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Foreword 
 
 United States citizens, government decision makers, businesspersons, and industry desire 
higher quality weather information.  The United States has some of the most dangerous weather 
in the world and 30% of the gross national product is weather sensitive.  We have the knowledge 
and technology to improve US global competitiveness by producing and applying skilled 
probability forecasts.  Such high utility weather information will attract industry to develop and 
implement innovative methods for integrating weather into business decisions, potentially saving 
the US economy tens of billions a year in the aviation and renewable energy sector alone.   
 Fortunately, leaders and policy makers within the weather enterprise are laying groundwork 
for a concerted, national effort to synchronize national resources.  The Hurricane Forecast 
Improvement Program (HFIP) has bred energy and teamwork into solving difficult scientific 
challenges associated with improving tropical storm track and intensity forecasts.  Lessons 
learned through HFIP have rallied the data assimilation community around the 4D-
VAR/Ensemble Kalman Filter hybrid concept.  The National Center for Environmental 
Prediction (NCEP), in concert with NASA, is currently revamping the data assimilation strategy.  
HFIP also funded testing of a suite of advanced global models that has sparked a NOAA/Navy 
partnership dedicated to fielding the next generation global model.  NCEP, in collaboration with 
Environment Canada and the National Meteorological Service of Mexico, introduced the first 
operational global multi-center ensemble, the North American Ensemble Forecast System 
(NAEFS).  These efforts have lead to the National Unified Operational Prediction Capability 
(NUOPC) initiative between the DOD and NOAA that seeks to improve forecast accuracy and 
provide reliable probabilistic information for effective global military operations and civilian 
aviation.  Additionally, today, NOAA researchers are working to operationalize the High 
Resolution Rapid Refresh forecast system, which is vital to improving 0-6 hour high-impact 
weather prediction.    
 One key area that still needs to be addressed is production of highly skilled probability 
forecasts on the mesoscale.  Over the last two decades, the science and technology of ensemble-
based probabilistic weather prediction has rapidly advanced, providing improved decision input 
to a wide range of users.  The National Research Council (2006) and the American 
Meteorological Society (2008) clearly described that probabilistic hydrometeorological 
information is extraordinarily valuable to society, with the potential to bring substantial 
economic benefits and improved protection of life and property.  Emerging societal needs, such 
as renewable energy systems, require a robust mesoscale probabilistic weather prediction 
capability.  Additionally, NOAA is tasked to produce a 4D datacube with probabilistic forecast 
information for the Next Generation Air Transportation System (NextGen) by 2016.  Current US 
operational probabilistic prediction is executed at relatively coarse resolution and uses cost 
efficient methodologies to make best use of limited computing resources.  Advancement is also 
hampered by under-utilization of the considerable knowledge, talent, and experience in this field 
due to challenges associated with transitioning science from across the weather enterprise into 
operations.  The end result of the current situation is suboptimal decision making across a broad 
spectrum of weather information users, including government agencies, private businesses, and 
even individual citizens.   
 Reflecting both the compelling national requirements for probabilistic prediction and the 
need to more effectively harness the efforts of the US research and operational communities, a  
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Discussion 
 
 Effective production and application of mesoscale probabilistic forecasts requires a high-
quality ensemble prediction system (EPS).  When considering EPS design, attention is normally 
focused on aspects such as the number of members, ensemble initial conditions, and treatment of 
model uncertainty.  A more broad view of an EPS, as presented in Figure 1, considers everything 
necessary to meet the objective of supporting optimal decision making by the user.  The many 
parts of the system are intertwined and must work together to produce the best result. 
 The term foundation here is used to depict the traditional, deterministic (i.e., single value)  
numerical weather prediction (NWP) forecast system.  It is actually the most critical component 
of the EPS since the foundation’s quality sets the level of deterministic forecast error (or amount 
of forecast uncertainty), which ultimately dictates the value of the EPS output (Buizza et al. 
2005).  A better analysis (denser observations, better data assimilation, etc.) and/or better model 
(higher resolution, better physics, etc.) leads to less error. 
 The production encompasses everything necessary to generate consistently reliable 
information on the possible future states of the atmosphere.  This includes what is typically 
called the ensemble [i.e., multiple NWP forecasts using various initial conditions (ICs) and 
model formulations] as well as postprocessing to calibrate for model biases and limitations of the 
ensemble.  Continuing from above, a better EPS foundation means that there is less forecast 
uncertainty, which leads to production of sharper forecasts (i.e., probabilities closer to 0 or 
100%) of greater value in decision making. 
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Figure 1.  Schematic of an ensemble prediction system and its focus on supporting user decision making. 
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 Lastly, the interface of the EPS is where the forecast information gets interpreted, tailored, 
and communicated to support optimal decision making via risk analysis for users sensitive to 
weather conditions.  The final output, which may come in a variety of forms from a probability 
forecast to a weather warning based on a user’s risk tolerance, encapsulates a flow-dependent 
estimate of the distribution of likely future states. 
 The EPS is only as good as its weakest part.  For instance, we can put tremendous effort into 
designing a highly accurate analysis/model and an ensemble that thoroughly simulates the 
existing uncertainty, but users would not be able to apply the information without products 
tailored to their operations and education on how to use the information.  Furthermore, the parts 
of the system have to be designed and configured to work well together.  For example, the 
postprocessing technique must be tuned to correct the specific systematic errors in both the 
foundation and the ensemble.   
 A philosophical topic brought up at the workshop was the need to shift the paradigm of what 
we call and think of as THE forecast.  When discussing ensemble output, even proponents of 
ensembles often refer to a single forecast and its uncertainty, thus failing to embrace the true 
nature of forecasting.  The scientifically proper, and best way to think of the forecast for decision 
making, is as the complete probability density function (PDF) for the forecast variable, or as a 
probability when considering a specific event (e.g., visibility ≤ 500 m).  Shifting toward such 
thinking helps focus and frame ideas when considering EPS design.  For example, accounting for 
uncertainty in a parameterization should not be approached as perturbations about a “best-guess” 
value, but rather as thorough representation of possible parameter values.    
 The following sections cover the workshop’s four break-out groups, which discussed key 
aspects of the status of EPS capabilities and recommendations on the way forward. 

