

Background

FMVSS 208 Test Requirements

FMVSS 208 (May 2000) requires that passengerside frontal airbags either:

- deploy without exceeding injury criteria for child dummies (low-risk deployment), or
- suppress deployment when tested with a range of production child restraints
- FMVSS 208 specifies testing with 23 production child restraints intended to span a wide range of designs

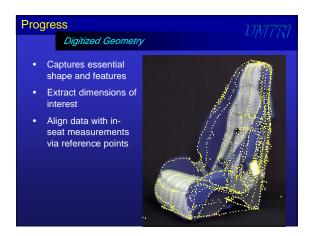
Background IMMTR/ FMVSS 208 Test Requirements IMMTR/ Airbag system must suppress deployment of frontal airbag on passenger side (with "airbag off" telltale indication) for: Immtraction • full forward, middle, and full-rear seat positions • with and without seatbelt

- with and without LATCH, if available
- with belt tensions up to 30 lb

Airbag must not suppress with small adult female Hybrid III in front, middle, and rear seat positions

Background Industry Issues Industry Issues Arbitrary list of child restraints (many others sold in U.S.) Too many restraints & test conditions Child restraint availability throughout development and testing Moving target -- NHTSA to update list periodically

kground Alliance Alternative	17//
Develop a set of surrogate ch static testing of suppression	
	59516115
RFP	July 2000
	August 2000
UMTRI Proposal	7 lugust 2000
UMTRI Proposal Project Began	January 2001


tives			
	UMTRI Work Pla		

Objec

- 1. Test and Characterize Commercial Child Restraints (90% completed)
- 2. Develop Surrogate Child Restraint (SCR) Design and Performance Specifications (underway)
- 3. Develop Engineering Drawings and Fabricate Prototypes (with FTSS)
- 4. Evaluate SCR Prototypes (with FTSS)
- 5. Develop and Document SCR Test procedures

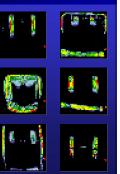
Progress

- Test Mockup
- Front-seat vehicle mockup
- Two vehicle seats
- One standard seat modeled on FMVSS 213 buck
- Taurus ELR belt
- Adjustable seat position and belt anchorage locations
- Belt tension adjuster and load cell

Standard Seat

Progress Develop Test Matrix Develop Test Matrix • • Testing all possible combinations of seat position (belt angle), belt tension, restraint configuration (e.g., forward/rear facing), etc. --> too many trials • Simplifications: • two lap belt angles: 13 and 75 degrees wrt vertical; torso belt angle did not affect CRS position and orientation substantially in pilot testing • one ATD per CRS (largest) • three vehicle seats

• three lap belt tensions: 0, 15, 30 lb


Progress

Preliminary Observations

 Effects of belt tension and angle on restraint position and orientation are small compared to differences among restraints

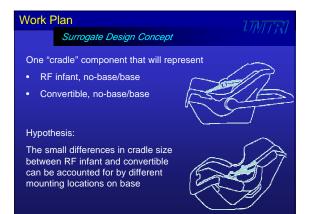
Mockup Data

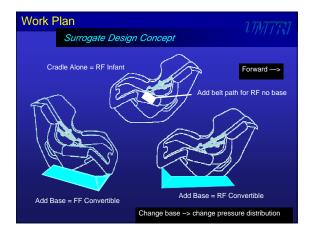
- Seat surface pressure data vary widely -- no "typical" pressure distribution
- Belt tension affects pressure distribution, but differences are small compared to differences among restraints

Progress		1717797
Data Anal	lysis — Next Steps	×717777777
Complete mod measurements	ckup testing and CRS s – this month	
angle, and bel	ences of vehicle seat type It tension on restraint posi > design targets	2 · · · · · · · · · · · · · · · · · · ·
	tion and orientation target at) for each restraint categ	N State Stat
	S surrogate geometry overall size, belt paths, h	arness

Work Plan

Surrogate Design Targets


- 1. Number of surrogates (current plan):
 - (1) F/R infant + convertible,(2) low/high-back booster
 - removable components
- 2. Surrogates will represent average characteristics for each category
- Surrogates will be appropriate for technologies that sense weight, seat surface pressure distribution, and spatial dimensions


Work Plan

Surrogate Design

Current plan:

- select "typical" restraints in each category
- reverse-engineer the basic features of the selected restraints (FARO Arm -> simple CAD model)
- adjust model dimensions to match targets derived from measurements of all seats in category (height, width, etc.)
- preliminary design models to FTSS
- design for mass and center of mass of CRS + occupant (heavier CRS surrogate gives greater design and application flexibility, don't need to use real ATD)

Work Plan UM/T Outcomes In/T 1. Design specs for surrogates and drawing package (with FTSS)

- 2. One set of prototype surrogates (with FTSS)
- 3. Technical report from UMTRI
- 4. Database from UMTRI measurements and testing
- 5. Draft test procedures for using surrogates

/ork Plan	
Schedule	
Pilot testing and complete test matrix	Aug 2001
Complete testing with all seats	Nov 2001
Design specs and models to FTSS	Jan-Feb 02
Evaluate prototypes from FTSS	Mar-Apr 2002
Final deliverables	May 2002