ANNEX J

Guidance for Determination of Necessary Bandwidth

J.1 INTRODUCTION

This Annex contains guidance relating to the necessary bandwidth parameter. Necessary bandwidth forms part of the emission designator used for frequency management purposes and is used as a parameter in spectrum standards, frequency assignments, etc., throughout this Manual.

J.2 GENERAL

Except for radars, the necessary bandwidth may be determined by one of the following methods with the order of preference shown:

- 1. Use of the appropriate formula from Table A in this Annex.¹
- 2. Computation in accordance with the Recommendations ITU-R SM.328-8 (1994) and SM.853 (1994).
 - 3. Measurements of specialized modulations not covered by 1. or 2. above.
 - 4. Use of the best available technical information from other sources.

The value so determined shall be used when the full designation of an emission is required for example, as indicated in Chapter 9.

See Section 5.1.5 for the desired relationship of occupied bandwidth to necessary bandwidth.

J.3 RADAR SYSTEMS

For radars the necessary bandwidth shall be determined at a point that is 20 dB below the peak envelope value of the spectrum by one of the following with the order of preference shown:

- 1. Computation in accordance with the radar formulas from Table A in this Annex.
- 2. Results of actual measurement.
- 3. Use of the best available technical information from other sources.

J.4 ANALOG FM

The basis of the formulas in Table A for the necessary bandwidth of analog FM and FDM/FM systems is Carson's Rule. This bandwidth is given by $B_1 = 2(D+M) = 2(a+1)M$, where D is the peak frequency deviation, "a" is the peak modulation index and M is the maximum modulating frequency. This rule represents an additive combination of the bandwidth expressions for extreme high $(B_1 \sim 2D = 2aM)$ and low $(B_1 \sim 2M)$ modulation index conditions. One of these two expressions prevails over the other for $\alpha >> 1$ or $\alpha << 1$, so that their linear superposition always yields the bandwidth measure for extreme index conditions.

An accepted relationship between analog FM bandwidth and a measure of performance such as allowable distortion as a function of the modulation index is not available. There is no distortion measure or criterion that is generally accepted for evaluation purposes, because of difficulties arising from the variety of modulating signal characteristics and models that occur in practice.

¹ Individual formulas may be based on theoretical models for the modulation technique.

The normalized FM bandwidth (B1/M) for single tone sinusoidal modulation is shown in Figure 1 for various power percentages included. Each stepped line corresponds to a fixed power percentage (p). The solid stepped line represents p=99% power included. The normalized bandwidth based on Carson's Rule is given by (B1/M) =2(a+1), shown in Figure 1 by the solid straight line. Carson's Rule essentially follows the p=99% line for indices in the 0.9 < a < 4.3 range. It also includes more power at lower indices, but falls progressively below the 99% power curve at higher indices outside this range.

The case of a random modulating signal with a uniform baseband spectrum has also been analyzed using included power as the band-limiting distortion criterion. A peak to rms load ratio of 11 dB has been assumed to simulate representative conditions of FDM/FM telephony. The resultant normalized bandwidth can be estimated by (B1/M) = 2Z(a,q) where Z is a function of "a" and the fractional power rejected q=1-(p/100) as follows (Refs b and c):

$$Z(q,a) = a \left[\sqrt{1 - \log_{(q^{5/7} \cdot 3^3)} - 0.05} \right] + 0.75$$

This expression is an effective approximation to a complicated integral formulation for moderate index values (1 < a < 5). The normalized bandwidth (B1/M) is shown in Figure 2 for various (q) values, along with the bandwidth formula corresponding to Carson's Rule. The latter can be noted to represent a power rejection in the $10^{-10} < q < 10^{-8}$ range, which is negligible.

The modulation cases shown in Figures 1 and 2 are extreme energy distribution conditions, in that one has all the baseband energy concentrated on a single frequency while the other has it spread uniformly over the baseband. The implication of Figures 1 and 2 is that Carson's Rule represents an effective bound to calculating analog FM bandwidth from a power included standpoint for modulation indices below five. The results also indicate that Carson's Rule includes considerably more power when the baseband modulation has a spread rather than concentrated spectral characteristic. Carson's Rule represents a q=0.01 power rejection for simple sinusoidal modulation, and $10^{-10} < q < 10^{-8}$ power rejection for a random modulation with a uniform baseband spectrum.

