TPW: Magnetic Field, Electron Trajectory and Spectra (in presence of Bending Magnets)

TPW (+ BM) Spectral Flux collected by Finite Aperture (~3 mrad H x 2 mrad V) Centered on the Axis

NOTE: "Reference" modeling TPW magnetic field was used in the simulations; changes are still possible (!)

TPW (+ BM) Spectral Flux collected by Finite Aperture (0.33 mrad H x 2 mrad V) at Different Horizontal Angles

NOTES:

- Horizontal angle ξ_x is calculated from straight section axis "towards the storage ring"; the frame origin is in TPW center
- "Reference" modeling TPW magnetic field was used in the calculations; changes are still possible (!)
- Some numerical noise is present in the calculations

Approximate TPW (+ BM) Radiation Spectral Flux Collected through 6 mrad x 6 mrad Angular Aperture

TPW and BM: Effect of BM Edge Field Profile on Soft X-Ray Radiation Intensity Distributions

On-Axis Magnetic Field in Dispersion Section

Intensity Distributions in Horizontal Median Plane at 500 eV at 30 m from TPW

Estimating Focusing Efficiency of TPW Radiation

Analyzing TPW and BM Power Density Distributions

Horizontal Position

1

TPW and BM Power Density Distributions

Power Density Distribution (integral over all photon energies) from TPW and BM at 30 m

TPW and BM Radiation Intensity Distributions (Hard X-rays)

Intensity Distributions at Different Photon Energies at 30 m from TPW

TPW and BM Radiation Intensity Distributions (Soft X-rays)

Radiation Intensity Distribution from TPW and BM at 500 eV Photon Energy at 30 m

TPW+BM Radiation Intensity Distributions (Soft X-Rays to IR)

Observation Distance: 30 m

NOTE: modeling TPW magnetic field and BM edge field (without "noses") were used in these simulations; changes are possible (!) $E_{ph} = 1 eV$

