
work included the collection of full-shift 
personal-breathing-zone and area air samples for 
total particulates and benzene solubles, ques-
tionnaires administered to obtain information on 
symptoms, and tests of peak lung flow (see 
section 5.1 for details on the medical results). As 
shown in Table 4–5, personal exposures to total 
particulates and benzene solubles averaged 1.6 
and 0.76 mg/m3, respectively. These concentra-
tions were up to three times higher than ex-
posures measured during the seven NIOSH/ 
FHWA surveys at open-air roadway paving sites 
(see section 4.2.1). Poorer ventilation in the 
tunnel (as compared to open-air paving sites) 
likely contributed to these higher personal-
breathing-zone exposures. 

4.2.3 Cross-Sectional Occupational Ex-
posure Assessment Study 

In a cross-sectional occupational exposure as-
sessment [Hicks 1995] covering road paving 
sites, hot-mix plants, refineries and terminals, 
roofing manufacturing plants, and roofing 
application sites, 219 full-shift personal-
breathing-zone air samples were  collected and 
analyzed (most sampling periods ranged from 7 
to 9 hours) [Hicks 1995]. In addition to air sam-
ples, 131 dermal wipe samples for benzene 
solubles were collected (see  section 4.3). The 
objective of this study was to  characterize work-
er exposures to asphalt fumes via both airborne 
and dermal routes. 
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Table 4–2. Full-shift personal-breathing-zone sample results for total particulates
and benzene-soluble particulates obtained from NIOSH paving surveys, mg/m3 

uuuu 

 O
ccupation

Arizona California 1 California 2 

n GM Max.

Florida Indiana Massachusetts 

 n  GM Max.

Michigan

  n  GM Max.  n  GM Max.  n  GM Max.  n  G M  Max.  n GM  M ax. 

Paver operators:
 T otal particulates 2 0.8 Ben p zene-soluble

articulates 2 0.59 

Screed auger operators:
 T otal particulates 2 0.43 Ben
 pa zene-soluble

rticulates 2 0.29 

Roller operators:
 T otal particulates 5 0.053 Ben
 pa zene-soluble

rticulates 5 0.022 

Laborers/other:^
 T otal particulates 5 0.33 Ben
 pa zene-soluble

rticulates 5 0.17 

Overall (all paving job titles combined):
  T otal particulates 14 0.2 Ben

zene-soluble pa
 rticulates 14 0.11 

1.0  
  

0.82 

0.47 

0.37 

0.17 

0.06 

0.68 

0.49 

1.0 

0.82 

2 

NC 

2 

NC 

4 

NC 

7 

NC 

15 

NC 

0.85 

— 

0.31 

— 

0.21 

— 

0.27 

— 

0.30 

— 

1.3 2 

—

0.31 

 — 

0.35 

 — 

0.38 

— 

1.3 

— 

2 

4 

4 

2 

2 

 8 

 8 

 16 

 16 

0.62 

0.33 

0.70 

0.19 

0.18 

0.014 

0.48 

0.13 

0.48 

0.12 

0.55 

0.46 

1.0 

0.21 

0.22 

0.02 

0.89 

0.32 

1.0 

0.46 

2 

NC 

8 

NC 

4 

NC 

4 

NC 

18 

NC 

0.39 

— 

0.1 

— 

0.057 

— 

0.077 

— 

0.075 

— 

0.5 

— 

0.17 

— 

0.14 

— 

0.13 

— 

0.17 

— 

1 

NC 

1 

NC 

6 

NC 

4 

NC 

15 

NC 

0.0087 

— 

0.78 

— 

0.04 

— 

0.031 

— 

0.041 

— 

0.0087 

— 

0.3 

— 

0.1 

— 

0.09 

— 

0.1 

— 

4 0.34 

4 0.22 

2 0.22 

2 0.082 

4 0.055 

4 0.03 

4 0.16 

4 0.055 

14 0.15 

14 0.073 

0.52 

0.4 

0.27 

0.099 

0.1 

0.045 

0.19 

0.8 

0.52 

0.4 

2 

NC 

4 

NC 

6 

NC 

10 

NC 

22 

NC 

0.17 

— 

0.12 

— 

0.10 

— 

0.22 

— 

0.16 

— 

0.2

— 

0.17

— 

0.15

— 

1.2

— 

1.2

— 


 


 

  Abbreviations: GM=geometric mean; Max.=maximum concentrations for sample set; n=number of samples in sample set; NC=not collected.
uTotal particulate samples were collected on either tared PVC or PTFE filters.
^This category includes laborers, rakers, haulage truck drivers, traffic personnel, site foremen, and tack men.


 



Table 4–3. Full-shift personal-breathing-zone sample results for PACsuuuu obtained from NIOSH paving surveys, g/m3 ::::

Arizona California 1 California 2 Florida Indiana Massachusetts Michigan
 O

ccupation  n G M Max.  n  GM Max.  n  G M Max.  n GM Max.  n  G M  Max. n   GM Max.  n   GM Max. 

Paver operators:
  PA C 370 2 30 PA

C400 2 4.3 
49 
6.5 

NC 
NC 

 — 
 — 

2 
—
—

 2 18 
2.4 

24 
3.3 

1 
1 

2.7 
0.43 

 — 
 — 

2 
2 

1.8 
0.27 

2.8 
0.47 

2 
2 

60 
8.5 

84  
12  

NC 
NC 

 — 
 — 

 —  
 —  

 Screed auger operators:
 PA C370 2 9.1 PA

C400 2 1.3 
23  
3.5 

NC 
NC 

 — 
 — 

—
 —

4  4 17 
2.3 

26 
3.5 

4 
4 

1.5 
0.20 

3.4 
0.36 

4 
4 

0.87 
0.15 

1.2 
0.28 

2 
2 

72 
9.8 

191  
25  

1 
1 

3.9 
1.2 

 —  
 —  

Roller operators: PA
 C 370 5 0.18 PA
 C 400 5 0.04 

1.2 
0.18 

2 
2 

1.4 
0.25 

2.4 
0.43 

2 
2 

1.1 
0.15 

1.3 
0.16 

1 
1 

1.1 
0.17 

 — 
 — 

6 
6 

0.07 
0.01 

0.8 
0.042 

4 
4 

5.3 
0.67 

17  
3.4  

NC 
NC 

 — 
 — 

 —  
 —  

  Laborers/other:†

 PA C370 5 7.9 PA
C400 5 1.2 

20 
2.7 

NC 
NC 

— 
—
—

  — 
 

8 
8 

8.1 
1.1 

12 
1.6 

NC 
NC 

— 
—
—

  — 
 

3 
3 

0.39 
0.09 

0.54 
0.11 

2 
2 

16 
2.4 

22  
2.9  

2 
2 

11 
3.0 

 —  
4.2  

Overall (all paving job titles combined):
 PA C370 14 2.5 PA

C400 14 0.43 
49 
6.5 

2 
2 

1.4 
0.25 

2.4 
0.43 

16 
16 

8.4 
1.1 

26 
3.5 

6 
6 

1.5 
0.21 

3.4 
0.43 

15 
15 

0.3 
0.05 

2.8 
0.47 

10 
10 

22 
2.9 

191  
25  

3 
3 

7.6 
2.2 

16  
4.2  

Abbreviations: GM=geometric mean; Max.=maximum concentrations for sample set; n=number of samples in sample set; NC=not collected. 
uTotal particulate samples were collected on either tared PVC or PTFE filters. 
†This category includes laborers, rakers, haulage truck drivers, traffic personnel, site foremen, and tack men. 



    

  

 
      

 

Table 4-4.  Summary of results from NIOSH paving surveys of full-shift area air sampling at screed auger, mg/m3 

Arizona California 1 California 2 Florida Indiana Massachusetts Michigan

       Substance n GM Max.  n  GM Max. n   GM Max. n  GM Max.  n  GM Max. n    GM  Max. n   GM   Max. 

Total particulatesu 

Respirable particulates 
Benzene-soluble 
   particulates 
Total VOCs 
   (as n–hexane)† 

Total VOCs (as Stoddard
   solvent)‡ 

8 
4 

8 

4 

4 

1.3 
0.86 

1.1 

0.73 

22 

5.5 
1.4 

5.1 

1.5 

74 

2 
2 

2 

2 

2 

2.0 
1.5 

2.0 

1.2 

7.7 

3.2 
3.1 

3.0 

2.1 

9.0 

8 
4 

8 

4 

4 

2.4 
0.43 

1.7 

0.56 

13 

3.0 
1.2 

2.4 

1.1 

25 

4 
4 

4 

4 

4 

0.25 
0.11 

Trace 

0.19 

3.8 

0.45 
0.22 

— 

0.31 

8.2 

4 
4 

4 

4 

4 

0.14 
0.07 

0.19 

0.06 

2.5 

0.25 
0.17 

0.26 

0.17 

2.9 

8 
4 

4 

4 

4 

1.6 
0.58 

1.2 

1.9 

21 

1.9 
0.77 

1.2 

2.3 

24 

2 
2 

2 

2 

0.29 
0.11 

0.14 

NAn 

0.57 

0.45 
0.16 

0.22 

NAn 

0.57 

Abbreviations:  Max.=maximum concentrations for sample set; n=number of samples in sample set; NAn=not analyzed; VOCs=volatile organic carbons. 
uTotal particulate samples were collected on either tared PVC or PTFE filters. 
†Represents total hydrocarbons having a retention time less than toluene. 
‡Represent total hydrocarbons having a retention time greater than toluene. 
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As shown in Table 4–6, concentrations of total 
particulates (0.18 to 1.4 mg/m3) and benzene 
solubles (0.15 to 0.27 mg/m3) varied across all 
industry types. Geometric mean exposures in all 
sectors were comparable when measured as ben-
zene solubles. The highest concentration for to-
tal particulates was at  roofing manufacturing 
plants, but this result may be attributable to 
nonasphalt-related particles in these plants. The 
air samples with the most abundant PAH com-
pounds were obtained from  workers at 
construction sites (roofers and paving crews) 
(Table 4–7). Hicks reported that lower molecular 
weight PAHs, such as naphthalene, were more 
frequently detected than the higher molecular 
weight compounds, such as B(a)P.  Carcino-
genic PAHs (chrysene, B(a)P,  and benzo(b) 
fluoranthene) were detected in personal samples 

collected from employees working in the in-
dustry categories of refineries and terminals, 
roofing manufacturing, roofing  contractors, and 
paving operations. Fluorene, naphthalene, and 
phenanthrene were detected in all of the industry 
categories. It  should be noted that HPLC with an 
ultraviolet/fluorescence detector (the method 
used in the Hicks study) may not be able to 
distinguish discrete PAHs present in asphalt 
fumes. See section 3.5 for a more complete 
discussion of the analysis of asphalt fumes. 

4.2.4   Exxon Cross-Sectional Evaluation
           of Asphalt Workers 

Personal exposures and health outcomes of 
170 workers in five segments of the asphalt 
industry (hot-mix plants, terminals, roofing 

Table 4–5. Personal-breathing-zone sample results for total particulates and benzene-soluble 

Job             

Paver operator 

particulates, mg/

No. of samples 

1 

m3 (adapted from Sylvain and Miller 1996) 

Total particulates 

Geometric mean Maximum 

1.9 

Benzene-soluble particulates 

Geometric mean Maximum 

1.1  
Screed operator 1 1.5 0.91 
Roller operator 1 2.1 0.87 

 Laborersw 6 1.5 2.2 0.44 1.3
Overall 

wGroup included 4 rakers an

9 

d 2 laborers. 

1.6 2.2 0.76 1.3

NOTE:  Maximum=maximum concentrations for sample set. 

 
 

Table 4–6. Personal-breathing-zone sample results for total particulates and benzene-soluble 
particulates, mg/m3 (adapted from Hicks 1995) 

Total particulates Benzene-soluble particulates 

Type of industry No. of samples Geometric mean Maximum Geometric mean Maximum 

Refineries/terminals 44 0.18 14 0.16 13 
Hot-mix asphalt facilities 33 0.78 15 0.15 1.7 
Paving operations 37 0.37 0.85 0.24 4.4 
Roofing manufacturers 34 1.4 13 0.27 3.7 
Roofing contractors 38 0.55 2.5 0.25 2.4 

NOTE:  Maximum=maximum concentrations for sample set. 
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Table 4–7. Geometric mean of personal-breathing-zone air samples* for PAHs, µg/m3 

(adapted from Hicks 1995) 

ACN† ACY† ANT† BAP‡ BBF‡ BEP‡

     Type of industry 
No. of 

samples§ GM Max. 
No. of 

samples GM  Max. 
No. of 

samples GM Max. 
No. of 

samples GM Max. 
No. of 

samples GM Max. 
No. of 

samples GM Max. 

Refineries/terminals 
Hot-mix asphalt facilities 
Paving operations 
Roofing manufacturers 
Roofing contractors 

9/1    
8/2    
9/4 
7/1    

11/1 

0.99 
0.9 
1.3 
0.9 
0.74 

3.4 
2.1 
2.7 
2.4 
1.6 

9/2    
8/0 
9/3 
7/3 

11/7 

0.54 
ND 

0.69 
0.95 
2.0 

4.9 
<0.57 

4.5 
5.1 

2 

9/1 
8/0 
9/3 
7/0 

11/1 

0.047 
ND 

0.05 
  ND 

0.04 

2 
<0.036 

1.5 
<0.036 

1.2 

44/1 
33/0 
37/0 
34/1 
38/0 

0.15 
ND 

  ND 
0.16 

  ND 

1.3 
<0.14 
<0.14 

1.1 
<0.14 

9/1 
8/0 
9/0 
7/0 

11/3 

0.12 
ND 

 ND 
 ND 

0.11 

4.2 
<0.09 
<0.09 
<0.09 

1.8 

9/1 
8/0 
9/1 
7/0 

11/4 

0.29 
ND 

0.16 
  ND 

0.34 

3.2 
<0.16   

1.2 
<0.16   

2.8 

CHR‡ FLA‡ FLE† NAP† PHN† PYR‡ 

Refineries/terminals 
Hot-mix asphalt facilities 
Paving operations 
Roofing manufacturers 
Roofing contractors 

9/0    
8/0    
9/2 
7/0    

11/0 

   ND 
ND 

0.13 
   ND 
   ND 

<0.11 
<0.11 

1.3 
<0.11 
<0.11 

9/1    
8/2    
9/8    
7/0    

11/5 

0.18 
0.15 
0.24 

   ND 
0.29 

0.18 
1.8 
1.5 

<0.11 
3.1 

9/1 
8/1 
9/8 
7/3 

11/6 

0.25 
0.25 
0.51 
0.35 
0.77 

2.5 
2.2 
1.8 
2.1 
4.9 

9/8   
8/2   
9/8   
7/5   

11/7 

4.1 
1.5 
5.4 
5.1 
3.2 

3.0 
2.8 

2 
2.6 
3.9 

9/2 
8/4 
9/8 
7/6 

11/6 

0.13 
0.16 
0.43 
0.26 
0.28 

4.5 
2.4 
2.3 

2.40 
3.4 

9/0 
8/0 
9/2 
7/2 

11/3 

  ND 
ND 

0.17 
0.21 
0.34 

<0.14  
<0.14  

1.3 
1.8 
3.4 

Abbreviations:  ACN=acenaphtlene; ACY=acenaphthylene; ANT=anthracene; BAP=benzo(a)pyrene; BBF=benzo(b)fluoranthene; BEP=benzo(e)pyrene; CHR=chrysene; FLA=fluoranthene; FLE=fluorene; 
GM=geometric mean; Max.=maximum concentration for a sample set; NAP=naphthalene; ND=not detected (below the practical quantitation limit); PHN=phenanthrene; PYR=pyrene.
* These personal breathing-zone samples were analyzed using high-performance liquid chromatography with an ultraviolet/fluorescence detector. We have included these data for completeness; however, because of 
the asphalt fume matrix and the analytical technique used to evaluate the PAHs, the PAH identifications and the concentration data are considered to be unreliable. See section 3.5.3 for more information.
†PAHs with 2–3 rings.‡PAHs with 4–rings.§Total number of samples analyzed per industry category, followed by the number of samples above the practical quantitation limit (defined as the upper confidence limit). 
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manufacturing  plants, roofing application sites, 
and paving sites) were evaluated by Exxon Bio-
medical Sciences [Exxon 1997].  Gamble et al. 
[1999] have published a summary of these data. 
Personal samples were collected across two 
work days for total and respirable particulates 
and the benzene-soluble fraction of total par-
ticulates. Samples were also collected for VOCs, 
nitrous oxide, hydrogen sulfide, sulfur dioxide, 
and ozone.  The health outcomes measured in-
cluded changes in lung function between shifts 
and the administration of a questionnaire on 
symptoms (see section 5.1.3). 

Full-shift personal-breathing-zone concentra-
tions ranged up to 6.2 mg/m3; respirable par-
ticulates up to 1.4 mg/m3;  benzene solubles up 
to 1.3 mg/m3; and VOCs up to 20 mg/m3 . 
Table 4–8 summarizes the geometric means and 
maximum exposures to total particulates, re-
spirable particulates, benzene-soluble par-
ticulates, and VOCs by industry. Concentrations 
of nitrous oxide, hydrogen sulfide, and sulfur di-
oxide were typically near or below detection 
limits of the analytical methods used. Ozone 
concentrations were below 100 parts per billion. 

4.2.5  Occupational Dermal Exposures 

Dermal exposure to asphalt fumes has been ex-
amined using skin wipes, which represent the 
potential contribution of  dermal exposure to total 
body burden. Wolff et al. [1989] collected 10 skin-
wipe and nine personal-breathing-zone samples 

from 10 roofers who had removed an old coal-tar-
pitch  roof and replaced it with an asphalt roof. 
PAHs were detected in samples from the breathing 
zones of employees involved with applying asphalt 
on two separate  days (5.8 and 22 µg/m3, mean) 
and removing coal-tar pitch (9.6 and  23 µg/m3 , 
mean). Because NIOSH Sampling and Analytical 
Method No. 5506 was used, the PAH identifica-
tions and the concentration data  are considered to 
be unreliable; however, these data are included for 
completeness. PAH residues per square centimeter 
of skin were higher in postshift samples (6.1 to 31 
nanograms per square centimeter [ng/cm2]) than in 
preshift samples (0.44 to 2.2 ng/cm2). Eight of nine 
cases showed a significant correlation (r=0.97) be-
tween PAHs found in personal air samples and in 
postshift skin wipe residues. However, employees 
monitored during the entire roofing application 
were potentially exposed to PAHs during both the  
removal of the old coal-tar-pitch roof and the 
application of hot asphalt for the new roof. 

One-hundred thirty-one postshift dermal wipe 
samples were collected from  workers at  refin-
eries, hot-mix facilities, paving sites, roofing 
manufacturing plants, and roofing sites and 
analyzed for PAHs in an exposure assessment 
study sponsored by the Asphalt Institute 
[Hicks 1995]. These samples were obtained by 
wiping the foreheads or backs of hands  of 
selected workers with premoistened smear 
tabs and then analyzing the wipes for the PAH 
species listed in Table 4–9. 

Table 4–8. Geometric mean of personal exposures by industry, mg/m3 (adapted from Exxon 1997) 

HMA Asphalt Roofing Roofing
Substance  manufacturing distribution manufacturing application HMA paving 

No. of samples 20 47 77 60 80 
Total particulates 0.45 (1.3) 0.19 (2.5) 0.60 (6.2) 0.34 (2.7) 0.33 (1.7) 
Respirable particulates 0.10 (0.60) 0.06 (0.16) 0.08 (0.56) 0.14 (1.4) 0.1 (1.1) 
Benzene-soluble 0.06 (0.14) 0.05 (1.3) 0.08 (1.3) 0.12 (1.2) 0.09 (0.65) 
   particulates 
Total volatile organic 1.1 (6.3) 1.6 (20) 0.70 (8.7) 0.30 (6.7) 0.38 (7.7) 
   compounds 

HMA=hot-mix asphalt.
NOTE:  Number in parentheses indicates maximum concentrations for sample set. 
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Table 4–9. PAH species analyzed
from 131 skin wipe samples
(adapted from Hicks 1995) 

Acenaphthene 
Anthracene 
Benz(a) anthracene 

 Benzo(a)pyrenew
Benzo(b)fluoranthene 
Benzo(e)pyrene 
Benzo(ghi)perylene 
Benzo(k)fluoranthene 

 Chrysenew
 Dibenz(a,h)anthracenew

Fluoranthene 
Fluorene 
Indo(1,2,3-cd)pyrene 
Naphthalene 

 Phenanthrenew
 Pyrenew

wAll samples were analyzed for these PAH species; 20% of these samples
were also analyzed for the remaining PAHs. 

   NOTE: These skin wipe samples were analyzed using HPLC fluorescence.
 We have included these data for completeness; however,  because of the

asphalt fume matrix and the analytical technique used to evaluate the PAHs,
 the PAH identifications and the concentration data are considered to be 

unreliable. See section 3.5.3 for more information. 

 exposed road pavers and 16 controls to evaluate 
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The PAH concentrations determined from these 
postshift samples ranged from 2.2 to 520 ng/cm2 . 
Employees in paving operations produced the 
largest number of PAHs detected (12),  while 
refinery and roofing  installation workers had the 
fewest (2). Naphthalene was detected at all sites. 
Table 4–10 shows the six PAHs (of the
17 PAHs analyzed within this sample set) that 
were above the detection limit. 

NIOSH investigators have collected  preshift
and postshift skin wipe samples during paving 
operations at three separate locations
[Zey 1992a,b,c]. The samples were analyzed as 
described in Wolff et al. [1989]. No  PAHs were 
detected in any of the skin wipe samples, which 
may have been because of low concentrations of 
asphalt fumes during paving operations and 
because the PAH concentrations were below the 
detection limit of the analytical method. 

In  Zhou [1997], pre-and postshift hand wipes were 
collected from a group of 17 asphalt-

 

 

 

dermal PAH exposure.  These hand-wipe samples 
were analyzed by HPLC fluorescence for the 
following nine PAHs: anthracene, fluoranthene, 
pyrene, benzo(b)fluoranthene, benzo 
(k)fluoranthene, dibenz(a,h)anthracene, benz(a) 
anthracene, chrysene, and B(a)P.  Zhou reported 
that among the group exposed to asphalt, total 
PAH, carcinogenic PAH,  and pyrene concen­
trations increased when pre- and postshift hand-
wipe samples were compared (Table 4–11.) 

4.2.6   Summary 

Based on results of studies of open-air paving 
sites, refineries, asphalt distribution terminals, and 
hot-mix asphalt plants, mean personal airborne 
exposures to asphalt fumes were generally below 
1.0 mg/m3 for total particulates and 0.3 mg/m3 for 
benzene solubles, calculated as a full-shift  TWA 
(Table 4–12). Full-shift TWA personal exposures 
measured during some activities, such as under­
ground paving, roofing  manufacturing, and roof­
ing application, however, were higher, ranging up 
to 1.6 mg/m3 for total particulates and up to 0.76 
mg/m3 for benzene solubles. 

While  PAH data were included for completeness, 
the results are not  provided in this summary be­
cause PAH identifications and concentration data 
are considered to be unreliable.  See section 3.5.3 
for more information. 

4.3 Biomarkers 

In  addition to measures of ambient exposures to 
occupational chemicals, various studies have used 
readily  accessible body fluids and/or physiological 
functions as biomarkers for exposure to asphalt 
fumes. Urinary thioether excretion, glucaric acid 
metabolites in urine, detection of mutagens in 
urine, sister chromatid exchange and primary DNA 
damage  in lymphocytes, urinary 1-hydroxypyrene, 
and DNA or protein adducts have been described 
as  indicators of exposure to or effects of asphalt 
fumes. 
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Table 4–10.  Skin wipe results for PAHs, ng/cm2 (adapted from Hicks 1995) 

No. of 
Type of industry samples CHR DBA FLA  NAP  IDP   PHN 

Refineries/terminals 26 ND (<3.3) ND (<0.35) ND (<3.3) 5.5-290 ND (<4.5) ND (<2.2) 
HMA facilities 25 ND (<3.3) ND (<0.35) ND (<3.3)  390w  19w  3.2w
Paving operations 30  6.2w <350  4.7w  430w  320w <2.2-13 
Roofing manufacturers 29 ND (<3.3) ND (<0.35) ND (<3.3) <5.5-160 <4.5-25  2.4w
Roofing contractors 21 ND (<3.3) ND (<0.35) ND (<3.3) 510-520 ND (<4.5) ND (<2.2) 

Abbreviations:  CHR=chrysene; DBA=dibenz(a,h)anthracene; FLA=fluoranthene; HMA=hot-mix asphalt; IDP=indol(1,2,3-cd) pyrene; NAP=naphthalene; ND=not 
detected; PHN=phenanthrene. 
wSingle sample revealed detectable results. 
NOTE:  Numbers in parentheses indicate minimum detectable concentrations. 
NOTE: These skin wipe samples were analyzed using HPLC fluorescence.  We have included these data for completeness; however, because of the asphalt fume   
matrix and the analytical technique used to evaluate the PAHs, the PAH identifications and the concentration data are considered to be unreliable. See section 3.5.3      
for more information. 

Table 4–11. Postshift skin wipe results, ng/cm2 (adapted from Zhou 1997) 

Employee group Total PAH wwwwCarcinogenic PAH         Pyrene 

Postshift  0.63 to 6.9        0.067 to 1.4 0.25 to 5.5 
Preshift  0.10 to 3.3        0.014 to 0.86 ND (<0.37) to 0.73  

ND=not detected (below the limit of detection). 
wCarcinogenic PAH was calculated by summing benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, benz(a)anthracene, chrysene, and 
benzo(a)pyrene. 
NOTE:  These skin wipe samples were analyzed using HPLC fluorescence.  We have included these data for completeness; however, there is concern about the use       
of this analytical method for evaluating individual PAHs.  See chapter 3.5.3 for more information. 

4.3.1 Urinary Thioethers 

Urinary thioethers have been proposed as potential 
biomarkers of internal exposure to electrophilic 
compounds [Van Doorn et al. 1981]. The 
glutathione-S-transferase (GST) enzyme  system 
facilitates the conjugation of glutathione
with electrophilic agents. This conjugation step 
usually results in detoxification of the agent and 
enhances its elimination in bile or urine. In addition 
to xenobiotic agents, numerous endobiotic ma-
terials are also conjugated to  glutathione by GST. 
When compounds are conjugated with glutathione, 
mercapturic acids and other thioethers appear in the 
urine as nonspecific indicators of exposure to 
electrophilic agents. 

Numerous researchers have attempted to correlate 
asphalt exposure (both road paving and roofing 
operations) to increased urinary thioether

 

 

excretion [Lafuente and Mallol 1987; Burgaz et al. 
1988, 1992; Pasquini et al. 1989; Hatjian et al. 
1995a, 1997]. These efforts have been unsucces-
sful. Even in limited cases where potential cor-
relations may have existed, values were within 
normal human ranges. 

4.3.2 Urinary Glucaric Acid 

Glucaric acid excretion is another indirect 
measure of exposure to materials eliminated 
by conjugation. Like thioethers, many endo-
biotic agents are conjugated with glucuronic 
acid for transport and elimination by orga-
nisms. In theory, increased exposure to agents 
that are  made less toxic via glucuronidation 
should result in increased elimination that 
could be estimated by glucaric acid excretion. 
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Table 4–12. Summary of full-shift personal-breathing-zone samples
for total particulates and benzene-soluble particulates, mg/m3 

Benzene-soluble 
Total particulates particulates 

No. of No. of sites Geometric Geometric 
Studies samples sampled mean Maximum      mean      Maximum 

Open-air paving: 
Exxon [1997] 80 4 0.33 1.7 0.09 0.65 

 Norseth et al. [1991] 51 10    NC 0.28w 0.88 
Hicks [1995] 37 6 0.37 0.85 0.24 4.4 
NIOSH/FHWA - MI 22 1 0.16 1.2    NC 
NIOSH/FHWA - CA1 15 2  0.3 1.3 NC   
NIOSH/FHWA - FL 18 1 0.075 0.17    NC 
NIOSH/FHWA - IN 14 1 0.041 0.1    NC 
NIOSH/FHWA - AZ 14 1 0.2 1.0 0.11 0.82 
NIOSH/FHWA - CA2 16 2 0.48 1.0 0.12 0.46 
NIOSH/FHWA - MA 14 2 0.15 0.52 0.073 0.4 

Underground paving: 
Norseth et al. [1991] 20 4   NC 0.56w 1.3 
Sylvain and Miller [1996] 9 1 1.6  2.2 0.76  1.2 

Roofing application: 
Hicks [1995] 38 6 1.4 2.5 0.25 2.4 
Exxon [1997] 60 4 0.34 2.7 0.12 1.2 

 Roofing manufacturing: 
Hicks [1995] 34 6 1.4 13 0.27 3.7 
Exxon [1997] 77 3 0.6 6.2 0.08 1.3 

Refineries/asphalt distribution terminals: 
Hicks [1995] 44 7 0.18 14 0.16 13 
Exxon [1997] 47 3 0.19 2.5 0.05 1.3 

Hot-mix asphalt plants: 
Hicks [1995] 33 6 0.78 15 0.15 1.7 
Exxon [1997] 20 2 0.45 1.3 0.06 0.14 

NC=not collected. 
wSample results were reported as “asphalt fume” and were the carbon disulfide extractable fraction of total particulates. 
NOTE:  Maximum=maximum concentrations for sample set. 
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Pasquini et al. [1989] and Hatjian et al. [1995a, 
1997] measured D-glucaric acid in workers 
exposed to asphalt  fumes. They reported no 
differences in concentrations of urinary D-
glucaric acid in exposed workers compared to 
unexposed workers. 

4.3.3 Mutagenic Activity in Urine 

Mutagens excreted in the urine are thought to 
be indicative of exposure to mutagenic agents. 
The presence of mutagens excreted in urine of 
asphalt-exposed workers involved in road 
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paving was examined by Pasquini et al.
[1989]. Results were based on the Ames
Salmonella mutagenicity assay with TA98
strain and metabolic activation by rat S9.  In
nonsmoking individuals, asphalt-exposed
workers had a significant increase in mu-
tagenic activity in urine when compared to
unexposed workers. However, among smok-
ers, there was no significant difference in mu-
tagenic activity in urine between exposed and
unexposed workers, hence Pasquini et al.
could not attribute this activity to asphalt
exposure with confidence. 

 
 
 
 
 

 

 
 
 

4.3.4  Sister Chromatid Exchange 

Sister chromatid exchange (SCE) is a sen-
sitive, indirect measure of genetic damage. 
However, SCE provides no information as to 
the identity of the genotoxic agent. SCE in 
white blood cells has been used as a bio-
marker to estimate genotoxicity of asphalt 
exposure. Hatjian et al. [1995b]  reported SCE 
frequencies for a combined group of road 
pavers and roofers and concluded that the 
mean SCE frequency was increased (P<0.05) 
in the paver-roofer  group compared to un-
exposed office workers. However, these mean 
SCE frequency levels did not differ from those 
of a group of manual workers with no asphalt 
exposure. The office workers were all
nonsmokers, while other groups included 20% 
or fewer smokers. 

In a second report, Hatjian et al. [1995a, 1997] 
combined individuals from the first study 
[Hatjian et  al. 1995b] with new groups of 
workers. They  were divided into four occupa-
tional groups: office workers, manual laborers, 
two groups of road pavers, and two groups of 
roofers. One group of pavers and both groups 
of roofers had significantly higher SCE 
frequencies than either manual laborers or 
office workers. 

 

4.3.5 Urinary 1-Hydroxypyrene 

Urinary 1-hydroxypyrene is often used as a 
biomarker of exposure to pyrene and, by ex-
trapolation, to PAHs from any source 
[Lauwerys and Hoet 1993]. Table 4–13 
summarizes the reported use of urinary 
1-hydroxypyrene as a biomarker of exposure 
to asphalt and asphalt fumes. The logic behind 
this use is that asphalt and asphalt  fumes are 
complex mixtures containing PAHs, including 
pyrene. Pyrene in exposed humans is 
metabolized to 1-hydroxypyrene and excreted 
in urine, mainly as glucuronide. For biological 
monitoring, postshift urine specimens are col-
lected and analyzed; the analytical methods 
call for hydrolysis of glucuronide and other 
conjugates of 1-hydroxypyrene before the 
liberated 1-hydroxypyrene is quantified. The 
concentration of 1-hydroxypyrene frequently 
is normalized to the concentration of creat-
inine to correct for urine dilution. 