The necessary bandwidth of analog FM systems with modulation indices greater than 5.0 should be based on the methods of subparagraphs 2, 3 and 4 of the above GENERAL section.

See References a, b, and c.

J.5 SYMBOLS

As appropriate, the following table shall be used for calculation of necessary bandwidth. The following symbols are used in this table:

illoois are used	in this table.
$\mathbf{B} =$	Digital symbol rate for telegraphy (i.e. baud)
$B_c =$	Bandwidth of the frequency deviation (the total frequency shift during the pulse
	duration) in MHz.
$\mathbf{B}_{d} =$	Bandwidth of the frequency deviation (peak difference between instantaneous
	frequency of the modulated wave and the carrier frequency for FM/CW radar systems)
$\mathbf{B}_{\mathrm{n}} =$	Necessary bandwidth
C =	Sub-carrier frequency
$C_{max} =$	Highest sub-carrier frequency used.
$C_s =$	Separation in frequency between adjacent sub-carriers or carriers of a multi-carrier
	modulation.
D =	Peak deviation, i.e., half the difference between the maximum and minimum values of
	the instantaneous frequency.
f., =	Continuity pilot sub-carrier frequency (continuous signal utilized to verify

f_p = Continuity pilot sub-carrier frequency (continuous signal utilized to verify performance of frequency-division multiplex systems).

K =

An overall numerical factor which varies according to the emission and which depends upon the allowable signal distortion. Maximum modulation frequency M =Number of baseband channels in radio systems employing multichannel multiplexing. $N_c =$ $N_s =$ Number of Sub-carriers. R =Total bit rate, which includes data, encoding, and any other overhead bits. Number of equivalent non-redundant signaling states. S =Emitted pulse duration in usec at 50% amplitude (voltage) points. The 100% t =amplitude is the nominal peak level of the pulse. Emitted pulse fall time in *usec* from the 90% to the 10% amplitude points on the $t_f =$ trailing edge. Emitted pulse rise time in *usec* from the 10% to the 90% amplitude points on the $t_r =$

leading edge.

X =Average "talker power level" (in dBm0) used to determine the peak frequency deviation in FM/FDM systems. These values are normally specified by the equipment manufacturer (see Table B later in this annex for more information).

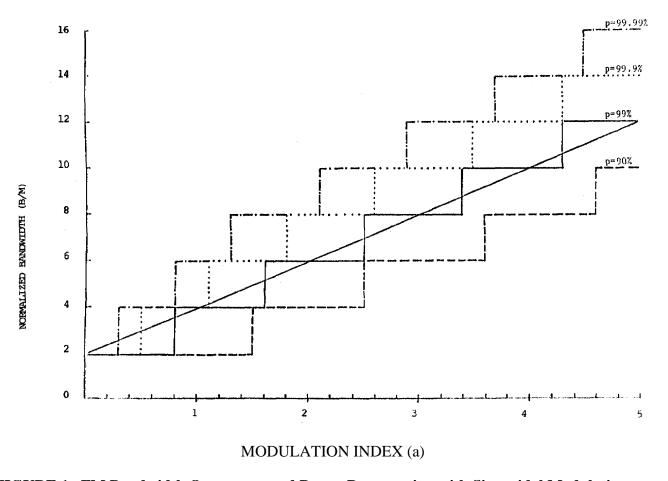


FIGURE 1. FM Bandwidth Occupancy and Power Preservation with Sinusoidal Modulation

(Note: Carson's Rule is the Straight Line)

(Legend: p is the Power Percentage Preserved)

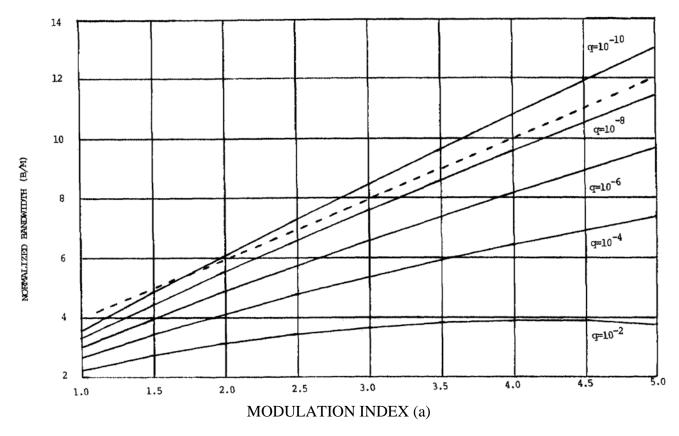


FIGURE 2. FM Bandwidth Occupancy and Power Preservation with Band-Limited White Modulation

