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Abstract 
 
Experts play a critical role in forensic decision making, even when cognition is offloaded and 
distributed between human and machine. This is especially noticeable in pattern and impression 
evidence, when technologies such as Automated Fingerprint Identification Systems (AFIS) have 
introduced cognitive technology that creates such collaborative environments. In this paper we 
investigated the impact of using AFIS on human decision makers, specifically examining the 
potentially biasing effects of AFIS contextual information on human experts. We provided 
thousands of AFIS lists to 23 latent fingerprint examiners as part of their normal casework. We 
included the matching print in some of the lists, and manipulated the position of the matching 
candidate image in the AFIS list (placing it either at the very top, near the top, near the bottom, 
or at the very bottom), manipulated the scores (increasing or decreasing the ranges across prints), 
or combined both of these manipulations together. We observed if wrong decisions (false 
inconclusives or false exclusions) were a function of  position or score in the list. The data 
showed that latent fingerprint examiners were affected by the position especially for lower 
comparison time, but they were  unaffected by the scores of the matching prints. Furthermore, 
we observed if false identifications were a function of position. The data showed that such 
erroneous selections were more likely chosen from the top of the list, and that such errors 
occurred even when the correct match was present further down the list. Our findings show that 
AFIS affects human examiners, but in some ways more than others (e.g., the ranking affects 
them while the scores do  not affect them as much). These effects need to be studied and 
considered carefully, so as to optimize human decision making when using technologies such as 
AFIS.  
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Introduction  

The landscape in forensic science, as in other expert domains (e.g., medicine and policing), is 

drastically changing. A main force in shaping these (and future) changes is technology. 

Especially influential are new and advanced technologies, cognitive technologies, that can carry 

out cognitive operations that were once the sole domain of humans (Dror, 2007a). The increased 

use of and reliance upon technology has reached a level whereby humans and technology are 

more and more intertwined and collaborating with one another, creating distributed cognition 

(Baber, Smith, Cross, Hunter, & McMaster, 2008; Dror & Harnad, 2008a). In distributed 

cognition, humans ‘offload’ some cognitive operations onto technology thereby increasing their 

performance abilities and capacity (Dror & Harnad, 2008b). As human-technology cooperation 

increases, as they become more intertwined and cognition is increasingly distributed, new 

opportunities and capabilities arise, as well as new challenges. These have transformed a 

technological evolution into a revolution of what is possible, affecting human cognition, and 

altering how we go about our professional and personal lives (Dror, 2007b). 

 

Distributed cognition may take different forms and generate a variety of modes of collaboration 

and interaction between the human and technology. For instance, Dror & Mnookin (2010) 

distinguished between three such modes: In some instances technology merely offers a gain in 

efficiency, a quantitative change, rather than qualitatively transforming what is possible (for 

example, using a computer to store information rather than memorizing it, or using a calculator 

rather the doing the math; in these cases the human expert is using technology to save time and 

cognitive resources). A higher level of distributed cognition and cooperation occurs when the 
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human and technology work side by side as partners. In this case the technology plays a role that 

the human expert is incapable of doing (and vice versa: the human expert plays a role that cannot 

be carried out by the technology). Such human-technology partnerships are based on critical and 

unique contributions from both the human and the technology, that cannot be simply ‘offloaded’ 

to the other, and are not a mere matter of convenience and efficiency (for example, a clinical 

diagnosis based on an interpretation of an x-ray). In higher levels of technological use, the 

technology takes over the more significant and predominate role, leaving the human expert to 

operate in its shadow (for example, in breath test detection for alcohol the technological 

instrument is making the meaningful judgements to the extent that they basically produce a result 

without significant human intervention). For more detail of this taxonomy, see Dror & Mnookin 

(2010).  

 

 Understanding the potential and limitations of each mode is necessary in order to make optimal 

use of both the technological and the human elements in the collaboration. In other words, the 

success of human experts and technology working in such close collaborations depends on 

correctly distributing the work among them, taking advantage of the relative strength each has to 

offer, and avoiding their respective weakness and vulnerabilities (see, for example, in face 

recognition, Dror & Shaikh, 2005a, 2005b). 

 

In general, human expertise, by its very cognitive nature, encompasses a paradox: As experts 

acquire the cognitive architecture that makes them more effective and efficient, they are also 

more susceptible to error. This is a result, for example, of using schemas, selective attention, 

chunking information, automaticity, and more reliance on top-down information, all of which 
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may make them susceptible to missing and ignoring information, and to suffer from tunnel vision 

and bias (for details, see Dror, in press). This paradox is a result of how the brain processes 

information, and characterizes experts in medicine, policing, aviation, as well as specifically in 

the forensic domain (Busey & Dror, in press). 

 

One of the vulnerabilities of experts, across domains, is that with their superior performance they 

are also susceptible to bias and other contextual and emotional influences. This holds true across 

expert domains, including forensic fingerprinting (Beatrice & Champod, 2007; Charlton, Fraser-

Mackenzie, & Dror, 2010; Dror, 2009, Dror & Charlton, 2006; Dror, Charlton, & Péron, 2006; 

Dror, Peron, Hind, & Charlton, 2005; Dror & Rosenthal, 2008; Hall & Player, 2008; 

Langenburg, Champod, & Wertheim, 2009). While interpretations of the research findings do 

vary, the studies do clearly and consistently show that biasing effects exist, but may or may not 

change decision outcomes depending on a variety of factors and circumstances. As stated in 

Langenburg, Champod and Wertheim (2009), “There is strong evidence that some fingerprint 

specialists can be biased by contextual information. The decision made by a specialist is not 

necessarily based solely on the ridge detail when comparing images” (page 577, in Langenburg 

et al., 2009).  

 

It is important to recognize that finding a bias within a decision-making process does not 

necessarily mean that the conclusions reached are incorrect, nor that they would necessarily have 

been different in the absence of the biasing information or process. As stated in Dror (2009), 

“Bias affects the decision making process, but not necessarily the decision outcome. Decision 

making models clearly illustrate how bias can shift the objective 'evidentiary weights', but that 
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does not mean that every time this shift moves the overall decision outcome past the decision 

threshold (for details, see Decision Field Theory (Busemeyer & Townsend, 1993), and 

Sequential Sampling Models (Dror, Busemeyer, & Basola, 1999)). Bias may shift the decision in 

the same direction as the objective 'evidentiary weights' which have already surpassed the 

decision threshold. Furthermore, even when the bias is in the opposite direction of the actual 

objective 'evidentiary weights', if this shift does not cause a movement past the decision 

threshold, then it will not result in a change in decision outcome. Therefore, the existence of bias 

does not necessarily mean that it affects the decision outcome every time it plays a role in the 

decision making process” (page 19, in Dror, 2009). However, it is equally important to realize 

that if a decision process is shown to be biased in some way, this generates the potential for that 

bias to affect decision outcomes in some circumstances, depending on the extent of the bias and 

the proximity to the decision threshold.  

 

All the previous studies that have examined bias in forensic science have focused solely on 

human examiners and general contextual influences. They have not at all studied or examined 

the potential bias introduced by technology. Thus, they do not examine a critical contextual 

influence that may affect human decision makers: that which is introduced by technology. The 

growing use and role that technology is (and will be) playing in forensic science requires careful 

attention and consideration (Dror & Mnookin, 2010). Our study aims to address this gap in the 

scientific literature.  

 

A relatively new feature of the latent print identification landscape is the increasing use of 

Automated Fingerprint Identification Systems (AFIS). AFIS is a computerized system that 
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extracts and stores individual characteristics of digitized fingerprints and can be used to search 

unknown fingerprints or partial latent marks against the stored known fingerprints in the 

database. AFIS has the ability to store 10's of millions of known fingerprints and to perform an 

automated search against that repository in seconds. In criminal cases, an AFIS is often used to 

generate possible matches to a latent mark found at a crime scene. The AFIS presents the human 

examiner with a set of candidate prints from those contained within the database that, as assessed 

by the system’s algorithms, are similar to the latent mark in question. AFIS, with its ability to 

find potential matches among millions of exemplars, is an extremely powerful forensic tool.  

 

There has been significant discussion on AFIS’s management, performance and organizational 

impact (e.g., Klug, Petersen & Stoney, 1992; Petersen, 1996), but there has been very little 

discussion of the effects of AFIS systems on the decision-processes of human examiners (apart 

from Dror & Mnookin, 2010). While it was widely recognized and understood that in the latent 

fingerprint identification context, AFIS is a tool used by examiners rather than a technique for 

making matches – that "Latent examiners make idents, not AFIS" (Komarinski, 2009) – the 

examination of AFIS’s potential influences on those comparisons made by the human latent 

examiners has been neglected. 