A. The Ensemble 
This section covers the scientific and technical issues involved in producing the raw 
ensemble forecast data.  While the workshop focused on short-range, regional ensemble 
forecasting over the US, discussion extended to global ensemble forecasting upon which the 
regional ensemble is dependent for lateral boundary condition (LBC) updates. 

1. Status 

a) Current Capabilities 
 Over the past decade, the National Centers for Environmental Prediction (NCEP) has 
made notable advancements in operational ensemble forecast production (Toth and 
Kalnay 1997; Toth et al. 2001; Wei et al. 2008), but progress has been constrained by 
limited resources and inadequate collaboration within the enterprise.  Both the Global 
Ensemble Forecast System (GEFS) and the Short Range Ensemble Forecast (SREF) are 
coarse in resolution relative to international peers and must use cost effective, proven 
methodologies.  Table 1 outlines some of today’s leading operational ensembles.  
Increasing resolution of NCEP’s ensembles to a comparable level is an expensive 
undertaking due to the computing demand, particularly for regional modeling since NWS 
requires a large area of coverage (i.e., CONUS and adjacent coastal regions). 
 GEFS currently includes 21 members at T190 (~75 km grid spacing) out to 384 h with 
four cycles per day.  GEFS uses a form of the ensemble transform technique called the 
Ensemble Transform with Rescaling (Wei et al. 2008) to generate ICs and a stochastic 
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Table 1.  Brief details on the current premier operational ensembles.  Further details on the design of these 
ensembles are given in text below.  Approximate equivalent grid spacing for the spectral models is 
calculated at 45° latitude and assumes the smallest resolvable feature covers two grid lengths. 

Grid              Forecast # of
Name Center Domain Spacing Length (h) Members Future Plans

Regional Ensembles

MOGREPS UK Met N. Atlantic 24 km 54 24 2010→ 18 km main domain 
(United and Europe 2012→ 1.5 km UK domain 
Kingdom)

COSMO- COSMO Europe 7 km 132 16 2010→ 20 members 
LEPS Consortium

(led by Italy)

SRNWP- DWD Europe Variable 48 10-23
PEPS (Germany) (avg. ~7 km )

Global Ensembles

ECMWF ECMWF Global T639 (~22 km) 360 51 2015→T1000 (~14 km)
EPS

JMA JMA Global T319 (~44 km) 216 51
EPS (Japan)  

 
 
 
physics technique to simulate model uncertainty (Hou et al. 2006).  SREF runs 21 
members with a model grid of 32-35 km, covering a large North American domain out to 
87 h with four cycles per day.  To generate ICs, SREF currently relies on the regional 
breeding (for 11 members) and Global Ensemble Transform (for 10 members) 
techniques.  Model uncertainty is simulated with the multi-model technique, employing 
both different models (i.e., WRF-NMM, WRF-ARW, Eta and RSM) and different 
physics packages (Du et al. 2009). 

b) Design Factors and Computing Requirements 
 Ensemble design factors that dominate the computer resource demand for an 
operational EPS include:  
 • Model resolution (horizontal and vertical) 
 • Number of members 
 • Method of initializing the ensemble 
 • Method(s) for simulating model uncertainty during the forecast integration   
 • Forecast length 
 • Domain size 
 • Domain interaction (1-way or 2-way nesting) 
 • Forecast update frequency 
 • Forecast timeliness
Computational resources will always be a strong constraint in ensemble design.  
Balancing the effort devoted to each factor should, of course, be accomplished in a way 
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that best serves the users’ decision-making needs.   For instance, the expense of finer 
model resolution could be compensated for by greatly reducing the number of members, 
but any gains might be overcome by the degradation to skill from undersampling. 
 A key advantage of the ensembles in Table 1 is high model resolution.  Among the 
major influences on ensemble forecast quality (e.g., number of members, correlation 
between ICs and analysis-error statistics, and the appropriate treatment of model 
uncertainties), model resolution plays a very large role, particularly for sensible weather 
phenomena.  An ensemble can only portray forecast uncertainty information on scales 
represented in the model.  Decreasing ensemble members’ grid spacing increases spread 
via increased interactions between a greater number of scales of motion and also 
decreases error (i.e., lower forecast uncertainty), thus improving statistical consistency 
(Szunyogh and Toth 2002; Eckel and Mass 2005; Clark et al. 2009).  Statistical 
postprocessing can ameliorate some ensemble deficiencies, but the evidence suggests that 
improving the raw ensemble forecast, especially its resolution, can contribute greatly to 
higher forecast skill even after postprocessing (Hagedorn et al. 2008; Hamill et al. 2008).  
 Another key design factor is the number of members.  The general consensus is that 
consistently skillful probability forecasts requires 20-30 members.  Talagrand et al. 
(1999) showed that there is little benefit in going beyond ~ 30 members when evaluating 
the ensemble with common probabilistic metrics.  However, in the absence of 
postprocessing, reliably estimating the probability of rare events (i.e., forecast scenarios 
in the tails of the forecast PDF) may require a greater number of samples.  The difficulty 
is in verifying (and calibrating) for such events because of their rarity, so spending the 
large additional cost to ensure sampling of rare events may not be easily justifiable.    