The data in Table 4–13 are grouped by oc-
cupation  and, within the road paver group, by 
decreasing mean level of urinary 1-hydroxy-
pyrene. The ranges of concentrations found for 
the occupationally exposed and reference popu-
lations overlapped, and in many cases, the 
differences between mean concentrations for the 
two populations were not statistically significant. 
This result most likely reflects the contributions 
by nonoccupational exposures to PAH, such as 
ambient air pollution, tobacco smoke, and fried, 
roasted, and charbroiled food. The influence of 
nonoccupational exposures is  demonstrated by 
mean urinary 1-hydroxypyrene concentrations in 
the populations of road pavers, which varied over 
60-fold and overlapped the 50-fold range of mean 
concentrations of the reference populations. The 
data in Table 4–13 are more easily compared after 
nonoccupational exposures are adjusted by 
dividing the means of the exposed populations by 
the means of the reference populations. For road 
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Table 4–13. Urinary 1-hydroxypyrene in workers exposed to asphalt 
or asphalt fumes and in reference populations 

 Urinary 1-hydroxypyrene
( mol/mol creatinine) Ratio of 

 Reference  exposed to 
Occupationally  Occupationally Nonoccupationally  nonoccupationally  nonexposed 
exposed population  exposed  exposed exposed population population†    References 

Road pavers: 
P1, 0.28 :g/m3 PAH‡  4.2 (?? - 14)§  0.9 (?? - 3.2)§  Office workers, 3.7 Hatjian et

 < 0.07 :g/m3 PAH‡  al.1995a,b,
P2, 0.22 :g/m3 PAH  2.6 (?? - 6.9)  1.4 (?? - 4.9) Manual workers, 2.7  1997 

wwww

 0.07 :g/m3 PAH 
Road pavers  0.61  0.28 (?? - 1.4)§ University staff and 2.2 Burgaz et

 (0.16 - 1.8)ww  students  al.1992 
Road pavers (asphalt­  0.6  0.26 (0.02 - 0.66)†† Nonsmokers  2.2 Jongeneelen
only group)  0.28 (0.09 - 1.31) Smokers  et al. 1988 

Road pavers   0.19‡‡  <0.08‡‡ Paving site preparers 3.3 Zhou 1997 
 (<0.12 - 1.4)  (<0.08 - 1.4) 

Road pavers, all non­  0.07www  0.04www Construction workers, 2.3 Levin et al.
smokers, < 1 :g/m3  0.02  nonsmokers  1995 

::::

 PAH§§ Office workers, non­
smokers 

Roofers: 
R2, 0.76 :g/m3 PAH‡  2.4 (?? - 6.9)§  0.9 (?? - 3.2)§ Office workers, 2.7 Hatjian et

     < 0.07 :g/m3 PAH‡  al. 1995a,b,
R1, 0.11 :g/m3 PAH 1.5 (?? - 4.4) 1.4 (?? - 4.9) Manual workers, 1.3  1997 

 0.07 :g/m3 PAH 
Asphalt road-tanker  0.22  0.12 Loaders not exposed 1.8 Boogaard and
 loaders  (0.05 - 0.41) (0.10 - 0.21)†††  for 2-3 days  van Sittert

 1994,
 1995‡‡‡ 

Asphalt production  0.17 (< 0.05  0.12 Workers not exposed 1.4 Boogaard and
 - 0.72) (<0.05 - 0.67)†††  for at least 1 week  van Sittert

 1995‡‡‡ 

wData are reported as mean (range) unless otherwise indicated and are for conjugated plus free 1-hydroxypyrene in postshift urine specimens. 
†When there are two reference populations, average of the two was divided into the exposed population. 
‡Average total concentration of eight 3-5-ring PAH in personal air samples. 
§Upper end of range computed as mean plus 2 times standard deviation. 
wwRange from Table 4 of Boogaard and van Sittert [1994]. 
††Median and 90% confidence interval. 
‡‡Median. “<” data based on lowest reported measurement for group. 

   §§Average total concentration of seven 3-5-ring PAHs in personal air samples as determined by a method using HPLC fluorescence [Andersson et 
al. 1983]. 

 wwwMedian for data converted from nanograms per milliliter using conversion suggested by authors (1 µmol/mol creatinine . 3 ng/mL). 
†††Data converted from micrograms per gram creatinine. 
‡‡‡Asphalt called bitumen in referenced report. 
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pavers, these ratios were 2.2 to 3.7; for roofers, 
1.3 and 2.7; and for workers with asphalt, 1.4 and 
1.8. In comparison, road pavers working with 
surfacingmaterial containing a mixture of asphalt 

and coal tar had mean concentrations  3.3 to 12 
times the mean for the reference population 
[Jongeneelen et al. 1988]. 
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These  observations suggest that the utility of 
urinary 1-hydroxypyrene as a biomarker of ex-
posure to asphalt and asphalt fumes is limited. 
This biomarker may prove useful for revealing 
relatively high exposures to asphalt and for 
demonstrating reduction of exposures resulting 
from implementation of engineering controls 
and improved work practices. However, there 
are several weaknesses in the use of 
1-hydroxypyrene as an indicator of PAH expo-
sure. For instance, nonoccupational exposures to 
PAH may complicate determination of the con-
tributions of low-level occupational exposures. 
Moreover, in the case of exposure to fumes, the 
fraction of pyrene in the fumes will vary with 
the concentration of pyrene in  the asphalt and 
the temperature of the bulk asphalt, both fac-
tors that decrease how accurately urinary 
1-hydroxypyrene represents overall exposure. 

The proportional relationships between pyrene 
and other PAHs are changed also  by the dif-
ferences  between the rates of skin absorption 
for pyrene  and other PAHs. Such differences 
were demonstrated in an animal model by Van 
Rooij et al. [1995], who found that B(a)P and 
other PAHs of similar size or larger were 
absorbed more slowly than pyrene. 

4.3.6  DNA Adducts 

One of the primary hypotheses  of chemica
carcinogenesis is that the interaction betwee
specific chemicals (or their metabolites) an
DNA can result in damage to DNA that ma
lead to  neoplastic cells or cancer [Randerath e
al. 1983; Slaga 1984]. The chemically modi
fied DNA is referred to as adducted DNA o
more simply, DNA adducts. Reactive chem
icals may also bind to cellular proteins, thu
forming protein adducts. DNA and protei
adducts in readily accessible tissues have bee
used as biomarkers of biological effects i
workers exposed to asphalt. 

l 
n 
d 
y 
t 
-
r 
-
s 
n 
n 
n 

Herbert et al. [1990] used the 32P postlabeling 
methodology to examine DNA adducts in the 
white blood cells of 12  roofers with asphalt 
exposure and 12 unexposed individuals 
matched for age, sex, and smoking status. 
They also performed tests for PAH on 
personal-breathing-zone samples and skin 
wipes using HPLC fluorescence (NIOSH 
Method 5506). Eighty-three percent  of the 
roofers, compared to 17% of the unexposed 
individuals, had detectable concentrations of 
aromatic DNA adducts. DNA-adduct con-
centrations were not correlated with PAH 
content of personal-breathing-zone samples, 
but were positively associated with postshift 
skin concentrations of PAHs. The contribution 
of exposure to PAH from removing an old 
pitch roof (type of  pitch not specified) could 
not be separated from exposures while ap-
plying a  new asphalt roof. It must also be 
noted that in the two roofers evaluated for 
adduct type, the adducts  did not appear to be 
the  major one normally associated  with B(a)P 
exposure. These data indicate that  B(a)P is not 
the major source of DNA-adduct formation, 
but that a yet-to-be-identified compound(s) 
contributes to DNA-adduct formation. 

Lee et al. [1991]  used  an immunoassay to 
measure protein adducts in serum albumen in 
the same group  studied by Herbert et al. 
[1990] (12 roofers and 12 unexposed indi-
viduals). These researchers reported  sig-
nificantly greater borderline numbers of ad-
ducts in exposed workers compared to 
unexposed individuals (P #0.10). The anti-
body used in these studies reacts with adducts 
of B(a)P and, to different degrees, cross-reacts 
with several other PAHs. However, because 
the identity of the adducts being measured was 
unknown, this immunologic assay may not 
provide an accurate estimate of adduct con-
centrations. 
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Fuchs et al. [1996] measured primary DNA 
damage (strand breaks) and DNA adducts in 
mononuclear cells of workers exposed to as­
phalt.3 These workers included roofers (n=7), 
pavers (n=18), and asphalt painters (n=9). The 
control group (n=34) consisted of students and 
office workers. All roofers and 10 members of 
the control group smoked. The roofers studied 
had significantly greater (P<0.002) numbers 
of DNA strand breaks, and these were found 
to  increase during the work week. Because the 
type of roofing work and materials used were 
not defined, exposure to coal tar could not be 
excluded. Pavers and asphalt painters did not 
differ statistically  from controls in the in­
cidence of DNA strand breaks; however, the 
numbers of strand breaks were found to in­
crease during the work week in the group of 
pavers. DNA adducts were found in 10 of 14 
samples obtained  from pavers and asphalt 
painters, and DNA adduct concentrations were 
positively correlated with age  and years of 
exposure. Technical problems prohibited
analysis of DNA adducts in other subjects. 

Zhou [1997] measured DNA adducts  in ex­
foliated uroepithelial cells in 12 road pavers 
and 13 road construction workers who had no 
exposure to asphalt fumes. No correlation was 
found between exposure to asphalt fumes and 
DNA adducts. 

 

4.3.7  Conclusions 

Biomarker studies conducted in work­
ers exposed to asphalt are summarized in 
Table 4–14. Until a chemical component 
specific to asphalt fumes is identified, a 
biomarker specific and unique to asphalt 

3Called bitumen by these authors. 

exposure cannot be developed. Many  of the 
studies of biomarkers conducted in workers 
exposed to asphalt were designed to determine 
if exposure to PAHs had occurred [Burgaz et 
al. 1992; Hatjian et al. 1995a,b, 1997; Herbert 
et al. 1990; Lee et al. 1991; Levin et al. 1995; 
Boogaard and van Sittert 1994, 1995; Zhou 
1997]. Other studies utilized endpoints that 
were not specific to PAH exposure [Lafuente 
and Mallol 1987; Burgaz et al. 1988, 1992; 
Pasquini et al. 1989; Hatjian  et  al. 1995a,b, 
1997]. 

Exposure to potentially genotoxic compounds 
may occur during work with asphalt. Evidence 
of such exposures is indicated by— 

• The observed concentrations of mutagens 
in the urine of asphalt workers who were 
nonsmokers [Pasquini et al. 1989], 

• Observed concentrations of SCE [Hatjian 
et al. 1995a,b, 1997] and DNA adducts 
[Herbert et al. 1990] in white blood cells, 
and 

• Exposure to PAHs as detected by the 
presence of the sentinel urinary metabo­
lite, 1-hydroxypyrene [Burgaz et al. 1992; 
Levin et al. 1995; Zhou 1997]. 

However, in the studies reported, smoking, 
environmental factors, and diet frequently 
confounded study interpretations. It is difficult 
to categorize exposure based solely  on 
occupational classification, because exposures 
may have been misclassified. In  every case, 
the significance of  the relatively small dif­
ferences in biomarkers observed in exposed 
workers compared to controls was not clear. 
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Table 4–14. Summary of human biomarker studies 

References 
Worker 

population Country Biomarker 
Measurements
   of exposure     Author’s conclusions Comments 

Lafuente and
  Mallol 1987 

Burgaz et al.
 1988 

Pasquini et
  al. 1989 

Burgaz et al.
 1992 

          

4 asphalt road pav­
  ers, 2 asphalt pro­
  duction workers 

12 men in asphalt­
  mixing plant, 32
  male road pavers,
  37 office clerks 

16 male road
   pavers, 27 male
  office clerks 

39 male road pav­
  ers, 29 university
  staff and students 

Spain 

Turkey 

Italy 

Turkey 

Thioether
  excretion 

Thioether
  excretion 

Thioether and
  D-glucuronic
  acid excretion 

Urinary muta­
  genicity 

Thioether
  excretion 

Urinary
  1-hydroxypy­
  rene excretion 

Occupational
  classification 

Occupational
  classification 

Environmental
  monitoring 

Occupational
  exposure 

Thioether excretion is biphasic, increasing
  in first days of work period and  decreas­
  ing  in last days of work period. 

No significant effect on urinary thioether
  excretion attributable to bitumen expo­
  sure.  Smoking responsible for majority
  of thioether excretion.  No significant
  differences observed in thioether excre-
  tion following bitumen exposure in
  nonsmokers. 

No significant differences in thioether and
  D-glucuronic acid excretion noted be­
  tween exposed and unexposed workers,
  or between smokers and nonsmokers. 

Among nonsmokers, exposed workers had
  significantly higher urinary mutagenicity
  than unexposed workers.  Smoking is a
  major confounding factor in urinary mu­
  tagenicity determinations. 

In nonsmokers, thioether excretion signifi­
  cantly higher in exposed workers.  Effects
  of smoking stronger than effects of occu­
  pational exposure. 

Concentrations of 1-hydroxypyrene were
  significantly higher in pavers than in con­
  trols (P=0.004). The effect of  occupa­
  tional exposure on 1-hydroxypyrene
  levels was stronger than that of smoking
 ( =0.057). 

Lack of exposure data, limited
  number of subjects, and inade­
  quate study design prohibit criti­
  cal analysis of the significance
  of these results. 

Asphalt exposure caused no sig­
  nificant differences in thioether
  excretion. 

Asphalt exposure caused no sig­
  nificant differences in thioether
  excretion. 

Asphalt exposure increases urinary
  mutagenicity in nonsmokers. 

The range of values in workers
  unexposed and exposed to as­
  phalt overlap and fall within the
  range of normal human values
  [Van Doorn et al. 1981]. 

P
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Table 4–14 (Continued). Summary of human biomarker studies 

References 
Worker 

population Country Biomarker 
Measurements
   of exposure Author’s conclusions Comments 

Levin et al.
 1995 

57 road pavers and
  34 construction
  workers (all non­
  smokers) 

Sweden Urinary
  1-hydroxypy­
  rene excretion 

Breathing zone
  air sample
  measurements
  (phenanthrene,
  anthracene,
  fluoranthene,
  pyrene, benzo­
  (a)anthracene,
  chrysene, and
 B(a)P 

Pavers had higher median urinary postshift
  concentrations of 0.21 ng/mL compared
  with 0.11 ng/mL for controls (P<0.05).
  Pavers’ Monday morning urine had sig- 
  nificantly lower 1-hydroxypyrene
  (0.15 ng/mL) than on other weekday
  mornings (0.3 ng/mL). 

Since coal tar is known not to be
  used in road paving in Sweden,
  the  low concentrations of
  1-hydroxypyrene in road pavers
  compared to controls may be a 
  reflection of PAH exposure in
  road paving. 

Zhou 1997 17 road pavers, 16
  road construction
  workers 

U.S. Urinary
  1-hydroxypy­
  rene uroepi­
  thelial cell
  DNA adducts 

Breathing zone
  air samples
  and dermal
  exposure
  measurements 

Increase in urinary 1-hydroxypyrene in
  asphalt paving workers is related to PAH
  exposure during road paving.  Asphalt
  exposure may have no or only marginal
  effect on formation of DNA adducts in

Author did not control for dietary
  or other recent exposure to PAHs. 

  exfoliated uroepithelial cells under cur­
  rent U.S. asphalt formulations. 

Lee et al.
 1991 

12 roofers, 12
  without  occupa­
  tional exposure to
  PACs 

U.S. PAH-albumin
  adducts 

Breathing zone
  air sample and
  skin wipe
  measurements 

Roofers showed elevated adduct levels
  compared with the workers with no
  occupational exposure to PAH, but the
  difference was of borderline significance
 ( P<0.1). 

The antibody used in this work
  recognizes protein adducts of
  B(a)PDE-1 and a number of
  B(a)P metabolites, and cross­
  reacts with several other PAHs.
  Since adducts being measured are
  unknown, an immunologic assay
  such as this may over- or under­
  estimate actual adducts. 

Boogaard
  and van
 Sittert 1994 

4 workers involved
  in loading bitu­
  men road tankers 

Nether­
  lands 

Urinary
  1-hydroxypy­
  rene excretion 

Static and per­
  sonal air mon­
  itoring for
  15 PAHs 

Workers loading bitumen road tankers
   were found to excrete 0.43 µg
  1-hydroxypyrene/g creatinine compared
   to 121 workers with pre-exposure values
   of 0.32 µg/g creatinine (means). 

Few details, including results of air
  monitoring, provided on this lim­
  ited number of workers analyzed
  in unreferenced 1989 study. 

(Continued) 



Table 4–14 (Continued). Summary of human biomarker studies 

   References 
Worker 

population Country Biomarker 
Measurements
   of exposure     Author’s conclusions Comments 

Herbert et al.
 1990 

Fuchs et al.
 1996 

Boogaard 
  and van
 Sittert 1995 

12 roofers, 12 
  without occupa­
  tional exposure to
  PAC 

7 roofers, 18 pav­
  ers, 9 bitumen
  painters, 34 of­
  fice employees
  and students 

4 workers involved
  in loading bitu­
  men tankers, 59
  workers  involved
  in bitumen  man­
  ufacture, 121 peo­
  ple with no
  known PAC ex­
  posure from 6
  studies 

U.S. 

W. Ger­
  many 

Nether­
  lands 

DNA adducts
   in white
   blood cells 

Primary DNA
  damage
  (DNA strand
  breaks and
  cross-links) 

DNA adducts
  in peripheral
  mononuclear
  white blood
 cells 

Urinary 1-hy­
  droxypyrene
  excretion 

Breathing zone
  air sample and
  skin wipe
  measurements 

Occupational
  classification 

Occupational
  classification 

83% of 12 roofers and 17% of 12 nonroof  ­
  ers had detectable concentrations of aro­
  matic DNA adducts.  Adduct concentra­
  tions in  the roofers were not correlated
  with total PAH or benzo(a)pyrene con­
  centrations in personal air samples, but
  were correlated with postshift skin con­
  centrations.  Smoking and dietary PAH
  consumption were not associated with
  elevated adduct concentrations in roof­
  ers.  In two samples evaluated, adducts
  did not appear to be major B(a)PDE-1­
  guanine N2 adduct. 

Roofers showed significant increase in
  DNA strand breaks and significantly
  elevated levels of DNA strand breaks at
  end of work week compared to controls.
  For road pavers and bitumen painters,
  there were no significantly altered levels
  of DNA strand breaks compared to con­
  trols.  DNA adducts were analyzed in
  12 pavers and 2 bitumen painters, and
  found to be present in 10 of these work­
  ers.  Adduct concentrations were corre­
  lated with number of years of
  employment. 

Manufacture (mean 0.22 µmol/mol crea­
  tinine) and handling (0.17 µmol/mol) of
  bitumen did not cause a significant
  change in urinary excretion of 1­
  hydroxypyrene, compared to controls
  (0.16 µmol/mol creatinine). 

 The 32P postlabeling assay may be
  useful for monitoring internal ex­
  posures to complex mixtures of
  aromatic hydrocarbons.  The
  contribution of PAH exposure 
  from removal of old pitch roof
  and that from application of new
  asphalt roof is not known. 

Type of roofing work was not
  described.  Thus, it is impossible
  to evaluate if there might be a
  potential for exposure to coal-tar
  products during roofing repair. 

Details are not provided on time
  (pre- or postshift or day of work­
  ing week) for workers handling
  bitumen. 

(Continued) 



Table 4–14 (Continued). Summary of human biomarker studies 

   References 
Worker 

population Country Biomarker 
Measurements
   of exposure     Author’s conclusions Comments 

Hatjian et al.
 1995a,b,
 1997 

6 pavers, 10  roof­
  ers, 15 manual
  workers with no
  known occupa­
  tional exposure to
  PACs 

8 university staff
  (sister chromatid
  exchange anal­
  yses only) 

England Thioether and
  D-glucaric
  acid excretion 

Sister chroma­   
  tid exchange 

Urinary 1­
  hydroxypyrene
  excretion 

Breathing-zone
  air sample
  measurements 

No significant differences found in thio­
  ether and D-glucuronic acid excretion

   between exposed and unexposed workers.
  No statistically significant difference
  found between roofers/pavers and manual
  workers with no known occupational ex­
  posure to PACs.  SCE levels in both
  groups  were significantly greater than
  levels in  office workers.  Rate of increase
  in urinary 1-hydroxypyrene concentra­
  tions over the 3-day work period great­
  est for pavers, less for manual workers,
  and minimal for roofers.  Authors
  assumed this finding related to degree
  of health risk suggested by the biomarker
  and compared this observation to differ­
  ent order of risk suggested by exposures
  to 8 PAHs in workplace air.  They pro­
  posed that the difference in risk ranking
  could be due to the different routes of
  exposure represented, differences in the
  PAH composition of the fume, and
  interindividual differences in absorption
  and metabolism. 

Using multiple linear regression analysis
  of day 3 postshift urinary 1-hydroxypy­

   rene against day 1 preshift urinary
  1-hydroxypyrene and the 3-day average
  personal air concentration of 8 PAHs,
  authors found significant modest corre­
  lation for the group “pavers plus manual
  workers” (r2 =0.43, P=0.001), but not for
  group “roofers plus manual workers”
 (r 2=0.23, P=0.067). Authors concluded
  that route of exposure for roofers may
  have been mainly pulmonary. 

The range of values in workers
  unexposed and exposed to asphalt
  overlap and fall within the range
  of normal human  values
  [Van Doorn et al. 1981]. 



 

 
 

  

 

 
 

 

 

  
 

 
 

 
 

 
 

 

 

 

 

 

 

  

5 Human Health Effects
 

5.1 Acute Health Effects 

In 1977, based on a review of the available 
scientific literature, NIOSH reported that 

the acute toxic effects of exposure to asphalt 
fumes were irritation of the serous membranes 
of the conjunctivae and the mucous mem­
branes of the respiratory tract [NIOSH 1977a]. 
Subsequently, a number of noncarcinogenic 
health effects continued to be reported among 
workers exposed to asphalt fumes. These ef­
fects include eye, nose, throat, skin, and 
respiratory tissue irritation; fatigue; head­
aches; dizziness; nausea; stomach discomfort; 
and insomnia. Hansen [1991] and Maizlish et 
al. [1988] indicated that nonmalignant lung 
diseases, such as bronchitis, emphysema, and 
asthma, were also among the toxic effects of 
exposure to asphalt fumes. Following is a re­
view of the more pertinent studies concerning 
the noncarcinogenic health effects (excluding 
thermal burns) associated with exposure, 
including studies reported prior to the 1977 
NIOSH criteria document. The review is 
divided into three sections—asphalt paving 
exposures, roofing industry exposures, and 
other asphalt exposures—because these cate­
gories involve differences in both worker 
exposures and potential health effects. 

Health Effects Associated with 5.1.1 
Asphalt Exposures during Paving 

! Norseth et al. [1991] 
In a cross-sectional study performed in Nor­
way, Norseth et al. [1991] evaluated the in­
cidence of self-reported symptoms among 333 
workers exposed to asphalt and 247 controls. 
Workers were divided into three groups. 

Group I consisted of 79 asphalt pavers who 
underwent personal exposure monitoring dur­
ing 5 days of paving, group II consisted of 254 
asphalt pavers who did not undergo personal 
exposure monitoring, and group III consisted 
of 247 maintenance workers with no reported 
exposure to asphalt. Subjective symptoms for 
a 1-week period were determined by stand­
ardized questionnaires administered to all 
workers at the end of the week. Asphalt ex­
posure data, weather conditions, and traffic 
density were monitored for employees in the 
three groups. Results were calculated sep­
arately for (1) smokers and nonsmokers and 
(2) other background variables, such as age, 
number of hours worked the previous week, 
and work experience.  Analysis of reported 
symptoms was based on a symptom sum score 
that showed significantly increased frequency 
in the asphalt groups. Calculation of the symp­
tom sum score accounted for the frequency 
and number of days a symptom was reported. 

The response rates for groups I, II, and III 
were 100%, 57%, and 70%, respectively. 
Symptoms of fatigue, reduced appetite, eye 
irritation, and laryngeal-pharyngeal irritation 
were reported more frequently among workers 
exposed to asphalt fumes than among unex­
posed workers. No differences were found for 
symptoms of headache, dizziness, nausea, 
abdominal pain, disturbed sleep, skin reac­
tions, or a “smell of sweetness.” 

Asphalt-exposed workers were found to have 
a significantly higher symptom sum score than 
unexposed maintenance workers (P<0.001). 
These differences could not be explained by 
smoking, hours worked during the previous 
week, work experience, traffic density, or 
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5 HUMAN HEALTH EFFECTS 

weather conditions. In addition, asphalt 
workers in underground facilities (garages or 
tunnels) had significantly higher symptom sum 
scores than other asphalt workers (P<0.05). 
Even with underground workers excluded, the 
difference between asphalt workers and un­
exposed road maintenance workers was still 
statistically significant (P<0.001). 

Symptom sum scores correlated significantly 
with asphalt temperatures (P<0.01). The most 
marked increase in scores was recorded when 
asphalt temperatures reached 146 °C (295 °F) 
and continued to increase to 175 °C (347 °F). 
Symptom sum scores also significantly cor­
related with increasing asphalt fume concen­
tration, which were apparently measured as 
total organic compounds, but the analytical 
methods were not clearly defined. The average 
symptom sum score was 1.3 for employees 
exposed to asphalt fume concentrations 
<0.40 mg/m3 and 3.0 (P<0.05) for employees 
exposed to concentrations >0.40 mg/m3. 

Limitations and potential biases of this study 
include (1) the use of self-administered ques­
tionnaires, which may be inaccurate because of 
recall bias, (2) variations in the response rate 
among the different groups participating in the 
study (there may have been a response bias), 
and (3) lack of control for smoking in all the 
analyses, although evidence is presented that 
the unexposed group may have smoked more 
than the exposed group. 

! NIOSH-Federal Highway Administration
Interagency Agreement 

Seven health hazard evaluations (HHEs) were 
completed as part of an interagency agreement 
between NIOSH and the Federal Highway Ad­
ministration (FHWA) of the U.S. Department 
of Transportation. The evaluations were con­
ducted during open-air highway paving opera­
tions in Michigan [Hanley and Miller 1996a], 
Florida [Almaguer et al. 1996], Indiana 
[Miller and Burr 1996a], Arizona [Miller and 
Burr 1996b], Massachusetts [Miller and Burr 

1998], and two in California—in Sacramento 
[Hanley and Miller 1996b] and San Diego 
[Kinnes et al. 1996]. The purpose of the 
agreement was to evaluate occupational 
exposures and health effects among workers 
paving with crumb-rubber-modified (CRM) 
and conventional (noncrumb-rubber-contain­
ing) asphalt. Subjects for each evaluation were 
the 6 to 10 workers (“pavers”) whose various 
tasks involved direct exposure to asphalt dur­
ing paving operations. Job titles included the 
paver, screed, and roller operators; rakers; lab­
orers; and dumpmen. A control group of non-
pavers consisted of road workers (i.e., fore­
man, heavy equipment operators, traffic con­
trollers, road surveyors) employed in the same 
area who were not exposed to paving opera­
tions. Pavers were evaluated during 2 days of 
paving with asphalt containing CRM and 2 
days of paving with conventional asphalt, and 
nonpavers were evaluated during the corres­
ponding 4-day period. Because of the con­
founding of health effects associated with 
CRM asphalt, the only findings presented here 
involve pavers using conventional asphalt and 
the nonpavers over the same 2 days. 

Asphalt laydown temperatures varied some­
what from day to day and site to site. At five 
sites, temperatures ranged from 138 to 147 °C 
(280 to 296 °F). In Indiana, temperatures 
ranged from 121 to 132 °C (250 to 270 °F), 
and in Florida, temperatures ranged from 99 to 
104 °C (211 to 219 °F). Worker exposures 
were evaluated during the workshift at each 
study site and included personal-breathing­
zone and area measurements (Table 4–2). 
Each study participant received a one-time 
general health questionnaire, serial symptom 
surveys (administered up to five times per 
day), and serial peak expiratory flow rate 
(PEFR) tests at the same time as the short 
symptom surveys. PEFR testing was con­
ducted to evaluate acute changes in lung 
function. 
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Table 5–1. Number of symptoms per completed questionnaire among pavers 
and nonpavers participating in seven NIOSH paving surveys 

Arizona California 1 California 2 Florida Indiana Massachusetts Michigan 

Pavers (n=44): 
Total number of workers 
No. of smokers 
No. of symptoms reported 
No. of completed
 questionnaires 

Rateu,† 

Nonpavers (n=45): 
Total number of workers 
No. of smokers 
No. of  symptoms

     reported 
No. of completed
 questionnaires 

Rate† 

    6 
    2 
    37

60 
0.62    

    6 
    2 

    19 

55 
0.35    

        7 
        0 
         24 

58 
0.41       

       7 
       2 

 
       13 

63 
0.21       

        7 
        1 
        70 

63 
1.1        

        8 
        3 

        21 

78 
0.27       

   4 
   3
   17 

35 
0.49   

   4 
   3

 
   24 

33 
0.73   

    7 
    3 
    6 

56 
0.11    

    7 
    2 

    2 

68 
0.03    

          6 
          4 
          16 

55 
0.29          

          8 
          5 

          3 

60 
0.05          

     7 
     5 
     7 

  
49 

0.14     

     5 
     1 

 
     0 

32 
0 

uRates shown are only for periods when pavers were performing conventional asphalt paving and reflect all symptom causes. 
†Rate=number of symptoms reported divided by the number of completed questionnaires.  

5 HUMAN HEALTH EFFECTS 

Forty-four pavers and forty-five nonpavers 
completed 376 and 389 symptom question­
naires, respectively, over the course of  the 
seven surveys (Table 5–1). While the number 
of current smokers varied between pavers and 
nonpavers at individual sites, there was little 
difference in the overall percentage of current 
smokers among the groups (i.e., pavers 41%, 
nonpavers 40%). The number of symptoms re­
ported per completed questionnaire for pavers, 
as compared to nonpavers, was higher in six 
of the seven surveys.  In Florida, this finding 
was reversed, and the number of symptoms 
per completed questionnaire was higher 
among nonpavers. The number of symptoms 
for all causes at all seven sites combined was 

0.47 among pavers and 0.21 among controls. 
Pavers reported a higher number of symptoms 
per completed questionnaire for eye, nose, 
throat, and skin irritation; shortness of breath; 
and wheezing as compared to the nonpavers 
(Table 5–2). The most frequently reported symp­
toms among pavers, in descending order, were 
throat irritation, nasal irritation, eye irritation, 
and coughing. Given the choices of mild, 
moderate, and severe, over 90% of the symp­
toms reported by pavers were classified  as  mild. 

One of the 44 pavers (2%) reported symptoms 
accompanied by increased bronchial lability 
(i.e., the difference between  the minimum and 
maximum  PEFR on at least one survey day 
exceeded 20% of that day’s maximum PEFR 
[Scanlon and Hankinson 1996]). This worker 
was a former smoker with a history of 
physician-confirmed asthma that had devel­
oped after starting  work on a road crew. None 
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Table 5–2. Number of symptoms per completed questionnaire among pavers
and nonpavers participating in seven NIOSH paving surveys 

    Eye
irritation 

Nasal 
irritation 

Throat 
irritation 

Skin 
irritation Cough 

Shortness 
of breath Wheezing 

Pavers (n=44): 
No. of symptoms reported 
No. of completed question­

         naires 
Rateu,† 

Nonpavers (n=45): 
No. of symptoms reported 
No. of completed question-  

naires 
Rate† 

32 
 

376 
0.09    

10 

389 
0.03    

54 

376 
0.14    

31 

389 
0.08    

45 

376 
0.12      

15 

389 
0.04      

6 

376 
0.02    

1 

389 
0.003    

20 
  

376 
0.05   

24 

389 
0.06   

13 
 

376 
0.04    

1 

389 
0.003    

7 

376 
0.02    

0 

389 
0 

uRates shown are only for periods when pavers were performing conventional asphalt paving and reflect all symptom causes. 
†Rate=number of symptoms reported divided by the number of completed questionnaires. 

5 HUMAN HEALTH EFFECTS 

of the 45 nonpavers experienced increased 
bronchial lability on any of the survey days. 

While mean personal exposures to asphalt 
paving fumes were generally below 1 mg/m3 

total particulates calculated as a full-shift 
TWA (Table 4–2), pavers experienced in­
creased symptom rates for irritation of the 
eyes, nose, throat,  and skin; shortness of 
breath;  and wheezing compared to  unexposed 
road maintenance workers. Pavers did not 
appear to be at an increased risk for bronchial 
lability compared  to nonpavers under the 
conventional paving conditions evaluated dur­
ing these seven surveys  (i.e., outdoor paving 
with highway class pavers). 