 

It has been suggested that although AFIS is very powerful and has been effective in solving 

crimes, it also has introduced potential problems that can lead (and have led) to erroneous 

identification (see Dror et al., 2005, Dror, 2007; Dror & Mnookin, 2010). For example, a 

contributing factor to the Madrid bomber erroneous identification was the remarkable similarity 

of the two prints (Stacey, 2004, OIG, 2006), but the ability to locate these similar prints was a 
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direct result of the great power of the AFIS to search tens of millions of prints. One potential 

problem is that with the introduction of this new powerful technology, fingerprint comparison by 

humans may not have sufficiently changed to meet the technology. Specifically, examiners have 

to intuitively use a new threshold for ‘sufficient similarity’ for determining a match when 

considering the increased likelihood of seeing two prints from different sources with a high 

degree of similarity as a result of searching a large AFIS database (see Dror & Mnookin, 2010). 

Davis & Hufnagel (2007) seem to suggest that latent fingerprint analysts might have very 

different views about the matches suggested by the AFIS, but not because of contextual biasing 

information, which is the focus of this research. 

 

Bias introduced by AFIS has not been studied. However, a study that examines bias on forensic 

science notes that “With the growing use of technology in fingerprint identification, some claim 

that such human biases and weakness will be reduced, if not eliminated altogether. Although 

technology is an important ally in fingerprint matching, the issues addressed in this study [i.e., 

biases], as well as other psychological/cognitive issues, will continue to exist and even increase” 

(page 807, in Dror et al., 2005). A theoretical paper on bias and technology in forensic science 

makes the point that “the appropriate effects of AFIS on the process of latent fingerprint 

identification warrant significant further inquiry and consideration. We believe that AFIS does 

change in important ways the cognitive tasks in which latent fingerprint experts are engaged. Our 

key point is that there has not yet been sufficient consideration of either the meaning or 

consequences of the new distributed cognition that AFIS offers, either the new potentialities, or 

the new risks for error. Such understanding will enable better deployment and utilization of this 
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technology” (page 8-9, in Dror & Mnookin, 2009). Until now, however, the potential bias 

introduced by AFIS has not been empirically studied. 

 

While AFIS makes the scrutiny of large fingerprint databases manageable, thereby offering 

advances in both process and productivity, its current design also introduces metadata that may 

impact the subsequent human expert comparison. These data are subject to being controlled by 

process and workflow design. With the growing use of AFIS, it becomes important to understand 

how AFIS may affect human fingerprint examiners. Our study scientifically and empirically 

examines how contextual information provided by AFIS may affect the human examiner. 

Specifically, AFIS systems presently return results to examiners in a ranked order. The primary 

focus of this study is to examine whether there are decision effects or bias introduced by this 

ranking. This paper takes a step toward the empirical investigation of the effects of distributing 

cognition between the human and the AFIS within latent fingerprint examination.  

 

The study reported here is specifically aimed at examining these issues scientifically and 

empirically, and examining whether the data support any recommendations to minimize any 

potential biases. This experimental study is designed to detect and quantify the potential 

influence that the AFIS ranking and scoring has on the human experts’ perception and cognition 

that may bias their decision making process. The conclusions from such empirical studies should 

be used to develop suggestions for best practices and proper ways to use AFIS technology so as 

to maintain its benefits while reducing any potential vulnerability that it may introduce. Our 

experimental design entails changing the ranking and scoring provided by AFIS; that is, for 
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example, taking the ‘top candidate’ in the list, and placing it at the bottom of the list, then 

observing if the print’s position in the list affected how it was judged by the human examiner.  

 

Psychological and cognitive research have demonstrated a general bias towards the first choice, 

even when the order of choices are random (Mantonakis, Rodero, Lesschaeve, & Hastie, 2009; 

MacFie, Bratchell, Greenhoff, & Vallis 1989; Becker, 1954; Carney & Banaji, 2008; Miller & 

Krosnick, 1998; Berg, Filipello, Hinreiner, & Sawyer, 1955; Coney, 1977; Dean, 1980; Sulmont-

Rosse, Chabanet, Issanchou, & Köster, 2008). AFIS’s ranking of potential matches, along with 

the general already existing bias for the first choice, may work together to influence and affect 

the perception and judgements of human examiners when they conduct a comparison generated 

by AFIS.  

 

In addition to the ranking, AFIS also provides numerical scores that are higher as the candidate is 

considered more likely to be a match. As with the ranking, the score may influence and bias the 

human decision making. Therefore, our study included three experiments: 

Experiment 1: Manipulating the ranking of an AFIS list 

Experiment 2: Manipulating the scores in an AFIS list 

Experiment 3: Manipulating the ranking and the scroes in an AFIS list. 

 
 
Methods 
 
Experiment 1: 

Participants. We used only latent print experts, all of whom do casework as examiners in 

forensic laboratories. The 23 examiners used in this study were all experienced examiners that 
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were qualified to do latent fingerprint comparison and to appear as experts in courts. Nearly half 

of them (n= 11) were Certified Latent Print Examiners (CLPEs) by the International Association 

for Identification (IAI). Fourteen were male and 9 were female. 

 

Materials. Prints of high quality are less likely to create interpretive problems for examiners; 

indeed, contextual influences and bias have more pronounced affect with degraded images (e.g., 

Dror et al., 2005). Therefore, we used only latent marks of medium and low quality. We used 

160 latent marks and their corresponding prints that matched. We obtained an AFIS candidate 

list by using the National Institute of Standards and Technology (NIST) dataset that contains 

over 3,000 known tenprint files and NIST AFIS search algorithms. For half the latents we 

generated a list of 10 candidates and for the other half a 20 candidate list. All fingerprint images 

were captured in standard formats and resolutions; 500ppi wsq tenprints and 1000ppi .bmp latent 

mark images.  

 

We then inserted the correct matching print into some of the AFIS lists but not others. When we 

inserted the match print into the list, we inserted it at or near the top of the list (either as 

candidate number 1; or near but not at the top (number 2 in the 10 candidate list or number 3 in 

the 20 candidate list); or at or near the bottom: (either as the last candidate; or low on the list, as 

number 8 in 10-candidate list and number 15 in the 20-candidate list). We thereby produced five 

different AFIS lists for each of the 160 latent marks:  

1. With no matching print 

2. Matching print at the very top of the list (candidate number 1). 
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3. Matching print high on the list (candidate number 2 or 3, for lists of 10 and 20 

candidates, respectively). 

4. Matching print low on the list (candidate number 8 or 15, for lists of 10 and 20 

candidates, respectively). 

5. Matching print at the very bottom of the list (candidate number 10 or 20, for lists of 10 

and 20 candidates, respectively). 

 

Procedure. Participants conducted comparisons in this study as part of their normal routine 

work, not knowing they were taking part in a study. This is critically important, as participants’ 

awareness that they are taking part in a study affects their behaviour, especially in studies that 

examine bias (Dror, 2009; Dror et al. 2006a, 2006b, 2008). All comparisons were conducted 

using a Web-based Remote Examination (WebRex) software that allows the examiners to 

remotely log in and securely conduct comparisons. This environment is especially suited for our 

study, as it enables us to manipulate information sent to the practitioners within their normal 

every day work, and without their knowledge. It is critical to test examiners in their day to day 

routine work rather than using a contrived experimental setup. This experimental design means 

that we can draw conclusions about real casework, as the examiners participating in the study are 

engaging in what they believe to be casework. This is especially essential for studies that 

examine the effects of context; if the participants know they are taking part in a study, then they 

do not actually believe the context and therefore its effect is diminished (if not eliminated 

altogether).  
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Participants randomly were assigned different lists associated to the same latent mark. That is, 

for each of the 160 latent marks, some examiners received an AFIS list that contained the 

matching print as the first print (number 1) on the AFIS list, other examiners received an AFIS 

list in which the matching print was second in the list (number 2 or 3, depending on the length of 

the list), other examiners got an AFIS list in which it was located just before the very bottom of 

the list (number 8 or 15, depending on the length of the list), and for other examiners it was 

located at the very bottom of the list (number 10 or 20, again, depending on the length of the 

list). Finally, most examiners got an AFIS list that did not contain the correct matching print 

anywhere on the list (to maintain ecological validity we needed to make sure most lists did not 

have a match, as examiners searching AFIS in real casework do not find matches most of the 

time). The AFIS lists were distributed and counterbalanced across examiners. 

