Journal of
Physical and
Chemical
Reference Data

Monograph No. 8

Spectral Data for Highly Ionized Atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo

T. Shirai J. Sugar A. Musgrove W. L. Wiese

National Institute of Standards and Technology Gaithersburg, Maryland 20899-0001

Published by the American Institute of Physics for the National Institute of Standards and Technology

Copyright © 2000 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. This copyright is assigned to the National Institute of Standards and Technology and the American Institute of Physics.

International Standard Book Number 1-56396-934-3

Library of Congress Card Number: 00-102237

American Institute of Physics Suite 1NO1 2 Huntington Quadrangle Melville, New York 11747-4502

Printed in the United States of America

Foreword

The Journal of Physical and Chemical Reference Data is published by the American Institute of Physics for the National Institute of Standards and Technology (NIST). Its objective is to provide critically evaluated physical and chemistry property data, fully documented as to the original sources and the criteria used for evaluation. One of the principal sources of material for the journal is the NIST Standard Reference Data Program, a program promoting the compilation and critical evaluation of property data.

The regular issues of the *Journal of Physical and Chemical Reference Data* are published bimonthly and contain compilations and critical data reviews of moderate length. Longer works, volumes of collected tables, and other material unsuited to a periodical format have previously been published as *Supplements* to the *Journal*. Beginning in 1989, the generic title of these works has been changed to Monograph, which reflects their character as independent publications. This volume, "Spectral Data for Highly Ionized Atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo," by T. Shirai, J. Sugar, A. Musgrove, and W. L. Wiese is presented as *Monograph No. 8 of the Journal of Physical and Chemical Reference Data*.

Malcolm W. Chase, Editor Journal of Physical and Chemical Reference Data

Contents

1.	Introd			3
	1.1.	Dedication		4
	1.2.	Acknowl		4
	1.3.			4
2.	Tables	of Spect	roscopic Data	5
	2.1.	Explana	tion of Tables	5
	2.2.	Titaniun	n ,	7
		2.2.1.	Brief Comments on Each Titanium Ion	7
		2.2.2.	Spectroscopic Data for Ti III through Ti XXII	13
		2.2.3.	References for Comments and Tables for Ti Ions	76
	2.3.			79
		2.3.1.	Brief Comments on Each Vanadium Ion	79
		2.3.2.	Spectroscopic Data for V IV through V XXIII	86
			References for Comments and Tables for V Ions	35
	2.4.	Chromiu	ım	37
		2.4.1.	Brief Comments on Each Chromium Ion	37
			Spectroscopic Data for Cr v through Cr xxiv	45
			References for Comments and Tables for Cr Ions	89
	2.5.		ese	
			Brief Comments on Each Manganese Ion	
			Spectroscopic Data for Mn VI through Mn XXV	
		2.5.3.	References for Comments and Tables for Mn Ions	38
	2.6.			41
		2.6.1.	Brief Comments on Each Iron Ion	41
		2.6.2.	Spectroscopic Data for Fe VII through Fe XXVI	51
		2.6.3.	References for Comments and Tables for Fe Ions	09
	2.7.	Cobalt .		13
		2.7.1.	Brief Comments on Each Cobalt Ion	13
		2.7.2.	Spectroscopic Data for Co VIII through Co XXVII	20
		2.7.3.	References for Comments and Tables for Co Ions	57
	2.8.	Nickel .		
		2.8.1.	Brief Comments on Each Nickel Ion	
		2.8.2.	Spectroscopic Data for Ni IX through Ni XXVIII	
		2.8.3.	References for Comments and Tables for Ni Ions	98
	2.9.	Copper		
		2.9.1.	Brief Comments on Each Copper Ion	
		2.9.2.	Spectroscopic Data for Cu x through Cu xxix 4	.08
		2.9.3.	References for Comments and Tables for Cu Ions	33
	2.10	Kryptor	n	
		2.10.1.	Brief Comments on Each Krypton Ion	3:
		2.10.2.	Spectroscopic Data for Kr V through Kr XXXVI	4?
		2.10.3.	References for Comments and Tables for Kr Ions	76
	2.11.		enum	
		2.11.1.	D. CO. D. L.	77
		2.11.2.		18€
			The second secon	646
3.	$\operatorname{Find}i$	ing List .		549
4.			an Diagram	11:
	4.1.		ation of Grotrian Diagrams	
	4.2.			312

1. INTRODUCTION

During the last 10 years we have published a series of spectroscopic data tables for highly ionized heavy atoms that occur either as impurities in fusion energy research devices or which have been injected into hot plasmas for diagnostic purposes. These spectroscopic data are required both for modeling the energy balance and impurity cooling effects in such plasmas as well as for applying non-perturbing spectroscopic techniques to determine plasma parameters. In addition, spectroscopic data needs for highly ionized atoms exist in astrophysics, especially the physics of the solar corona, and in atomic physics research. A significant amount of new spectral analysis work, both observations and calculations, has been done in recent years. We have critically compiled these spectroscopic data into single compilations for each element and have published such tables for the spectra listed in Table 1.

Since we have now completed this series, we are presenting all these data in this single volume to provide users with the convenience of a single source. Our new tables include three significant improvements: First, in cases where new or improved data have been published, we have included this updated material. This affects especially the early tables of Ti and Fe. Second, we have expanded some compilations by including additional lower ions, for example Ti III and IV are now included. Third, we have added a unified finding list, ordered in increasing wavelengths, which covers all transitions that we have compiled for these elements.

In the present tables we keep the data for each element as separate subunits. This includes the respective introductory comments for the various spectra and the lists of references. We also include a few typical Grotrian diagrams as representative examples. However, we do not include the extensive number of Grotrian diagrams contained in our earlier publications because these would make this volume very large and unwieldy. However, we offer to provide such diagrams on request (Contact: T. Shirai).

TABLE 1. Spectral data publications for elements of importance to fusion energy research.

Spectra	Year of Publication	J. Phys. Chem. Ref. Data
Ti v - Ti xxII	1986	a
V vi – V xxiii	1992	21 , 273-390
$Cr \ V - Cr \ XXIV$	1993	22 , 1279-1423
Mn vii – Mn xxv	1994	23 , 179-294
Fe viii – Fe xxvi	1990	19 , 127–275
Co viii – Co xxvii	1992	21 , 23–121
Ni ix – Ni xxviii	1987	a
Cu x - Cu xxix	1991	20 , 1–81
Kr v – Kr xxxvi	1995	24 , 1577–1608
Mo vi – Mo Xlii	1987	16, 327-377

^aPublished in At. Data Nucl. Data Tables **34**, 79 (1986) and **37**, 235 (1987)

In all our earlier compilations of Ti through Ni we began with data compiled by Sugar and Corliss [1], using their selection of references as our source of wavelengths. This was supplemented by the extensive tabulation of wavelengths by Kelly [2], the review article by Fawcett [3] and for the more recent work, the bibliographic database of NIST. For wavelengths of forbidden lines we adopted the compilation by Kaufman and Sugar [4]. For transition probabilities, we adopted the data compiled by Martin et al. [5] and Fuhr et al. [6] Again, we have searched the more recent literature for significant updates and additions. For the H and He sequences only theoretical results are given since they are considered to be more accurate than the experimental values.

In cases where no experimental wavelength data are available but for which f-values exist that are either calculated or derived from systematic trend studies, the quoted wavelengths (λ) are calculated from the known energy levels using the Ritz combination principle. The wavelengths are then used to calculate A-values from the f-values.

We tabulate A-values and gf-values in order to provide a measure of the strengths of the lines. A-values (or fvalues) may be utilized to obtain line intensities from the general relation between the line intensity (I) and transition probability

$$I = (4\pi\lambda)^{-1} hcAN_u,$$

where N_u is the population of the upper energy level. The level populations are source-dependent and are, especially for low density plasmas, difficult to determine. However, for small energy ranges, relative populations may follow Boltzmann distributions, or may even be estimated as being approximately constant, aside from the statistical weight factors $g_u = 2J_u + 1$ (where J is the total angular momentum quantum number). Thus for two emission lines originating from closely spaced upper levels one may estimate

$$I_1/I_2 = (\lambda_2 A_1 g_{u_1}/\lambda_1 A_2 g_{u_2}).$$

For a number of spectra, both A-values and crude visual intensity estimates are available for many lines. If the intensity listings are extensive, we present both A-value data and the intensity estimates. The latter make possible rough order-of-magnitude estimates for A-values of lines with known intensity data. However, we caution that intensity estimates from photographic plates are usually visual estimates of relative plate blackening. There is generally no correlation between intensity estimates by different authors, or by the same author for different wavelength ranges.

We give wavelengths in air above 2000 Å and in vacuum below 2000 Å. It is customary, in nearly all of the papers quoted in this compilation, for the authors to give their wavelength measurement uncertainty to

 1σ . When no uncertainty is given we attempt to estimate the 1σ value. For the conversion of ionization energies from cm⁻¹ to eV, we use the conversion factor $8065.5410\pm0.0024~{\rm cm^{-1}/eV}$ given by Cohen and Taylor [7].

Classifications of lines are sometimes given when both energy levels involved in the transition are not known. The classifications may be based on theoretical predictions or isoelectronic studies. We have included these lines and classifications in the present work but they should be considered as tentative line identifications.

The uncertainty estimates for the transition probability data are taken from the NIST reference data tables [5,6] and are discussed there in detail.

1.1. Dedication

The first of this series of spectroscopic data compilations was published for titanium in 1986 by Dr. K. Mori [8] in collaboration with two of the present authors and with Y. Nakai, K. Ozawa, and T. Kato. Since the publication of that compilation, tokamak plasma diagnostic teams requested that we carry out similar compilations for other elements relevant to fusion energy research. We have thus published a series of compilations of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo (see Table 1) for the last decade. This data book is based on those single monographs and is dedicated to our earlier collaborators Mr. Y. Funatake, Dr. K. Ishii, Dr. K. Kato, Dr. A. Mengoni, Dr. K. Mori, Mr. T. Nakagaki, Dr. Y. Nakai, Dr. K. Okazaki, Dr. K. Ozawa, and Dr. H. Sakai.

We also owe a special acknowledgement to Dr. K. Mori, who inspired this work with earlier Grotrian diagrams for Fe VIII — Fe XXVI done in 1977 with his colleagues M. Otsuka and T. Kato in a Technical Report of the Institute of Plasma Physics, Nagoya University (1977).

1.2. Acknowledgements

This work was partially supported by the U.S. – Japan Fusion Cooperation Program and by the Office of Magnetic Fusion Energy of the U.S. Department of Energy (DOE).

1.3. References for Introduction

- J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [2] R. L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
- [3] B. C. Fawcett, J. Opt. Soc. Am. B 1, 195 (1984).
- [4] V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986).
- [5] G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 3 (1988).
- [6] J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).
- [7] E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
- [8] K. Mori, W. L. Wiese, T. Shirai, Y. Nakai, K. Ozawa, and T. Kato, At. Data Nucl. Data Tables 34, 79 (1986).

2. TABLES OF SPECTROSCOPIC DATA

2.1. Explanation of Tables

Wavelength (Å)

Wavelengths of listed spectral lines in Angstrom (Å) units (10^{-8} cm) are given in air above 2000 Å and in vacuum below 2000 Å.

C, T, P, S, L

Superscripts to the right of a wavelength value have the following meanings:

- C wavelength calculated from energy level data using the Ritz combination principle.
- T wavelength tentatively identified.
- P wavelength predicted along an isoelectronic sequence.
- S wavelength smoothed along an isoelectronic sequence.
- L wavelength identified from isoelectronic study. The levels generating this line are not known.

Classification

Spectroscopic designation for lower and upper levels generating the spectral lines; electronic configurations followed by the term in LS-, jj- or jK-coupling notation. The superscript "o" on the term indicates odd parity. A term enclosed in parentheses refers to an intermediate state. Where only the total angular momentum J is given in successive listings, the preceding configuration and term labels apply.

Energy Levels (cm⁻¹)

Level values are given in cm⁻¹ for lower and upper level of the transition. A "?" after the level value indicates level was derived from a tentatively classified line. Theoretical levels are given in square brackets. A "+x" after the level value represents the error of the assumed connection (estimated or calculated) between this system and other levels of the spectrum.

Int.

Approximate intensity of a spectral line, generally visually estimated from the blackness (or density) of the line on photographic plates.

gf

This column lists the product of the statistical weight g of the lower level and the absorption oscillator strength or f-value for electric dipole transitions. 1.23–1 means 1.23×10^{-1} . Only A values are given for forbidden transitions.

$A (s^{-1})$

Radiative transition probability in s^{-1} . 1.23+11 means 1.23×10¹¹.

Acc.

Accuracy estimate for the oscillator strength and transition probability data, taken from the NIST reference tables on atomic transition probabilities (see, e.g. the introduction of Ref. 5 in section 1 for a detailed explanation). The accuracy is indicated by the following letter symbols, which are identical with the notation used in the NIST reference books:

- A for uncertainties within 3%
- B for uncertainties within 10%
- C for uncertainties within 25 %
- D for uncertainties within 50 %
- E for uncertainties greater than 50%

References

Reference sources for the data. The numbers are keyed to the bibliographic listing following the tables. When several references are listed, they are distinguished by superscripts on the numbers as follows:

- ° reference from which the adopted wavelength value is taken.
- * reference containing the adopted oscillator strength and/or the transition probability.
- △ reference from which the estimated intensity is taken.

2.2. Titanium

2.2.1. Brief Comments on Each Titanium Ion

Ti III

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 221 735.6 \pm 2 cm⁻¹ (27.4917 \pm 0.0003 eV)

Edlén and Swensson [1] extended the early observations by Russell and Lang [2] to include 724 lines in the range of 630-9300 Å by means of a pulsed hollow-cathode discharge. No wavelength uncertainties are given.

Edlén and Swensson [1] identified a total of 724 transitions among the levels of the following configurations: 3d4s, 5s, 6s; 3d4p, 5p; 4s4p; $3d^2$; 3d4d, 5d; 3d4f, 5f; 3d5g, 6g; 3d6h; and 3d7h. All levels were found except for the 3d7h configuration.

The series limit was determined from a polarization formula in Ref. [1].

Ti IV

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 348 973.3 \pm 1.5 cm⁻¹ (43.2672 \pm 0.0002 eV)

Line identifications by Russell and Lang [2] were extended by Swensson and Edlén [3] who used a pulsed hollow-cathode discharge in the range of 2000-7800 Å and a sliding spark for 770-1470 Å.

They identified 59 transitions among the levels of the n=4-7s, 4-6p, 3-7d, 4-5f, 5-7g, 6-7h, 7-8i, and $3p^53d^2$ $^2F_{5/2}^{\circ}$. The uncertainty of the wavelengths is estimated to be ± 0.01 Å to ± 0.02 Å.

The ionization energy was determined from a polarization formula using terms of ng, nh, and ni series in Ref. [3].

Ti v

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy 800 700 \pm 500 cm⁻¹ (99.30 \pm 0.01 eV)

Svensson [4] identified 231 lines in the range of 144.551 - 2385.361 Å. These were classified in the arrays

 $3p^6 - 3p^5(3d, 4s, 5s, 6s), 3s^23p^6 - 3s3p^64p, 3p^5(3d - 4p, 4s - 4p, 4p - 4d, 4p - 5s), 3s^23p^5(3d, 4s) - 3s3p^63d, and <math>3s3p^63d - 3s^23p^5(4d, 5s)$. Wavelengths were measured with estimated uncertainties ranging from ± 0.01 Å to ± 0.005 Å using vacuum spark discharges.

Kastner et al. [5] identified 15 lines in the range of 103–146 Å as a Rydberg series arising from the transitions $3s^23p^6 {}^1S_0 - 3s3p^6np {}^3P_1^{\circ} (n=4-10)$ and $3s^23p^6 {}^1S_0 - 3s3p^6np {}^1P_1^{\circ} (n=4-11)$. Wavelengths were observed in spark spectra with an estimated uncertainty of ± 0.005 Å.

The ionization energy was determined by extrapolation by Svensson and Ekberg [6].

Ti VI

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ ${}^2P_{3/2}^{\circ}$

Ionization energy 964 100 \pm 1000 cm⁻¹ (119.53 \pm 0.1 eV)

The $3s^23p^5$ ${}^2\mathrm{P}^{\circ}_{1/2,3/2} - 3s3p^6$ ${}^2\mathrm{S}_{1/2}$ transitions at 524.113 ± 0.002 Å and 508.575 ± 0.002 Å were measured by Svensson [7] in a vacuum spark discharge.

The $3p^5-3p^44s$ array was identified by Edlén [8]. Reobservation of this array was reported by Svensson and Ekberg [6], who also identified additional $3p^5-3p^4$ (3d, 4d, 5s, 5d) transitions in a vacuum spark spectrum. The uncertainty of the wavelengths is estimated to be ± 0.004 Å. A faint 3p $^2\mathrm{P}_{3/2}^{\circ}-(^1\mathrm{D})4s$ $^2\mathrm{D}_{3/2}$ line at 192.705 Å was identified by Edlén.

The 3d-4f transitions in the range of 226-236 Å were classified by Fawcett *et al.* [9]. Their observations were made with a laser-produced plasma. The estimated uncertainty of their wavelengths is ± 0.01 Å.

The ionization energy was determined by extrapolation in Ref. [6].

Ti VII

S I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4$ 3P_2

Ionization energy 1 136 000 cm^{-1} (140.8 eV)

The $3s^23p^4-3s3p^5$ array in the range of 440-552 Å was identified by Svensson [7]. He measured wavelengths in a vacuum spark discharge with an uncertainty of ± 0.002 Å

The $3p^4 - 3p^3$ (3d, 4s, 4d) transitions were observed and analyzed by Svensson and Ekberg [6] from vacuum spark spectra observed in the ranges of 248 - 333 Å, 164 - 180 Å, and 128 - 139 Å, respectively. The estimated uncertainty of wavelengths is ± 0.004 Å.

The 3d-4f transitions in the range of 192-194 Å were classified by Fawcett *et al.* [9]. The estimated uncertainty of wavelengths is ± 0.01 Å.

The value for the ionization energy was determined by Edlén by extrapolation in Ref. [8].

Ti VIII

P I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 1 374 000 cm^{-1} (170.4 eV)

The first observation of the $3p^3-3p^24s$ transitions was reported by Kruger and Pattin [10], from which only one line at 162.401 Å has been retained. The spectrum was reobserved by Ekberg and Svensson [11] with an estimated uncertainty of ± 0.004 Å in the range of 149-409 Å, using a vacuum spark discharge. They identified the $3p^3-3p^23d$ and 4s transitions and two of the $3s^23p^3-3s3p^4$ transitions. More complete identifications of these arrays were given by Smitt et al. [12] using a similar light source. The estimated wavelength uncertainty in the range of 401-539 Å is ± 0.008 Å.

The 3d-4f transitions in the range of 168-172 Å were classified by Fawcett *et al.* [9]. The estimated uncertainty of these wavelengths is ± 0.01 Å.

The connection between the doublet and quartet terms has not been found. Therefore, we give all doublet energy levels with a systematic uncertainty of +x, which is approximately ± 20 cm⁻¹.

The value for the ionization energy was determined by Lotz [13] by extrapolation.

Ti IX

Si I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^2$ 3P_0

Ionization energy 1 549 000 cm^{-1} (192.1 eV)

The $3s^23p^2-3s3p^3$, $3p^2-3p3d$, and $3p^2-3p4s$ arrays were classified by Ekberg and Svensson [11]. Wavelengths were observed in the range of 136-400 Å with an estimated uncertainty of ± 0.004 Å using a vacuum spark source. The $3s^23p^2-3s3p^3$ transition was reobserved by Smitt et~al. [12] in the range of 324-580 Å. The uncertainty of wavelengths is estimated to be ± 0.008 Å.

The $3s^23p^2$ $^3P_{1,2} - 3s3p^3$ $^5S_2^\circ$ intercombination transitions at 703.68 ± 0.5 Å and 724.42 ± 0.25 Å were identified by Träbert *et al.* [14] from beam-foil observations.

The 3p3d - 3p4f line at 149.560 Å and the $3p^2 - 3p4d$ lines at about 111 Å were observed by Fawcett *et al.* [9] with an estimated uncertainty of ± 0.01 Å in a laser-produced plasma.

The value for the ionization energy was obtained by Ekberg and Svenson [11] by extrapolation.

Ti x

Al I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{-2} P_{1/2}^{\circ}$

Ionization energy 1 741 500 cm^{-1} (215.92 eV)

Fawcett [15], and Ekberg and Svensson [11] measured the $3s^23p$ $^2P^{\circ} - 3s3p^2$ 2S and 2P transitions. Smitt et al. [12] remeasured these wavelengths and also identified the $^2P^{\circ}-^2D$ lines, all with an estimated uncertainty of ± 0.008 Å. The $^2P^{\circ}-^4S$ intercombination lines in the range of 612-655 Å were identified by Träbert et al. [14] in a beam-foil measurement.

The $3s3p^2-3p^3$ transitions identified by Fawcett [15] were reobserved by Litzén and Redfors [16] with an estimated uncertainty of ± 0.02 Å in a laser-produced plasma. Transitions between terms in the configurations $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d (except for $^4\mathrm{F}^\circ$) were identified by Redfors and Litzén [17]. Two $3s3p^2-3s3p(^3\mathrm{P}^\circ)3d$ lines were reobserved by Levashov et al. [18]. They are the $^4\mathrm{P}_{1/2}-^4\mathrm{P}_{1/2}^\circ$ and $^4\mathrm{P}_{3/2}-^4\mathrm{D}_{1/2}^\circ$ lines at 290.93 Å and 291.037 Å, respectively. Pinnington et al. [19,20] measured 11 additional lines from beam-foil observations with estimated uncertainties of ± 0.2 Å to ± 0.3 Å.

The transition arrays $3p^3$, $3s3p3d - 3p^23d$, $3s3d^2$ were identified by Churilov and Levashov [21] in a laser-produced plasma. Their measurement uncertainty was ± 0.01 Å. They also redetermined all energy levels of the configurations with n=3. We have adopted their results. The $3s3p^2$ ⁴P $-3s3p(^3$ P°)3d ⁴D° line at 288.462 Å $(J=^1/_2-^3/_2)$ reported by Ekberg and Svensson [11] is omitted, because it disagrees with the levels of Churilov and Levashov [21] by 0.35 Å.

Ekberg and Svensson [11] also identified the transitions from n=3 to n=4-6 in the range of 70-143 Å. Additional identifications of the $3s3p^2-3s^24p$ and $3s^23d-3s^24p$ transitions were made by Pinnington *et al.* [19] with an estimated uncertainty of ± 0.1 Å.

The value for the ionization energy was obtained by Ekberg and Svensson [11] by extrapolation.

Ti XI

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{-1}S_0$

Ionization energy 2 137 900 \pm 500 cm⁻¹ (265.07 \pm 0.06 eV)

Ekberg [22] classified the spectrum observed by Svensson and Ekberg [23] in the range of 306 - 387 Å as the $3s^2 - 3s3p$ and 3s3p - 3s3d transitions. Litzén and Redfors [24] extended the classifications between terms in the n = 3 shell (except for $3d^2$) with a laser-produced plasma. The estimated uncertainty of wavelengths is

 ± 0.02 Å. The deviation of the line at 439.75 Å from the energy level values is 0.06 Å. An additional spin-forbidden line $3s^2$ $^1\mathrm{S}_0 - 3s3p$ $^3\mathrm{P}_1^\circ$ at 568.98 ± 0.04 Å was measured by Peacock *et al.* [25] in a tokamak plasma.

The $3p3d - 3d^2$ transitions were measured by Redfors [26] and Levashov and Churilov [27] in laser-produced plasmas with an estimated uncertainty of ± 0.02 Å. Wavelengths are taken from Ref. [26] and from Churilov *et al.* [28] for eight additional lines.

Energy levels of the n=3 configurations are taken from Ref. [24], with the additions of $3d^2$ levels from Refs. [26] and [28]. It should be noted that the designations of 3p3d $^3D_1^{\circ}$ and $^3P_1^{\circ}$ in Ref. [28] have been interchanged, as required by the percentage compositions given in Ref. [28].

The spectrum obtained by Svensson and Ekberg [23] in the range of 54-136 Å was interpreted by Ekberg [22] as transitions among the n=3 levels (except for 3p3d and $3d^2$) and n=4 to 7 levels. Kastner et al. [29] tentatively identified 3s3d-3p4d and $3p^2-3p4d$ transitions. The estimated uncertainty of wavelengths is ± 0.004 Å. The 3p3d-3p4f transitions were measured by Fawcett [30] with an estimated uncertainty of ± 0.01 Å. Bashkin et al. [31] identified the $^1F_3^{\circ}-^1G_4$ transition in beam-foil observations.

Sugar and Corliss [32] calculated the ionization energy from the 3snf 3 F $^\circ$ series.

Ti XII

Na I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^{-2} S_{1/2}$

Ionization energy 2 351 080 \pm 100 cm⁻¹ (291.497 \pm 0.012 eV)

An analysis along Rydberg series was carried out by Ekberg and Svensson [33] for the 3s-np (n=3-6), 3pns (n = 4-6), 3p-nd (n = 3-8), 3d-np (n=4,5), and3d-nf (n=4-8) series. Forty-three lines were identified in the range of 52 - 960 Å in a vacuum spark discharge. A few additional identifications of the ns-, np-, and ndseries up to n = 7, 11, and 10, respectively, were reported by Cohen and Behring [34]. An isoelectronic comparison of measured wavelengths of the 3s - 3p, 3p - 3d, and 3d-4f transitions with Dirac-Fock calculations was made by Reader et al. [35], who derived least squares adjusted wavelengths with an estimated uncertainty of ± 0.007 Å. A beam-foil spectrum in the range of 127 - 1323 Å was observed by Westerlind [36] with estimated uncertainties ranging from ± 0.04 Å to ± 0.1 Å. He classified 28 new lines including transitions between terms with high n and l values up to $8k^2$ K°.

The $2p^53s - 2p^53s^2$, $2p^63p - 2p^53s3p$, and $2p^63d - 2p^53s3d$ transitions in the range of 26-28 Å were observed in a laser-produced plasma and a vacuum spark discharge by Burkhalter *et al.* [37] with an estimated uncertainty of ± 0.01 Å. However most lines are designated

as blends of several closely spaced predicted transitions. We omit this group until more highly resolved data is available.

Jupén et al. [38] identified the line at 324.87 ± 0.02 Å in a beam-foil spectrum as the $2p^53s3p$ $^4\mathrm{D}^{\circ}_{7/2}-2p^53s3d$ $^4\mathrm{F}_{9/2}$ transition.

The value for the ionization energy was derived by Edlén [39] with core-polarization theory applied to the nf series.

Ti XIII

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 6 354 300 cm^{-1} (787.833 eV)

The $2p^6 - 2p^53s$ and 3d lines at ~ 27 Å and ~ 24 Å were identified by Edlén and Tyrén [40] using a vacuum spark source. The $2s^22p^6 - 2s2p^63p$ and $2p^6 - 2p^54s$, 4d, 5d transitions were observed by Feldman and Cohen [41] with an estimated uncertainty of ± 0.005 Å with a low-inductance vacuum spark source.

The 3s-3p and 3p-3d transitions were observed by Jupén and Litzén [42] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å and by Träbert [43] in beam-foil observations with an estimated uncertainty of ± 0.1 Å. Träbert also found the $2s2p^63s-2s2p^63p$ and $2s2p^63p-2s2p^63d$ transitions. Träbert and Jupén [44] reobserved the $2p^53s^{-1,3}P_1^\circ - 2p^53p^{-1}S_0$ lines at 326.29 ± 0.05 Å and at 285.08 ± 0.05 Å, respectively. Designations have been given in the jK coupling notation by Jupén et al. [45].

Jupén et al. reobserved the spectrum in the range of 74-105 Å in a laser-produced plasma, in order to extend the earlier work on the n=3-4 transitions by Kastner et al. [46] and Fawcett et al. [47]. They found 24 lines, including seven new ones, with an estimated uncertainty of ± 0.01 Å, and derived the positions of the $2p^53l$ and 4l levels, which we have quoted here. In Ref. [47] six additional lines of the 3s-4p, 3d-4f, and 3d-5f transitions are given, and energy levels are derived from these lines. It should be noted that a blended line classified as $2p^5(^2\mathrm{P}^\circ_{3/2})3d$ $^2[\frac{3}{2}]^\circ_2-2p^5(^2\mathrm{P}^\circ_{3/2})4f$ $^2[\frac{3}{2}]_2$ at 99.09 Å has been omitted because this identification does not fit the level scheme.

The value for the ionization energy was derived by Sugar and Corliss [32] from the $2p^5nd$ $^3D_1^{\circ}$ series for n=3-5.

Ti XIV

F i isoelectronic sequence

Ground state $1s^22s^22p^{5-2}P_{3/2}^{\circ}$

Ionization energy 6 966 000 cm^{-1} (863.6 eV)

The magnetic-dipole transition $2p^5(^2\mathrm{P}^{\circ}_{3/2} - ^2\mathrm{P}^{\circ}_{1/2})$ at 2117.15 ± 0.07 Å was observed by Peacock *et al.* [25] in a tokamak discharge.

Stamp and Peacock [48] measured the values 121.985 ± 0.002 Å and 129.440 ± 0.002 Å in a tokamak plasma for the $2s^22p^5$ $^2\mathrm{P}_{3/2,1/2}^{\circ} - 2s2p^6$ $^2\mathrm{S}_{1/2}$ transitions. Kaufman *et al.* [49] obtained values within the above uncertainty with a laser-produced plasma. Wavelengths are quoted from Ref. [49].

The 2p-3s and 2p-3d transitions, including those of the $2s2p^6-2s2p^53s$ array, were identified by Feldman et al. [50] in the range of 21-26 Å. Wavelengths were obtained with a low-inductance vacuum spark source with an estimated uncertainty of ± 0.01 Å.

The $2p^43s-2p^43p$ and $2p^43p-2p^43d$ transitions were classified by Jupén et al. [51] in a beam-foil spectrum. Wavelengths in the range of 347-541 Å are provided with an estimated uncertainty ranging from ± 0.01 Å to ± 0.1 Å. We have quoted their energy levels for the n=3 configuration, except for the $2p^4(^3P)3s$ $^4P_{1/2}$ level. For this we use 4 036 120 cm $^{-1}$ to give a better fit with their results.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti xv

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 7 613 000 cm^{-1} (943.9 eV)

The wavelength of the magnetic-dipole line $2s^22p^4(^3P_2 - ^3P_1)$ at 2545.08 ± 0.08 Å was determined by Lawson et~al.~[54] in a tokamak discharge. Their value is more accurate than that of Suckewer et~al.~[55]. Two intercombination lines, $(^3P_2 - ^1D_2)$ and $(^3P_1 - ^1D_2)$ at 919.73 ± 0.08 Å and 1440.2 ± 0.8 Å, were given by Peacock et~al.~[25] and Finkenthal et~al.~[56], respectively.

