

NHTSA's ESC Research Program: 2005 Activities and a Look to the Future

December 6, 2005

Garrick J. Forkenbrock W. Riley Garrott NHTSA VRTC

Presentation Overview

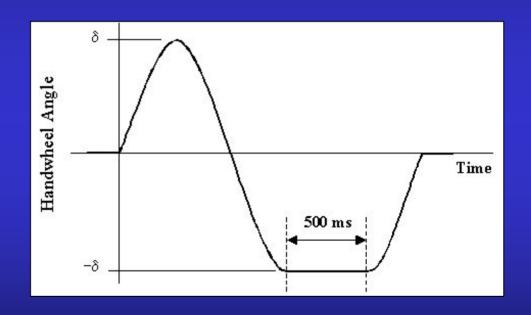
- 2005 Testing
- Maneuver Reduction
- ESC Evaluation Metrics
- Repeatability Evaluation
- Future Research
- Concluding Remarks

2005 Testing

ESC Effectiveness

- Participated in a collaborative data collection with 11 vehicle manufacturers
- 62 vehicles, 128 configurations evaluated
- Sine with Dwell Repeatability
 - Collaborative testing effort with the Alliance of Automobile Manufacturers
 - Two vehicles presently being evaluated at five proving grounds

Maneuver Reduction



- Phase 1 (2004)
 - 12 maneuvers, 21 steering combinations used
 - Four top candidates identified
- Phases 2a and 2b (2005)
 - Four Phase 1 maneuvers used for 24 vehicles
 - 0.7 Hz Sine with Dwell selected as preferred ESC effectiveness maneuver

0.7 Hz Sine with Dwell

- Requires use of a steering machine
- Based on a single cycle sinusoidal steering input
- Frequency is 0.7 Hz
- 500 ms pause after 3rd quarter cycle
- Performed at 50 mph (drop throttle only)
- Severity increased via steering angle increments

ESC Evaluation Metrics

- Many methods for evaluating lateral stability and responsiveness considered
- Lateral stability:
 - Vehicle must not spinout (oversteer mitigation)
 - Requires yaw rate to decay in a reasonable manner
- Responsiveness:
 - Complements lateral stability
 - Reflects NHTSA opinion that it is important for a vehicle retain reasonable avoidance capability

Repeatability Evaluation

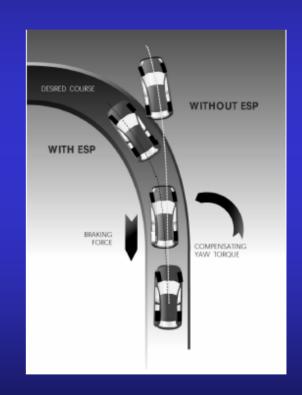
- The outcome of a test used to evaluate minimum performance should not depend on where the test was performed
- Tests being performed at five locations
 - Ohio (VRTC)
 - Michigan
 - South Carolina (VRTC)
 - Arizona
 - California

Documentation/Presentation

Documentation

- ESV Paper 05-0221 (Phase 1 research)
- DOT HS 809 875 (human driver steering capability)
- Technical report summarizing 2005 ESC research in approval circulation

Presentations


- 2005 ESV
- 2005 SAE Government / Industry
- ESC docket 19951

Future Research Understeer Mitigation

Research Objectives

- Determine common understeer events
- Identify a test maneuver(s)
 capable of quantifying understeer
 mitigation effectiveness
- Assess low friction test feasibility

Future Research Understeer Mitigation

- Anticipated maneuvers
 - J-Turn
 - Closing Radius Turn
 - Slowly Increasing Steer
- Small, diverse test fleet
 - Sports car
 - Two SUVs
 - Two sedans
 - 15-passenger van
- One load configuration (Nominal load)

- Testing to begin winter 2005
- Winter proving grounds tests may be performed
 - Ice testing
 - Snow testing
 - Results could be compared to those produced on the TRC wet Jennite pad

Future Research Understeer Mitigation - Testing Concerns people saving peo

- ESC benefits on low friction surfaces have been documented, but are based on crash data and subjective test track evaluations
- Results from tests performed on low friction surfaces are prone to high test variability
- NHTSA would like to objectively quantify the effects of understeer mitigation so that minimum performance criteria can be developed
- NHTSA would greatly appreciate suggestions on how to resolve this problem!

Future Research Roll Stability Control (RSC)

- Research Objectives
 - Gain an increased awareness of RSC functionality and effectiveness
 - Determine metrics capable of identifying whether a vehicle is equipped with RSC
 - Assess whether improved dynamic rollover resistance is achieved at the expense of lateral stability and/or responsiveness
- Results will be documented in a technical report

Future Research Roll Stability Control (RSC)

- Maneuvers to evaluate rollover, lateral stability, and responsiveness
 - NHTSA Fishhook
 - 0.7 Hz Sine with Dwell
- Four SUVs
- Four load configurations (presented on next slide)
- Testing to begin early spring of '06 at VRTC

Future Research Anticipated RSC Load Configurations

- Nominal Load
 - Instrumentation, driver, and outriggers
- Multi-Passenger Load
 - Three 175 lb water dummies
- Rear Trunk Load
 - Vehicle weight at GVWR, rear GAWR
- Roof Load
 - SSF lowered by 0.1

Future Research Brake Assist (BA)

Research Objectives

- Reveal and document BA thresholds
- Compare thresholds to existing human factors based brake data

Test Variables

- Rate of pedal apply
- Force of apply
- Pedal displacement
- Other vehicle factors (i.e., adaptive algorithms)

Future Research Brake Assist (BA)

- Anticipated maneuvers to include:
 - Straight line braking
 - Brake in-a-curve
- Small fleet of diverse test vehicles
- All steering and braking will be automated via a programmable controller
- Testing to begin late spring of '06 at VRTC
- Results will be documented in a technical report

Concluding Remarks

- NHTSA has identified the 0.7 Hz Sine with Dwell as a good maneuver for evaluating the lateral stability and responsiveness of ESC-equipped vehicles
- Future testing will include the evaluation of understeer mitigation, RSC, and BA
- Any suggestions on how to best evaluate these technologies would be appreciated!

Questions?