
Advanced Safety Research HATCHI-NHTSA Research Exchange

Ray Resendes Intelligent Technologies Research Division

March 1, 2006

The Big Picture

- What are the biggest safety problems that are appropriate for DOT involvement and appear to be solvable?
- To what extent can advanced technologies address these problems?

Rear-end Crash Prevention

- Our goal: Establish a definitive description of the problem, performance features of systems to address the problem, and the safety impact of these systems.
- FOT of a state-of-the-art light vehicle rear-end crash warning system.
- Heavy truck FOT of a commercially available rearend crash warning system

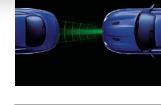
Road-Departure Crash Prevention

- Heavy Vehicle Roll Advisor and Control System FOT
- FOT of a state-of-the-art light vehicle road-departure crash warning system
- FOT of heavy vehicle lanekeeping system

100-car Naturalistic Driving Study

• Goal:

- To collect data on driver behaviors and vehicle performance occurring prior to crashes and critical incidents
- Approach:
 - 100 volunteers in N Virginia recruited from flyers and ads
 - Told them to 'Just Drive'
 - Equipped vehicles with extensive data collection system -unobtrusive, inconspicuous
 - Five video channels
 - Up to four radar sensors
 - Lane tracker
 - Vehicle kinematics, GPS, RF detectors.....
- Overview of data collected:
 - 1 year, 43K hours, 2M miles
 - 109 primary drivers, 241 total drivers, ages 18-73
- Critical Events
 - 15 police reported crashes
 - 67 non-police reported crashes
 - 761 near-crashes
 - 8295 critical incidents


Preliminary Findings

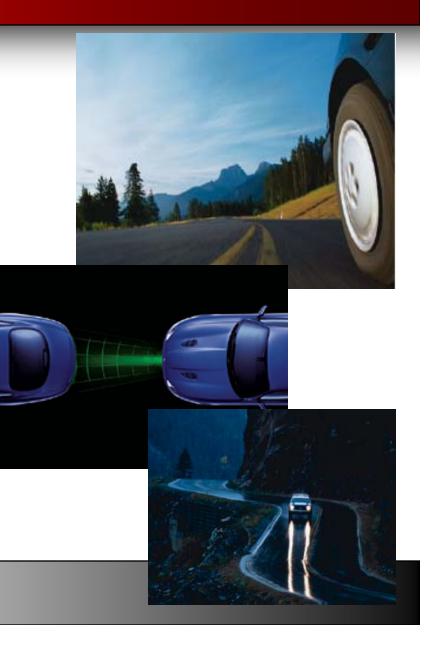
- Research questions include:
 - When do drivers engage in distracting tasks?
 - How does inattention influence safety risk?
 - What is the timing of driver braking and steering responses?
 - What crash countermeasures might be effective?
- About 80 Percent of all crashes and 65 Percent of near-crashes involved driver inattention within 3 seconds of conflict onset
- Most frequent secondary task preceding critical events was wireless device use, followed by passenger-related
- 12 Percent of crashes and 10 percent of near crashes involved driver fatigue
- The rate of inattention-related events decreased with increasing driver age

Final Report to be released this month

Where are we now?

- Accelerating Deployment
- Integrated Systems
- Vehicle Safety
 Communications
- Intersection crash avoidance

ACAT Program


- Determine the potential safety impact of selected new and emerging technologies
- This information may be used to inform consumers about:
 - What advanced safety features vehicles have that help them avoid a crash, reduce their severity when it occurs and protect the occupant?
 - In what situations do these systems work?
 - How effective are they in meeting the objectives?
- Role of NHTSA in facilitating deployment
 - Ensuring that there are suitable specifications for safety technologies
 - Developing test procedures to discriminate full system performance
 - Estimating safety benefits
 - Using consumer information for facilitating deployment
 - Addressing human/machine interface issues

Background

- European Commission Intelligent Car Initiative
- Industry/supplier meetings over the last 2 years
- Public statements by NHTSA Regarding Advanced Technologies
- Program plan
- Request for information & expression of interest - July 2005

Emerging Technologies

- Electronic Stability Control
- Adaptive Cruise Control
- Night Vision Systems
- Curve Speed Warning
- Lane Departure Warning
- Alcohol Monitoring
- Brake Assist Systems
- Pre-crash sensing

ACAT PROGRAM PLAN

- Task 1 Priority Candidates Identify new or emerging technologies or systems
- Task 2 Safety Impact Methodology

Develop the methodology for credible estimate of safety impact.