However, these findings are inconclusive 
given the small, and possibly unrepresenta­
tive, sample groups and the lack of pre- and 
postshift spirometry with which to evaluate 
the effects of asphalt exposures on lung 
function more fully. Also, a possible re­
sponse bias stemming from differences in 
worker concerns about the safety of CRM 
versus conventional asphalt might have in­
fluenced symptom reporting. Available 
sampling technology did not permit con­
tinuous short-term, task-based sampling to 
determine if workers were experiencing peak 
exposures in association with symptoms or in 

excess of the NIOSH REL during work. 
Various exposure-response relationships con­
tinue to be analyzed. 

! Sylvain and Miller [1996]
During a NIOSH HHE,  industrial hygiene 
and medical assessments  were performed 
during a single overnight workshift on two 
separate paving crews (crew 1 and crew 2) 
working within the Third Harbor Tunnel 
(Ted Williams Tunnel) in Boston, MA 
[Sylvain and Miller 1996]. Conventional 
asphalt was applied at 154 °C (310 °F). 
Worker exposures were evaluated during the 
workshift and included personal breathing 
zone and area measurements (Table 4–4). 
Nine workers participated in the health 
assessment, which included a short general 
health and occupational history question­
naire, serial symptom surveys, and serial 
peak PEFR testing to evaluate  acute  changes 
in lung function. Participants were consid­
ered to have increased bronchial lability if 
the difference between minimum and max­
imum PEFR on at least one survey day ex­
ceeded 20% of that  day’s maximum PEFR 
[Scanlon and Hankinson 1996]. 
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5 HUMAN HEALTH EFFECTS 

The five workers on crew 1 reported a number 
of acute health symptoms in association with 
their work exposures during the survey. How­
ever, no acute health symptoms were reported 
by the four workers on crew 2. The most fre­
quently reported symptoms were eye irritation, 
coughing, nasal irritation, and shortness of 
breath. Eighty-four percent of the reported 
symptoms were rated as mild in severity given 
choices of mild, moderate, or severe. PEFR 
measurements indicated three workers (one 
from crew 1 and two from crew 2) ex­
perienced increased bronchial lability during 
the survey. Only one of the three workers with 
bronchial lability had a history of smoking. 

NIOSH investigators concluded that (1) un­
derground personal exposures (total partic­
ulates or benzene solubles) were up to 10 
times higher than those found during recent 
open-air asphalt paving evaluations, but were 
still below 2.2 mg/m3 calculated as a full-shift 
TWA (Table 4–5); (2) some workers ex­
perienced eye and nasal irritation, coughing, 
and shortness of breath in association with as­
phalt paving; and (3) under certain conditions, 
such as during indoor paving, workers with 
exposure to asphalt may be at increased risk 
for bronchial reactivity. 

Limitations and potential biases associated 
with this study are that (1) results are based on 
a very small, and possibly unrepresentative, 
sample of pavers, (2) results reflect production 
and environmental conditions specific to un­
derground paving at this site, and (3) no 
control group was included. 

5.1.2	 Health Effects Associated with 
Asphalt Exposures in the Roof-
ing Industry 

Only a few studies are available concerning 
acute health effects among workers exposed to 

asphalt fumes within the roofing industry. 
Further complicating this review is the fact 
that these studies are limited by their small 
sample sizes, lack of control groups, and the 
presence of possible confounding factors, such 
as coal tar or fiberglass. 

! Hervin and Emmett [1976] 
NIOSH researchers evaluated the health of 34 
roofers exposed to asphalt, coal-tar pitch, and 
fiberglass insulation during roofing operations 
[Hervin and Emmett 1976]. Work involved 
laying down layers of asphalt applied at 
approximately 249 °C (480 °F) and fiberglass 
insulation, and then layers of coal-tar pitch 
applied at approximately 191 to 204 °C (376 
to 399 °F), and felt. During this HHE, workers 
underwent medical interviews and limited 
physical exams that focused primarily on the 
skin and eyes. 

Twenty-three (68%) workers complained of 
skin problems (burning, irritation, blistering), 
primarily on the face and neck, that were 
exacerbated by sun exposure. Nineteen 
roofers (56%) complained of eye irritation, 
and six (18%) had evidence of conjunctivitis 
during the survey. Conjunctivitis was 
significantly correlated with coal-tar-pitch 
exposures measured as the cyclohexane-
soluble portion of total particulate con­
centrations above 0.2 mg/m3. All air 
sampling results were less than 40% of the 
recommended ACGIH TLV® for asphalt 
fumes (5 mg/m3) and fiberglass (10 mg/m3). 
For the most part, workers reported that their 
eye and skin problems were caused by 
exposures to coal-tar pitch. Aside from 
thermal burns, none of the workers described 
eye or skin problems in association with 
exposure to asphalt fumes. No information 
was provided to allow researchers to deter­
mine if problems other than those related to 
eyes and skin were occurring in 
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5 HUMAN HEALTH EFFECTS 

association with asphalt or other exposures. 
The authors concluded that there was an 
increase in acute eye and skin disorders that 
appeared to be related to coal-tar-pitch 
exposures. 

While the findings suggest that exposure to 
asphalt fumes during roofing does not cause 
appreciable skin and eye problems, the asphalt 
fume exposures were quite low and were not 
evaluated independently of other exposures, 
such as coal-tar pitch. In addition, these results 
reflect working conditions specific to this site 
and are based on a small, and possibly unrep­
resentative, sample of workers having no 
comparison group. 

! Emmett [1986] 
Emmett [1986] summarized the results from 
on-site surveys of roofing crews (which in­
cluded the study by Hervin and Emmett 
[1976]) during both installation of new roof 
and tear-off operations. Worker exposures 
during the roofing operations included coal-tar 
pitch, asphalt, and fiberglass insulation. The 
surveys involved over 50 workers and in­
cluded histories of medical complaints and 
limited physical examinations in which eyes 
and skin were emphasized. The largest num­
ber of skin and eye complaints were as­
sociated with coal-tar-pitch exposures; no 
complaints were associated with exposure to 
asphalt fumes. Findings from a survey of 15 
roofers asked to rate the environmental causes 
of their eye and skin problems suggested that 
asphalt fume exposures were not as irritating 
as other types of exposures, such as sunlight, 
summer weather, humidity, and coal-tar pitch. 
While this suggests that eye and skin problems 
among roofers are not appreciably related to 
asphalt fumes, these exposures were not 
evaluated independently of coal-tar-pitch 
exposures, nor were exposure-response com­
parisons described. In addition, no informa­
tion was given to determine if problems other 

than those related to eyes and skin were oc­
curring in association with asphalt or other 
exposures. 

! Maintz et al. [1987] 
Maintz et al. [1987] evaluated six roofers who 
had specialized in the production of asphalt 
insulating roofs and asphalt insulation of wet 
rooms for more than 20 years.  The insulation 
process involved laying down a cold coat 
(asphalt and solvent) followed by several 
layers of hot asphalt (180 to 200 /C [356 to 
392 °F]) or tar paper.  All six workers were 
diagnosed with chronic bronchitis, and five of 
the workers had a history of obstructive pul­
monary function.  Five of the six workers had 
a long-standing history (>20 years) of cig­
arette smoking.  While interesting, this report 
is of limited value with respect to the pul­
monary morbidity of asphalt fume exposure 
because of the small group size, lack of con­
trols, and the confounding factor of smoking. 

5.1.3	 Health Effects Associated with 
Asphalt Exposure among Roof-
ers and Pavers 

! Nyqvist [1978] 
Nyqvist [1978] performed a cross-sectional 
study of 231 asphalt workers (194 road pavers 
and 37 roofers) and a control group matched 
by age and smoking habits of workers 
employed in the building trades who were not 
normally exposed to smoke, dust, or gas. 
Participants filled out simple questionnaires 
concerning symptoms of bronchitis and under­
went a one-time spirometry evaluation. The 
frequency of subjective symptoms of bron­
chitis increased with increasing time of as­
phalt exposure, suggesting a dose-related 
pattern. Compared with controls, asphalt-ex­
posed workers reporting slight symptoms of 
bronchitis had increased relative risks of 0.67 
at <3 years exposure, 1.5 at 3 to 8 years, and 
5 at >8 years.  
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Workers reporting severe symptoms of bron­
chitis had increased relative risks of 0.33 at <3 
years exposure, 1.5 at 3 to 8 years, and 5 at >8 
years. Thus relative risks were significant only 
for symptomatic workers with exposures >8 
years as compared to controls. No significant 
differences in spirometric values were found 
between exposed workers and controls. While 
smoking was controlled for between groups, 
there appeared to be some correlation among 
bronchitis, smoking, and long-term asphalt 
exposures. 

The author did not provide information con­
cerning group demographics, response rates, 
and risks by occupation (i.e., pavers versus 
roofers). The use of self-administered ques­
tionnaires for identifying symptoms could 
result in inaccurate results or recall bias, and 
the reported years of asphalt exposure might 
not have accurately reflected actual exposures. 

5.1.4 Health Effects Associated with 
Asphalt Exposures in Other 
Occupations 

! Zeglio [1950]
Zeglio [1950] published observations on 22 
workers who insulated electrical cables and 
telegraph and telephone lines for a large 
Italian company. Although only asphalt was 
reportedly used in the process, the possibility 
of adulteration of the asphalt with residual 
coal-tar pitch was raised by the author. Work­
ers exposed to fumes from tanks heated to 
120 °C (248 °F) complained of coughing and 
burning in their throats and chests and fre­
quent hoarseness. Headaches and nasal dis­
charge were also reportedly associated with 
exposure. Typically, effects were reported to 
diminish rapidly after workers left work. 
However, workers with longer lengths of em­
ployment tended to experience more instances 
of chronic nasal, pharyngeal, and pulmonary 
symptoms. Among the 22 workers evaluated, 

physical examinations revealed 10 cases of 
rhinitis, 13 cases of oropharyngitis, 4 cases of 
laryngitis, and 19 cases of bronchitis. 

Limitations and potential biases of the Zeglio 
study include (1) small and possibly unrepre­
sentative sample group, (2) lack of a com­
parison group, (3) source and composition of 
the bitumens not elucidated and the potential 
for confounding exposure to coal tar, and 
(4) no measurements of worker exposures. 

! Baylor and Weaver [1968] 
Baylor and Weaver [1968] reviewed 841 
questionnaires from 462 asphalt workers and 
379 controls. The questionnaires were ob­
tained from medical personnel employed by 
seven petroleum companies that produced as­
phalt and included information on each 
worker’s medical history (including a brief 
physical examination), occupational history, 
and smoking history. No workers with less 
than 5 years of work with asphalt were in­
cluded in the survey; the average duration of 
employment for both workers and controls 
was 15.1 years. 

Results of the survey indicated no significant 
differences in cancer, lung disease, and skin 
disease between asphalt workers and controls. 
The number of cases of miscellaneous lung 
disease (such as bronchitis and asthma) were 
more frequent among asphalt workers (8.6%) 
compared to controls (4.3%), although excess 
cigarette use (20 cigarettes a day for >20 
years) was similar between asphalt workers 
(26%) and controls (24%). The vast majority 
of the cases of miscellaneous lung disease 
were for chronic bronchitis, while a few cases 
of asthma and emphysema were noted. 

Based on undefined information provided to 
them by representatives from 31 paving com­
panies, 15 state highway commissions, three 
roofing manufacturers, and six insurance 
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carriers, the authors also reported that asphalt-
exposed workers were not experiencing any 
notable adverse health effects. While this 
study is frequently cited in the literature, it is 
of limited value to the current assessment of 
health effects because of its lack of infor­
mation regarding study methods and results 
(i.e., response rates, selection of participants, 
content of questionnaires, description of ex­
posures, etc.). 

! Apol and Okawa [1977] 
A NIOSH HHE conducted in October 1976 
studied 15 workers involved in the production 
of fibrous glass asphalt roofing shingles [Apol 
and Okawa 1977]. During the period of the 
survey, workers had intermittent and variable 
exposures to mineral dust (slate granules, talc, 
sand), felt, glue, and asphalt fumes (asphalt 
heated to approximately 204 °C [399 °F]), 
depending upon job tasks. No fiberglass was 
being used at the facility during the portion of 
the survey discussed here. Participating work­
ers underwent medical interviews and limited 
physical exams. All were male and had a 
mean of 7 years employment at the plant. 

The most frequently reported problems were 
nasal irritation (47%), throat irritation (47%), 
and eye irritation (40%). One worker, a smok­
er, complained of shortness of breath; other­
wise, all the interviewed workers denied past 
or current breathing problems. Eight workers 
were noted to have apparent work-related eye 
irritation during a postshift physical exam­
ination. The authors noted that exposure 
measurements indicated fairly high worker 
exposures to asphalt fumes and dust during 
the workshift (one of the 19 asphalt fume 
samples and seven of the 35 total dust samples 
exceeded 5.0 mg/m3 of total particulates). 

Possible limitations of the study include 
(1) small and possibly unrepresentative study 
group, (2) lack of a control group for 

comparison, and (3) lack of an evaluation of 
the relationship between specific work ex­
posures and reported health symptoms. No 
information concerning the asphalt formula­
tion was provided to help determine if other 
additives or contaminants might have been 
present. 

! Chase et al. [1994] 
Chase et al. [1994] reported complaints of 
nausea, headache, fatigue, skin rash, and eye, 
nose, and throat irritation among 27 of 200 
employees manufacturing ballast boxes and 
coils for fluorescent and high-intensity light­
ing. Symptoms were associated with exposure 
to fumes from a new asphalt formulation 
(heated to 270 °C [518 °F]) used to embed and 
insulate electronic components inside the 
ballast boxes. 

Personal-breathing-zone samples were col­
lected from six of the symptomatic workers 
and showed asphalt fume levels ranging from 
0.50 to 1.30 mg/m3 (mean of 0.83 mg/m3). 
Headspace analysis of bulk asphalt samples at 
180 °C (356 °F) identified volatile thermal 
decomposition products that included acetal­
dehyde, acetone, carbon monoxide, and car­
bonyl sulfide. At 260°C (500 °F), the head-
space analysis identified an ether, 1-butanol, 
butyl Cellosolve®, methanol, carbon disulfide, 
isobutylene, and ethylene. 

Medical assessments of the 27 symptomatic 
employees included personal interviews, 
questionnaires, physical examinations, spi­
rometry, and blood tests to screen for hepatic, 
renal, and hematologic functions. During the 
initial interviews, all 27 employees reported 
symptoms relating to the central nervous sys­
tem, ears, nose, and throat. Other symptoms 
reported were related to eyes (93%), gastro­
intestinal (89%), and respiratory (59%) 
systems, and skin (41%). Physical exam­
inations revealed conjunctivitis (11%), 
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evidence of nose bleeds (52%), throat ir­
ritation (59%), and skin rash (15%). Medical 
tests showed no significant effects on liver, 
kidneys, or lungs (spirometry results). Hema­
tologic tests showed increased erythrocyte 
sedimentation rates (48%), increased mean 
platelet volume values (P = 0.013) (41%), and 
decreased red blood cell numbers (41%) in 
comparison with the standard laboratory 
reference range. Follow-up medical assess­
ments among 15 of the 27 symptomatic em­
ployees conducted after workplace modifica­
tions had been made (i.e., installation of local 
exhaust ventilation) showed a significant de­
cline in workers’ acute symptoms and a de­
crease in mean platelet volume toward 
normal. 

While the findings described in this study are 
interesting, particularly the hematologic test­
ing, the results are difficult to interpret be­
cause of (1) the small and possibly unrep­
resentative sample group, (2) lack of a com­
parison group, and (3) confounding exposures 
to additives likely to have been present in the 
asphalt formulation. 

! Tavris et al. [1984] 
Tavris et al. [1984] investigated an outbreak 
of health problems related to volatilized as­
phalt fumes among office workers. Interviews 
were conducted with 15 of the 19 workers em­
ployed in the problem office area. The most 
frequently reported problems included head­
aches, eye irritation, sore throat, nasal con­
gestion, nausea, lightheadedness, and itchy 
skin. 

Laboratory analyses of blood specimens 
(SGOT, BUN, CBCs) of nine of the 
15 workers were normal except for a slight 
eosinophilia (4% to 5%) in five of the work­
ers. Worker symptoms were attributed to 
volatilized asphalt fumes from a malfunc­
tioning fluorescent light fixture covered with 

melted asphalt from an overheated light 
ballast. Workplace measurements for formal­
dehyde, carbon monoxide, and carbon dioxide 
were normal; however, no specific measure­
ments for asphalt fumes were made. 

Limitations of the study include a small study 
group and lack of a comparison group. Also, 
no specific measurements for asphalt fumes 
were made, and no product information or 
analysis of the asphalt was provided to help 
determine if other additives or contaminants 
might have been present. 

5.1.5	 Health Effects among Asphalt 
Workers Reported in Other 
Studies 

A 1990 review of the scientific literature 
[Fries and Knudson 1990] on asphalt fumes 
conducted by the European Asphalt Producers 
Association cited three European studies that 
have not been independently reviewed by 
NIOSH researchers. Short reviews of these 
studies from the Association report are 
presented below, without comment, to provide 
a comprehensive presentation of available 
literature regarding effects on human health 
associated with exposure to asphalt fumes. No 
exposure values or dose-response information 
were provided in these studies. 

(1)  Hasle et al. [1977] evaluated 166 Danish 
pavers. Chronic bronchitis and difficulty in 
breathing were reported in 25% and 40% of 
the paving workers, respectively. 

(2)  Schaffer et al. [1985] conducted clinical, 
x-ray, and biochemical analyses of 50 
bitumen-exposed workers and 15 controls. 
Among exposed workers, there were increased 
symptoms of bronchitis, stomach pain, and 
skin irritation, but no statistical evaluations or 
conclusions regarding health hazards were 
reported. 
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(3) Waage and Nielson [1986] reported sig­
nificantly higher prevalences of smarting eyes, 
stomach pains, and skin irritation among 
Norwegian asphalt pavers. Also, an increased 
incidence of headaches, dizziness, sleepiness, 
nausea, reduced appetite, and markedly re­
duced lung function (PEFR values) was re­
ported. 

! Exxon [1997] 
A study by Exxon Biomedical Sciences en­
titled Shift Study of Pulmonary Function and 
Symptoms in Workers Exposed to Asphalt 
Fume [Exxon 1997] was recently completed. 
In this study, 170 asphalt-exposed workers 
employed in five segments of the asphalt 
industry (hot-mix plants [n=11], terminals 
[n=24], roofing manufacturers [n=43], roofers 
[n=37], pavers [n=55]) were evaluated to 
determine whether there was an association 
between the incidence of symptoms and 
changes in pulmonary function related to 
workshift asphalt exposures. Researchers 
evaluated personal exposures over 2 days for 
each participant at each worksite. About 288 
person-days of observation were completed in 
different segments of industry as follows: pav­
ing, 82 person-days (32.4%); roofing manu­
facturing, 77 person-days (25.3%); roofing, 62 
person-days (21.8%); terminals, 47 person-
days (14.1%); and hot-mix plants, 20 person-
days (6.5%). Only small differences were 
noted in mean age, height, and weight among 
participants from the different industry seg­
ments. Smoking varied somewhat by industry 
segment, i.e., paving, 38%; roofing, 43%; 
roofing manufacturing, 44%; hot-mix asphalt 
plants, 54%; and terminals, 17%. 

As part of the health assessment, each partici­
pant received a standardized respiratory health 
questionnaire, serial symptom surveys (ad­
ministered up to five times during a work-
shift), and serial PEFR tests performed at the 
same time as the symptom surveys. Pre- and 

postshift pulmonary function tests were con­
ducted to evaluate changes in lung function 
over the workshift and included measures of 
forced expiratory volume in 1 sec, forced vital 
capacity, PEFR, and mid-expiratory flow 
volume (FEF25-75).  

All personal-breathing-zone sample results for 
total particulates and benzene-soluble par­
ticulates were measured as 8-hr TWAs (Table 
4–12). Results indicated that workers exposed 
to asphalt were typically symptomatic less 
than 5% of the time and that most symptoms 
were reported to be mild.  The most common­
ly reported problems were breathing difficulty, 
nose irritation, headache, throat irritation, and 
coughing. Various analyses of individual 
symptom responses and a developed symptom 
score (derived from a score for each of the 15 
symptoms assessed for each subject) did not 
reveal any significant associations with 
workers’ personal-breathing-zone meas­
urements of asphalt exposure. In addition, 
different analyses (i.e., logistic regression, 
nonparametric regression, factor analysis) of 
pulmonary function tests regarding workers’ 
smoking frequency, reported symptoms, de­
veloped symptom score, or measured asphalt 
exposures did not show any significant 
associations. 

Limitations and potential biases associated with 
this study include (1) a relatively small and 
possibly unrepresentative sample from each 
industry segment, (2) narrow exposure ranges 
and very little data on higher concentrations, 
which reduces researchers’ ability to detect 
significant exposure-response associations and 
levels of adverse effects (i.e., lowest observable 
adverse effect level [LOAEL] or no observable 
adverse effect level [NOAEL]), (3) possible 
lack of correlation between 8-hr average expo­
sure measurements and assessed acute health 
effects (which were evaluated every few hours; 
shortterm peak exposure measurements may be 
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necessary to determine an exposure-response 
association), and (4) lack of inclusion of an un­
exposed comparison group (although workers 
at most study sites who had lesser amounts of 
exposure were included in the exposure-
response analysis). 

5.1.6 Conclusions 

Studies concerning the acute toxic effects of ex­
posure to asphalt fumes have repeatedly found 
symptoms of irritation of the serous membranes 
of the conjunctivae (eye irritation) and the 
mucous membranes of the upper respiratory 
tract (nasal and throat irritation) among workers. 
These health effects have been best described in 
asphalt road pavers [Norseth et al. 1991; Hanley 
and Miller 1996a,b; Almaguer et al. 1996; 
Miller and Burr 1996a,b, 1998; Kinnes et al. 
1996; Sylvain and Miller 1996]. They typically 
appear to be of mild severity and transitory in 
nature [Hanley and Miller 1996a,b; Almaguer 
et al. 1996; Miller and Burr 1996a,b, 1998; 
Kinnes et al. 1996; Exxon 1997]. Similar 
symptoms have also been reported in workers 
exposed to asphalt fumes during the manu­
facture of asphalt roofing shingles [Apol and 
Okawa 1977] and fluorescent lights [Chase et 
al. 1994], cable insulating activities [Zeglio 
1950], and from a malfunctioning light fixture 
in an office [Tavris et al. 1984]. The oc­
currence of mild transitory symptoms (i.e., 
nasal and throat irritation, headaches, and 
coughing) was recently reported among 
workers employed in five segments of the 
asphalt industry (hot-mix plants, terminals, 
roofing, roofing manufacturing, and paving), 
although no significant dose-response as­
sociations were found between measured ex­
posures and symptoms [Exxon 1997]. While 
these acute health effects have been reported 
in a number of work settings, the specific 
association, if any, between symptoms and 
asphalt fume exposure has been difficult to 
establish because of a lack of research on this 

topic and various limitations of those studies 
that have been conducted. 

In addition to mucosal irritation, skin irrita­
tion, pruritus, and occasionally rashes have 
been reported [Hanley and Miller 1996a,b; Al­
maguer et al. 1996; Miller and Burr 1996a,b; 
Kinnes et al. 1996; Chase et al. 1994; Tavris 
et al. 1984; Schaffer et al. 1985; Waage and 
Nielson 1986]. Given the presence of con­
founding co-exposures (i.e., diesel fuel, coal 
tar, fiberglass) and environmental conditions 
(wind, heat and humidity, UV radiation), the 
extent to which asphalt fumes may be 
associated with these skin problems is unclear. 
If asphalt-related dermal photosensitization is 
occurring, such as seen with coal tar, it has not 
been described in the literature and so needs to 
be further investigated, as do the other 
reported skin problems. 

Symptoms of nausea, stomach pain, decreased 
appetite, headaches, and fatigue have also 
been reported among workers exposed to 
asphalt [Norseth et al 1991; Chase et al. 1994; 
Tavris et al. 1984; Schaffer et al. 1985; Waage 
and Nielson 1986; Exxon 1997], although no 
significant dose-response associations were 
found between measured exposures and symp­
toms [Exxon 1997]. These nonspecific types 
of symptoms require further investigation to 
help clarify and establish the nature of any 
causal relationships with asphalt fume ex­
posure. 

Lower respiratory tract symptoms (coughing, 
wheezing, shortness of breath) [Hanley and 
Miller 1996a,b; Almaguer et al. 1996; Miller 
and Burr 1996a,b; Kinnes et al. 1996; Sylvain 
and Miller 1996; Nyqvist 1978; Zeglio 1950] 
and changes in pulmonary function (e.g., 
bronchial lability) [Sylvain and Miller 1996; 
Waage and Nielson 1986] have been 
described among workers exposed to 
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asphalt fumes. Results from recent studies 
[Exxon 1997; Hanley and Miller 1996a,b; Al­
maguer et al. 1996; Miller and Burr 1996a,b; 
Kinnes et al. 1996] showed that some workers 
experienced lower respiratory tract problems or 
changes in pulmonary function when exposure 
to asphalt fumes was relatively low, such as 
during open-air highway paving. The NIOSH 
studies [Kinnes et al. 1996; Sylvain and Miller 
1996] indicated significant changes in pul­
monary function in one of 44 workers engaged 
in open-air asphalt paving and three of nine 
workers engaged in underground asphalt 
paving. The Exxon study [1997] found no 
significant association between pulmonary 
function measurements and asphalt exposures 
among workers employed in five segments of 
the asphalt industry. Some limited evidence 
suggests that personal health factors (i.e., pre­
existing asthma) or exposures to greater 
amounts of asphalt fumes, such as those found 
during underground paving, may increase 
workers risk for lower respiratory tract 
symptoms or changes in pulmonary function 
[Norseth et al. 1991; Sylvain and Miller 
1996]. However, the current data are insuf­
ficient to determine the relationship between 
asphalt fume exposures and these health 
effects. 

While asphalt fume concentrations associated 
with the health effects noted above have not 
been well characterized, symptoms of irri­
tation were noted during open-air paving 
among workers whose average personal 
exposures were generally below 1.0 mg/m3 

total particulates and 0.3 mg/m3 benzene- or 
carbon disulfide-soluble particulates calcu­
lated as a full-shift TWA [Norseth et al. 1991; 
Hanley and Miller 1996a,b; Almaguer et al. 
1996; Miller and Burr 1996a,b, 1998; Kinnes 
et al. 1996; Sylvain and Miller 1996; Exxon 
1997]. Presently, none of these studies have 
established a clear exposure-response relation­
ship between exposures and health effects. 
However, health effect findings from research 

on underground asphalt paving, where ex­
posures are greater, suggest that a dose-
response relationship may exist [Norseth et al. 
1991; Sylvain and Miller 1996]. Improved re­
search studies, such as those involving larger 
groups of participants and controls, evaluation 
of workers with higher levels of exposure, and 
enhanced measurement of exposures (i.e., 
real-time peak concentrations) in relation to 
health responses may be necessary to eluci­
date any exposure-response relationships, if 
present. 

In addition, bronchitis possibly related to 
chronic lower respiratory tract irritation has 
been reported among asphalt workers in 
several studies [Hansen 1991; Maizlish et al. 
1988; Maintz et al. 1987; Nyqvist 1978; 
Zeglio 1950; Baylor and Weaver 1968; Hasle 
et al. 1977]. Unfortunately, the limited data 
preclude making any determinations concern­
ing asphalt-exposure-related chronic pulmo­
nary morbidity. Until additional data have 
been gathered to clarify the health risks 
associated with occupational exposure to 
asphalt, it would be prudent to be cautious 
when working with these materials and to 
limit worker exposures to the extent feasible. 

5.2  Chronic Health Effects 

The 1977 NIOSH Criteria for a Recom-
mended Standard: Occupational Exposure to 
Asphalt Fumes contains discussions of the 
pertinent epidemiologic data published 
through 1976 on workers exposed to roofing 
or paving asphalt fumes. These earlier studies 
relating asphalt fume exposure to cancer 
mortality were judged to be inconclusive be­
cause of methodological problems, such as 
incomplete exposure data, discrepancies in 
terminology, insufficient latency periods, and 
confounding variables (e.g., smoking and 
exposure to other potential carcinogens, such 
as coal-tar products) [NIOSH 1977a]. These 
problems made it impossible to determine the 
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cause of observed excesses of cancer inci­
dence in employees exposed to asphalt fumes 
during roofing and paving operations. 

Since the release of the NIOSH criteria doc­
ument, additional epidemiologic studies have 
been conducted to evaluate the possible as­
sociation between asphalt fume exposure and 
cancer risk [Hansen 1989 a,b, 1991; Engholm 
et al. 1991; Wilson 1984; Maizlish et al. 1988; 
Bender et al. 1989; Mommsen et al. 1983; 
Risch et al. 1988; Bonassi et al. 1989]. These 
studies are reviewed below under the headings 
of “Road Workers,” “Pavers,” “Roofers,” and 
“Others” because the nature of exposures to 
asphalt fumes is different and because ex­
posures to other carcinogenic hazards may 
confound interpretations of the data. 

The results of the studies are summarized in 
Tables 5–3 through 5–8. 

5.2.1 Pavers 

5.2.1.1 Cohort Studies 

! Hansen [1989a, 1991] 
In a retrospective cancer incidence study by 
Hansen [1989a], the causes of death of 679 
male Danish mastic asphalt employees were 
compared with causes of death in the total 
Danish male population over the same period. 
Mastic asphalt, which is a mixture of fine 
sand, stone powder, finely divided limestone, 
and 12% to 17% asphalt, is used in paving and 
flooring operations in Denmark. The mix is 
emptied into buckets at worksites, and work­
ers apply the mastic asphalt by pouring out a 
given amount and leveling or smoothing it 
with a wooden trowel. 

The same workers perform both flooring and 
paving activities. To determine asphalt fume 
concentrations, the Danish National Institute 
of Occupational Health collected 35 personal­
breathing-zone samples during flooring opera­
tions, representing a third of the total work 

hours of the cohort, and two samples during 
paving operations, representing the remaining 
two-thirds of the total work hours. The 35 
samples collected during flooring operations 
ranged from 0.5 to 260 mg/m3 of asphalt fume 
condensate, with a median of 19.7 mg/m3, and 
the two samples collected during paving op­
erations were 3.5 and 4.3 mg/m3 of asphalt 
fume condensate. On the basis of these results, 
occupational exposure to asphalt fumes was 
estimated to be almost the equivalent of a con­
tinuous work-time exposure at the current 
Danish TWA standard of 5 mg/m3. 

Hansen identified the employees through files 
covering the time period 1959-1980 and fol­
lowed them through January 1, 1985. As of 
January 1, 1985, 524 employees were living, 
149 were deceased, and 6 had emigrated. The 
standardized incidence ratio (SIR) for all ma­
lignant neoplasms was 1.95 (75 cases, with a 
confidence interval [CI] of 95%=1.53-2.44). 
As a group, mastic asphalt employees 40 years 
or older when diagnosed (n=547) had sta­
tistically significant increases in SIRs for 
cancers of the lung (SIR=3.44; 95% 
CI=2.27-5.01), mouth (SIR=11.11; 95% 
CI=1.35-40.14), esophagus (SIR=6.98; 95% 
CI=1.44-20.39), and rectum (SIR=3.18; 
95% CI=1.28-6.56). Hansen divided the 
cohort into three birth-year subcohorts (1893­
1919, 1920-1929, and 1930-1960). Lung can­
cer was elevated in all three subcohorts, but 
was highest among workers born in the period 
between 1930 and 1960 (SIR=8.57, 95% 
CI=1.77-25.05). These workers were believed 
to be the least likely to have been exposed to 
coal-tar pitch. 