c) Accounting for Analysis and Model Uncertainty 
 Of all the ensemble challenges, the most progress has been made on methods for 
generating ensemble ICs.  Early methods such as singular vectors (Buizza 1997) and bred 
modes (Toth and Kalnay 1993, 1997) provided sets of initial conditions that grew rapidly.  
However, the underlying theory of ensemble prediction indicates that the ICs should be 
sampled from the distribution of analysis uncertainty (Ehrendorfer and Tribbia 1997).  As 
implemented, neither bred modes nor singular vectors satisfy this criterion. 
 The Ensemble Kalman filter (EnKF) technique, a data assimilation method alternative 
to variational approaches, does provide samples of analysis uncertainty (Wang and 
Bishop 2003; Descamps and Talagrand 2007) and is now used for ensemble initialization 
at the Canadian Meteorological Center.  Methods based on the Ensemble Transform 
(ET), a generalization of the breeding technique, can also sample actual analysis error but 
with higher computationally efficiency (Bishop and Toth 1999; Wei et al. 2008).  
Approximations such as the Local Ensemble Transform Kalman Filter (Kuhl et al. 2007) 
are also used operationally, e.g., at the UK Met Office (Bowler et al. 2008).  While there 
are still some remaining issues with these methods, such as the potential for diminished 
spread growth for EnKF (Hamill and Whitaker 2009), this technology is likely to be more 
broadly adopted in the coming years given its theoretical and practical appeal. 
 Accounting for forecast uncertainty due to model error is still a significant challenge 
mainly because model error is so poorly understood.  The inability to thoroughly account 
for model error in an ensemble is likely a major contributor to the commonly observed 
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problem of underdispersion among ensemble members.  Nonetheless, several techniques 
are currently in use and/or being researched: 
 

1) Multi-model – Different models and/or different physics schemes among the 
members (e.g., Stensrud et al. 2000).   

 

2) Stochastic Physics – Perturbations (which may be formulated with spatial/temporal 
structures or other dependencies) to state variables’ tendency during model 
integration (e.g., Buizza et al. 1999). 

 

3) Stochastic Backscatter – Return dissipated energy via scale-dependent perturbations 
to wind field (e.g., Berner et al. 2009). 

 

4) Random Parameters – Random perturbations to physics parameters (e.g., 
entrainment rate), which may be fixed prior to model integration or varied during 
model integration (e.g., Bowler et al. 2008). 

 

5) Perturbed Surface Parameters – Perturbations to surface temperature, albedo, 
roughness length, etc., which may be fixed before model integration or varied during 
model integration (e.g., Eckel and Mass 2005). 

 

6) Stochastic Parameterizations – Explicit modeling of the stochastic nature of 
subgrid-scale processes (e.g., Teixeira and Reynolds 2008). 

 

7) Coupling to Ocean/LSM Ensemble – Explicit modeling of the considerable 
uncertainty from the surface boundary (e.g., Holt et al. 2009). 

 

 For the most part, these techniques do not have the theoretical underpinning that 
exists with the new EnKF methods for generating ICs.  The general approach has been to 
find logical ways to add “good spread” – an increase in spread accompanied by an 
increase in forecast skill.  The costs involved to apply each technique also vary 
considerably.  Coupling to an ocean or LSM ensemble has a very high, real-time 
computational cost.  Techniques such as random parameters have research costs 
associated with determining appropriate perturbations.  The multi-model technique 
involves maintenance of a large amount of code, which may make it impractical for an 
operational EPS.  Additionally, it can create non-physical clustering of forecasts due to 
similarities between members, which may result in unrealistic forecast PDFs even after 
calibration (which itself becomes more challenging as each member has unique systemic 
errors).  The state-of-the-art ensembles, ECMWF EPS for global modeling and 
MOGREPS for regional modeling, do not use the multi-model technique, which suggests 
that we consider concentrating our efforts into a single model configuration. 
 A separate source of model uncertainty unique to regional ensembles is from the use 
of periodic lateral boundary condition (LBC) updates.  It is difficult for the ensemble to 
represent the errors from coarse (spatial and temporal) LBC updates.  Nutter et al. 
(2004a) showed that even when using a global ensemble to drive a regional ensemble, the 
perturbed LBCs fail to capture the full uncertainty and thus constrain ensemble 
dispersion.  The smaller the model domain and the longer the forecast lead time, the more 
severe the problem (Du and Tracton, 1999).  While Nutter et al. (2004b) proposed a 
possible solution to this issue involving adding structured noise to the LBC updates, it 
has not been tested for operational implementation. 
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2. The Way Forward 
 There is a clear potential for the US to produce greatly improved probabilistic 
forecasts, but how good do such forecasts need to be, and how do we justify the 
necessary R&D and computational costs to get there?  One route is the top-down 
approach where the intricate decision processes of the myriad of mesoscale forecast users 
are analyzed to determine requirements and benefits, and thus establish EPS design 
standards with a thorough business case analysis.  However, this would be an incredibly 
complex and time consuming task involving help from decision analysts.  A more 
practical approach is to work bottom-up.  Using our knowledge of NWP and experience 
as forecasters, the target is an EPS that likely meets the needs of the majority of users.   
 NCEP currently has several planned ensemble upgrades through 2014.  In 2011, 
GEFS will be improved by running at T254 (~55 km).  Also in 2011, the SREF will be 
improved to a 22-km grid and addition of the NEMS-NMMB model with stochastic 
parameterizations.  Additionally, to boost ensemble size, SREF may be combined with 
the Canadian regional ensemble system (33 km, 20 members).  In 2013, SREF will be 
further improved to a 12-km grid (which still does not permit explicit depiction of most 
mesoscale features) and use of the ensemble transform technique to generate ICs for all 
members.  SREF will still be multi-model system but use only NEMS-NMMB and 
NEMS-ARW, both with stochastic parameterizations.  In 2014, NCEP plans to introduce 
a North America Rapid Refresh Ensemble (NARRE) designed for near-term (24 h) 
forecasts focused on aviation support.  NARRE will be similar in design to SREF except 
with an hourly update cycle, a 3-km grid, and only 6 members.  To support high-impact 
weather forecasting, NCEP will at the same time introduce a 6-member High-Resolution 
Rapid Refresh Ensemble (HRRRE) that will have nested domains with 1-km grid spacing 
within CONUS and Alaska.     

