Human Factors Evaluation Considerations for Safety Enhancing Systems

#### **Robert C. Lange** GM Structure & Safety Integration Center

January 25, 2007

Forum on Human Factors Research Necessary to Support Advanced Vehicle Safety Technologies



# Adaptive Cruise ControlForward Collision AlertCollision PreparationAuto Emergency Braking

Illustration of a Broad Range of Advanced Driver Assistance Systems with HMI Implications



Auto Lanekeeping Lane Departure Warning

Side Blind Zone Alert

Lane Change Warning

Rear Video Backup Warning Auto Emergency Braking



# Human Factors Evaluation Considerations

#### Establish a safety benefit

- Direct
- Indirect
- Implied

# Evaluate & address potential unintended consequences, for example:

- Does a driver with an ACC system engage in more in-cab distraction activities?
- Does a driver with a Side Blind Zone Alert system stop using turn signals?
- Does a driver with a Rear Video system stop looking behind when backing?

#### Develop appropriate customer education materials

- Inform driver in an effective manner of how to operate system, proper and improper usage, system limitations, and use cautionary information to mitigate any potential unintended consequences
- Owner's manuals, quick reference guides, etc.



### Establishing a Safety Benefit

#### Direct data

- Safety benefits directly suggested based on crash database analyses (e.g., Electronic Stability Control, Daytime Running Lamps)

#### Indirect data

 Safety benefits indirectly suggested based on data gathered under well-controlled, realistic conditions where the experimentation is specifically designed to place drivers in "target" crash scenario(s) (e.g., "Distract and Surprise" Methodology)

#### Implied data

 Safety benefits implied based on "improved driving behavior" observed under less-controlled, realistic conditions where the experimentation is not specifically designed to place drivers in "target" crash scenario(s) (e.g., A decrease in tailgating behavior with a ACC system observed during an in-traffic study)

### **Primary Research Methods & Challenges**

- Safely create well-controlled, <u>experimental crash scenarios</u> to assess crash avoidance system effectiveness under realistic conditions
  - Challenge: Creating safe, "realistic as possible" crash threats so that lay driver behavior can be observed
- Understand effects of a system under less controlled, in-traffic, real-world driving
  - With versus without experimenter presence
  - "near crash" or "actual crash" events are rare
  - False alarm experiences vary substantially across drivers, which impacts both system effectiveness and driver acceptance
  - → Challenge: Making sense of large "uncontrolled" datasets, where "near crash" or "actual crash" events are still rare



~ CAMP-US DOT Forward Collision Warning Projects ~

#### Last-Second Braking to a Surrogate Lead Vehicle



When do drivers start braking when they are instructed to wait until the last second to brake? How hard do they brake?

What levels of last-second braking are observed?

~ CAMP-US DOT Forward Collision Warning Projects ~

#### Video Still of Surprised Driver

#### "Distract and Surprise" Method

Passenger-side test driver with access to add-on brakes & steering wheel, and "bail out" alert



<u>GM</u>

How does a driver respond to a lead vehicle braking unexpectedly when the experimenter distracts them, with and without FCA support?

#### ~ CAMP-US DOT Forward Collision Warning Projects ~



How will a driver respond under "extreme distraction" conditions? Will they brake or steer? How aggressive is their maneuver?

#### ~ CAMP-US DOT Forward Collision Warning Projects ~



"First Look" Method





#### ~ CAMP-US DOT Forward Collision Warning Projects ~



"First Look" Method

How will a driver respond under "extreme distraction" conditions?

Will they brake or steer? How aggressive is their maneuver

~ GM–Virginia Tech Transportation Institute ~

#### Surprise Trial Video Clip

"Distract and Surprise" Method



<u>GM</u>

Would a driver detect or strike an object behind them when backing?

~ GM–Virginia Tech Transportation Institute ~



Will the driver of a Side Blind Zone Alert System check their mirrors more before change lanes? Will turnaround behavior change? How about turn signal usage?

~ GM-led Automotive Collision Avoidance System (ACAS) Field Operational Test (FOT) ~



"In-Traffic" Method (ACC-FCA test vehicles used as personal vehicles for 4 weeks)



What were the effects of ACC & FCA on driver behavior and what are the potential safety implications of these effects ? Were systems well-accepted?

~ ACAS FOT ~

### FCW System Alert Video Clip

An example of a useful FCA alert



~ ACAS FOT ~

|                               | Safety                                                                                                                                                                                                                                                                                | Acceptance                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Forward<br>Collision<br>Alert | <ul> <li>Some reduction in tailgating behavior</li> <li>"Valuable" alerts identified</li> <li>No broad "closing conflict" effect</li> <li>Imminent alert rates varied widely from<br/>0.08 to 4.34 per 100 miles across drivers</li> <li>No unintended safety consequences</li> </ul> | - Purchase interest lower<br>than desired to due to<br>frequency and nature<br>of false alarms |
| Adaptive<br>Cruise<br>Control | <ul> <li>Substantial reduction in tailgating behavior</li> <li>Increased lane dwelling</li> <li>Perceived by drivers as having more safety value than FCA</li> <li>No unintended safety consequences</li> </ul>                                                                       | - Purchase interest high                                                                       |

No rear-end crashes were observed in entire FOT; and none were predicted.

#### **Review of Human Factors Evaluation Considerations for Safety Enhancing Systems**

#### Establish a safety benefit

- Direct
- Indirect
- Implied
- Evaluate & address potential unintended consequences

#### Develop appropriate customer education materials

Gather data to address the above under:
 Well-controlled experimental crash threat conditions

Less controlled "in traffic" real-world driving conditions



# **Closing Thoughts**

- Research needs in this emerging area should focus on developing common evaluation methodologies and techniques
- It is the OEM's role to integrate safety enhancing systems (including the HMI approach)
- Premature standards for these emerging systems could hinder system deployment
  - Discourages "healthy" OEM competition to develop effective and well-accepted safety enhancing systems
  - Even within an OEM, vehicle models will vary in the number of these systems on a given vehicle, as well as system combinations
  - Driver demographics considerations also play an important role