(Note: Carson's Rule is the Dotted Line)

(Legend: q is the Power Fraction Rejected)

TABLE A. Necessary Bandwidth Calculations

Description of Emission	Formula	Sample Calculation	Sample Emission Designator	
	NO MODULATIO	N		
Continuous wave emission	$B_n = 0$	$B_n = 0$ Satellite downlink beacon		
CW radars ²	$B_n = 0$	Speed measuring CW radar $B_n =$	0H00N0N	
		0 Hz		
ANALOG				
	Amplitude Modulation			
Broadcasting				
Sound broadcasting,	$B_n = 2M$	Speech and music	8K00A3EGN	
double-sideband	M may vary between 4000 and	M = 4000		

² The emission bandwidth of a CW transmitter typically will not be zero due to noise and other considerations. However, designating zero as the necessary bandwidth is a valid method for identifying such equipment.

Description of Emission	Formula	Sample Calculation	Sample Emission Designator	
	10000 depending on the quality desired.	$B_n = 8000 \text{ Hz} = 8 \text{ kHz}$	8	
Sound broadcasting, single-sideband, suppressed carrier	$B_n = M$ (lowest modulation frequency)	Speech and music $M = 4500$ lowest modulation frequency = 50 Hz $B_n = 4450$ Hz = 4.45 kHz	4K45J3EGN	
Sound broadcasting, singlesideband, reduced carrier (single channel)	$B_n = M$ M may vary between 4000 and 10000 depending on the quality desired	Speech and music $M = 4000$ $B_n = 4000 \text{ Hz} = 4 \text{ kHz}$	4K00R3EGN	
	Radio Relay			
Double-sideband radiorelay system, frequency division multiplex	$B_n = 2M$	10 voice channels occupying base band between 1 kHz and 164 kHz M = 164000 $B_n = 328000 \text{ Hz} = 328 \text{ kHz}$	328K00A8E	
Double-sideband, television relay	$B_n = 2C + 2M + 2D$	Video limited to 5 MHz, audio on 6.5 MHz frequency modulated subcarrier, sub-carrier deviation = 50 kHz: $C = 6.5 \times 10^6 D = 50 \times 10^3 \text{ Hz}$ $M = 15000$ $B_n = 13.13 \times 10^6 \text{ Hz} = 13.13 \text{ MHz}$	13M13A8W	
	Telephony			
Telephony, double sideband (single channel)	$B_n = 2M$	M = 3000 $B_n = 6000 \text{ Hz} = 6 \text{ kHz}$	6K00A3EJN	
Telephony, independent sideband (two or more channels)	$B_n = \text{sum of } M \text{ for each side band}$	2 channels M = 3000 $B_n = 6000 \text{ Hz} = 6 \text{ kHz}$	6K00B8EJN	
Telephony, single-sideband, full carrier (single channel)	$B_n = M$	M = 3000 $B_n = 3000$ Hz = 3 kHz	3K00H3EJN	
Telephony, single-sideband, suppressed carrier (single channel)	$B_n = M$ (lowest modulation frequency)	M = 3000 lowest modulation frequency = 300 Hz $B_n = 2700$ Hz = 2.7 kHz	2K70J3EJN	
Telephony with privacy, single-sideband, suppressed carrier (two or more channels)	$Bn = N_c M$ (lowest modulation frequency in the lowest channel)	Nc = 2 M = 3000 lowest modulation frequency = 250 Hz $B_n = 5750$ Hz = 5.75 kHz	5K75J8EKF	
Telephony with separate frequency modulated signal to control the level of demodulated speech signal, single- sideband, reduced carrier (Lincompex) (single channel)	$B_n = M$	Maximum control frequency = 2990 Hz M = 2990 $B_n = 2990 \text{ Hz} = 2.99 \text{ kHz}$	2K99R3ELN	
	Television	1	I	
Television, vision and sound	Refer to Recommendations ITU-R BT.470 and BO.650 for the	Number of lines = 525 Number of lines per second =	5M75C3F 250K0F3EGN	