a) Design Targets 
 NCEP’s planned ensemble upgrades represent valuable and aggressive improvements 
over current capabilities.  However, the upgrades’ success is dependent on the timely 
purchase of the next NOAA operational computer system and successful ensemble design 
and associated testing.  Even under the best case scenario in terms of acquisition of 
sufficient computational resources between now and 2015, NCEP will need the assistance 
of the enterprise to conduct systematic testing of high-resolution ensemble designs in 
order to achieve goals identified at the workshop.   
 Table 2 lists recommended design specifications for NCEP ensembles to be 
operational by 2015.  No attempt was made here to optimally balance the various design 
factors.  GEFS requires significant additional upgrades to provide high quality, extended 
forecasts as well as to provide robust LBC updates (explained below) to ensure the 
quality of the short-range, regional ensemble effort.  SREF and NARRE also need 
increased model resolution.  The resolutions and forecast lengths of the ensembles is 
designed around the principle that predictability is lost starting from small scales working 
upward as lead time increases, thus longer lead times have coarser model resolution and 
less frequent updates.   
 A challenging area of research is system optimization, that is, investigation into trade-
offs in the design configuration (model resolution, domain size, number of members, 
etc.).  The number of design parameters combined with their ranges of possible settings 
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Table 2.  NCEP ensembles target specifications for implementation by 2015.  A relocatable ensemble, 
which may be necessary for tropical cyclone forecasting if output from GEFS and SREF does not suffice, is 
left for further consideration by the working groups.  

Resolution Forecast Update # of
Name Model Domain Grid Levels Length (h) Frequency (h) Members

GEFS GFS Global T1000 (~14 km) 90 84 6 20

T399 (~35 km) 40 84-360 12 20

SREF NMMB N. America 4 km 55 48 3 20

NARRE NMMB CONUS 1 km 90 12 1 20
and AK

? cyclone? Relocatable TBD TBD TBD TBD TBD  
 
 
 
 
creates a seemingly endless number of permutations to test.  Furthermore, the answer for  
the best settings may vary greatly depending upon how results are measured.  This 
research question will require careful attention and considerable effort by the enterprise. 
 Model resolution is a critical design factor since it greatly influences both forecast 
value and the costs of producing the information.  It was agreed that explicit modeling of 
convection is key since it frequently and severely impacts most users with phenomena 
such as damaging winds, lightning, severe turbulence, and flash flooding.  Using a grid 
spacing of 10 km or more, an ensemble using parameterized convection can be designed 
to accurately simulate the forecast uncertainty (i.e., achieve statistical consistency) and 
provide reliable forecast probability.  However, relative to a convection-resolving 
ensemble, the forecasts would be less sharp due to the larger forecast uncertainty.  Using 
grid spacing of 4 km or less would bring the convection into focus and greatly reduce the 
uncertainty, resulting in significantly higher value in decision making. 

b) Accounting for Analysis and Model Uncertainty 
 Extensive testing is needed to decide on the best choice for generating ICs.  NCEP 
and NOAA/ESRL have already embarked on systematic comparison of the ET and EnKF 
methods as well as exploration of ways to reduce EnKF costs.  Besides robust ensemble 
ICs, a potential benefit of EnKF is improved data assimilation (i.e., reduced analysis 
uncertainty, thus sharper forecast PDF).  For regional ensemble systems, care must be 
taken to ensure the IC generation method is compatible with the LBC updates coming 
from the global ensemble.  A potentially critical ability for short-term forecasts may be 
assimilation of radar data (Xue et al. 2009). 
 There are many questions to investigate involving treatment of model uncertainty in 
the ensembles, but the biggest need is basic research into more physically based 
algorithms designed to sample model uncertainty.  One example is comparison of 
solutions from cloud-resolving simulations to parameterized solutions, which may help 
develop more effective cumulus parameterizations as well as determine how to 
stochastically perturb the parameterizations.  
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 In considering only current methods, testing is needed on whether to include the 
multi-model approach or only use some combination of the other techniques with a 
single, best-model.  Does the value added by a multi-model ensemble outweigh the many 
detriments (discussed above)?  Similarly for the other techniques, their costs to develop, 
implement, and maintain should be weighed against their value added.  The most 
promising of all the methods may be stochastic parameterizations.  An additional 
question for investigation is which methods can be applied together without duplicating 
simulation of a particular source of uncertainty.  An obvious example would be the 
overlap between using perturbed surface parameters and coupling to an ocean/LSM 
ensemble.  A more subtle conflict may come from using stochastic physics along with 
random parameters. 
 By design, GEFS can directly provide robust LBC updates that effectively capture 
and feed in the error growth external to SREF.  Using too coarse a resolution for GEFS 
would require running additional regional grid(s) to nest down to the SREF domain and 
also require extending SREF forecast length to fill needs not met by GEFS.  Additionally, 
a coarser GEFS would likely reduce LBC diversity and degrade SREF skill.  Given the 
fairly short forecast lead times combined with the fairly large domains, SREF may be 
able to provide sufficient LBC updates for NARRE.  Testing is needed to investigate 
whether the dispersion of SREF and NARRE is seriously constrained by this LBC 
strategy.  If so, an approach following Nutter et al. (2004b) should be explored.  

c) Improving the Foundation 
 Apart from model resolution discussed above, the workshop unfortunately devoted 
very little time to discussing needed improvements to the EPS foundation.  Ironically, the 
foundation may be the EPS component containing the greatest potential for advancing the 
entire EPS.  There are still significant weaknesses in analyses and forecast models whose 
improvement would drastically reduce the demands on the ensemble and result in a 
sharper forecast PDF and more value to the user.  
 Ensemble researchers need to work more closely with model developers and data 
assimilation experts to identify areas of the foundation to improve that would most 
benefit the EPS.  Top priority areas would include phenomena highly sensitive to error 
(e.g., initiation of convection) and any source of forecast uncertainty extremely difficult 
to simulate in the ensemble (e.g., uncertainty from parameterization of cloud 
microphysics).  

B. Postprocessing 
Ensemble postprocessing (or “calibration”) is integral to producing high-quality probability 
forecasts.  Calibration can ameliorate the systematic deficiencies in ensemble predictions 
(i.e., biases in mean and spread), which may be caused by sampling error from too few 
members, by inadequate model resolution, by improper initial conditions, or by model errors.  
These deficiencies are especially pronounced for surface and sensible-weather elements such 
as heavy precipitation, severe weather occurrence, surface temperatures, and wind speeds 
(Eckel and Mass, 2005).  Most postprocessing methods adjust the current forecast using 
statistical relationships between past forecasts and observations.  The end result of ensemble 
postprocessing should be probabilistic predictions that are reliable (e.g., 20 percent event 
occurrence when 20 percent probability is forecast) while retaining as much sharpness as 
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possible (Wilks 2006, Gneiting et al. 2007).  This makes the forecasts much more useful to a 
wide range of users. 