 

This experimental design enabled us to collect data regarding how latent print experts examine 

AFIS lists. We could examine if the position of the print in the list affected their decision 

making, and if so, in what ways. Our data permitted us to compare differences in performance, if 

any, on the same latent mark when it was presented at different positions on the AFIS list. We 

were interested both in the effect of position on the decision making process, if any, as reflected 

by the time it took examiners to reach a conclusion, as well as the decision outcome itself, as 

reflected by their actual conclusion (see the Introduction and Dror (2009) for important cognitive 

distinction between effects on the decision process and effects on ultimate conclusion). For each 

of the AFIS lists, the examiners were required to make comparisons on each and every print in 

the list, and for each one to reach a conclusion of identification, exclusion, or inconclusive.  
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Each examiner conducted 2,400 separate comparisons: 160 latents, each with an AFIS list (half 

of which were 10-candidate lists and half were 20-candidate lists). Overall, this study includes 

data from 55,200 separate comparisons across the 23 latent fingerprint examiners that took part 

in the study. 

 

Experiment 2: 

Experiment 2 follows the design of Experiment 1. Therefore, to save repetition, we only specify 

here the differences from experiment 1.  

 

Experiment 2 used a new set of prints, both latents and new AFIS list, but the format and design 

was identical to Experiment 1.  

 

Once the AFIS list were generated, rather than changing the order of the prints on the AFIS list 

(as we did in Experiment 1), in Experiment 2 we changed the original scores provided by AFIS. 

We either made the original range of scores larger or smaller, thereby enableing us to examine if 

the scores affected the human examiners. If they did not, then regardless of the scores (large 

range vs. smaller range) the human examiners would conduct their examination the same. 

However, if the scores did affect the human examiners, then we would observe these effects and 

see that they are stronger in the large range condition. 

 

Experiment 3: 

In Experiments 1 and 2 we manipulated and tested a single variable, either the ranking 

(Experiment 1) or the scores (Experiment 2). This allowed us to isolate and separately 
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understand these factors. In Experiment 3 we examine their combined effects and possible 

interactions.  

 

The experimental design of Experiments 1 and 2 was maintained in Experiment 3, except that a 

new set of prints and AFIS lists were used. The experimental manipulations were a combination 

of those implied in Experiment 1 and 2 (see above for details). 

 

Results  

Experiment 1: 

The data we obtained in this study is rich in information, and we subjected it systematically to 

statistical analysis based on the research questions and experimental designed we employed. Our 

analysis had to distinguish between AFIS lists that did not contain the matching print and those 

which did, as our experimental design and manipulation included placing the correct matching 

print at different positions in the AFIS lists for those lists that included the matched print. On the 

correct print, an error of false positive was not possible; either the examiner would reach the 

correct conclusion, or might erroneously judge the print inconclusive or a false exclusion. On 

non-matching prints, judgements could either be correct exclusions, or incorrect determinations 

of a match (or inconclusive). Our analysis examined not only the response but also the response 

time - how long the examiner took to reach a conclusion. Response times (comparison time) 

were analyzed to gain insight into the decision making process, whereas Errors were analyzed to 

examine the outcome of the decision making process.  
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Our statistical analysis distinguishes between different types of error: false identifications, false 

exclusions, and false inconclusives (i.e., an inconclusive determination when an identification 

could, and should, have been made). While we clearly distinguish between these types of error in 

our analysis, as noted above, our main experimental design and question of focus was examiner 

decisions on the matching prints (as a function of their position on the AFIS list). For these 

matched prints, no erroneous identification is possible. For the other comparisons, while we can 

compute the rate at which erroneous identifications were made, we would urge caution in taking 

this as reflecting an error rate (both because our study design was not focused on this question, 

and because our stimuli, which came from a modestly-sized AFIS database may not reflect the 

range of prints found within casework). Thus, while this research may provide some information 

regarding error rates, its focus is an analysis of the effect of AFIS ranking on examiner decision-

making and processes. 

 

Our first set of analyses focused on the false inconclusives and false exclusions made on the 

matching prints, statistically examining the errors and then comparison times. Our next set of 

analysis statistically examined false identifications. Overall, the descriptive data is provided in 

Table 1. Of particular interest is that there were 27.40% missed identifications; a central 

question, is whether these false decisions were affected by our experimental manipulation of 

position of the matching print in the AFIS list.  
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Description Statistic 

 

Total number of comparisons 

 

55,200 

        (number of match comparisons)   1,832 

Total number of errors (all types)   1,516 (2.74%) 

     Number false identifications         49 (0.09%) 

             (excluding ‘clerical errors’ )        12 (0.02%) 

    Number of false “inconclusive” errors   1,001 (1.81%) 

    Number of missed identifications      502 (27.40%) 

  

 
Table 1: Overall descriptive statistics 

 

 

 

Errors on the Matching Prints 

This analysis examined the errors made by examiners when the latent was being compared to the 

matching print (the ‘target’). The results are shown in Table 2. A three-way repeated measures 

ANOVA revealed that there was no main effect of the position of the target matching print on 

overall errors, F(3,66)= 1.150, p= .336, or the length of AFIS list (i.e. 10 or 20 candidates), 

F(1,22)= 0.011, p= .919, nor any statistical difference in the number of false “Inconclusive” or 

false “Exclusion” decisions F(1,22)= 1.250, p= .276. There were also no statistically significant 

two-way or three-way interactions between these factors. The results at this stage show that there 

is no main effect of the position of the target matching print as far as the final conclusions are 

concerned.  
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  Candidate Position of the Matching Target Print 

Set size             Error Bottom Low High Top 

10 False “Inconclusive”   9.87% 14.47% 13.82% 10.48% 

10 False “Exclusion” 13.82% 15.79% 17.11% 15.28% 

20 False “Inconclusive” 12.50% 16.45% 10.53% 13.64% 

20 False “Exclusion” 16.45% 15.79% 15.13% 12.99% 

All Total Errors 26.32% 31.25% 28.30% 26.20% 

 
Table 2: Errors as a function of the position of the matching print 

 

 

Response Times on the Matching Prints 

Response time is a critical measure for examining cognitive processing. It is more sensitive and 

provides more cognitive insights than overall error. We started off with an analysis to examine if 

the time spent on a comparison determined the likelihood of error. Specifically, we statistically 

examined if a longer time spent by a given examiner comparing the latent mark to a matching 

print reduces the likelihood of making an error. A logistic regression showed that the log1 of the 

comparison time significantly predicted the likelihood of making an error X2(1, N = 1832)= 

101.28, p< .001. The analysis provides a significantly negative coefficient (logRT= -0.477, Std. 

Error=.049, z= -9.69, p< .001), meaning that as the (log of) the comparison time decreased, the 

likelihood of an error is increased. This reflects a speed-accuracy trade-off. While it is not 

necessarily true that spending extra time than usual would reduce errors, if an individual makes a 

quicker decision than they need to perform at their optimum, extra errors may occur. Of course, 

our data simply shows a correlation between comparison time and error rates, and we cannot 

confidently conclude causality without further research.  

 

                                                 
1 The log of the comparison time was used to reduce the skewed distribution of the RT data, normalizing the data. 
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The second analysis of the comparison times was to determine whether the position of the target 

matching print (which was the main manipulation in this study) influenced the length of the 

comparison. If position did affect the examiners expectations and biased their comparison, then 

that will be reflected in the data as a statistically different decision time as a function of the 

position of the print in the AFIS list (i.e. Top, High, Low, or Bottom of the list).  

 

A two-way repeated-measures ANOVA of the position of the target matching print (Top, High, 

Low, or Bottom) and AFIS list length (10 or 20 candidates) was performed on the log of the time 

spent on each comparison (see Figure 1). The response times for the Bottom position was 

artificially higher than it should have been if it only included the comparison time, because 

examiners at the end had to press additional buttons to finalize and submit the batch. The study 

design did not permit us to distinguish ‘examination’ time from this finalization time, so the 

response time for the Bottom position is inclusive of both. Nevertheless, even with this artificial 

confound, the results showed that there was a significant statistical effect of target position on the 

comparison time of the target matching print, F(3,63)= 18.59, p< .001.  
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Figure 1: The effect of the position of the target matching print on average comparison 
times for the 10- and 20-length AFIS lists. The times for the Bottom position were 
artificially higher, as examiners had to finalize the batch. 