Description of Emission	Formula	Sample Calculation	Sample Emission Designator
	bandwidths of the com monly used television sys tems. ³	15,750 Video bandwidth: 4.2 MHz Total visual bandwidth: 5.75	
		MHz FM aural bandwidth including guard bands: 250 kHz Total bandwidth: 6 MHz	
	Miscellaneous		
Double-sideband emission of VOR with voice	$B_n = 2C_{max} + 2M + 2DK$	The main carrier is modulated by: a 30 Hz sub-carrier	20K9A9WWF
(VOR: VHF omnidirectional radio range)	K = 1 (typically)	a carrier resulting from a 9960 Hz tone frequency modulated by a 30 Hz tone a telephone channel a 1020 Hz keyed tone for con	
		tinual Morse identification $C_{max} = 9960$ $M = 30 D = 480 \text{ Hz}$ $B_n = 20940 \text{ Hz} = 20.94 \text{ kHz}$	
	Angle Modulation	n	
	Broadcasting		I
Sound broadcasting	$B_n = 2M + 2DK$ $K = 1 \text{ (typically)}$	Monaural D = 75000 Hz M = 15000 $B_n = 180000 \text{ Hz} = 180 \text{ kHz}$	180KF3EGN
Stereophonic sound broad casting with multiplexed subsidiary telephony sub- carrier	$B_n = 2M + 2DK$ $K = 1 \text{ (typically)}$	Pilot tone system; M = 75000 D = 75000 Hz $B_n = 300000 \text{ Hz} = 300 \text{ kHz}$	300K0F8EHF
	Radar		
FM/CW radars $B_n = 2B_d$ FM-CW Doppler radar sweed ± 100 MHz from center frequency over a sweep duration of 50 m		FM-CW Doppler radar sweeps ± 100 MHz from center frequency over a sweep duration of 50 msec. $B_n = 200$ MHz	200MF3N
	Radio Relay		
Radio-relay system; frequency division multiplex	$B_n = 2M + 2DK$ K = 1 (typically)	960 data channels that operate at a uniform power level of -15 dBm occupying baseband between 60	16M4F8DJF
	K = 1 (typicany)	kHz and 4028 kHz; rms per channel deviation: 200 kHz; continuity pilot at 4715 kHz produces 140 kHz rms deviation of main carrier. ⁴	
		$X = -15$ $D = (200 \times 10^{3}) (3.76) (5.5) =$ $4.14 \times 10^{6} \text{ Hz};$ $M = 4.028 \times 10^{6};$ $f_{p} = 4.715 \times 10^{6}, (2M + 2DK) >$	

ITU-R Recommendations and other publications are available on the internet at http://www.itu.int/ITU-R/pub lications/index.html.

See the Table B

See the Table B instructions.