1. Status 
 For deterministic forecasts, postprocessing techniques were first brought to fruition in 
US operations through Model Output Statistics, or MOS techniques (Glahn and Lowry 
1972).  Since the late 1990s, the ensemble postprocessing literature has grown rapidly.  A 
general review of the ensemble postprocessing literature through 2006 is provided in 
Hamill et al. (2006).  Since then, there has been further development of the Bayesian 
Model Averaging techniques (Raftery et al. 2005; Wilson et al. 2007; Berrocal et al. 
2007; Sloughter et al. 2007, 2009; Fraley et al. 2009); applications of and technique 
development with reforecast training data sets (Hamill and Whitaker, 2006, 2007; Wilks 
and Hamill 2007; Hagedorn et al. 2008; Hamill et al. 2008; Fundel et al. 2009a, 2009b);  
the Bayesian Processing of Forecasts algorithm (Krzysztofowicz and Evans 2008);  and 
ensemble-MOS techniques (Gneiting et al 2005; Glahn et al. 2009; Unger et al. 2009). 
 A wide variety of postprocessing techniques have been shown to improve 
probabilistic forecasts for variables with more consistent biases and quasi-normally 
distributed errors, but there are still many questions.  Only a small body of literature 
discusses which of the techniques may be preferable to use with a given ensemble design.  
Techniques designed for rare and high-impact events are less well developed.  And lastly, 
how can postprocessing be designed to achieve seamless probabilistic forecasts from the 
shortest to the longest forecast leads when using an EPS design, as in Table 2, that 
involves blending ensemble forecasts with different resolutions, forecast lengths, and 
update frequencies?  This is a critical question for populating the 4-D data cube being 
built by NOAA to support NextGen. 
 There are some generally agreed-upon principles for ensemble postprocessing.  All 
things being equal, simple algorithms are preferable to complex ones, given the cost of 
code maintenance.  Similarly, maintaining only one algorithm that works well for any 
variable (both raw model output and derived quantities) is preferable to maintaining 
multiple, specialized algorithms.  The postprocessed output must be meteorologically 
consistent so that, for example, a high probability of temperatures below freezing is not 
be accompanied by a high conditional probability of rain.  Postprocessing techniques 
need high-quality observational and/or analysis data.  Training data should use the same 
forecast model as applied in the real-time forecasts, and furthermore, large reforecast 
training data sets are very beneficial to ensemble postprocessing, especially for 
calibration of rare events.  However, a careful analysis is needed to compare the cost of 
generating large training datasets to the ensuing benefits. 

2. The Way Forward 
 Raw ensemble output will improve in the coming years through the use of better 
models, increased model resolution, and enhanced techniques for simulating uncertainty, 
however, for the foreseeable future, imperfections will continue to be large enough that 
most users will benefit from postprocessed forecasts.  As we envision a mesoscale EPS of 
the future, we have the opportunity to simultaneously develop and integrate 
postprocessing as a critical piece between the raw ensemble forecasts and the delivered 
information, thus achieving the highest possible quality support to the decision makers. 
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 We need a development process that balances advancement of NWP and 
postprocessing techniques.  Postprocessing produces best results occurs when the forecast 
model is accompanied by a long, consistent training data set, but the production of these 
data sets may slow down model development.  The development of an improved EPS 
offers an opportunity to work collaboratively and perhaps find compromises. 
 The end goal many years hence is postprocessed guidance that is skillful (as sharp as 
possible while still being reliable), comprehensive, dynamically and internally consistent, 
and seamless in time.  The system should be cost-effective to maintain and adaptable to 
new models and new observational data sets.  To move toward this goal, we recommend 
the following process for generating calibrated probabilistic forecast data. 

a) Define the Requirements 
What form should the postprocessed output take?  Should the output be adjusted 
ensemble members, or should it be probability density functions, or both?  What metrics 
will be used for evaluating various postprocessing methods, and what criteria should be 
established for selecting methods?  What data sets will be used to develop, evaluate, and 
compare procedures?  Answering such questions is a necessary first step in structuring a 
postprocessing effort.  Perhaps the NWS’s Office of Climate, Weather, and Water 
Services can lead this effort, entraining the ensemble and social science expertise in the 
wider community. 

b) Prepare for Testing 
This step would involve collecting and perhaps developing the observational, reanalysis, 
and reforecast data sets that would be used in the postprocessing, as well as in developing 
a library of existing postprocessing routines and verification software.  Since 
postprocessing technique development will occur in parallel with ensemble system 
development, it will be necessary to use forecast data from current-generation systems.  
To support users who wish to do their own postprocessing, the forecast, reforecast, and 
observational data, as well the data-generating software, must be made available to the 
enterprise. 

c) Develop New Algorithms 
Ideally, funding would be provided by NOAA, both internally and through external 
grants, and by NSF to develop new postprocessing methods and/or to refine the existing 
methods.  An important research area is how to apply postprocessing algorithms in 
situations where no trustworthy observations or analyses are available (e.g., calibrating 
probabilistic dust-storm forecasts in desert regions will be difficult).  Participants would 
be expected to use the data sets collected (step b above) and evaluate according to 
specified metrics (step a above). 

d) Inter-compare and Recommend Algorithms for Technology Transition 
An independent organization such as the Developmental Testbed Center (DTC) in 
Boulder, CO, would evaluate the algorithms according to objective criteria.  They would 
recommend one or a few for technology transition, or perhaps recommend hybridization 
of techniques or further development.  Recommendations would take into account the 
complexity of implementation as well as the degree of potential improvement. 
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e) Operational Model Development, Deployment, and Production 
The NWS, through the Meteorological Development Laboratory (MDL) and/or NCEP 
would be given the sample research-quality algorithms (step d above) and would produce 
and test operational code then implement the postprocessing algorithms. 

f) Monitor Quality 
The operational forecast quality would be monitored, perhaps by the production facilities 
(in step e above) or by an independent organization such as the DTC.  When deficiencies 
are noted, they could be fed back to refine the requirements (step a above). 