 

As illustrated in Figure 1, the top position comparison times is much greater than the comparison 

times of all the other positions. Indeed, Bonferroni t-tests revealed this to be true and that when 

the target was present in the top position (i.e. number 1) examiners spent significantly longer 

comparing the print than when it appeared lower in the list (p< .001 for the Top vs. High 

comparison, p< .001 for the Top vs. Low comparison, and p< .05 for the Top vs. Bottom 

comparison which included the additional artificial time, which made the Bottom vs. Low 

comparison significant p< .05). Furthermore, there was a significant effect of length of list on 

decision times, F(1,16) = 14.81, p= 0.001, reflecting that examiners took on average, per 

comparison, more time to consider the target matching candidates when the AFIS list length was 

10 compared to when it was 20. There was no interaction between the list length and the 

candidate position on comparison times F(3,66)= 0.291, p= .832. 
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The results of this analysis are important in light of the data linking comparison time and error 

rates. Although the result of the analysis of the position of the target matching print candidate on 

error rates was not significant, the comparison time showed an effect. Accordingly, it is 

necessary to consider whether the effects of the position on error rate may depend on the time 

spent on the comparison.  

 

In order to test for this potential effect, a logistic regression was performed on the comparison 

with the target matching print. This calculated the likelihood of an error being made as a function 

of the matching print candidate position and the time spent on the comparison. Because the main 

effect of position on comparison time (Figure 1) was the top position (number 1) we collapsed 

the data into two groups; Top (the target was in position “Top”) and Lower (the target was in 

position “High”, “Low”, or “Bottom”).  

 

These statistics confirmed our earlier analysis: there was no main effect of target matching print 

position on error, X2(1, N=1831)= 1.352, p= .245, but there was a statistically significant effect 

of the (log of) the comparison time X2(1, N= 1831)= 100.214, p< .001 on the likelihood of error. 

Most important, this statistical analysis showed a critical interaction between the position (Top or 

Lower) and the (log of) comparison time, X2(1, N= 1831)= 7.187, p = .007.  

 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 1.9745 0.3270 6.039 <.001* 

Position (Top) -1.3498 0.5381 -2.508 .012* 

Log (Comparison Time) -0.5884 0.0660 -8.915 < .001* 

Log (Comparison Time) × Position (Top) 0.2771 0.1036 2.676 .007* 

 
Table 3: The parameter estimates for the logistic regression model 
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This is very crucial because it means that the interaction parameter estimates from the model 

(Table 3) indicate that as comparison time decreases there is a stronger effect of position on error 

rates. Specifically, when the target is in a position other than the top position, the examiners were 

more likely to make an error if they have decreased their comparison time. By contrast, when the 

examiners took a longer time for the comparison, the effect of the position of the candidate had 

less of an effect on error rates. In the Discussion section we consider whether such shorter 

comparison times reflect reduced effort and motivation in the decision making process, or reflect 

the use of different cognitive mechanisms and processes of attention (Carney & Banaji, 2008; 

Miller & Krosnick, 1998; Sulmont-Rosse, Chabanet, Issanchou, & Köster, 2008).  

 

Figure 2 shows the results of the logistic regression analysis by plotting the model predictions of 

the log of the comparison time for trials in which the target matching print is at the top of the list 

compared to when it is elsewhere in the list of candidates.  

 
 
Figure 2: The logistic regression model estimates of the effect of comparison times on 
error probabilities when the target appears at the top of the list vs. at lower positions. 
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As illustrated in Figure 2, the greatest effect of the position of the target is found when the 

examiner takes a short time for the comparison. When the examiner takes a longer time to do a 

comparison, the effect of the position is diminished. Accordingly, in contrast to the preliminary 

analyses regarding error rates and target position, these results demonstrate that the position of 

the target does influence error rates but that this effect is dependent on the comparison time. 

Specifically, the regression estimates that the strongest effect is when the comparison time is 

quicker. 

 

False Identifications 

Erroneous identifications are very much a function of the relative similarity between the latent 

mark and the compared non-matching print; the greater the similarity between two, the more 

they are ‘look alike’, the greater the chances of an erroneous identification. We obtained the non-

matching prints from a relatively very small database of just over 3,000 tenprints, and hence 

there may have been a very small number of ‘look alike’ non-matching prints in our study.  

 

Furthermore, when examining a number of prints off a list provided by AFIS (on average, 15 

comparisons per latent, in our study), the potential rate of erroneous identifications is drastically 

reduced, because the maximum number of identifications per list is 1 (that was used as a 

criterion for excluding some of the erroneous identifications as ‘clerical errors’ --see below). If 

an examiner made an erroneous identification on every single list, that would give a maximum, 

false identification rate of 6.7% (1 out of each 15 comparisons). We elaborate on these issues in 

the Discussion section, but remind the reader that the research questions and experimental design 

of this study was to examine the contextual biasing effect of the ranking that the AFIS 
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technology provides, and our analysis (below) on false identification maintains this research 

focus.  

 

 
 
Figure 3: False Identifications, as a function of position in the AFIS list, for both 
‘match present’ and ‘match absent’ lists, in AFIS lists with 10 and 20 candidate prints. 

 

As illustrated in Figure 3, the distributions of false identifications are centered on the upper 

positions of the AFIS list (numbers 1 & 2). Indeed, logistic regression analyses revealed that 

candidate position was significantly predictive of whether a choice was a false identification or 

not for both length of AFIS lists; for 10 candidate lists, X2(1, N = 18380)=35.41, p< .001, and for 

20 candidate lists, X2(1, N = 36840)= 44.17, p< .001. 

 

Table 4 shows that the coefficients for both length lists were negative, indicating that there was a 

greater likelihood of false identifications when the candidate was at the top of the list.  

 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) (length = 10) -4.60221 0.29651 -15.521 <.001* 

Candidate Position  (length = 10) -0.43789 0.08878 -4.932 <.001* 

(Intercept) (length = 20) -5.0609 0.4138 12.231 <.001* 

Candidate Position  (length = 20) -0.5471 0.1386 -3.947 <.001* 

 
Table 4: Regression parameter calculated for 10 and 20 AFIS candidate lists. 
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However, the data above relates to false identifications, regardless of whether they occur within a 

list that contained the real matching print, or within a list that did not include the matching print. 

In theory if a false identification occurs within a list that does not contain the matching print, the 

print identified (as false as it is) may be the most similar to the latent from the entire set of prints 

in the list. In this circumstance, the false identification may not be the result of the print’s 

position on the AFIS list, but rather a reflection of its relative similarity to the latent. The 

examiner may have incorrectly concluded that the prints matched, but correctly selected the print 

with the highest degree of similarity to the latent mark, without necessarily being effected by its 

position within the AFIS list. However, when a false identification occurs when the real 

matching print is present, but lower in the list, then such an error reflects a bias introduced by the 

position, as the examiner has selected a print higher in the list, while missing the correct 

identification present in a lower position2. 

 

The above results include both errors made on lists that included the actual matching print, and 

errors made on lists that did not include the match. We therefore conducted further analysis to 

focus on false identifications which occurred only within lists that included the matching print. 

This focus also tests a critical issue of this research, i.e., whether the matching print might be 

more likely to be missed if it is positioned lower down the AFIS list. The results of this analysis, 

illustrated in Figure 4, show that even in these lists, false identifications were concentrated at 

                                                 
2 Some jurisdictions have procedures that allow examiners to stop doing comparisons after they find an 
identification in an AFIS list. However, the examiners in our study were working within procedures that required 
them to conduct comparisons with all the candidates in the list, i.e., even if they found a match, they were obligated 
to finish all comparisons on the list. 
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higher candidate positions (but this effect was more pronounced in the longer, 20-candidate, lists, 

where false identifications were only made in the first and second candidate positions). 

 

 
 
Figure 4: The number of false identifications in AFIS lists that contained the real 
matching print, for lists of 10 and 20 candidates.  

 

Table 5 shows the parameter of the logistic regression model. The results showed that for list 

length of 10, candidate position with a trend for statistical significance, X2(1, N = 9140)= 2.93, 

p= .087, and for list length of 20, the candidate position was significant X2(1, N = 18360)= 16,34, 

p< .001. These analyses show that false identifications tend to be made in high candidate 

positions. This clearly demonstrates that examiners making use of AFIS technology can result in 

false identifications even when the real matching print is present in the same list, as long as it is 

in a lower position in the list. Indeed, in all four of the false identifications made in the 20-

candidate lists, the actual matching print was lower down the list than the candidate that was 

falsely identified as matching.  