Description of Emission			Sample Emission Designator
		$2f_p$ $B_n = 16.34 \times 10^6 \text{ Hz} = 16.34 \text{ MHz}$	
Radio-relay system, frequency division multiplex	$B_n = 2f_p$	600 telephone channels occupying baseband between 60 kHz and 2540 kHz; rms per-channel deviation: 200 kHz continuity pilot at 8500 kHz produces 1440 kHz rms deviation of main carrier. For $X = -19.6$: $D = (200 \times 10^3) (3.76) (2.56) = 1.93 \times 10^6 Hz$ $M = 2.54 \times 10^6$ $K = 1$ $f_p = 8.5 \times 10^6$ Use $2f_p$ since it is $> (2M + 2DK)$. 4 Bn = 17 x 10 ⁶ Hz = 17 MHz	17M0F8EJF
Radio-relay systems,	$B_n = 2 f_p + 2DK$	60 all voice telephone channels	2M45F8EJF
frequency division multiplex	K = 1 (typically)	occupying baseband between 60 kHz and 300 kHz; rms per-channel deviation: 200 kHz; continuity pilot at 331 kHz produces 100 kHz rms deviation of main carrier For $X = -5.6$: $D = (200 \times 10^3)(3.76)(1.19) = 8.95 \times 10^5 Hz$; $M = 0.3 \times 10^6$ $f_p = 0.331 \times 10^6 Hz$ Use $2f_p + 2DK$ since $f_p > M$. 4 $B_n = 2.45 \times 10^6 Hz = 2.45 MHz$	
Telephony	,	_	
Commercial telephony	$B_n = 2M + 2DK$ K = 1 (typically, but under certain conditions a higher value of K may be necessary)	For an average case of commercial telephony, $D = 5000 \text{ Hz}$ $M = 3000$ $B_n = 16000 \text{ Hz} = 16 \text{ kHz}$	16K0F3EJN
	Digital		
	Amplitude Modulat Telegraphy	.1011	
Continuous wave telegraphy,	$B_n = BK$	25 words per minute	100H0A1AAN
Morse code	K = 5 for fading circuits K = 3 for non-fading circuits	B = 20, K = 5 $B_n = 100 \text{ Hz}$	
Telegraphy by on-off key ing of a tone modulated car rier, Morse code	$B_n = BK + 2M$ K = 5 for fading circuits K = 3 for non-fading circuits	25 words per minute B = 20, $M = 1000$, $K = 5B_n = 2100 Hz = 2.1 kHz$	2K10A2AAN
Independent sidebands; sev eral telegraph channels with error-correction together with several telephone channels with privacy; frequency division multiplex	$B_n = \text{sum of } M \text{ for each sideband}$	Normally composite systems are operated in accordance with standardized channel arrangements (e.g. Rec. ITU-R F.348). 3 telephone channels and 15 telegraphy channels require the	12K0B9WWF

Description of Emission	Formula	Sample Calculation	Sample Emission Designator	
		bandwidth: 12000 Hz = 12 kHz		
Selective calling signal using sequential single frequency code, single-sideband full carrier	$B_n = M$	Maximum code frequency is: 2110 Hz M = 2110 $B_n = 2110 \text{ Hz} = 2.11 \text{ kHz}$	2K11H2BFN	
Direct-printing telegraphy using a frequency shifted modulating sub-carrier, with error-correction, single-side band, suppressed carrier (single channel)	$B_n = 2M + 2DK$ $M = \frac{B}{2}$	B = 50 D = 35 Hz (70 Hz shift) K = 1.2 $B_n = 134 \text{ Hz}$	134H0J2BCN	
Telegraphy, multichannel with voice frequency, error correction, some channels are time-division multi plexed, single-sideband, reduced carrier	B_n = (highest central frequency) + M + DK $M = \frac{B}{2}$	15 channels; highest central frequency is: 2805 Hz B = 100 D = 42.5 Hz (85 Hz shift) K = 0.7 $B_n = 2885$ Hz = 2.885 kHz	2K89R7BCW	
	Angle Modulation	1		
	Telegraphy		1	
Telegraphy, narrow-band direct-printing with error correction (single channel) or Selective calling signal	$B_n = 2M + 2DK$ $M = \frac{B}{2}$ $K = 1.2 \text{ (typically)}$	B = 100 D = 85 Hz (170 Hz shift) $B_n = 304 \text{ Hz}$	304H0F1BCN	
Telegraphy without error- correction (single channel)	$B_n = 2M + 2DK$ $M = \frac{B}{2}$ $K = 1.2 \text{ (typically)}$	B = 100 D = 85 Hz (170 Hz shift) $B_n = 304 \text{ Hz}$	304H0F1BBN	
Four-frequency duplex telegraphy	$B_n = 2M + 2DK$ B = modulation rate in bauds of the faster channel. If the channels are synchronized: $M = \frac{B}{2}$ (otherwise, $M = 2B$) K = 1.1 (typically)	Spacing between adjacent frequencies = 400 Hz Synchronized channels $B = 100$ M = 50 D = 600 Hz $B_n = 1420 \text{ Hz} = 1.42 \text{ kHz}$	1K42F7BDX	
	Miscellaneous			
Binary Frequency Shift Keying ⁵	If $\left(0.03 < \frac{2D}{R} < 1.0\right)$ Then $B_n = 3.86D + 0.27R$ If $\left(1.0 < \frac{2D}{R} < 20\right)$ Then $B_n = 2.4D + 1.0R$	Digital modulation used to send 1 megabit per second by frequency shift keying with 2 signaling states and 0.75 MHz peak deviation of the carrier. $R = 1 \times 10^6 \text{ bits per second;}$ $D = 0.75 \times 10^6 \text{ Hz;}$ $B_n = 2.8 \text{ MHz}$	2M80F1DBC	

⁵ See References g, h, and i for further details.