Histories for tobacco consumption were not 
available for the cohort. However, Hansen 
cited a 1976 survey of smoking habits of 
Danish mastic asphalt employees that found 
that 22% were nonsmokers and 78% were 
smokers. Hansen also cited another survey of 
the Danish male population done in 1982 that 
found fewer smokers among men the same 
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Table 5-3. Epidemiologic studies on asphalt exposure: cohort studies, pavers 

Author, country,
 and occupation 

No. of study 
subjects

 Dates of 
case 
ascertainme 

Type or 
site of condition 

No. of deaths
 or cases    Risk ratio

   95% CI or 
P value 

nt 

Hansen 1989a, Denmark, mastic 
asphalt workers 

679    1959-1986 All cancers 
Lung cancer 
Mouth 
Esophagus 
Rectum 

74 
27 

2 
3 
7 

SIR 1.95u 

SIR 3.44† 

SIR 11.11† 

SIR 6.98† 

SIR 3.18† 

1.53–2.44 
2.27–5.01 

1.35–40.14 
1.44–20.39 

1.28–6.56 

Hansen 1991, Denmark, mastic 
asphalt workers 

679 1959-1986 All causes 
All cancers 
Lung cancer 
Nonlung cancer 
Bronchitis, emphysema, asthma 
Liver cirrhosis 

148 
62 
25 
37 

9 
7 

SMR 1.57† 

SMR 2.29† 

SMR 2.90† 

SMR 2.00† 

SMR 2.07† 

SMR 4.67† 

1.34–1.85 
1.75–2.93 
1.88–4.29 
1.41–2.76 
0.95–3.93 
1.88–9.62 

Engholm et al. 1991, Sweden, 
pavers 

2,572    1971-1985 All causes 
All cancers 
Stomach cancer 

96 
47 

5 

SMR 0.69 
SIR 0.86 

SMR 2.01 

NR 
NR 
NR 

Stomach cancer 6 SIR 2.07 NR 
Lung cancer 
Lung cancer 

7 
8 

SMR 1.10 
SIR 1.24 

NR 
NR 

Maizlish et al. 1988, United States, 
highway maintenance workers 
(n=307) 

1,570 1970-1983 Emphysema 
Digestive system cancer 
Stomach cancer 
Skin cancer 

8 
25 
6 
2 

PMR 2.50 
PMR 1.51 
PMR 2.27 
PMR 1.22 

1.80–4.92 
0.97–2.23 
0.83–4.95 
0.12–4.93 

Prostate cancer 7 PMR 2.26 0.91–4.66 
Brain cancer 4 PMR 1.60 0.40–4.10 
Lymphopoietic cancer 8 PMR 1.15 0.50–2.26 

Bender et al. 1989, United States, 
highway maintenance workers 

4,849    1945-1984 All causes 
All cancers 
Lung cancer 
Mouth, pharyngeal cancer 
Gastrointestinal cancer 
Prostate cancer 

1,530 
274 
57 
2‡ 

3§ 

11uu  

SMR 0.9 
SMR 0.83 
SMR 0.69 

SMR 11.10 
SMR 5.82 
SMR 2.98 

0.86–0.96 
0.73–0.94 
0.52–0.90 

1.30–40.10 
1.20–17.00 

P<0.01 

___________ 
See footnotes at end of table. (Continued) 



Table 5-3 (Continued). Epidemiologic studies on asphalt exposure: cohort studies, pavers 

Author, country,
 and occupation 

No. of study 
subjects 

Dates of case 
ascertainme 

nt 

 Type or 
site of condition 

No. of deaths
 or cases    Risk ratio

   95% CI or 
  P value 

Partanen et al. 1997, Finland, 
road pavers (males only) 

Milham 1997, United States, 
road graders, pavers, machine 
operators, excavators, operat­
ing engineers 

operating engineers, only 

road graders, pavers, machine 
operators, and excavators. 

7,266    1950-1989 

Kidney, bladder, other urinary
  organ cancers 
Leukemia 

Lung cancer 

Respiratory system 
Bronchus, trachea, lung cancer (ICD 162) 

Respiratory system cancer 
 Bronchus, trachea, lung (ICD 162) 

 Bronchus, lung (ICD 162.1,  163) 
Asthma 
Lymphatic, hematopoietic cancer 
Reticulosarcoma 
Lymphosarcoma 
Hodgkins disease 
Other lymphomas 
Motor vehicle accidents 

 Bronchus, lung cancer (ICD 162.1, 163) 
Motor vehicle accidents 

7†† 

8‡‡ 

NR 
NR 

614 
558 

136 
122 
76 
5 

43 
7 
6 
4 

10 
47 

288 
249 

SMR 2.92 

SMR 4.49 

 SMR 1.5 
SIR 1.4§§ 

 PMR 1.1 
PMR 1.20 

PMR 1.21 
PMR 1.21 
PMR 1.42 
PMR 1.60 
PMR 1.42 
PMR 1.37 
PMR 1.88 
PMR 1.58 
PMR 2.00 
PMR 1.59 

PMR 1.24 
PMR 1.39 

1.17–6.02 

1.94–8.84 

1.2–1.9 
0.9–1.9 

P<0.01 
P<0.01 

P<0.05 
P<0.05 
P<0.01 

NS 
P<0.05 

NS 
NS 
NS 

P<0.05 
P<0.01 

P<0.01 
P<0.01 


 


 

 


 


 

Abbreviations:  CI=confidence interval; ICD=International Classification of Diseases; NR=not reported; NS=not statistically significant; PMR=proportionate mortality ratio; SIR=standardized incidence ratio;
SMR=standardized mortality ratio.
uAll mastic asphalt workers (n=679).
†Mastic asphalt workers aged 40-89 years (n=547). 
‡Employed >40 years.
§Urban workers with 40-49 years of latency.
xxStarted working 1955-1964.
††Workers with 40-49 years of latency. 
‡‡Employed 30-39 years. 
§§Asphalt exposure. 


 



Table 5-4. Epidemiologic studies on asphalt exposure: cohort studies, roofers 

Author, country,
 and occupation 

No. of study 
subjects 

Dates of case 
ascertainment 

Type or  
site of condition 

  No. of deaths
 or cases 

  
 Risk ratio

     95% CI or 
  P value 

Hammond et al. 1976, United States, 
Roofer, waterproofer 5,939

Menck and Henderson 1976, United States, 
Roofer 2,000

 Engholm et al. 1991, Sweden, 
Roofer 704

Hrubec et al. 1992, United States, 
Roofer, slater 52

 Pukkala 1995, Finland, 
Asphalt roofer 47,000

Milham 1997, United States, Washington State, 
Roofers and slaters 1,057

____________ 
See footnotes at end of table. 

        1960-1971 

        1968-1970 

        1971-1985 

        1954-1980 

        1971-1985 

        1950-1989 

Lung cancer 
Lung cancer 
Respiratory disease‡ 

Lung cancer 

Lung cancer 

Stomach cancer 

Lymphatic, hematopoietic
   cancer 
Leukemia 

Lung cancer 

Lung cancer 

Buccal cavity, pharynx cancer 
Respiratory cancer 
Larynx cancer 
Bronchus, trachea, lung cancer
  (ICD 162) 
Bronchus, lung cancer (ICD
 162.1, 163) 
Asthma 
Diseases of circulatory system 
Diseases of respiratory system 
Chronic bronchitis 
Bronchitis with emphysema 
Other diseases of respiratory
  system (ICD 510-527) 

 99 
 24 

71

 3 
 2 incident cases 

3 deaths 
 4 cases 
 3 cases 
 5 deaths 

1 case 

 2 deaths 
 1 case 

4 deaths 

18 cases 

9  
105 

 6 

86 

53 
7

364 
76 

 4 
4  

52 

 SMR 1.58x
SMR 2.0† 

  SMR 1.67 

SMR 8.78 

SMR 2.79 
 SIR 3.62 

OR 6.0§ 

 SMR 2.01 
 SIR 1.98 

 SMR 2.68 
SIR 2.26 

RR 3.0 

SIR 3.25 †† 

PMR 1.67 
 PMR 1.53 

PMR 2.59 

 PMR 1.44 

 PMR 1.60 
  PMR 2.86 

 PMR 0.88 
 PMR 1.20 
 PMR 1.99 
 PMR 2.16 

 PMR 1.43 

 1.29–1.94 
1.28–4.32 

 

P>0.01 

 1.30–6.75xx   

1.92–5.13 

    NS 
P<0.01 
P<0.05 

P<0.01 

P<0.01 
P<0.01 
P<0.05 

   NS 
   NS 
   NS 

P<0.05 

(Continued) 

 



Table 5-4 (Continued). Epidemiologic studies on asphalt exposure: cohort studies, roofers 

Author, country,
 and occupation 

No. of study 
subjects 

Dates of case 
ascertainment 

 Type or 
site of condition 

No. of deaths 
or cases 

   
Risk ratio

   95% CI or 
  P value 

Other diseases of lung, pleural
  cavity 
Emphysema without bronchitis 
Cirrhosis of liver with
  alcoholism 
Cirrhosis of liver without
  alcoholism 
Falls from elevation 
Psychosis 

46 
28           

17 

23 
17 

          5 

 PMR 1.49 
 PMR 1.63 

 PMR 2.84 

 PMR 1.49 
 PMR 4.00 
 PMR 2.23 

P<0.01 
P<0.01 

P<0.01 

    NS 
P<0.01 

    NS 


 


 

Abbreviations:  CI=confidence interval; ICD=International Classification of Diseases; NS=not statistically significant; OR=odds ratio; PMR=proportionate mortality ratio; RR=relative risk; SIR=standardized incidence
ratio; SMR=standardized mortality ratio.
u> 20 years since joining union.
†>40 years since joining union. 
‡Pneumonia, TB, influenza excluded. 
§Adjusted for smoking, relative risk. 
xx90% confidence interval. 
††Adjusted for age, calendar time, and soclal class. 


 



Table 5–5. Epidemiologic studies on asphalt exposure: case-control studies of roofers

Number of study 
subjects 

Number of subjects with 
lung cancer 

uuuu

Odds 
 ratio 95% CI 

Author, country, and
occupation 

 Dates of case 
ascertainment Cases Controls Cases Controls 

Zahm et al. 1989, 
      United States

  Roofer
Schoenberg et al. 1987,

 United States
 Roofer, slater

Morabia et al. 1992,
 United States

 Roofer, slater

 1980-1985 

 1967-1976 

 1980-1985 

4,431 

763 

1,793 

11,326 

900 

3,228 

6 

13 

7 

7 

8 

6 

 

2.1 

1.7 

2.1 

0.6-8.2 

0.7-4.4 

0.7-6.2 

Abbreviations:  CI=confidence interval. 
uAdjusted for smoking. 

Table 5–6. 	Epidemiologic studies of asphalt exposure: case control 
studies of bladder, pelvis, and ureter cancer

Number of study Number of exposed 
subjects subjects Author, country, 

and exposure or  Dates of case Risk 
occupations ascertainment Site Cases Controls  Cases Controls ratio 95% CI 

Mommsen et al. 1983,
   Denmark

 Petroleum or   
 asphalt  Not given Bladder 212  259 2 3  RR 2.36 NS 

Risch et al. 1988,
 Canada

  Asphalt or tar  1979-1982 Bladder 739 781 739 781  OR 1.44x 0.78- 2.74 
OR 3.11† 1.19- 9.68 
OR 2.02‡ 1.08-4.97 

Bonassi et al. 1989,
  United States

 Road menders  Not given Bladder 121 342 2 6  OR 1.40 0.27-7.28 
Jensen et al. 1988,

 Denmark
 Asphalt or tar  1979-1982 Renal 96 294 9 6  RR 5.5 1.6-19.6 

pelvis,
 ureter 

Abbreviations:  CI=confidence interval; NS=not statistically significant; OR=odds ratio; RR=relative risk. 
xEver exposed to “tar and asphalts” (n = 46). 
†Exposed during full-time job of at least 6 months 8 to 28 years before diagnosis (n = 23). 
‡Trend with duration. Odds ratio for trend at 10 years duration. 
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Table 5–7. Epidemiologic cohort study of asphalt exposure during manufacture 
of asphalt products, Denmark [Hansen 1989b]

  Number of study No. of deaths or cases 
         subjects    Type of condition  SMR      95% CI 

1,320 exposed All cancers 29  1.59x 1.06-2.28    
43,024 unexposed Digestive cancer 6 1.57 0.58-3.43    

Respiratory cancer 11 1.52 0.76-2.71    
Bladder cancer 3 2.91 0.60-8.51    
Brain cancer 3 5.00 1.03-14.61    
Ischemic heart disease 29 1.31 0.88-1.89    

Abbreviations:  CI=confidence interval; SMR=standardized mortality ratio. 

xWorkers >45 years of age between 1975-1980.
 
NOTE:  Case ascertainment was for 1970-1980.
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Table 5–8. Epidemiologic studies on asphalt exposure: case control studies 
of respiratory cancer and other diseases 

Author, country, and 
occupation 

Dates of 
case ascer­
tainment Site 

Number of 
study subjects 

Cases Controls 

Number of exposed 
subjects 

Cases Controls Odds 
ratio 95% CI 

Vineis et al. 1988, 
United States 

Roofers, asphalt 
workers 

Zahm et al. 1989,
    United States 

Pavers, surfacers, 
materials-moving equip­
ment operators. 
Roofers 

Chiazze et al. 1993, 
United States* 

Austin et al. 1987, 
United States† 

Siemiatycki 1991, 
Canada 

1974-1981 

1980-1985 

Not given 

Not given 

Not given 

Lung cancer 

Lung cancer 

Lung cancer 
Nonmalignant
   respiratory
   diseases 
Hepatocellular
   carcinoma 
Colon cancer 

2,973 

4,431 

144 

101 
80 

3,730 

3,210 

11,326 

260 

183 
146 

533‡ 

45

32
6 

111

79
7 

22 

 37 

 64 
7 

 251 

 171 
5 
‡ 

1.4 

0.9 
2.1 

0.96 

1.34 
3.2 

1.6 

0.9-2.3 

0.6-1.5 
0.6-8.2 

0.65-1.42 

0.82-2.2 
0.9-11 

1.1-2.5 

Abbreviations:  CI=confidence interval.
 
xExposed to asphalt fumes of >0.01 mg/m3

†Exposed to asphalt. 
‡Number of controls exposed not available. 

 cumulative exposure concentration.
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ages as the cohort (39% nonsmokers  and 61% 
smokers). 

Hansen estimated that differences in smoking 
rates between mastic asphalt workers and the 
general population would increase the incidence 
of lung cancer in mastic asphalt workers by 
about 20%, which would not account for the 
threefold increase in  cancer in  the mastic asphalt 
cohort. 

Hansen also considered the potential for con­
founding by urbanization. Urban areas  of  Den­
mark were reported to have higher incidences of 
cancer than rural areas. Hansen suggested that 
nearly all of the asphalt workers in her study 
were urban dwellers, as compared to only 40% 
of the referent population, and that this potential 
bias may have underestimated the expected 
cancer incidence in the study population by 35%. 
However, again, this would not  account for the 
observed threefold excess of respiratory cancer 
among workers exposed to asphalt fumes. 

In 1991, Hansen conducted a retrospective 
mortality study of the original cohort in whichthe 
study population was followed to June 10, 1986 
[Hansen 1991].  As of that date, 504 employees 
were living, 169 were deceased, and the vital 
status of six workers could not be determined. 
The overall mortality of the cohort was 
significantly elevated compared to the general 
population (standardized mortality ratio 
[SMR] =1.63;  95% CI=1.41-1.90).  
SMRs for all cancers (SMR=2.29; 95% 
CI=1.75-2.93),  lung cancer (SMR=2.90; 95% 
CI=1.88-4.29), and all nonlung cancers 
(SMR=2.00; 95% CI=1.41-2.76) were sig­
nificantly elevated among workers aged 40 to  89. 
Increased mortality was also reported for 
nonmalignant respiratory diseases (emphysema, 
bronchitis, and asthma) (SMR=2.07; 95% 
CI=0.95-3.93) and liver  cirrhosis 
(SMR=4.67; 95% CI=1.88-9.62). As she did 

in the 1989 cancer incidence study, Hansen 
considered the potentially confounding  effects of 
smoking and urbanization on lung cancer.  For 
urbanization, Hansen used an adjustment factor 
of 10% to increase the expected number of lung 
cancers, whereas in the 1989 study, she used an 
adjustment factor of 35%. The 10% adjustment 
factor appears to be based on reported 
differences in urban and rural  lung cancer 
mortality rates. For smoking, Hansen used an 
upward adjustment factor of 18% for the 
expected number of lung cancers, which  is 
similar to the 20% factor she used in her 1989 
study [Hansen 1989a]. Based on these ad­
justment factors, Hansen estimated that among 
mastic asphalt employees 40 years or older, the 
SMR for lung cancer mortality was 2.46 (95% 
CI=1.59-3.63) when adjusted for smoking, 2.64 
(95% CI=1.71-3.90) when adjusted for ur­
banization, and 2.24 (95% CI=1.45-3.30) when 
adjusted for both smoking and urbanization. 
Hansen then concluded that  the increase in lung 
cancer mortality observed in the 1991 study 
could not be explained by differences in either 
smoking habits or degree of urbanization. 

The validity  of several aspects of the design  and 
analysis of Hansen’s incidence and mortality 
studies has been debated. Wong  et al. [1992] 
critiqued both studies, and Hansen [1992] 
subsequently published a  reply. The major 
criticisms were the lack of control for con­
founding by smoking  and urbanization, possible 
confounding by coal tar, biases in the selection of 
the cohort, and inadequate data on work and 
exposure histories. The issue of confounding  by 
coal tar and other materials remains unresolved 
and limits and complicates  overall interpretation 
of the studies. 

! Engholm et al. [1991]  
The Swedish Construction Industry's Organ­
ization for Working Environment, Safety and 
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5 HUMAN HEALTH EFFECTS 

Health conducted a study of cancer mortalityand 
incidence among Swedish construction workers 
[Engholm et al. 1991]. Male workers 
(n=226,000) who received medical examinations 
between 1971 and 1979 were followed for 
mortality to 1985 and for cancer incidence until 
December 1984. National mortality and 
incidence rates were used as reference rates to 
estimate age and calendar-year-adjusted SMRs 
and SIRs. Of the original cohort, 2,572 con­
struction workers were road pavers exposed to 
asphalt. The results for 704 roofers in this cohort 
are described in section 5.2.2. The average length 
of the follow-up period for mortality was 11.5 
years, and median age during the follow-up was 
42 years. This implies that the study cohort was 
very young at the beginning of the study. The 
long latency period required for most cancers to 
become detectable would make it difficult to find 
any increased risk of occupationally related 
cancer during such a short follow-up period. 

The overall SMR for all causes of death was 
0.69 (96 cases), and the SIR for all cancer sites 
was 0.86 (47 cases). Excess mortality from and 
incidences of stomach cancer were observed 
among pavers (SMR=2.01; SIR=2.07), although 
the number of cases was small and was reported 
by the authors not to be statistically significant. 
Lung cancer among pavers was not statistically 
significantly elevated in the analyses of mortality 
(SMR=1.10; 95% CI=0.44-2.23) or incidence 
(SIR=1.24; 95% CI=0.53-2.44). A case-control 
study of lung cancer was conducted to control for 
cigarette smoking using data collected during 
examinations of the employees. Among pavers, 
there were seven incident cases of lung cancer. 
The odds ratio (OR) for lung cancer was 
approximately 2 before adjusting for smoking 
and population density and approximately3 after 
adjusting for smoking. 

Significant limitations of this study include a 
short latency period (11.5 years) and lack of 
quantitative information about exposures. 

! Maizlish et al. [1988] 
Maizlish et al. [1988] conducted a proportional 
mortality study of 27,162 employees who left 
employment with the California Department of 
Transportation between 1970 and 1983. Of the 
1,570 deaths during that time, 307 occurred 
among highway maintenance employees 
considered most likely to have been exposed to 
asphalt fumes. The authors found that these 
employees had a statistically significant increase 
in mortality from emphysema (proportional 
mortalityratio [PMR]=2.50; 95% CI=1.08-4.92) 
and a statistically nonsignificant excess of deaths 
from cancer of the lymphopoietic system, 
digestive organs, skin, stomach, prostate, and 
brain. However, the study did not find an excess 
of deaths from lung cancer. 

As the authors clearly state, proportionate 
mortality studies are inherently limited by the 
lack of independence among causes of death. 
Furthermore, no exposure measurements were 
available for asphalt fumes or other chemicals 
used by highway maintenance employees, and no 
data were available on tobacco consumption. 

! Bender et al. [1989] 
Bender et al. [1989] conducted a retrospective 
mortality study of a cohort of 4,849 men who 
each had at least 1 year of experience as a 
Minnesota highway maintenance employee 
and who had worked at least 1 day between 
January 1, 1945, and December 31, 1984. 
During the study period, 1,530 deaths oc­
curred among these 4,849 men with 96,596 
person years at risk. The male population of 
Minnesota was used as the reference group. The 
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5 HUMAN HEALTH EFFECTS 

highway maintenance employee cohort and the 
reference group were divided into urban and 
rural categories to evaluate the effects of 
differences in mortality rates between urban and 
rural populations. 

Mortality from all causes (SMR=0.91; 95% 
CI=0.86-0.96) and all cancers (overall 
SMR= 0.83; 95% CI=0.73-0.94; P<0.01) was 
statistically significantly lower than expected. 
Mortality from lung and respiratory cancers was 
also significantly less than expected (overall 
SMR=0.69; 95% CI=0.52-0.90; P<0.05) based 
on 57 deaths (82.6 were expected) regardless of 
latency or whether the employee worked in an 
urban or a rural environment. No deaths resulted 
from melanoma or soft tissue cancers (2.9 and 
1.4, respectively, were expected). Bender et al. 
attributed these decreases in mortality to the 
healthy worker effect, which may be particularly 
applicable to highway maintenance employees 
who have physically demanding jobs. 

Statistically significant excesses of cancer 
mortality rates at industrial sites were reported in 
the investigation of subgroups, particularly 
among workers employed for a long time or with 
long latency (time since first exposure). 
Statistically significant (P<0.05) excesses of 
mortality were reported for (1) cancer of the 
mouth and pharynx (SMR=11.10; 95% CI=1.30­
40.10) among men who were employed for 40 or 
more years (two deaths), (2) gastrointestinal 
cancer among urban workers with 40 to 49 years 
of latency (SMR=5.82; 95% CI=1.20-17.00) 
(three deaths), (3) prostatic cancer among 
workers who started work between 1955 and 
1964 (SMR=2.98, P<0.01), (4) cancers of the 
kidneys, bladder and other urinary organs among 
workers employed for 40 to 49 years (overall 
SMR=2.92; 95% CI=1.17-6.02), and (5) 
leukemia among workers employed for 30 to 39 
years (overall SMR=4.25; 95% CI=1.71-8.76). 
The Minnesota Department of Health [1993] 

concluded that it was unlikely that the excess 
leukemia mortality observed among the highway 
maintenance employees was job related. 

Interpretation of the study is limited by two 
considerations. (1) Employees could have been 
exposed to a variety of confounding factors. (2) 
The category of "highway maintenance employ­
ee" covers a wide range of jobs, including pav­
ing, sign painting, mowing, landscaping, and 
garage and office work. 

Analysis of personal-breathing-zone samples and 
bulk samples of asphalts, oils, and tack coats 
failed to detect pyrene, B(a)P, or chrysene in any 
of the substances in use at the time of this study. 
It is also important to note that highway 
maintenance work in Minnesota has not involved 
application of coal-tar products in highway 
repairs for more than 50 years, thus minimizing 
risks of exposure to this potential confounder. 

! Partanen et al. [1997] 
Partanen et al. [1997] recently reported findings 
from a retrospective cohort study of 9,643 
Finnish workers employed for at least 3 months 
between 1969 and 1984 by one of six 
companies involved in road paving. This study 
is a part of a larger ongoing study by the 
International Agency for Research on Cancer 
(IARC) on cancer risk in European asphalt 
workers in seven countries. The cohort was 
followed for both mortality and cancer inci­
dence through 1994. Relative to the general Fin­
nish population, a statistically significant excess 
of deaths from lung cancer (SMR=1.5; 95% 
CI=1.4-1.7) was observed in the entire cohort. 
However, the excess of lung cancer was evident 
in both workers exposed to asphalt (SMR=1.4) 
and workers not exposed to asphalt (construc­
tion, SMR=1.4; excavation, SMR=1.8). Associ­
ations were also observed for incidences of lung 
cancer and exposure to asphalt (SIR=1.4; 95% 
CI=0.9-1.9), as well as exposure to silica, diesel 
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5 HUMAN HEALTH EFFECTS 

exhaust, gasoline exhaust, and inorganic dusts. 
The authors did not attempt to separate the pos­
sible effects of asphalt, diesel exhaust, and silica. 
This report was an abstract from conference 
proceedings, and thus a thorough evaluation of 
the study is not possible at this time. 

! Milham [1997] 
Milham [1997] analyzed occupational and 
cause-of-death information on 588,090 Wash­
ington State males between 1950 and 1989 and 
88,071 females between 1974 and 1989 
compared to deaths in the general population of 
the state using an age and year-of-death 
standardized PMR program. Occupation was 
abstracted from the “Usual Occupation” field on 
each death certificate. Ninety-seven percent of 
all death certificates of males contained 
information on usual occupation. Based on 
interviews with next-of-kin, the accuracy of the 
Usual Occupation field was greater than 75%. 
Occupations reported included 7,266 deaths 
among “road graders, pavers, machine 
operators, and excavators” and 1,437 deaths 
among “operating engineers.” These two groups 
are believed to have had the greatest likelihood 
of being exposed to asphalt. 

Among workers classified as road graders, 
pavers, machine operators, and excavators, 
mortality was statistically significantly 
increased (P<0.05) for cancers of the respiratory 
system (PMR=1.17, based on 614 deaths) and 
bronchus, trachea, and lungs (PMR=1.20, based 
on 558 deaths). Mortality was also increased 
because of motor vehicle accidents (PMR=1.39, 
based on 249 deaths). 

Among individuals classified as operating 
engineers, mortality was statistically sig­
nificantly increased for cancers of the 
respiratory system (PMR=1.21, based on 136 
deaths) and bronchus, trachea, and lungs 
(PMR=1.21, based on 76 deaths). The PMRs 
for the categories of all malignancies of the 
lymphatic and hematopoietic system 

(PMR=1.42, based on 42 deaths) and other 
lymphomas (PMR=2.00, based on 10 deaths) 
were statistically significantly increased 
(P<0.05). Deaths from motor vehicle accidents 
were also significantly higher (PMR=1.59, 
based on 47 deaths). 

The results of this study are limited by the 
limitations of proportionate mortality studies, 
e.g., interdependence of cause-specific PMRs, 
inaccuracies resulting from obtaining usual 
occupations from death certificates, and lack of 
detailed information on exposures and 
confounders, particularly smoking. 

5.2.1.2 Case-Control Studies 

! Zahm et al. [1989] compiled information 
from the Missouri Cancer Registry on 4,431 
histologically confirmed lung cancer cases and 
11,326 cancer controls diagnosed in white 
males between 1980 and 1985. Occupational 
history was obtained from medical records and 
coded according to the U.S. Bureau of Census’ 
1980 Alphabetical Index of Industries and 
Occupation. Sufficient occupational data to 
perform an analysis were contained in the 
medical records of only 52% of the cases and 
45% of the controls. After adjusting the anal­
yses for age and cigarette smoking, 32 cases and 
64 controls were identified among workers 
classified as pavers, surfacers, and materials­
moving-equipment operators. The OR for 
working in these occupations was below 1.00 
(OR=0.9; 95% CI=0.6-1.5). 

5.2.2 Roofers 

5.2.2.1 Cohort Studies 

There have been several cohort mortality 
studies of roofers exposed to asphalt fumes. 
These studies share a common limitation, i.e., 
the potential for confounding because of 
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5 HUMAN HEALTH EFFECTS 

exposure to coal tar and asbestos. Coal tar is a 
well-recognized human lung carcinogen. 

! Hammond et al. [1976] 
Many studies use the “Usual Occupation” field 
from death certificates or interviews as sur­
rogates for exposure information. The earliest 
epidemiologic study was done by Hammond et 
al. in 1976 in a retrospective mortality study of 
members of the United Slate, Tile and 
Composition Roofers, Damp and Waterproof 
Workers’ Association. Local unions involved 
only in the tile and slate industries were 
excluded. Workers included were those in­
volved primarily in applying hot pitch or 
asphalt to roofs or waterproofing materials to 
basements. According to the authors, “In former 
years pitch was used more frequently than 
asphalt, but today asphalt is more commonly 
used.” Hence workers in this study were 
exposed to both asphalt and coal tar. The study 
included 5,939 active, probational, and retired 
workers who had been in the union for at least 
9 years when the studybegan on January 1, 
1960. Vital status, primarily from union life 
insurance records, was established as of 
December 31, 1970, for 97.5% of this cohort. 

Lung cancer mortality was observed to increase 
with time since a worker first joined the union (a 
surrogate for length of exposure). A statistically 
significant excess of lung cancer was observed 
among workers who had first joined the union 
more than 20 years earlier (SMR=1.58; 95% 
CI=1.29-1.94) and also among workers with 
more than 40 years of work (SMR=2.0; 95% 
CI=1.28-4.32). A statistically significant excess 
of upper respiratory cancers (buccal cavity, 
pharynx, larynx, and esophagus) was also 
reported (SMR=1.59; 95% CI=1.32-2.76). 
Although the authors suggested their findings 
might be explained by exposure to B(a)P, it is 
impossible to rule out exposure to asphalt or 

other substances, or smoking, as contributing to 
the observed excesses of respiratory cancer. 

! Menck and Henderson [1976] 
Menck and Henderson [1976] conducted an 
investigation of lung cancer mortality and in­
cidence rates in Los Angeles. A total of 2,161 
deaths and 1,777 lung cancer incidents were 
identified among white males aged 20 to 64 
during 1968 and 1970. The subjects’ last known 
occupations and industry affiliations were coded 
from death certificates or from medical records. 
Age-, industry-, and occupation-specific esti­
mates of the population at risk were derived 
from the 1970 census for Los Angeles. A statis­
tically significant excess of lung cancer 
(mortality and incidence combined) was 
observed for the occupational category of roofers 
(SMR=8.78; P<0.01). 

In addition to possible confounding by coal tar, 
this study is limited in that the analysis was 
based on the “Usual Occupation” field on the 
death certificate, which may not accurately 
reflect lifetime work histories of individuals. 
Moreover, the authors were unable to analyze 
the data by level of exposure, duration of ex­
posure, or latency. 

! Engholm et al. [1991] 
The Swedish Construction Industry's Organ­
ization for Working Environment, Safety and 
Health [Engholm et al. 1991] conducted a 
study of cancer mortality and incidence among 
Swedish construction workers (described 
earlier in section 5.2.1), who included 704 
roofers. Increased mortality and/or incidence 
were observed among roofers for cancers of 
the lung (SMR=2.79, three deaths; SIR=3.62, 
four cases) and stomach (SMR=2.01, five 
deaths; SIR=1.98, one case); lymphatic and 
hematopoietic tumors (SMR=2.68, two 
deaths); and leukemia (SIR=2.26, one case). 
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5 HUMAN HEALTH EFFECTS 

As noted, these findings were all based on a 
relatively small number of cases and are 
therefore statistically unstable. After con­
trolling for smoking, an OR of 6, based on 
three cases, was derived for lung cancer among 
roofers in a nested case-control analysis of 
incidents. 

! Hrubec et al. [1992] 
Hrubec et al. [1992] conducted a mortality 
study of approximately 300,000 veterans who 
served in the U.S. Armed Forces between 1917 
and 1940. Information on occupation, industry 
of employment, and smoking history was 
obtained from a questionnaire mailed to 
veterans in 1954 and a follow-up questionnaire 
mailed to nonrespondents in 1957. The 
284,046 respondents to this questionnaire were 
followed for vital status ascertainment as of 
1980. Poisson regression models were used to 
estimate rate ratios for each occupation and 
industry while controlling for smoking habits. 
An elevated risk of respiratory cancer was 
observed among the job category “roofers and 
slaters” (rate ratio=3.0; 90% CI=1.30-6.75). 

One strength of this study is that the analyses 
were adjusted for smoking. Weaknesses are 
that information on work histories was ob­
tained at one point in time only and that it 
was obtained from a self-administered 
questionnaire. 

! Pukkala [1995] 
Pukkala [1995] reported findings from a study 
in which the entire 1970 population of Finland 
was followed from 1971 to 1985 to track can­
cer incidence. An analysis of the relationship 
between cancer incidence and occupation was 
performed among individuals between the ages 
of 25 to 64 in 1970. The analysis controlled for 
possible confounding by social class, age, and 
calendar time; smoking was not considered in 
the analysis. The SIR for cancers of the lung, 
bronchus, and trachea among men coded as 

“asphalt roofers” in the 1970 census was 3.25 
(95% CI=1.92-5.13). 