C. The Interface 
 To be beneficial, forecast uncertainty information must provide an overall positive impact 
on users’ decisions, whether it is obtained directly from the forecaster, filtered through an 
emergency manager, or incorporated in a decision algorithm.  If the user does not understand 
the forecast, finds it too taxing to incorporate into the decision process, or does not trust it, 
the information will have no impact, regardless of its quality.  This section discusses aspects 
of building an effective EPS interface that enables the forecast uncertainty information to be 
fully exploited. 

1. Status 
 It is virtually undisputed that the theoretical and economic advantages of optimized 
application of probabilistic forecasts is superior to single-valued forecasts.  The debate 
centers on the extent to which human decision makers can realize that advantage.  
Automated decision systems are of increasing interest, but people are the focus here since 
they are critically involved in the majority of key, weather-related decision making.  
Most people are not familiar with the mathematical principles that underlie the theoretical 
advantages nor do they tend to make decisions that reflect these principles (Tversky & 
Khanaman 1974, 1981, 1992).  Even when explicit decision rules are calculated for them, 
people do not necessarily follow them.  Especially difficult are low-probability, severe-
weather situations in which precautionary action is required but ignored (Baker 1995; 
LeClerc & Joslyn 2009).  
 Even sophisticated users do not always recognize the advantage of uncertainty 
information.  Uncertainty products are often ignored by forecasters (Joslyn et al. 2007; 
Joslyn and Jones 2008), commercial and agricultural enterprises, and those in resource 
management (Grimit 2009; Pulwarty and Redmond 1997; O’Connor et al. 2005; 
Changnon et al. 1995).  Thus, even people whose needs and expertise position them to 
make the best use of uncertainty forecasts are not convinced of the value of incorporating 
the information into the decision process.  
 Uncertainty information is challenging to human information processing in part 
because it increases overall processing load.  It requires the decision-maker to consider 
multiple potential outcomes and consequences as well as the corresponding levels of 
uncertainty.  Particularly difficult are rapid decisions that rely solely on “working 
memory” since there are only so many things people can consider simultaneously (Miller 
1956).  To exacerbate the processing issue, the wide variety of forecast uncertainty 
products currently available (see NRC 2006 for examples) were primarily designed by 
atmospheric scientists with little consideration of human cognition.   
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 Another challenge is that probability is an abstract construct whose meaning is 
debated even within the scientific community (deElia and Laprise 2005).  The most 
generally accessible meaning may be the “frequentist” interpretation, e.g. an 80% chance 
of precipitation means that precipitation will occur 8 out of the 10 times it is forecast at 
80%.  However, this interpretation only makes sense for repeatable events and is difficult 
to apply to rare, extreme events for which the consequences can be weighty.  Thus, 
understanding uncertainty may be most difficult when successful communication is most 
important.  
 In light of these challenges, one approach is to omit uncertainty from weather 
forecasts and then make the decision for the end user, but the problems associated with 
this strategy may be far worse (Freudenburg 1996; Slovic 1993).  Giving a single-value 
forecast can appear patently wrong whenever the forecast fails to verify, decreasing trust 
and willingness to comply with future weather warnings.  Additionally, users may 
attempt to second guess a recommended course of action, assuming that it may be 
appropriate for others but does not apply to their own specific situation. 
 Many of these challenges point to limited education, which may currently be the 
weakest aspect of the EPS interface.  There is some basic training available for 
forecasters (e.g., COMET 2005), but it lacks material on understanding how to best 
support user decision making.  On the user side, there is currently no formalized process 
or program for educating users on optimal application of weather information. 

2. The Way Forward 
Research on human decision makers’ ability to realize the theoretical benefit of 
probability forecasts is as yet a largely unexplored topic.  As such, rather than specify a 
development path, this section describes experimental studies needed to guide 
development of the EPS interface.  Successful research in these areas is challenging to 
design and to conduct but is extremely important both in economic terms and in terms of 
human safety. 

a) Marketing 
 Advancing from use of traditional to probabilistic forecasts can involve costs such as 
education of personnel, restructuring of decision processes, and infrastructure upgrades to 
handle the additional information, as well as the cognitive costs mentioned above.  To 
sell users on the likely handsome returns, solid behavioral evidence is needed to 
convincingly demonstrate the advantages.  There are now a handful of studies showing 
that explicit uncertainty information improves economic decision making among 
nonexperts (Roulston et al. 2006; Nadav-Greenberg and Joslyn 2009). 
 Research is required that investigates whether people make better decisions given 
uncertainty forecasts in a wide range of weather and decision contexts.  Important 
questions are whether uncertainty forecasts provide an advantage for 1) one-time 
decisions, which may be regarded as fundamentally different from repeated decisions 
(Patt and Shrag 2003), 2) group as well as individual decision-making, and 3) decisions 
whose benefits are not easily quantifiable.  The aim is to demonstrate a clear advantage in 
terms of realistic decision outcomes, but any situations discovered that lack clear 
advantages will allow focusing of efforts on the areas that do demonstrate benefit. 

12 
 



b) Methods for Communicating Forecast Uncertainty 
 Existing studies described by the NRC (2006) provide some direction for improving 
communication of uncertainty, but research needs extension to realistic weather-related 
decisions in such areas as: 

• Use of categorical risk expressions (e.g., high/med/low), which can be problematic 
(Walsten et al. 1986).  User reactions are often more appropriate when given a 
frequency expression (e.g., 1 in 10) rather than a probability (Gigerenzer and 
Hoffrage 1995).  Do those findings apply to weather forecasts and any user?   

• Risk communication in severe-weather situations having low probability and high 
potential loss.  Does the inclusion of consequences to the user (e.g., “widespread 
electrical outages”) help people to understand the importance of precautionary 
action (Chagnon et al. 1995)?  Should the worst-case scenario be emphasized?   