The $2s^22p^4 - 2s2p^5$ transitions in the range of 102 - 166 Å were identified by Fawcett [57] and with improved resolution by Doschek *et al.* [58] More accurate measurements were provided by Kaufman *et al.* [49] with a laser-produced plasma and reobserved by Stamp and Peacock [48] and Peacock *et al.* [25] in tokamak plasmas. The results of Kaufman *et al.*, including the identification of intercombination lines, are given here.

The n=2-3 transitions in the range of 20-24 Å were first observed by Goldsmith *et al.* [59]. Revisions and additions to this work were reported by Doschek *et al.* [60] for the 2p-3s and by Fawcett and Hayes [61] and Bromage and Fawcett [62] for the 2p-3d transitions.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti xvi

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 8 404 000 cm^{-1} (1042.0 eV)

Two magnetic-dipole lines $2s^22p^3$ (${}^2D_{5/2}^{\circ} - {}^2P_{3/2}^{\circ}$) and (${}^2D_{3/2}^{\circ} - {}^2P_{1/2}^{\circ}$) at 1129.2±0.4 Å and 1224.1±0.4 Å were identified by Finkenthal et~al. [56].

The $2s^22p^3-2s2p^4$ and $2s2p^4-2p^5$ transition arrays were classified by Fawcett [57]. The spectrum was reobserved by Kaufman *et al.* [63] with a laser-produced plasma. The estimated uncertainty of their wavelengths is ± 0.005 to ± 0.01 Å. They give 25 lines, including the intercombination line $2s^22p^3$ $^4\mathrm{S}^\circ_{3/2}-2s2p^4$ $^2\mathrm{P}_{3/2}$ at 102.393 Å. Two additional $2s^22p^3-2s2p^4$ lines at 142.57 Å and 146.57 Å are from Kasyanov *et al.* [64]. The $2s^22p^3-2s2p^4$ arrays were also observed by Stamp and Peacock [48] and Peacock *et al.* [25] in tokamak discharges.

The $2p^3 - 2p^23d$ transitions in the range of 19 - 21 Å were identified by Fawcett and Hayes [61] and also by Bromage and Fawcett [65]. Wavelengths were measured with an estimated uncertainty of ± 0.01 Å in laser-produced plasmas.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti XVII

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 9 125 000 cm^{-1} (1131.3 eV)

The $2s^22p^2(^3P_1-^3P_2)$ and $(^3P_0-^3P_1)$ magnetic-dipole lines at 3834.4 ± 0.2 Å and 3370.8 ± 0.2 Å were observed by Suckewer *et al.* [55] in a tokamak plasma. Similar observations were reported by Lawson *et al.* [54] and Peacock *et al.* [25].

The $2s^22p^2-2s2p^3$ transitions were identified by Fawcett et al. [66] and by Kasyanov et al. [64]. Fawcett et al. [67] reobserved some of them and also identified the $2s2p^3-2p^4$ transitions with an uncertainty of ± 0.05 Å. More accurate measurements with uncertainties varying from ± 0.005 Å to ± 0.01 Å were made by Sugar et al. [68], who confirmed the earlier identifications except for the $2s2p^3$ $^3S_1^\circ - 2p^4$ 3P_2 and $2s2p^3$ $^3P^\circ - 2p^4$ 3P transitions. They also identified the intersystem lines

 $2s^22p^2$ $^3P_1 - 2s2p^3$ $^1P_1^{\circ}$ and $2s2p^3$ $^3D_3^{\circ} - 2p^4$ 1D_2 , and the allowed lines $^3D_{2,1}^{\circ} - ^3P_{2,0}$. Denne and Hinnov [69] assigned a faint line at 359.8 Å to the intercombination transition $2s^22p^2$ $^3P_2 - 2s2p^3$ $^5S_2^{\circ}$.

The $2p^2 - 2p3s$, $2s2p^3 - 2s2p^2(3s, 3d)$, and $2p^2 - 2p3d$ transitions in the range of 18 - 21 Å were first classified by Goldsmith *et al.* [70]. The $2p^2 - 2p3d$ transitions were reanalyzed by Fawcett and Hayes [61] and more fully by Bromage and Fawcett [71] whose wavelengths are given here.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti XVIII

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy 9 844 000 cm^{-1} (1220.5 eV)

Suckewer et al. [55] identified the line at $1778.1 \pm 0.1 \text{ Å}$ in a tokamak spectrum as the $2s^22p$ ($^2P_{1/2}^{\circ} - ^2P_{3/2}^{\circ}$) magnetic-dipole transition. This line was reobserved by Lawson et al. [54], Peacock et al. [25], and Finkenthal et al. [56], also in tokamak plasmas.

The $2s2p^2-2p^3$ transitions were observed by Kasyanov et al. [64] and Fawcett et al. [67] with estimated uncertainties of ± 0.02 Å and ± 0.05 Å, respectively. An additional blended $^4P_{1/2} - ^4S_{3/2}^{\circ}$ line at 153.23 Å was given by Fawcett and Hayes [61], but it has been omitted because of a discrepancy of 0.12 Å from the level values adopted here. The $2s^22p - 2s2p^2$ transitions were classified by Fawcett and Hayes [61] and reobserved by Sugar et al. [72] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å. Denne and Hinnov [69] tentatively identified two lines at 361.1 Å and 322.6 Å as the intercombination transition $2s^22p^2$ $^2P_{3/2,1/2}^{\circ} - 2s2p^2$

The $2s2p^2-2s2p3d$, $2s^22p-2s^23d$, and $2s^22p-2s2p3p$ transitions in the range of 16-18 Å were identified by Fawcett and Hayes [61], and measured with an estimated uncertainty of ± 0.01 Å in a laser-produced plasma.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti XIX

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 10 863 000 cm^{-1} (1346.9 eV)

Lawson et al. [54] identified the magnetic-dipole transition $2s2p~(^3P_1^{\circ}-^3P_2^{\circ})$ with a line at 2344.6 ± 0.2 Å in a tokamak discharge.

The $2s2p-2p^2$ array, including the ${}^3\mathrm{P}_2^{\circ}-{}^1\mathrm{D}_2$ intercombination transition, was observed and classified by Fawcett *et al.* [67] in the range of 175-306 Å. They estimate their wavelength uncertainty to be ± 0.05 Å.

The resonance line $2s^2$ $^1\mathrm{S}_0 - 2s2p$ $^1\mathrm{P}_1^\circ$ was identified by Kashanov *et al.* [64] at 169.59 Å. Stamp and Peacock [48] measured the $2s^2$ $^1\mathrm{S}_0 - 2s2p$ $^{1,3}\mathrm{P}_1^\circ$ transitions at 169.580 ± 0.002 Å and 328.278 ± 0.008 Å, which we have adopted.

The n=2-3 transitions in the range of 15.6-17.2 Å were identified by Fawcett and Hayes [61] with estimated uncertainties of ± 0.01 Å and by Boiko et al. [73,74] with estimated uncertainties of ± 0.003 Å. Some blended lines in Refs. [73] and [74] have multiple classifications.

Six lines of the n=2-4 transitions were newly classified by Moreno et al. [75] in the range of 12-13 Å in a laser-produced plasma. The estimated uncertainty of the wavelengths is ± 0.01 Å. However, the classifications of the $2p^2$ $^3P_{1,2}-2p4d$ $^3P_2^\circ$ transitions at 12.688 Å and 12.622 Å are erroneous, because the lower term splitting does not fit the value adopted here by nearly a factor of two. We omit the data from this paper.

For the ionization energy we use a value calculated by Cheng [52] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [53].

Ti xx

Li i isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 11 497 000 cm^{-1} (1425.4 eV)

The resonance doublet, 2s 2S -2p $^2P^\circ$, at 259.272 ± 0.004 Å and 309.072 ± 0.010 Å was first observed by Stamp and Peacock [48] in a tokamak discharge. Hinnov et al. [76] reobserved these lines at 259.300 ± 0.02 Å and 309.065 ± 0.015 Å also in a tokamak discharge. Recently Kim et al. [77] obtained smoothed wavelengths for this doublet of 259.292 Å and 309.099 Å. We adopt their results.

The 3d 2 D -4f 2 F° doublet at 46.69 ± 0.01 Å and 46.79 ± 0.01 Å was observed by Fawcett and Ridgely [78] using a laser-produced plasma.

The inner-shell $1s^22s - 1s2s2p$ and $1s^22p - 1s2p^2$ transitions near about 2.6 Å were observed by Aglitskii et al. [79] with estimated uncertainties ranging from ± 0.0005 Å to ± 0.0015 Å in a laser-produced plasma. Almost all the lines are blended. This spectrum was classified by Boiko et al. [74]

The 2s - np (n = 3 - 9), 2p - 3s, and 2p - nd (n = 3 - 8) transitions in the range of 9.1 - 16.5 Å were found by Aglitskii *et al.* [80] with an estimated uncertainty of ± 0.003 Å. Almost all the lines are blended.

Vainshtein and Safronova [81] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s, p, and d. Their energy levels are adjusted to the $1s^22p^2P_{1/2,3/2}^{\circ}$ levels of Kim $et\ al$. by adding $20\ {\rm cm}^{-1}$. They also calculated wavelengths of the $1s^22s-1s2s2p$, $1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing levels.

New observations in the region of 2.2 Å were made by Aglitskii and Panin [82] using a low-inductance spark discharge. They identified the $1s^22p^2\mathrm{P}_{3/2}^{\circ}-1s2pnp^2\mathrm{D}_{5/2}$ transitions with n=3-5.

The value for the ionization energy was derived by Sugar and Corliss [32] from the nd series.

Ti xxI

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 50 401 900 \pm 800 cm⁻¹ (6249.0422 \pm 0.1 eV)

The n=1 to n=2 transitions were observed by Aglitskii $et\ al.$ [79] and Turechek and Kunze [83]. The resonance line $1s^2\ ^1\mathrm{S}_0 - 1s2p\ ^1\mathrm{P}_1^\circ$ was reobserved by Morita [84], Vainshtein $et\ al.$ [85], Morita and Fujita [86], and Beiersdorfer $et\ al.$ [87].

Vainshtein et al. also observed the $1s^2$ $^1S_0 - 1snp$ $^1P_1^{\circ}$ transitions with n = 3 - 5. Observations up to np $^{1,3}P_1^{\circ}$ levels with n = 3 - 8 were given by Aglitskii and Panin [82]. New observations were made by Beiersdorfer et al. [87] of the singlets with n = 4 and 5.

The 1s2s-1s2p and 1s2p-1s3d transitions were identified by Galvez *et al.* [88] and Moreno *et al.* [75], respectively.

The 1s2s - 2s2p and $1s2p - 2p^2$ transitions were first identified by Turechek and Kunze [83] and subsequently by Bitter *et al.* [93] with five lines near about 2.51 Å. We have adopted the calculated wavelengths of Vainshtein and Safronova [81] for transitions from the n = 2 doubly-excited states.

Cheng et al. [89] give calculated total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [90] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [91] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [92].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [81] have been tabulated after increasing them by 1200 cm^{-1} to correspond with the values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

Vainshtein and Safronova also calculated wavelengths of transitions between 1s2s-2s2p, $1s2p-2s^2$, and $1s2p-2p^2$. We have compiled them without correction.

Ti XXII

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 53 440 740 \pm 10 cm⁻¹ (6625.810 \pm 0.001 eV)

For the 1s $^2\mathrm{S}_{1/2}-2p$ $^2\mathrm{P}_{1/2,3/2}^{\circ}$ resonance transitions, measurements have been reported by Lie and Elton [94], Turechek and Kunze [83], and Bitter *et al.* [93]. We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [91] for the n=2 shell whose estimated uncertainty is ± 10 cm $^{-1}$. Their energy differences are in close agreement with those of Mohr [95]. The binding energies for the levels with n=2-5 have been calculated by Erickson [96]. We subtracted his values for n=3-5 from the binding energy of the ground state obtained by Johnson and Soff to obtain corrected values for Erickson's levels.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for hydrogen by Wiese *et al.* [97].

The scaling was actually performed for the line strengths S, which for a hydrogenlike ion of nuclear charge Z are reduced according to $S_Z = Z^{-2}S_H$, so that

$$S_{\text{Ti XXII}} = S_{\text{H}}(22)^{-2} = S_{\text{H}}/484.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [98]. For these conversions the very accurate wavelengths listed in the first column of the Ti XXII table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-3% for Ti XXII, according to the work by Younger and Weiss [99], and have been neglected.

The value for the ionization energy is from Johnson and Soff [91].

2.2.2. Spectroscopic Data for Ti III through Ti $\tt XXII$

Ті ш

Wave- length (Å)	Classification Lower	ı Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
9303.06 ^C 9271.12	3d4f ³ H ₄ 5	$3d5d$ 3 F $_3$	159 022.93 159 128.94	169 769.13 169 912.11	1bl 1	1.23 - 1	1.0+6	D	1 1°,98*
9193.52 9081.40	$3d4f$ $^3\mathrm{G}^{\circ}_3$ 5	$3d5d$ 3 F ₂	158 740.92 158 903.55	169 615.12 169 912.11	1 2	1.2	1.1+7	D	1 1°,98*
9024.05	$3d4f$ $^3\mathrm{F}_2^\mathrm{o}$	$3d5d\ ^3{ m F}_2$	158 536.63	169 615.12		2.1 - 1	3.4+6	D	1°,98*
9017.10	$3d4f$ $^{1}\mathrm{H_{5}^{o}}$	$3d5d~^1{ m G_4}$	160 054.90	171 141.93	3	1.7	1.5+7	D	1°,98*
8938.06	$3d4f$ $^3\mathrm{D}^\mathrm{o}_3$	$3d5d$ $^3\mathrm{P}_2$	159 481.95	170 666.94	1				1
8938.06	$3d5d$ $^{1}\mathrm{D}_{2}$	$3d5f$ $^3\mathrm{D}^{\mathrm{o}}_3$	170 840.80	182 025.86	1				1
8931.21	$3d5d$ $^3\mathrm{P}_2$	$3d5f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	170 666.94	181 860.55					1
8916.95	$3d5d~^1\mathrm{G}_4$	$3d5f$ $^{1}\mathrm{H_{5}^{o}}$	171 141.93	182 353.45	3	8.9	6.8+7	D	1°,98*
8887.71 8801.25	$3d5d$ $^3\mathrm{P}_1$	$3d5f \ ^3D_2^{\circ}$	170 659.72 170 666.94	181 908.15 182 025.86	3	1.4	2.3+7	D	1°,98* 1
8801.25	$3d4f$ $^3\mathrm{D}^\mathrm{o}_3$	$3d5d$ $^1\mathrm{D}_2$	159 481.95	170 840.80	3				1
8795.28	$3d5d$ $^{1}\mathrm{D}_{2}$	$3d5f$ $^3\mathrm{P}_2^\circ$	170 840.80	182 207.39	2				1
8745.99	$3d6s$ $^{1}\mathrm{D}_{2}$	$3d5f$ $^{1}\mathrm{D_{2}^{o}}$	170 270.02	181 700.72	2				1
8731.24	$3d5d\ ^3\mathrm{F}_3$	$3d5f$ $^{1}\mathrm{G_{4}^{o}}$	169 769.13	181 219.06	3	6.6 - 1	6.4+6	D	1°,98*
8703.30	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d5d$ $^3\mathrm{P}_2$	159 180.24	170 666.94	3				1
8699.85	$3d4d$ $^3\mathrm{P}_2$	$3d5p^{-1}D_2^{o}$	135 721.51	147 212.77	5				1
8662.79	$3d5d$ $^3\mathrm{P}_2$	$3d5f$ $^3\mathrm{P}_2^\circ$	170 666.94	182 207.39	3				1
8611.06 8605.75	2 1	1	$170 666.94 \\ 170 659.72$	182 276.75 182 276.75	3	7.2 - 1	2.2+7	D	1 1°,98*
8563.50	1	0	170 659.72	182 333.95	2	4.8 - 1	4.3 + 7	D	1°,98*
8625.35	$3d6s\ ^1\mathrm{D}_2$	$3d5f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	170 270.02	181 860.55	4				1
8618.79	$3d5d$ $^3\mathrm{F}_3$	$3d5f$ $^3\mathbf{F_3^o}$	169 769.13	181 368.45	2	4.0 - 1	5.1 + 6	D	1°,98*
8544.89 8527.03	4 2	4	169912.11 169615.12	181 611.79 181 339.27	5 6	9.9 - 1 1.2	$^{1.0+7}_{2.2+7}$	D D	1°,98* 1°,98*
8505.88	2 2	2 3	169 615.12	181 368.45	7	2.0	2.6+7	Ď	1°,98*
8584.05	$3d5d$ $^3\mathrm{F}_4$	$3d5f^{-3}H_{5}^{o}$	169 912.11	181 558.44	6	1.5	1.2+7	D	1°,98*
8566.24	3	4	169 769.13	181 439.64	5	1.2	1.2+7	Ď	1°,98*
8573.53	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d5d$ $^{1}\mathrm{D}_{2}$	159 180.24	170 840.80	1				1
8532.26	$3d4f$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	$3d5d$ $^{1}\mathrm{D}_{2}$	159 123.78	170 840.80	1				1
8516.40	$3d5d$ $^3\mathrm{F}_3$	3d5f ³ G ₃ °	169 769.13	181 507.92	5	9.8 - 1	1.3+7	D	1°,98*
8439.19 ^C	4	4	169 912.11	181 758.34		1.4	1.5+7	D	1°,98*
8406.15	2	3	169 615.12	181 507.92	8	2.5	3.4 + 7	D	1°,98*
8394.20 8338.54	4 3	5 4	169 912.11 169 769.13	181 821.83 181 758.34	$\frac{12}{10}$	$6.5 \\ 4.0$	5.6+7 $4.2+7$	D D	1°,98* 1°,98*
8504.05	$3d6s$ $^{1}\mathrm{D}_{2}$	$3d5f$ $^3D_3^{\circ}$	170 270.02	182 025.86					1
8466.87	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d5p^{-1}D_2^{\circ}$	135 405.27	147 212.77	20				1
8358.45	$3d4d$ $^3\mathrm{P}_1$	$3d5p^{-3}D_{1}^{\circ}$	135 601.47	147 562.14	2				1
8316.71	0	1	135 541.46	147 562.14	3				I
8311.38	2	2	135 721.51	147 749.89	4				1
8229.26 8182.42	1 2	2 3	135 601.47 135 721.51	147 749.89 147 939.47	5 10				1 1
8305.41	$3d(^{2}D_{5/2})5g\left[\frac{3}{2}\right]_{2}$	$3d(^{2}D_{5/2})6h \left[\frac{5}{2}\right]_{3}^{\circ}$							
8305.41	$\frac{34(D_5/2)39 [\frac{1}{2}]2}{1}$	$\frac{3a(D_{5/2})0n}{2}$	182 680.53 182 680.27	194 717.4 194 717.4	4 4				1
8305.41 8301.8 ^C	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{13}{2}]_{6}$	$3d(^{2}D_{5/2})6h \left[\frac{13}{2}\right]_{6}^{0}$	182 601.96 182 596.87	194 639.2 194 639.2	4 1bl				1 1

Ti III - Continued

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
8278.69 8276.20	$3d(^{2}D_{3/2})5g\ [\frac{11}{2}]_{6}$	$3d(^{2}D_{3/2})6h \left[\frac{11}{2}\right]_{6}^{o}$	182 170.72 182 166.91	194 246.5 194 246.5				 -	1 1
8267.32 8267.32	$3d(^{2}D_{3/2})5g\ [\frac{5}{2}]_{2}$	$3d(^2\mathrm{D}_{3/2})6h\ [\frac{7}{2}]_3^{\circ}$	182 225.09 182 224.72	194 317.2 194 317.2	15 15				1
8267.32 8263.67	$3d(^2\mathrm{D}_{5/2})5g\ [rac{13}{2}]_6$ 7	$3d(^2D_{5/2})6h\ [\frac{15}{2}]_7^{\circ}$	182 601.96 182 596.87	194 694.6 194 694.6	15 9				1
8267.32 8267.32	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{5}{2}]_{2}_{3}$	$3d(^{2}\mathrm{D}_{5/2})6h\ [\frac{7}{2}]_{3}^{\circ}$	182 587.62 182 587.12	194 680.2 194 680.2	15 15				1
8252.85 8235.58	$3d5d$ $^3\mathrm{F_4}$	$3d5f \ ^3D_3^{\circ}$	169 912.11 169 769.13	182 025.86 181 908.15		1.4 - 1 $2.2 - 1$	2.1+6 $4.3+6$	D D	1°,98* 1°,98*
8241.10 8238.57	$3d(^2D_{3/2})5g\ [\frac{11}{2}]_6$ 5	$3d(^{2}\mathrm{D}_{3/2})6h\ [\frac{13}{2}]_{7}^{0}$	182 170.72 182 166.91	194 301.6 194 301.6	8 7				1 1
8213.35 8212.60	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{7}{2}]_{4}$	$3d(^{2}D_{5/2})6h \left[\frac{9}{2}\right]_{5}^{o}$	182 474.38 182 473.21	194 646.3 194 646.3	7 7				1 1
8202.13 8200.10	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{11}{2}]_{6}_{5}$	$3d(^{2}D_{5/2})6h \left[\frac{11}{2}\right]_{6}^{\circ}$	182 439.62 182 436.46	194 628.2 194 628.2	1 1				1 1
8199.17 8198.30	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{7}{2}]_{4}$	$3d(^{2}D_{3/2})6h \left[\frac{9}{2}\right]_{5}^{o}$	182 068.87 182 067.49	194 261.8 194 261.8	8 8				1 1
8194.75 8192.68	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{11}{2}]_{6}$	$3d(^{2}D_{5/2})6h\ [\frac{13}{2}]_{7}^{o}$	182 439.62 182 436.46	194 639.2 194 639.2	9 9				1 1
8190.57 8189.78	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{7}{2}]_{4}$	$3d(^{2}D_{5/2})6h \left[\frac{7}{2}\right]_{4}^{\circ}$	182 474.38 182 473.21	194 680.2 194 680.2	1				1 1
8187.79	$3d4d\ ^3\mathrm{P}_2$	$3d5p$ $^3\mathrm{F_2^o}$	135 721.51	147 931.47	1				1
8179.13 8178.00	$3d(^{2}D_{5/2})5g \left[\frac{9}{2}\right]_{4}$	$3d(^{2}D_{5/2})6h \left[\frac{11}{2}\right]_{5}^{\circ}$	182 405.25 182 403.64	194 628.2 194 628.2	8 9				1 1
8173.37 8172.21	$3d(^{2}D_{3/2})5g \left[\frac{9}{2}\right]_{4}$	$3d(^{2}D_{3/2})6h \left[\frac{11}{2}\right]_{5}^{\circ}$	182 014.92 182 013.32	194 246.5 194 246.5	9 10				1 1
8166.96 8165.85	$3d(^{2}D_{5/2})5g\ [\frac{9}{2}]_{4}$	$3d(^{2}D_{5/2})6h \left[\frac{9}{2}\right]_{4}^{o}$	182 405.25 182 403.64	194 646.3 194 646.3	1				1
8164.06	$3d5d$ 3 $\mathbf{F_2}$	$3d5f~^{1}{\rm F}_{3}^{\rm o}$	169 615.12	181 860.55		2.0 - 1	2.9+6	D	1°,98*
8163.09 8161.84	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{9}{2}]_{4}$	$3d(^2\mathrm{D}_{3/2})6h\ [\frac{9}{2}]_4^{\circ}$	182 014.92 182 013.32	194 261.8 194 261.8	1				1
8161.84 8161.84	$3d(^{2}D_{3/2})5g \left[\frac{7}{2}\right]_{4}$	$3d(^{2}D_{3/2})6h \left[\frac{7}{2}\right]_{4}^{\circ}$	182 068.87 182 067.49	194 317.2 194 317.2	1 1				1 1
8117.53	$3d5f$ $^{1}\mathrm{H_{5}^{o}}$	$3d(^2D_{5/2})6g\ [\frac{13}{2}]_6$	182 353.45	194 669.10	3				1
8098.47 7975.94	$3d4d$ $^{1}\mathrm{D}_{2}$ 2	$3d5p\ ^3{ m D}_2^{ m o}$	135 405.27 135 405.27	147 749.89 147 939.47	5 4bl				1 1
8030.70	$3d5f$ $^3\mathrm{P}_2^\circ$	$3d(^2D_{5/2})6g\ [\frac{5}{2}]_3$	182 207.39	194 656.18					1
7981.09	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d5p$ $^3\mathrm{F}^{\mathrm{o}}_2$	135 405.27	147 931.47	8				1
7955.11 7881.83	$3d5f \ ^3D_3^{\circ}$	$3d(^2D_{5/2})6g\ [\frac{7}{2}]_4$	182 025.86 181 908.15	194 592.98 194 592.07					1 1
7899.90	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d5p^{-1}\mathrm{D_2^o}$	134 557.84	147 212.77	6				1
7895.57	$3d5f$ $^3\mathrm{G}^{\mathrm{o}}_3$	$3d(^2D_{3/2})6g\ [\frac{9}{2}]_4$	181 507.92	194 169.81	1				1
7875.79	$3d5f$ $^3\mathrm{G}^{\mathrm{o}}_3$	$3d(^{2}\mathrm{D}_{3/2})6g\ [\frac{7}{2}]_{4}$	181 507.92	194 201.57	1				1
7874.28	$3d5f$ $^1\mathrm{F}^o_3$	$3d(^{2}D_{5/2})6g\ [\frac{9}{2}]_{4}$		194 556.67	2				1
7867.90	$3d5f^{3}H_{5}^{o}$	$3d(^{2}D_{3/2})6g\ [\frac{11}{2}]_{6}$	181 558.44	194 264.82	3				1

Ti III - Continued

Wave- length (Å)	Classificatio Lower	n Upper	Energy Lev	vels (cm ⁻¹)	Int.	<i>gf</i>	A (s ⁻¹)	Acc.	References
7842.22 7805.03	3d5f ³ G ₅ 4	$3d(^{2}D_{5/2})6g\left[\frac{11}{2}\right]_{6}$	181 821.83 181 758.34	194 569.80 194 567.08	4 2				1
7809.53	$3d5f$ $^3\mathrm{F}^\mathrm{o}_3$	$3d(^2D_{3/2})6g\ [\frac{9}{2}]_4$	181 368.45	194 169.81	1				1
7794.49 7625.26	$3d5f \ ^3{ m H}^o_6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$3d(^{2}D_{5/2})6g\ [\frac{13}{2}]_{7}$	181 837.98 181 558.44	194 664.08 194 669.10	4				1 1
7775.95	$3d4f$ $^{1}G_{4}^{o}$	$3d5d$ $^{1}\mathrm{G}_{4}$	158 285.34	171 141.93	2	1.9 - 1	2.3+6	D	1°,98*
7773.19	$3d5f$ $^3\mathrm{F}^{\circ}_2$	$3d(^2D_{3/2})6g\ [\frac{7}{2}]_3$	181 339.27	194 200.46	2				1
7742.64	$3d5d$ $^3\mathrm{G_4}$	$3d5f^{-1}G_{4}^{0}$	168 307.06	181 219.06	1	3.8 - 1	4.7+6	D	1°,98*
7720.39	$3d5f$ $^{1}\mathrm{G_{4}^{o}}$	$3d(^2D_{3/2})6g\ [\frac{9}{2}]_5$	181 219.06	194 168.25	3				1
7704.80	$3d5d$ $^3\mathrm{S}_1$	$3d5f$ $^3\mathrm{D}^\mathrm{o}_2$	168 932.83	181 908.15	2	3.9 - 1	8.7+6	D	1°,98*
7687.67 7578.26	$3d5s$ $^1\mathrm{D}_2$	$3d5p \ ^3D_1^{\circ}$	134 557.84 134 557.84	147 562.14 147 749.89	4				1 1
7595.75	$3d5d$ $^3\mathrm{D_3}$	$3d5f$ $^3F_3^{\circ}$	168 206.79	181 368.45	1		0.01.0	Б	1
7511.59 7495.18	2 2	2 3	168 030.15 168 030.15	181 339.27 181 368.45	8	1.7 - 1 3.4	3.9+6 5.7+7	D D	1°,98* 1°,98*
7457.85 7441.72	3	4 2	168 206.79 167 905.19	181 611.79 181 339.27	10 5	3.0	7.4+7	D	1 1°,98*
7566.25 7508.65	$3d5s$ $^3\mathrm{D}_2$	$3d5p\ ^{1}{ m D}_{2}^{ m o}$	133 999.79 133 898.50	147 212.77 147 212.77	9	3.8 - 1 $1.9 - 1$	8.9+6 $4.4+6$	D D	1°,98* 1°,98*
7554.86	$3d5d\ ^3\mathrm{D}_3$	$3d5f$ $^3\mathrm{H_4^\circ}$	168 206.79	181 439.64	1				1
7552.05	$3d5d~^3\mathrm{G}_5$	$3d5f\ ^{3}G_{4}^{\circ}$	168 520.52	181 758.34		1.4 - 1	1.9+6	D	1°,98*
7515.98	5	5	168 520.52	181 821.83	4	2.1	2.3 + 7	D	1°,98*
7432.20 7397.27	4 4	4 5	168 307.06 168 307.06	181 758.34 181 821.83	3 4	$\frac{1.1}{1.4}$	$1.5+7 \\ 1.6+7$	D D	1°,98* 1°,98*
7347.59	3	4	168 152.20	181 758.34	3	1.1	1.0 / 1	D	1
7544.29	$3d5d$ $^3\mathrm{G}_4$	$3d5f^{3}H_{5}^{o}$	168 307.06	181 558.44	12	8.7	9.3+7	D	1°,98*
7523.85 7506.87	3 5	4 6	168 152.20 168 520.52	181 439.64 181 837.98	10 15	1.2+1	1.1+8	D	1 1°,98*
7540.99	$3d4d~^3\mathrm{P}_2$	$3d5p$ $^3P_1^o$	135 721.51	148 978.72	4	1.1 - 1	4.1+6	D	1°,98*
7473.32	1	1	135 601.47	148 978.72	4				1
7450.45 7439.94	1	0	135 601.47 135 541.46	149 019.75	5 4	1.3 - 1	1.6 + 7	D	1°,98*
7379.96	0 2	1 2	135 721.51	148 978.72 149 267.99	12	5.5 - 1	1.3+7	D	1 1°,98*
7315.14	1	2	135 601.47	149 267.99	7	1.8 - 1	4.4+6	ď	1°,98*
7531.15	$3d5d$ $^3\mathrm{S}_1$	$3d5f ^{3}P_{2}^{o}$	168 932.83	182 207.39	3	1.9	4.5+7	D	1°,98*
7491.92	1	1	168 932.83	182 276.75	3	8.4 - 1	3.4 + 7	D	1°,98*
7460.04	1	0	168 932.83	182 333.95		3.6 - 1	4.4+7	D	1°,98*
7507.68	3d4d ¹ G ₄	$3d5p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	136 339.74	149 655.77		1.6	2.8+7	D	1°,98*
7484.58	3d5d ¹ P ₁	$3d5f$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	168 343.62	181 700.72	5	2.3	5.6+7	D	1°,98*
7475.35 7376.27	$3d5s$ $^1\mathrm{D}_2$	$3d5p$ $^3F_2^{\circ}$	134 557.84 134 557.84	147 931.47 148 111.10					1
7419.24	$3d5s$ $^3\mathrm{D}_3$	$3d5p$ $^3\mathrm{D}^{\mathrm{o}}_2$	134 275.12	147 749.89	8				1
7371.34	2	1	133 999.79	147 562.14		3.9 - 1	1.6+7	D	1°,98*
7316.68 7316.30	1	1	133 898.50	147 562.14		8.7 - 1	3.6 + 7	D	1°,98*
7270.67	3 2	3 2	134 275.12 133 999.79	147 939.47 147 749.89					1 1
7217.50	1	2	133 898.50	147 749.89	10				1
7171.79	2 75 1 3 75	3 0 45 4 3 00	133 999.79	147 939.47					1
7417.60	$3d5d$ $^3\mathrm{D}_2$	3d5f ³ G ₃ °	168 030.15	181 507.92		1.0	1.8+7	Ð	1°,98*
7408.13	3d5d ¹ F ₃	$3d5f$ $^{1}G_{4}^{o}$	167 724.09	181 219.06		6.4	8.7+7	D	1°,98*
7370.14	3d5d ¹ P ₁	$3d5f$ $^3D_2^\circ$		181 908.15	i	4.5 - 1	1.1+7	D	1°,98*
7335.41	$3d5d$ 3S_1	$3d5f^{-1}P_{1}^{o}$	168 932.83	182 561.61		3.3 - 1	1.3+7	D	1°,98*