! Milham [1997] 
In Washington State, 1,057 deaths among male 
residents classified as “roofers and slaters” 
were recorded for the years 1950 through 1989 
[Milham 1997]. For this occupational 
classification, statistically significant (P<0.01) 
PMRs were observed for cancers of the 
respiratory system (PMR=1.53, based on 105 
deaths); larynx (PMR=2.59, based on six 
deaths, P<0.05); and bronchus, trachea, and 
lungs (PMR=1.44, based on 86 deaths); as well 
as asthma (PMR=2.86, based on seven deaths); 
e m p h y s e m a  w i t h o u t  b r o n c h i t i s  
(PMR=1.63, based on 28 deaths); and cirrhosis 
o f  t h e  l i v e r  w i t h  a l c o h o l i s m  
(PMR=1.49, based on 17 deaths). Of note is 
that PMRs from these causes were elevated 
despite a significant increase in deaths from 
falls from heights (PMR=4.00, based on 17 
deaths). Not statistically significant increased 
PMRs were noted for cancers of the buccal 
cavity and pharynx (PMR=1.67, based on nine 
deaths), diseases of the respiratory system, 
chronic bronchitis with and without em­
physema, cirrhosis of the liver without 
alcoholism, and psychosis. In contrast, 
mortality from diseases of the circulatory 
system was statistically significantly decreased 
(PMR=0.88, based on 364 deaths). 

The results of this study are limited by the 
interdependence of cause-specific PMRs, the 
accuracy of the “Usual Occupation” field on 
death certificates, and lack of detailed in­
formation on exposures and confounders, 
particularly smoking. 

5.2.2.2 Case-Control Studies 

Three case-control studies examined the re­
lationship between lung cancer and occupation 
as a roofer [Zahm et al. 1989] or as a roofer 
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and slater [Schoenberg et al. 1987; Morabia et 
al. 1992]. Each of the studies included only 
histologically confirmed lung cancer cases 
among males. All studies adjusted the risk 
measures for smoking and found elevated ORs 
that were not statistically significant. Only 
Zahm et al. evaluated roofers as a separate 
occupation, while Morabia et al. and 
Schoenberg et al. analyzed roofers and slaters 
as a single occupational group. Inclusion of 
slaters in these analyses could dilute the effects 
of relationships between exposure to asphalt 
roofing products and lung cancer. 

! In the study by Zahm et al. [1989], six 
cases and seven controls were coded as roofers 
(Bureau of the Census code 595). There was a 
twofold increase in lung cancer among roofers 
that was not statistically significant (OR=2.1; 
95% CI=0.6-8.2). 

! Schoenberg et al. [1987] conducted a 
hospital-based study of 763 lung cancer cases 
and 900 controls among white males in New 
Jersey. New cases diagnosed between 
September 1980 and October 1981 and re­
ported to the New Jersey State Department of 
Health were included in the study. Oc­
cupational history was obtained by inter­
viewing the patient or the patient’s next-of-kin. 
Thirteen cases and 8 controls were identified 
as roofers or slaters. The OR was not 
statistically significant, although it was greater 
than 1 (OR=1.7; 95% CI=0.7-4.4). 

! Morabia et al. [1992] interviewed 1,793 
cases and 3,228 controls (one cancer control and 
one noncancer control per case), matched for 
age, race, geographical area, questionnaire ver­
sion, and history of smoking, from 24 hospitals 
in nine metropolitan areas in the United States 
between 1980 and 1989. Seven cases and six 
controls were identified as roofers and slaters. 
The ORs for roofers and slaters were not statis­
tically significant (OR=2.1; 95% CI=0.7-6.2). 

Neither Morabia et al. nor Schoenberg et 
al. identified the number of individuals who 
were exposed to hot asphalt roofing products. 
Indeed, it is not clear that either the cases or the 
controls had significant occupational exposure. 

5.2.3  	Meta-analysis of Asphalt
          Workers and Roofers 

! Partanen and Boffetta [1994] 
Partanen and Boffetta [1994] conducted a 
comprehensive review and meta-analysis of 20 
epidemiologic studies of asphalt workers and 
roofers. The “most relevant” relative risk (RR) 
estimates (OR, SMR or SIR) were extracted 
from the reports for the meta-analysis. The 
authors defined the most relevant RR estimates 
to be those that (1) best approximated exposure 
to asphalt, (2) were adjusted to the extent 
possible for potential confounders, and (3) used 
an appropriate induction-latency period. 
Summary RRs were estimated from the 
i n d i v i d u a l  s t u d y  f i n d i n g s  f o r  
(1) all asphalt workers and roofers, (2) road 
pavers and highway maintenance workers, 
(3) roofers, and (4) “miscellaneous or un­
specified” asphalt and bitumen workers. The 
summary RR for lung cancer was increased 
among roofers (RR=1.78; 95% CI=1.50-2.10) 
and miscellaneous or unspecified workers 
(RR=1.49; 95% CI=1.22-1.80), but not among 
pavers and highway maintenance workers 
(RR=0.9; 95% CI=0.8-1.0). Statistically sig­
nificant increased RRs were also observed for 
stomach cancer among roofers (RR=1.7; 95% 
CI=1.1-2.5) and for nonmelanotic skin cancer 
among pavers and highway maintenance 
workers (RR=2.2; 95% CI=1.2-3.7). Similar 
results for lung cancer were found when the 
analysis was restricted to studies that controlled 
for cigarette smoking. The authors appropriately 
suggest that the available studies (and hence their 
meta-analysis) were “poorly focused” to address 
the question of whether asphalt exposure is 
carcinogenic because of numerous limitations in 
the design of these studies, many of which are 
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discussed in previous sections. 

5.2.4	 Other Studies of Asphalt 
Exposure 

5.2.4.1 Cohort Studies 

! Hansen [1989b] 
In a retrospective cohort mortality study, Hansen 
[1989b] compared the mortality rates of 1,320 
Danish workers employed in the asphalt industry 
at asphalt plants, roofing felt plants, and one tar 
plant with those of 43,024 unskilled Danish 
employees employed in other industries. The 
cohort was selected from the November 9, 1970, 
Danish census conducted bythe Danish National 
Bureau of Statistics and was traced until 
November 9, 1980. There were 113 deaths 
among the 1,320 asphalt employees and 3,811 
deaths among the 43,024 unskilled employees. 

During the last 5 years of the 10-year follow-up 
study, asphalt employees aged 45 or older had a 
statistically significant SMR for all malignant 
n e o p l a s m s  ( S M R = 1 . 5 9 ;  9 5 %  
CI=1.06-2.28) and brain cancers (SMR=5.00; 
95% CI=1.03-14.61) and elevated SMRs for 
digestive cancer (SMR=1.57; 95% CI=0.58­
3.43), respiratory cancer (SMR=1.52; 
95% CI=0.76-2.71), and bladder cancer 
(SMR=2.91; 95% CI=0.60-8.51). Limitations of 
the study include lack of information about the 
length of employment in the asphalt industry and 
the extent of exposure. 

5.2.4.2 Case-Control Studies 

Three case-control studies [Mommsen et al. 
1983; Risch et al. 1988; Bonassi et al. 1989] 
examined the relationship between bladder 
cancer and a variety of occupational exposures, 
including exposures to asphalt. Broad categories 
of jobs or industries were included that were not 
specific to asphalt, limiting the use of these 
studies in assessing risks of asphalt exposures. 

! Mommsen et al. [1983] 
Mommsen et al. [1983] reported findings of a 
study of 212 bladder cancer cases (165 men and 
47 women) admitted to the Department of 
Oncology and Radiotherapy in Aarhas, Denmark. 
Information on male cases was collected from 
1977 to 1979 and on female cases from 1977 to 
1980. The 259 controls were matched for age, 
sex, geographic area, and degree of urbanization. 
Information on smoking and occupational history 
was also collected from each studyparticipant by 
questionnaire. An approximately 2½-fold 
increase in risk of bladder cancer was reported 
for occupational exposure to “petroleum or 
asphalt.” 

! Risch et al. [1988] 
Risch et al. [1988] studied 781 controls and 739 
patients with bladder cancer diagnosed between 
1979 and 1982 in Edmonton and Calgary, AB, 
and Toronto and Kingston, ON, Canada. 
Information on occupation, tobacco use, and 
other factors likely to be related to bladder 
cancer was collected during interviews. 
Histologic verification of all tumors was 
obtained. However, only 67% of the eligible 
cases and 53% of the eligible controls 
participated in the study. A statistically 
significant association (OR=3.11; 95% 
CI=1.19-9.68) was observed among workers ex­
posed to “tar and asphalts” during a full-time job 
of at least 6 months duration and at least 8 years 
of latency. 

! Bonassi et al. [1989] 
Bonassi et al. [1989] examined the relationship 
between bladder cancer and potential lifetime 
occupational exposure to PAHs in 121 cases and 
342 controls. Cases were histologically con­
firmed, and smoking history was obtained. 
Eleven occupational categories were selected on 
the basis of their potential for exposing workers 
to PAHs, and subjects were classified into these 
categories if they had worked in one for a year or 
more. A statistically nonsignificant association 
(OR=1.4; 95% CI=0.27-7.28) was observed 
between bladder cancer and employment as a 
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“road mender” based on two cases and six 
controls. 

! Jensen et al. [1988] 
Jensen et al. [1988] investigated the relationship 
between occupational exposure and incidence of 
renal pelvis and ureter cancer among Danish 
residents. Occupational history and demographic 
data were obtained by interviewing 96 cases and 
294 hospital controls; cases and controls were 
matched by age (within 5 years), hospital, and 
sex. Of the male study subjects, nine cases and 
six controls reported exposure to asphalt or tar. 
Smoking-adjusted RRs for exposure to asphalt or 
tar were statistically significantly elevated 
(RR=5.5; 95% CI=1.6-19.6). 

! Vineis et al. [1988] 
One case-control study evaluated the relationship 
between lung cancer and occupation or 
occupational exposure to well-known and 
suspected lung carcinogens. Vineis et al. [1988] 
combined 2,973 male cases and 3,210 controls 
from five studies conducted throughout the 
United States and adjusted them for age, birth 
cohort, and cigarette use. Forty-five cases and 37 
controls were classified into the category of 
“roofers and asphalt workers.” Risk of lung 
cancer for the combined group of “roofers and 
asphalt workers” was not statistically significant 
[OR=1.4; 95% CI=0.9-2.3)]. 

! Chiazze et al. [1993] 
Chiazze et al. [1993] conducted a case-control 
study of malignant and nonmalignant re­
spiratory disease in workers employed in a 
fiberglass insulation production facility. The 
maximum number available for a matched 
analysis of interview data was 144 lung cancer 
cases with 260 controls and 101 nonmalignant 
respiratory disease cases with 183 controls. 
Quantitative estimates of lifetime exposure to 
asbestos, talc, asphalt fumes, formaldehyde, 
and silica were calculated. Asphalt exposure 
was dichotomized in “never-exposed” versus 

“exposures $0.01-mg/m3" days. ORs were cal­
culated using conditional logistic regression 
adjusted for age, smoking, and occupational 
exposure to respirable fibers, asbestos, talc, 
formaldehyde, silica, and total particulates. 
Asphalt exposure was not related to either lung 
cancer (OR=0.96; 95% CI=0.65-1.4) or 
nonmalignant respiratory disease (OR=1.3; 
95% CI=0.82-2.2) for workers in the higher 
exposure group. 

! Siemiatycki [1991] 
Siemiatycki [1991] obtained occupational his­
tory and exposure information from interviews 
with 3,730 hospital-based cancer cases and 
533 population-based controls residing in the 
province of Quebec, Canada. ORs were 
calculated for 23 cancer sites adjusted for 
confounding variables, including smoking. 
Statistically significant increased ORs for any 
exposure to asphalt were observed for 
colon cancer (OR=1.6; 95% CI=1.1-2.5, based 
on 22 cases), while ORs for cancers of the 
esophagus, stomach, pancreas, lungs, prostate, 
and non-Hodgkins lymphoma were ap­
proximately 1 and not statistically significant. 

! Austin et al. [1987] 
Austin et al. [1987] conducted a hospital-based 
case-control study to examine the role of 
occupation and other factors in the etiology of 
hepatocellular carcinoma. Cases and controls 
were patients at one of five participating 
hospitals. Each case was matched to two con­
trols by age, sex, race, and study hospital. 
Occupational or recreational exposures to 26 
substances, including asphalt, were obtained 
from each of the 80 cases and 146 matched 
controls. Seven cases and five controls re­
ported exposure to asphalt for at least 3 hr/wk 
for at least 6 months at some time during their 
lives (RR=3.2; 95% CI=0.9-11). Of these cases 
and controls, one case and one control had 
worked for more than 10 years in road 
building, and one other case had worked as a 
laborer in an asphalt manufacturing company. 
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5.2.5  Conclusions 

5.2.5.1 Lung Cancer among Pavers 

Epidemiologic studies of lung cancer among 
pavers exposed to asphalt fumes have yielded 
contradictory results. That is, while some 
studies have reported an elevated risk of lung 
cancer, design limitations of these studies 
preclude drawing any strong conclusions 
[Hansen 1989a; Engholm et al. 1991; Partanen 
et al. 1997; Milham 1997]. Of particular con­
cern is the possibility of confounding from co­
exposures to coal tar and other potential lung 
carcinogens (e.g., diesel exhaust, silica, and 
asbestos) [Hansen 1989a]. Failure to control 
adequately for smoking is also an issue in 
several studies [Engholm et al. 1991; Milham 
1997]. Several studies of pavers or highway 
workers have failed to demonstrate an excess 
of lung cancer [Maizlish et al. 1988; Bender et 
al. 1989]. A meta-analysis of all these studies 
failed to find overall evidence for a lung 
cancer risk among pavers exposed to asphalt 
[Partanen and Bofetta 1994]. Hence, the 
epidemiologic evidence for an association 
between lung cancer and exposure to asphalt in 
paving is inconclusive at this time. 

5.2.5.2 Lung Cancer among Roofers 

In contrast to pavers, epidemiologic studies of 
roofers have generally demonstrated an excess 
number of lung cancer cases [Hammond et al. 
1976; Menck and Henderson 1976; Engholm 
et al. 1991; Hrubec et al. 1992; Pukkala 1995; 
Milham 1997; Zahm et al. 1989; Schoenberg 
et al. 1987; Morabia et al. 1992]. The 
metaanalysis by Partanen and Boffetta [1994] 
has also revealed an overall excess of lung 
cancer among roofers. However, it is uncertain 

to what extent these findings may be 
attributable to asphalt exposures. In the past, 
roofers have been exposed to coal tar and 
asbestos, which are known human lung car­
cinogens, as well as asphalt. Hence, while 
strong epidemiologic evidence of an as­
sociation between lung cancer and working as 
a roofer exists, it is uncertain whether asphalt 
or other substances are responsible for these 
findings. 

5.2.5.3 Cancers at Other Sites 

A few studies have reported an association be­
tween cancers at sites other than lungs and 
occupations having the potential for exposures 
to asphalt [Mommsen et al. 1983; Risch et al. 
1988; Bonassi et al. 1989; Jensen et al. 1988]. 
Of particular interest is an association reported 
in several case-control studies between bladder 
and renal cancers and occupations having 
exposures to asphalt. Isolated studies have re­
ported associations between occupations with 
asphalt exposure and cancers of the brain, 
liver, and other digestive organs [Hansen 
1989b; Austin et al. 1987; Siemiatycki 1991]. 
Interpretation of the findings of these studies is 
limited by a lack of consistency among studies 
and issues of the confounding effects of other 
substances. Furthermore, many of these find­
ings are from population-based, case-control 
studies organized by broad job classifications 
that are prone to errors in defining asphalt 
exposures [Mommsen et al. 1983; Risch et al. 
1988; Bonassi et al. 1989; Jensen et al. 1988; 
Siemiatycki 1991]. Thus, the evidence for an 
association between exposure to asphalt and 
nonrespiratory cancers is weak and requires 
further confirmation by studies with better 
control of confounding variables and better 
identification of asphalt exposures. 
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6 Experimental Studies
 

This chapter provides a review of the in 
vitro and in vivo animal studies completed 

since the publication of the NIOSH criteria 
document on asphalt fumes in 1977. Ideally, 
these studies should provide definitive data 
regarding the genotoxicity, carcinogenicity, 
and other toxic effects of asphalt-based paints 
and asphalt fumes generated during paving and 
roofing operations. Because of the difficulty in 
obtaining a sufficient quantity of paving and 
roofing asphalt fumes in the field, however, 
many of the studies reviewed used laboratory-
generated asphalt fumes. 

6.1Genotoxicity 

Since publication of the NIOSH criteria docu­
ment [1977a], genotoxic effects were de­
scribed in the following studies: National 
Toxicology Program (NTP) [NTP 1990], 
Blackburn and Kriech [in AI 1990a], Machado 
et al. [1993], Reinke and Swanson (laboratory­
generated asphalt fumes) [1993], Qian et al. 
[1996], Schoket et al. [1988a,b], Toraason et 
al. [1991], and Wey et al. [1992]. However, 
genotoxic effects were not observed by Reinke 
and Swanson in a study of fumes collected 
from a hot-mix asphalt storage tank [1993]. 

6.1.1 Mutagenic Effects 

The NTP evaluated the mutagenic potential of 
roofing asphalt fume condensate fractions and 
neat (unfractionated) asphalt fumes from the 
study by Sivak et al. [1989]. Sivak et al. heated 
Type III roofing asphalt to 316 /C (601 °F) 
to generate fume condensates and then 
separated the condensates using HPLC. Five 
fractions, designated A through E, of the 

condensates and unfractionated asphalt fumes 
were examined for mutagenic potential using 
the Ames Salmonella mutagenicity assay. The 
chemical composition of each fraction is pro­
vided in section 6.2.1. Fractions B and C and 
recombined fractions A through E were 
reported as positive, fractions A and D and the 
unfractionated fumes were weakly positive, 
and fraction E was negative. Positive re­
sponses were observed only with metabolic 
activation (S9) [NTP 1990; Zeiger 1990]. 

The same fractionated asphalt fume con­
densates from the study by Sivak et al. [1989] 
were tested by Blackburn and Kriech [in AI 
1990a] using the modified Ames Salmonella 
mutagenicity assay. The results were consistent 
with those of the NTP study. Mutagenicity 
indices of 21 asphalt fume samples collected 
under a variety of conditions ranged from 0 to 
8.8, with an average of 4.7. These indices were 
approximately 150-fold less than the indices 
for coal-tar-pitch fumes. 

Machado et al. [1993] evaluated the mutagenic 
activity and PAH content of laboratory-
generated fumes from a variety of asphalts. 
Materials examined included two Type III 
roofing asphalts representing different crude 
petroleum sources. One of the roofing asphalts 
was similar to the asphalt (air-blown using a 
ferric chloride catalyst) examined by Niemeier 
et al. [1988] and Sivak et al. [1989]. Machado 
et al. also evaluated 18 paving asphalts repre­
senting 14 crude petroleum sources and various 
processing conditions and a Type I coal-tar­
pitch fume. Fume condensates were examined 
for mutagenic activity with a modified Ames 
S a l m o n e l l a  m u t a g e n i c i t y  a s s a y  
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 Table 6–1. Summary of Salmonella mutagenicity data for asphalt and coal-tar 
pitch fume condensates (adapted from Machado et al. 1993) 

 Source of fume   Sample Fume generation temperature, °C (°F) Mutagenicity 
index*   condensates no. 163 (235) 221 (430) 232 (450) 316 (601) 

Roofing asphalt† 

Roofing asphalt† 

Paving  asphalt‡ 

Type I coal-tar pitch 

2 
2 
3 
3 

! 
! 
! 
! 
+ 
!

! 
! 

         ! 
         ! 
         ! 
         ! 
         ! 

 +xx 

         ! 
         ! 

+ 
! 
+ 
! 
! 
! 
+ 
! 

!

+
!

+
!

!

!

+

 12 (1) 
 10 (1) 
 12 (2) 
 10 (1) 
 14§ 

 18†† (13) 
 725 (35) 
 1555 (5) 

!No fumes were generated at this temperature.  +Fumes were generated at this temperature. 
wSlope of dose-response curve, i.e., revertants per microliter of dosing solution (± asymptotic standard error). 

        †Two Type III roofing asphalts used representing different crude sources. One of the roofing asphalts was air blown using ferric chloride as a catalyst 
(no. 3), and the other was air blown without the use of a catalyst (no. 2). 
‡Eighteen samples of paving asphalt fume condensates used representing 14 crude oil sources and various process conditions. 
§Mean of 37 experiments on 17 paving asphalt samples.  One to three experiments were run for each sample.   Mutagenicity indices ranged from 
5 to 49, and the mutagenicity indices for the pooled data ranged from 6 to 29. 
wwOne paving asphalt was generated and tested at 221 °C (430 °F). 
††Mean of three experiments. 
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(Table 6-1) and for PAH content. The fume 
generation temperature of all roofing materials 
was either  232 /C or 316 /C (450 °F or 
601 °F) and that  of  all paving materials was 
163  /C (325 °F). One sample of paving  ma­
terial was heated to 221 /C (430 °F).  Machado 
et al. reported  that all samples tested showed 
weak-to-moderate mutagenic activity (Table 
6–1). Moreover, the mutagenic responses to 
the  asphalt fume condensates were 
approximately 100-fold less than mutagenic 
responses to the coal-tar-pitch samples. 

Results of the analyses for PAH content, as 
measured by  HPLC fluorescence, of the roof­
ing and  paving asphalts, coal-tar pitch, and 
their fume condensates were as follows. 
Concentrations of individual PAHs in samples 
of roofing and paving asphalt and asphalt fume 
condensates were less than 50 ppm by weight. 
Most concentrations of individual PAHs in 
roofing asphalt or fumes were less than10 
ppm, and all concentrations in paving  asphalts 
or fumes were less than 2 ppm. Concen­
trations of individual PAHs in the coal-tar­
pitch samples were 100- to 

1,000-fold higher than in the roofing and 
paving samples. For example, B(a)P was 
detected in all samples examined; maximum 
concentrations in asphalt, coal-tar pitch, and 
asphalt and coal-tar-pitch fume condensates 
w e r e  a p p r o x  i m a t  e  l y
6 ppm, 18,000 ppm, 2.8 ppm, and  480 ppm, 
respectively. 

Machado et al. attempted to correlate muta­
genicity indices with PAH content. The cor­
relation coefficient of the pooled data varied 
from 0.17 to 0.86, depending upon which 
samples were included in the analysis. The 
investigators also  suggested that the crude 
petroleum source, along with processing  con­
ditions, had some influence on the PAH con­
tent of the various materials tested. 

Reinke and Swanson [1993] compared the 
chemistry of PAHs and S-PACs and mutagenic 
potential of field- and laboratory-generated 
asphalt fumes from an asphalt cement. Tem­
peratures ranged from 146 to 157 /C (295 
to 315 °F) for the field samples and from 149 
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Table 6–2. Summary of data from Reinke and Swanson [1993], mg/mL 

Asphalt fume condensates

PAHs     S-PACs 

$$$$3-ring wwww

Mutagenicity 
 index <3-ring $$$   $3-ring 

Storage tank headspace 7.0 (84)† 0.8 (9) 0.5 (7) >0 and <1 
Lab-generated at 149 °C 6.9 (51) 2.6 (19) 4.0 (30) 5.3 
Lab-generated at 316 °C 0.5 (7) 2.8 (38) 4.1 (55) 8.3 

wRaw data not provided. Positive control had an index of 4.6. 
†Percentage of total PAHs and S-PACs. 
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to 316 /C (300 to 601 °F) for the laboratory 
samples. The field asphalt fume  condensates 
were collected from the headspace of an 
asphalt storage tank at a hot-mix asphalt pro­
duction plant. Fumes were collected into  a 
cold trap for approximately 36 continuous 
hours. 

A summary of the chemical  analyses (GC/MS) 
for PAHs and S-PACs and the modified Ames 
Salmonella mutagenicity assay is provided in 
Table 6–2. The mutagenicity index of the 
storage tank headspace asphalt fumes was 
between 0 and 1, while the mutagenicity in­
dices of the asphalt fumes generated in the 
laboratory at 149 and 316 °C (300 and 601°F) 
were 5.3 and 8.3, respectively. The authors 
noted positive trends between mutagenicity 
indices and the percentage of $three-ring 
PAHs and S-PACs.  They suggested that the 
increased mutagenicity  of the fumes generated 
at 316 /C (601 °F) could be attributed to its 
increased content of four-ring  S-PACs (Table 
3–7). 

A study was undertaken in Europe by  De Méo 
et al. [1996a] to compare the mutagenic 
potential of fume condensates generated at 160 
and 200 °C (320 and 392 °F) from coal tar and 
two paving asphalts (45/60 pen and 160/210 
pen) in a modified Ames Salmonella 
mutagenicity assay [De Méo et al. 1996b]. 
Modifying the procedure of Brandt et al. 
[1985], the authors generated  coal tar and as­
phalt fume  condensates (a mix of the vapor 
phase and the particulate  phase) that 

they considered to be representative of fumes 
produced in the field [1996a].  The condensates 
were  tested  for mutagenic activity in the pres­
ence and absence of metabolic activation (S9) 
using the  Salmonella tester strains TA98, TA100, 
YG1041, and YG1042. All fume condensates 
were mutagenic to all bacterial tester strains only 
in the presence of metabolic activation. The muta­
genic potencies of the coal-tar fume condensates 
were 15- to 600-fold higher than  those of the 
asphalt fume condensates. The authors further 
investigated the effect  of these fume con­
densates on in vitro DNA-adduct formation; 
these results are presented in section 6.1.3. 

Robinson et al. [1984] examined the muta­
genic potential of several asphalt-based paints 
using the Ames Salmonella mutagenicity as­
say. None of the asphalt-based paints dem­
onstrated mutagenic activity  in either the pres­
ence or absence of metabolic activation (S9). 

6.6.6.6.1.1.1.1.22 22 Chromosomal AChromosomal AChromosomal AChromosomal Abbbbeeeerrationsrrations rrationsrrations

Condensates of Type I and Type III roofing 
asphalt fumes generated in the laboratory at 
316±10 °C (601 °F) using the same method­
ology as in Sivak et al. [1989] caused a dose-
related increase in micronucleus formation in 
exponentially growing Chinese hamster lung 
fibroblasts (V79 cells) [Qian et al. 1996]. The 
results of immunofluorescent antibody staining 
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showed that both roofing asphalt fume con-
densates  induced mainly kinetochore-positive 
micronuclei (68 to 70%). The authors sug-
gested that Type I and Type  III roofing asphalt 
fume condensates are aneuploidogens and 
possess some clastogenic activities. The as-
phalt fume condensates cause mainly cyto-
genetic damage by spindle apparatus altera-
tions in cultured mammalian cells. 

Reinke and Swanson [1993]  tested three pav-
ing asphalt fume condensates generated in the 
field and in the laboratory in an unspecified 
chromosomal aberration assay. Results were 
negative. The authors  suggested that “the ab-
sence of positive findings” may be explained 
by the fact  that  this assay was not “optimized 
for petroleum asphalt fumes.” 

6.1.3 DNA-Adduct Formation 

De Méo et al. [1996a] also tested coal tar and 
paving (45/60 pen and 160/210 pen) asphalt 
fume condensates  generated at 160 and
200 °C (320 and 392 °F) for their ability to 
produce DNA adducts in vitro  when added to 
calf thymus DNA. DNA-adduct formation was 
assessed by  32P-postlabeling; the fume con-
densates were diluted in acetone to a final con-
centration of 20 µg in 1 mL. B(a)P was used as 
the  positive control. The authors reported that 
all of the fume condensates induced  DNA-
adduct formation. No specific DNA adducts 
were identified. The authors further noted that 
the patterns of the autoradiograms of the  DNA 
adducts demonstrated qualitative differences, 
indicating qualitative  differences in the nature 
of the compounds in the coal tar  and asphalt 
fume condensates responsible for the for-
mation of these adducts. 

As a continuation of the De  Méo et al. study 
[1996a],  Genevois et al. [1996] tested the same 
coal tar and paving asphalt fume condensates 
for their ability to induce DNA-adduct for-
mation in 

 

vivo. They applied 100 µL (about 100 mg) of 
the undiluted fume condensates to the shaved 
dorsal skin of BD4 rats (three rats per group) 
twice 2 days apart; three untreated rats  served 
as the control group. Twenty-four hours after 
the last treatment, all of the rats were 
sacrificed, and skin, lungs, and lymphocytes 
were collected. DNA-adduct formation was 
assessed by  32P-postlabeling. DNA adducts 
were found in skin, lungs, and lymphocytes of 
all the treated rats, but  no specific DNA 
adducts were identified. These in vivo data are 
in  agreement with De Méo et al.’s in vitro data 
and indicate qualitative differences in the 
nature of the compounds in the coal tar and 
asphalt fume condensates responsible for the 
induction of the DNA adducts. 

De Méo et al. and Genevois et al. also 
analyzed the fume condensates for PAH 
content using HPLC-fluorescence. The data 
indicated that while large amounts of 
unsubstituted PAHs are  present in the coal-tar 
fumes, these compounds  are only minor 
constituents of the asphalt fume condensates. 

In  two studies, Schoket et al. reported upon the 
formation of DNA adducts in (1) mice [1988a] 
and (2) adult and  fetal human skin samples 
maintained in short-term tissue culture 
[1988b]. In both studies, asphalt- or creosote-
based paints or pharmaceutical-grade coal tar 
were applied topically, and DNA-adduct 
formation was assessed by  32P-postlabeling. 
The results in both studies suggested that a 
variety of adducts were formed from the three 
materials; however, no specific DNA adducts 
were identified. 

The DNA-adduct concentrations found in 
mouse skin 24 hours after a single application 
of the test materials are  listed in Table 6–3. 
Mice that received multiple applications of the 
three agents showed accumulations of DNA 
adducts in both skin and lung tissue. The 
DNA-adduct concentrations observed in the 
multiple- treatment studies were reported in 
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Table 6–3. Concentration of DNA adducts in mouse skin 24 hr after a single application
of asphalt- or creosote-based paints or pharmaceutical-grade coal-tar solution

(adapted from Schoket et al. 1988a) 

 Treatment agentwwww Dose per mouse Femtomole adducts, µg of DNA† 

Asphalt‡ 

Asphalt 
Creosote 
Creosote 
Coal tar 
Coal tar 

3 mg  
15 mg 

5  µL 
25  µL 

6 mg 
30 mg 

0.00  
0.09 
0.19 
0.40 
0.14 
0.38 

wControl values not reported. 
†One femtomole adduct per microgram of DNA = 33 adducts per 108 nucleotides [Schoket et al. 1988b]. 
‡Referred to as bitumen by Schoket et al. [1988a]. 

graphic form only; the adduct concentrations 
found in the lungs were consistently lower 
than those in the skin. The authors concluded 
that the detection of DNA adducts in the lungs 
demonstrated that PAHs in the three agents 
were absorbed from the skin and metabolically 
activated in organs distant from the site of 
application. 

DNA-adduct concentrations found in adult 
human skin 24 hours after a single application 
of the test materials are listed in Table 6–4. 
The authors concluded that similar amounts of 
DNA adducts are formed from these materials 
in both mouse and human skin. 

6.1.4 Intercellular Communication 

The five asphalt roofing fume fractions used 
by Sivak et al. [1989]  were tested for inhi­
bition of intercellular communication. The 
inhibition of intercellular communication by a 
tumor promoter is believed to isolate an ini­
tiated or  preneoplastic cell from the growth 
regulatory signals of surrounding cells, leading 
to the development of neoplasia. All fractions 
inhibited intercellular communication in
Chinese hamster lung fibroblasts (V79 cells) 
[Toraason et al. 1991]. The greatest activity 
occurred in fractions D and E, and the least 
activity in fraction A. 

Similarly, Wey et al. [1992] examined the 
effect of these fractions on intercellular com­

 

munication in human epidermal keratinocytes. 
All asphalt roofing  fume fractions inhibited in­
tercellular communication in a concentration-
dependent fashion. 

6.2 Carcinogenicity 

Since publication of the NIOSH criteria doc­
ument [1977a],  there have been several reports 
of carcinogenicity  in  mice following applica­
tions  of laboratory-generated asphalt roofing 
fume condensates [Thayer et al. 1981; 
Niemeier et al. 1988; Sivak et al. 1989, 1997], 
raw roofing asphalt [Sivak et al. 1989, 1997], 
and asphalt-based paints [Robinson et al. 
1984; Bull et al. 1985] to the skin of mice. 
However, in another study [Emmett et al. 
1981], raw roofing asphalt applied dermally  to 
mice was not carcinogenic. 