 Estimate Std. Error z value Pr(>|z|)

(Intercept) (length = 10) -5.7297 0.5127 11.175 <.001* 

Candidate Position  (length = 10) -0.1713 0.1037 -1.652 .099 

(Intercept) (length = 20) -4.7389 1.0013 4.733 <.001* 

Candidate Position (length = 20) -1.0997 0.5778 -1.903 <.001* 

 
Table 5: Regression parameter calculated only for lists that contained the real 
matching print, for 10 and 20 AFIS candidate lists. 
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Our analyses above included 49 erroneous identifications. However, some of these may have 

included errors that may appropriately be classified as ‘clerical errors’. At least arguably, errors 

that are the result of ‘clerical’ mistakes should be excluded from the data set. However, such a 

step is problematic and can be questioned and criticized. For example, Wertheim, Langenburg, 

and Moenssens (2006) reported an error rate of 1.041% but classified almost all the errors 

(1.007%) as “clerical” mistakes, and only 0.034% of errors were classified and attributed as 

actual erroneous identification judgements. In an examination of that study, Cole (2006) 

questions their exclusion of errors as “clerical” mistakes. 

 

There are several issues surrounding exclusion of data as ‘clerical’ mistakes. First, how should a 

clerical error be defined or identified? Furthermore, even if some false identifications are indeed 

‘clerical errors’, does this automatically justify exclusion? It may well be that such clerical errors 

are a result of not paying attention; however, this reduced attention may itself be caused by bias, 

such as, for example, a general cognitive bias to prefer the first choice (Sulmont-Rosse, 

Chabanet, Issanchou, & Köster, 2008; Carney & Banaji, 2008; Miller & Krosnick, 1998), or a 

specific bias relating to AFIS-induced expectation and motivation associated with comparisons 

of prints at different positions on the AFIS list; or possibly a combination of both --the exact 

topic and focus of this research. Therefore, one must exercise extreme caution in excluding data. 

Nevertheless, including data that does not reflect the cognitive processes one is investigating 

may taint the results and interpretation of the entire study. 
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Given this quandary, we decided to include two analyses. The first, reported above, included all 

the false identifications. The second, reported below, excluded the false identification that were 

potentially ‘clerical’ in nature, resulting in excluding 37 of the 49 false identifications, giving a 

false identification error rate of 0.02%. As our criterion for ‘clerical error,’ we excluded any false 

positive errors on lists where the examiner reported more than one identification within the same 

list. Examiners knew that in principle any list could not contain more than one matching print; so 

in those instances when they indicated two (or more) matching prints, this reveals a process 

mistake that can, at least arguably, be deemed likely to be ‘clerical’ in nature. From discussions 

with examiners, the likely cause of this scenario was double or triple clicking on a conclusion 

button, or getting in the mode of clicking the wrong button (Ident when Exclusion was intended). 

 

Using this criterion eliminated 37 of the 49 false identifications from our totals. With the new 

data set, now only with 12 false identifications rather than 49, we were interested to examine, as 

we did before, their positions in the AFIS lists. Figure 5 clearly illustrates that false 

identifications were still centered at the upper positions of the lists (1 & 2).  

 

 
 
Figure 5: False Identifications (excluding potential ‘clerical errors’), as a function of 
position in the AFIS list, for both ‘match present’ and ‘match absent’ lists, in AFIS list 
with 10 and 20 candidate prints 
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Logistic regression analyses (shown in Table 6) further confirmed our findings: it revealed that 

candidate position was significantly predictive of whether a choice was a false identification or 

not for the 10 candidate lists, and a trend for statistical significance in the 20 candidate lists. The 

coefficients for both lengths of AFIS lists (10 and 20) were negative, indicating that there was a 

greater likelihood of false identifications when the candidate was at the top of the list.  

 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) (length = 10) -4.737 0.708 -6.687 <.001*

Candidate Position  (length = 10) -1.010 0.409 -2.691 .007*

(Intercept) (length = 20) -7.576 0.793 -9.557 <.001*

Candidate Position  (length = 20) -0.209 0.123 -1.697 .090  

 

Table 6: Regression parameter calculated for 10 and 20 AFIS candidate lists 
(excluding potential ‘clerical errors’). 

 

 

As before, we wanted to conduct an analysis when false identifications were made in lists that 

contained the real matching print (see Figure 6).  
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Figure 6: The number of false identifications made in lists that contained the real 
matching print (excluding potential ‘clerical errors’). There were no such errors in the 
20-candidate lists, the data in the figure are from the 10-candidate lists.  
 

 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) (length = 10) -5.313 1.084 -4.804 <.001*

Candidate Position  (length = 10) -0.915 0.550 -1.665 .100

 

Table 7: Regression parameter calculated for the 10 AFIS candidate lists that included 
the real matching print (excluding potential ‘clerical errors’). 

 

Although Table 7 shows that the candidate position is not quite significant, this may be the result 

of the low number of false identifications and therefore lack of statistical power. Nevertheless 

the fact is that false identifications were only made in the upper candidate positions when the real 

matching prints was present lower in the list. This, combined with our earlier analysis of all of 

the false positive errors, clearly suggests that AFIS and its design may influence the human 

examiner to make a false identification, even when the real matching print is present in the list, 

as long as it is in a lower position.  

 

The important and consistent result is that in both analyses, with and without the potential 

‘clerical errors’, the position in the AFIS list played a critical contributing role in the way 

examiners conduct their comparisons and conclusions. It can be argued that those candidates in 

the more upper positions are more similar to the latent, and that drives the error, not the position 

in the list, per se. However, our analysis of the lists that contained the real matching print 

dismisses such a claim: if the actual similarity was driving the false identifications and there was 

no effect based on the position within AFIS, then errors of identification would only be apparent 
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in the lists that did not contain the real matching print. We consider this and other conclusions in 

the Discussion below.  

 

Experiment 2: 

 

All  
Comparisons 

Target Present 
Lists 

Comparisons 
N % N % 

Total Comparisons 55200 100.0% 18360 100.0% 
Matching Comparisons 1224 2.2% 1224 6.7% 
Non Matching 
Comparisons 53976 97.8% 17136 93.3% 
Performance  
Correct 53627 97.2% 17486 95.2% 
Incorrect 1130 2.0% 444 2.4% 
Pending 443 0.8% 430 2.3% 
Errors  
False Identifications 31 0.1% 10 0.1% 
False Inconclusive 795 1.4% 130 0.7% 
Miss 304 0.6% 304 1.7% 
Pending 443 0.8% 430 2.3% 

 
Table 8. Descriptive statistics for the entire dataset (all trials) 
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Match  
Comparisons 

Non Match  
Comparisons 

N % N % 
Total Comparisons 1224 100.0% 17136 100.0% 
Matching Comparisons 1224 100.0% 0 0.0% 
Non Matching 
Comparisons 0 0.0% 17136 100.0% 
Performance  
Correct 918 75.0% 16568 96.7% 
Incorrect 204 16.7% 140 0.8% 
Pending 2 0.2% 428 2.5% 
Errors  
False Identifications 0 0.0% 10 0.1% 
False Inconclusive 0 0.0% 130 0.8% 
Miss 304 24.8% 0 0.0% 
Pending 2 0.2% 428 2.5% 

Table 9. Descriptive Statistics for target matching and non matching comparisons 
 

 

Miss Errors 

The first analysis examined the likelihood of a target being missed (either through a “non ident” 

or an “inconclusive” decision) when compared. Because the analysis only includes those 

situations in which the prints being compared do match, there are only two choice outcomes 

correct (correct), or incorrect (miss). Figure 7 shows the effects of the conditions on the 

percentage of errors made during matching comparisons (miss errors) The top left panel shows 

the effect of the order condition manipulation. When the order was reordered, a random image 

was placed against with a score and hence the ranking should be unrelated to the actual image 

being compared. Logistic regression analysis revealed that the order conditions significantly 

predicted miss errors, X2(1, N = 1222)= 8.30,  p< .004. The model coefficient means that there 
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were more miss errors than when the order was kept (Order-Reordered coefficient = 0.383, Std. 

Error=.133, z= 2.87, p=.004).  

 

The top right panel of Figure 7 shows the score spread manipulation. Spreading of the scores was 

a way of manipulating the score so there were some artificially high scoring candidates. When 

the scores were spread apart, the highest score would be higher and the lower scores would be 

lower. It was hypothesized that if examiners may be more likely to erroneously identify high 

scores if they were artificially raised. The mean score for the when the scores were spread for 

each target was 2902.4 (SD = 1631.4), whereas the mean score when the scores were left as 

normal was 15579.8 (SD = 563.1). However, the score conditions did not result in any main 

effect on the likelihood of miss errors, X2(1, N = 1222)= 1.753,  p=.186,  (Score-Spread 

coefficient = -.175, Std. Error=.133, z= -1.323, p=.186). 
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Figure 7. The effect of the order condition (upper left panel), score condition (upper right 
panel), list length condition (lower left panel) and the time spent making the comparison 
(lower left panel) as main effects on miss errors. 