Ti III - Continued

7225.55	Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
7775.62	7320.63	$3d5s$ $^3\mathrm{D}_3$	$3d5p$ $^3\mathrm{F}_2^\circ$	134 275.12	147 931.47	4bl				1
1724.13	7225.55	3	3			9				1
7084.87		2	2			10				1
1972.64		1	2	133 898.50	147 931.47	15				1
$\begin{array}{c} 306.02 \\ 2721.039 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		2	3		148 111.10	18				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7072.64	3	4	134 275.12	148 410.24	20	3.9	5.8 + 7	D	1°,98*
7211-94 0 1 135 541-46 149 503.32 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$3d4d$ $^3\mathrm{P}_2$	$3d5p^{-1}P_{1}^{o}$							
7292.86										
7288.98 $3d5d^{2}F_{3}$ $3d5f^{2}F_{3}$ $3d5f^{2}F_{3}$ 167724.09 181439.64 1 $4.3-1$ $6.1+6$ D $1^{9}, 9^{9}$ 7222.88 $3d5d^{3}P_{3}$ $3d5f^{2}G_{3}$ 167724.09 181507.92 3 $7.7-1$ $1.4+7$ D $1^{9}, 9^{9}$ 7222.88 $3d5d^{3}P_{3}$ $3d5f^{3}P_{3}$ $168 306.79$ $182 025.80$ 4 1.3 $3.4+7$ D $1^{9}, 9^{9}$ 7223.36 2 2 $168 301.5$ $181 908.15$ 4 1.3 $3.4+7$ D $1^{9}, 9^{9}$ 1^{9} $108 306.79$ $182 025.80$ 1 1.3 1.4 1.3 1.4 1		-								
$ \begin{array}{c} 7292.88 \\ 7292.88 \\ 7292.88 \\ 7293.66 $	1292.86		_	168 152.20	181 860.55	4bl				1
$\begin{array}{c} 7234.39 \\ 7233.66 \\ 2 \\ 2 \\ 365 \\ 3 \\ 305 \\ 3 \\ 3 \\ 305 \\ 3 \\ 3 \\ 305 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $	7288.98	$3d5d$ $^{1}\mathrm{F}_{3}$	$3d5f^{3}H_{4}^{o}$	167 724.09	181 439.64	1	4.3 - 1	6.1+6	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7252.88	$3d5d$ $^{1}\mathrm{F}_{3}$	$3d5f\ ^{3}G_{3}^{o}$	167 724.09	181 507.92	3	7.7 - 1	1.4+7	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7924 20	72 - 35	245 6 3 70 0	100 000 00	100 005 00					_
$ \begin{array}{c} 7228.40 \\ 7228.40 $		$3a5a$ $^{\circ}D_3$	$3a5f$ D_3						_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1203.00	2	2	168 030.15	181 908.15	4	1.3	3.4 + 7	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7228.40	$3d5d$ $^3\mathrm{D_2}$	$3d5f$ $^{1}\mathrm{F_{3}^{o}}$	168 030.15	181 860.55		2.0 - 1	3.6+6	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7205.90	$3d5d$ $^3\mathrm{G}_3$	$3d5f$ $^3\mathrm{D}_3^{\mathrm{o}}$	168 152.20	182 025.86	1				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7141.76	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d5p^{-1}P_{1}^{o}$	135 405.27	149 403.52	4	1.1	4.9+7	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7071.93	$3d5d$ $^{1}\mathrm{F}_{3}$	$3d5f^{-1}F_{3}^{o}$	167 724.09	181 860.55	10	1.1	2.2+7	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7031.40	$3d5d^{-1}P_1$	3d5f ¹ P°	168 343 62	182 561 61	9	1.1		D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_			2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7015.38		-	135 405.27	149 655.77	12	3.0	5.8+7	D	1°,98*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6932.44 6796.12						1.1 - 1	4.8 + 6	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00.12			104 001.04	145 201.55	4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6896.12	$3d4d\ ^{3}{ m F}_{2}$	$3d5p^{3}D_{1}^{0}$	133 065.24	147 562.14	10	5.5 - 1	2.6 + 7	D	1°.98*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6874.35		_					,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6862.26									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6807.96									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6785.90									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6782.37	$3d4d$ 3 F ₄	$3d5p$ 3 F°	133 371.07	148 111.10	1				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							6.0 - 1	1.0+7	D	1° 08*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.0 1	1.0 1 1	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6734.10	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d5p^{-1}P_1^0$	134 557.84	149 403.52	16				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6674 10	245 a 3D -					0.0.1	40.5	Б	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1,98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										1,98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1,98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1,98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							4.1 – 1	1.3+7	D	1,98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6621.58	$3d5s$ $^{1}\mathrm{D}_{2}$	3d5p 1F%	134 557.84	149 655.77	18				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6400 14	35	a 1	.00 -00 ==				_	_	- 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-				1.6 - 1	8.4 + 6	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0111.10	1	1	133 898.30	149 403.32	9				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5817.44	$3d4d$ $^{1}S_{0}$	$4s4p\ ^{1}P_{1}^{o}$	140 019.24	157 204.16	10				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5566.58	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d5p^{-1}D_2^o$	129 253.41	147 212.77	9	1.3 - 1	5.7+6	D	1°,98*
5468.98 1 0 130 739.82 149 019.75 6 1	5533.01	$3d5p$ $^{1}\mathrm{F_{3}^{o}}$	$3d5d$ $^{1}\mathrm{F}_{3}$	149 655.77	167 724.09	12	1.3	4.1+7	D	1°,98*
5468.98 1 0 130 739.82 149 019.75 6 1	5481.31	$3d4d$ $^3\mathrm{S}_1$	3d5p ³ P?	130 739.82	148 978.72	8b1	1.8 - 1	1.3+7	D	1°.98*
			~						_	1
	5395.69	1	2	130 739.82	149 267.99		4.2 - 1	1.9 + 7	D	1°,98*

Ti III - Continued

Wave- length (Å)	Classificatio Lower	n Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
5416.76	$3d5p$ $^3P_2^{\circ}$	$3d5d$ $^{1}\mathrm{F}_{3}$	149 267.99	167 724.09	2	-			1
5404.94	$3d5p^{-1}\mathrm{F}_3^o$	$3d5d$ $^3\mathrm{G}_3$	149 655.77	168 152.20	3				1
5404.94	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d5p$ $^3\mathrm{D}_2^\circ$	129 253.41	147 749.89	3				1
5389.05	$3d5p~^1\mathrm{F_3^o}$	$3d5d$ $^3\mathrm{D_3}$	149 655.77	168 206.79	7				1
5367.17	$3d5p~^1\mathrm{P}^o_1$	$3d5d$ $^3\mathrm{D}_2$	149 403.52	168 030.15	7	1.4 - 1	6.4+6	D	1°,98*
5358.53 5349.91	$3d4d\ ^3\mathrm{G}_3$	$3d5p\ ^3{ m D}_2^{ m o}$	129 093.28 129 252.74	147 749.89 147 939.47	7 3				1 1
5356.51	$3d4d\ ^3\mathrm{S}_1$	$3d5p$ $^{1}P_{1}^{o}$	130 739.82	149 403.52	7				1
5355.75 5323.53	$3d4d\ ^{3}\mathrm{D}_{2}$	$3d5p^{-1}D_{2}^{\circ}$	128 546.38 128 433.40	147 212.77 147 212.77	3 6				1
5352.39	$3d4d~^1\mathrm{P}_1$	$3d5p\ ^{3}F_{2}^{\circ}$	129 253.41	147 931.47	3				1
5328.40	$3d5p~^3\mathrm{P}_2^o$	$3d5d$ $^3\mathrm{D}_2$	149 267.99	168 030.15	8	2.0 - 1	9.2+6	D	1°,98*
5293.60	o	1	149 019.75	167 905.19	7	3.9 - 1	3.1 + 7	D	1°,98*
5282.14 5278.70	1 2	1 3	148 978.72 149 267.99	167 905.19 168 206.79	9 10	3.3 - 1	2.5 + 7	D	1°,98* 1
5247.49	1	2	148 978.72	168 030.15	11	1.0	5.0+7	D	1°,98*
5306.88	$3d4d$ $^3\mathrm{G}_3$	$3d5p$ $^3\mathrm{F_2^o}$	129 093.28	147 931.47	15				1
5301.20	4	3	129 252.74	148 111.10	16		.	-	1
5278.12 5256.77	5	4 3	129 469.37 129 093.28	148 410.24 148 111.10	17 8	3.0	7.9 + 7	D	1°,98* 1
5218.43	3 4	4	129 252.74	148 410.24	8	1.4 - 1	3.8+6	D	1°,98*
5298.43	$3d4p^{-1}P_1^{\circ}$	$4s^{2}$ $^{1}S_{0}$	83 796.86	102 665.15	12				1
5293.95	$3d5p$ $^3\mathrm{P}^{\mathrm{o}}_{2}$	$3d5d$ $^3\mathrm{G}_3$	149 267.99	168 152.20	9				1
5278.33 ^C	$3d5p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$3d5d$ $^{1}\mathrm{P}_{1}$	149 403.52	168 343.62		1.2	9.4 + 7	D	1°,98*
5257.33	$3d4d\ ^3\mathrm{D}_2$	$3d5p$ $^3D_1^o$	128 546.38	147 562.14	8	1.0 - 1	8.2+6	D	1°,98*
5245.06 5226.28	3	2	128 689.67 128 433.40	147 749.89	9 1251	20 1	2 1 1 7	D	1 00*
5205.96	1 2	1 2	128 546.38	147 562.14 147 749.89	12bl 9bl	3.9 - 1	3.1 + 7	D	1°,98* 1
5193.42	3	3	128 689.67	147 939.47	9				1
5175.48	1	2	128 433.40	147 749.89	6				1
5155.04	2	3	128 546.38	147 939.47	8				1
5240.84 5162.55	$3d5p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3d5d$ $^{1}\mathrm{P}_{1}$ 1	149 267.99 148 978.72	168 343.62 168 343.62	2 9	3.6 - 1	3.1+7	D	1 1°,98*
5161.19	$3d(^2D_{5/2})5g[\frac{5}{2}]$	$3d(^2D_{5/2})7h\ [\frac{7}{2}]^{\circ}$	182 587.3	201 958.3	1				1
5147.52^{C}	$3d4d\ ^3\mathrm{D}_3$	$3d5p$ $^3\mathrm{F}_3^{\mathrm{o}}$	128 689.67	148 111.10					1
5127.35	1	2	128 433.40	147 931.47	4bl				1
5109.81 5069.39	2 3	3 4	128 546.38 128 689.67	148 111.10 148 410.24	5 3bl	1.1 - 1	3.3+6	D	1 1°,98*
5147.31	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p^{-1}\mathrm{D_2^o}$	127 790.57	147 212.77	14	1.1	5.6+7	D	1°,98*
5136.66	$3d(^2D_{5/2})5g$ $[\frac{7}{2}]$	$3d(^{2}D_{5/2})7h \left[\frac{9}{2}\right]^{\circ}$	182 473.9	201 937.4	2				1
5130.67	$3d(^2D_{3/2})5g[\frac{7}{2}]$	$3d(^{2}\mathrm{D}_{3/2})7h\ [\frac{9}{2}]^{\circ}$	182 068.3	201 553.5	2				1
5128.06	$3d(^2\mathrm{D}_{5/2})5g\ [\frac{11}{2}]_5$	$3d(^{2}D_{5/2})7h \left[\frac{13}{2}\right]_{6}^{\circ}$	182 436.46	201 932.7					1
5121.31	$3d(^{2}D_{5/2})5g\left[\frac{9}{2}\right]$	$3d(^2D_{5/2})7h \left[\frac{11}{2}\right]^{\circ}$	182 404.4	201 926.0	2				1
5119.08	$3d5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3d5d$ $^{3}S_{1}$	149 403.52	168 932.83	8	4.5 - 1	3.9+7	D	1°,98*
5097.25	$3d5p$ 3 F $_3^{\circ}$	$3d5d$ $^{1}\mathrm{F}_{3}$		167 724.09	3		-,.		1
5000 00	_	_						_	
5083.80 5020.43	$3d5p$ $^3\mathrm{P}_2^\circ$	3d5d ³ S ₁		168 932.83	10	1.1	9.7+7	D	1°,98*
5010.14	0 1	1	149 019.75 148 978.72	168 932.83 168 932.83	3 5bl	2.8 - 1 $4.8 - 1$	2.5+7 $4.3+7$	D D	1°,98* 1°,98*
5068.22	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d5p$ 3 P $_1^{\circ}$		148 978.72		1.2 - 1		D	1°,98*
	502 II 1	Juop 1 1	120 200.41	140 010.12	•	1.2 – 1	1.171	ט	1 ,50

Ti III - Continued

Wave-	Classification		Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
5064.00	$3d5p\ ^{3}\mathrm{F_{4}^{o}}$	$3d5d$ $^3\mathrm{G}_3$	148 410.24	168 152.20	2				1
5024.52	4	4	148 410.24	168 307.06	3	3.5 - 1	1.0 + 7	D	î°,98*
4988.36	3	3	148 111.10	168 152.20	3				1
4971.194	4	5	148 410.24	168 520.52	10	8.7	2.1 + 8	D	1°,98*
4950.104	3	4	148 111.10	168 307.06	10				1
4944.040	2	3	147 931.47	168 152.20	9				1
5049.98	$3d5p^{-3}F_{4}^{o}$	$3d5d$ $^3\mathrm{D}_3$	148 410.24	168 206.79	3				1
5018.92	3	2	148 111.10	168 030.15	4				1
5005.16	2	1	147 931.47	167 905.19	4				1
4974.79	3	3	148 111.10	168 206.79	2				1
4930.735	2	3	147 931.47	168 206.79	8				1
5008.80	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p$ $^3\mathrm{D_2^o}$	127 790.57	147 749.89	3				1
5008.80	$3d5p^{-1}F_{3}^{o}$	$3d5d$ $^3\mathrm{F}_2$	149 655.77	169 615.12	3				1
1076 04	$3d5p\ ^{3}{ m D}_{3}^{o}$	$3d5d$ $^3\mathrm{D}_2$	1 47 000 47	100 000 15					_
4976.04 4960.10	-		147 939.47	168 030.15	3				1
4932.674	2	1	147 749.89	167 905.19	2				1
4929.533	3	3	147 939.47 147 749.89	168 206.79	7 7				1
4914.315	2	2	147 562.14	168 030.15 167 905.19	6	1.1	1.1+8	D	1 1°,98*
4884.321	1	1 2	147 562.14	168 030.15	4	3.6 - 1	$\frac{1.1+8}{2.0+7}$	D	1°,98 1°,98*
				100 000.10	-	5.0 - 1	2.0+1	D	1 ,50
4963.65	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p$ $^3\mathrm{F}_2^{\mathrm{o}}$	127 790.57	147 931.47	1				1
4961.36	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d5p$ 1 P $_{1}^{o}$	129 253.41	149 403.52	7	5.1 - 1	4.5 + 7	D	1°,98*
4946.000	$3d5p^{-3}D_{3}^{o}$	$3d5d$ $^3\mathrm{G}_3$	147 939.47	168 152.20	6				1
4908.395	3	4	147 939.47	168 307.06	1				1
4907.61	$3d4f$ $^{1}\mathrm{P_{1}^{o}}$	$3d(^2D_{3/2})5g\ [\frac{5}{2}]_2$	161 854.24	182 225.09	2	5.1 - 1	2.9+7	D	1°,98*
4897.69	$3d5p$ $^3\mathbf{F_2^o}$	$3d5d$ $^{1}\mathrm{P}_{1}$	147 931.47	168 343.62	2				I
4892.840	$3d4d$ $^3\mathrm{D}_2$	3d5p ³ P ₁ °	128 546.38	148 978.72	6	3.6 - 1	3.3+7	D	1°,98*
4865.938	1	1	128 433.40	148 978.72	3		*.* , ,	_	1
4858.129	3	2	128 689.67	149 267.99	9	7.7 - 1	4.2 + 7	D	1°,98*
4856.22	1	0	128 433.40	149 019.75	2	1.7 - 1	4.7 + 7	D	1°, 98*
4824.531	2	2	128 546.38	149 267.99	4				1
4873.995	$3d5p^{-1}\mathrm{D_2^o}$	$3d5d$ $^{1}\mathrm{F}_{3}$	147 212.77	167 724.09	10	3.7	1.5+8	D	1°,98*
1051 10	2.45 3700	0.45.1 170	147 740 00	100 010 00					
4854.49 4810.61	$3d5p$ $^3D_2^o$	$3d5d$ $^{1}P_{1}$	147 749.89	168 343.62	1				1
4010.01	1	1	147 562.14	168 343.62	1				1
4849.658	$3d5p^{-1}F_3^o$	$3d6s$ $^{1}\mathrm{D_{2}}$	149 655.77	170 270.02	7				1
4838.25	$3d5p\ ^{3}P_{2}^{o}$	$3d6s$ $^3\mathrm{D}_2$	149 267.99	169 930.80	1				1
4793.503	0	1	149 019.75	169 875.52	3				i
4784.09	1	1	148 978.72	169 875.52	2				î
4771.46	1	2	148 978.72	169 930.80	6				1
4763.58	2	3	149 267.99	170 254.75	6				1
4001.00	0.15 1.00	0 15 1 350			_			_	
4831.33 4802.32	$3d5p^{-1}D_{2}^{o}$	$3d5d \ ^{3}D_{1}$	$147 \ 212.77$ $147 \ 212.77$	167 905.19 168 030.15	3 1	2.1 - 1	2.0+7	D	1°,98* 1
4002.32	2	2	147 212.77	108 030.13	1				1
4821.80	$3d4f^{-1}P_{1}^{o}$	$3d(^{2}D_{5/2})5g\ [\frac{5}{2}]_{2}$	161 854.24	182 587.62	3	8.4 - 1	4.9 + 7	D	1°,98*
4800.273	$3d4f^{-1}P_{1}^{o}$	$3d(^{2}D_{5/2})5g\left[\frac{3}{2}\right]_{2}$	161 854.24	182 680.53	4	1.4	8.4+7	D	1°,98*
	-	,		000.00	-			2	- ,00
4793.17 4767.36	$3d4d$ $^3\mathrm{D}_2$	$3d5p^{-1}P_{1}^{o}$	128 546.38 128 433.40	149 403.52 149 403.52					1 1
			120 100.10	143 400.02					•
4791.035	$3d5p^{-1}P_{1}^{o}$	$3d6s$ $^{1}\mathrm{D}_{2}$	149 403.52	170 270.02	8				1
4774.35	$3d5p^{-1}\mathrm{D_2^o}$	$3d5d$ $^3\mathrm{G}_3$	147 212.77	168 152.20	1				1
4768.29	$3d4d$ $^3\mathrm{D_3}$	$3d5p$ $^1\mathrm{F}^{\mathrm{o}}_3$	128 689.67	149 655.77	2				1
4760.11	$3d5p$ $^3P_2^o$	$3d6s~^1\mathrm{D_2}$	140 267 00	170 070 00	9				
4695.44	3 <i>d</i> 3 <i>p</i> F ₂	3468 102	149 267.99 148 978.72	170 270.02 170 270.02					1 1
A731 11	$3d5p^{-1}D_{2}^{o}$	0.15.1 150	147 010 77	100 040 00	-1.	0.5	0.0:-	-	*0 **
4731.11	$5a_0p^-D_2^-$	$3d5d$ $^{1}\mathrm{P}_{1}$	147 212.77	168 343.62	5bl	3.7 - 1	3.6 + 7	D	1°,98*

Ti III - Continued

Wave- length (Å)	Classification Lower	u Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4720.90	3d5p 1P ₁ °	$3d5d$ $^{3}P_{0}$	149 403.52	170 579.96	3	1.1 - 1	3.1+7	D	1°,98*
4703.18	1	1	149 403.52	170 659.72	3		V.1 1 ·	~	1 ,30
4701.59	1	2	149 403.52	170 666.94	3				1
4718.98	$3d5p^{-1}\mathbf{F_{3}^{o}}$	$3d5d$ $^{1}\mathrm{D}_{2}$	149 655.77	170 840.80					1
	3-20	3						_	
4680.580	$3d5p\ ^3{ m F}_4^o$	$3d5d$ $^3\mathrm{F}_3$	148 410.24	169 769.13	4	1.9 - 1	8.3+6	D	1°,98*
4649.452 4649.00	4	4	148 410.24 148 111.10	169 912.11	10 3	2.5	8.6+7	D	1°,98*
4615.931	3 3	2 3	148 111.10	169 615.12 169 769.13	9				1 1
4610.477	2	2	147 931.47	169 615.12	8				1
4673.396	$3d5p\ ^{3}P_{2}^{\circ}$	$3d5d$ 3P_1	149 267.99	170 659.72	8	9.0 - 1	9.1+7	D	1°,98*
4671.816	2	2	149 267.99	170 666.94	8				1
4628.067	1	0	148 978.72	170 579.96	6	4.8 - 1	1.5+8	D	1°,98*
4619.782 4611.041	0	1	149 019.75 148 978.72	170 659.72	6	5.4 - 1	5.6+7	D	1°,98*
4609.506	1 1	1 2	148 978.72	170 659.72 170 666.94	3 5	3.6 - 1	3.7+7	D	1°,98* 1
4663.462	$3d5p^{-1}\mathrm{P_{1}^{o}}$	$3d5d$ $^{1}\mathrm{D_{2}}$	149 403.52	170 840.80	5				1
4652.861	$3d5p$ $^{1}\mathrm{F}_{3}^{o}$	$3d5d^{-1}G_{4}$	149 655.77	171 141.93	12	7.7	2.6+8	D	1°,98*
	ū	-					2.0 ; 0	U	
4634.166	$3d5p$ $^3\mathrm{P}_2^o$	$3d5d$ $^{1}\mathrm{D}_{2}$	149 267.99	170 840.80	8				1
4572.85	1	2	148 978.72	170 840.80	1				1
4601.51	$3d4p$ $^3\mathrm{P}_1^o$	$4s^{2}$ $^{1}S_{0}$	80 939.19	102 665.15					1
4581.730	$3d5p\ ^{3}\mathrm{F}_{3}^{o}$	$3d6s$ $^3\mathrm{D}_2$	148 111.10	169 930.80	8				1
4576.532	4	3103 12	148 410.24	170 254.75	9				1
4555.777	2	1	147 931.47	169 875.52	6				i
4544.314	2	2	147 931.47	169 930.80	2				1
4514.697	3	3	148 111.10	170 254.75	4				1
4579.642	$3d5p\ ^{3}D_{3}^{o}$	$3d5d$ 3 F ₃	147 939.47	169 769.13	6				1
4572.204	2	2	147 749.89	169 615.12	15bl				1
4549.842	3	4	147 939.47	169 912.11	15				1
4540.216	2	3	147 749.89	169 769.13	10			_	1
4533.26 ^C	1	2	147 562.14	169 615.12		2.3	1.5+8	D	1°,98*
4578.521	$3d4d$ $^{1}\mathrm{S}_{0}$	$3d4f$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	140 019.24	161 854.24	7	7.4 - 1	7.9+7	D	1°,98*
4572.204	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	127 790.57	149 655.77	15bl				1
4555.456	$3d4d\ ^{1}\mathrm{G}_{4}$	$3d4f$ $^{1}\mathrm{G}_{4}^{\circ}$	136 339.74	158 285.34	10bl	6.3 - 1	2.3 + 7	D	1°,98*
4545.976	$3d5p^{-3}D_{3}^{\circ}$	$3d6s$ $^3\mathrm{D}_2$	147 939.47	169 930.80	4				1
4518.363	2	1	147 749.89	169 875.52	3				1
4507.112	2	2	147 749.89	169 930.80	5				1
4480.359	1	1	147 562.14	169 875.52	3				1
4479.969 4442.25	3	3	147 939.47	170 254.75	6				1
7774.60	2	3	147 749.89	170 254.75	3				1
4521.146 4520.375	3d4f ¹ H ₅	$3d(^2D_{3/2})5g\ [\frac{11}{2}]_5$	160 054.90	182 166.91	2	1.4 - 1	4.4+6	D	1°,98*
3020.010	5	6	160 054.90	182 170.72	6	1.9	4.8+7	D	1°,98*
4519.42	$3d4f {}^{3}P_{1}^{o}$	$3d(^2D_{3/2})5g\ [\frac{5}{2}]_2$	160 104.61	182 225.09	2	2.5 - 1	1.6+7	D	1°,98*
4496.510	2	3	159 991.54	182 224.72	4	8.0 - 1	3.7+7	D	1°,98*
4511.579	$3d5p$ $^3\mathrm{F}^o_3$	$3d6s$ $^{1}\mathrm{D}_{2}$	148 111.10	170 270.02	4				1
4466 602		2 1/2 2 111	100						
4466.693 4466.078	$3d4f^{-1}H_{5}^{o}$	$3d(^{2}D_{5/2})5g\left[\frac{11}{2}\right]_{5}$	160 054.90 160 054.90	182 436.46 182 439.62	1 3	4.1 - 1 1.4	1.2+7 $3.8+7$	D D	1°,98*
	0.JE_ 1m0	0 1- 1 3-							1°,98*
4462.558	$3d5p^{-1}\mathrm{D_2^o}$	$3d5d$ $^3\mathrm{F}_2$	147 212.77	169 615.12	4	6.0 - 1	4.1 + 7	D	1°,98*
4446.559 4424.399	$3d4f {}^{3}P_{1}^{o}$	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{5}{2}]_{2}$	160 104.61	182 587.62	5	9.0 - 1	6.0+7	D	1°,98*
	2	3	159 991.54	182 587.12	9	3.1 - 1	1.5+7	D	1°,98*
4440.657^{T}	$3d4f$ $^{3}\mathrm{P}_{0}^{\circ}$	$3d(^{2}D_{5/2})5g\left[\frac{3}{2}\right]_{1}$	160 167.06	182 680.27	4	1.0	1.2+8	D	1°,98*
4428.298	1	1	160 104.61	182 680.27	8				1
4428.298	1	2	160 104.61	182 680.53	8				1
4406.197	2	2	159 991.54	182 680.53	4	7.5 - 1	5.1 + 7	D	1°,98*
4439.23	$3d5p^{-3}D_{2}^{o}$	$3d6s$ $^{1}\mathrm{D}_{2}$	147 749.89	170 270.02	2				1