6.2.1 Roofing Asphalt Fume Conden-
sates and Raw Asphalt 

! Niemeier et al. [1988] 
Niemeier et al. [1988] investigated the tumor­
igenicity  of fume condensates generated in the 
laboratory at 232 and 316 °C (450 and 
601 °F) from Type I  and III roofing asphalt and 
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Type  I and III coal-tar pitch.  All  fume  samples 
were  cryogenically collected. Fume
condensates were applied biweekly  to the skin 
of male CD-1 (nonpigmented) and C3H/HeJ 
(pigmented) mice for 78 weeks. Eighteen 
groups of 50 mice per strain received these ap-
plications singly or in combination. Half of 
each group was exposed to simulated sunlight. 

 
Tumors were produced by fume condensates 
of both types of asphalt (Tables 6–5 and 6–6) 
and both types of coal-tar pitch. The  majority 
of  benign tumors were papillomas; the ma-
jority of malignant tumors were squamous cell 
carcinomas. Both strains  of mice exposed to 
asphalt fumes had significantly (P=0.01) more 
tumors than the control groups, although  the 

Table 6–4.  Concentration of DNA adducts in adult human skin 24 hr after a single application 
of asphalt- or creosote-based paints or pharmaceutical-grade coal-tar solution 

(adapted from Schoket et al. 1988b) 

Treatment agent Dose per skin patch wwww Femtomole adducts, µg of DNA

Solvent† 

Asphalt‡ 

Creosote 
Coal tar 

150 µL 
15 mg 
25 µL 
30  mg 

0.10 
0.22 
0.31 
0.35 

wOne femtomole adduct per microgram of DNA=33 adducts per 108  nucleotides [Schoket et al. 1988b]. 
^Ethanol or tetrahydrofuran. 
‡Referred to as bitumen by Schoket et al. [1988a]. 

Table 6–5.  Final histopathology of tumors induced in CD-1 mice treated dermally 
with roofing asphalt fume condensates (adapted from Thayer et al. 1981) 

Material tested Sunlight  

Tumor-bearing animals 

 Benign          Malignant 

Tumors 

Papilloma
    Squamous 
cell carcinoma wwww Total

Type I asphalt @ 232 °C† 

Type I asphalt @ 316 °C† 

Type III asphalt @ 232 °C† 

Type III asphalt @ 316 °C† 

B(a)P‡ 

Cyclohexane/acetone§ 

! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 

6 
2 

13 
3 
9 
5 

13 
4 

24 
9 

0 
0 
1 
0 
1 
2 
3 
1 

11 
3 

12 
3 

18 
3 

11 
5 

17 
5 

43 
11 

0 
0 
0 
0 
1 
1 
1 
1 

10 
1 

12 
3 

19 
3 

13 
7 

20 
6 

58 
18 

0 
0 

wOther tumor types observed included fibrosarcomas, kerato-acanthomas, fibromas, and unclassified benign epitheliomas. 
^25 mg of total solid per application. 
‡5 µg per application. 
§50 µL of a 1:1 solution. 

Table 6–6.  Final histopathology of tumors induced in C3H/HeJ mice treated dermally 
with roofing asphalt fume condensates (adapted from Thayer et al. 1981) 

Tumor-bearing animals Tumors 
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Material tested Sunlight Benign Malignant Papilloma  
Squamous cell 

carcinoma  Totalwwww

Type I asphalt @ 232 °C† 

Type I asphalt @ 316 °C† 

Type III asphalt @ 232 °C† 

Type III asphalt @ 316 °C† 

B(a)P‡ 

Cyclohexane/acetone§ 

! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 
! 
+ 

24 
14 
13 
18 
15 
11 
12 
20 
11 

7 
0 
1 

22 
27 
31 
26 
25 
20 
28 
18 
27 
27 

0 
0 

34 
22 
27 
36 
32 
14 
24 
34 
12 
11 

0 
2 

26 
25 
31 
26 
19 
19 
36 
20 
29 
22 

0 
2 

76 
62 
78 
73 
66 
54 
82 
65 
53 
43 

0 
4 

wOther tumor types observed included fibrosarcomas, kerato-acanthomas, fibromas, and unclassified benign epitheliomas. 
†25 mg of total solid per application. 
‡5 µg per application. 
§50 µL of a 1:1 solution. 
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C3H/HeJ mice demonstrated a greater tu­
morigenic and carcinogenic response to both 
asphalt and coal-tar-pitch fume solutions than 
did the CD-1 mice. The C3H/HeJ mice showed 
a significant increase (P=0.01; Fisher-Irwin 
exact  test) in tumorigenic response for both 
types of condensed asphalt fumes generated at 
316 °C (601 °F) compared with tumors gene-
r a t e d  a t 
232 °C (450 °F). The mean time to tumor ap­
pearance was  longer for all groups of CD-1 
mice compared with the corresponding
C3H/HeJ groups. The mean latency period 
ranged from 39.5  to 56.1 weeks among the 
C3H/HeJ groups and from 47 to 76.5 weeks 
among the CD-1  groups treated with roofing 
asphalt fume  condensates. Mean latency time 
increased with simulated sunlight, which gen­
erally inhibited tumorigenic response, possibly 
because of photo oxidation or photodestruction 
of the carcinogenic components of the test 
materials. Niemeier et al. [1988] concluded 
the following: 

 

C Unlike the carcinogenic activity  of coal-tar 
pitch, that of asphalt fume condensates 
could not be explained by  B(a)P (or PAH) 
content. 

C The carcinogenic activity of  the asphalt 
fume  condensates may have been due to 
the high concentrations of aliphatic hydro­
carbons, which have co-carcinogenic
effects. 

C Higher generation temperatures may have 
increased carcinogenic effects. 

! Sivak et al. [1989, 1997] 
Sivak et al. [1989, 1997] heated Type  III 
roofing asphalt from the same lot used by 
Niemeier et al. [1988] at 316 °C (601 °F), gen­
erated fume condensates, and separated them 
by  HPLC (see Belinky et al. 1988 for a de­
scription of this procedure). The chemical 
composition of fractions A through E,  as 
analyzed by GC/MS, is provided in Table 3–8. 
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Raw roofing asphalt, neat asphalt fumes,
asphalt heated to 316°C (601°F)  with fumes 
allowed to escape, reconstituted asphalt fumes, 
and the asphalt fume fractions—individually 
and in various combinations,  were then tested 
for their carcinogenic and tumor-promoting ac-
tivity. Fractions A through E were dissolved in 
a 1:1 solution of cyclohexane and acetone to 
yield concentrations proportional to their
presence in the unfractionated (neat) asphalt 
fume condensate, i.e., 64.1%, 8.3%, 10.5%, 
11.5% and 5.6%, respectively, and were applied 
biweekly to 40 groups of male C3H/HeJ mice 
and two groups of male Sencar mice (30 mice 
per group) for 104 weeks (2 years). The Sencar 
mice were included to allow  for possible
genetic variation and susceptibility to tumor 
development. 

A single  initial treatment of B(a)P followed by 
individual treatments with fractions A, D, and 
E were used to test the tumor-promoting
activity of the asphalt fume condensate. The 
co-carcinogenicity of fractions A, D, and E 
was tested with three different doses of B(a)P. 
Fractions A, D, and E were used because they 
were  the fractions Sivak et al. [1989, 1997] 
deemed most  likely to exhibit co-carcinogenic 
or tumor-promoting activity based on their 
chemical compositions, i.e., primarily long 
chain alkanes and phenolic compounds. One of 
the two groups of Sencar mice was treated 
with neat asphalt fumes (whole  condensate), 
and the other was used  as an unexposed sol-
vent control. The negative control group was 
treated with cyclohexane and acetone, and the 
positive control groups were treated with three 
different concentrations of B(a)P. 

Table 6–7 shows all the treatment groups, the 
number of papillomas and carcinomas per 

 

 

 

 

group, the number of tumor-bearing mice, and 
the average time (in weeks) to carcinoma de-
velopment. The raw roofing asphalt and neat 
asphalt  fumes induced carcinomas (local  skin 
cancers) in three of 30 and 20 of  30 C3H/HeJ 
mice, respectively. However, the heated 
asphalt with fumes allowed to escape did not 
induce any  tumors. Fractions B and C induced 
carcinomas in 10 of 30 and 17 of 30 C3H/HeJ 
mice, respectively, while fractions A, D, and E 
failed to induce any  carcinomas when applied 
alone. All the combinations of the fractions 
induced tumors only if they included B or C. 
The A and D combination, the  A  and E 
combination, and the A, D, and E combination 
failed to induce any tumors. Furthermore, 
fractions A, D, and E failed to act as  either 
tumor promoters or co-carcinogens. Fourteen 
of the 30 Sencar mice treated with the asphalt 
fume condensate developed carcinomas. 

As noted in the  preceding paragraph, only 
fractions B and C, whether applied alone or in 
combination, elicited tumor responses. Frac-
tions B and C contained PACs that included 
PAHs, S-PACs, and O-PACs, such  as alky-
lated aryl thiophenes, alkylated phenanthrenes, 
alkylated acetophenones, and alkylated dihy-
drofuranones. Fraction B contained most of the 
S-PACs, and only a few were carried over to 
fraction C. Fraction C contained a small 
amount of four-ring PACs (refer to Table 6–7). 
Sivak et al. [1989, 1997] stated the need  for 
additional co-carcinogenesis and tumor-
promotion experiments using a wider range of 
experimental variables, further chemical  sepa-
ration of fractions B and C, more short-term 
genotoxicity assays, and additional carcino-
genicity assays to identify biologically active 
materials in the roofing asphalt fume 
condensates. 
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Table 6–7. Tumorigenic response in all treatment groups (adapted from Sivak et al. 1989; 1997) 

 Group 

number Treatment 

 Asphalt

dose, 

 mg  wwww

Total no. of tumors per 
group† No. of tumor-

bearing mice 

Average time to 
carcinoma, 

 weeks‡ 
Papilloma Carcinoma 

1 
2 

3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Raw asphalt 
Heated asphalt (less
fume) 
Heated asphalt (plus
fume) 
Neat asphalt fume 
Solvent control
Fraction A 
Fraction B
Fraction C
Fraction D
Fraction E
Fractions A+B+C+D+E 
Fractions A+B 
Fractions A+C 
Fractions A+D 
Fractions A+E 
Fractions B+C+D+E
Fractions A+B+C+D 
Fractions A+B+C+E 
Fractions B+C+D
Fractions B+C
Fractions A+C+D+E 
Fractions A+B+D+E 
Fractions A+D+E 
0.01% B(a)P 
0.001% B(a)P 
0.0001% B(a)P 
Fraction A+.01% B(a)P 
Fraction A+.001% B(a)P 
Fraction A+.0001% 
Fraction D+.01% B(a)P 
Fraction D+.001% B(a)P 
Fraction D+.0001% 
Fraction E+.01% B(a)P 
Fraction E+.001% B(a)P 
Fraction E+.0001% 
B(a)P then fraction A 
B(a)P then fraction D 
B(a)P then fraction E 
B(a)P alone 
Sentinel mice‡‡ 

Sencar fume 
Sencar control 

25 
25 

25 

25 
 0 

16 
 2.3 
 2.6 
 2.3 
 1.6 

24.8 
18.3 
18.6 
18.3 
17.6 
 8.8 

23.2 
22.5 
 7.2 
 4.9 

22.5 
22.2 
19.9 
0ww       
0ww       
0ww       
16 
16 
16 

2.3 
2.3 
2.3 
1.6 
1.6 
1.6 

16††       
      2.3†† 

      1.6†† 

0 
0 

25 
0 

1 

12§ 

2 
4 

30§ 

10§ 

12§ 

9§ 

17§ 

26§ 

15§ 

12§ 

5§ 

5 
2 
1 
2 

7§ 

1 

14§ 

2 

1 

21§ 

3 

25§ 

10§ 

18§ 

23§ 

8§ 

16§ 

18§ 

22§ 

30§ 

22§ 

26§ 

14§ 

7§ 

28§ 

3 

28§ 

1 
1 

34§ 

1 
23§ 

2 

18§ 

4 

21 

11 
20 

25 
13 
15 

19 
24 
27 
21 
26 
17 

9 

27 
5 

24 
2 
1 

29 
2 
1 

24 
2 

20 

101 

74 

98 
86 

75 
97 
90 

81 
80 
77 
86 
73 
89 
97 

2 
56 

103 

70 
106 
106 

64 

106 
61 

106 

83 

wAsphalt, asphalt plus fume, or asphalt fume alone per 50 µL per application. 
†Only histologically confirmed skin tumors are given. 
‡Based on gross observation. 
§There were significantly more tumors, earlier onset of tumors, or both in these groups compared to controls. 
ww5, 0.5, 0.05 µg B(a)P/50 µL application per group, respectively. 
††Mice were initiated with a single application of 200 µg B(a)P/50 µL followed by twice-weekly applications of indicated
‡‡Five mice were sacrificed prior to the initiation of the study and after 6, 12, 18, and 24 months. 

 fractions. 
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!Emmett et al. [1981] 
In an earlier study, Emmett et al. [1981] ex-
amined the carcinogenic potential of a standard 
roofing asphalt (asphalt type not provided) dis-
solved in redistilled toluene at a 1:1 ratio by 
weight. Fifty milligrams of this solution was 
applied twice a week to the shaved intrascapular 
region of the back of 50  male C3H/HeJ mice. 
The  vehicle control group of 50 mice received 
50 mg  of  toluene twice a week, and the positive 
control group received 50 mg of 0.1% B(a)P in 
toluene twice a week. The dosing  regimen con-
tinued for 80 weeks  or until a skin lesion was 
diagnosed as a papilloma; when a papilloma 
progressed and was diagnosed grossly as a car-
cinoma, the tumor-bearing mouse was sacri-
ficed and autopsied. Selected histopathological 
examination of the tumors confirmed the  gross 
diagnosis. 

No tumors  were observed in the mice treated 
either with roofing asphalt or  toluene. Twenty-
six of the first group and 37  of  the second 
group survived 60 or more weeks. Seventy-
nine percent of the mice treated with B(a)P 
developed  tumors. Chemical analysis by gas 
chromatography (with an electron capture 
detector) of the raw roofing asphalt indicated 
that B(a)P concentrations were below the level 
of detection, i.e., <0.0004%. 

6.2.2 Asphalt-Based Paints 

Robinson et  al. [1984] examined the effects of 
four formulations of asphalt-based paints (lab-
eled A through D)  and  three formulations of 
coal-tar-based paints (labeled E, F, and G) using 
female Sencar mice in mouse  skin bioassays. All 
formulations except G had been used to prevent 
corrosion in drinking  water distribution systems 
[Alben 1980; Miller et al. 1982]. The asphalt-
based paints were formulations containing
xylene, or xylene and mineral spirits with be-
tween 89% and 98% cutback asphalt. 

 

The asphalt- and coal-tar-based paints were 
evaluated not only for their potential tumor-
initiating ability, but also for their ability to 
function as complete carcinogens. Both the 
coal-tar and asphalt paint formulation groups 
initiated tumor development in mouse skin. 
The activity exerted by the coal-tar paints (data 
not presented) was  approximately 100-fold 
greater than the activity exerted by the asphalt-
based paints. Table 6–8 presents data demon-
strating the tumor-initiating activity of the 
asphalt-based  paints, provides gross tumor 
observations, and classifies tumors examined 
histologically [Robinson et al. 1984; Bull 
et al. 1985]. Animals receiving the initial 
200-µL  dose of the asphalt solutions showed a 
statistically significant increase (P<0.05; 
multiple-cell chi square analysis) in both the 
number of tumor-bearing animals and number 
of tumors per animal compared with animals 
treated with mineral spirits [Bull et  al. 1985]. 
However, the tumor  response induced by the 
coal-tar paints was greater than that induced by 
the asphalt-based paints, even though the vol-
ume of the coal-tar paints (0.2-20 µL) was less 
than the volume of the asphalt-based paints 
(200 µL). 

Only coal-tar paint formulation E and asphalt 
paint D were analyzed for their ability  to act as 
complete carcinogens. Two microliters of coal 
tar and 200 µL of asphalt D were applied to 40 
female  Sencar mice once a week for 30 weeks; 
the mice were sacrificed after 52 weeks. Under 
the experimental conditions provided, only 
coal-tar formulation E acted as a complete car-
cinogen. It induced the development of 171 tu-
mors (papillomas) in 83%, or 33 of 40, of the 
mice; 10% of the mice had carcinomas (four 
animals had five carcinomas). Of the mice that 
had been treated with asphalt D, only one in 40 
(3%) developed  a tumor (papilloma), while 
three of 40 mice  in the group treated with 
mineral spirits developed papillomas. 
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Table 6–8. Tumor-initiating activity of asphalt-based paints
(adapted from Robinson et al. 1984 and Bull et al. 1985) 

No. of animals showing squamous cell
abnormalities after histopathological

Gross observations examination at 52 weeks 

Dose, µL unless Animals No. 
Asphalt-based otherwise with Total no. of examined/ Carci­

  paints indicated tumors† tumors initiated‡  Papillomas nomas§ Tumors§ 

 Asphalt A 200  18/40 (45) 25 36 4 2 6 
600  21/40 (53) 31 38 8 2 10 

 Asphalt B 200  17/40 (43) 23 31 5 0 5 
600  20/40 (50) 34 35 4 2 6 

 Asphalt C 200  19/40 (48) 28 31 4 5 8 
600  23/40 (58) 51 36 11 4 13 

 Asphalt D 200  21/40 (53) 33 33 9 6 9 
600  15/40 (38) 22 35 2 3 4 

 Mineral spirits 600  5/40 (13) 6 37 1 0 1 
Acetone 200  6/30 (20) 6 23 4 0 4 
B(a)P 10.0 µg  22/30 (73) 99 27 11 9 15 
DMBA 2.65 µg  Not given  Not given 8 3 6 8 

DMBA=Dimethyl benzanthraceme. 
   wThe 200-µL dose was administered in one dose, while the 600-µL dose was administered as three weekly 200-µL doses.  All animals were treated 

with 1 µg TPA in 200 µL of acetone three times weekly for 20 weeks beginning 2 weeks after the last initiating dose. 
†Data represent cumulative tumor counts through 40 weeks.  Number in parentheses indicates percentage. 
‡Each treatment group except the DMBA-treatment group contained 40 female Sencar mice. Only 20 were in the DMBA-treatment group. 

  §The asphalt D group also had one animal with a fibrosarcoma and one with a basal cell carcinoma.      Total number of animals having squamous cell
papillomas and/or carcinomas does not agree with number of animals with squamous cell tumors because some animals had both types. 
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Chemical analyses of coal-tar formulations E, 
F, G, and H and asphalt-based paints A and 
D, which are also used to prevent corrosion in 
drinking water systems, were conducted using 
GC/MS.  Results of the analyses indicated that 
PAH concentrations were high in coal-tar 
formulations E, F, G, and H, and very  low in 
asphalt-based paints A and D. This ob­
servation is based on the five biologically
active PAHs (chrysene, benz[a]anthracene, 
B(a)P, benzo[e]pyrene, and phenanthrene)
found in coal-tar-based paints. The concen­
trations of these five compounds as a per­
centage of total PAHs were  44%  in coal tar E, 
42% in  coal  tar F, and 33% in coal tar G. Of 
these five PAHs, only trace amounts of
phenanthrene (<0.01%) were found in both 
asphalt-based paints. 

 

 

 

Robinson et al. [1984] concluded that the four 
asphalt-based paints tested contained chemicals 
capable  of initiating tumors in mice, and that  a 
number of these tumors were carcinomas. How­
ever,  they were not found to be complete 
carcinogens. 

6.3 Conclusions 

The following conclusions concerning the ad­
verse effects of asphalt  fumes, raw asphalt, and 
asphalt-based paints are based on the results of 
the preceding experimental studies. 

6.3.1 Asphalt Fumes 

Asphalt fumes are comprised of complex 
chemical mixtures generated by the 
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volatilization of asphalt. In attempts to sim-
ulate occupational exposure to asphalt fumes 
in experimental animals, investigators de-
veloped several methods for generating asphalt 
fumes in the laboratory. It has yet to be 
determined  whether these fumes are rep-
resentative of the fumes to which workers are 
exposed during the manufacture and ap-
plication of  asphalt products (see sec-
tion 3.4.3). Currently, available data generated 
using asphalt fume condensates (fumes were 
collected  above the asphalt surface inside a 
hot-mix asphalt storage tank) are limited. A 
comparison of the biologic activity of these 
storage tank fumes and asphalt fume con-
densates generated in the laboratory at typical 
paving temperatures indicated that (1) fumes 
collected from a hot-mix asphalt  storage tank 
were not mutagenic (Table 6–2) and (2) the 
laboratory-generated fumes were mutagenic 
[Reinke and Swanson 1993]. In other studies, 
paving and roofing asphalt fumes generated in 
the laboratory under a variety  of conditions 
were also mutagenic [Machado et al. 1993; 
NTP 1990; AI 1990a; De Méo et  al.  1996a]. 
These results indicate that asphalt fumes col-
lected above the asphalt surface inside a hot-
mix asphalt storage tank and laboratory-
generated asphalt fume condensates may not 
induce similar biologic activity. In addition, 
fumes generated in the laboratory from two 
paving asphalts at 160 and 200 /C (320 and 
392 °F) induced DNA-adduct formation  in 
vitro and in vivo [De Méo et al. 1996a; 
Genevois et al. 1996]. 

Two studies examined the carcinogenic po-
tential of roofing asphalt fume condensates 
generated in the laboratory at temperatures 
approximating t hose observed in typical and 
worst-case roofing operations [Niemeier  et al. 
1988; Sivak et al. 1989, 1997].  The data in-
dicated that roofing  asphalt fume condensates 
generated in the laboratory and applied der-
mally cause benign and malignant skin tumors 
in several strains of mice. Furthermore, 
additional data supportive of carcinogenicity 
demonstrated that these and similarly derived 
laboratory roofing asphalt fume condensates 

are mutagenic  in the Ames Salmonella mu-
tagenicity assay [NTP 1990; AI 1990a; 
Machado et al. 1993], induce micronuclei 
formation [Qian et al. 1996], and inhibit 
intracellular communication in mammalian 
cells [Toraason et  al. 1991; Wey et al. 1992]. 
Differences in chemical composition and 
physical characteristics have been noted 
between roofing asphalt fumes collected in the 
field and those generated in the laboratory (see 
chapter 3, Kriech and  Kurek [1993]).  How-
ever, it is not known if these differences are 
responsible for the genotoxic and carcinogenic 
effects reported in the preceding experimental 
studies. Although  no animal studies have ex-
amined the carcinogenic potential of asphalt 
fumes collected during roofing operations, the 
carcinogenic response using laboratory-gen-
erated asphalt fumes suggests a potential 
hazard to roofers. 

Since no animal studies have examined the 
carcinogenic potential of either field or 
laboratory-generated samples of paving asphalt 
fume condensates, no definitive determination 
can be made about the carcinogenic potential 
of paving asphalt fume condensates in experi-
mental animals. However, the positive muta-
genic responses obtained using laboratory-
generated paving asphalt fumes are a cause for 
concern and support the need for  further 
research. 

6.3.2  Raw Asphalt and Asphalt Paints 

Conflicting results from two separate studies 
[Sivak et al. 1989,1997; Emmett et al. 1981] 
were obtained when raw roofing asphalts were 
applied to the skin of mice. The raw roofing 
asphalt used by Sivak  et al. [1989, 1997] was 
weakly carcinogenic and caused malignant 
skin tumors, while the raw  roofing asphalt 
used by Emmett et al. [1981] did not. 
Available data also indicate that several  for-
mulations of asphalt-based paints caused benign 
and malignant skin tumors in mice [Robinson et 
al. 1984; Bull et al. 1985]. However, these paints 
were not mutagenic in the Ames  Salmonella 
mutagenicity assay either with or without 
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metabolic activation (S-9). Several other asphalt-
based paints were positive in another type of 
genotoxicity assay, i.e., DNA-adduct formation, 
which is postulated to be one of the steps re­
sponsible for mutagenesis and carcinogenesis 
[Schoket et al. 1988a]. These asphalt-based 
paints also caused the formation of DNA adducts 
in the skin and lungs of  treated  mice  and in fetal 
and  adult human skin cultures [Schoket et al. 
1988a,b]. 

The results are conflicting as  to the carcino­
genicity of raw roofing asphalt.  One study 
reported a weak carcinogenic response [Sivak 
et al. 1989, 1997], while another study report­
ed no carcinogenic response [Emmett et al. 
1981]. However, the data indicate that the as­
phalt paint formulations used in the  preceding 
studies [Robinson et al. 1984; Bull et al. 
1985; Schoket et al. 1988a,b] are carcin­
ogenic and exert some genotoxicity. Although 
no published data exist that examine the 
carcinogenic potential of asphalt-based paints 
in humans, NIOSH concludes that asphalt-
based paints are potential occupational
carcinogens. 
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7 Conclusions
 

The following conclusions concerning
possible health effects caused by  exposure 

to paving and roofing asphalts, raw asphalt, 
and asphalt-based paint were derived from an 
evaluation of data from studies in humans and 
experimental animals that have become avail­
able since the 1977 criteria document on
asphalt [NIOSH 1977a]. 

In the  1977 criteria document, NIOSH estab­
lished a REL of 5 mg/m3 as a 15-min ceiling 
limit4 for asphalt fumes measured as total par­
ticulates.  The NIOSH REL was intended to 
protect workers against acute  effects of
exposure to asphalt fumes, including irritation 
of the serous membranes of the conjunctivae 
and the mucous membranes of the respiratory 
tract. In 1988, NIOSH (in testimony to the 
Department of Labor) recommended that
asphalt fumes should be considered a potential 
occupational carcinogen [NIOSH 1988]. 

 

 

 

 

7.1 Cancer Issues 

7.1.1	 Characterization of Asphalt 
Fumes 

An analysis of the chemical data indicates that 
paving and roofing asphalts are qualitatively 
and quantitatively  different; therefore, the 
vapors and fumes from these asphalt products 
also may be different. The chemical compo­
sition of vapors and fumes from asphalt 
products is variable and depends on the crude 
petroleum source, type of asphalt, temperature 
and extent of mixing during the manufacturing 

4See footnote 1 in chapter 1. 

[1993] detected chrysene (0.02 µg/m3) in 
paving asphalt fumes generated in the lab-
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process, and temperature and extent of mixing 
during laboratory generation or field operation, 
e.g., paving or roofing.  For these reasons, it is 
possible that asphalt fumes generated in some 
laboratory experiments  may be qualitatively 
and quantitatively different from fumes 
workers are exposed to in the workplace. 

Although asphalt vapors and fumes are not 
well characterized, the determination of se­
lected PAHs in  asphalt products, vapors, 
and fumes  is of interest. Many studies have 
been directed to identification of  PAHs in 
asphalt fume samples.  PAH identification by 
HPLC/fluorescence techniques are unreliable 
and results for asphalt fume samples are 
considered unreliable.  For more information 
see section 3.5.3. However, asphalt fume PAH 
data obtained by GC/MS are considered re­
liable. The most meaningful of these studies 
used GC/MS for the analysis. Robinson et al. 
[1984]  used GC/MS to analyze  several asphalt-
based paints for chrysene, benz[a]anthracene, 
B(a)P, benzo[e]pyrene, and phenanthrene; only 
trace amounts of phenanthrene (<0.01%) were 
detected. Also using GC/MS, several other in­
vestigators reported on the chemical analysis of 
paving and roofing asphalt fumes [Niemeier  et 
al. 1988; Lunsford and Cooper 1989; Reinke and 
Swanson 1993; Hatjian et al. 1995a, 1997]. 

Low concentrations of carcinogenic PAHs 
have been detected in laboratory-generated as­
phalt fumes. Niemeier  et al. [1988] measured 
low concentrations of several carcinogenic 
PAHs in roofing asphalt fumes generated at 
both 232 and 316 °C (450 and 601 °F); most 
were two and three ring.  Lunsford and Cooper 
[1989] reported results similar to those of 
Niemeier et al. [1988]. Reinke and Swanson 

oratory at 149 °C (300 °F). Lunsford and 
Cooper [1989] and Reinke and Swanson 

89 
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[1993] also reported the presence of alkylated 
PACs in roofing and paving asphalt fumes, 
which is of concern because  these PAHs are 
structurally similar to known carcinogens. 

Few studies have been directed to the identi­
fication and measurement of PAHs in asphalt 
fumes generated at U.S. worksites. Reinke and 
Swanson [1993] collected paving asphalt 
fumes at 149 °C (300 °F) from a storage tank 
at  a hot-mix plant, as well as laboratory-
generated paving asphalt fumes at 149 and 
316 °C (300 and 601 °F) (Table  3–6). Al­
though they detected chrysene in the 
laboratory-generated asphalt fumes, they did 
not  detect chrysene in the fumes collected 
from the storage tank. Two- and three-ring 
PAHs were found in the storage tank fumes, 
but not four-ring PAHs. 

Hatjian  et  al. [1995a, 1997] reported on a 
GC/MS analysis for selected PAHs in asphalt 
paving and roofing  fumes collected at several 
worksites. These investigators found that 
naphthalene accounted for 60% to 90% of the 
measured PAH exposure for the asphalt 
workers studied. Also, two- and three-ring 
PAHs accounted for 99% of the measured 
PAH exposure for asphalt pavers and 84% to 
94% for asphalt roofers. B(a)P was detected in 
less than 6% of the personal-breathing-zone air 
samples of asphalt road pavers and manual 
laborers who had no occupational exposure to 
PAHs; B(a)P was detected in 28% and 25% of 
the personal-breathing zone samples from the 
two roofing groups R1 and R2, respectively. 

In  a NIOSH study, researchers detected PAHs 
in environmental samples from paving 
operations, but made no attempt to determine 
i n d i v i d u a l  c a r  c  i  n  o  g  e n i c  P A H s  
[Hanley and Miller 1996 a,b; Miller and Burr 
1996 a,b, 1998; Kinnes et al. 1996; Almaguer 
et al. 1996]. 

While the data regarding the presence of car­
cinogens in asphalt fumes generated at U.S. 
worksites are limited, the occasional detection 
of B(a)P at worksites and the more frequent 

detection of B(a)P and other carcinogenic 
PACs in laboratory-generated asphalt fumes 
indicate that, under some conditions, known 
carcinogens are likely to  be present. Moreover, 
asphalt fumes generated at high temperatures 
are more likely to generate carcinogenic  PAHs 
and therefore are potentially more hazardous 
than fumes generated at lower temperatures. 

7.1.2  Paving Asphalt 

7.1.2.1 Short-Term Assays 

Several laboratory-generated paving asphalt 
fume condensates were mutagenic in an Ames 
Salmonella mutagenicity assay [Machado et al. 
1993; Reinke and Swanson 1993; De Méo et 
al. 1996a], while samples of field-generated 
fumes were nonmutagenic [Reinke and Swan­
son 1993]. Fumes generated in the laboratory 
from two paving asphalts induced in vitro and 
in vivo DNA-adduct formation [De Méo et al. 
1996a; Genevois et al. 1996]. No other ex­
perimental animal studies have been conducted 
to  determine the carcinogenic potential of 
either field- or laboratory-generated paving as­
phalt fume condensates. 

7.1.2.2 Human Studies 

! Epidemiology 

Epidemiologic studies of pavers and highway 
workers exposed to asphalt were examined to 
determine the carcinogenic potential of paving 
asphalt fumes. An analysis of these studies 
indicates that although some studies reported 
an elevated risk for lung cancer among pavers 
[Hansen 1989a; Engholm et al. 1991; Partanen 
et al. 1997; Milham 1997], others did  not 
[Maizlish et al. 1988; Bender et al. 1989]. De­
sign  limitations of both positive and negative 
studies restrict their interpretation. Partanen 
and Boffetta [1994] recently conducted a meta­
analysis of studies involving  pavers and high­
way workers exposed to asphalt. Their as­
sessment did not find overall evidence for lung 
cancer risk among pavers.  Overall, the epi­
demiologic evidence for an association be­
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tween lung cancer and exposure  to asphalt in 
paving is inconclusive at this time. 