 

The bottom left panel shows the list length condition, whereby some lists contained 20 

alternatives and others contained just 10. There was no main effect of the number of candidates 

in the list (i.e. 10-length lists versus 20-length lists) on the number of miss errors,  X2(1, N = 

1222)= .089,  p=.766, (List-20 coefficient = -.039, Std. Error=.132, p=.766). However, there was 

an effect of the mean amount of time spent3 during a single target matching comparison on the 

likelihood that that comparison would be missed,  X2(1, N = 1222)= 99.527,  p<.001. The model 

estimates are shown in figure 1 lower panel, whereby the likelihood of error is high when the 

examiner only examines the prints for a short time but the likelihood reduces to a low likelihood 
                                                 
3 For modeling purposes the log of the candidate view time was used to distribute values more evenly along the 
scale. 
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of error as the examination time increases (log(Examination Time) coefficient = -.609, Std. Error 

=.065, z=-9.430,p<.001). Furthermore, there was a significant interaction between the order 

condition and the time spent comparing matching prints on the likelihood of error. The 

coefficient for the interaction term suggests that in cases in which the order has been reordered 

the effect of the comparison time is stronger than when the order had been kept. However, an 

effect of the order being reordered was that the mean score for the matching prints was different. 

For the order kept condition the mean score was 2936.3 (SD=1489.1), whereas for the order 

reordered the mean score was 1539.1 (SD = 807.5). Accordingly, the interaction seems to 

suggest that when the score for the matching print was high then the effect of the comparison 

time was less pronounced, presumably as the examiners tended to defer to the score. 

  

 Coef Std. Error z 

value 

P  

Intercept 0.379 0.619 0.612 .540  

Order-Reordered 2.263 0.745 3.037 .002 * 

Log (Comparison Time) -0.313 0.115 -2.722 .006 * 

Order-Reordered × Log (Comparison 

Time) 

-0.430 0.144 -2.995 .003 * 

 

Table 10. The effect of the order condition, comparison time, and interaction on miss errors  
 

This was confirmed by a further analysis comparing the score of matching print being compared 

and the comparison time. The results in Table 11 show that a higher score is linked with a 
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reduction in errors. This is not surprising as to defer to a matching decision based on a high score 

will always result in a correct decision as the analysis only includes matching prints.  

 Coef Std. Error z 
value 

P  

Intercept 3.353 0.637 5.264 0.000 * 
Score -0.001 0.000 -2.658 0.008 * 
Log (Comparison Time) -0.835 0.125 -6.708 0.000 * 
Score × Log (Comparison Time) 0.001 0.000 2.380 0.017 * 

 
Table 11. The effect of the order condition, comparison time, and interaction on miss errors  

 

 

False Identification Errors 

This analysis included both present and absent lists and includes comparisons made when the 

target was not present. The previous study suggested that false identifications tend to be made on 

prints higher up in the AFIS list. Therefore, this analysis included the position of the compared 

print as a new variable. However, some lists were 20-candidate lists and others were 10-

candidate lists, accordingly a print in position 10 may be at the end of some lists but only part 

way through others. Therefore, it was decided that these two types of list should be analyzed 

separately. 

 

In table 8 the results show that there are only 31 false identifications in the whole dataset. 

Accordingly, any logistic regression which seeks to understand two-way or three-way 

interactions between variables runs the risk of resulting in complete separation of data points in 

the dependent variable. Indeed, initial analyses showed this to be the case. Accordingly, the 

analyses reported here only include main effects. The dependent variable was a dummy variable 

in which one denoted an False Identification and zero denoted any other decision outcome (Miss, 

False Inconclusive, Correct). There were 16 false identifications in the 10-candidate list trials 
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and 15 false identifications in the 20-candidatie list trials hence it seems unlikely that there is an 

effect of list length on false identifications. Pending trials were excluded.  Table four shows the 

result of the analysis. 

 
10-Lists Coef Std. Error z 

value 
P  

Intercept -0.998 1.067 -0.935 0.350  
position -1.212 0.300 -4.046 <.001 * 
Log (Comparison 
Time) 

-1.184 0.256 -4.623 <.001 * 

Trial Type (Present) -0.117 0.544 -0.215 .823  
Order (Reordered) 1.216 0.544 2.235 .025 * 
Score (Spread) -0.477 0.620 -0.769 .442   
20-Lists Coef Std. Error z 

value 
P  

Intercept 5.609 2.015 2.784 .005 * 
position -3.431 0.840 -4.087 <.001 * 
Log (Comparison 
Time) 

-2.446 0.377 -6.482 <.001 * 

Trial Type (Present) -0.895 0.645 -1.387 .166  
Order (Reordered) -0.795 0.678 -1.173 .241  
Score (Spread) 1.024 0.568 1.802 .072  

 
Table 12. Regression Analysis Results for False Identifications in 10 and 20-candidate lists 

 
The results appear to support previous findings that there is an effect of position on the 

likelihood of error. Both coefficients are negative for the position factor which suggests false 

identifications tend to be made on candidates at the top rather than the bottom of the list. This is 

shown in figure 8. 
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Figure 8. The false identifications made in both 10- and 20-candidate lists by the 
prints position in the list. 

 

In addition, the regression finds that the time spent viewing a candidate affected the likelihood of 

a false identification. The regression coefficients indicate that false identifications tended to be 

associated with shorter viewing times, as found in the miss error analysis. The final finding was 

that in the 10 candidate lists, false identifications were more likely reordered lists than when the 

order was kept, whereas there was an effect of score in 20-length lists but no effect of the order 

manipulation. 

 
 

Experiment 3: 

As with Experiment 2, the data we obtained in this study is rich in information, and we subjected 

it systematically to statistical analysis, based on the research questions and experimental 

designed we employed. Our analysis for Experiment 3 had to distinguish between AFIS lists that 

did not contain the matching print and those which did, as our experimental design and 

manipulation included changing both the ranking and the scores provided by AFIS.  

 

All  
Comparisons 

Target Present 
Lists 

Comparisons 
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N % N % 
Total Comparisons 55220 100.0% 27500 100.0% 
Matching Comparisons 1832 3.3% 1832 6.7% 
Non Matching 
Comparisons 53388 96.7% 25668 93.3% 
Performance   
Correct 53516 96.9% 26287 95.6% 
Incorrect 830 1.5% 340 1.2% 
Pending 874 1.6% 873 3.2% 
Errors   
False Identifications 22 0.0% 6 0.0% 
False Inconclusive 519 0.9% 49 0.2% 
Miss 285 0.5% 285 1.0% 
Pending 874 1.6% 873 3.2% 

 
Table 13. Descriptive statistics for the entire dataset (all trials) 

 
 

Table 14. Descriptive Statistics for target matching and non matching comparisons 

Match  
Comparisons 

Non Match  
Comparisons 

N % N % 
Total Comparisons 1832 100.0% 25668 100.0% 
Matching Comparisons 1832 100.0% 0 0.0% 
Non Matching 
Comparisons 0 0.0% 25668 100.0% 
Performance   
Correct 1545 84.3% 24742 96.4% 
Incorrect 285 15.6% 55 0.2% 
Pending 2 0.1% 871 3.4% 
Errors   
False Identifications 0 0.0% 6 0.0% 
False Inconclusive 0 0.0% 49 0.2% 
Miss 285 15.6% 0 0.0% 
Pending 2 0.1% 871 3.4% 

 

Results 

Errors 

The aim of this study was to determine whether the experimental manipulations affected the 

likelihood that a target would be missed or not. The manipulations were as follows; whether the 
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order was kept or reordered, whether the scores were spread further apart of kept as original, the 

length of the candidate list (10- and 20-candidate lists), and the target position manipulation (the 

target was place at the top, high, low, or bottom of the list). When the order was reordered, a 

random image was placed against with a score and hence the ranking should be unrelated to the 

actual image being compared. Spreading of the scores was a way of manipulating the score so 

there were some artificially high scoring candidates. When the scores were spread apart, the 

highest score would be higher and the lower scores would be lower. It was hypothesized that if 

examiners may be more likely to erroneously identify high scores if they were artificially raised. 

The target position manipulation varied the position of the matching print so that it was either 

placed at the top of the list (Top), high in the list (High), Low in the list (Low) or last in the list 

(Bottom). 
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Figure 9. The main experimental manipulations and the effects on the percentage of targets 
comparisons which are missed (both “non-ident” and “inconclusive” decisions). 