Ti III - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	9f	A (s ⁻¹)	Acc.	References
4433.912	$3d4f$ $^{1}\mathrm{H_{5}^{o}}$	$3d(^2D_{5/2})5g\ [\frac{13}{2}]_6$	160 054.90	182 601.96	11	6.9	1.8+8	D	1°,98*
4430.635	$3d4d$ $^{1}\mathrm{G}_{4}$	$3d4f$ $^3\mathrm{G}_5^{\mathrm{o}}$	136 339.74	158 903.55	2				1
4414.489	$3d5s$ $^{1}\mathrm{D}_{2}$	4s4p ¹ P ₁	134 557.84	157 204.16	6				1
4407.31	$3d4d$ $^{1}\mathrm{G}_{4}$	$3d4f$ $^3\mathrm{H_4^o}$	136 339.74	159 022.93	2				1
4400.570 4338.712	$3d5p^{-1}D_{2}^{o}$	$3d6s\ ^{3}{ m D_{2}}$	147 212.77 147 212.77	169 930.80 170 254.75	4 3				1 1
4398.729	$3d5p\ ^{3}\mathrm{D_{3}^{o}}$	$3d5d$ 3P_2	147 939.47	170 666.94	4				1
4363.740 4362.34	2	1	147 749.89	170 659.72	6				1
4343.246	2 1	2	147749.89 147562.14	170 666.94 170 579.96	1 3	2.8 - 1	1.0+8	D	1 1°,98*
4328.25	1	1	147 562.14	170 659.72	2	1.1 - 1	1.3+7	Ď	1°,98*
4326.824	ī	2	147 562.14	170 666.94	5				1
4380.734 4378.938	$3d4f\ ^3{ m D}_2^{ m o}$	$3d(^{2}D_{3/2})5g\ [\frac{5}{2}]_{3}$	159 403.91 159 394.89	182 224.72 182 225.09	7 7	2.3	1.6+8	D	1 1°,98*
4378.08	$3d4f\ ^{1}\mathrm{F_{3}^{o}}$	$3d(^{2}D_{3/2})5g[\frac{9}{2}]_{4}$	159 180.24	182 014.92	1		2.2 (2	_	1
4377.77	$3d4d$ $^{3}P_{2}$	$3d4f \ ^3F_3^{\circ}$	135 721.51	158 557.76	2				
4358.89	1	2	135 601.47	158 536.63	1				1
4376.93	$3d4d$ $^{1}\mathrm{G}_{4}$	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	136 339.74	159 180.24	2				1
4368.56	$3d4f ^{3}H_{5}^{o}$	$3d(^2D_{3/2})5g\ [\frac{9}{2}]_5$	159 128.94	182 013.32	2	3.2 - 1	1.0+7	D	1°,98*
4348.40	4	5	159 022.93	182 013.32	3				1
4367.68	$3d4f$ $^{1}F_{3}^{o}$	$3d(^{2}D_{3/2})5g\left[\frac{7}{2}\right]_{4}$	159 180.24	182 068.87	9bl				1
4365.33	$3d4f ^{3}H_{6}^{o}$	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{11}{2}]_{6}$	159 269.53	182 170.72	4				1
4338.712 4319.561	5 4	6 5	159 128.94 159 022.93	182 170.72 182 166.91	3 5	3.5	1.1+8	D	1 1°,98*
4365.33 4329.496	$3d5p\ ^3{ m D}_3^{ m o}$	$3d5d$ $^{1}\mathrm{D}_{2}$	147 939.47 147 749.89	170 840.80 170 840.80	4 4				1 1
4363.740	$3d5p$ $^3F_2^{\circ}$	$3d5d$ $^{1}\mathrm{D}_{2}$	147 931.47	170 840.80	6				1
4361.15	$3d4f$ $^3\mathrm{D}_3^{\circ}$	$3d(^2D_{5/2})5g~[\frac{9}{2}]_4$	159 481.95	182 405.25	2				1
4357.27	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	$3d(^2D_{3/2})5g\ [\frac{7}{2}]_3$	159 123.78	182 067.49	2				1
4352.282	$3d5p^{-1}$ P $_1^{\circ}$	$3d5d$ $^{1}\mathrm{S}_{0}$	149 403.52	172 373.52	8	7.8 - 1	2.7+8	D	1°,98*
4348.04	$3d4f$ $^3\mathrm{D_3^o}$	$3d(^2D_{5/2})5g$ $[\frac{7}{2}]_4$	159 481.95	182 474.38	10				1
4333.542	2	3	159 403.91	182 473.21	7				1
4338.22	$3d4f\ ^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{5}{2}]_{3}$	159 180.24	182 224.72	1				1
4335.81	$3d5p^{-1}\mathrm{D_2^o}$	$3d6s$ $^{1}\mathrm{D}_{2}$	147 212.77	170 270.02	3				1
4327.62	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	$3d(^2D_{3/2})5g \left\{ \frac{5}{2} \right]$	159 123.78	182 224.9	7				1
4326.824	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3d(^{2}D_{5/2})5g\ [\frac{5}{2}]_{3}$	159 481.95	182 587.12	5				1
4312.163 4310.481	2	2	159 403.91	182 587.62	4			_	1
4310.461	1	2	159 394.89	182 587.62	4	4.8 - 1	3.5 + 7	D	1°,98*
4325.93	$3d4f\ ^{3}{ m G}_{5}^{ m o}$	$3d(^{2}D_{3/2})5g \left[\frac{9}{2}\right]_{5}$	158 903.55	182 013.32	2	2.1 - 1	6.6 + 6	D	1°,98*
4318.44	4	4	158 865.03	182 014.92					1
4295.42	3	4	158 740.92	182 014.92	8				1
4321.91 4317.98	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f \ ^{3}F_{2}^{o}$	135 405.27 135 405.27	158 536.63 158 557.76	1 1				1 1
		3			•				•
4309.40 4295.03	$3d4f$ $^3D_3^{\circ}$	$3d(^{2}D_{5/2})5g\ [\frac{3}{2}]_{2}$	159 481.95	182 680.53	1				1
4293.34	2 1	1	159 403.91 159 394.89	182 680.27 182 680.27	1 3	2.6 - 1	3.1+7	D	1 1°,98*
4308.39	$3d4f$ $^3\mathrm{G}_4^{\mathrm{o}}$	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{7}{2}]_{4}$	158 865.03	182 068.87	2			~	1
4304.505	3d4f ¹ F ₃	$3d(^{2}D_{5/2})5g[_{2}^{9}]_{4}$							
1004.000	ou4j r ₃	ου(D _{5/2})οg [Σ]4	159 180.24	182 405.25	9				1

Ti III - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4296.702	$3d4f$ $^3\mathrm{G}^{\circ}_5$	$3d(^{2}D_{3/2})5g\ [\frac{11}{2}]_{6}$	158 903.55	182 170.72	11	5.9	1.6+8	D	1°,98*
4295.03	$3d4f$ $^{3}\mathrm{H_{5}^{o}}$	$3d(^{2}D_{5/2})5g \left[\frac{9}{2}\right]_{4}$	159 128.94	182 405.25	1				1
4275.823	4	5	159 022.93	182 403.64	2				1
4275.528	4	4	159 022.93	182 405.25	4	5.6 - 1	2.3 + 7	D	1°,98*
4291.925	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d(^2D_{5/2})5g\ [\frac{7}{2}]_3$	159 180.24	182 473.21	5				1
4289.25	$3d4f ^{3}H_{5}^{o}$	$3d(^{2}D_{5/2})5g\left[\frac{11}{2}\right]_{5}$	159 128.94	182 436.46	3	6.5 - 1	2.1 + 7	D	1°,98*
4288.66	5	6	159 128.94	182 439.62	8	4.1	1.1+8	D	1°,98*
4269.84	4	5	159 022.93	182 436.46	11	5.0	1.7+8	D	1°,98*
4286.516 4261.904	$3d4f \ ^{3}F_{4}^{o}$	$3d(^{2}D_{3/2})5g \left[\frac{9}{2}\right]_{5}$	158 690.85 158 557.76	182 013.32 182 014.92	5 6				1 1
4285.61	$3d4f$ $^3\mathrm{H}^{\mathrm{o}}_{6}$	$3d(^{2}D_{5/2})5g\left[\frac{13}{2}\right]_{7}$	150 060 52	100 506 07	0	1011	0.010	Б	19 60*
4284.67	344 H ₆	$5u(D_{5/2})5y[\frac{1}{2}]7$	159 269.53 159 269.53	182 596.87 182 601.96	9 1	1.2+1 $1.3-1$	$3.0+8 \\ 3.8+6$	D D	1°,98* 1°,98*
4259.009	5	6	159 128.94	182 601.96	6	3.3	9.4 + 7	$\tilde{\mathbf{D}}$	1°,98*
4284.090	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^3G_3^{\circ}$	135 405.27	158 740.92	4				1
4281.563	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	$3d(^{2}D_{5/2})5g\left[\frac{7}{2}\right]_{3}$	159 123.78	182 473.21	7				1
4976 9F	$3d4f$ $^{3}F_{4}^{\circ}$		150 000 05	100 000 0	_				
4276.35 4252.121	3 <i>a</i> 4 <i>f</i> - F ₄	$3d(^{2}D_{3/2})5g\left[\frac{7}{2}\right]_{4}$	158 690.85 158 557.76	182 068.87 182 068.87	1 7				1 1
4248.540	2	3	158 536.63	182 067.49	8	4.4	2.3+8	D	1°,98*
1971 00	0.14.135	a 1 4 1 pa							
4271.86 4250.086	$3d4d$ $^3\mathrm{P}_2$	$3d4f \ ^{1}\mathrm{D_{2}^{o}}$	135 721.51 135 601.47	159 123.78 159 123.78	3 3	1.3	9.5+7	D	1 1°,98*
4270.95	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d(^2D_{5/2})5g\ [\frac{5}{2}]_2$	159 180.24	182 587.62	1				1
4262.93	$3d4f$ $^3\mathrm{H_4^o}$	$3d(^2D_{5/2})5g\ [\frac{7}{2}]_4$	159 022.93	182 474.38					1
4262.441	$3d5p^{-1}\mathrm{D_2^o}$	$3d5d$ $^3\mathrm{P}_2$	147 212.77	170 666.94	6				1
4260.763	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	$3d(^2D_{5/2})5g\ [\frac{5}{2}]_3$	159 123.78	182 587.12	4				1
4258.472	$3d4f$ $^3\mathrm{F_4^o}$	$3d(^{2}D_{3/2})5g\ [\frac{11}{2}]_{5}$	158 690.85	182 166.91	7				1
4257.045	$3d4f$ $^3\mathrm{G}^{\mathrm{o}}_3$	$3d(^2D_{3/2})5g\ [\frac{5}{2}]_3$	158 740.92	182 224.72	3				1
4254.114	$3d4f\ ^{3}G_{5}^{o}$	$3d(^{2}D_{5/2})5g\left[\frac{9}{2}\right]_{5}$	158 903.55	182 403.64	5	1.3	4.3+7	D	1°,98*
4247.147	4	5	158 865.03	182 403.64	7		, ,	_	1
4246.24 4224.575	4	4	158 865.03	182 405.25					1
4224.510	3	4	158 740.92	182 405.25	4				1
4247.615 4241.29	$3d4f \ ^{3}G_{5}^{\circ}$	$3d(^{2}D_{5/2})5g\left[\frac{11}{2}\right]_{6}$	158 903.55 158 865.03	182 439.62 182 436.46	4 1	4.0	1.1+8	D	1°,98*
	-	_			•				1
4243.89 4243.89	$3d4f$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	$3d(^{2}D_{5/2})5g \left[\frac{3}{2}\right]_{1}$	159 123.78 159 123.78	182 680.27 182 680.53	3				1 1
4241.29	$3d4f$ $^3\mathrm{G}_5^\mathrm{o}$	0.4/27) \# [7]	150 000 55	400 454 00					
4234.415	3a4j G ₅	$3d(^{2}D_{5/2})5g\left[\frac{7}{2}\right]_{4}$	158 903.55 158 865.03	182 474.38 182 474.38	1 5				1 1
4212.47	3	3	158 740.92	182 473.21	2				1
4231.070	$3d5p^{-1}\mathrm{D_2^o}$	$3d5d$ $^{1}\mathrm{D}_{2}$	147 212.77	170 840.80	7				1
4224.127	$3d4f$ $^3\mathrm{F}^{\diamond}_3$	94(2D) \= 151	1 5 0 5 5 5 5 5 5	100 001 ==	_				
4220.282	344 J F 3 2	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{5}{2}]_{3}$	158 557.76 158 536.63	182 224.72 182 225.09	3 4	5.5 - 1	4.2+7	D	1 1°,98*
4222.98	$3d4d$ $^3\mathrm{P}_2$	$3d4f$ $^3D_1^{\circ}$	135 721.51	159 394.89	3				1
4221.357	2	2	$135\ 721.51$	159 403.91	4				1 1
4207.491 4201.662	2	3	135 721.51	159 481.95	9	20 -	40:-	Б.	1
4200.061	1 1	1 2	135 601.47 135 601.47	159 394.89 159 403.91	5 9	3.3 - 1	4.2+7	D	1°,98* 1
4191.091	0	1	135 541.46	159 394.89	7	6.3 - 1	8.0+7	D	î°,98*
4218.518	$3d4f$ $^3G_5^{\circ}$	$3d(^{2}D_{5/2})5g\ [\frac{13}{2}]_{6}$	158 903.55	182 601.96	4	1.3 - 1	3.7+6	D	1°,98*
4215.950	$3d4f$ $^3F_4^{\circ}$	$3d(^{2}D_{5/2})5g\left[\frac{9}{2}\right]_{5}$	158 690.85	189 409 64	•7				1
4192.141	3	30(シ5/2)09 [2]5 4	158 557.76	182 403.64 182 405.25	7 3				1 1
4215.525	$3d4d\ ^{1}\mathrm{G}_{4}$	$3d4f^{-1}H_{5}^{o}$	136 339.74	160 054.90	11	6.3	2.2+8	D	1°,98*

Ti III - Continued

		Upper					···		
4214.923	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^{1}\mathrm{D}_{2}^{\circ}$	135 405.27	159 123.78	7				1
4214.29	$3d4f$ $^3G_4^{\circ}$	$3d(^2\mathrm{D}_{5/2})5g\ [\frac{5}{2}]_3$	158 865.03	182 587.12	1				1
4213.257 4212.95	3d4f ¹ G ₄ 4	$3d(^{2}\mathrm{D}_{3/2})5g\ [\frac{9}{2}]_{5}$	158 285.34 158 285.34	182 013.32 182 014.92	9 1	6.3 $3.1 - 1$	2.2+8 1.3+7	D D	1°,98* 1°,98*
4210.133	$3d4f$ $^3\mathrm{F}^o_4$	$3d(^{2}D_{5/2})5g\ [\frac{11}{2}]_{5}$	158 690.85	182 436.46	4		- •		1
4204.916	$3d4d\ ^1\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	135 405.27	159 180.24	9				1
4203.410	$3d4f$ $^3\mathrm{F}^{\mathrm{o}}_4$	$3d(^2D_{5/2})5g\ [\frac{7}{2}]_4$	158 690.85	182 474.38	6				1
4180.22 4180.02	3	3	158 557.76	182 473.21	2				1
4176.540	3 2	4 3	158 557.76 158 536.63	182 474.38 182 473.21	$\frac{2}{3}$	3.1 - 1	1.7+7	D	1 1°,98*
4203.410	3d4f ¹ G ₄ °	$3d(^{2}D_{3/2})5g\left[\frac{7}{2}\right]_{4}$	158 285.34	182 068.87	6	0.1 1	1.1+1	D	1 ,56
4183.58	$3d4f$ $^{3}F_{4}^{\circ}$	$3d(^{2}D_{5/2})5g[_{2}^{5}]_{3}$	158 690.85						
4160.42	344 F 4	$3a(D_5/2)3g[\overline{2}]3$	158 557.76	182 587.12 182 587.12	1 1				1
4156.67	2	2	158 536.63	182 587.62	2				1
4165.721	$3d4d\ ^1\mathrm{D}_2$	$3d4f$ $^3\mathrm{D}^\circ_2$	135 405.27	159 403.91	3				1
4145.050 4144.772	$3d4f {}^{1}G_{4}^{0}$	$3d(^{2}D_{5/2})5g\left[\frac{9}{2}\right]_{5}$	158 285.34 158 285.34	182 403.64 182 405.25	3 3	2.2 - 1 $2.2 - 1$	7.7+6 $9.4+6$	D D	1°,98* 1°,98*
4139.424	$3d4f$ $^{1}G_{4}^{\circ}$	$3d(^{2}D_{5/2})5g[\frac{11}{2}]_{5}$	158 285.34	182 436.46	6	9.0 - 1	3.2+7	D	1°,98*
4133.96 ^C	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d4f \ ^{3}G_{3}^{o}$	134 557.84	158 740.92	ŭ	0.0 1	0.2 1	D	1
4119.140	$3d4d$ 3P_2	3d4f ³ P ₂ °	135 721.51	159 991.54	10	1.3	9.9+7	D	1°,98*
4100.050	2	1	135 721.51	160 104.61	7	3.7 - 1	4.8+7	Ď	1°.98*
4098.879	1	2	135 601.47	159 991.54	3	1.1 - 1	8.5 + 6	D	1°,98*
4079.958 4069.992	1	1	135 601.47	160 104.61	8	3.3 - 1	4.2+7	D	1°,98*
4069.538	0 1	1 0	135 541.46 135 601.47	160 104.61 160 167.06	5 9	1.8 - 1	2.4 + 7	D	1°,98* 1
4069.538	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	134 557.84	159 123.78	9				1
4066.169 4047.538	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f \ ^{3}P_{2}^{\circ}$	135 405.27 135 405.27	159 991.54 160 104.61	3 2				1
4060.208	$3d5s~^1\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	134 557.84	159 180.24	10				1
4012.631 3986.400	$3d4d$ $^3\mathrm{F_4}$	$3d4f {}^{1}{ m G}_{4}^{ m o}$	133 371.07 133 207.10	158 285.34 158 285.34	3 8				1
4011.047	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^3\mathrm{D}_3^{\mathrm{o}}$	134 557.84	159 481.95	3				1
3995.525	$4s4p^{-1}P_1^o$	$3d(^2D_{3/2})5g\ [\frac{5}{2}]_2$	157 204.16	182 225.09	4				1
3979.12	$3d5s$ $^3\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	133 999.79	159 123.78	2bl				1
3970.204	$3d5s$ $^3\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{F_{3}^{o}}$	133 999.79	159 180.24	2				1
3948.365	3d4d ³ F ₄	$3d4f$ $^{3}\mathrm{F}_{4}^{\circ}$	133 371.07	158 690.85	6				1
3946.843	3	2	133 207.10	158 536.63	3				1
3943.559	3	3	133 207.10	158 557.76	8				1
3924.860	2	2	133 065.24	158 536.63	10	8.5 - 1	7.4 + 7	D	1°,98*
3922.953 3921.611	3 2	4 3	133 207.10 133 065.24	158 690.85 158 557.76	$\frac{12}{10}$				1 1
3940.570	$3d4d~^3{ m F_4}$	$3d4f$ $^3\mathrm{G}_3^{\mathrm{o}}$	133 371.07	158 740.92	2				1
3921.384	4	4	133 371.07	158 865.03	12				1
3915.472	4	5	133 371.07	158 903.55	15	5.2	2.1 + 8	D	1°,98*
3915.253	3	3	133 207.10	158 740.92	8				1
3896.330 3893.629	3 2	4 3	133 207.10 133 065.24	158 865.03 158 740.92	$\frac{10}{12}$				1 1
3938.456	$4s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{5}{2}]_{2}$	157 204.16	182 587.62	3				1
3924.092	4s4p ¹ P ₁ °	$3d(^{2}\mathrm{D}_{5/2})5g\ [\frac{3}{2}]_{2}$	157 204.16	182 680.53	3				1
		_							
3897.250	3d4d ³ F.	344 # 3110	133 371 07	1 5 0 0 0 0 0 0	Ω				1
3897.250 3881.212	$3d4d$ ${}^3\mathbf{F_4}$	3d4f ³ H ₄ ₅	133 371.07 133 371.07	159 022.93 159 128.94	$\frac{8}{12}$	4.1 ~ 1	1.7+7	D	1 1°,98*

Ti III - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3873.491 3849.043	3d4d ³ F ₄	3d4f ¹ F ₃	133 371.07 133 207.10	159 180.24 159 180.24	2 6				1 1
3836.42	3d4d ³ F ₂	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	133 065.24	159 123.78	2				1
3828.735 3816.178	$3d4d$ $^3\mathrm{F}_4$	$3d4f \ ^{3}D_{3}^{o}$	133 371.07 133 207.10	159 481.95 159 403.91	5 6				1 1
3779.793	$3d4d~^{1}\mathrm{D_{2}}$	3d4f ¹ P ₁ °	135 405.27	161 854.24	3				1
3576.70	$3d4d~^1\mathrm{P}_1$	4s4p ¹ P ₁	129 253.41	157 204.16	3				1
3488.773 3487.669	$3d4d$ $^3\mathrm{S}_1$	$3d4f \ ^{3}D_{1}^{\circ}$	130 739.82 130 739.82	159 394.89 159 403.91	1 3				1 1
3421.161	$3d4d\ ^3\mathrm{G}_5$	3d4f ³ F ₄ °	129 469.37	158 690.85	1				1
3411.404	4	3	129 252.74	158 557.76					1
3395.981	4	4	129 252.74	158 690.85	3				1
3395.387	3	2	129 093.28	158 536.63	1				1
3392.945 3377.686	3 3	3 4	129 093.28 129 093.28	158 557.76 158 690.85	5 4				1 1
	3d4d ³ S ₁	$3d4f$ $^{3}P_{2}^{\circ}$				1.6	1010	D	
3417.621 3404.462	3a4a °S ₁	$3d4f$ $^{\circ}P_{2}^{-}$	130 739.82 130 739.82	159 991.54 160 104.61	9 7	$\frac{1.6}{9.3 - 1}$	$^{1.9+8}_{1.8+8}$	D D	1°,98* 1°,98*
3397.235	1	0	130 739.82	160 167.06	5	3.0 - 1	1.8+8	Ď	1°,98*
3400.891	$3d4d\ ^3{ m G}_5$	$3d4f \ ^{3}G_{4}^{o}$	129 469.37	158 865.03°	2				1
3396.432	5	5	129 469.37	158 903.55	5	8.9 - 1	4.7 + 7	D	1°,98*
3390.222	4	3	129 252.74	158 740.92	2				1
3376.007	4	4	129 252.74	158 865.03	1				1
3371.971	3	3	129 093.28	158 740.92	2bl	0.0 1	4015	D	1
3371.623 3357.922	4 3	5 4	129 252.74 129 093.28	158 903.55 158 865.03	9 6	8.9 - 1	4.8+7	D	1°,98* 1
	214.30	- 1. 4 3***			_				
3382.714	$3d4d~^3\mathrm{G}_5$	$3d4f ^{3}H_{4}^{o}$	129 469.37	159 022.93	1 7	67 1	2617	D	1 1°,98*
3370.625 3358.101	5 4	5 4	129 469.37 129 252.74	159 128.94 159 022.93	3	6.7 - 1 $6.0 - 1$	3.6+7 $4.0+7$	D D	1°,98*
3354.71	4 5	6	129 469.37	159 269.53	12bl	9.6	4.4+8	D	1°,98*
3346.182	4	5	129 252.74	159 128.94	9	6.8	3.7 + 8	D	1°,98*
3340.202	3	4	129 093.28	159 022.93	7	5.5	3.7 + 8	D	1°,98*
3377.896	$3d4d\ ^3\mathrm{D}_3$	$3d4f$ $^{1}G_{4}^{\circ}$	128 689.67	158 285.34	2	1.1 – 1	7.5+6	D	1°,98*
3346.82	$3d4d\ ^1\mathrm{P}_1$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	129 253.41	159 123.78	9bl				1
3333.457	$3d4d\ ^3\mathrm{D}_2$	$3d4f \ ^{3}F_{2}^{o}$	128 546.38	158 536.63	3	1.7 - 1	2.0 + 7	Ð	1°,98*
3332.252	3	4	128 689.67	158 690.85	7				1
3331.105 3320.943	2	3	128 546.38 128 433.40	158 557.76 158 536.63	6 7	2.3	2.8+8	D	1 1°,98*
	1	2		138 330.03	•	2.3	2.0+0	Ъ	1,96
3315.742	3d4d ¹ P ₁	$3d4f$ $^3D_2^{\circ}$	129 253.41	159 403.91	1				1
3313.008 3310.904	$3d4d\ ^{3}{ m D}_{3}$	$3d4f \ ^{3}G_{4}^{\circ}$	128 689.67 128 546.38	158 865.03 158 740.92	7 6				1 1
3295.764	$3d4d~^3\mathrm{D}_3$	3d4f ³ H ₄ °	128 689.67	159 022.93					1
	_								
3278.754 3263.426	$3d4d$ $^3\mathrm{D_3}$	$3d4f$ ¹ F $_3$ ³	128 689 67 128 546.38	159 180.24 159 180.24					1 1
3278.31 ^C	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^{1}\mathrm{G_{4}^{o}}$	127 790.57	158 285.34		4.9	3.4+8	D	1°,98*
3254.881	$3d4d$ $^3\mathrm{D}_3$	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_2$	128 689.67	159 403.91	2				1
3246.628	3	3	128 689.67	159 481.95					1
3240.71 3239.77	2	1	128 546.38	159 394.89		1.8 - 1	3.7 + 7	D	1°,98*
3228.887	2 1	2	128 546.38 128 433.40	159 403.91 159 394.89		6.9 - 1	1.5+8	D	1 1°,98*
3227.945	1	2	128 433.40	159 403.91		0.0 - 1	1.076	ט	1 ,98
3245.589	$3d4d$ $^3\mathrm{G}_4$	$3d4f$ $^{1}\mathrm{H_{5}^{o}}$	129 252.74	160 054.90	3	1.1 - 1	6.0+6	D	1°,98*
3235.282	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^3\mathrm{F_4^o}$	127 790.57	158 690.85	4				1
3230.047	$3d4d\ ^1\mathrm{F}_3$	$3d4f$ $^3G_3^{\circ}$	127 790.57	158 740.92	4				1
3200.888	$3d4d$ $^{1}\mathrm{F}_{3}$	3d4f ³ H ₄	127 790.57	159 022.93	3				1

Ti III - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3193.771 3167.828 3150.317	$3d4d$ $^3\mathrm{D}_3$ 2 1	3d4f ³ P ₂ ° 1	128 689.67 128 546.38 128 433.40	159 991.54 160 104.61 160 167.06	5 4 2	2.9 - 1 $1.5 - 1$	3.8+7 3.4+7	D D	1°,98* 1°,98*
3190.580	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	127 790.57	159 123.78	3				1
3184.839	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f\ ^{1}\mathrm{F_{3}^{o}}$	127 790.57	159 180.24	9				1
3154.518	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^3D_3^{\circ}$	127 790.57	159 481.95	3				1
3066.51 ^C	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d4f$ $^{1}P_{1}^{o}$	129 253.41	161 854.24		1.1	2.5+8	D	1°,98*
3040.513	$4s4p$ $^3P_2^{\circ}$	$3d5d$ $^{1}\mathrm{D}_{2}$	137 961.2	170 840.80					1
2984.747	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	41 704.27	75 198.21	22	1.3	1.9+8	D	1°,98*
2930.490	$3d4f$ $^{1}\mathrm{H}_{5}^{\mathrm{o}}$	$3d(^{2}D_{3/2})6g\left[\frac{9}{2}\right]_{5}$	160 054.90	194 168.25	2				1
2888.14	$3d4f$ $^{1}\mathrm{H}^{\circ}_{5}$	$3d(^{2}D_{5/2})6g\left[\frac{13}{2}\right]_{6}$	160 054.90	194 669.10	1				1
2847.26	$3d4f$ $^3\mathrm{D}_3^\circ$	$3d(^{2}D_{5/2})6g[\frac{7}{2}]_{4}$	159 481.95	194 592.98	1				1
2825.90	$3d4f^{-1}F_{3}^{o}$	$3d(^{2}D_{5/2})6g\left[\frac{9}{2}\right]_{4}$	159 180.24	194 556.67					1
2824.45	$3d4f$ $^3\mathrm{H_6^\circ}$	$3d(^{2}D_{5/2})6g[\frac{13}{2}]_{7}$	159 269.53	194 664.08	3				1
2821.69	$3d4f$ $^3\mathrm{G}^{\circ}_3$	$3d(^{2}D_{3/2})6g[\frac{9}{2}]_{4}$	158 740.92	194 169.81					1
2820.78	$3d4f$ $^3H_5^{\circ}$	$3d(^{2}D_{5/2})6g[\frac{11}{2}]_{6}$	159 128.94	194 569.80	1				1
2812.57	4	5	159 022.93	194 567.08					1
2818.992 2798.72	$3d4s\ ^{1}\mathrm{D}_{2}$	$3d4p\ ^{3}D_{2}^{\circ}$	41 704.27 41 704.27	77 167.43 77 424.45	8 5				1 1
2807.20	$3d4f$ $^{3}F_{3}^{o}$	$3d(^{2}D_{3/2})6g\left[\frac{9}{2}\right]_{4}$	158 557.76	194 169.81					1
2803.15	$3d4f$ $^3\mathrm{G}^o_5$	$3d(^{2}D_{5/2})6g \left[\frac{11}{2}\right]_{5}$	158 903.55	194 567.08					1
2802.94	5	6	158 903.55	194 569.80					1
2798.910 2773.72	$3d4s$ $^{1}\mathrm{D}_{2}$ 2	$3d4p\ ^{3}\mathrm{F}_{2}^{\mathrm{o}}$	41 704.27 41 704.27	77 421.86 77 746.44	8 4				1 1
2786.01	$3d4f$ $^{1}\mathrm{G}_{4}^{o}$	$3d(^2D_{3/2})6g\ [\frac{9}{2}]_5$	158 285.34	194 168.25					1
2718.64 2701.956	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	38 425.99	75 198.21	10				1
2692.158	2 1	2 2	38 198.95 38 064.35	75 198.21 75 198.21	$\frac{12}{10}$				1
2580.456	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3\mathrm{D}_2^\circ$	38 425.99	77 167.43	15			_	1
2576.470 2567.556	2 1	1	38 198.95 38 064.35	77 000.23 77 000.23	15 22	2.8 - 1 $6.9 - 1$	9.2+7 $2.3+8$	D D	1°,98* 1°,98*
2565.423 2563.436	2	2	38 198.95	77 167.43	23				1
2556.567	3 1	3 2	38 425.99 38 064.35	77 424.45 77 167.43					1 1
2548.588	2	3	38 198.95	77 424.45	6				1
2548.765	$3d4s$ $^3\mathrm{D}_2$	$3d4p\ ^{3}F_{2}^{o}$	38 198.95	77 421.86	5				1
2542.444 2540.057	3	3	38 425.99	77 746.44					1
2527.840	1 2	2	38 064.35 38 198.95	77 421.86 77 746.44					1 1
2516.053	3	4	38 425.99	78 158.61		2.9	3.4+8	D	1°,98*
2548.01	$3d4s\ ^1\mathrm{D}_2$	$3d4p\ ^{3}P_{1}^{\circ}$	41 704.27	80 939.19	4				1
2413.989	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p~^1\mathrm{F_3^o}$	41 704.27	83 116.93	22	2.4	3.8+8	D	1°,98*
2374.986	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p\ ^{1}P_{1}^{o}$	41 704.27	83 796.86	18	1.0	4.0+8	D	1°,98*
2346.786	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3\mathrm{P}_2^\circ$	38 425.99	81 024.47		1.4	3.3+8	D	1°,98*
2339.000 2334.340	2	1	38 198.95	80 939.19		7.5 - 1	3.0+8	D	1°,98*
2331.66	2 1	2	38 198.95 38 064.35	81 024.47 80 939.19		3.2 - 1 $3.0 - 1$	7.7+7 $1.2+8$	D D	1°,98* 1°,98*
2331.352	1	0	38 064.35	80 944.87		3.6 - 1	4.3+8	D	1°,98*
2327.019	1	2	38 064.35	81 024.47	10				1
2239.62	$3d4p$ $^{1}\mathrm{P}_{1}^{\circ}$	$3d4d\ ^3\mathrm{D_1}$	83 796.86	128 433.40	1				1