!  Biomarkers 

Reported urinary 1-hydroxypyrene data sug­
gest that asphalt road pavers are at increased 
risk of exposure to PAHs in asphalt fume. Of 
the seven reports  [Jongeneelen et al. 1988; 
Burgaz et al. 1992; Levin et al. 1995; Hatjian 
et al. 1995 a,b, 1997; Zhou 1997] in which the 
use of urinary 1-hydroxypyrene was described, 
three [Burgaz et al. 1992; Levin et al. 1995; 
Zhou 1997] noted statistically significant, 
increased postshift levels compared with 
reference populations, and one [Hatjian et al. 
1997] noted a significant increase in one of 
two  paving groups over a 3-day period. Four 
studies in which urinary thioethers were 
analyzed [Lafuente and Mallol 1987; Burgaz et 
al. 1988, 1992; Pasquini et al. 1989; Hatjian et 
al. 1995b] and two studies in which urinary  D-
glucaric acid was analyzed [Pasquini et al. 
1989; Hatjian et al. 1995b]   found no sig­
nificant elevations in these biomarkers for 
asphalt-exposed workers relative to the ref­
erence populations. However, Burgaz et al. 
[1992] found significantly elevated urinary 
thioethers when only nonsmokers were
evaluated. 

Of three studies of possible genetic damage, 
none reported that exposure  to asphalt fumes 
led to a substantial elevation of biomarkers of 
genetic damage. Pasquini et al. [1989] found 
significantly increased urinary mutagenicity, 
but only for nonsmokers; therefore, smoking 
status was a more important factor than was 
asphalt fume exposure. Fuchs et al.  [1996] 
found no significant end-of-workweek eleva­
tion of DNA strand breaks. An observed el­
evation in sister chromatid exchange [Hatjian 
et al. 1995b]  was confounded by smoking 
status and other exposures to PAHs. 

 

7.1.3  Roofing Asphalt 

7.1.3.1 Animal Studies 

Data from experimental  studies in animals and 
cultured mammalian cells indicate that
laboratory-generated roofing asphalt fume con­
densates are genotoxic [NTP 1990; AI 1990a; 
Machado et al. 1993; Qian et al. 1996;
Toraason et al. 1991;  Wey et al. 1992] and 
cause skin tumors in mice when applied der­
mally [Niemeier et al. 1988; Sivak et al. 1989, 
1997]. The absence of data to indicate that 
laboratory-generated roofing asphalt fume con­
densates are representative of field-generated 
fumes limits the usefulness of these data for 
determining the genotoxicity and potential car­
cinogenicity of field-generated roofing asphalt 
fume condensates. 

 

 

7.1.3.2 Human Studies 

!  Epidemiology 

Epidemiologic studies of roofers have gen­
erally demonstrated an excess of lung cancer in 
these workers [Hammond et al. 1976; Menck 
and Henderson 1976; Engholm et al. 1991; 
Hrubec et al. 1992; Pukkala 1995; Milham 
1997; Zahm et al. 1989; Schoenberg et al. 
1987; Morabia et al. 1992] (see sections 5.2.3 
and 5.2.4). A meta-analysis of these studies 
conducted by Partanen and Boffetta [1994] 
also indicated an overall excess of lung cancer 
among  roofers. However, it is unclear to what 
extent these cancers may be attributable  to 
asphalt exposures during roofing operations, 
since in the past, roofers have been exposed to 
coal tar and asbestos, which are known human 
lung carcinogens. Although strong epidemi­
ologic evidence exists of an  association be­
tween lung cancer and working as a roofer, it 
is uncertain whether exposure to asphalt is 
related to this association. 

!  Biomarkers 

Biomarker concentrations  provided no clear 
insight about hazards from exposure to asphalt 
fumes. In a study  by Hatjian et al. [1995a, 
1997], one of two groups of roofers may  have 
had elevated urinary 1-hydroxypyrene. Both 
groups had significantly elevated levels of 
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SCE but no elevated level of urinary thioethers 
or urinary D-glucaric acid. In two other 
studies, Herbert  et al. [1990] found slightly 
elevated levels of DNA adducts, and Fuchs et 
al. [1996] found elevated levels of DNA strand 
breaks in end-of-workweek samples. However, 
in these studies, prior exposure to aged coal-tar 
pitch from roofing tear-off operations might 
have occurred. Currently, the available data 
indicate that roofers may be at  risk for car­
cinogenic and genotoxic effects. However, it is 
uncertain whether exposure to roofing asphalt 
fumes is associated with this risk. 

7.1.4 Exposures to Other Asphalt 
Products 

7.1.4.1 Animal Studies—Raw Asphalt 
and Asphalt-Based Paint 

The results are conflicting as to the  carcin­
ogenicity of raw roofing asphalt considering 
one experimental study  reported a weak
carcinogenic response in mice [Sivak et al. 
1989, 1997], while  another study reported no 
carcinogenic response [Emmett et al. 1981]. 
Similarly, the available data indicate that while 
not all asphalt-based paint formulations may 
exert genotoxicity and carcinogenicity, some 

 

are genotoxic [Robinson et al. 1984;  Schoket 
et al. 1988 a,b] and carcinogenic [Robinson et 
al. 1984; Bull et al. 1985]. Although no pub­
lished data exist that  examine the carcinogenic 
potential of asphalt-based paints in humans, 
NIOSH concludes that asphalt-based paints are 
potential occupational carcinogens. 

7.1.4.2 Human Studies 

! Epidemiology 

No epidemiologic studies of worker exposure 
to asphalt or asphalt-based paints have been 
reported. 

! Biomarkers 

Three reported studies provide no evidence for 
an  exposure risk. In one study, a group of 
workers who loaded asphalt tankers and 
another group involved in the manufacture of 
asphalt showed no elevation of urinary 
1-hydroxypyrene [Boogard and van Sittert 
1995]. Burgaz et al. [1988] reported that 
workers in an asphalt hot-mix plant showed no 
elevation in urinary thioethers, and Fuchs et al. 
[1996] reported that asphalt painters showed 
no elevated levels of DNA strand breaks. 

7.2 Noncarcinogenic Health 
Effects 

A relatively small number of studies on the 
acute health effects associated with exposure 
to asphalt fumes have been published since the 
NIOSH criteria document on asphalt was pub­
lished in 1977. Although the results from these 
studies are of limited  value because of limi­
tations  in design and inadequate characteri­
zation of workers’ exposures, certain acute 
health effects can reasonably be ascribed to  as­
phalt fume exposure on the basis of the con­
sistency of findings among studies. 

Studies of workers exposed to asphalt fumes 
have repeatedly found irritation of the serous 
membranes of the conjunctivae  (eye  irritation) 
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and the mucous membranes of the upper re­
spiratory tract (nasal and throat irritation). 
These health effects, which have been best 
described in asphalt road pavers [Norseth et al. 
1991; Hanley and Miller 1996 a,b; Almaguer 
et al. 1996; Miller and Burr 1996 a,b, 1998; 
Kinnes et al. 1996; Sylvain and Miller 1996], 
typically appear to be mild  and  transitory.  In 
studies of open-air paving, irritant symptoms 
occurred among workers  exposed to asphalt 
fumes at geometric mean concentrations gen­
erally below 1.0 mg/m3 total particulates and 
0.3 mg/m3  benzene- or carbon disulfide-
soluble particulates calculated as a full-shift 
TWA [Almaguer et al. 1996; Hanley and
Miller 1996 a,b; Miller and Burr 1996 a,b, 
1998; Kinnes et al. 1996; Exxon  1997;
Norseth et al. 1991]. Similar symptoms were 
reported in workers exposed to asphalt fumes 
during the manufacture of asphalt roofing
shingles [Apol and Okawa 1977] and
fluorescent lights [Chase et al. 1994], during 
insulation of cable [Zeglio 1950], and from a 
malfunctioning light fixture in an  office
[Tavris et al. 1984]. Exxon [1997] reported the 
occurrence of mild transitory symptoms of 
nasal and throat irritation,  headaches, and
coughing among workers employed  in five 
segments of the asphalt industry (hot-mix
plants, terminals, roofing application, roofing 
product manufacturing, and paving), although 
no significant dose-response associations were 
found between measured exposures and
symptoms. 

In addition to mucosal irritation, reports  of 
skin irritation, pruritus, and occasionally
rashes have been described in workers with 
occupational exposures to asphalt fumes
[Hanley and Miller 1996 a,b; Almaguer et al. 
1996; Miller and Burr 1996 a,b, 1998; Kinnes 
et al. 1996; Chase et al. 1994; Tavris et al. 
1984; Schaffer et al. 1985; Waage and Nielson 
1986]. In  a recent survey of 50 roofers and 101 
road pavers [Riala et al. 1998], work-induced 
skin irritation was  reported in 44% of the 
roofers and 31% of the  pavers.  Dermatitis, 
predominately  of the face, hands and arms, and 
lower  extremities, occurred more often among 

 

 

 
 

 

 

 

 

 

 

road pavers (22%) than among roofers (15%). 
It was not determined if the dermatitis was 
irritant or allergic in nature, or if dermal photo­
sensitization similar to that seen with coal tar, 
was occurring. Given the presence  of con­
founding co-exposures (i.e., diesel fuel, coal 
tar, fiberglass) and environmental conditions 
(wind, heat and humidity, UV radiation), the 
extent to which asphalt fumes may be as­
sociated with these skin problems is unclear 
and should be studied further. 

Symptoms of nausea, stomach pain, decreased 
appetite, headaches, and fatigue have  been 
commonly reported among workers exposed to 
asphalt [Norseth et al. 1991; Chase et al. 
1994; Tavris et al. 1984; Schaffer et al. 1985; 
Waage and Nielson 1986; Exxon 1997]. These 
nonspecific symptoms also require further in­
vestigation to clarify and establish the nature 
of any causal relationships with asphalt fume 
exposure. 

Reports of  acute lower respiratory tract  symp­
toms (i.e., coughing, wheezing, shortness of 
breath) [Hanley and Miller 1996 a,b; Almaguer 
et al. 1996; Miller and Burr 1996 a,b, 1998; 
Kinnes et al. 1996; Sylvain and Miller 1996; 
Nyqvist 1978; Zeglio 1950]) and changes in 
pulmonary function (e.g., bronchial lability) 
[Sylvain and Miller 1996; Waage and Nielson 
1986] among exposed workers are of particular 
concern. Results  from recent studies [Exxon 
1997;  Hanley and Miller 1996 a,b; Almaguer 
et al. 1996; Miller and Burr 1996 a,b, 1998; 
Kinnes et al.  1996] indicated that some 
workers experienced lower respiratory tract 
symptoms (and in one case, significant 
changes in pulmonary function) during rela­
tively low exposures to asphalt fumes, such as 
those found during open-air highway paving 
(0.075 to 0.48 mg/m3 total particulates and 
0.07 to 0.24 mg/m3 benzene-soluble particu­
lates, mean range exposures). Present data are 
insufficient to determine the causal relation­
ship between asphalt fume exposures and 
lower respiratory  symptoms or changes in pul­
monary function; however, personal health 
factors (i.e., pre-existing asthma) or higher 
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exposures to asphalt fumes,  such as those 
found during underground paving, might in­
crease risks to  workers [Norseth et al. 1991; 
Sylvain and Miller 1996]. 

Bronchitis, possibly related to chronic lower 
respiratory tract irritation, was reported among 
workers exposed to asphalt in several studies 
[Hansen 1991; Maizlish et al. 1988; Nyqvist 
1978; Zeglio 1950; Baylor and Weaver 1968; 
Hasle et al. 1977]. Reports from  Hueper and 
Payne [1960] and  Simmers [1964] in IARC 
[1985] indicated that patchy distributions of 
emphysema, bronchiolar dilatation, pneu­
monitis, and severe localized bronchitis were 
observed in guinea pigs, rats, and mice chron­
ically exposed to bitumens during inhalation 
studies. Findings of measurable decrements in 
pulmonary function and reports of bronchitis 
among asphalt-exposed workers suggest that 
chronic  exposure to asphalt fumes may pose 
similar risks for humans. Unfortunately, the 
limited data preclude making any determi­
nations concerning asphalt exposure-related 
chronic pulmonary morbidity at this time. 

7.3 Overall Conclusions 

In this hazard review, NIOSH has evaluated 
the scientific evidence concerning the potential 
health effects of occupational  exposure to
asphalt. On  the basis of available data from 
studies in animals and humans, NIOSH
concludes the following about the acute health 
effects of asphalt exposure: 

 

 

• The findings of this hazard review continue 
to support the assessment of the 1977 
NIOSH criteria document on asphalt fumes, 
which associated exposure to asphalt fumes 
from roofing,  paving, and other uses of 
asphalt with irritation of the eyes, nose, and 
throat. Furthermore, in studies conducted 
since the publication of the 1977 criteria 
document, these symptoms have also been 
noted among workers exposed to asphalt 
fumes at geometric mean  concentrations 
generally below 1  mg/m3 total particulates 
and 0.3 mg/m3 benzene-soluble or carbon 
disulfide-soluble particulates, calculated as 
a full-shift TWA. Recent studies also report 
evidence of acute lower respiratory tract 
symptoms among workers exposed to 
asphalt fumes. These data are currently 
being  further analyzed to assess the re­
lationship between lower respiratory tract 
symptoms and asphalt fume exposure. The 
available data on chronic pulmonary effects 
(such as bronchitis) are insufficient to sup­
port an association with asphalt fume 
exposures. 

In 1988, NIOSH recommended to OSHA that 
asphalt fumes  be considered a potential oc­
cupational carcinogen based on the results of 
an  animal study in which laboratory-generated 
roofing asphalt fume condensates induced 
malignant skin tumors in mice.  Since then, 
investigators have described differences in 
chemical composition, physical characteristics, 
and biological activity between asphalt fumes 
collected in the field and those generated in the 
laboratory. The relevance of these differences 
in ascribing adverse health effects in humans 
is unknown. Data from studies in humans 
indicate that some workers exposed to asphalt 
fumes are at an elevated risk of lung cancer; 
however, it is uncertain whether  this excess is 
related to asphalt and/or other carcinogens in 
the workplace. Although carcinogenic PAHs 
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have been identified in asphalt fumes at
various work sites, the measured concentra­
tions and the frequency of their occurrence 
have been low. In addition, data from studies 
using  HPLC analysis to identify PAHs were 
not considered because of the limitations of 
this method (e.g., compound resolution). 

Based on evaluation of these  data, the
following conclusions were drawn regarding 
the carcinogenicity of asphalt under several 
conditions of use: 

•	 Data regarding the potential  carcinogen­
icity of paving asphalt fumes in humans 
are limited. Only one study identified
B(a)P in field fumes, but it was unclear 
whether paving asphalt fumes were the 
source of the B(a)P. Chrysene  has been 
identified only in laboratory-generated
paving  asphalt fumes. The available data 
from studies in humans have not provided 
consistent evidence of carcinogenic effects 
in workers exposed to asphalt fumes dur­
ing paving operations. No animal studies 
have examined the carcinogenic potential 
of either field- or laboratory-generated
samples of paving asphalt fume conden­
sates. Although genotoxicity assays (but no 
carcinogenicity assays) using laboratory-
generated and field-generated (storage tank 
paving asphalt) fumes have been
conducted, only the laboratory-generated 
fumes were genotoxic. Therefore, NIOSH 
concludes that the collective data  currently 
available from  studies on paving asphalt 
provide insufficient evidence for an as­
sociation between lung cancer  and ex­
posure to asphalt fumes during paving. The 
available data, however, do not preclude a 
carcinogenic risk from asphalt fumes
generated during paving operations. 

•	 The results from epidemiologic studies
indicate that roofers are at an increased risk 
of lung cancer, but it is uncertain whether 
this increase can be attributed to asphalt 
and/or to other exposures such as coal tar 
or asbestos. Data from experimental stud­

 

 

 

 

 

 

 

 

ies in animals and cultured mammalian 
cells indicate that laboratory-generated
roofing asphalt fume condensates are geno­
toxic and cause skin  tumors in mice when 
applied dermally. Furthermore, a known 
carcinogen, B(a)P, was detected in field-
generated roofing fumes.  The collective 
health and exposure data provide sufficient 
evidence for NIOSH to conclude that roof­
ing asphalt fumes are a potential oc­
cupational carcinogen. 

•	 The available data indicate that although 
not all asphalt-based paint formulations 
may exert genotoxicity, some are geno­
toxic and carcinogenic in animals. No 
published data examine the carcinogenic 
potential  of asphalt-based paints in hu­
mans, but NIOSH concludes that asphalt-
based paints are potential occupational 
carcinogens. 

 

7.4 Recommendations 

In 1977, NIOSH recommended a REL of 
5 mg/m3 (15-min sample5) for asphalt fumes to 
minimize the risk of acute respiratory and eye 
irritation. Because there were insufficient data to 
ascribe the chemical fume components re­
sponsible for the  irritant effects, the REL was 
based on a total particulate sample, which was 
determined to be an appropriate surrogate for 
exposure. 

Recent epidemiologic studies of workers ex­
posed to asphalt fumes indicate that irritant 
effects and acute respiratory symptoms (e.g., 
coughing, shortness of breath) are still oc­
curring. In addition, exposure assessment 
studies demonstrate the complexity of 

5See footnote 1 in chapter 1. 
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monitoring and evaluating the many com­
ponents that may be present in asphalt, asphalt-
based paints, and asphalt fumes and  vapors. 
The complexity  occurs because the quantities 
of these components vary depending on use 
conditions. 

Current data are considered insufficient for 
quantifying the acute and chronic health risks 
of exposure to asphalt, asphalt-based paint, or 
asphalt fumes and vapors. However, data from 
at least two studies of acute effects are cur­
rently being evaluated to determine their 
usefulness in deriving an REL. Additional 
studies of workers exposed  to asphalt fumes, 
vapors, and aerosols  (e.g., during paving, 
roofing,  and painting operations) are needed to 
better characterize exposures and to evaluate 
the  risk of chronic disease, including lung 
cancer. Also required are experimental animal 

studies that use laboratory generation methods 
to produce fumes and vapors representative of 
asphalt roofing and paving operations. Until 
the results  of these studies become available, 
NIOSH recommends minimizing possible 
acute or chronic health effects from exposure 
to asphalt, asphalt fumes and vapors, and 
asphalt-based paints by adhering to the current 
NIOSH REL of 5 mg/m3 (15-min sample) and 
by implementing the following practices: 

• Prevent dermal exposure. 
• Keep the application temperature of heated 

asphalt as low as possible. 
• Use engineering controls and good work 

practices  at all work sites to minimize 
worker exposure to asphalt fumes and 
asphalt-based paint aerosols. 

• Use appropriate respiratory  protection (see 
Appendix C). 
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The research identified below represents the 
many facets of information needed to 

assess completely the health risks associated 
with dermal  and respiratory exposures to as­
phalt and asphalt fumes and aerosols. The 
principal goal of the proposed research should 
be to answer the following questions. 
(1) What health  effects are associated with ex­
posure to asphalt? (2) What constituent(s) of 
asphalt fumes is responsible for  acute and 
possibly chronic adverse health effects? 
(3) What constituent(s) of asphalt fumes 
should be used as the metric for monitoring 
workplace exposures? (4) What types of 
control technology (e.g., engineering, work-
practice controls) are feasible to prevent 
worker exposure to asphalt? (5) What is an 
appropriate “health-based”  exposure 
concentration of asphalt fumes (or its 
constituents) that will prevent acute and 
possibly chronic adverse health effects? 

8.1 Human Studies 

8.1.1  Cancer Studies 

!	 Determine the availability of U.S. worker 
cohorts suitable for evaluating cancer risk 
from  exposure to asphalt fumes during 
paving and roofing operations; the 
manufacture of asphalt products; and the 
use of asphalt-based paints,  cutback as­
phalts, and asphalt emulsions. This study 
should be coordinated with the IARC study 
to facilitate comparison of results and per­
haps integrate  U.S. data with IARC data in 
a pooled analysis. 

!	 If suitable populations and methods of 
study are found, design and conduct 
epidemiologic studies that include— 

•	 Careful characterization of past and 
current worker exposures, 

•	 Consideration of potential confound­
ers, such as smoking, diet, medication, 
coal tar, and diesel exhaust, and 

•	 Use of suitable biological monitoring 
methods. 

!	 Perform quantitative risk estimates for any 
identified cancers. 

!	 Conduct biomarker studies (see section 
8.3). 

!	 Conduct studies in which representative 
samples of exposure levels are evaluated in 
workers exposed to asphalt products, such 
as roofers, applicators, etc. 

8.1.2  Noncancer Studies 

!	 Using a population of U.S. workers ex­
posed to asphalt during paving  and roofing 
operations; the  manufacture of asphalt 
products; and the use of asphalt-based 
paints, cutback asphalts, and asphalt 
emulsions— 

•	 Test for the occurrence of acute 
effects, 
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• Characterize the nature of the ex-
posures, and if possible, 

• Establish exposure-response relation-
ships. 

! Develop and validate biomarkers of acute 
effects. 

! Conduct a morbidity study of U.S. workers. 

8.2  Animal Studies 

! Generate asphalt fumes that are chem-
ically representative of roofing and paving 
fumes in the field and test their car-
cinogenic potential with lifetime in-
halation bioassays in rodents. 

! Use these fumes to conduct limited skin-
painting studies to determine tumori-
genicity. 

! Use  these  fumes in range-finding toxicity 
studies to characterize acute and sub-
chronic effects and to develop novel tech-
niques for biological monitoring and bio-
markers. 

! Use toxicity testing to determine dose-
response  relationships for both acute and 
chronic endpoints. 

8.3  Biomarker Studies  

! Study biomarkers associated with cancer 
risk as surrogates for cancer mortality or 
morbidity. Also study biomarkers that in-
dicate exposure to known  carcinogens 
(e.g., DNA adducts) and genotoxins. 

! Develop an alternative to urinary 1-hy-
droxypyrene, which seems only weakly 
useful as a biomarker of exposure to as-
phalt fumes.  Urinary biomarkers derived 
from these more abundant compounds, 
such as methylnaphthalenes, naphthalene, 
C3-alkylbenzothiophenes, C2-alkyl-

benzothiophenes, and methylphenan-
threnes or methylanthracenes, might 
better represent exposure to asphalt 
fumes than urinary 1-hydroxypyrene. 

! Develop biomarker methods that allow 
PAH exposure from asphalt to be dif-
ferentiated from other sources of PAH 
exposure, such as coal tar, tobacco 
smoke, and ambient pollution. 

8.4  Fume Characterization,
  Sampling, and Analytical   
  Methods 

! Conduct studies to identify and evaluate 
properties of crude source, asphalt type 
and use, and manufacturing processes 
that contribute to the qualitative and 
quantitative chemical composition of 
asphalt fumes and vapors. 

! Continue to assess the differences be-
tween laboratory-generated and field-
generated fumes and continue the search 
for  the  constituents of asphalt fumes that 
correlate closely with health effects. Once 
relevant compounds or compound classes 
are  identified, develop analytical 
sampling and analysis methods. 

! One approach to  identifying a marker 
chemical  or chemical class for carcinogeni-
city is to determine which components of 
the fumes used by Sivak et al. [1989, 1997] 
caused cancer in mouse skin-painting 
models. Continue research to identify these 
chemicals or to measure them without iden-
tification. Once they are identified, use 
these marker compounds to determine how 
the positive animal studies relate to the 
risks posed by workplace fumes. 
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! Develop or improve analytical sampling 
and analysis methods. 

! Develop a method for determining  the total 
three-ring and higher PAC content, since 
asphalt fumes contain many alkylated PACs. 

! Develop an analysis method for deter­
mining individual PACs or other chemical 
analytes so that correlations can be made 
between air concentrations and 
biomarkers. 

! Conduct additional studies of the 
genotoxicity and mutagenicity of fumes 
collected during paving, roofing, and 
manufacturing using modified Ames 
assays, SCE assays, and DNA adduct 
assays. 

! Characterize the molecular weight dis­
tribution of the chemical classes and dif­
ferent chemical functional groups in the 
vapors and fumes to which workers are 
exposed. Collect vapors and fumes from 
worksites where paving asphalt, roofing 
asphalt, cutback asphalts, asphalt emul­
sions, or asphalt-based paints are being 
used. Use increasingly  sophisticated tech­
niques to characterize further the 
chemistry of these exposures. 

! Develop and validate a dermal method for 
assessing  asphalt fume exposure, because 
exposure to asphalt fumes may also occur 
by dermal contact. 

! Characterize particle sizes of fumes. Be­
cause the hazard potential of chemicals 
present in inhaled air depends both on par­
ticle size and concentration, additional re­
search  is needed to define the size frac­
tions present in asphalt fumes more 
clearly. This research would help deter­
mine the most effective sampling devices 
(inhalable, thoracic, or respirable) to use 
when evaluating asphalt fume exposures. 

! Determine the effect of modifiers on as­
phalt fume composition. 

8.5 Control Technology 

8.5.1 Paving Operations 

!	 Evaluate new formulations (e.g., introduc­
tion of additional polymers) to determine 
whether the constituents and amount of 
fumes generated change. 

!	 Evaluate the effectiveness of the engi­
neering controls recently incorporated into 
highway-class pavers. Identify the type 
and frequency of maintenance required to 
maintain optimum effectiveness of  these 
controls. 

!	 Determine the feasibility of  engineering 
controls on commercial-class pavers 
(smaller than 16,000 pounds)  to reduce 
asphalt fume exposures. 

!	 Investigate the  feasibility of incorporating 
engineering controls on nonpaver equip­
ment used in laying hot-mix asphalt 
during road construction and repair. Such 
equipment includes surface grinders, 
materials-transfer vehicles, windrow 
machines, truck-mounted patching pavers, 
and crack sealers. 

!	 Evaluate the design and use of receiving 
hoppers operated in conjunction with 
materials-transfer vehicles  to determine 
whether changes can  be  made to reduce 
worker exposure to asphalt fumes. 

8.5.2 Roofing Operations 

!	 Continue to evaluate the various types of 
asphalt kettles and determine what types 
of engineering controls  and design config­
urations provide optimal reductions in 
asphalt fume exposure.  Investigate alter­
native methods for feeding asphalt into the 
kettle that  will reduce the need for and 
frequency of lifting the kettle lid. The 
efficacy of new “low-fuming” asphalts 
should be evaluated. 
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! Investigate all sources of asphalt fume ex­
posure during the application of hot 
asphalt to roofs and determine what types 
of engineering control methods and work 
practice changes can be instituted to 
reduce such exposures. 

! Evaluate procedures and equipment used 
during roof tear-off to determine the most 
effective means of reducing worker ex­
posures. 

8.5.3  	Waterproofing Operations 

!	 Investigate methods (e.g., engineering 
controls, work practices) that are effective 
in minimizing airborne and dermal ex­
posures during the application of asphalt 
waterproofing materials. 

8.6	 Training and Education
 Effectiveness 

!	 Ascertain the effectiveness of current 
training and educational efforts to inform 
workers of the potential hazards as­
sociated with working with asphalt.  De­
velop intervention strategies where 
warranted.
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Appendix A
 

Uses and Applications of Asphalt*
 

Agriculture 
(See also Buildings, Hydraulics and
 Erosion Control, and Paving) 
Cattle sprays 
Damp-proofing and waterproofing 
buildings, structures 
Disinfectants 
Fence post coating 
Mulches 
Mulching paper 
Paved barn floors, barnyards, feed 
platforms, etc. 

Protecting tanks, vats, etc. 
Protection for concrete structures 
Tree paints 
Water and moisture barriers (above and
 below ground)
 
Wind and water erosion control
 
Weather modification areas
 

Buildings 
(See also Industrial, Paving) 

FloorsFloors FloorsFloors
Damp-proofing and waterproofing 
Floor composition, tiles, coverings 
Insulating fabrics, papers 
Step treads 

RoofingRoofing RoofingRoofing
Building papers 
Built-up roof adhesives, felts, primes 
Caulking compounds 
Cement waterproofing compounds 

*Adapted from AI [1990b]. 
Cleats for roofing 
Glass wool compositions 

Insulating fabrics, felts, papers
 
Joint filler compounds
 
Laminated roofing, shingles
 
Liquid roof coatings
 
Plastic cements
 
Shingles
 

WWWWaaaalls, Siding, Cells, Siding, Cells, Siding, Cells, Siding, Ceilingsilings ilingsilings
Acoustical blocks, compositions, felts 
Architectural decoration 
Bricks 
Brick siding 
Building blocks, papers 
Damp-proofing coatings, compositions 
Insulating board, fabrics, felts, paper 
Joint filler compounds 
Masonry coatings 
Plaster boards 
Putty, asphalt 
Siding compositions 
Soundproofing 
Stucco base 
Wallboard 

MiscellaneousMiscellaneous MiscellaneousMiscellaneous
Air-drying paints, varnishes
 
Artificial lumber
 
Ebonized lumber
 
Insulating paints
 
Plumbing, pipes
 
Treated awnings
 

Hydraulics and Erosion Control 
Canal linings, sealants
 
Catchment areas, basins
 
Dam grouts
 
Dam linings, protection
 
Dike protection
 
Ditch linings
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Drainage gutters, structures 
Embankment protection 
Groins 
Jetties 
Levee protection 
Mattresses for levee and bank protection 
Membrane linings, waterproofing 
Ore leaching pads 
Reservoir linings 
Revetments 
Sand dune stabilization 
Sewage lagoons, oxidation ponds 
Swimming pools 
Waste ponds 
Water barriers 

Industrial 
AAAAlllluminum Foil Compositions Uuminum Foil Compositions Uuminum Foil Compositions Uuminum Foil Compositions Ussssinging inging

AAAAssssphaltphalt phaltphalt
Backed felts
 
Conduit insulation, lamination
 
Insulating boards
 
Paint compositions
 
Papers
 
Pipe wrapping
 
Roofing, shingles
 

Automotive 
Acoustical compositions, felts
 
Brake linings
 
Clutch facings
 
Floor sound deadeners
 
Friction elements
 
Insulating felts
 
Panel boards
 
Shim strips
 
Tacking strips
 
Underseals
 

Electrical 
Armature carbons, windings 
Battery boxes, carbons 
Electrical insulating compounds, papers, 
tapes, wire coatings
 

Junction box compound
 
Molded conduits
 

Composition Materials 
Black grease
 
Buffing compounds
 
Cable splicing compound
 
Embalming
 

Etching compositions Extenders, 
rubber, other 
Explosives 
Fire extinguisher compounds 
Joint fillers 
Lap cement 
Lubricating grease 
Pipe coatings, dips, joint seals 
Plastic cements 
Plasticizers 
Preservatives 
Printing inks 
Well drilling fluid 
Wooden cask liners 

Impregnated, Treated Materials 
Armored bituminized fabrics 
Burlap impregnation 
Canvas treating 
Carpeting medium 
Deck cloth impregnation 
Fabrics, felts 
Mildew prevention 
Packing papers 
Pipes and pipe wrapping 
Planks 
Rugs, asphalt base 
Saw dust, cork, asphalt composition 
Textiles, waterproofing 
Tiles 
Treated leather 
Wrapping papers 

Paints, Varnishes, etc. 
Acid-proof enamels, mastics, varnishes 
Acid-resistant coatings 
Air-drying paints, varnishes 
Anticorrosive and antifouling paints 
Antioxidants and solvents 
Base for solvent compositions 
Baking and heat resistant enamels 
Boat deck sealing compound 

Health Effects of Occupational Exposure to Asphalt 116 



5 HUMAN HEALTH EFFECTS 
APPENDIX A 

Lacquers, japans
 
Marine enamels
 

Miscellaneous 
Belting
 
Blasting fuses
 
Briquette binders
 
Burial vaults
 
Casting molds
 
Clay articles
 
Clay pigeons
 
Depilatories
 
Expansion joints
 
Flower pots
 
Foundry cores
 
Friction tape
 
Gaskets
 
Imitation leather
 
Mirror backing
 
Phonograph records
 
Rubber, molded compositions
 
Shoe fillers, soles
 
Table tops
 

Paving 
(See also Agriculture, Hydraulics and
 Erosion Control, Railroad, Recreation) 

Airport runways, taxiways, aprons, etc. 
Asphalt blocks 
Brick fillers 
Bridge deck surfacing 
Crack fillers 
Curbs, gutters, drainage ditches 

Floors for buildings, warehouses,
  garages, etc. 
Highways, roads, streets, shoulders 
Parking lots, driveways 
Portland concrete cement (PCC) 
Underseals 
Roof-deck parking 
Sidewalk, footpaths 
Soil stabilization 

Railroads 
Ballast treatment 
Curve lubricant 
Dust laying 
Paved ballast, subballast 
Paved crossings, freight yards, station

 platforms 
Rail fillers 
Railroad ties 
Tie impregnating, stabilization 

Recreation 
Paved Surfaces 

Dance pavilions
 
Drive-in movies
 
Gymnasiums, sports arenas
 
Playgrounds, school yards
 
Race tracks
 
Running tracks
 
Skating rinks
 
Swimming and wading pools
 
Tennis courts, handball courts
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Summary of Occupational
 
Exposure Data
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Table B-1. Exposures to general asphalt refinery workers during asphalt refinery operations 

Samples Concentration (mg/m3) 

Occupation Source of exposure    Number     Type      Range Geo. mean Ari. mean References 

General asphalt refinery workers 
General asphalt refinery workers 

Vacuum distillation 
Asphalt processing (6 re­

4u 

14u 

Total PAHs† 

Total PAHs† 
0.0047-0.016  
0.0015-0.031  

0.0082 
0.067 

0.0095 
0.010 

  NIOSH 1980 
  NIOSH 1983 

General asphalt refinery workers 
Operator 
Assistant operator 
Bitumen loaders 

  fineries) 
Deasphalting (1 refinery) 

Outdoor bitumen refinery

4u 

2 
3 
‡ 

Total PAHs† 

Total PAHs† 

Total PAHs† 

Benzene solubles 

0.0014-0.041  
0.0034-0.021  
0.0025-0.050  

0.3-1.0  

0.12 
0.0084 

0.14
§ 

0.021 
0.012 
0.025

§ 
  Claydon et al. 

  unit (bitumen at 170 to
  210°C [338 to 410°F]) 

‡ Total particulates 0.1-1.4  
§ § 

1984 

Package fillers Indoor area (bitumen at 2 Total particulates 0.20-0.32  0.25 0.23   Brandt et al.