 

As we are only including those situations in which the prints being compared do match, there are 

only two choice outcomes correct (match), or incorrect (do not match/inconclusive, i.e. 

miss).Figure 9 appears to show very little in the way of any main effects. Indeed, there was no 

main effect of order on miss errors (Order(Reordered) coefficient = -0.075, Std. Error = 0.131, z 

value = -0.570, p = 0.568). There was no main effect of the spread of scores manipulation 

(Score(Spread) coefficient = -0.095, Std. Error = 0.131, z value = -0.727, p = 0.467). There was 

no main effect of the list length on error rates (List(20-Candidates) coefficient = 0.039, Std. Error 

= 0.129, z value = 0.302, p = 0.762). Similarly, there was not significant main effect of the 

position of the target candidate in the list manipulation, X2(3, N = 1830) = 0.652,  p=0.884. 

 

However, given that the experiment involved a large number of manipulations it may be 

necessary to control for these various manipulations in order to observe the effects. Accordingly, 

a logistic modeling approach was taken which attempted to determine which combination of 

factors truly did predict the likelihood of miss errors in the most parsimonious way possible. This 

involves weighing the gains in predictability made at the cost of adding the extra parameter. The 

complexity of adding a new parameter is considered valid if the parameter significantly improves 

predictability. This improvement is measured by the change in the log likelihood of the simple 

(i.e. excluding the parameter) compared the complex (i.e. including the parameter) model. 

 

A stepwise simplification technique was employed to achieve this optimized model which 

removed those model parameters (both simple and interaction terms) which did not significantly 

improve the fit (measured by the log likelihood) of the model. Parameters relating to the 
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candidate list length and the order manipulations did not significant improve the fit of the model 

and hence were removed. The final model included the Score manipulation condition, the score 

value of the candidate shown to participants and the time spent during a single comparison 

(comparison time4). The target position manipulation, was simplified to a two level variable in 

which the target was either in the top position (Top) or in the higher, low, or bottom position 

(Lower).  Table 3 shows the parameter estimates for the regression model. The chi squared test 

showed that the final model was a significant fit of the data, X2(9, N = 1830) = 46.5, p<.001. 

 
 Coefficient Std. Error z value Pr(>|z|)  
(Intercept) -3.820 1.063 -3.594 0.000 *** 
Score Value 0.001 0.001 0.297 0.767  
Log(Comparison Time) 0.343 0.107 3.210 0.001 ** 
Score(Spread) 6.770 1.262 5.364 0.000 *** 
Position(Lower) -6.909 1.972 -3.503 0.000 *** 
Score Value × Score(Spread) -0.001 0.000 -2.750 0.006 ** 
Log(Comparison Time) × 
Score(Spread) -0.899 0.185 -4.873 0.000 *** 
Score Value × Position(Lower) 0.001 0.000 1.812 0.070 . 
Log(Comparison Time) × 
Position(Lower) 0.714 0.190 3.753 0.000 *** 
Score(Spread) × Position(Lower) 2.253 1.016 2.218 0.027 * 

 
Table 15. Stepwise regression model for miss errors 

 

The regression model reported in table 15 estimates significantly non-zero parameters for 

comparison time and the score manipulation as well as effects of the position of the target in the 

list. Surprisingly, the model estimates are in the opposite direction to our predictions, at least in 

terms of main effect. For example, the model seems to find that overall the errors increase as 

comparison time increases, and that there was a lower likelihood of error when the target was not 

                                                 
4 For modeling purposes the log of the comparison time was used to distribute values more evenly along the scale. 
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in the top position. However, these estimates must be interpreted alongside the interaction terms.  

In particular, it appears as though the spread factor is particularly important. The model estimates 

that in situations in which the scores have been artificially spread apart, the score values are 

associated with a reduction in errors. Similarly, when the scores are spread apart the time spent 

viewing the candidate is more strongly associated with a reduction in misses. The interaction 

terms for comparison time and position appear to show that the increase in errors as comparison 

time increases are more strongly found in situations in which the target is lower than in the top 

position (i.e. in the high, low, or bottom positions). When the candidate is in the bottom position, 

an increase in the score value is more strongly associated with errors than in other positions. 

Finally, it appears as though in the high and bottom positions (as well as almost significantly in 

the low position), a high spread of scores is related to an increase in errors when compared to 

spread scores when the target is in the top position.  
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RT 

 

Figure 10. The main experimental manipulations and the effects response times 

 

Figure 10 shows the comparison time data under each manipulation, there appears to be a more 

pronounced effect in the RT data compared to the miss errors shown in the previous section. In 

order to determine where these effects lay, ANOVA analysis was performed on the data. The 

results are shown in Table 16.  
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 Df Sum Sq 

Mean 

Sq F Value P  

Score Spread  1 6.600 6.602 8.649 0.003 ** 

List Length 1 5.400 5.399 7.073 0.008 ** 

Score Value 1 8.880 8.882 11.636 0.001 *** 

Score Spread×List Length 1 0.820 0.818 1.072 0.301  

Score Value×Score Spread 1 5.870 5.869 7.689 0.006 ** 

Score Value×List Length 1 4.510 4.511 5.910 0.015 * 

Score Value×Score Spread×List Length 1 5.380 5.379 7.046 0.008 ** 

Residuals  1822 1390.79 0.7633    

 
Table 16. ANOVA for the regression model of the effect of score values, the spread of 

scores, and list length on comparison times.  

 

The target position manipulation was not found to be significant, F(3,1828)=1.226, p=0.299. 

However, score value, score spread manipulation and list length were found to be predictive of 

response times. There was a main effect of score value and list length on comparison times and 

almost a significant main effect of score spread. There was an interaction between score value 

and score spread, as well as score value and list length. There was also a three way interaction 

between score value, score spread and list length. The model parameters are shown in table 17. 

These results suggest that the scores are very important in terms of the time spent viewing a 

candidate. Principally, the score value is strongly related to the time spent on a candidate. A 

linear regression model predicts that an increase in score is positively related to the candidate 

view time (Score Value coefficient = 0.001, Std. Error = 0.001, z value = 4.447, p <.001). As the 
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mean score during spread trials was 3822.1 (SD=1318.0) whereas the mean score for normal 

trials was higher at 4331.1 (SD=502.4), it seems that this difference in mean may explain why 

comparison times were generally higher in normal versus spread trials. In fact, this may explain 

the interaction between the score manipulation and the position of the target position 

manipulation on miss errors (see the final row in Table15). If spread scores are associated with 

lower mean scores which in turn tend to be compared for a shorter time and hence may result in 

more errors. 

  

 

 
 Estimate Std. Error  t value Pr(>|t|)  
(Intercept) 5.387 0.312 17.290 .000 *** 
Score Value 0.001 0.001 -0.032 .975  
Score(Spread) 0.064 0.373 0.172 .864  
List Length(20) 0.519 0.466 1.112 .266  
Score Value×Score(Spread) 0.001 0.001 -0.267 .789  
Score Value×List Length(20) 0.001 0.001 -1.213 .225  
Score(Spread) ×List Length(20) -1.406 0.523 -2.688 .007 ** 
Score Value×Score(Spread)×List 
Length(20) 0.001 0.001 2.671 .008 ** 

 
Table 17. Model estimates for the effect of score values, score manipulations and list length on RT. 

 
 
 
Conclusions 
 
Technology, and especially cognitive technology that performs cognitive operations that were 

once only possible by humans, gives rise to new forms of distributed cognition. A forensic 

technology such as AFIS is a clear and excellent example of new achievements and possibilities 

that can arise from new human-technology collaboration. It also demonstrates the complexity of 
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such endeavours, and illustrates that one should fully consider and understand their impact. Too 

often technology is deployed with only technical training in its use, without optimizing the 

human-technology collaboration; adapting human cognition to the new technological 

environment; or taking steps to minimize potential harm or new risks generated by the 

technology.  

 

AFIS is a major technological apparatus, widely used, and is very expensive. Nevertheless, there 

has not been a single empirical scientific study that examined its cognitive impact on the world 

of fingerprinting. When considering AFIS results, fingerprint examiners may continue to 

consider similarities for identifications in exactly the same way as they did in the pre-AFIS era 

when generally there was no active agent presenting the examiner with similar recorded 

fingerprints. That is, they may use the same decision making processes whether a print is 

provided by a suspect or from an AFIS search. SWGFAST (the Scientific Working Group that 

established guidelines for this profession), the IAI (their professional body), as well as dozens of 

laboratories that we have examined, do not seem to provide any guidelines or stipulations 

concerning how examiners may need to change their decision making threshold when using 

AFIS.  