Ti III - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2237.773	$3d4p$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d4d~^1\mathrm{F}_3$	83 116.93	127 790.57	12	1.3	2.4+8	D	1°,98*
2236.90 2225.59	$3d4s$ $^3\mathrm{D}_3$	$3d4p \ ^{1}F_{3}^{o}$	38 425.99 38 198.95	83 116.93 83 116.93	3 4				1 1
2199.223	$3d4p$ $^{1}\mathrm{P}_{1}^{o}$	$3d4d$ $^{1}P_{1}$	83 796.86	129 253.41	10	1.2	5.7+8	D	1°,98*
2193.60	$3d4p^{-1}\mathrm{F}_3^o$	$3d4d$ $^3\mathrm{D}_3$	83 116.93	128 689.67	2				1
2192.39	$3d4s$ $^3\mathrm{D}_2$	$3d4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	38 198.95	83 796.86	3				1
2138.90	$4s^2$ 1 S ₀	$3d5p$ $^{1}P_{1}^{o}$	102 665.15	149 403.52	1				1
2129.58	$3d4p$ $^{1}\mathrm{P}_{1}^{o}$	$3d4d$ $^3\mathrm{S}_1$	83 796.86	130 739.82	1				1
2105.092	$3d4p$ $^3P_0^{\circ}$	$3d4d$ $^3\mathrm{D}_1$	80 944.87	128 433.40	5	3.4 - 1	1.7+8	D	1°,98*
2104.857	1	1	80 939.19	128 433.40	4	2.3 - 1	1.1 + 8	D	1°,98*
2103.60	2	2	81 024.47	128 546.38	5	1.9 - 1	5.6 + 7	D	1°,98*
2099.862 2097.299	1 2	2	80 939.19 81 024.47	128 546.38 128 689.67	7 9	8.4 1 1.5	2.5+8 $3.3+8$	D D	1°,98* 1°,98*
2010.800	$3d4p$ $^3\mathrm{P}_2^o$	$3d4d~^3\mathrm{S}_1$	81 024.47	130 739.82	6	1.0	5.4+8	D	1°,98*
2007.604	. 2	1	80 944.87	130 739.82	2	2.2 - 1	1.2+8	$\bar{\mathbf{D}}$	1°,98*
2007.360	1	1	80 939.19	130 739.82	4	6.3 - 1	3.4+8	Ď	1°,98*
1978.981 ^C	$3d4p$ $^3F_4^{\circ}$	$3d4d$ $^3\mathrm{D}_3$	78 158.61	128 689.67					1
1962.969 ^C			77 746.44	128 689.67	2				1
1956.009 ^C	3 2	3 2	77 421.86	128 546.38	1				1 1
1970.017 ^C	$3d4p$ $^{1}P_{1}^{\diamond}$	$3d5s$ $^{1}\mathrm{D}_{2}$	83 796.86	134 557.84	4				1
1965.298^{C}	$3d4p$ $^{1}\mathrm{F}_{3}^{o}$	$3d5s$ $^3\mathrm{D}_2$	83 116.93	133 999.79					1
1957.172 ^C	$3d4p$ $^3\mathrm{F}^o_4$	$3d4d$ $^3\mathrm{G_4}$	78 158.61	129 252.74	1				1
1948.909^{C}	4	5	78 158.61	129 469.37	8				1
1947.540^{C}	3	3	77 746 44	129 093.28					1
1941.510 ^C	3	4	77 746.44	129 252.74	7				ī
1935.306 ^C	2	3	77 421.86	129 093.28	7				1
1956.108 ^C	$3d4p$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3d4d~^3\mathrm{D_2}$	77 424.45	128 546.38	1				1
1950.640 ^C	3	3	77 424.45	128 689.67	5				1
1950.612 ^C	2	1	77 167.43	128 433.40					1
1946.322 ^C	2	2	77 167.43	128 546.38	3				1
1944.271 ^C	1	ı	77 000.23	128 433.40	2				1
1940.909 ^C	2	3	77 167.43	128 689.67	1				1
1940.009 ^C	1	2	77 000.23	128 546.38	1				1
1948.508	$3d^{2-1}S_0$	$3d4p^{-1}P_{1}^{o}$	32 475.5	83 796.86	5	1.2 - 1	7.2+7	D	1°,98*
1943.978 ^C	$3d4p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d5s~^{1}\mathrm{D}_{2}$	83 116.93	134 557.84	2				1
1929.448 ^C	$3d4p$ $^3\mathrm{D}^{\circ}_3$	$3d4d$ 3G_4	77 424.45	129 252.74					
1925.823 ^C	2 Su4p B3	344 34	77 167.43	129 093.28	$\frac{2}{1}$				1
1901.417 ^C	$3d4p\ ^1\mathrm{D}_2^o$	$3d4d$ $^{1}\mathrm{F}_{3}$	75 198.21	127 790.57	7				1
2004 000	3.00	2-							
1884.638 ^C	$3d4p\ ^{3}P_{1}^{\circ}$	$3d5s$ $^3\mathrm{D}_2$	80 939.19	133 999.79					1
1877.911 ^C	2	3	81 024.47	134 275.12	1				1
1878.894 ^C	$3d4p^{-1}F_3^o$	$3d4d~^{1}\mathrm{G_{4}}$	83 116.93	136 339.74	7				1
1849.961 ^C	$3d4p^{-1}\mathrm{D_2^o}$	$3d4d\ ^1\mathrm{P}_1$	75 198.21	129 253.41	1				1
1833.550 ^C	$4s^2 {}^1S_0$	$4s4p^{-1}P_1^o$	102 665.15	157 204.16					1
1832.274 ^C	$3d4p~^3\mathrm{P}_2^o$	$3d4d$ $^{3}\mathrm{P}_{1}$	81 024.47	135 601.47	1				1
$1831.426^{\rm C}$	1	0	80 939.19	135 541.46	•				
1829.605 ^C	0	1	80 944.87	135 601.47					1
1829.415 ^C	1		80 939.19	135 601.47					1
1828.252 ^C	2	1	81 024.47	135 721.51	3				1
1825.406 ^C	1	2	80 939.19						1
	1	2	OU 303.19	135 721.51					1

Ti III - Continued

Wave-	Classification		Energy Lev	$els (cm^{-1})$	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
1811.185 ^C	3d4p 3F ₄ °	3d4d ³ F ₄	78 158.61	133 371.07	5				1
1803.080 ^C			77 746.44	133 207.10	1				1
1797.765 ^C	3	3							
1797.165 1797.159 ^C	3	4	77 746.44	133 371.07	2				1
	2	2	77 421.86	133 065.24	1				1
1792.589 ^C	2	3	77 421.86	133 207.10	1				1
1792.672 ^C	$3d4p$ $^3\mathrm{D}_3^{\circ}$	$3d4d$ $^3\mathrm{F}_3$	77 424.45	133 207.10	1				1
1788.9 7 9 ^C	2	2	77 167.43	133 065.24	2				1
1787.418 ^C	3	4	77 424.45	133 371.07	5				1
1784.450 ^C	2	3	77 167.43	133 207.10	4				1
1783.644 ^C	1	2	77 000.23	133 065.24	4				1
1782.007 ^C	$3d4p$ $^3\mathbf{F_4^o}$	$3d5s$ $^3\mathrm{D}_3$	78 158.61	134 275.12	3				•
1777.672 ^C									1
1777.072	3	2	77 746.44	133 999.79	3				1
1770.644 ^C	2	1	77 421.86	133 898.50	2				1
1778.651 ^C	$3d4p$ $^{1}\mathrm{P_{1}^{o}}$	$3d4d$ $^{1}\mathrm{S}_{0}$	83 796.86	140 019.24	1				1
1759.561 ^C	$3d4p\ ^{3}\mathrm{D_{2}^{o}}$	$3d5s$ $^3\mathrm{D}_2$	77 167.43	133 999.79	1				1
1758.994 ^C	3	3	77 424.45	134 275.12	3				1
1757.523 ^C	1	1	77 000.23	133 898.50	-				1
			11 000.20	100 000.00					
1715.352 ^C	$3d4p\ ^{3}D_{3}^{o}$	$3d4d$ $^{3}\mathrm{P}_{2}$	77 424.45	135 721.51	1				1
1711.331 ^C	2	1	77 167.43	135 601.47					1
1689.501 ^C	$4s^2$ 1 S $_0$	$3d4f$ $^{1}P_{1}^{o}$	102 665.15	161 854.24					1
1684.647 ^C	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	$3d5s$ $^{1}\mathrm{D}_{2}$	75 198.21	134 557.84					1
1660.935 ^C	$3d4p^{-1}\mathrm{D_2^o}$	$3d4d$ $^{1}\mathrm{D}_{2}$	75 198.21	135 405.27	4				1
1652.256 ^C	$3d4p$ $^{1}\mathrm{D}_{2}^{o}$	$3d4d~^3\mathrm{P}_2$	75 198.21	135 721.51					1
1506.084	$3d^2$ 3 P ₁	$3d4p\ ^{3}{ m D}_{1}^{ m o}$	10 603.6	77 000.23	3				1
1504.974			10 721.2	77 167.43	2				1
1504.621	2	2	10 538.4	77 000.23	3				1
1502.311	0	1	10 603.6	77 167.43	4				
1499.173	1 2	2 3	10 721.2	77 424.45	7	1.2 - 1	4.9 + 7	D	1 1°,98*
1498.697	$3d^{2-1}\mathrm{D}_2$	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	8 473.5	75 198.21	10	4.7 - 1	2.8+8	D	1°,98*
1400 505	$3d^2$ 3 P ₁	0.14 3770	10 000 0	 101 00					
1496.597		$3d4p$ $^3F_2^o$	10 603.6	77 421.86	2				1
1491.978	2	3	10 721.2	77 746.44	3				1
1455.734	$3d^{2-1}\mathrm{D}_2$	$3d4p$ $^3D_2^{o}$	8 473.5	77 167.43	1				1
1455.194	$3d^{2-1}G_4$	$3d4p^{-1}F_{3}^{o}$	14 397.6	83 116.93	23	1.4	6.4+8	D	1°,98*
1450.358	$3d^{2-1}\mathrm{D}_{2}$	3d4p 3F2	8 473.5	77 421.86	3				1
1424.140	$3d^{2} {}^{3}P_{2}$	$3d4p\ ^{3}P_{1}^{o}$	10721.2	80 939.19	10	1.5 - 1	1.6 + 8	D	1°,98*
1422.405	2	2	10 721.2	81 024.47	12	4.6 - 1	3.0 + 8	D	1°,98*
1421.767	1	1	10 603.6	80 939.19	10				1
1421.631	1	О	10 603.6	80 944.87	10	1.2 - 1	4.0 + 8	D	1°,98*
1420.440	0	1	10 538.4	80 939.19	10	1.1 - 1	1.2 + 8	D	1°,98*
1420.036	1	2	10 603.6	81 024.47	10	1.4 - 1	8.9 + 7	D	1°,98*
1379.960	$3d^{2-1}\mathrm{D}_2$	$3d4p$ $^3\mathrm{P}^{\mathrm{o}}_1$	8 473.5	80 939.19	2				1
1260 440	$3d^2$ 3 P ₂	0.14 170	10 701 0	00 500 00					
1368.442 1365.021	3a P ₂ 0	$3d4p \ ^{1}P_{1}^{o}$	$\begin{array}{c} 10\ 721.2 \\ 10\ 538.4 \end{array}$	83 796.86 83 796.86					1 1
1339.691	$3d^{2-1}\mathrm{D}_2$	$3d4p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	8 473.5	83 116.93	5				1
1329.837	$3d^2$ 3 F ₂	$3d4p$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	0.0	75 198.21	4				1
1327.592	$3d^2$ $^1\mathrm{D}_2$	$3d4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	8 473.5	83 796.86	12	2.6 - 1	3.2+8	D	1°,98*
1298.970	$3d^2\ ^3{ m F}_3$	$3d4p$ $^3\mathrm{D}^\circ_2$	184.9	77 167.43	20	6.2 - 1	4.9+8	D	1°,98*
1298.659						0.2 - 1	4.9+8	U	
1298.659	2	1	0.0	77 000.23					1
1295.883	4	3	420.4	77 424.45					1
1400.000	2	2	0.0	77 167.43	10				1
1294.698	3	3	184.9	77 424.45	15				1

Ti III - Continued

Wave- ength (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
294.698	$3d^2 {}^3F_3$	3d4p 3F2	184.9	77 421.86	15				1
293.228	4	3	420.4	77 746.44	10	1.8 - 1	1.0 + 8	D	1°,98*
291.622	2	2	0.0	77 421.86	10	3.0 - 1	2.4+8	D	1°,98*
289.299		3	184.9	77 746.44	10	3.8 - 1	2.2+8	Ď	1°,98*
286.365	3		420.4	78 158.61	15	4.4 - 1	2.0+8	Ď	1°,98*
286.228	4	4	0.0	77 746.44	6	4.4 - 1	2.070	D	1 , 33
282.484	2 3	3 4	184.9	78 158.61	6				1
237.028	$3d^2\ ^3{ m F}_3$	$3d4p$ $^3P_2^{\circ}$	184.9	81 024.47					1
235.461 136.041	$3d4p$ $^1\mathrm{F}^o_3$	1 $3d5d$ $^{1}\mathrm{G}_{4}$	0.0 83 116.93	80 939.19 171 141.93	2				1
106.646	$3d4p$ $^{3}F_{4}^{\circ}$	$3d5d$ $^3\mathrm{G}_5$	78 158.61	168 520.52					1
104.225	3	4	77 746.44	168 307.06					i
.082.896	$3d4p$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3d5d$ $^3\mathrm{F}_3$	77 424.45	169 769.13					1
081.204	3	4	77 424.45	169 912.11					1
077.236	$3d4p$ $^3\mathrm{D}^o_3$	$3d6s$ $^3\mathrm{D}_3$	77 424.45	170 254.75					1
008.119	$3d4s$ $^3\mathrm{D}_1$	$4s4p$ $^3P_0^o$	38 064.35	137 258.9	2	7.8 - 1	5.1 + 9	D	1°,98*
007.163	2	1019 10	38 198.95	137 487.8	4	1.8	3.8+9	D	1°,98*
005.797	1	1	38 064.35	137 487.8	i	5.7 - 1	1.3+9	Ď	1°,98*
004.669	3	2	38 425.99	137 961.2	5	3.2	4.3+9	Ď	1°,98*
002.371	2	2	38 198.95	137 961.2	1	6.0 - 1	7.6+8	D	1°,98*
865.79	$3d4s$ $^{1}\mathrm{D}_{2}$	$4s4p$ $^{1}P_{1}^{o}$	41 704.27	157 204.16		2.3	6.6+9	D	1°,98*
739.327 ^C	$3d^2$ ¹ G ₄	$3d5p\ ^{1}\mathrm{F}_{3}^{o}$	14 397.6	149 655.77					1
694.986 ^C	$3d^{2-1}\mathrm{G_4}$	$3d4f$ $^{1}\mathrm{G_{4}^{o}}$	14 397.6	158 285.34					1
686.543 ^C	$3d^2$ 1 G ₄	3d4f ¹ H ₅ °	14 397.6	160 054.90	3				1
677.878 ^C	$3d^2 \ ^3F_4$	$3d5p\ ^{3}D_{3}^{o}$	420.4	147 939.47					1
677.681 ^C	2	1	0.0	147 562.14					1
677.667 ^C	3	2	184.9	147 749.89					1
676.013 ^C	$3d^{2}$ 3 F ₃	$3d5p$ $^3\mathrm{F}^{\mathrm{o}}_3$	184.9	148 111.10					1
675.989 ^C	2	2	0.0	147 931.47					1
675.722 ^C	4	4	420.4	148 410.24					1
675.982 ^C	$3d^2 \ ^3P_1$	$3d4f$ $^3F_2^{\circ}$	10 603.6	158 536.63					1
672.220 ^C	$3d^{2} {}^{3}P_{2}$	$3d4f$ $^3D_3^{\circ}$	10 721 2	150 401 05	9				
672.042 ^C		=	10 721.2	159 481.95	2				1
012.042°	1	2	10 603.6	159 403.91	1				1
671.788 ^C	0	1	10 538.4	159 394.89					1
669.926 ^C	$3d^2$ 3 P $_2$	$3d4f$ $^{3}\mathrm{P}_{2}^{o}$	10 721.2	159 991.54	1				1
663.789 ^C	$3d^{2}$ ¹ D ₂	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	8 473.5	159 123.78					1
663.541 ^C	$3d^{2} {}^{1}\mathrm{D}_{2}$	3d4f ¹ F ₃ °	8 473.5	159 180.24	1				1
632.509 ^C	$3d^2 {}^3F_3$	$3d4f$ $^{1}G_{4}^{o}$	184.9	158 285.34					1
631.830 ^C	$3d^{2} {}^{3}F_{4}$	$3d4f$ $^3F_4^{\circ}$	420.4	158 690.85					1
631.421 ^C	3	3	184.9	158 557.76					1
630.891 ^C	3	4	184.9	158 690.85					1
630.769 ^C	2	2	0.0	158 536.63					1
630.685 ^C	2	3	0.0	158 557.76	1				1
631.135 ^C	$3d^2 \ ^3F_4$	$3d4f$ $^3G_4^{\circ}$	420.4	158 865.03					1
$630.982^{\rm C}$	4	5	420.4	158 903.55					1
630.692^{C}	3	3	184.9	158 740.92					1
630.199 ^C	3	3	184.9	158 865.03					1
629.957 ^C	2	3	0.0	158 740.92					1
630.086 ^C	$3d^{2} {}^{3}F_{4}$								
030.086		$3d4f ^{3}H_{5}^{o}$	420.4	159 128.94					1
629.572^{C}	3	4	184.9	159 022.93	1				1

Ti IV

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
7706.85	3p ⁶ 6h ² H°	3p ⁶ 7i ² I	300 158.76	313 130.66	8				3
7652.12	$3p^66g$ $^2\mathrm{G}$	$3p^67h^{-2}\mathrm{H}^{\mathrm{o}}$	300 046.05	313 110.72	5				3
494.77	$3p^65f^{-2}F_{5/2}^o$	$3p^66d\ ^2D_{3/2}$	275 847.01	289 185.99	8				3
491.37	7/2	5/2	275 861.94	289 206.93	9				3
483.07	5/2	5/2	275 847.01	289 206.93	1				3
988.74	$3p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3p^66d\ ^2{ m D}_{3/2}$	274 881.21	289 185.99	4				3
5978.51	3/2	5/2	274 881.21	289 206.93	15				3
3913.85	1/2	3/2	274 726.29	289 185.99	12				3
5968.54	$3p^53d^2\ ^2{ m F}^{\circ}_{5/2}$	$3p^66d\ ^2{ m D}_{3/2}$	274 839.82	289 185.99	1				3
5292.41	$3p^65d\ ^2{ m D}_{3/2}$	$3p^66p\ ^2\mathrm{P}_{1/2}^{\mathrm{o}}$	258 838.48	274 726.29	15				3
3246.65	5/2	3/2	258 877.08	274 881.21	17				3
3231.62	3/2	3/2	258 838.48	274 881.21	6				3
6262.86	$3p^65d^{-2}D_{5/2}$	$3p^{5}3d^{2} {}^{2}F_{5/2}^{\circ}$	258 877.08	274 839.82	3				3
5247.74	3/2	5/2	258 838.48	274 839.82	11				3
5891.15	$3p^65d^2D_{5/2}$	$3p^65f$ $^2F_{5/2}^{\circ}$	258 877.08	275 847.01	7				3
5885.96	5/2	7/2	258 877.08	275 861.94	15				3
5877.79	3/2	5/2	258 838.48	275 847.01	14				3
5517.72	$3p^66p^{-2}P_{3/2}^{\circ}$	$3p^67s\ ^2S_{1/2}$	274 881.21	292 999.54	10				3
5470.98	3/2 1/2	1/2	274 726.29	292 999.54	8				3
5492.51	$3p^65s\ ^2\mathrm{S}_{1/2}$	$3p^65p^2P_{1/2}^{\circ}$	212 407.34	230 608.89	18	9.0 - 1	9.9+7	D	3°,98*
398.93	3p 33 31/2 1/2	3p 3p 1 1/2 3/2	212 407.34	230 924.38	20	1.8	1.0+8	D	3°,98*
1677.58	3p ⁶ 6h ² H°	$3p^68i$ ² I	300 158.76	321 531.3	3				3
1618.114	$3p^65g^{-2}G$	$3p^66h$ ² H°	278 510.93	300 158.76	15				3
1403.451	$3p^64f^2F_{5/2}^{\circ}$	$3p^65d^2D_{3/2}$	026 125 00	050 000 40	•	0.0 1	75.7	D	20 00*
1403.431 1397.327		•	236 135.29	258 838.48	9	9.0 - 1	7.5+7	D	3°,98*
1395.92	7/2 5/2	5/2 5/2	236 142.30 236 135.29	258 877.08 258 877.08		$1.2 \\ 6.0 - 2$	7.1+7 $3.5+6$	D D	3°,98* 3°,98*
4133.779	$3p^65f^{-2}F^{o}_{7/2}$	$3p^66g^2G_{9/2}$	275 861.94	200 046 0	1.4				
4131.215	5p 5f 1 7/2 5/2	3p 0g G _{9/2}	275 847.01	300 046.2 300 045.9	14 13				3 3
3966.156	$3p^53d^2\ ^2{ m F}^{\circ}_{5/2}$	$3p^66g\ ^2G_{7/2}$	274 839.82	300 045.9	2				3
		•							
3581.392	$3p^65p^{-2}P_{3/2}^{\circ}$	$3p^65d\ ^2{ m D}_{3/2}$	230 924.38	258 838.48		6.0 ~ 1	7.7 + 7	D	3°,98*
3576.438 3541.361	3/2	5/2	230 924.38	258 877.08		5.2	4.6+8	D	3°,98*
0041.UU1	1/2	3/2	230 608.89	258 838.48	15	2.8	3.8+8	D	3°,98*
3272.773	$3p^65f^{-2}F^{o}_{7/2}$	$3p^67d\ ^2{ m D}_{5/2}$	275 861.94	306 408.30	1				3
3272.50	5/2	3/2	275 847.01	306 395.69					3
3170.955	$3p^66p^{-2}P_{3/2}^{\circ}$	$3p^67d\ ^2D_{5/2}$	274 881.21	306 408.30	2				3
3156.718	1/2	3/2	274 726.29	306 395.69					3
2957.306	$3p^64d^{2}D_{3/2}$	$3p^65p^2P_{1/2}^{\circ}$	196 804.27	230 608.89	12	8.8 - 1	3.3+8	D	3°,98*
2937.328	5/2		196 889.96	230 924.38		1.6	3.0+8	D	3°,98*
2929.961	3/2	3/2 3/2	196 804.27	230 924.38		1.7 - 1		D	3°,98*
2889.36	$3p^65g\ ^2{ m G}_{9/2}$	$3p^67h^{\ 2}\mathrm{H}^{\mathrm{o}}_{11/2}$	278 511.23	313 110.72	4				3
2862.596	$3p^65p\ ^2\mathrm{P}^o_{3/2}$	$3p^66s\ ^2\mathrm{S}_{1/2}$	23U 024 20	965 047 40	, -	1.0	/ 1 1 0	n	3°,98*
2836.972			230 924.38	265 847.42		1.0 4.8 - 1	4.1+8	D	
2000.012	1/2	1/2	230 608.89	265 847.42	. 3	4.8 - 1	2.0+8	D	3°,98*
2689.39	$3p^65f^{-2}F_{7/2}^{\circ}$	$3p^67g^2G_{9/2}$	275 861.94	313 034.1	1				3
2688.32	5/2	7/2	275 847.01	313 033.9	-				3
2547.314	$3p^64d\ ^2{ m D}_{5/2}$	$3p^{6}4f^{2}F_{5/2}^{\circ}$	106 990 06	990 195 00		90 1	4015	D	20 00*
2547.314 2546.880			196 889.96	236 135.29		2.9 - 1		D	3°,98*
2541.786	5/2 3/2	7/2 5/2	196 889.96 196 804.27	236 142.30 236 135.29		$\frac{5.8}{4.0}$	7.4+8 $6.9+8$	D	3°,98* 3°,98*
-		,	200 001.01	200 100.20		1.0	3.0 7 0	D	0,00
2359.499	$3p^64f\ ^2{ m F}^{ m o}_{7/2}$	$3p^65g\ ^2G_{9/2}$	236 142.30	278 511.23	3 10				3
2000.400	0p + 1 + 7/2	3p 39 G9/2	200 142.00	210 011.20					U

Ti IV - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Leve	ls (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2103.106	$3p^64s~^2\mathrm{S}_{1/2}$	$3p^64p^2P_{1/2}^{\circ}$	80 388.92	127 921.36	18	6.6 - 1	5.0+8	D	3°,98*
2067.564	1/2	3/2	80 388.92	128 739.59	20	1.3	5.1 + 8	D	3°,98*
1564.850 ^C	$3p^64f~^2F^{\circ}_{7/2}$	$3p^66g^{-2}G_{9/2}$	236 142.30	300 046.2	2				3
1564.685 ^C	5/2	7/2	236 135.29	300 045.9	1				3
	·	•	100 -00 -00		4.0		0.5.0	_	a0 aa*
1469.188	$3p^64p^2P_{3/2}^{\circ}$	$3p^64d\ ^2{ m D}_{3/2}$	128 739.59	196 804.27	12	4.4 - 1	3.5+8	D	3°,98*
1467.338	3/2	5/2	128 739.59	196 889.96	20	4.0	2.1 + 9	D	3°,98*
1451.736	1/2	3/2	127 921.36	196 804.27	18	2.2	1.8+9	D	3°,98*
1283.334 ^C	$3p^64d\ ^2{ m D}_{3/2}$	$3p^66p\ ^2\mathrm{P}_{1/2}^{\circ}$	196 804.27	274 726.29	1				3
$1282.195^{\rm C}$	5/2	3/2	196 889.96	274 881.21	2				3
1266.272 ^C	$3p^64d^{2}D_{5/2}$	$3p^65f^{-2}F_{7/2}^{\circ}$	196 889.96	275 861.94	2				3
1265.138 ^C	3/2	5/2	196 804.27	275 847.01					3
1200.100	•	•	100 00 112	2.0 5101	-				ŭ
1195.208	$3p^64p^2P_{3/2}^{\circ}$	$3p^65s {}^2S_{1/2}$	128 739.59	212 407.34	10	6.0 - 1	1.4 + 9	D	3°,98*
1183.635	1/2	1/2	127 921.36	212 407.34	8	2.8 - 1	6.9 + 8	D	3°,98*
781.730	$3p^63d^{\ 2}\mathrm{D}_{3/2}$	$3p^64p^2 P_{1/2}^{\circ}$	0.0	127 921.36	16				3
779.074	5/2	3/2	382.1	128 739.59	18				3
776.762	3/2	3/2	0.0	128 739.59	10				3
768.6461 ^C	$3p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3p^65d^2D_{3/2}$	128 739.59	258 838.48		8.7 - 3	2.5 + 7	Е	98*
768.4181 ^C	3/2	5/2	128 739.59	258 877.08		7.9 - 2	1.5+8	D-	98*
763.8420 ^C	1/2	3/2	127 921.36	258 838.48		4.8 - 2	•	D-	98*
729.3529 ^C	$3p^64p^{-2}P_{3/2}^{o}$	$3p^66s\ ^2{ m S}_{1/2}$	100 700 50	005 045 40		00 0	5.7+8	D	3°,98*
729.3529 ^C		•	128 739.59	265 847.42					, -
725.0261	1/2	1/2	127 921.36	265 847.42		4.6 - 2	2.8+8	D-	3°,98*
665.6905 ^C	$3p^64s\ ^2\mathrm{S}_{1/2}$	$3p^65p^2P_{1/2}^{o}$	80 388.92	230 608.89	1	1.1 - 2	8.1+7	\mathbf{E}	3°,98*
$664.2954^{\rm C}$	1/2	3/2	80 388.92	230 924.38	2	1.9 - 2	7.0+7	E	3°,98*
433.7599 ^C	$3p^63d^{-2}D_{5/2}$	$3p^65p^2P_{3/2}^{\circ}$	382.1	230 924.38		5.6 - 2	5.0+8	D-	98*
433.6346 ^C	3/2	1/2	0.0	230 608.89		3.1 - 2		$^{-}$	98*
433.0422 ^C	3/2	3/2	0.0	230 924.38		6.2 - 3		Ē	98*
424.1724 ^C	$3p^63d^{-2}\mathrm{D}_{5/2}$	$3p^64f$ $^2F_{5/2}^{\circ}$	382.1	236 135.29		5.7 - 2		D-	98*
424.1598 ^C	5/2	7/2	382.1	236 142.30		1.2	5.3+9	D	98*
423.4860^{C}	3/2	5/2	0.0	236 135.29	,	7.9 - 1	4.9+9	D	98*

