

NHTSA's ESC Research Program: 2005/06 Activities

March 29, 2006

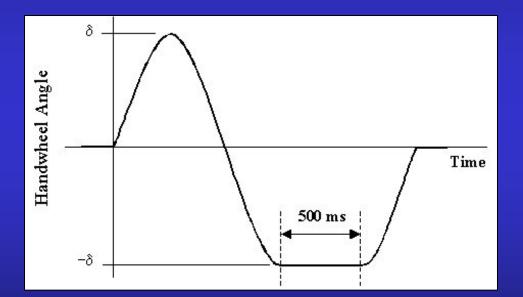
Garrick J. Forkenbrock NHTSA VRTC

29 Mar 06, page 1

Presentation Overview

- 2005 Testing
- Maneuver Reduction
- ESC Evaluation Metrics
- Repeatability Evaluation
- Future Research
- Concluding Remarks

2005 Testing


ESC Effectiveness

- Participated in a collaborative data collection with 11 vehicle manufacturers
- 62 vehicles, 128 configurations evaluated
- Thank you for your participation!
- Sine with Dwell Repeatability
 - Collaborative testing effort with the Alliance of Automobile Manufacturers
 - Two vehicles presently being evaluated at five proving grounds

0.7 Hz Sine with Dwell

- Requires use of a steering machine
- Based on a single cycle sinusoidal steering input
- Frequency is 0.7 Hz
- 500 ms pause after 3rd quarter cycle
- Performed at 50 mph (drop throttle only)
- Severity increased via steering angle increments

ESC Evaluation Metrics

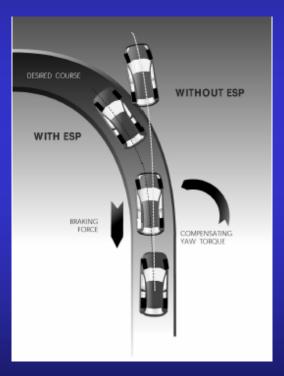
- Many methods for evaluating lateral stability and responsiveness considered
- Lateral stability:
 - Vehicle must not spinout (oversteer mitigation)
 - Requires yaw rate to decay in a reasonable manner
- Responsiveness:
 - Complements lateral stability
 - Reflects NHTSA opinion that it is important for a vehicle retain reasonable avoidance capability

Repeatability Evaluation

- The outcome of a test used to evaluate minimum performance should not depend on where the test was performed
- Tests being performed at five locations
 - Ohio (VRTC)
 - Michigan
 - South Carolina (VRTC)
 - Arizona
 - California

Documentation/Presentation

Documentation


- ESV Paper 05-0221 (Phase 1 research)
- DOT HS 809 875 (human driver steering capability)
- Technical report summarizing 2005 ESC research in approval circulation
- Presentations
 - 2005 ESV
 - 2005 SAE Government / Industry
 - ESC docket 19951

2006 Research Understeer Mitigation

Research Objectives

- Determine common understeer events
- Identify a test maneuver(s) capable of quantifying understeer mitigation effectiveness
- Assess low friction test feasibility

2006 Research Understeer Mitigation

- Anticipated maneuvers
 - J-Turn
 - Closing Radius Turn
 - Slowly Increasing Steer
- Small, diverse test fleet
 - Sports car
 - Two SUVs
 - Two sedans
 - 15-passenger van

- One load configuration
 (Nominal load)
- Testing to begin spring 2006

2006 Research

www.nhtsa.dot.gov people saving people

- Understeer Mitigation Testing Concerns
 - ESC benefits on low friction surfaces have been documented, but are based on crash data and <u>subjective</u> test track evaluations
 - Results from tests performed on low friction surfaces are prone to high test variability
 - NHTSA would like to <u>objectively</u> quantify the effects of understeer mitigation so that minimum performance criteria can be developed
 - NHTSA would greatly appreciate suggestions on how to resolve this problem!

2006 Research Roll Stability Control (RSC)

Research Objectives

- Gain an increased awareness of RSC functionality and effectiveness
- Determine metrics capable of identifying whether a vehicle is equipped with RSC
- Assess whether improved dynamic rollover resistance is achieved at the expense of lateral stability and/or responsiveness
- Results will be documented in a technical report

2006 Research Roll Stability Control (RSC)

- Maneuvers to evaluate rollover, lateral stability, and responsiveness
 - NHTSA Fishhook
 - 0.7 Hz Sine with Dwell
- Four SUVs
- Four load configurations (presented on next slide)
- Testing to begin early spring of '06 at VRTC

2006 Research Anticipated RSC Load Configurations

- Nominal Load
 - Instrumentation, driver, and outriggers
- Multi-Passenger Load
 - Three 175 lb water dummies
- Rear Trunk Load
 - Vehicle weight at GVWR, rear GAWR
- Roof Load
 - Ballast to maximum recommended by manufacturer
 - SSF lowered by 0.1

Concluding Remarks

- NHTSA has identified the 0.7 Hz Sine with Dwell as a good maneuver for evaluating the lateral stability and responsiveness of ESC-equipped vehicles
- Future testing will include the evaluation of understeer mitigation and RSC
- Any suggestions on how to best evaluate these technologies would be appreciated!

Questions?