Description of Emission	Formula	Sample Calculation	Sample Emission Designator
Multilevel Frequency Shift Keying	$B_n = \frac{R}{\log_2 S} + 2DK$	Digital modulation to send 10 Mbps by use of frequency shift keying with 4 signaling states and 2 MHz peak deviation of the main	8M56F1DDT
	$K \le 0.89$ (99% bandwidth, Bn=R/log ₂ S + 1.78D)	carrier. $R = 10^7 \text{ bps};$ D = 2 MHz; K = 0.89; S = 4; $B_n = 8.56 \text{ MHz}$	
Gaussian Minimum Shift Keying (GMSK)	$B_n = \frac{R}{\log_2 S} + 0.5RK$ $K \le -0.28$	Digital modulation used to send 10 megabits per second by use of GMSK (S=2) R=10 x 10^6 bits per second; B _n = 8.6 MHz	8M60G1DDN
	(99% bandwidth, $B_n = (1/\log_2 S - 0.14)R$)		
Minimum Shift Keying	$B_n = \frac{R}{\log_2 S} + 0.5RK$ $K \le 0.36$ (99% bandwidth,	Digital modulation used to send 2 megabits per second using 2-ary minimum shift keying: R = 2Mbps S = 2 $B_n = 2.36 \times 10^6 \text{ Hz} = 2.36 \text{ MHz}$	2M36G1DBN
Edward d	$B_n = (1/\log_2 S + 0.18)R)$	Division of the second 10	7M00C1DDM
Feher-patented Quadrature Phase Shift Keying (FQPSK-B)	$B_n = 0.78R$	Digital modulation to send 10 megabits per second by use of FQPSK-B $R = 10 \times 10^6$ bits per second; $B_n = 7.8 \text{ MHz}$	7M80G1DDN
Phase Shift Keying	$B_n = 2RK / \log_2 S$ $0.5 \le K \le 1$	Digital modulation used to send 10 megabits per second by use of phase shift keying with 4 signaling states R = 10 x 10 ⁶ bits per second;	10M00G1DD T
	K = 0.7 to 0.8 (typically) ⁶	K = 1; S = 4; $B_n = 10 \text{ MHz}$	
	Combination Modula		
Quadrature Amplitude Modulation (QAM)	$B_n = \frac{2RK}{Log_2 S}$	64 QAM is used to send 135 Mbps; R = 135 x 10 ⁶ bps;	36M45D1D
	$K \le 0.81$ $(99\%$	S = 64; Roll-off = 1; K = 0.81	
	bandwidth, $B_n = 1.62R/\log_2 S$	$B_n = 36.45 \text{ MHz}$	
Orthogonal Frequency Division Multiplexing (OFDM)	$B_n = (N_S + 16.25)C_S$ $N_S > 16$	OFDM is used to send 20 Mbps. Guard time is 0.8 μs. 48 sub-carri ers are used, each spaced 250 kHz	16M1D1DEF
	1.8 / 10	apart. 16-QAM is used with rate ½ coding.	

 $^{^{6}}$ The value for K here can theoretically vary from 0.5 to 1. For fixed microwave systems use of a value of K larger than 0.7 should be further justified.