Bitumen loaders 
  220°C  [428 °F]) 
Outdoor bitumen refinery
  unit  (bitumen at 170 to
  210°C [338 to 410°F]) 

4 
4 
4 

Total particulates 
Benzene solubles 
Total PAHs† 

0.7-2.9  
<0.1-1.0  

3.8-95  

§ 

§ 

§ 

1.4 
0.4 
33 

1985 

Operator 11 Total particulates <0.03-8.2  0.17 0.88   Hicks 1995 
11 Benzene solubles 0.034-1.9  0.14 0.42 

Assistant operator Asphalt refinery/terminal 9 Total particulates <0.03-0.49  0.18 0.25 
  (temperature of product 9 Benzene solubles <0.066-0.32  0.11 0.13 
  at fume source ranged 4 Total particulates 0.17-0.26  0.22 0.23 

Lab technician   from 160 to 375°C [320 4 Benzene solubles <0.062-0.43  0.15 0.21 
Loader/pumper operator   to 707°F]) 10 Total particulates <0.026-14  0.29 1.6 

10 Benzene solubles 0.038-13  0.29 1.6 
Maintenance/administration Asphalt refinery/terminal 6 Total particulates <0.032-0.77  0.17 0.29 

  (temperature of produce 6 Benzene solubles 0.011-0.22  0.076 0.1 
Utility worker   at fume source ranged

  from 160 to 375°C [320
  to 707°F]) 

4 
4 

Total particulates 
Benzene solubles 

<0.024-0.062  
<0.054-1.1  

0.039 
0.3 

0.043 
0.49 

Abbreviations:  Ari. mean=arithmetic mean; Geo. mean=geometric mean. 
uArea air samples.  All remaining samples were personal-breathing-zone air samples. 
†The sampling and analytical methods used for measuring PAH concentrations may vary between studies, and results may not be directly comparable.
 

‡Number of samples collected not available.
 

§Information not provided.
 

NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages.
 

NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix.  Because the extraction ability of these solvents varies, results
 

are not comparable.
 



 

   
  

      

      

  
               

 
  

   

   

   

  
   

   

  
   

   

  
   

   

  
 

   
  

 

   
  

   

   

   

      

      

 
  

Table B-2. Exposures during road paving operations 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure  Number Type  Range Geo. mean  Ari. mean References 

Screedman, rakerman,
  foreman, roller operator 
Paver operator 
Surface dressing worker 

Asphalt cement pavers 

Course asphalt base worker 

Mastic asphalt worker 

Unknown 

Surface dressing worker 

Oil gravel worker 

Paver operator 
Rakerman 
Screedman 
Paver operator, screedman 

Screed operator 
Laborer 
Various paving workers 

Surface dressing worker 

Pavers (smokers) 

Paver operator 

Road paving using an asphalt
  mix 

Hot asphalt cutback surface
  (cutback at 135°C [275 °F]) 

Road paving (asphalt temper­
  atures ranged from 145 to
  195°C [293 to 383 °F]) 

Road paving (asphalt mix tem­
  erature ranged from 130 to
  170°C [266 to 338 °F]) 
Road paving 

Sulfur-extended asphalt road
  construction 
Hot bitumen cutback (tem­
  perature ranged from 120 to
  158 °C [248 to 316 °F]) 

Road paving with asphalt 

Road paving using bitumens 

215 

72 
9 

17 
1 

10 
1 

16 
11 

18 
6 
4 
4 
8 
2 

14 
7 
7 

4† 

1 
2 
8 
7 
7 
4 
4 

5 

5 

Total particulates 

Total particulates 
Total particulates 

Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 

Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 
Total particulates 
Total particulates 
Total PAHs‡ 

Total particulates 
Total particulates 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total PAHs‡ 

Total particulates 

Cyclohexane solubles 

u 

u 

u 

<0.1-1.2 
u 

0.4-1.1  
u 

0.2-4.2  
<0.1-2.7 

0.1-3.0  
<0.1-1.3 

0.8-2.5  
<0.1-0.4 

0.1-1.4  
<0.1-0.5 
0.15-5.6  
0.25-3.5  
0.33-1.5  

0.0043-0.013  
u 

2.4-3.6  
0.2-15  
0.1-0.3  
0.2-1.5  
0.1-0.5  

0.00075-0.0031 
u 

u 

u 

u 

u 

u 

0.3  
u 

0.6  
u 

u 

u 

u 

u 

u 

u 

0.22  
0.80  
0.61  
0.62  

0.0075  

4.5  
2.9  

u 

u 

u 

u 

0.0015  
u 

u 

0.3-0.7   

1.1  
0.8  

0.3  
0.3  
0.6  
0.6  
1.7  
1.2  

1.0  
0.7  
1.7  
0.2  
0.6  
0.3  
1.3  

0.93  
0.83  

0.0083  

4.5  
3 

2.6 
0.2  
0.6  
0.2  

0.0017  

0.58  

0.17  

Byrd and
   Mikkelsen 1979 

Virtamo et al. 1979 

Puzinauskas 1980 

Malaiyandi et al. 1982 
Daniels and Kram­
  koski 1983 
Brandt et al.
 1985 

Pozzoli et al. 1985 
Monarca et al. 1987 

___________ 

See footnotes at end of table. (Continued) 



 

      

      

   
     

   

   

   

   

      

   

      

   

   

   

   

   

   

   

   

   

   

    

Table B-2 (Continued).  Exposures during road paving operations 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type  Range Geo. mean  Ari. mean Reference 

Screedman 

Screedman 1 (smoker) Asphalt paving crew in
  Florida (using AC-30 grade) 

Screedman 2 (nonsmoker) 

Luteman (nonsmoker) 

Roller operator
   (nonsmoker) 
Screedman 1 (smoker) Asphalt paving crew in

  Maryland (using an asphalt
  cement, Grade 20) Screedman 2 (nonsmoker) 

Luteman (nonsmoker) 

Roller operator
   (nonsmoker) 

Paver operator (nonsmoker) 
Foreman Paving operations tempera­

  ture of product at fume
  source ranged from 123 to
  152 °C [253 to 306 °F]) 

Laborer 

12 
12 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
7 
7 

Total particulates 
Cyclohexane solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

u 

0.32-0.53  
0.12-0.22  
0.22-0.43  
0.049-0.5  

u 

u 

0.22 
0.11 
0.22 
0.13 
0.16 

u 

0.48 
u 

0.14 
0.20 
0.44 
0.41 
0.32 
0.38 
0.33 

0.098 
0.90 
0.76 
0.41 
0.16 
0.34 
0.15 

0.83 
0.16 
0.22
0.11 
0.22 
0.13 
0.16 
ND 

0.48 
ND 

0.14 
0.20 
0.44 
0.41 
0.32 
0.38 
0.33 

0.098 
0.90 
0.76 
0.43 
0.17 
0.34 

0.2 

    Gunkel 1989 

    Hicks 1995 

Screedman 10 
10 

Total particulates 
Benzene solubles 

0.21-0.86  
0.03-4.4  

0.48 
0.28 

0.54 
0.73 

Luteman 5 
5 

Total particulates 
Benzene solubles 

0.12-0.35  
<0.078-0.33  

0.21 
0.14 

0.23 
0.16 

Roller operator 5 
5 

Total particulates 
Benzene solubles 

0.11-0.82  
<0.071-2.5  

0.3 
0.42 

0.4 
0.77 

Spreader operator
   (screedman) 

8 
8 

Total particulates 
Benzene solubles 

0.14-0.86  
0.038-1.2  

0.46 
0.33 

0.54 
0.47 

___________ 
See footnotes at end of table. (Continued) 



 

      

      

      

      

      

      

      

      

      

   
                         

Table B-2 (Continued).  Exposures during road paving operations 

Occupation 

Foreman 

Screedman 

Raker 

Roller 

Paver operator 

Foreman 

Screedman

Raker/Laborer 

Roller operator 

Paver operator 

Source of exposure 

Paving operation (temper­
  ature of product at fume
  source ranged from 135 to
  151 °C [275 to 304 °F]) 

Paving operations (tempera­
  ture of product at fume 
  source ranged from 135 to 
  158 °C [275 to 316 °F]) 

Number 

3 
1 

5 
3 
2 
6 
4 
2 
6 
4 
2 
3 
2 
3 
2 
1 
6 
4 
2 
6 
3 
3 
4 
3 
1 
3 
2 
1 

Samples 

Type

Total particulates 
Benzene solubles 

Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 

Exposure concentration (mg/m3) 

Range Geo. mean Ari. mean 

0.19-0.24  0.22 0.22 
u u 

ND 

0.05-0.26  0.18 0.15 
ND-0.20  0.015 0.047 

u u 

ND 
0.01-0.47  0.14 0.23 
ND-0.35  0.008 0.2 

u u 

ND 
0.10-1.21  0.28 0.388 
ND-0.12  0.0039 0.03 

u u 

ND 
0.09-0.29  0.19 0.21 

0.08-0.1  0.089 0.09 
ND-0.44  0.047 0.22 

u u 

ND 
u u 

ND 
0.20-1.14  0.45 0.54 
0.07-0.13  0.09 0.098 
ND-0.13  0.0089 0.015 

0.24-4.17  0.69 1.2 
0.08-0.18  0.14 0.14 

u u 

ND 
0.32-0.84  0.46 0.49 
0.07-0.07  0.07 0.07 

u u 

ND 
0.24-0.74  0.50 0.50 
0.07-0.18  0.11 0.13 

u u 

ND 

Reference 

    Zey 1992a 

    Zey 1992b

See footnotes at end of table. (Continued) 



 

      

      

   

      

      

      

   

Table B-2 (Continued).  Exposures during road paving operations 

Samples Exposure concentration (mg/m3) 

Occupation 

Screedman/supervisor 

Laborer/supervisor 

Raker/laborer 

Roller 

Paver operator 

Source of exposure 

Paving operations (tempera­
  ture of product at fume
  source ranged from 123 to
  198°C  [253 to 388 °F]) 

Number 

2 
1 
1 
1 
1 
8 
5 
3 
4 
3 

1 
3 
2 
1 

Type

Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benzene solubles 
Acetonitrile solubles 
Total particulates 
Benezene solubles 
Acetonitrile solubles 

Range 

0.07-0.19  
u 

u 

u 

u 

0.09-0.48  
0.07 
0.05 

0.06-0.16  
u 

u 

0.13-0.21  
0.07-0.07  

u 

Geo. mean 

0.12 
u 

u 

0.15 
u 

0.22 
0.004 
0.031 

0.11 
u 

u 

0.16 
0.07 
0.05 

Ari. mean 

0.13 
ND 
ND 

0.15 
ND 

0.28 
0.026 
0.033 

0.11 
ND 
ND 

0.17 
0.07 
0.05 

Reference 

     Zey 1992c 

Abbreviations:  Ari.mean=arithmetic mean; Geo. mean=geometric mean; ND=not detected. 
uInformation not provided. 
†Area air samples.  All remaining samples were personal-breathing-zone air samples. 
‡The sampling and analytical methods used for measuring PAH concentrations may vary between studies, and results may not be directly comparable. 
NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages. 
NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix.  Because the extraction ability of these solvents 
varies, results are not comparable. 



     
     

     
     

    
     

 

Table B-3. Exposures during hot-mix asphalt preparation 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type   Range Geo. mean Ari. mean References 

Not specified 

Man in control cabin and
  operator on hot-mix asphalt
  storage bins 
Loader/operator 

Groundman 

Plant operator 

Preparation of hot-mix
  asphalt 

Asphalt plants (2) 

Hot-mix asphalt prepara­
  tion (temperature of
  product at fume source
  ranged from 129 to 170°C
  [264 to 338 °F]) 

8 

8† 
‡ 

9 
9 
9 
9 
6 
6 

Total particulates 

Benzene solubles 
Total particulates 

Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

0.5-7.2    

0.2-5.4    
ND-1.7 

0.16-6.0    
0.033-1.7    

0.17-1.4    
0.062-0.43    

0.1-1.5    
0.026-0.28    

u 

u 

u 

1.2 
0.16 
0.53 
0.19 
0.58 
0.13 

u 

u 

0.7 

1.8 
0.33 
0.61 
0.23 
0.79 
0.16 

Puzinauskas and
  Corbett 1975 

Byrd and Mikkel­
  sen 1979 

Hicks 1995 

Laborer 5 
5 

Total particulates 
Benzene solubles 

0.2-15    
0.011-0.22    

1.5 
0.069 

4.0 
0.1 

Foreman/supervisor 4 Total particulates 0.27-1.1    0.53 0.61 

4 Benzene solubles <0.065-1.4    0.28 0.5 

Abbreviations:  Ari. mean=arithmetic mean; Geo. mean=geometric mean; ND=not detected. 
uInformation not provided. 
†Area air samples.  All remaining samples were personal-breathing-zone air samples. 
‡Number of samples collected not available. 
NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages. 
NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix.  Because the extraction ability of these solvents 
varies, results are not comparable. 



Table B-4. Exposures during roofing operations 

Samples Exposure concentration (mg/m3) 

References Occupation Source of exposure Number Type Range Geo. mean     Ari. mean 

Hot asphalt machine Roofing operation operator/carrier 

Kettleman, felt layer Asphalt heating and
  mopping 

Felt layer 

Foreman, mopper 

Felt tacker 

Kettleman 

Felt layer Asphalt heating and
  mopping 

Foreman 

Felt machine operator, Application of hot
   mopper    roofing 
Hot asphalt carrier asphalt 

Mopper 

Felt layer 

Asphalt tank operator 
 Kettleman Type III roofing asphalt 

Mopper 

Paperman 

___________ 
See footnotes at end of table. 

6 

1 

2 

1 

1 

4† 

2 

1 

2 

1 

1 

1 

1 
6 
6 
6 
6 
6 
6 

Cyclohexane
   solubles 
Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 

Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

<0.02-0.19 

0.35-1.3 (f) 
<0.04-0.23 (s) 

170-420 (f) 
<0.17-1.1 (s) 
0.08-0.78 (f) 

<0.04-0.35 (s) 

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

0.17-2.5 (f) 
0.22-0.47 (s) 

1.3-12 
0.91-6.9 

1.1-8.4 
0.68-6.5 
0.35-3.3 
0.50-2.4 

 

0.050 

0.75 (f) 
0.04 (s) 
0.67 (f) 

0.096 (s) 
4.9 (f) 

0.12 (s) 
1.1 (f) 

0.16 (s) 
245 (f) 

0.34 (s) 
0.25 (f) 
0.12 (s) 

2.1 (f) 
0.15 (s) 
0.65 (f) 
0.32 (s) 
0.57 (f) 
0.16 (s) 
0.38 (f) 

<0.04 (s) 
0.17 (f) 
0.08 (s) 

<0.11 (f & s) 
2.6 
1.8 
2.9 
2.1 
1.2 
0.8 

0.082     

0.75 (f)    
<0.04 (s)    
0.825 (f)    
0.14 (s)    
0.49 (f)    
0.12 (s)    

1.1 (f)    
0.16 (s)    
260.(f)    

0.47 (s)    
0.43 (f)    
0.20 (s)    

2.1 (f)    
0.15 (s)    

1.3 (f)    
0.35 (s)    
0.57 (f)    
0.16 (s)    
0.38 (f)    

<0.04 (s)    
    0.17(f) 

0.08 (s)    
    <0.11 (f & s) 

3.7    
2.3 
3.6 
2.6 
1.5 
1.1 

 

Hervin and Em­
  mett 1976 
Brown and
  Fajen 1977a 

Brown and
  Fajen 1977b 

Brown and
  Fajen 1977c 

Merz and Weis­
  gerber 1977 

(Continued) 



Table B-4 (Continued).  Exposures during roofing operations 

Samples Exposure concentration (mg/m3) 

References Occupation Source of exposure Number Type Range Geo. mean    Ari. mean 

Kettleman Type III roofing asphalt 
  a) low volatility 

Mopper 

 Paperman 

Kettleman b) high volatility 

Mopper 

 Paperman 

Mopper Spreading hot bitumen 

Mopper and kettleman Asphalt roofing 

Kettleman Asphalt heating and
  mopping 

Mopper 

Laborer Tear-off operations of an
  old asphalt roof
  (petroleum pitch) 

Paper roller Asphalt roofing 
Mopper 

 Kettleman 
Kettleman Kettle emissions and

  bitumen spreading 

___________ 
See footnotes at end of table. 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
8 
8 

 6u

1 

2 

9 

2 
1 
2 
2 
2 
7 
7 

Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Cyclohexane 
solubles 
Total PAHs‡ 

Cyclohexane 
solubles 
Cyclohexane 
solubles 
Cyclohexane 
solubles 

Benzene solubles 
Benzene solubles 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

1.28-2.5 
0.91-1.9 

1.7-8.4 
6.6 

0.35-2.0 
0.25-1.7 

1.8-13 
1.4-6.9 
1.1-4.5 

0.68-3.4 
0.88-3.3 
0.57-2.4 
0.2-3.4 

0.29-2.9 

0.015-0.11 
u

0.16-0.17 

0.09-2.3 

1.0-1.1 
u

1.2-1.2 
4.1-6.4 
3.5-5.4 

 
 

0.5-1.7 
0.2-1.1 

1.7 
1.3 
3.2 
2.5 

0.77 
0.60 

4.0 
2.5 
2.6 
1.7 
1.8 
1.2 

u

u

0.023 

0.28 

0.17 

0.22 

1.1 
0.9 
1.2 
5.1 
4.3 

u

u 
 

 
 

1.7 
1.4 
4.2 
3.1 
1.0    

0.81    
    5.7 

3.3 
3.1 
2.0 
2.1 
1.4 

    u

    u

0.033 

0.28 

0.17 

0.47    

1.1 
0.9    

    1.2 
5.3 
4.5 
1.3 
0.7 

 

 
 

Puzinauskas 1979 

Priha et al. 1980 

Malaiyandi et al.
 1982 
Tharr 1982a 

Tharr 1982b 

Reed 1983 

Brandt et al.
 1985 

(Continued) 



   

 

    

Table B-4 (Continued). Exposures during roofing operations 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type Range  Geo. mean Ari. mean References 

Roof-level workers (labor­
  er, mopper, carrier, etc.) 

Application of an asphalt
  built-up roof 

16 Acetonitrile solubles 0.04-2.7 0.16 0.34    Carson 1986 

Ground-level workers 3 Acetonitrile solubles 0.04-0.83 0.27 0.49 
 (kettleman) 
Laborer Tear-off operations of an

  old asphalt roof
  (petroleum pitch) 

6 

6 

Total particulates 

Benzene solubles 

0.76-2.8 

ND-0.32 

1.72 

0.0096 

1.9    

0.11 

Reed 1986 

Various (kettleman,
 laborer, etc.) 

Application of asphalt 
roof 

28 Benzene solubles ND-1.4 0.18 0.39    Zey et al. 1988 

Various (kettleman,
 laborer, etc.) 

Application of Koppers
 roof 

10 Benzene solubles ND-1.9 0.013 1.9 

Roofer 

Laborer 

Roofing operation
  (temperature of product
  at fume source from
  163 to 316 °C [325 to
  600 °F]) 

12 
12 
5 
5 

Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

0.04-2.2 
0.011-1.7 
0.21-0.91 
0.17-0.62 

0.36 
0.19 
0.38 

0.3 

0.58    
0.45    
0.47 
0.34    

Hicks 1995 

Mechanic 7 Total particulates 0.24-1.2 0.54 0.65    
7 Benzene solubles <0.078-1.8 0.26 0.49    

Felt machine operator 7 Total particulates 0.57-2.5 1.0 1.3 
7 Benzene solubles 0.046-2.4 0.21 0.53     

Kettleman 4 Total particulates 0.36-1.6 1.0 1.2 
4 Benzene solubles 0.14-1.2 0.67 0.89    

Mopper 3 Total particulates 0.27-1.2 0.51 0.63    
3 Benzene solubles <0.085-0.75 0.21 0.33 

Abbreviations:  Ari.mean=arithmetic mean; f=filter; Geo. mean=geometric mean; ND=not detected; s=sorbent tube. 
u Information not provided. 
†  Area air samples.  All remaining samples were personal-breathing-zone air samples. 
‡Sampling and analytical methods used for measuring PAH concentrations may vary among studies, and these results may not be directly comparable. 
 

NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages. 
 

NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix.  Because the extraction ability of these solvents varies, 
 

results are not comparable. 
 



 

Table B-5. Exposures during manufacturing of roofing products 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type Range Geo. mean Ari. mean References 

Saturator operator 

Coater operator 

Production of asphalt
  shingles and rolled roofing
  materials 

3 
2 
2 

Total particulates 
Cyclohexane solubles 
Total particulates 

2.2-7.3 
0.81-2.6 

14-15 

4.9   
1.4   
14 

5.6 
1.7 
14 

Apol and Okawa
 1977 

2 Cyclohexane solubles 0.87-6.8 2.4   3.9 
Coater trainee 2 Total particulates 11-15 13 13 

2 Cyclohexane solubles 0.30-2.3 0.84   1.3 
Press operator 2 Total particulates 6.1-32 14 19 

2 Cyclohexane solubles 1.4-1.5 1.4   1.42 
Seal down operator 2 Total particulates 0.99-1.4 1.2   1.21 

2 Cyclohexane solubles 0.43-1.2 0.71   0.81 
Foreman 2 Total particulates 5.3-6.3 5.8   5.8 

2 Cyclohexane solubles 0.47-0.53 0.50 0.5 
Hallmark operation worker 7 Total particulates 0.96-2.16 1.6 1.6 

5 Cyclohexane solubles 0.23-0.76 0.46 0.50 
Hallmark worker Production of asphalt

  shingles 
8 
8 

Total particulates 
Cyclohexane solubles 

0.38-5.2 
0.24-3.1 

1.0   
0.76   

1.4 
1.05 

Okawa and Apol
 1977 

Saturator/Coater 6 Total particulates 5.3-29 8.03 12 

Saturator operator 

Coater 

Production of asphalt
  shingles and rolled roofing
  materials 

6 
1 
1 
2 

Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 

0.66-1.3 
u 

u 

12-16 

0.88   
2.4 

0.76 
14 

0.91 
2.4 

0.76 
14 

Apol and Okawa
 1978 

Wrapping machine operator 

Lead man 

2 
1 
1 
1 
1 

Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 

0.21-1.1 
u 

u 

u 

u 

0.47   
1.4 

0.77 
5.3 

0.76 

0.64 
1.40 
0.77 
5.29 
0.76 

Presser 2 Total particulates 8.3-22 13 15 
2 Cyclohexane solubles 0.30-0.54 0.402 0.42 

Coater 

Cooling section operator 

Production of asphalt
  shingles and rolled roofing
  materials 

2 
2 
2 

Total particulates 
Cyclohexane solubles 
Total particulates 

4.2-5.1 
3.3-3.9 
0.3-1.0 

4.6   
3.6   

0.55   

4.7 
3.6 

0.65 

Okawa and Apol
 1978a 

2 Cyclohexane solubles 0.7-1.6 1.06   1.2 
Machine tender 2 Total particulates 0.4-2.8 1.06   1.6 

2 Cyclohexane solubles 0.6-1.8 1.039   1.2 
___________ 
See footnotes at end of table. (Continued) 



  

Table B-5 (Continued). Exposures during manufacturing of roofing products 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type Range Geo. mean Ari. mean References 

Saturator operator 

Coaterman 

Slateman 

Paper production workers
  (smokers) 
Paper production workers
  (nonsmokers) 
Loader/asphalt handler 

Slate blend operator 

Production of asphalt
  shingles and rolled roofing
  materials 

Asphalted paper production 

Roofing manufacturing
  (temperature of product at
  fume source from 149 to
  377 °C [300 to 710 °F]) 

1 
1 
1 
1 
1 
1 
4 

2 

6 
6 
4 
4 

Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total particulates 
Cyclohexane solubles 
Total PAHs† 

Total PAHs† 

Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

u 

u 

u 

u 

u 

u 

0.0048-0.036 

0.0034-0.311 

0.068-0.94 
0.041-0.71 

1.1-13 
0.013-0.94 

1.0 
2.1 
2.1 

0.22 
3.4 

0.21 
0.009 

0.010 

0.51 
0.31 

3.9 
0.077 

1.0 
2.1 
2.1 

0.22 
3.4 

0.21 
0.014 

0.017 

0.66 
0.41 

5.6 
0.27 

Okawa and Apol
 1978b 

Pozzoli et al.
 1985 

Hicks 1995 

Coater operator 8 
8 

Total particulates 
Benzene solubles 

0.42-2.5 
0.049-1.6 

1.0   
0.2   

1.3 
0.37 

Machine operator 

Press operator/cooling
  operator 
Supervisor 

Roofing manufacturing
  (temperature of product at
  fume source from 149 to
  377 °C [300 to 710°F]) 

8 
8 
7 
7 
1 
1 

Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 
Total particulates 
Benzene solubles 

0.8-4.4 
<0.071-3.6 

0.55-11 
<0.085-3.7 

u 

u 

1.6   
0.55   

2.6 
0.32   

1.4 
0.32 

1.9 
1.5 
4.8 
1.0 
1.4 

0.32 

Abbreviations:   Ari. mean=arithmetic mean; Geo. mean=geometric mean. 
uInformation not provided. 
†The sampling and analytical methods used for measuring PAH concentrations may vary between studies, and results may not be directly comparable. 
 

NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages. 
 

NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix.  Because the extraction ability of these solvents varies, results 


   are not comparable. 



         
         

 

       
           

        
       
       

       

        

            

     

 
 

           

       
       

        
           
       
       

     

Table B-6.  Exposures during flooring and waterproofing operations 

Samples Exposure concentration (mg/m3) 

Occupation Source of exposure Number Type
 Range 

Geo. mean  Ari. mean References 

Brusher of felt interply
  adhesive 

Waterproofing of basements,
  kitchens, bathrooms, andcorridors 

9 
5 

Total particulates
Cyclohexane solubles 

1.1-32 
0.8-28 

u 

u 

10.4 
7.7 

  Ahonen et al. 1977 

Mixing operator (other
  possible exposures) 

Manufacturer of vinyl asbestos
   and asphalt asbestos floor
   covering 

6 Benzene solubles 0.08-0.66 0.30 0.37   Belanger and
    Elesh 1979 

Spreader of hot bitumen and
  felt seaming 

Waterproofing of kitchens,
  bathrooms, and underground
  spaces 

15 
† 

Total particulates 
Cyclohexane solubles 

1.9-42 
0.3-39 

u 

u 

18 
u 

  Priha et al. 1980 

Spreader of hot bitumen and
  felt seaming 

Waterproofing of basements 6
† 

Total particulates 
Cyclohexane solubles 

1.6-13 
1.6-11 

u 

u 

6.1 
5.6 

Spreader 

Tipper 

Flooring-industrial asphalt
  mixture of bitumen, lime,
  sand, gravel, and coloring
  agent 

10 

10 

Carbon tetrachloride
   extracts 
Carbon tetrachloride
   extracts 

8.2-237 

3.1-260 

u 

u 

8.3 

7.3 

  Claydon et al.1984 

Float finisher 8 Carbon tetrachloride 1.7-214 u 6.3 
   extracts 

Bucket carrier 4 Carbon tetrachloride 0.5-5.5 u u 

   extracts 
Bucket filler 2 Carbon tetrachloride 3.1-4.2 3.6       u 

   extracts 
Troweler 
Troweler 

Bitumen mastic on gymnasium
   floor 

2 
2‡ 

Total particulates 
Total particulates 

5.5-12 
1.2-6.3 

8.1 
2.7       

8.7 
3.8 

Troweler 
Tipper 
Carrier 

Hand laying mastic containing
  11% bitumen at 265-280°C
  [509-536 °F] 

4‡ 

1 
1 
1 

Total particulates 
Benzene solubles 
Benzene solubles 
Benzene solubles 

1.7-30 
u 

u 

u 

u 

10 
7.1 
11 

u 

10 
7.1 
11 

Kettleman 1 Benzene solubles 
u 

2.9 2.9 
Bucket carrier, pourer
  (indoors) 

Mastic asphalt (265 to  280°C 
[509 to 536 °F]) 

5 
5 

Total particulates 
Benzene solubles 

11-18 
6.0-14 

u 

u 

13.3 
8.8 

  Brandt et al. 1985 

Kettleman (outside) 4 Total particulates 2.9-7.7 u 4.4 
4 Benzene solubles 2.0-5.0 u u 

Troweler 3 Total particulates 11-18 u 14 
3 Benzene solubles 7.3-13 u 10 

Abbreviations:   Ari. mean=arithmetic mean; Geo. mean=geometric mean. 
uInformation not provided. 
†Number of samples collected not available. 
‡Area air samples.  All remaining samples were personal-breathing-zone air samples. 
NOTE:  Sampling periods ranged from 6 to 8 hours.  Results shown are time-weighted averages. 
NOTE:  Solvents such as cyclohexane and acetonitrile have been used in place of benzene to measure the soluble fraction of a particular matrix. Because the extraction ability of these solvents varies, results are not 
comparable. 



  

 

 

 

 

 

Appendix C
 

Respirators
 

At most worksites where hot asphalt or 
asphalt-based paints are used, con­

centrations of asphalt fumes or aerosols are 
generally below the NIOSH REL of 5 mg/m3. 
However, constantly changing environmental 
and worksite conditions may result in fluc­
tuating airborne concentrations of asphalt 
fumes and asphalt-based paint aerosols. Such 
fluctuations may result in exposures exceeding 
the NIOSH REL and  warrant the use of res­
piratory protection.  If respirators are required 
at the worksite, the employer is responsible for 
ensuring that respirators are NIOSH-approved 
and that all OSHA regulations pertaining to the 
implementation of a respirator program are 
followed. Important elements of these OSHA 
regulations [29 CFR 1910.134] are— 

•	 An evaluation or the worker’s ability to per­
form the work while wearing a respirator, 

C	 Regular training of workers, 

C	 Periodic environmental monitoring, 

•	 Respirator fit-testing, maintenance, in­
spection, cleaning, and storage, 

C	 Periodic changes of cartridges, and 

C	 Cartridge testing for service life. 

No NIOSH-approved respirator filter cartridge 
or canister exists specifically for asphalt fumes 
or aerosols.  But the respirators listed below 
will reduce exposure. 

•	 Any half-facepiece, air-purifying respi­
rator equipped with a combination R100 
or P100 filter and an organic vapor 
cartridge, or 

•	 Any powered, air-purifying respirator with 
a hood, helmet, or loose-fitting facepiece 
equipped with a combination HEPA and 
organic vapor cartridge. 

The appropriate respirator filters are R100, 
P100, or HEPA as listed under 42 CFR 84 
[NIOSH 1996].  The appropriate organic vapor 
cartridge or canister should contain a charcoal 
sorbent. This type of protection may also be 
used when there is a potential exposure to dusts 
containing coal tar or asbestos. 

A comprehensive assessment of workplace ex­
posures should always be performed to ensure 
that the proper respiratory protection is used. 
Other types of respirators can provide a higher 
level of protection and may be required under 
certain conditions (e.g., work  in confined 
spaces) [NIOSH 1987]. 
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