Ti v

Wave- ength (Å)	Classifica Lower	ation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
2384.634	$3s^23p^54s$ $^3P_0^0$	$3s^23p^54p$ 3S_1	440 065.2	481 987.7	2				4
2214.740	1	1	436 849.8	481 987.7	5				4
098.042	2	1	434 339.4	481 987.7	4				4
091.104	$3s^23p^54s$ ¹ P ₁ °	$3s3p^63d\ ^3{ m D}_2$	443 752.7	491 558.7	5bl				4
045.858	$3s^23p^54s$ $^3P_0^{\circ}$	$3s3p^63d\ ^3{ m D}_1$	440 065.2	400 000 7					4
920.163	38 3p 48 F ₀	a = a + b = a	436 849.8	488 928.7 488 928.7	4 7				4 4
831.875	2	1	434 339.4	488 928.7	2				4
827.899	1	2	436 849.8	491 558.7	6				4
747.639	2	2	434 339.4	491 558.7	4				4
717.396	2	3	434 339.4	492 567.1	11				4
017.614	$3s^23p^54s$ ¹ P ₁ ^o	$3s^23p^54p$ 3D_1	443 752.7	493 300.5	1				4
988.750	$3s^23p^54s^{-1}P_1^{\circ}$	$3s^23p^54p^{-1}D_2$	443 752.7	494 035.7	7				4
946.434	$3s^23p^54s$ $^3P_1^0$	$3s^23p^54p$ 3D_2	436 849.8	488 225.7	4				4
878.458	0	1	440 065.2	493 300.5	2				4
864.451	2	3	434 339.4	487 974.6	7				4
855.765	2	2	434 339.4	488 225.7	3				4
771.452	1	1	436 849.8	493 300.5	7				4
696.031	2	1	434 339.4	493 300.5	3				4
881.886	$3s^23p^54s$ ¹ P ₁ °	$3s^23p^54p^{-1}P_1$	443 752.7	496 890.7	7				4
841.490	$3s^23p^54s^{-1}P_1^o$	$3s^23p^54p$ ³ P ₂	443 752.7	498 057.2	10				4
837.436	1 1	00 00 10 12	443 752.7	498 176.4	3				4
799.082	1	1	443 752.7	499 336.2	6				4
828.292	$3s^23p^54p^{-1}S_0$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_{1}$	514 608.7	569 304.5	6				4
759.757	$3s^23v^54s$ $^3P_{\circ}^{\circ}$	$3s^23v^54v^{-1}P_1$	440 065.2	496 890.7	8				4
598.697	$3s^23p^54s$ $^3P_0^{\circ}$	$3s^23p^54p^{-1}P_1$	434 339.4	496 890.7	1				4
		_ 9							
748.671	$3s^23p^54s$ $^3P_1^o$	$3s^23p^54p^{-1}D_2$	436 849.8	494 035.7	3				4
675.150	2	2	434 339.4	494 035.7	9				4
687.165	$3s^23p^54s$ $^3P_0^{\circ}$	2,22,54, 3D	440 OSE 0	400 226 9	ō				4
633.780	38 3p 48 P	$3s^23p^54p^{-3}P_1$	440 065.2 436 849.8	499 336.2 498 057.2	8 6				4
630.613	1	0	436 849.8	498 176.4	5				4
600.353	1	1	436 849.8	499 336.2	·				4
569.423	2	2	434 339.4	498 057.2	5				4
538.546	2	1	434 339.4	499 336.2	5				4
600 726	2,22,54, 100	a a failm	449 750 5		-				
600.726	$3s^23p^54s$ ¹ P ₁ ^o	$3s3p^63d^{-1}D_2$	443 752.7	506 224.7	5				4
518.181	$3s3p^63d^{-1}D_2$	$3s^23p^5(^2P^{\circ}_{3/2})4d^2[\frac{7}{2}]^{\circ}_3$	506 224.7	572 093.9					4
465.683	$3s^23p^54p^{-1}S_0$	$3s^23p^5(^2\mathrm{P}^{\circ}_{1/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	514 608.7	582 836.5	6				4
1460.723	$3s3p^{6}3d^{-1}D_{2}$	$3s^23p^5(^2P_{3/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_3^{\circ}$	506 224.7	574 683.8	2				4
441 712	$3s^23p^54p^{-3}P_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{1}{2}]_0^{\circ}$	400 220 0	E 0 000 F	,				4
441.713	$ss sp 4p P_1$	$3s \ 3p \ (P_{3/2})4d \ [2]_0^{\circ}$	499 336.2	568 698.5	4				4
429.222	1	1	499 336.2	569 304.5	2				4
405.911 403.562	0	1	498 176.4 498 057.2	569 304.5	2				4
.400.002	2	1	450 001.2	569 304.5	1				4
441.426	$3s^23p^54s$ $^3P_1^0$	$3s3p^63d^{-1}D_2$	436 849.8	506 224.7					4
1411.309	$3s^23p^54s$ ¹ P ₁ ^o	$3s^23p^54p^{-1}S_0$	443 752.7	514 608.7	8				4
1403.280	$3s^23p^54p$ 3 P ₁	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	499 336.2	570 597.8					4
1378.552	2	2,2	498 057.2	570 597.8	6				4
283.463	1	1	499 336.2	577 249.8					4
1264.659	0	1	498 176.4	577 249.8	5				4
1380.935	$3s^23p^54p^{-1}P_1$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_{1}$	496 890.7	569 304.5					4
1367.797	$3s3p^63d^{-1}D_2$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_3^{\circ}$	506 224.7	579 334.6	2				4
1363.148	$3s3p^63d^{-1}D_2$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{-2}[\frac{3}{2}]_2^{\circ}$	506 224.7	579 584.2					4
1356.724	$3s^23p^54p^{-1}P_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	496 890.7	570 597.8					4

Ti v - Continued

Wave- ength (Å)	Classific Lower		Energy Lev	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
(A)	Dowei	Upper							
328.572	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_1$	494 035.7	569 304.5	4				4
326.279	$3s^23p^54p$ 3D_1	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{1}{2}]_0^{\circ}$	493 300.5	568 698.5					4
315.712	1	1	493 300.5	569 304.5					4
233.387	2	1	488 225.7	569 304.5					4
306.108	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d\ ^2[\frac{3}{2}]^{\mathrm{o}}_2$	494 035.7	570 597.8	8				4
305.018	$3s^23p^54p\ ^3\mathrm{P}_2$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{5}{2}]^{\circ}_3$	498 057.2	574 683.8					4
293.710	$3s^23p^54p^3D_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^{-2}[\frac{3}{2}]_2^{\circ}$	493 300.5	570 597.8	1				4
214.000	2	2	488 225.7	570 597.8					4
210.290	3	2	487 974.6	570 597.8					4
191.195	1	1	493 300.5	577 249.8	5				4
123.288	2	1	488 225.7	577 249.8	1				4
286.036	$3s^23p^54s$ $^3P_1^o$	$3s^23p^54p^{-1}S_0$	436 849.8	514 608.7	2				4
281.541	$3s3p^63d\ ^3{ m D}_3$	$3s^23p^5(^2P^{\alpha}_{3/2})4d^2[\frac{3}{2}]^{\alpha}_2$	492 567.1	570 597.8					4
224.469	i	2	488 928.7	570 597.8					4
166.982	2	1	491 558.7	577 249.8					4
132.237	1	1	488 928.7	577 249.8	5				4
281.091	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P^o_{3/2})4d^{\ 2}[\frac{7}{2}]^o_3$	494 035.7	572 093.9					4
268.490	$3s3p^63d^{-3}D_3$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{7}{2}]_4^{\circ}$	492 567.1	571 401.1	8				4
257.442	3	- 1 (3/2) 1214	492 567.1	572 093.9	3				4
241.671	2	3	491 558.7	572 093.9	10				4
0.50 0.50	0.20.54 10	0 20 5/200 11 21510							
253.079	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P^{\circ}_{3/2})4d^2[\frac{5}{2}]^{\circ}_2$	494 035.7	573 838.3					4
239.958	2	3	494 035.7	574 683.8	11				4
246.131	$3s^23p^54p$ $^3\mathrm{P}_1$	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	499 336.2	579 584.2	7				4
226.588	2	2	498 057.2	579 584.2					4
197.598	1	1	499 336.2	582 836.5	4				4
181.192	0	1	498 176.4	582 836.5	2				4
179.541	2	1	498 057.2	582 836.5					4
241.671	$3s^23p^54p^3D_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{5}{2}]_2^{\circ}$	493 300.5	573 838.3	10				4
168.043	2	2	488 225.7	573 838.3	4				4
164.634	3	2	487 974.6	573 838.3	•				4
153.274	3	3	487 974.6	574 683.8	5				4
239.958	$3s^23p^54p$ 3P_2	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{5}{2}]_2^{\circ}$	498 057.2	570 COO 5	11				
230.361	33 3p 4p 12	$35 \ 3p \ (1_{1/2})4a \ [\overline{2}]_2$	498 057.2	578 698.5 579 334.6	11 10				4 4
	0 5 1	3	400 001.2	013 334.0	10				4
222.359	$3s^23p^54p^{-1}P_1$	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{5}{2}]_2^{\circ}$	496 890.7	578 698.5	9				4
217.779	$3s3p^63d^{3}D_3$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{5}{2}]_3^{\circ}$	492 567.1	574 683.8	3				4
215.373	2	2	491 558.7	573 838.3	4				4
203.011	2	3	491 558.7	574 683.8	4				4
177.719	1	2	488 928.7	573 838.3	4				4
198.659	$3s^23p^54p^{-3}D_3$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{7}{2}]_4^{\circ}$	487 974.6	571 401.1	9				4
192.353	-, ., 23 2	3	488 225.7	572 093.9	8				4
1188.796	3	3	487 974.6	572 093.9	3				4
181.192	$3s^23p^54p^{-1}D_2$	2022-5/200 11121510	404 005 7	E#0 400 =					
1181.192	38 3p 4p ⁻ D ₂	$3s^23p^5(^2P_{1/2}^o)4d^2[\frac{5}{2}]_2^o$	494 035.7	578 698.5	2				4
112.540	2	3	494 035.7	579 334.6					4
168.927	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{2}[\frac{3}{2}]_{2}^{\circ}$	494 035.7	579 584.2	3				4
1163.520	$3s^23p^54p^{-1}$ P ₁	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{3}{2}]_1^{\circ}$	496 890.7	582 836.5	4				4
			000.1	552 650.0	7				.3
1153.274	$3s^23p^54p^{-3}S_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{1}{2}]_0^{\circ}$	481 987.7	568 698.5	5				4
1145.256	1	1	481 987.7	569 304.5	5				4
1159 500	$3s3p^{6}3d^{3}D_{3}$	2,22,5/200 \4.12(510	400 507 1	F70 004 0					
152.509		$3s^23p^5(^2\mathrm{P}^{\circ}_{1/2})4d^{\ 2}[\frac{5}{2}]^{\circ}_3$	492 567.1	579 334.6					4
.147.571 .139.275	2	2	491 558.7	578 698.5	1				4
	2	3	491 558.7	579 334.6	1				4
1113.952	1	2	488 928.7	578 698.5	4				4

Ti v - Continued

ength (Å)	Lower	Upper		els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
136.050	$3s3p^63d$ 3D_2	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	491 558.7	579 584.2	1				4
128.546	$3s^23p^54p$ 3S_1	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_2$	481 987.7	570 597.8	7				4
097.585 094.583	$3s^23p^54p^{-3}D_2$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_3^{\circ}$	488 225.7	579 334.6					4
094.583	$3s^23p^54p\ ^3\mathrm{D_2}$	$3s^2 3p^5 (^2P_{1/2}^{\circ}) 4d^{\ 2} [\frac{3}{2}]_2^{\circ}$	487 974.6 488 225.7	579 334.6 579 584.2	3				4
039.125	$3s^23p^53d^{-1}P_1^{\circ}$	$3s3p^63d^{-3}D_2$	395 320.9	491 558.7	3				4
984.530	$3s^23p^53d$ ¹ P ₁	$3s^23p^54p^{-1}P_1$	395 320.9	496 890.7					4
981.585	$3s3p^63d^{-1}D_2$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_1^{\circ}$	506 224.7	608 100.7					4
973.357	$3s^23p^53d^{-1}P_1^{\circ}$	$3s^23p^54p$ ³ P ₂	395 320.9	498 057.2					4
972.188	1	0 0 1 1 2	395 320.9	498 176.4					4
961.376	1	1	395 320.9	499 336.2					4
931.652	$3s3p^63d^{-1}D_2$	$3s^23p^5(^2\mathbf{P_{1/2}^o})5s^{-2}[\frac{1}{2}]_1^{\mathbf{o}}$	506 224.7	613 558.2					4
928.507	$3s^23p^54p\ ^3\mathrm{P}_1$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_2^{\circ}$	499 336.2	607 033.0					4
908.740	2	1	498 057.2	608 100.7					4
901.692	$3s^23p^53d^{-1}P_1^o$	$3s3p^63d^{-1}D_2$	395 320.9	506 224.7	1				4
899.171	$3s^23p^54p^{-1}P_1$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_1^{\circ}$	496 890.7	608 100.7					4
884.982	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_2^{\circ}$	494 035.7	607 033.0	1				4
876.686	2	1	494 035.7	608 100.7					4
881.379	$3s^23p^54p^{-3}P_1$	$3s^23p^5(^2P_{1/2}^{\circ})5s^2[\frac{1}{2}]_0^{\circ}$	499 336.2	612 793.2					4
875.489	33 3p 4p 11	$33 3p (1_{1/2})33 [\overline{2}]_0$	499 336.2	613 558.2					4
866.676	0	1	498 176.4	613 558.2					4
865.806	2	1	498 057.2	613 558.2	1				4
879.268	$3s^23p^54p^{-3}D_1$	$3s^23p^5(^2P^{\circ}_{3/2})5s^2[\frac{3}{2}]^{\circ}_2$	493 300.5	607 033.0					4
871.085		03 3p (1 _{3/2})03 [2]2	493 300.5	608 100.7	1				4 4
841.691	1 2	2	488 225.7	607 033.0	•				4
839.926	3	2	487 974.6	607 033.0	2				4
834.199	2	1	488 225.7	608 100.7	1				4
873.618	$3s3p^{6}3d^{3}D_{3}$	$3s^23p^5(^2P_{2/2}^{\circ})5s^2[\frac{3}{5}]_0^{\circ}$	492 567.1	607 033.0	1				4
858.073	2	$3s^23p^5(^2P^{\circ}_{3/2})5s^2[\frac{3}{2}]^{\circ}_2$	491 558.7	608 100.7	1				4
862.786	$3s^23p^54p^{-1}P_1$	$3s^23p^5(^2P_{1/2}^{\circ})5s^{-2}[\frac{1}{2}]_0^{\circ}$	496 890.7	612 793.2					4
857.136	1	1	496 890.7	613 558.2					4
838.315	$3s^23p^53d\ ^1\mathrm{P}_1^o$	$3s^23p^54p^{-1}S_0$	395 320.9	514 608.7	3				4
836.656	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2\mathbf{P_{1/2}^o})5s^{\ 2}[\frac{1}{2}]_1^{\mathbf{o}}$	494 035.7	613 558.2					4
807.347	$3s3p^63d^{-3}D_1$	$3s^23p^5(^2P_{1/2}^{o})5s^2[\frac{1}{2}]_0^{o}$	488 928.7	612 793.2					4
799.714	$3s^23p^54p$ $^3\mathrm{S}_1$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_2^{\circ}$	481 987.7	607 033.0	1				4
792.948	1	1	481 987.7	608 100.7	•				4
FF0 F10	o 2o 5o 13mg	0.20 54 30	000 100 1						
579.518 578.905	$3s^23p^53d^{-3}D_2^o$	$3s^23p^54p \ ^3S_1$	309 433.1 309 252.1	481 987.7 481 987.7					4 4
571.095	$3s^23p^53d^{-1}\mathrm{D_2^o}$	$3s^23p^54p$ $^3\mathrm{S}_1$	306 874.5	481 987.7	2				4
	-				-				•
566.461 565.627	$3s^23p^53d$ $^1F_3^o$	$3s^23p^54p\ ^3\mathrm{D_3}$	311 433.8 311 433.8	487 974.6 488 225.7	3				4 4
560.056	$3s^23p^53d\ ^3\mathrm{D_2^o}$	$3s^23p^54p\ ^3{ m D}_3$	309 433.1	487 974.6					4
559.323	20 07 34 172	20 OF 4P D3	309 433.1	488 225.7					4 4
553.857	3	3	307 429.2	487 974.6					4
553.122	3	2	307 429.2	488 225.7	1				4
543.858	2 1	1	309 433.1 309 252.1	493 300.5 493 300.5	7				4 4

Ti v - Continued

Wave- ength (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
	0 5 0								
557.115	$3s^23p^53d\ ^3D_2^{\circ}$	$3s3p^63d^{-3}D_1$	309 433.1	488 928.7					4
556.562	1	1	309 252.1	488 928.7					4
549.083	2	2	309 433.1	491 558.7	6				4
548.533	1	2	309 252.1	491 558.7	4				4
546.062	2	3	309 433.1	492 567.1	5				4
43.103	3	2	$307\ 429.2$	491 558.7	7				4
40.145	3	3	307 429.2	492 567.1	8				4
555.164 552. 0 79	$3s^23p^53d\ ^1{ m F}_3^{ m o}$	$3s3p^63d\ ^3{ m D}_2$	311 433.8 311 433.8	491 558.7 492 567.1	5				4 4
552.185	$3s^23p^53d^{-1}D_2^o$	$3s^23p^54p$ 3D_3	306 874.5	487 974.6					4
551.410	. 2	2	306 874.5	488 225.7	1bl				4
36.406	2	1	306 874.5	493 300.5	4				4
547.642	$3s^23p^53d^{-1}F_3^o$	$3s^23p^54p^{-1}D_2$	311 433.8	494 035.7	3				4
541.711	$3s^23p^53d\ ^3\mathrm{D_2^o}$	$3s^23p^54p^{-1}D_2$	309 433.1	494 035.7	9				4
541.181	1 or op ou D ₂	2	309 252.1	494 035.7	3				4
335.888	3	2	307 429.2	494 035.7	10				4
- 41 4FO	22 50 1 100	0 0 60 1370	200 074 5	401 550 5					
541.459 538.511	$3s^23p^53d\ ^1{ m D}_2^{\circ}$	$3s3p^63d\ ^3D_2$	306 874.5 306 874.5	491 558.7 492 567.1	8				4 4
535.836	$3s^23p^53d\ ^1\mathrm{F_3^o}$	$3s^23p^54p\ ^3\mathrm{P}_2$	311 433.8	498 057.2	10				4
534.297	$3s^23p^53d^{-1}D_2^o$	$3s^23p^54p^{-1}D_2$	306 874.5	494 035.7					4
533.457 532.935	$3s^23p^53d\ ^3{ m D}_2^o$	$3s^23p^54p$ ¹ P ₁	309 433.1 309 252.1	496 890.7 496 890.7	1				4 4
530.167	$3s^23p^53d\ ^3{ m D}^{ m o}_{ m 2}$	$3s^23p^54p$ 3 P ₂	309 433.1	498 057.2	1				4
529.635	1	2	309 252.1	498 057.2					4
529.315	1	0	309 252.1	498 176.4	8				4
26.570	2	1	309 433.1	499 336.2	13				4
26.076	1	1	309 252.1	499 336.2	6				4
524.578	3	2	307 429.2	498 057.2	12				4
526.266	$3s^23p^53d\ ^1{ m D}_2^o$	$3s^23p^54p^{-1}P_1$	306 874.5	496 890.7	6				4
523.050 519.575	$3s^23p^53d\ ^1\mathrm{D}_2^\circ$	$3s^23p^54p$ 3P_2	306 874.5 306 874.5	498 057.2 499 336.2	7 1				4 4
513.374	$3s^23p^53d\ ^1{ m F}_3^{ m o}$	$3s3p^63d^{-1}{ m D_2}$	311 433.8	506 224.7	8				4
507.683	$3s^23p^53d\ ^3D_1^o$	$3s3p^63d^{-1}D_2$	309 252.1	506 224.7	6				4
503.031	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3s3p 3a D_2$	307 429.2	506 224.7	3				4
EO6 469	$3s^23p^53d\ ^3{ m F}_2^{ m o}$	$3s^23p^54p^{-3}D_2$	200 779 7	400 005 7	7				4
506.468	$ss sp sa r_2$		290 778.7	488 225.7	7				4
502.711	3	3	289 050.2	487 974.6	7				4
502.077	3	2	289 050.2	488 225.7	14				4
198.260 193.783	4 2	3	287 276.5 290 778.7	487 974.6 493 300.5	15 6				4 4
504.665	$3s^23p^53d\ ^3\mathrm{F}_2^{\circ}$	$3s3p^63d^{3}D_1$	290 778.7	488 928.7	12				4
498.050	2	2	290 778.7	491 558.7	_				4
493.783	3	2	289 050.2	491 558.7	6				4
491.358	3	3	289 050.2	492 567.1	1				4
487.115	4	3	287 276.5	492 567.1	4				4
501.631	$3s^23p^53d^{-1}\mathrm{D_2^o}$	$3s3p^{6}3d^{-1}D_{2}$	306 874.5	506 224.7	2				4
491.981	$3s^23p^53d\ ^3\mathrm{F_2^o}$	$3s^23p^54p^{-1}D_2$	290 778.7	494 035.7					4
487.845	3	2	289 050.2	494 035.7	4				4
488.582	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s^23p^54p^3S_1$	277 310.6	481 987.7	10				4
483.992	1		275 371.9	481 987.7					4
481.818	0	1	274 439.7	481 987.7					4
485.175	$3s^23p^53d\ ^3F_2^{o}$	$3s^23p^54p^{-1}P_1$	290 778.7	496 890.7	3				4
	_	0 - 0							
482.447	$3s^23p^53d\ ^3{ m F}_2^{ m o}$	$3s^23p^54p^3$ P ₂	290 778.7	498 057.2					4
482.447 479.497	$3s^23p^53d$ $^3F_2^0$	$3s^23p^54p$ 3P_2	290 778.7 290 778.7	498 057.2 499 336.2					4 4 4

Ti v - Continued

Wave- ength (Å)	Classifica Lower	ution Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
474.690	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s^23p^54p$ 3D_3	277 310.6	487 974.6	8				4
474.124 469.808	2 1	2 2	277 310.6 275 371.9	488 225.7 488 225.7	2 6				4 4
462.982	2	1	277 310.6	493 300.5	3				4
458.861	1	1	275 371.9	493 300.5	2				4
468.257	$3s^23p^53d\ ^3P_1^{\circ}$	$3s3p^63d\ ^3{ m D}_1$	275 371.9	488 928.7	3				4
466.749 466.224	2 0	2	277 310.6 274 439.7	491 558.7 488 928.7	1 4				4 4
464.562	2	3	277 310.6	492 567.1	5				4
462.565	1	2	275 371.9	491 558.7	3				4
464.143	$3s^23p^53d\ ^3\mathrm{F}_2^{\circ}$	$3s3p^63d^{-1}D_2$	290 778.7	506 224.7					4
461.414 457.321	$3s^23p^53d\ ^3\mathrm{P}_2^\circ$	$3s^23p^54p^{-1}D_2$	277 310.6 275 371.9	494 035.7 494 035.7	7 1				4 4
455.419	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s^23p^54p^{-1}P_1$	277 310.6	496 890.7	1				4
451.429 449.541	1 0	1	275 371.9 274 439.7	496 890.7 496 890.7					4
		1		490 890.1					4
453.006 450.397	$3s^23p^53d\ ^3P_2^{\circ}$	$3s^23p^54p\ ^3P_2$	277 310.6	498 057.2	5				4
449.063	2	1 2	277 310.6 275 371.9	499 336.2 498 057.2	4 3				4 4
448.822 446.493	1	0	275 371.9 275 371.9	498 176.4	3				4
444.643	1 0	1	274 439.7	499 336.2 499 336.2	$\frac{1}{2}$				4 4
436.839 433.202	$3s^23p^53d$ $^3P_2^{\circ}$	$3s3p^63d\ ^1{ m D}_2$	277 310.6 275 371.9	506 224.7 506 224.7					4 4
363.145	$3s^23p^6$ 1S_0	$3s^23p^53d\ ^3P_1^{\circ}$	0.0	275 371.9					4
323.365	$3s^23p^{6-1}S_0$	$3s^23p^53d\ ^3{ m D}_1^{ m o}$	0.0	309 252.1	7	1.9 - 3	4.0+7	E	4°,98*
252.958	$3s^23p^{6-1}S_0$	$3s^23p^53d$ ¹ P ^o ₁	0.0	395 320.9	17	3.63	1.26+11	C	4°,98*
228.909	$3s^23p^{6-1}S_0$	$3s^23p^54s$ $^3P_1^{\circ}$	0.0	436 849.8	10	9.7 - 2	4.1+9	E	4°,98*
225.347	$3s^23p^{6-1}S_0$	$3s^23p^54s^{-1}P_1^{\circ}$	0.0	443 752.7	12	3.3 - 1	1.4+10	E	4°,98*
164.446	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P_{3/2}^o})5s^2[\frac{3}{2}]_1^o$	0.0	608 100.7	5				4
162.984	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P}^{o}_{1/2})5s^2[\frac{1}{2}]^{o}_{1}$	0.0	613 558.2	4				4
146.897	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P^{\circ}_{3/2})6s^2[\frac{3}{2}]^{\circ}_1$	0.0	680 748	1				4
145.79	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})6s^2[\frac{1}{2}]_1^{\circ}$	0.0	685 940					4
145.354	$3s^23p^{6-1}S_0$	$3s3p^64p$ $^3\mathrm{P_1^o}$	0.0	687 980	6				5
144.551	$3s^23p^{6}$ ¹ S ₀	$3s3p^{6}4p^{-1}P_{1}^{\circ}$	0.0	691 797	12				4,5°
121.138	$3s^23p^{6-1}S_0$	$3s3p^65p$ $^3P_1^{\circ}$	0.0	825 500	2				5
120.824	$3s^23p^{6-1}S_0$	$3s3p^65p^{-1}P_1^{\circ}$	0.0	827 650	12				5
112.896	$3s^23p^{6-1}S_0$	$3s3p^66p$ $^3P_1^{\circ}$	0.0	885 770					5
112.495	$3s^23p^{6-1}S_0$	$3s3p^{6}6p^{-1}P_{1}^{\circ}$	0.0	888 930	11				5
108.611	$3s^23p^{6-1}S_0$	$3s3p^67p$ $^3P_1^{\circ}$	0.0	920 720					5
108.443	$3s^23p^{6-1}S_0$	$3s3p^{6}7p^{-1}P_{1}^{o}$	0.0	922 140	6				5
106.308	$3s^23p^{6-1}S_0$	$3s3p^68p\ ^3P_1^{o}$	0.0	940 660					5
106.154	$3s^23p^{6-1}S_0$	$3s3p^68p$ 1 P $_1^{\circ}$	0.0	942 030	3				5
104.732	$3s^23p^{6-1}S_0$	$3s3p^69p\ ^3\mathrm{P_1^o}$	0.0	954 820					5
104.711	$3s^23p^{6-1}S_0$	$3s3p^69p^{-1}$ P ₁ °	0.0	955 010					5
103.754	$3s^23p^{6-1}S_0$	$3s3p^610p$ $^3P_1^{\circ}$	0.0	963 820					5
103.733	$3s^23p^{6-1}S_0$	$3s3p^610p^{-1}P_1^{\circ}$	0.0	964 010					5
103.059	$3s^23p^{6-1}S_0$	$3s3p^611p^{-1}P_1^o$	0.0	970 320					5

Ti vi

	Classification		Energy	Levels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
length (Å)	Lower	Upper							
524.113	$3s^23p^5 \ ^2P^o_{1/2}$	$3s3p^6 {}^2S_{1/2}$	5 829	196 628	17	6.90 - 2	8.4+8	C-	7°,98*
508.575	3/2	1/2	0	196 628	18	1.42 - 1	1.83+9	Č-	7°,98*
353.877	$3s^23p^5$ 2 P $^o_{1/2}$	$3s^23p^4(^3P)3d^{2}P_{1/2}$	5 829	288 412	2				6
349.574	1/2	3/2	5 829	291 890	2				6
346.728	3/2	1/2	0	288 412					6
342.595	3/2	3/2	0	291 890	5				6
341.109	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$3s^23p^4(^3P)3d^2D_{3/2}$	5 829	298 991	4				6
334.457	3/2	3/2	0	298 991	4				6
330.703	3/2	5/2	0	302 386	6				6
338.309 ^C	$3s^23p^5$ 2 P $^{\circ}_{1/2}$	$3s^23p^4(^3P)3d^4P_{1/2}$	5 829	301 417		3.8 - 4	1.2 + 7	E	98*
331.767	3/2	1/2	0	301 417	2	7.6 - 4	2.5 + 7	E	6°,98*
301.913	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^1{\rm D})3d\ ^2{\rm F}_{5/2}$	0	331 221	4	1.5 - 3	1.8+7	E	6°,98*
288.355	$3s^23p^5$ 2 P $_{1/2}^{\circ}$	$3s^23p^4(^1S)3d^2D_{3/2}$	5 829	352 625	6	1.4 - 2	2.7+8	Е	6°,98*
283.586	3/2	3/2	0		4				6
282.215	3/2	5/2	0			4.0 - 3	5.9 + 7	E	6°,98*
267.343	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1D)3d^2S_{1/2}$	5 829	379 874	9	6.4 - 1	3.0+10	C-	6°,98*
263.246	3/2	1/2	0		10	1.52	7.3+10	C-	6°,98*
259.232	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s^23p^4(^1D)3d^2P_{3/2}$	5 829	391 583	10				6
257.855	1/2	1/2	5 829	393 644	10				6
255.375	3/2	3/2	0		11				6
251.071	$3s^23p^5$ 2 P $_{1/2}^o$	$3s^23p^4(^1D)3d^2D_{3/2}$	5 829	404 123	15	4.28	1.13+11	С	6°,98*
250.482	3/2	5/2	0		18	6.8	1.2+11	Č	6°,98*
247.450	3/2	3/2	0		10	2.6 - 1	7.0+9	Ď	6°,98*
235.836 ^L	$3s^23p^4(^3P)3d^4F_{7/2}$	$3s^23p^4(^3P)4f^4G_{9/2}^o$							9
235.408 ^L	9/2	11/2							9
235.066^{L}	5/2	7/2							9
235.310 ^L	$3s^23p^4(^1\mathrm{D})3d^2\mathrm{G}_{9/2}$	$3s^23p^4(^1D)4f^{\ 2}H^{o}_{11/2}$							9
226.561 ^L	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)4f^4F_{9/2}^{\circ}$							9
203.434	$3s^23p^5$ 2 P $^{\circ}_{1/2}$	$3s^23p^4(^3P)4s^4P_{1/2}$	5 829	497 389	1				6
203.200	3/2	5/2	0		2				6
201.865	3/2	3/2	0		8				6°,8
201.311	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$3s^23p^4(^3P)4s^2P_{3/2}$	5 829	502 571	7				6°,8
199.759	1/2	1/2	5 829		9				6°,8
198.977	3/2	3/2	0	502 571	12				6°,8
197.460	3/2	1/2	0	506 432	9				6°,8
194.900	$3s^23p^5$ $^2\mathrm{P}^o_{1/2}$	$3s^23p^4(^1D)4s^2D_{3/2}$	5 829	518 914	9				6°,8
192.754	3/2	5/2	0		10				6°,8
192.705	3/2	3/2	0		1				8
184.106	$3s^23p^5$ $^2\mathrm{P}^o_{1/2}$	$3s^23p^4(^1S)4s^2S_{1/2}$	5 829	548 995	5				6°,8
182.151	3/2	1/2	0		7				6°,8
154.768	$3s^23p^5 \ ^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)4d^{2}D_{3/2}$	5 829	651 960	2				6
153.550	3/2	5/2	0 020		5				6
153.384	3/2	3/2	Č		1				6
154 161	$3s^23p^5$ $^2\mathrm{P}^o_{1/2}$	$3s^23p^4(^3P)4d^4F_{3/2}$	F 000						
154.161 152.960	$3s^23p^3 P_{1/2}^2$ $3/2$	$3s^23p^2(^{\circ}P)4d^{-1}F_{3/2}$	5 829 0		3				6 6
		•							v
153.255	$3s^23p^5 {}^2P_{1/2}^{o}$	$3s^23p^4(^3P)4d^2P_{3/2}$			1				6
151.897	3/2	3/2	C	658 339					6
152.338	$3s^23p^5 \ ^2P^{\circ}_{3/2}$	$3s^23p^4(^3P)4d^2F_{5/2}$	(656 437	3				6
	$3s^23p^5$ $^2P^o_{1/2}$	$3s^23p^4(^1D)4d^2P_{3/2}$	5 829	671 096	1				6
150.315	. 1/2	- , , 3/2	F 000		1				
	1/2	1/2	5 829	011 049					6
150.315 150.213 149.010	1/2 3/2	1/2 3/2			4				6 6