• Visualizations that help people understand uncertainty information.  Formats 
compatible with the decision at hand and with user expectations may reduce the 
transformations required to incorporate such information (Joslyn et al. 2008). 

• Dealing with misinterpretation of probability expressions.  They are often believed 
to be deterministic quantities such as percent of the area that will be affected 
(Gigerenzer et al. 2005; Joslyn et al. 2009).  Predictive intervals can be mistakenly 
interpreted as fluctuations over the course of the forecast period.  We need to 
uncover these and other basic error tendencies and then develop strategies to 
overcome them. 

c) User Trust 
 All the effort of an EPS is wasted if the user distrusts and chooses to ignore the 
forecast.  Are there specific expressions of forecast uncertainty that improve/detract from 
trust?  Uncertainty forecasts anticipate a range of outcomes so users do not generally lose 
trust by perceiving them as wrong, as is possible with a single-value forecast.  On the 
other hand, to an uneducated user an uncertainty forecast may appear to be hedging, 
hence untrustworthy.  Could inclusion of verification data restore user trust under some 
circumstances?  Lastly, how serious is the loss of trust due to variability in sequential 
forecasts for the same event, and how can we mitigate this problem? 

d) Forecaster Activities 
 Historically, in the NWS the official deterministic forecast has not come directly from 
either a model or postprocessed guidance but the synthesis of this information after 
examination and adjustment by human forecasters.  Does the shift toward predominantly 
probabilistic forecasting require an adjustment to that paradigm?  In what situations (e.g., 
very short-range, high-impact?) can a forecaster add value to the well-calibrated 
ensemble forecast data?  Research has shown that biases such as overconfidence 
seriously impact forecaster-derived probability statements (Keith 2003), which could 
perhaps be alleviated by improved training.  The impact of forecaster intervention needs 
careful evaluation to help design the forecasters’ activities in supporting optimal decision 
making. 
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e) Decision Support Systems 
 In many specific situations where repeated, similar decisions are made (e.g., reroute 
aircraft to avoid potential severe thunderstorms), the best approach may be to incorporate 
uncertainty estimates into decision support systems.  But, for people to put them to good 
use, the decision algorithms should be transparent to the user (Endsley et al. 2003).  
Research is needed to explore the design and function of such systems and their role in 
supporting human decision making. 

f) Education 
 The issue of education is intertwined to all the above topics and requires significant 
consideration.  Users need not only to be convinced of the benefits of uncertainty 
forecasts, but also need to be taught how to optimally apply the information.  Considering 
the wide array of potential users, this may be a formidable task for which resources will 
need to be acquired.  Forecasters will need to continue to learn the fundamentals of 
ensemble methods and probabilistic forecasting as well as understand how users intend to 
apply forecast uncertainty information.   

g) Research Methods 
 Sound experimental research is crucial to fully understand the psychological issues 
outlined above.  Because many of the cognitive processes involved in decision-making 
are not open to conscious awareness, we cannot rely entirely on what people think they 
need.  Thus, well-designed research is needed to compare decisions based on 
deterministic forecasts and various forms of uncertainty information. 
 It is critical for good research to use realistic tasks and stimuli in investigating the 
practical application of uncertainty expressions, including procedures that elicit optimal 
performance from participants.  Since uncertainty information requires additional 
cognitive effort, participants need motivation that mimics real world situations in order to 
reveal the true advantages from following uncertainty forecasts.  Additionally, using 
realistic tasks is important because meaningful, well-known contexts (i.e., actual 
forecasts, observations and decisions) facilitate logical thinking (e.g., Griggs and Cox 
1982).  If the stimuli contradict prior experience, even subtly, it may have an unintended 
influence on people’s responses and invalidate research results.  

 

D. R&D 

1. Status 
 Today there are many “centers of excellence” for mesoscale modeling and ensembles, 
primarily at government centers and at universities.  Sophisticated models and associated 
data assimilation systems have been developed and are sometimes run in a quasi-
operational mode over periods of many years.  Fully operational systems at government 
centers require 24/7 computer and communications backup capabilities to meet the 
required 99.95% on-time product delivery.  Additionally, although it is widely recognized 
that the forecast utility is considerably increased with postprocessing, full-bodied 
postprocessing systems have not yet been associated with such models. 
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 NWP is and continues to be one of the greatest achievements of modern times.  Ideas, 
theories, and techniques are shared through technical papers, journal articles, personal 
communication and at conferences.  Collaboration has been essential for supporting 
overall progress in this and other countries.  However, the transition of cutting-edge 
research into NOAA operational systems needs to be more efficient.  To reach the goals 
of this workshop, the centers of excellence need the  opportunity to play a more 
significant role in advancing the development of the national operational EPS. 
 The challenges to efficient implementation from research into operations are the 
complexity and demands of the operational environment (e.g., essential backup, 24/7 
support, on-time delivery, coding requirements, and rigorous testing standards).  
Incremental improvements in skill must be weighed against the level of additional cost 
and risk associated with the system improvements.  New ideas and methods must be 
rigorously tested in the operational system to ensure changes do not have unanticipated 
negative consequences.  Outside organizations are naturally frustrated with what appears 
to be a slow, inefficient implementation process.  However, operational implementation 
will always require rigorous testing to mitigate the risk of service degradation. 