Description of Emission	escription of Emission Formula Sample Calculation		Sample Emission Designator	
		$B_n = (48 + 16.25)0.25 = 16.1 \text{ MHz}$		
PULSED				
	Radar			
Non-FM pulsed radars (including spread spectrum or coded pulse radars): ⁷	If $\frac{t}{t_r} \langle 12.6 \rangle$, then: $B_n = B(-20dB) = \frac{1.79}{\sqrt{t_r t}}$ Otherwise:	A radar transmits unmodulated pulses at 1172 pulses per sec. The pulse width is 1.03 u sec. Rise and fall times are $0.2 \mu sec$ and $0.15 \mu sec$, respectively. Use t_f since it is smaller than t_r Since t is obviously less than 12.6	4M55P0N	
	$B_n = B(-20dB) = \frac{6.36}{t}$	t_f , use the first equation $B_n = 4.55$ MHz		
Phase coded pulse radars (including spread spec trum): ⁷	If $\frac{t}{t_r} \langle 12.6 \text{ then:}$ $B_n = B(-20dB) = \frac{1.79}{\sqrt{t_r t}},^{8, 9}$ Otherwise: $B_n = B(-20dB) = \frac{6.36}{\sqrt{t}}$	A Doppler pulse radar transmits 3000 pulses per second. The pulse width including a 13 bit Barker code is 6.6 μ sec. Each chip has a 50% amplitude width of 0.5 μ sec. Chip rise time is 0.02 μ sec. Since $t/t_r = 0.5/0.02$ is obviously larger than 12.6, use the second equation:	12M7Q1N	
		$B_n = 6.36 / 0.5 = 12.7 MHz$		
FM-pulse radars (intentional FM) ⁷	$B_n = B(-20dB) = \frac{1.79}{\sqrt{t_r t}} + 2B_c^{8}$	FM pulsed radar chirping over 2.89 MHz with a 25.6 μ sec pulse width and 150 nsec rise time $B_n = 6.69$ MHz	6M69Q3N	
	Composite Emissic	ons		
Radio-relay system	$B_N = \frac{2K}{t}$ $K \le 1.6^{-10}$	Pulse position modulated by 36 voice channel baseband; pulse width at half amplitude = $0.4 \mu sec$ $B_n = 8 \ 10^6 \text{ Hz} = 8 \text{ MHz}$	8M00M7EJT	
		(Bandwidth independent of the		
Composite transmission digital modulation using DSB- AM (Microwave radio relay system)	$B_n = 2RK/\log_2 S$	number of voice channels) Digital modulation used to send 5 megabits per second by use of amplitude modulation of the main carrier with 4 signaling states	5M00K7DD	
		$R = 5 \times 10^6$ bits per second; K = 1; $S = 4$		

-

For frequency hopping systems the necessary bandwidth is the instantaneous one of an individual channel.

If t_f is less than t_f, then t_f is to be used in place of tr when performing the necessary bandwidth calculations.

For phase coded pulse signals the pulse width and rise times are thoses associated with a single sub-pulse. If the rise time of a single sub-pulse is not availabl, assume it is 40 % of the time to swich from one phase or sub-pulse to the next (see Sigure 1)

¹⁾ In this case K depends upon the ratio of pulse width to pulse rise time. Its value usually falls between 1 and 10 and in many cases does not need to exceed 6. K = 1.6 roughly corresponds to rise time equal to pulse width, which is typical for these systems.

Description	of Emission	Formula	Sample Calculation	Sample Emission Designator
			$B_{\rm w} = 5 \text{MHz}$	

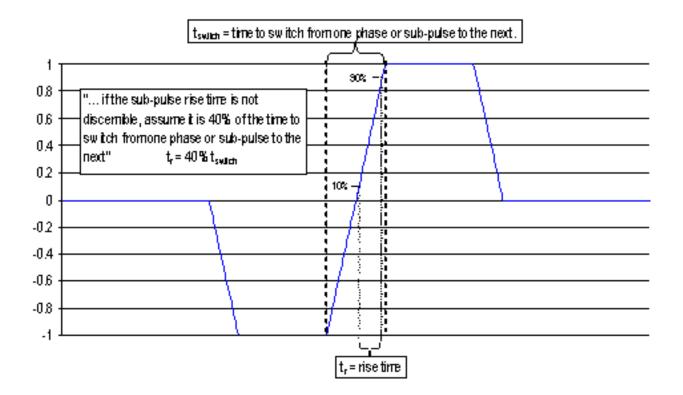


FIGURE 3. Estimation of chip rise time for phase coded pulse signals

TABLE B. MULTIPLYING FACTORS FOR USE IN COMPUTING D, PEAK FREQUENCY DEVIATION, IN FM FREQUENCY DIVISION MULTIPLEX (FM/FDM) MULTI-CHANNEL EMISSIONS

For FM/FDM systems the necessary bandwidth is (for systems having no continuity pilot sub-carrier or having a continuity pilot sub-carrier whose frequency is not the highest modulating the main carrier):

$$B_n = 2M + 2DK$$

The value of D, or peak frequency deviation, in these formulas for B_n is calculated by multiplying the rms value of per-channel deviation by the appropriate "multiplying factor" shown below.