Ti VI - Continued

Wave-	Classification	1	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
149.392	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1D)4d^{2}D_{3/2}$	5 829	675 207	3				6
148.303	3/2	5/2	0	674 297	4				6
148.104	3/2	3/2	0	675 207	1				6
143.176	$3s^23p^5 \ ^2P_{1/2}^{\circ}$	$3s^23p^4(^1S)4d^2D_{3/2}$	5 829	704 270					6
141.988	3/2	5/2	0	704 283	1				6
141.113	$3s^23p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^3P)5s^4P_{3/2}$	0	708 652	3				6
141.061	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)5s^2P_{1/2}$	5 829	714 742	1				6
140.443	3/2	3/2	0	712 034	4bl				6
139.911	3/2	1/2	0	714 742	1				6
137.813	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1D)5s^2D_{3/2}$	5 829	731 453	1				6
136.714	3/2	5/2	0	731 455	2				6
129.249	$3s^23p^5$ ² P° _{3/2}	$3s^23p^4(^3P)5d^2D_{5/2}$	0	773 702	2				6
129.148	3/2	3/2	0	774 306	1				6
128.450	$3s^23p^5$ $^2P_{3/2}^{\circ}$	$3s^23p^4(^3P)5d^4F_{5/2}$	0	778 513					6
126.330	$3s^23p^5$ 2 P $_{1/2}^{\circ}$	$3s^23p^4(^1D)5d^2D_{3/2}$	5 829	797 406	1				6
125.456	3/2	5/2	0	797 092	3bl				6
125.689	$3s^23p^5$ ² P $_{3/2}^{\circ}$	$3s^23p^4(^1D)5d^2P_{3/2}$	0	795 615	2				6

Ti vii

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1989.4 ^C	$3s^23p^4$ 3 P ₁	$3s^23p^{4}$ ¹ S ₀	4 534	54 801		M1	9.8+1	E	98*
521.561	$3s^23p^{4-3}P_1$	$3s3p^5$ $^3P_2^{o}$	4 534	196 266	10				7
515.008	0	1	5 888	200 059	8				7
511.442	1	. 1	4 534	200 059	8				7
509.511	2	. 2	0	196 266	14				7
505.899	1	0	4 534	202 202	8				7
499.853	2	1		200 059	8				· 7
100.000	2			200 003	Ū				•
509.127	$3s^23p^{4}$ ¹ S ₀	$3s3p^{5-1}$ P $_{1}^{o}$	54 801	251 214	2				7
440.361	$3s^23p^{4-1}D_2$	$3s3p^{5-1}$ P $_{1}^{\circ}$	24 130	251 214	8	2.9 - 1	3.3+9	D	7°,98*
332.081	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m D}^{ m o})3d\ ^1{ m D}_2^{ m o}$	24 130	325 261	2				6
305.730	$3s^23p^4$ ¹ S ₀	$3s^23p^3(^2D^{\circ})3d^{-1}P_1^{\circ}$	54 801	381 894					6
296.056	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m D^o})3d\ ^1{ m F}_3^{ m o}$	24 130	361 904	5				6
	2 43:	0 0.0 9 -							
282.898	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^{\circ})3d^3P_2^{\circ}$	24 130	377 614					6
281.898	2	1	24 130	378 872	9				6
	22415	$3s^23p^3(^2D^o)3d^{-1}P_1^o$	0.1.100	201 201					
279.516	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^3)3d^{-1}P_1^3$	24 130	381 894	9				6
270.748	$3s^23p^4$ 3 P ₀	$3s^23p^3(^2D^{\circ})3d^3S_1^{\circ}$	5 888	375 235	3				6
269.759			4 504	375 235	7				6
266.502	1	1	_	375 235 375 235	9				6
200.502	2	1	U	375 235	9				О
268.493	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)3d^3D_2^o$	24 130	396 572					6
268.106	$3s^23p^4$ 3P_0	$3s^23p^3(^2P^{\circ})3d^3P_1^{\circ}$	5 888	378 872	5				6
268.035	03 0p 10	· · · · · · ·	4 504	377 614	9				6
267.136	1	2	4 - 6 4	378 872	6				6
265.059	1	1	4 - 0 4	381 808	7				6
264.823	1	0	_						
263.944	2	2	_	377 614 378 872	10 5				6 6
203.544	2	1	0	318 672	3				U
265.951	$3s^23p^{4-3}P_0$	$3s^23p^3(^2D^o)3d^{-1}P_1^o$	5 888	381 894	6				6
264.997		00 0p (D)00 1 1	4 -04	381 894	5				6
261.851	1 2	1	_	381 894	6				6
			•						
260.704	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^\circ)3d^{-1}D_2^\circ$	•	407 703	10				6
255.076	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2P^\circ)3d^3D_5^9$	4 534	396 572	10				6
254.687	0	1	5 888	398 527	9				6
254.022	2	3	_	393 667	16bl				6°, 103
253.811	1	1		398 527	9				6
252.162	2			396 572	9				6
250.913	2	1		398 527	1bl				6
252.571	$3s^23p^{4-1}S_0$	$3s^23p^3(^2P^o)3d^{-1}P^o$	54 801	450 729	6				6
252.275	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m P}^{ m o})3d^{-1}{ m F}_3^2$	24 130	420 522	16				6
248.037	$3s^23p^4$ ³ P ₁	$3s^23p^3(^2P^o)3d^{-1}D^o$		407 703	1				6
193.668 ^L	$3s^23p^33d$ $^5\mathrm{D_4^o}$	$3s^23p^34f^{-5}F$			_				9
193.585 ^L		00 UP 41 F							
193.534 ^L	3	•	1						9
	2	:							9
193.501 ^L	1	:	2						9
192.474 ^L	$3s^23p^3(^2D^{\circ})3d\ ^3F_4^{\circ}$	$3s^23p^3(^2D^{\circ})4f^{-3}G_{\circ}$	_						0
192.474 192.272 ^L									9
192.272 ^L	3		4						9
192.102	2	;	3						9
179.107	$3s^23p^4$ 3 P ₀	$3s^23p^3(^4S^\circ)4s^3S^\circ$	5 888	564 217	9				6
178.673	os sp ro	38 3p (3)48 3	1 0000		3				6
177.238	1		4 534	564 217 564 217	4				6
111.200	2		1 0	JU4 21 (6				6
178.572	$3s^23p^{4-1}S_0$	$3s^23p^3(^2P^o)4s^{-1}P$	° 54 801	614 794	3				6
1.0.0.#	33 Op 20	55 OP (1) 35 T	1 01001	014 104					U
175.812	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m D^o})4s^{-1}{ m D}$	24 130	592 918	7				6
		-2 (-) 2		- 32 - 40	•				-

Ti VII - Continued

Wave- length (Å)	${\bf Classification}\\ {\bf Lower}$	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
172.353	$3s^23p^4$ ³ P ₀	$3s^23p^3(^2D^{\circ})4s^3D_1^{\circ}$	5 888	586 092	2				C
171.952	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	03 3p (D)43 D ₁	4 534	586 092	2				6 6
171.888	1	2	4 534	586 308	4				6
170.559	2	2	0	586 308	4				6
170.358	2	3	0	586 998	8				6
170.938	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)4s\ ^3P_2^o$	24 130	609 116	1				6
169.301	$3s^23p^{4}$ ¹ D ₂	$3s^23p^3(^2{ m P^o})4s^{-1}{ m P_1^o}$	24 130	614 794	4				6
168.652	$3s^23p^4\ ^3\mathrm{P}_2$	$3s^23p^3(^2D^o)4s^{-1}D_2^o$	0	592 918	3b1				6
166.087	$3s^23p^4$ 3P_0	$3s^23p^3(^2P^\circ)4s^3P_1^\circ$	5 888	607 982	3				6
165.836	1	0	4 534	607 538	1				6
165.716	1	1	4 534	607 982					6
165.403	1	2	4 534	609 116	2				6
164.478	2	1	0	607 982	1				6
164.173	2	2	0	609 116	3				6
138.814	$3s^23p^4$ 3P_0	$3s^23p^3(^4S^{\circ})4d^{3}D_1^{\circ}$	5 888	726 277	bl				6
138.548	1	2	4 534	726 303	3bl				6
137.661	2	3	0	726 424	4				6
136.815	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2P^{\circ})4d^{-1}P_1^{\circ}$	54 801	785 716	1				6
136.267	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})4d^{-1}\mathrm{D_2^o}$	24 130	757 984	2				6
135.801	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m D^o})4d\ ^1{ m F}_3^{ m o}$	24 130	760 504	4				6
133.633	$3s^23p^4$ 3P_1	$3s^23p^3(^2{\rm D^o})4d\ ^3{\rm P}_2^{\rm o}$	4 534	752 850	1				6
132.322	2	1	0	755 732	1				6
132.982	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2D^{\circ})4d\ ^3S_1^{\circ}$	4 534	756 518					6
132.733	$3s^23p^4$ 3P_2	$3s^23p^3(^2D^\circ)4d^{3}D_3^\circ$	0	753 393	3				6
132.522	2	2	0	754 591	2				6
132.351	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)4d\ ^3D_3^o$	24 130	779 699					6
132.149	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{ m P^o})4d\ ^1{ m D}_2^{ m o}$	24 130	780 853	1				6
132.093	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{P}^\circ)4d\ ^1\mathrm{F}_3^\circ$	24 130	781 170					6
129.722	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2P^o)4d^{3}D_2^o$	4 534	775 416	1				6
129.603	1	1		776 122					6
128.25	2	3	0	779 699					6

Ti viii

Wave- length (Å)	Lower	Classificat	ion Upper	Energy Lev	vels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
4264.4 ^C	$3s^23p^3$	² D _{3/2}	$3s^23p^3$ $^2P_{3/2}^{\circ}$	32 190.5+x	55 633.6+x	М1	1.7+1	С	98*
1845.4 ^C	$3s^23n^3$	³ ⁴ S _{3/2}	$3s^23p^3 {}^2P_{1/2}^{\circ}$	0.0	54 189.2+x	M1	1.8+1	E	98*
1797.5 ^C	00 Op	3/2 3/2	3/2	0.0	55 633.6+x	M1	3.9+1	D	98*
		•					4, -	_	
538.241	$3s^23p^3$	${}^{2}\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s3p^{4-2}D_{5/2}$	55 633.6+x	241 426.0+x	7.2 - 2	2.8 + 8	D	12°,98*
535.381		1/2	3/2	54 189.2+x	240 971.6+x	2.8 - 2	1.7 + 8	D	12°,98*
E14 206	2.22.5	³ ⁴ S _{3/2}	$3s3p^{4} {}^{4}P_{5/2}$	0.0	104 474 6	0.0 1	0.01.0	D	109 00*
514.206 504.801	os op			0.0 0.0	194 474.6 198 097.9	2.0 - 1 $1.3 - 1$	8.2+8 8.7+8	D D	12°,98* 12°,98*
500.116		3/2 3/2	3/2 1/2	0.0	199 953.6	6.8 - 2		D	12°,98*
481.428	$3s^23p^3$	$^2\mathrm{D}^{\mathrm{o}}_{5/2}$	$3s3p^{4-2}D_{3/2}$	$33\ 256.4+x$	240 971.6+x	1.0 - 2		\mathbf{E}	12°,98*
480.376		5/2	5/2	33 256.4+x	241 426.0+x	3.1 - 1		D	12°,98*
478.971 477.930 ^C		3/2	3/2	32 190.5+x 32 190.5+x	240 971.6+x	2.3 - 1 $8.4 - 3$		D E	12°,98* 98*
411.930		3/2	5/2	32 190.5TX	241 426.0+x	6.4 - 3	4.1+1	E	90
449.633	$3s^23p^3$	² P _{3/2}	$3s3p^4 {}^2P_{3/2}$	55 633.6+x	278 037.7+x				12
440.687	•	1/2	1/2	54 189.2+x	281 108.1+x				12
100.575	~ 9~ q		•		005				
426.258	$3s^23p^3$	$^{^{1}}{}^{^{2}}P_{3/2}^{o}$	$3s3p^{4} {}^{2}S_{1/2}$	55 633.6+x	290 233.6+x				12
423.649		1/2	1/2	54 189.2+x	290 233.6+x				12
408.528	$3s^23p^3$	² D _{5/2}	$3s3p^{4} {}^{2}P_{3/2}$	33 256.4+x	278 037.7+x				11,12°
406.756	•	3/2	3/2	32 190.5+x	278 037.7+x				12
401.739		3/2	1/2	$32\ 190.5 + x$	$281\ 108.1 + x$				11,12°
004.00	0 20 3	³ ² P° _{3/2}	n 2n 2/3m)n + 2m	FF 000 0 .					
324.207 322.698	3s-3p		$3s^23p^2(^3P)3d\ ^2P_{3/2}$	55 633.6+x	364 082+x				11
319.463		1/2 3/2	3/2 1/2	54 189.2+x 55 633.6+x	364 082+x 368 663+x				11 11
317.992		1/2	1/2	54 189.2+x	368 663+x				11
			•						
302.272	$3s^23p^3$	$^{^{1}}{}^{2}D_{5/2}^{o}$	$3s^23p^2(^3P)3d\ ^2P_{3/2}$	33 256.4+x	364 082+x				11
301.297 297.197		3/2	3/2	32 190.5+x 32 190.5+x	364 082+x 368 663+x				11
231.131		3/2	1/2	32 190.5+X	300 003+x				11
296.072^{C}	$3s^23p^3$	$^{12}D_{5/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{5/2}$	33 256.4+x	371 012	2.3 - 2	3.1+8	E	98*
295.141 ^C		3/2	5/2	32 190.5+x	371 012	4.8 - 3	6.5+7	\mathbf{E}	98*
	. 2. 5	. 200	- 2- 2/1->- 2-						
290.971	$3s^23p^3$	³ ² P _{3/2}	$3s^23p^2(^1{\rm D})3d\ ^2{ m D}_{5/2}$	55 633.6+x	399 323+x			-	11
289.375		1/2	3/2	54 189.2+x	399 772+x	1.8 - 1	3.6+9	D	11°,98*
279.940	$3s^23p^3$	^{3 2} P _{3/2}	$3s^23p^2(^1D)3d^2P_{1/2}$	55 633.6+x	412 858+x				11
278.806		1/2	1/2	54 189.2+x	412 858+x				11
277.813		3/2	3/2	55 633.6+x	$415\ 589 + x$	1.8	3.8 + 10	E	11°,98*
276.701		1/2	3/2	54 189.2+x	415 589+x	4.2 - 1	9.3+9	E	11°,98*
273.178	$3s^23n^3$	³ ² D _{5/2}	$3s^23p^2(^1D)3d^2D_{5/2}$	33 256.4+x	399 323+x				11
272.843	op	5/2 5/2	3/2	33 256.4+x	399 772+x	2.8 - 1	6.2+9	D	11°,98*
272.369		3/2	5/2	32 190.5+x	399 323+x				11
272.037		3/2	3/2	32 190.5+x	399 772+x	1.9	4.3 + 10	D	11°,98*
271.591	20220	^{3 2} P _{3/2}	$3s^23p^2(^1D)3d^2S_{1/2}$	55 622 6 1	192 2211				11
270.530	ss sp	F _{3/2}	$3s \ 3p \ (D)3a \ S_{1/2}$	55 633.6+x 54 189.2+x	423 834+x 423 834+x				11 11
			•	0. 100.27·A	420 001TX				11
269.533	$3s^23p$	^{3 4} S _{3/2}	$3s^23p^2(^3P)3d\ ^4P_{5/2}$	0.0	371 012	4.0	6.0 + 10	D	11°,98*
268.178		3/2	3/2	0.0	372 887				11
267.401		3/2	1/2	0.0	373 971				11
263.564	$3s^23v^3$	^{3 2} P _{3/2}	$3s^23p^2(^1S)3d^2D_{5/2}$	55 633.6+x	435 049+x				11
262.718	VP	3/2 3/2	3/2	55 633.6+x	436 270+x				11
261.725		1/2	3/2		436 270+x				11
OCT FEOC	0.20	3 200	·						
261.552 ^C	3s*3p	³ ² D _{5/2}	$3s^23p^2(^1D)3d\ ^2P_{3/2}$		415 589+x	3.9 - 2		E	98*
260.825 ^C		3/2	3/2	32 190.5+x	415 589+x	1.2 - 2	3.1+8	E	98*
258.610	$3s^23n^3$	^{3 2} D _{5/2}	$3s^23p^2(^1D)3d^2F_{7/2}$	33 256.4+x	419 939+x	6.0	7.5+10	E	11°,98*
258.610	55 Sp	3/2	55 5p (D)5u F7/2 5/2		419 939+x 418 873+x	0.0	1.5710	12	11 ,98
		5/2	·		0.01%				
171.723^{L} 171.392^{L}	$3s^23p^2(^1D)3e^2$	$d^{2}G_{9/2}$	$3s^23p^24f$ $^2H_{11/2}^{\circ}$						9

Ti VIII - Continued

Wave-	Classifica	tion	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				37			_
168.192 ^L	$3s^23p^23d^4$ F _{9/2}	$3s^23p^24f$ $^4G_{11/2}^{\circ}$							9
168.162^{L}	7/2	9/2							9
162.401	$3s^23p^3$ 2 P $_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^2P_{1/2}$	55 633.6+x	671 405+x					10
162.016	1/2	1/2	54 189.2+x	$671\ 405+x$					10,11°
161.290	3/2	3/2	55633.6+x	675 631 + x					10,11°
160.914	1/2	3/2	54 189.2+x	675 631+x					10,11°
157.528	$3s^23p^3$ 2 P $_{3/2}^{\circ}$	$3s^23p^2(^1D)4s^2D_{5/2}$	55 633.6+x	690 446+x					10,11°
157.472	3/2	3/2	55 633.6+x	690 672+x					10,11°
157.112	1/2	3/2	54 189.2+x	690 672+x					10,11°
156.444	$3s^23p^3$ $^2D_{3/2}^{o}$	$3s^23p^2(^3P)4s^2P_{1/2}$	32 190.5+x	671 405+x					10,11°
155.675	5/2	3/2	33 256.4+x	675 631+x					10,11°
152.164	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^1D)4s^2D_{5/2}$	33 256.4+x	690 446+x					10,11°
151.915	3/2	5/2	32 190.5+x	690 446+x					10,11°
151.864	3/2	3/2	32 190.5+x	690 672+x					10,11°
151.484	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^4P_{1/2}$	0.0	660 135					10,11°
150.867	3/2	3/2	0.0	662 835					10,11°
150.039	3/2	5/2	0.0	666 493					10,11°
149.981	$3s^23p^3$ 2 P $^{\circ}_{3/2}$	$3s^23p^2(^1S)4s^2S_{1/2}$	55 633.6+x	722 394+x					11
149.653	1/2	1/2	54 189.2+x	722 394+x					11

Ti ıx

3359.9°C 3297.7°C 3284.6°C 1724.7°C 1171.4°C 1169.9°C 724.42 703.68 605.79°C 579.896 518.331°C 518.100 516.215	$3s3p^3$ $^3\mathrm{D}_3^{\mathrm{o}}$ 1 1 $3s^23p^2$ $^3\mathrm{P}_1$ $3s3p^3$ $^5\mathrm{S}_2^{\mathrm{o}}$ 2 $3s^23p^2$ $^3\mathrm{P}_2$ 1 $3s3p^3$ $^3\mathrm{D}_3^{\mathrm{o}}$ $3s^23p^2$ $^1\mathrm{D}_2$	$3s3p^3$ $^3P_2^o$ 0 1 $3s^23p^2$ 1S_0 $3s3p^3$ $^3P_1^o$ 2 $3s3p^3$ $^5S_2^o$ 2 $3s^23p^3d$ $^3D_3^o$	201 000 200 209 200 209 3 119 145 280 145 280 7 282 3 119	230 754 230 524 230 645 61 100 230 645 230 754	M1 M1 M1 M1	1.1+1 1.3+1 1.2+1 1.2+2 4.3+1	E E E	98* 98* 98*
3297.7 ^C 3284.6 ^C 1724.7 ^C 1171.4 ^C 1169.9 ^C 724.42 703.68 605.79 ^C 579.896 518.331 ^C 518.100	1 1 1 1 1 $^{3}s^{2}3p^{2}$ $^{3}P_{1}$ $^{3}s^{3}p^{3}$ $^{5}S_{2}^{\circ}$ 2 2 $^{3}s^{2}3p^{2}$ $^{3}P_{2}$ 1 $^{3}s^{3}p^{3}$ $^{3}D_{3}^{\circ}$ $^{3}s^{2}3p^{2}$ $^{1}D_{2}$	$3s^23p^2$ 1S_0 $3s3p^3$ $^3P_1^{\circ}$ 2 $3s3p^3$ $^5S_2^{\circ}$ 2	200 209 3 119 145 280 145 280 7 282	230 524 230 645 61 100 230 645	M1 M1 M1	1.3+1 1.2+1 1.2+2	E E	98* 98* 98*
1724.7 ^C 1171.4 ^C 1169.9 ^C 724.42 703.68 605.79 ^C 579.896 518.331 ^C 518.100	$3s^23p^2$ $^3\mathrm{P}_1$ $3s3p^3$ $^5\mathrm{S}_2^\circ$ 2 $3s^23p^2$ $^3\mathrm{P}_2$ 1 $3s3p^3$ $^3\mathrm{D}_3^\circ$ $3s^23p^2$ $^1\mathrm{D}_2$	$3s^23p^2$ 1S_0 $3s3p^3$ $^3P_1^{\circ}$ 2 $3s3p^3$ $^5S_2^{\circ}$ 2	3 119 145 280 145 280 7 282	61 100 230 645	M1 M1	1.2+2		98*
1171.4 ^C 1169.9 ^C 724.42 703.68 605.79 ^C 579.896 518.331 ^C 518.100	$3s3p^3$ ${}^5\mathrm{S}^\circ_2$ 2 ${}^3s^23p^2$ ${}^3\mathrm{P}_2$ 1 1 ${}^3s3p^3$ ${}^3\mathrm{D}^\circ_3$ ${}^3s^23p^2$ ${}^1\mathrm{D}_2$	$3s3p^3$ $^3P_1^{\circ}$ 2 2 $3s3p^3$ $^5S_2^{\circ}$ 2 2	145 280 145 280 7 282	230 645	M1		E	
724.42 703.68 605.79 ^C 579.896 518.331 ^C 518.100	$3s^23p^2$ $^3\mathrm{P}_2$ 1 $3s3p^3$ $^3\mathrm{D}_3^{\circ}$ $3s^23p^2$ $^1\mathrm{D}_2$	3s3p ³ ⁵ S ₂ 2	145 280 7 282			4.3 + 1		
724.42 703.68 605.79 ^C 579.896 518.331 ^C 518.100	$3s^23p^2$ $^3\mathrm{P}_2$ 1 $3s3p^3$ $^3\mathrm{D}_3^{\circ}$ $3s^23p^2$ $^1\mathrm{D}_2$	3s3p ³ ⁵ S ₂ 2	145 280 7 282			1.0 1	\mathbf{E}	98*
703.68 605.79 ^C 579.896 518.331 ^C 518.100	$3s3p^3$ $^3\mathrm{D}^{\mathrm{o}}_{3}$ $3s^23p^2$ $^1\mathrm{D}_{2}$	2			M1	7.7 + 1	E	98*
605.79 ^C 579.896 518.331 ^C 518.100	$3s3p^3$ $^3\mathrm{D}^o_3$ $3s^23p^2$ $^1\mathrm{D}_2$		3 119	145 280				14
579.896 518.331 ^C 518.100	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3D_3^{o}$		145 280				14
518.331 ^C 518.100		_	201 000	366 074	M1	3.1 + 1	E	98*
518.100		$3s3p^3 \ ^3D_3^{\circ}$	28 555	201 000				12
518.100	$3s^23p^2$ 3 P ₂	$3s3p^{3} \ ^{3}D_{1}^{o}$	7 282	200 209	9.0 - 4	7.3 + 6	E	98*
516.215	2	2	7 282	200 293	1.6 - 2	7.9+7	_ D-	12°,98*
	2	3	7 282	201 000	2.0 - 1	6.9+8	D	12°,98*
507.382^{C}	1	1	3 119	200 209	2.8 - 2	2.4 + 8	D-	98*
507.174	1	2	3 119	200 293	1.3 - 1	6.5+8	D	12°,98*
499.479	0	1	0	200 209	5.8 - 2	5.2+8	D	12°,98*
447.701	$3s^23p^2$ 3P_2	$3s3p^3 \ ^3P_1^{\circ}$	7 282	230 645	6.0 - 2	6.5+8	D	12°,98*
447.484 439.745	2	2	7 282	230 754	2.5 - 1	1.6+9	D	12°,98* 12°,98*
439.513	1	0	3 119 3 119	230 524 230 645	6.0 - 2	2.1+9	C-	12,98
439.302	1	1		230 645	6.6 - 2 $5.1 - 2$	7.5+8	D D	12°,98*
433.567	1	2	3 119 0	230 754	5.1 - 2 $5.8 - 2$	$3.6+8 \\ 6.9+8$	D	12°,98* 12°,98*
	0 20 2 10	1 2 3 1 7 2			5.6 – 2	0.976	D	
443.512	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}D_2^{\circ}$	28 555	254 028				12
405.272	$3s^23p^2$ ³ P ₂	$3s3p^{3-1}D_2^{o}$	7 282	254 028				12
400.041	$3s^23p^2$ ¹ S ₀	$3s3p^3 \ ^1P_1^{\circ}$	61 100	311 087				11,12°
368.482	$3s^23p^2$ ¹ D ₂	$3s3p^3 \ ^3S_1^{\circ}$	28 555	299 944				12
353.942	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}P_1^{\circ}$	28 555	311 087				11,12°
341.691	$3s^23p^2$ ³ P ₂	$3s3p^3 \ ^3S_1^{\circ}$	7 282	299 944				11,12°
336.895	1	1	3 119	299 944				11,12°
333.385	0	1	0	299 944				11, 12°
329.159	$3s^23p^2$ ³ P ₂	$3s3p^{3-1}P_1^{\circ}$	7 282	311 087				12
324.712	1 1	353p 1 1 1	3 119	311 087				11, 12°
308.568	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^3P_2^{\circ}$	00 555	959 699				
304.498	38 3p D ₂ 2	38 3p3a P ₂	$28\ 555$ $28\ 555$	352 632 356 962				11 11
296.280 ^C	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^3{ m D}_3^{ m o}$	28 555	366 074	3.7 - 2	4.0+8	E	98*
000 570	$3s^23p^2$ 3 P ₂	0.20.01370						
289.579	$3s^-3p^ ^{\circ}P_2$	$3s^23p3d\ ^3P_2^{\rm o}$	7 282	352 632				11
286.112	1	2	3 119	352 632				11
282.613 281.446	1	1	3 119	356 962	20 -	00.10	Б	11
280.141	1 0	0	3 119 0	358 427 356 962	3.9 - 1	3.2+10	D	11°,98* 11
285.128	$3s^23p^{2-1}S_0$	$3s^23p3d\ ^1{ m P}_1^{ m o}$	61 100	411 820	1.5	4.1+10	D	11°,98*
070 074	0 20 2 3-	- 9 ₋ 9						
279.074	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3{ m D}^{ m o}_2$	7 282	365 611			-	11
278.713	2	3	7 282	366 074	3.8	4.7 + 10	D	11°,98*
276.785 275.867	I	1	3 119	364 414				11
274.411	1 0	2	3 119 0	365 611 364 414				11 11
267.941	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	28 555	401 771	3.8	5.1+10	C	11°,98*
260.916	$3s^23p^{2-1}D_2$	$3s^23p3d$ ¹ P ₁ °	28 555	411 820				11
253.492 ^C	$3s^23p^2$ 3P_2	$3s^23p3d^{-1}F_3^{\circ}$	7 282	401 771	3.6 - 2	5.3+8	Е	98*
242.825 ^C	$3s^23p^2$ ³ P ₀	$3s^23p3d\ ^1\mathrm{P}_1^\circ$			3.6 - 3			98*
149.560 ^L	$3s^{2}3p^{3}+P_{0}$ $3s^{2}3p3d^{3}F_{4}^{2}$	$3s^{2}3p3d^{-3}P_{1}^{2}$ $3s^{2}3p4f^{-3}G_{5}$		411 820	o.o − 3	1.4+8	E	98*