2. The Way Forward 
Considerable investment of resources will be necessary to realize the advancement 
envisioned in this paper in the form of high-performance computing (for both R&D and 
operations), R&D, and transition into operations.  However, the return on this investment 
will be tremendous. 

a) Governance Structure 
 We recommend that a National Advisory Committee (NAC) be created to act as the 
standing governing body for R&D of the nation’s probabilistic forecasting capability.  It 
will foster and lead an effective collaborative effort that moves the US forward in 
probabilistic prediction.  The NAC will consist of membership from NOAA, NCAR, 
DOD weather, academia, the private sector, and the FAA.  Their initial charge is to work 
with NOAA to draft an implementation plan to accelerate the advancement of the 
operational mesoscale EPS at NCEP. 
 The NAC would: (1) advise the Assistant Administrators of NWS and OAR 
concerning the activities, requirements, and accomplishments of the probabilistic 
forecasting activity, (2) appoint working groups as necessary to carry out specific studies 
and make recommendations to the NAC, (3) work to establish a standing council under 
the NOAA Science Advisory Board, and (4) continually review the development progress 
and performance of national EPS capabilities.  There was also general agreement at the 
workshop that there needs to be high-level support at NOAA to champion the national 
EPS and lead the effort to secure the necessary resources (funding for R&D and 
operational high-performance computing). 
 The working groups will be the heart and soul of the collaborative effort, where ideas 
and processes are collected, exchanged, and further developed.  The groups must not 
simply be “paper committees” that only rarely meet and only discuss issues.  They will be 
the main conduit to solicit input from the field and must stay actively engaged through 
regular meetings (both in person and via telecoms) to keep the momentum going for the 
entire effort.  Working groups to be formed soon after initiation of the NAC are: 
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• Ensemble Design:  Address questions from section A.  One high-priority task is to 
work closely with the Business Case group on building a reliable cost estimate for the 
necessary high-performance computers. 

• Postprocessing:   Address questions from section B.    
• EPS Interface:  Address questions from section C.  This diverse area may logically be 

broken up into several working groups (e.g., product design, education, marketing, etc.) 
• Testing:  Work with the DTC and NCEP EMC (see below) to make recommendations 

on the processes and procedures to be used in R&D of the EPS. 
• Business Case:  Develop a business case for a strong and viable mesoscale EPS by 

establishing requirements of the key users and researching cost-benefit analysis of the 
proposed system.  Cost considerations will include the necessary high-performance 
computers, infrastructure, R&D/transition to operations, and system sustainment.  

b) Testing 
 R&D, optimization, implementation, and future evolution of the national mesoscale 
EPS is dependent upon solid testing and evaluation.  Formal testing procedures must be 
agreed upon and well managed in order to fairly judge and make good decisions on EPS 
design.  This is a big undertaking and the effort must not be underestimated.  The DTC in 
Boulder is ideal for the purpose.   Note that in February 2010, DTC started work on 
establishing the DTC Ensemble Testbed (DET), designed to aid this effort. 
 A systematic approach must be defined that will lead to a prioritization of techniques 
and methodologies identified by the working groups to be tested under this new 
framework.  Potential contributions to the EPS will be assessed based on their expected 
or measured value to improve upon operational NCEP EPS and contribute to the overall 
objectives as defined by the NAC.  Methods deemed promising will be tested for their 
potential inclusion using the current prototype EPS, maintained at the DTC.  The working 
groups will use test results to support their recommendations.  In judging the different 
methods, the important considerations are: 
• Probabilistic forecast skill (i.e., reliability and resolution). 
• Forecast value (i.e., user benefit) to demonstrate ability to support optimal decision 

making. 
• Consistency of forecasts in time, space, among weather elements, and from model run 

to run (i.e., different initiation times) 
• Computational efficiency and maintenance costs  
 Besides testing, the DTC will facilitate collaboration among government, academia, 
and the private sector for creation of the prototype EPS.  The DTC will make the 
prototype EPS available to support independent research and inter-comparison of various 
methods.  In order to streamline the transition into operations, the prototype EPS and all 
newly introduced algorithms will be designed to be compatible with NCEP operating 
frameworks.  NCEP will play a critical role in defining testing procedures that will 
promote successful transition and implementation of new techniques.    
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Summary 
 
 This white paper encapsulates the National Workshop on Mesoscale Probabilistic Prediction 
held in Boulder, CO, in September 2009.  It was agreed that US operational probabilistic 
prediction has not kept pace with the known science and available technology.  The goal was set 
to implement a radically upgraded national capability for probabilistic prediction by 2015 to 
support current and future decision-making needs.  Meeting this goal will require a significant 
infusion of resources for high-performance computing and research, as well as a coordinated 
collaborative effort by the whole enterprise.  Ideas were discussed on the way forward for four 
critical areas of the overall ensemble prediction system: (1) the ensemble design, (2) 
postprocessing the ensemble model output, (3) the user interface, and (4) R&D. 
 A governance structure was proposed, to be led by a National Advisory Committee (NAC) as 
the standing governing body for R&D of the future national EPS, which will build upon the 
current and planned upgrades to the NCEP ensembles.  The NAC will be responsible for 
establishing working groups to address the key development areas and for composing an 
implementation plan for the future EPS.  It is recommended that testing for EPS design and 
configuration be led by the Developmental Testbed Center in Boulder. 
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Acronyms 
 
4D-VAR four dimensional variational data assimilation 
ACUF AMS Ad hoc committee on Uncertainty Forecasts 
AMS American Meteorological Society 
ARW Advanced Research WRF 
COMET Cooperative Program for Operational Meteorology 
CONUS Continuous United States 
DOD Department of Defense 
DTC Developmental Testbed Center 
ECMWF European Centre for Medium-Range Weather Forecasts 
EMC Environmental Modeling Center 
EnKF Ensemble Kalman Filter 
EPS ensemble prediction system 
ET ensemble transform 
FAA Federal Aviation Administration 
GEFS Global Ensemble Forecast System 
GFS Global Forecast System 
ICs initial conditions 
LBC lateral boundary condition 
LSM land surface model 
MOGREPS Met Office Global and Regional Ensemble Prediction System 
MOS Model Output Statistics 
NAC  National Advisory Committee 
NAM North American Model 
NARRE North America Rapid Refresh Ensemble 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCEP National Center for Environmental Prediction 
NextGen Next Generation Air Transportation System 
NMMB Nonhydrostatic Multiscale Model on B-grid 
NOAA National Oceanographic and Atmospheric Administration 
NRC National Research Council  
NWP numerical weather prediction 
NWS National Weather Service 
OAR Office of Oceanic and Atmospheric Research 
PDF  probability density function 
R&D research and development 
RSM Regional Spectral Model 
SREF Short-Range Ensemble Forecast system 
WRF Weather Research and Forecasting model 
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