• Task 3 – Objective Tests

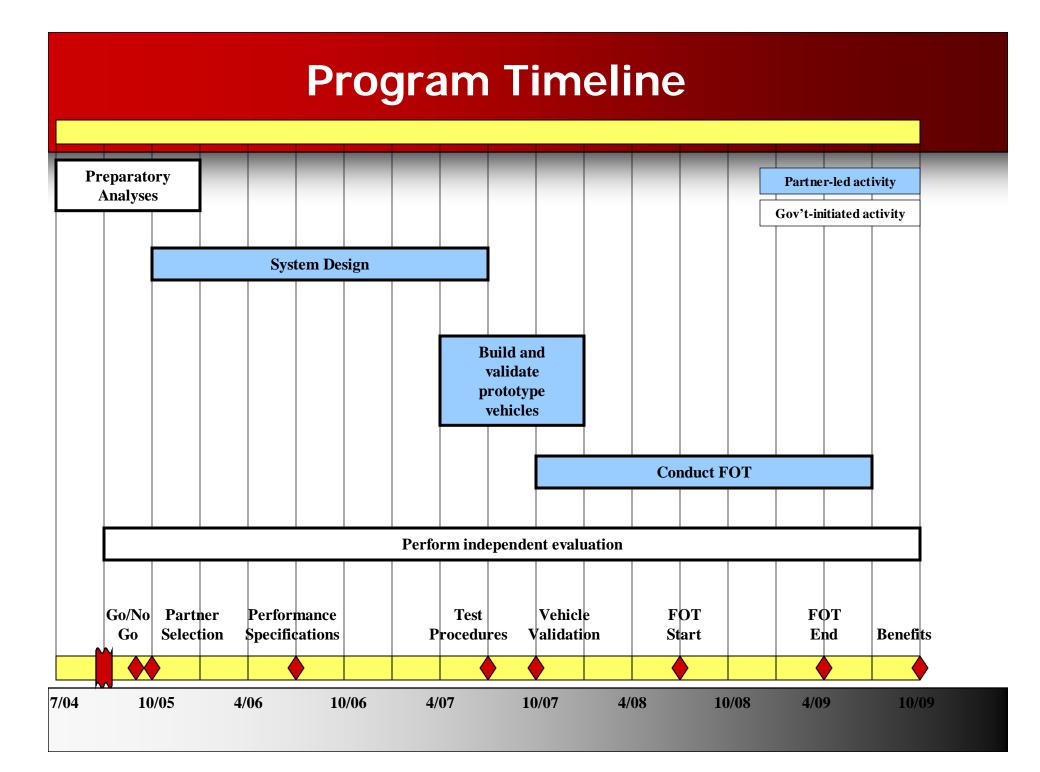
Develop objective tests that connect system performance to safety impact

- Task 4 Performance Testing
- Task 5 Analysis and Reporting

Implement the methodology to estimate safety impact.

Integrated Vehicle-Based Safety Systems

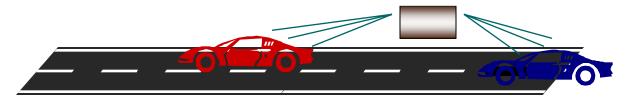
- **Goal:** To work with industry to accelerate introduction of integrated vehicle-based safety systems into the U.S. vehicle fleet.
- Addresses 3 Crash Types:
 - Rear End
 - Road Departure
 - Lane Change



MDOT

Rear-end, run-off-road, and lane change crash countermeasure systems could prevent over 48% or 1,836,000 target crashes.