 

AFIS has in many ways been a great success, but nevertheless it may introduce problems that 

have never been studied or researched. AFIS changes the way that comparisons are presented to 

an examiner. In non-AFIS searches, an examiner is frequently presented with a limited set of 

prints for comparison. By contrast, in an AFIS setting, an examiner is presented with a ranked set 

of prints, beginning with the most probable match. Indeed, most AFIS hits are provided as the 

Page 47 out of 60 
 



top candidate on the list. While this ranking may therefore be very useful information for the 

examiner, it may also create a bias. The research reported here examines the potential biasing 

effects of the ranking of prints in an AFIS list.  

 

Do human examiners take this ranking information provided by AFIS and use it in their decision 

making process? And if they do, is that a problem? The fact that AFIS views certain candidates 

as more likely to be a match than others, may constitute valid and important information for the 

human examiner to take on board. If AFIS rankings tend to be accurate, human examiners may 

experience efficiency gains by utilizing that information, and focusing their cognitive resources 

on the highest-ranking exemplars. However, such influences -- warranted and helpful as they 

may be-- need to be carefully researched, considered and formalized (Dror & Mnookin, 2010). 

Furthermore, such influences may be biasing in a negative way. For example, they may affect 

expectations, leading to lower attention levels and motivation for comparisons of candidates not 

at the top of the list, and thereby missing identifications provided by AFIS in lower positions. 

Moreover, the less accurate the AFIS rankings, the more problematic it may be if the examiner’s 

own processes internalize them. There may also be too much of an examiner focus on the top 

prints in a ranked list, especially given the general psychological and cognitive bias to prefer the 

first choice (Mantonakis, Rodero, Lesschaeve, & Hastie, 2009). 

 

Providing a ranked list is not a necessary feature of a database search process. It would be very 

simple to modify AFIS’s output to eliminate the examiners’ knowledge of AFIS’s ranking, by 

providing lists to examiners with prints in a random order. However, it is far from clear if that is 

warranted. To determine whether that change would be beneficial, research would be needed on 
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at least two distinct questions: First, research must examine whether the AFIS ranking has an 

impact on the human examiner. Our study examines this specific issue, and does find that AFIS 

ranking impacts examiner decision making processes, both by decreasing the time spent by some 

examiners on lower-ranked exemplars, and, as a result of this decreased time, increasing the 

number of missed identifications; and by revealing that false identifications were more likely to 

occur at the top of an AFIS list. But before we could conclude that such information ought 

therefore not be provided to the examiner, we would also need to examine whether the ranking 

information was sufficiently valid that its presentation aided accurate decision making (or more 

efficient) notwithstanding its potential biasing effect.  

 

In this study we inserted the matching print into different positions in AFIS lists. We compared 

how human examiners approached the comparison as a function of where we inserted the 

matching prints. We examined if the position would affect their conclusions (i.e., whether they 

were more likely to make an error, either a false inconclusive or a false exclusion), and if it 

biased their decision making process (i.e., are they likely to go about the comparison differently, 

based on the position of the print in the list, as reflected by their Response Time). Our study 

design recognized that bias could affect the decision making process, but not necessarily change 

the decision outcome every time. The change in decision outcomes is determined by the 

direction of the bias and its magnitude, and the complexity of the decision itself (Dror, 2009). 

We therefore were interested in both whether the position on an AFIS list affected decisions, but 

also whether it affected the cognition and the decision processes itself. 
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Our empirical study clearly shows that the ranked position of a print in an AFIS list affects the 

human examiners. This effect may well be without their conscious awareness, but the data 

demonstrates that examiners change their decision-making process as a function of print 

position. We are able to ascertain this with confidence as our experimental setup and design 

enabled us to statistically compare performance on the exact same comparison (same pair of 

latent and print), which only differed in the position of the print in the AFIS list, and all else 

being equal. Furthermore, given that our expert participants conducted the comparisons as 

routine casework and hence did not know they were taking part in a study, we can confidently 

attribute our findings to the real world of fingerprinting.  

 

Our findings show that examiners take less time to compare items when they are presented at a 

lower position on the list. This finding is not a function of the print itself; the same print is 

considered differently when presented at a lower position on the ranked list. We also found that 

examiners are more likely to miss an identification (false exclusion) or erroneously judge a 

matched print inconclusive when comparison time is lower. Furthermore, these two factors 

appear to interact such that there is a greater biasing effect of the position in the list when the 

comparison is made quickly than when comparison time is longer. This fits with current 

sequential sample models of perception and judgment which argue that biases are often more 

influential in low threshold decision-making (Busemeyer & Townsend, 1993; Dror, Busemeyer, 

& Basola, 1999).  

  

Our findings also show that when false identifications occur, they are closely centered at the top 

of the list, further showing the biasing effects of position. Such false identifications occurred 
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even when a more similar print (the actual matching one) was present in a lower position in the 

list. We are confident in our finding as we found the exact same results when we included all the 

false identifications (49 errors, 0.09%) and also when we excluded all those that were potentially 

‘clerical errors’ (keeping only 12 errors, 0.02%).  

 

Although our study does not directly address error rates, it is important to note that false 

identifications are more likely as the comparison print is more similar to the latent. All of our 

prints were generated from an AFIS search of a database that contained only a small number of 

tenprints (just over 3,000). We cannot ascertain if the rate of false identification would have been 

higher if we obtained prints from an AFIS search of 10s of millions of prints rather than a few 

thousands.  

 

Similarly, our finding of 27.40% of missed identifications (false inconclusive and false 

exclusions), needs to be taken within the scope of this study. The position of the matching print 

in the AFIS list (which was the topic of research of this study) contributed to this error rate and 

we cannot ascertain what the rate of error would have been without this biasing factor. 

 

Our research demonstrates the effects of the prints’ position in an AFIS list but does not explain 

its cognitive implications. Do examiners utilize different cognitive schemas and processing when 

comparing prints in different positions (see Ashworth & Dror, 2000, for details of different 

cognitive identification schemas and processing), or do their expectations of finding a match 

influence their motivation and drive the time, effort, and attention they dedicate to the 

comparison (Carney & Banaji, 2008; Miller & Krosnick, 1998; Sulmont-Rosse, Chabanet, 
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Issanchou, and Köster, 2008)? In the typical identification unit, such expectatons may arise from 

intentional or incidental exposure to other kinds of case metadata from sources other than AFIS. 

Perhaps this and subsequent studies of the relatively easily controlled AFIS metadata bears on 

non-AFIS influences upon expectations. Further research can elucidate these questions, which 

will help guide recommendations of how best to use AFIS and optimize the human-technological 

collaboration. Our findings also indicated the potential relevance of list size on examiners’ 

decision making processes, i.e., whether AFIS provided a 10- or 20-candidate list to the human 

examiner. While the length of the list mediates the effect of position, more research and data is 

needed before we can confidently draw conclusions and best practice recommendations on this 

issue.  

 

When we examined the scores of AFIS, we did not find such strong effects on the human 

examiners as when we examined ranking. Therefore, it seems that some information that AFIS 

provides to the human examiners is more influential than others. 

 

Other cognitive aspects regarding AFIS work also require further research and data, such as 

whether there are accuracy or efficiency benefits to providing the exemplar list to an examiner 

sequentially or simultaneously. Such questions have been heavily researched in other areas of the 

criminal justice system (e.g., eye witnesses identifications; see Charman & Wells, 2006; Wells & 

Olson, 2003; Turtle, Lindsay, & Wells, 2003), and even in some forensic domains (e.g., face 

recognition technology; see Dror & Shaikh, 2005a, 2005b). However, no such research has 

investigated these issues with regards to AFIS, and therefore it is impossible to make 
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scientifically-informed decisions on better or worse ways to make use of this important and 

prevalent technology. 

 

Forensic science requires such cognitive research, especially in the domains that rely heavily on 

human perception and judgment, such as pattern and impression evidence. To make such 

research scientifically sound as well as applicable to the real world of forensic science, 

collaborative research projects –like the one reported here—significantly benefit from the 

involvement of both cognitive research scientists and practicing forensic examiners. It would be 

premature to recommend best practices regarding AFIS from this study standing alone, but the 

clear effects of ranking on examiners’ time to decision, false identification decisions, and missed 

identifications demonstrate that AFIS design does have an effect on examiner’s cognitive 

processes. This study illustrates the importance of continued further research regarding how 

cognition is, and should be, distributed between humans and cognitive technologies.  

 

 

Disclaimer: This project was supported by Award No. 2009-DN-BX-K224 

awarded by the National Institute of Justice, Office of Justice Programs, US 

Department of Justice. The opinions, findings, and conclusions or 

recommendations expressed in this publication are those of the author(s) and do 

not necessarily reflect the views of the Department of Justice.  
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