Transportation Active Safety Institute TASI: Our Focus on the Human Machine Interface

An Industry-Academic-Government Consortium to Advance the Use of Active Safety Systems to Reduce Vehicle Crashes and Save Lives

> Dr. Sarah Koskie Purdue School of Engineering & Technology, IUPUI skoskie@iupui.edu

> > 25 January 2007

Human Machine Interface Fog

Obstacles to introduction and acceptance

- One of the biggest obstacles to introduction and acceptance of Active Safety Systems is absence of a standard HMI protocol.
- Active Safety Systems provide two types of responses:
 - Warnings that require driver intervention
 - » Beep, Flash, rumble of seat
 - Autonomous responses triggered by driving situation
 - » Apply brakes strategically, adjust steering angle, etc.
- Autonomous actions provide the most consistent responses and simplify design of Active Safety Systems.
- However, some driving situations require a more complex response, obtainable only through human intervention.

Some HMI issues for active safety systems

How do people react?

- What is the average and range of abilities?
 - » Hearing
 - » Vision
 - » Coordination
 - » Attention span
 - » Multi-tasking ability
- Does a trigger yield an appropriate reaction?
- Should the driver have choices of how information is displayed?
- Should the driver have choices regarding alerts?

Questions relating to HMI Design

- Is it possible to warn the driver?
 - YES: What's the best way?
 - What is range of human ability?
 - How many warnings is too many?
 - Which warning is best for each scenario?

- NO: What can we do to prevent the need for warnings?
 - How much information can the driver process?
 - Which information is most important in a given scenario?
 - How is the information best conveyed?
- What standards are needed?

Standards will eliminate a possible source of driver confusion

Drivers need consistent alerts and displays.

Audible Alerts

Visual Alerts

Haptic Alerts

Motorized Seatbelt

Seat Vibration

- Acceptance / effectiveness also depend on
 - Reaction time
 - Data processing speed
 - Ability to distinguish among signals
 - Ability to respond without panicking
 - etc.

Summary

- Again, one of biggest obstacles to introduction and acceptance of Active Safety Systems is absence of a standard HMI protocol.
- TASI universities will work with industry partners to design experiments to address these issues.
- Target start date is beginning of 2nd quarter.

Questions?

Contacts

Interested in specific activities? Please contact:

Ralph V. Wilhelm, Ph.D.Technical DirectorTransportation Active Safety Institute (TASI)Purdue School of Eng. & Tech., IUPUI723 W. Michigan St. SL 160Indianapolis IN 46202Phone: (317) 508-6866rvwilhel@iupui.eduFax: (317) 571-0429

Sarah Koskie, Ph.D. Asst. Prof. of Elec. & Comp. Eng. Purdue School of Eng. & Tech., IUPUI 723 W. Michigan St. SL 160 Indianapolis IN 46202 skoskie@iupui.edu

Phone: (317) 278-9043 Fax: (317) 274-4493

Slides describing TASI Activities follow

- Flow charts show larger scope of TASI's activities.
- Activities in which Human Factors play a key role are highlighted in red.

TASI Activities

- Mine available data;
- Run experiments to obtain missing data
 - Accident data analysis
 - Benefit/effectiveness analysis
 - Cost sensitivity analysis
 - Human Factors/Biomechanics
- Technology Research and Development
 - New sensors
 - Algorithms

Common Protocols & Processes

- HMI protocol
- Product performance testing
- Test Methodology

TASI Activities

- Common Protocols & Processes

 HMI protocol
 - Porformanco too
 - Performance testing
 - Test Methodology

- Evaluation/Validation
 - Protocols
 - HMI
 - Performance

Test Methodology Laboratory/bench-test Hardware-in-loop simulation

- Closed-course test track
- Instrumented roadway segment
- On-road
- Consumer Awareness/Education