IVBSS Outreach Activities

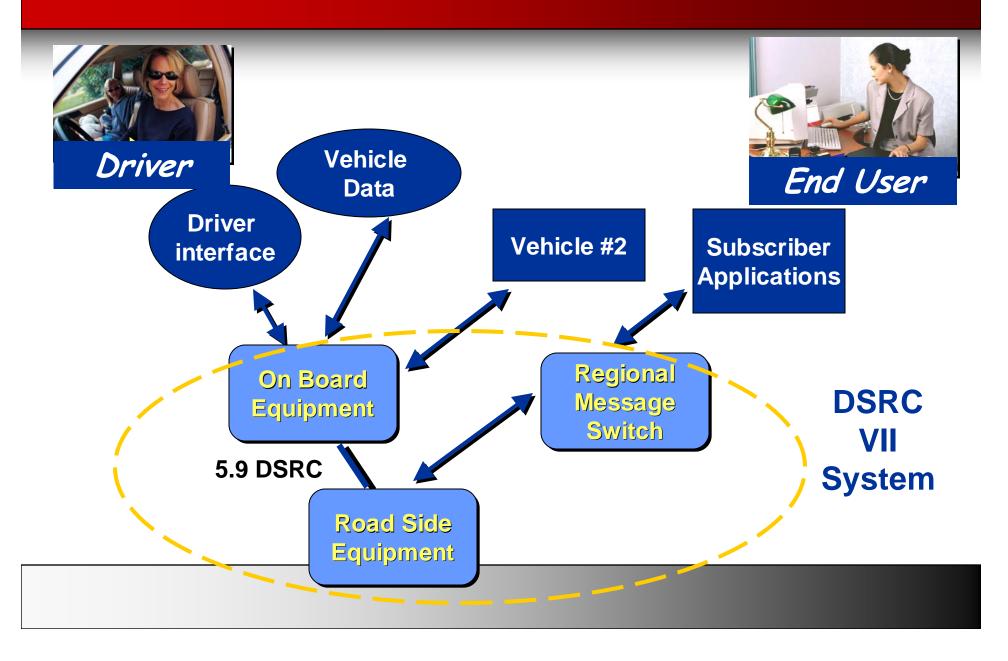

- Meeting with Industry planned for April 20-21, 2006 in Detroit
- Information sharing/coordination with EU PReVent program through ITSWC
- Future meetings with Industry covering performance specs, objective tests, and early program results planned for 2007-08


Cooperative Intersection Collision Avoidance System (CICAS-V)


- Focus on preventing <u>violations</u> at intersections with traffic signals and stop signs to prevent crashes associated with violations
- Preliminary work was done under IVI
- Partners are CAMP and VTTI
- Four year program including Field Operational Test
- Critical Human Factors issues of warning timing and presentation to be addressed

Vehicle Infrastructure Integration

Connecting Vehicles and Infrastructure



"Day 1" Applications

- Signal Violation Warning
- Stop Sign Violation Warning
- Curve Speed Warning
- Electronic Brake Lights
- Advance Warning
 Information
- In Vehicle Signing

- Winter Maintenance
- Probe Mapping
- Ramp Metering
- Signal Timing & Adjust
- Corridor Management
- Traveler Information
- Electronic Payment
- Local Weather

VII Design Initiated

- VII Consortium (Auto OEMs)
 - Design In-Vehicle Equipment & Applications (non-safety)
- CAMP (Auto OEMs)
 - -Safety Applications
- Booz Allen Hamilton
 - System Integrator & Network Development

Proof of Concept Test

- Begins end of 06
- Testing in a controlled Environment
- Integration of applications vehicle
 Infrastructure

-Location - suburban Detroit

• FOT -- TBD

Questions?

Raymond Resendes

Chief, Intelligent Technologies Research Division National Highway Traffic Safety Administration 400 Seventh Street, SW (NVS-332) Washington, D.C. 20590

ray.resendes@nhtsa.dot.gov (202) 366-2619 fax (202) 366-7237