

Benefits of Vehicle Safety Communications

CICAS-V and VSC-A

Jonathan Koopmann and Bruce Wilson

Office of Surface Transportation Programs Advanced Safety Technology Division

Presentation Overview

- Introduction to Safety Benefits
- CICAS-V Benefits
- VSC-A Benefits
- Summary and Plans

Safety: Research Questions

- Does the safety system alter crash frequency and severity?
- Is the safety system more effective in preventing some crash scenarios?
- Are there any unintended consequences?

Safety Benefits Basic Principle

Crashes *Avoided* = Crashes *Without* – Crashes *With*

Process:

- 1. Break down applicable crashes to the lowest level of precrash scenarios where system effectiveness may vary
- 2. Estimate system effectiveness in each pre-crash scenario

How CICAS-V and VSC-A Safety Benefits Differ

CICAS-V

- Based on data collected from a Field Operational Test (FOT)
- Cooperative vehicleinfrastructure system

<u>VSC-A</u>

- Input data from test track and modeling
- Vehicle-vehicle based system

Estimation of CICAS-V System Effectiveness

System Effectiveness SE

Determine Crashes *With* and Crashes *Without* from:

Data Flow for CICAS-V Safety Benefits Estimation

VSC-A Safety Benefits Approach

OEMs will:

- Equip 10 vehicles with DSRC
- Develop vehicle relative positioning algorithms
- Develop warning algorithms
- Test vehicles and algorithms (no FOT!)
- US DOT will:
 - Help plan tests
 - Receive and analyze test data
 - Estimate safety benefits

Safety Benefits Model – VSC-A

$$B = \sum_{i} N_{\text{woi}} \times D(\text{MP})_{i} \times \left(1 - \frac{\sum_{j} p_{j} x_{i,j}}{1 - \frac{j}{x_{i,j}}} \right),$$

Parameterizing the model is the key to estimating the VSC-A safety benefit

Summary and Plans

- Discussed safety benefits estimation for two DSRC-enabled systems: CICAS-V and VSC-A
- Safety benefits begins with a model, which must be parameterized
- CICAS-V parameterization will use FOT and additional data
 - Acquire additional data to link violations and severity to crashes
 - Identify violations, near violations and performance events in FOT data
 - Analyze driver response to situation and CICAS-V alert
- VSC-A parameterization will use test data
 - Analyze test data
 - Develop representative set of crash initial conditions
 - Simulate driver/vehicle response to alert following these initial conditions

Questions/Comments?

Jonathan Koopmann

U.S. DOT/Volpe Center Office of Surface Transportation Programs Advanced Safety Technology Division, RTV-3F 55 Broadway Cambridge, MA 02142 <u>Koopmann@volpe.dot.gov</u> (617) 494-2246

Bruce Wilson

Bruce.Wilson@volpe.dot.gov (617) 494-3684