In the case where a continuity pilot of frequency f_p exists above the maximum modulation frequency, M, the general formula becomes:

$$B_n = 2f_p + 2DK$$

In the case where the modulation index of the main carrier produced by the pilot is less than 0.25, and the rms frequency deviation of the main carrier produced by the pilot is less than or equal to 70 percent of the rms value of per-channel deviation, or in a radio system for television, the rms deviation of the main carrier due to the pilot does not exceed 3.55 percent of the peak deviation of the main carrier, the general formula becomes either: $B_n = 2f_p$ or $B_n = 2M + 2DK$ whichever is greater.

The selection of the values used to determine the multiplying factor are highly dependent upon the information transfer requirements placed upon the FM/FDM systems. Available technical information indicates that (depending on the number of channels) a value of "X" of -2, - 5.6 or -19.6 should be appropriate for modern commercial telephone circuits where most of the channels are actual speech. In smaller or older FM/FDM systems and those where most of the circuits are used for data transmission, "X" values of +2.6, -1.0 or -15 should be appropriate since typical commercial multichannel data circuits operate at power levels from -13 to -15 dBm0.

Number telephone channels N _c	Multiplying factors	Limits of X(P _{avg} (dBm0)
3< N _c < 12	4.47 x antilog x $\frac{x}{20}$ X= a value in dB specified by the equipment manufacturer or station licensee, subject to NTIA approval	Not applicable
$12 < N_c < 60$	3.76 antilog $(X+2 \log_{10} N_c)$ 20	X: -2 to +2.6
$60 < N_c < 240$	3.76 antilog $\frac{(X+4 \log_{10} N_c)}{20}$	X: -5.6 to -1.0
$N_c > 240$	3.76 antilog $(X+10 \log_{10} N_c)$ 20	X: -19.6 to -15.0

Where Nc is the number of circuits in the multiplexed message load; 4.47 corresponds to a peak load factor of 13.0 dB, and 3.76 corresponds to a peak load factor of 11.5 dB.

REFERENCES

- a. Taub and Schilling (1971), "Principles of Communication Systems", McGraw-Hill Book Company, Chapter 4.
- b. Filippi, C. (1983), "FM Spectral Modeling and FDM/FM Simulation Programs", NTIA Report 83-134, available from National Technical Information Service, Springfield, VA 22161.
- c. Medhurst, R. G. and Plotkin, S. C. (1968), "Comments on FM Bandwidth as a Function of Distortion and Modulation Index", IEEE transaction on Communication Technology, p. 500 (June).
 - d. Bellamy, J. (1982), "Digital Telephony, John Wiley & Sons, Chapter 6.
- e. Cohen, D. (1983), "Necessary Bandwidth and Spectral Properties of Digital Modulation", NTIA-TR 84-168, available from National Technical Information Service, Springfield, VA 22161.
- f. Prabhu, V. K. (1981), "MSK and Offset QPSK Modulation with Bandlimiting Filters", IEEE Transactions on Aerospace and Electronic Systems, Volume AES-17, No. 1 (January).
- g. K. L. McAdoo, "Speech Volumes on Bell System Message Circuits-1960 Survey", Bell System Technical Journal, Vol. 42, No. 5, September 1963.
- h. W. C. Ahern, F. P. Duffy, J. A. Maher, "Speech Signal Power in the Switched Message Network", Bell System Technical Journal, Vol. 57, No. 7, Part 2, September 1978, pp 2695-2726.
- i. Federal Communications Commission (FCC), Report and Order, "In the Matter of Amendment of Parts 2 and 21, of the Commissions' Rules Concerning Calculations of Necessary Bandwidth for Frequency Modulation Microwave Radio Relay Systems", General Docket No. 81-743, Rule Making 3625, adopted March 3, 1983.