Ti IX - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹) Int.	$gf A (s^{-1})$	Acc. References
length (Å)	Lower	Upper				
147.157	$3s^23p^2$ ¹ S ₀	3s ² 3p4s ¹ P ₁ °	61 100	740 648		11
140.443	$3s^23p^2$ ¹ D ₂	$3s^23p4s^{-1}P_1^{\circ}$	28 555	740 648		11
138.548	$3s^23p^2$ 3P_2	$3s^23p4s$ $^3P_1^{\circ}$	7 282	729 111		11
137.991	1	0	3 119	727 806		11
137.743	1	1	3 119	729 111		11
137.377	2	2	7 282	735 208		11
137.153	0	1	0	729 111		11
136.595	1	2	3 119	735 208		11
111.345	$3s^23p^2$ ¹ D ₂	$3s^23p4d\ ^1{ m F}_3^{ m o}$	28 555	926 660		9
110.283	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3{ m D}_3^{ m o}$	7 282	914 040		9

Ті х

Wave- ength (Å)	Classificati Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
780.2	$3s3p^2 {}^2P_{3/2}$	$3p^{3} {}^{2}D_{3/2}^{\circ}$	285 220	413 397					19°,20
774.2	3/2	5/2	285 220	414 365					19°, 20
55.74	1/2	3/2	281 051	413 397					19°, 20
54.2	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s3p^2 {}^4 ext{P}_{1/2}$	7 544	160 409					14
41.7			7 544	163 257					14
25.8	3/2	3/2	7 544	167 309		*			14
23.6	3/2 1/2	5/2 1/2	0	160 409					14
12.8	1/2	3/2	0	163 257					14
65.221 ^C	$3s3p^2 {}^2P_{3/2}$	a3 2me	205 220	400 140		40 0	4010	ъ	00*
63.358		$3p^{3-2}P_{1/2}^{\circ}$	285 220 285 220	462 142 462 709		4.8 - 2 $2.9 - 1$	4.9+8 $1.6+9$	D D	98* 17°,19,20,98
52.090	3/2	3/2	281 051	462 142		2.9 - 1 $1.5 - 1$	1.8+9	D	17°, 19, 20, 98'
50.485 ^C	1/2 1/2	1/2 3/2	281 051	462 709		1.2 - 2	6.4 + 7	Ē	98*
		•							
06.824 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{3}P^{\circ})3d\ ^{2}F^{\circ}_{5/2}$	345 859	543 166		3.4 - 2	1.5 + 8	E	98*
05.431 ^C	3/2	5/2	345 315	543 166		2.4 - 1	1.1 + 9	E	98*
92.0	5/2	7/2	345 859	549 148		3.9 - 1	1.5+9	E	20°,98*
06.0	$3s3p^2 {}^2S_{1/2}$	$3p^3 {}^{2}P_{1/2}^{\circ}$	264 456	462 142		3.0 - 2	3.9+8	D	19°, 20, 98*
04.19	1/2	3/2	264 456	462 709		1.6 - 1	1.2+9	D	19°, 20, 98*
		•						_	
98.01	$3s3p^2 {}^2D_{5/2}$	$3p^{3-2}D_{3/2}^{o}$	212 608	413 397		5.5 - 2	3.7 + 8	\mathbf{E}	19°, 20, 98*
96.647	3/2	3/2	212 053	413 397		2.3 - 1	1.6+9	E	17°, 19, 20, 98
95.671 94.286 ^C	5/2	5/2	212 608 $212 053$	414 365 414 365		3.8 - 1 $3.3 - 2$	1.9+9 $1.7+8$	E E	17°, 19, 20, 98° 98*
34.200	3/2	5/2	212 003	414 303		3.3 – 2	1.770	15	90
97.999	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	$3p^2(^3P)3d\ ^4F_{9/2}$	507 815	708 619	3				21
89.197	$3s3p(^{3}P^{\circ})3d\ ^{4}P_{5/2}^{\circ}$	$3p^2(^3P)3d\ ^4F_{7/2}$	501 474	705 891	2				21
88.971	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2$ 2 $D_{3/2}$	7 544	212 053		1.4 - 2	9.5 + 7	\mathbf{E}	12°,98*
87.654	3/2	5/2	7 544	212 608		2.3 - 1	1.1 + 9	D	12°,98*
71.574	1/2	3/2	0	212 053		1.5 - 1	1.1 + 9	D	12°,98*
82.302	$3s3p(^{1}P^{o})3d^{2}F^{o}_{7/2}$	$3p^2(^3{ m P})3d\ ^2{ m F}_{7/2}$	595 023	802 362	1				21
53.641	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	$3p^2(^3P)3d\ ^4D_{7/2}$	501 474	721 913	3				21
124.901	$3s3p(^{3}P^{\circ})3d^{4}F_{7/2}^{\circ}$	$3p^2(^3P)3d^4F_{5/2}$	468 204	703 548	1				21
121.352	9/2	9/2	471 285	708 619	5				21
121.025	3/2	3/2			2				21
120.82	5/2	5/2	465 910	703 548	2				21
20.737	7/2	7/2	468 204	705 891	4				21
116.69 115.932	5/2	7/2	465 910	705 891	1bl				21
110.932	7/2	9/2	468 204	708 619	1				21
110.880	$3s3p(^{1}P^{\circ})3d^{2}F_{7/2}^{\circ}$	$3p^2(^3P)3d^2D_{5/2}$	595 023	838 407	2				21
109.172	5/2	3/2	596 470	840 866	1				21
110.220	$3s3p(^{3}P^{\circ})3d^{2}F^{\circ}_{7/2}$	$3p^2(^1S)3d^2D_{5/2}$	T40 140	200.000					0.1
107.198	•	•	549 148 543 166	792 920 788 744	3 2				21
101.130	5/2	3/2	343 100	100 144	2				21
108.864 ^C	$3s^23d^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	345 859	590 439		8.4 - 3	8.2 + 7	${f E}$	98*
407.957 ^C	3/2	3/2	345 315	590 439		9.6 - 3	1.0+8	\mathbf{E}	98*
103.273	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	$3p^2(^3P)3d^2D_{5/2}$	590 439	838 407	3				21
101.347	$3s^23d\ ^2{ m D}_{5/2}$	3s3p(¹ P°)3d ² F° _{7/2}	345 859	595 023		2.1	1.0 : 10		100 10 00
399.025 ^C			345 859 345 859	595 023 596 470		3.1	1.8+10	E	17°, 19, 20, 98
398.174	5/2 3/2	5/2 5/2		596 470 596 470		1.3 - 1 2.2	8.7+8 $1.6+10$	E E	98* 17°, 20, 98*
400.965	3s3p(³ P°)3d ⁴ D° _{7/2}	$3p^2(^3P)3d^{-4}P_{5/2}$		757 219		2.2	1.0 / 10	Б	
	.,	•		101 219	2				21
399.797	$3s3p^2$ 2 D _{5/2}	$3p^{3} {}^{2}P_{3/2}^{\circ}$	212 608	462 709		6.0 - 1	6.4+9	D	17°, 19, 20, 98
399.797	3/2	1/2	010 050	462 142		3.8 - 1	7.8 + 9	D	17°, 19, 20, 98
399.12	3/2	3/2		462 709		7.6 - 2	7.8 + 8	D	19°, 20, 98*
398.994	3s3p(³ P°)3d ⁴ F° _{9/2}	$3p^2(^3P)3d^4D_{7/2}$	471 00°	701 010	9				21
120.224	эвэр(г) за г _{9/2}	op (P)3a D _{7/2}		721 913					21
			160 001	710 040					0.1
397.397 394.383	7/2 5/2	5/2 3/2	10-0-0	719 846 719 471					$\begin{array}{c} 21 \\ 21 \end{array}$

Ti x - Continued

Wave- length (Å)	Lower	Classification	Upper	Energy Levels	s (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
397.093 ^L	$3s3p(^3P^\circ)3d$	l ⁴ F _{3/2}	$3p^2(^3P)3d^{2}P_{1/2}$			1				21
392.012	$3s3p(^3\mathrm{P}^\mathrm{o})3d$	4P _{3/2}	$3p^2(^3\mathrm{P})3d\ ^4\mathrm{P}_{3/2}$	502 940	758 024	1				21
390.016	$3s3p^{2}$	⁴ P _{5/2}	$3p^{3} {}^{4}S_{3/2}^{\circ}$	167 309	423 713		1.0	1.1+10	D	15,16°,98*
383.913	_	3/2	3/2	163 257	423 713		6.8 - 1	7.7+9	D	15,16°,98*
379.780		1/2	3/2	160 409	423 713		3.6 - 1	4.1+9	D	15,16°,98*
389.237	$3s^{2}3p$	² P _{3/2}	$3s3p^2$ 2 S _{1/2}	7 544	264 456		1.2 - 1	2.7 + 9	D	12°, 15, 98*
378.135		1/2	1/2	0	264 456		3.0 - 1	6.9+9	D	12°, 15, 98*
388.414	$3s3p(^{3}P^{o})3a$	l ² F _{5/2}	$3p^2(^3P)3d\ ^2F_{5/2}$	543 166	800 623	2				21
374.031	$3s^23d$	$^{2}D_{5/2}$	3s3p(1P°)3d 2P°	345 859	613 252					17°,19
374.031		3/2	1/2	345 315	$612\ 628$		8.4 - 1	2.1 + 10	D	17°, 19, 20, 98*
373.3		3/2	3/2	345 315	613 252	bl				20
369.038	$3s^23d$	$^{2}D_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	345 315	616 264					17°, 19, 20
368.564		5/2	5/2	345 859	617 188		1.6	1.3+10	\mathbf{E}	17°, 19, 20, 98*
367.819 ^C		3/2	5/2	345 315	617 188		6.4 - 2	5.4+8	E	98*
365.628	$3s^23r$	P _{3/2}	$3s3p^2 {}^2P_{1/2}$	7 544	281 051		4.8 - 1	1.2+10	D	11,12°,98*
360.133	•	3/2	3/2	7 544	285 220		1.70	2.19+10	C-	11,12°,98*
355.815		1/2	1/2	0	281 051		5.2 - 1	1.3+10	Ď	11,12°,98*
350.610		1/2	3/2	0	285 220		3.44 - 1	4.68+9	C-	11,12°,98*
363.943	3s3p(1P°)3a	$l^{2}F_{5/2}^{o}$	$3s3d^2$ 2 $G_{7/2}$	596 470	871 238	2				21
361.956	,	7/2	9/2	595 023	871 300	3				21
355.119	$3s3p(^3P^{\circ})3d$	$l^{2}D_{3/2}^{o}$	$3p^2(^3P)3d^2F_{5/2}$	519 034	800 623	1				21
353.026		5/2	7/2	519 113	802 362	1				21
346.181 ^C	$3s3p^2$	$^{2}D_{5/2}$	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	212 608	501 474		2.3 - 2	2.1+8	E	98*
341.087	$3s3p(^1P^{\circ})3d$	$l^2\mathrm{D}_{3/2}^{\mathrm{o}}$	$3s3d^2\ ^2{ m F}_{5/2}$	616 264	909 444	2				21
338.745 ^C	$3s3p^2$	$^{2}D_{5/2}$	$3s3p(^3P^{\circ})3d\ ^4D^{\circ}_{7/2}$	212 608	507 815		9.0 - 3	6.5+7	E	98*
334.255	$3p^3$	¹ ² D _{5/2}	$3p^2(^3P)3d\ ^2P_{3/2}$	414 365	713 538	2				21
333.943 ^C	$3s3p^{2}$	² ⁴ P _{3/2}	$3p^{3} {}^{2}P_{3/2}^{\circ}$	163 257	462 709		6.4 - 3	9.4 + 7	E	98*
330.797 ^C		1/2	3/2	160 409	462 709		2.6 - 3	4.1+7	E	98*
327.634 ^C	$3s3p^2$	² ² P _{3/2}	3s3p(3P°)3d 2P°	285 220	590 439		5.6 - 1	8.5+9	D	98*
324.748 ^C	-	3/2	1/2	285 220	593 151		1.1 - 1	3.6+9	D	98*
323.219 ^C		1/2	3/2	281 051	590 439		6.6 - 2	1.1+9	D	98*
320.410 ^C		1/2	1/2	281 051	593 151		4.4 - 1	1.5+10	D	98*
326.285	2 c2 m2	² ² D _{5/2}	3s3p(³ P°)3d ² D _{5/2}	212 608	K10 110					179 10 00
325.743	555p	$\frac{D_{5/2}}{3/2}$	$383p(P)3a D_{5/2}$	212 008	519 113 519 034					17°, 19, 20 17°, 19, 20
206 752	~ ~ .	*	•						_	,
306.758 304.233	3 <i>s</i> 3 <i>p</i>	² S _{1/2}	$3s3p(^{3}P^{\circ})3d^{2}P^{\circ}_{3/2}$	264 456 264 456	590 439 593 151		1.4 $4.4 - 1$	2.5+10 $1.6+10$	D D	17°, 19, 20, 98° 17°, 19, 20, 98°
										. , .
305.429 ^C	$3s3p^2$	$^{2} {}^{2}P_{3/2}$	$3s3p(^{1}P^{o})3d^{2}P_{1/2}^{o}$	285 220	612 628		1.54 - 1	5.5 + 9	C-	98*
304.867 301.589 ^C		3/2	3/2	285 220	613 252				_	17°, 20
301.589° 301.028		1/2	1/2	281 051	612 628		1.8 - 1	6.7 + 9	D	98*
		1/2	3/2	281 051	613 252					17°, 20
302.519 ^C	$3s3p^2$	2 2 2 2 2	$3s3p(^{3}P^{\circ})3d\ ^{2}F_{5/2}^{\circ}$	212 608	543 166		9.6 - 2	1.2 + 9	\mathbf{E}	98*
302.024 297.138		3/2	5/2	212 053	543 166		8.0 - 1	9.6+9	E	17°, 19, 20, 98
231.100		5/2	7/2	212 608	549 148		1.1	1.1+10	E	17°, 19, 20, 98
302.024	$3s3p^2$	2 2 2 2 2	$3s3p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	285 220	616 264					17
301.254		3/2	5/2	285 220	617 188		3.5	4.3 + 10	E	17°, 19, 20, 98
298.303		1/2	3/2	281 051	616 264					17°, 20
299.840	3p	3 4S _{3/2}	$3p^2(^3P)3d^4P_{5/2}$	423 713	757 219	2				21
299.840 299.13 298.649	3p	³ ⁴ S _{3/2} _{3/2}	$3p^2(^3P)3d\ ^4P_{5/2}$	423 713 423 713 423 713	757 219 758 024	2 2bl				21 21

Ti x - Continued

Wave-	Classificat	on	Energy Level	s (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
299.223	$3s3p^2 {}^4P_{5/2}$	3s3p(³ P°)3d ⁴ P° _{5/2}	167 309	501 474		3.4 - 1	4.1+9	D	17°,98*
97.972	5/2	3/2	167 309	502 940					17
95.668 ^C		•	163 257	501 474		1.1	1.4+10	D	98*
93.336 ^C	3/2	5/2	163 257	504 163		4.4 - 1		E	98*
91.938	3/2	1/2	160 409	502 940		4.4 - 1	1.8+10	E	17
90.93	1/2 1/2	3/2 1/2	160 409	504 163		1.9 - 1	7.6+9	E	17, 18°, 98*
96.339	$3p^{3} {}^{2}\mathrm{D}^{\circ}_{5/2}$	$3p^2(^1D)3d^{2}D_{5/2}$	414 365	751 816	2				21
294.328	$\frac{3p}{5/2}$	$3p \ (D)3u \ D_{5/2}$	414 303	753 154	2bl				21
206.040		$3s^23d\ ^2D_{3/2}$	7 5 4 4	045 015		0.0 1	F 9 1 0	D	179 00*
296.040	$3s^23p^{-2}P_{3/2}^{\circ}$	•	7 544	345 315		2.8 - 1	5.3+9	D	17°,98*
295.556 289.576	3/2 1/2	5/2 3/2	7 544 0	345 859 345 315		$\frac{2.3}{1.3}$	2.9+10 $2.5+10$	D D	11,17°,98*,103 11,17°,98*,103
						2.0	2.0 10	2	
293.956	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{3}P^{o})3d^{4}D_{3/2}^{o}$	167 309	507 492					17
93.665	5/2	7/2	167 309	507 815		3.1	2.97 + 10	C	11,17°,98*
93.643 ^C	5/2	5/2	167 309	507 859		1.3	1.7 + 10	D	98*
91.037	3/2	1/2	163 257	506 849		4.0 - 2	1.6 + 9	\mathbf{E}	17,18°,98*
90.528	3/2	3/2	163 257	507 492					11, 17°
290.226	3/2	5/2	163 257	507 859		8.4 - 1	1.1+10	D	11,17°,98*
288.650 ^C		1/2	160 409	506 849		5.8 - 1	2.3 + 10	\mathbf{E}	98*
	1/2						2.0 / 10		
287.2	$3s3p^2$ 2 S _{1/2}	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	264 456	612 628		2.8 - 1	1.1 + 10	Ð	20°,98*
286.6	1/2	3/2	264 456	613 252	bl				20
261.890 ^C	$3s3p^2 {}^4P_{5/2}$	$3s3p(^3P^{\circ})3d\ ^2F^{\circ}_{7/2}$	167 309	549 148		6.6 - 3	7.9+7	E	98*
261.494	$3s3p^{2-2}D_{5/2}$	$3s3p(^{1}P^{o})3d^{2}F_{7/2}^{o}$	212 608	595 023		1.8	2.3+10	E	17°, 19, 20, 98*
260.510 ^C	•	•	212 608	596 470		7.8 - 2	1.3+9	E	98*
260.142	5/2 3/2	5/2 5/2	212 053	596 470		1.2	2.1+10	E	17°, 19, 20, 98*
249.641 ^C	$3s3p^2$ $^2D_{3/2}$	$3s3p(^{1}P^{o})3d\ ^{2}P_{1/2}^{o}$	212 053	612 628		3.4 - 3	1.9+8	E	98*
232.542 ^C	$3s3p^2 \ ^4P_{1/2}$	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	160 409	590 439		2.4 - 3	7.3+7	E	98*
187.35	$3s^23d\ ^2{ m D}_{3/2}$	$3s^24p\ ^2P_{1/2}^o$	345 315	879 100					19
186.96	5/2	3/2	345 859	880 700					19
149.71	$3s3p^2$ 2 D _{5/2}	$3s^24p\ ^2P_{3/2}^{\circ}$	212 608	880 700					19
142.687	$3s^23d\ ^2{ m D}_{5/2}$	$3s^24f ^2F^{\circ}_{7/2}$	945 950	1 040 710					• •
142.595				1 046 712					11
142.000	3/2	5/2	345 315	1 046 623					11
126.651	$3s^23p^2P_{3/2}^o$	$3s^24s$ $^2S_{1/2}$	7 544	797 113					11
125.456	1/2	1/2	_	797 113					11
124.391	$3s3p^2 {}^4P_{5/2}$	3s3p4s ⁴ P° _{3/2}	167 309	971 208					11
124.143	•		160 057	968 754					
123.703	3/2	1/2	160 409	968 754					11
123.657	1/2	1/2	10-000						11
123.331	5/2	5/2		975 983					11
123.036	1/2 3/2	3/2 5/2	100 055	971 208 975 983					11 11
119.891	$3s3p^2 {}^2D_{5/2}$	$3s^24f \ ^2F^{\circ}_{7/2}$							
119.822	383p D _{5/2} 3/2	38-4J F _{7/2} 5/2		1 046 712 1 046 623					11 11
									~ *
104.568	$3s^23d\ ^2{ m D}_{5/2}$	$3s^25f^{-2}F_{7/2}^{o}$	345 859	1 302 204					11
104.516	3/2	5/2		1 302 125					11
102.106	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s^24d\ ^2{ m D}_{5/2}$	7 544	000.010					
			_	986 919					11
101.353	1/2	3/2	0	986 655	ı				11
91.855	$3s^23d^{2}D_{5/2}$	$3s^26f ^2F^o_{7/2}$	345 859	1 434 560)				11
91.806	3/2	5/2		1 434 587					11
05.060		•							
85.262	$3s^23p\ ^2P_{3/2}^{o}$	$3s^25s \ ^2S_{1/2}$		1 180 390					11
84.711	1/2	1/2	0	1 180 390)				11
79.105	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^25d\ ^2{ m D}_{5/2}$	7 544	1 271 680)				11
78.650	1/2	3/2		1 271 460					11
70 625	$3s^23p\ ^2P_{3/2}^{\circ}$	0 20 1 20		1 400 45					
70.625 70.265	$3s^{-3}p^{-1}P_{3/2}$	$3s^26d\ ^2{ m D}_{5/2}$		1 423 470					11
	1/2	3/2	0	1 423 180	`				11

Ti xı

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
768.468 ^C	$3s3d$ $^{1}\mathrm{D}_{2}$	3p3d ¹ D ₂ °	564 613	694 742		2.0 - 1	4.5+8	D	98*
667.08	3s3p ¹ P ^o ₁	$3p^{2-1}D_2$	258 972	408 880		3.3 - 1	9.9+8	D	15,24°,98*
318.44	$3s3p^{-1}P_{1}^{o}$	$3p^2 \ ^3P_2$	258 972	420 667					24
568.98	$3s^{2} {}^{1}S_{0}$	$3s3p$ $^3P_1^{\circ}$	0	175 747		1.3 - 3	8.9+6	E	25°,98*,101
545.801 ^C	$3s3d$ $^3\mathrm{D}_3$	$3p3d$ $^3F_2^\circ$	500 633	683 850		2.7 - 3	1.2+7	E	98*
544.38	2	2	500 161	683 850		1.2 - 1	5.4+8	D	24°,98*
543.50	1	2	499 858	683 850		5.1 - 1	2.3+9	D	15,24°,98*
534.89 533.54	3	3	500 633 500 161	687 587 687 587		1.5 - 1 $8.5 - 1$	$4.9+8 \\ 2.8+9$	C C	24°,98* 15,24°,98*
522.67	2 3	3 4	500 633	691 958		$\frac{6.3 - 1}{1.30}$	3.53+9	Č	15,24°,98*
460.39	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	564 613	781 821		2.7	1.3+10	D	24°,98*
446.71	$3s3p\ ^{1}P_{1}^{o}$	$3p^{2} {}^{1}S_{0}$	258 972	482 832		3.6 - 1	1.2+10	C	15,24°,98*
446.30	$3s3d$ $^3\mathrm{D}_3$	3p3d ³ P ₂ °	500 633	794 607					
435.042 ^C		_		724 697		20 1	7010	C	24
433.83	1 1	0	499 858 499 858	729 721 730 362		2.0 - 1	7.0+9	C	98* 24
443.51	$3s3d$ $^3\mathrm{D}_2$	$3p3d$ $^3D_1^{\circ}$	500 161	725 636					24
434.90			500 161	730 567		1.02	5.1 + 9	С	15, 24°, 98*
434.016 ^C	3 2	3	500 161	730 567		1.8 - 1	9.1 + 8	C	98*
433.52	2	2	500 161	730 835		1.0 1	5.1 (6	O	24
439.75	$3s3d$ $^{1}\mathrm{D_{2}}$	$3p3d$ $^{1}P_{1}^{o}$	564 613	791 982		7.5 - 1	8.6+9	D	24°,98*
439.54	$3s3p$ $^3P_2^{\circ}$	$3p^{2-1}D_2$	181 371	408 880					24
428.94	1	2	175 747	408 880					24
429.62	$3s3p$ $^3P_2^{\circ}$	$3p^2 \ ^3P_1$	181 371	414 132		4.1 - 1	4.9+9	С	24°,98*,100
425.78	1	0	175 747	410 610		3.3 - 1	1.2 + 10	Ċ	24°, 98*, 100
419.49	1	1	175 747	414 132		2.5 - 1	3.1 + 9	C	24°,98*,100
417.89	2	2	181 371	420 667		1.12	8.6 + 9	C-	24°,98*,100
415.08	0	1	173 216	414 132		3.4 - 1	4.4 + 9	C	24°, 98*, 100
408.29	1	2	175 747	420 667		3.6 - 1	2.9 + 9	C-	24°, 98*, 100
417.734	$3p3d$ 1 P $_{1}^{\circ}$	$3d^{2} {}^{1}\mathrm{D}_{2}$	791 982	1 031 380					28
399.218	$3p3d$ $^1\mathrm{F}^{\mathrm{o}}_3$	$3d^{2}$ ${}^{1}G_{4}$	781 821	1 032 311		3.08	1.45+10	C-	26°, 27, 28, 98*
386.14	$3s^{2}$ $^{1}S_{0}$	$3s3p$ $^{1}P_{1}^{o}$	0	258 972		9.95 - 1	1.48+10	E	22,24°,98*,10
363.68	$3p^{2-1}D_2$	$3p3d$ $^3F_2^o$	408 880	683 850					24
359.526	$3p3d$ $^3\mathrm{D_2^o}$	$3d^{2} {}^{3}F_{3}$	730 835	1 008 980					26°, 27, 28
358.386	3 <i>p</i> 3 <i>a</i> D ₂	3 <i>a</i> F3	730 567	1 008 980					26°, 27, 28 26°, 27, 28
353.484	1	2	725 636	1 008 532					26°, 27, 28
250 511	9.01350	o ·2 3—	#00.00	. 050 751					am ass
359.511 351.782	$3p3d \ ^{3}P_{1}^{\circ}$	$3d^{2} {}^{3}F_{2}$	730 362 724 697	1 008 532 1 008 980					27, 28° 26
349.82	$3p^{2-1}\mathrm{D}_2$	$3p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	408 880	694 742		1.1	1.1+10	D	15,24°,98*
328.92	$3p^2 \ ^3P_2$	$3p3d$ $^3P_2^{\circ}$	420 667	724 697					24
322.00	1	2	414 132	724 697					24
316.87	1	0	414 132	729 721		2.1 - 1	1.4 + 10	\mathbf{C}	24°,98*
316.23	1	1	414 132	730 362					24
328.543	$3p3d$ $^3\mathrm{D_2^o}$	$3d^2 \ ^3P_2$	730 835	1 035 200					28
328.253	3	3 <i>u</i> 1 ₂	730 567	1 035 200					28
323.571	1	0	725 636	1 034 687					28
328.40	$3p3d\ ^{3}P_{1}^{\circ}$	$3d^{2} {}^{3}P_{1}$	730 362	1 034 869					28
328.043	1	2	730 362	1 035 200					28
322.393^{T}	2	1	724 697	1 034 869					28
327.18	$3s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3s3d$ $^{1}\mathrm{D}_{2}$	258 972	564 613		2.3	2.9+10	D	15, 22, 24°, 98*
323.47	$3p^{2} {}^{1}S_{0}$	3p3d ¹ P ₁ °	482 832	791 982		8.5 - 1	1.8+10	C	15,24°,98*
	OP 50	0 <i>p</i> 30 1 1	102 002	131 302		0.0 - 1	1.0710		10,44,90

Ti XI - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
				-					
322.69	$3p^2 \ ^3P_2$	$3p3d\ ^{3}D_{3}^{o}$	420 667	730 567		2.17	1.99+10	C-	15,24°,98*
322.40	2	2	420 667	730 835					24
317.43 315.75	0	1	410 610	725 636					24
010.10	1	2	414 132	730 835					24
314.805	$3p3d\ ^{3}F_{4}^{o}$	$3d^{2}$ 3 F ₄	691 958	1 009 605					26°, 27, 28
311.144	3	3	687 587	1 008 980					26°, 27, 28
307.996	2	2	683 850	1 008 532					26°, 27, 28
	_								, ,
313.985 ^C	$3s3p\ ^{3}P_{2}^{o}$	$3s3d$ $^3\mathrm{D}_1$	181 371	499 858		2.0 - 2	4.5 + 8	D	98*
313.69	2	2	181 371	500 161		2.9 - 1	3.9 + 9	$^{\rm C}$	22,24°,98*
313.22	2	3	181 371	500 633		1.7	1.6 + 10	\mathbf{C}	15, 22, 24°, 98
308.53 308.24	1	1	175 747	499 858		3.0 - 1	7.0+9	C	22, 24°, 98*
306.14	1	2	175747 173216	500 161 499 858		9.0 - 1	1.3+10	C	15, 22, 24°, 98'
500.14	o	1	113 210	499 000		4.0 - 1	9.5 + 9	C	22,24°,98*
310.85	$3p^{2-1}D_2$	$3p3d\ ^{3}\mathrm{D_{3}^{o}}$	408 880	730 567					24
297.055	$3p3d$ $^{1}\mathrm{D}_{2}^{o}$	$3d^{2} {}^{1}D_{2}$	694 742	1 031 380					26
268.13	$3p^{2} {}^{1}\mathrm{D_{2}}$	$3p3d\ ^{1}F_{3}^{o}$		701 001		1.2	1 0 1 10	D	
		-	408 880	781 821		1.3	1.8+10	D	24°,98*
261.027 ^C	$3p^2$ $^1\mathrm{D}_2$	$3p3d$ $^{1}P_{1}^{o}$	408 880	791 982		7.5 - 3	2.4+8	\mathbf{E}	98*
135.179	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s4f$ $^{1}F_{3}^{\circ}$	564 613	1 304 360					22
134.704	3p3d ¹ F ₃ °	$3p4f^{-1}G_4$	781 821	1 524 190					30°,31
129.055	$3p3d\ ^{3}\mathrm{D_{3}^{o}}$	$3p4f$ $^{3}F_{4}$	730 567	1 505 420					30
127.268	$3p3d\ ^3D_2^{\circ}$	$3p4f$ $^{3}D_{2}$							
	-		730 835	1 516 580					30
126.042	$3s3d$ $^3\mathrm{D}_3$	$3s4f$ $^3F_4^{\circ}$	500 633	1 294 040					22
125.979	2	3	500 161	1 293 940					22
125.940	1	2	499 858	1 293 870					22
124.138	$3p3d\ ^{1}\mathrm{D_{2}^{\circ}}$	$3p4f$ 3 F ₃	694 742	1 500 290					30
123.946	$3s3p^{-1}\mathrm{P}_{1}^{o}$	$3s4s$ $^{1}S_{0}$	258 972	1 065 780					22
123.070	$3p3d$ $^3F_3^o$	$3p4f$ 3G_4	607 507	1 500 100					
122.905			687 587 691 958	1 500 130					30
122.000	4	5	691 958	1 505 620					30
117.171	$3p^2 \ ^3P_1$	$3p4s$ $^3P_0^{\circ}$	414 132	1 267 600					22
116.910	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		414 132 420 667	1 276 040					$\begin{array}{c} 22 \\ 22 \end{array}$
116.387	0	2	410 610	1 269 840					22
116.028	1	2	414 132	1 276 040					22
			-						
115.015	$3s3p\ ^{3}P_{2}^{o}$	$3s4s ^3S_1$	181 371	1 050 850					22
114.272	1	1	175 747	1 050 850					22
113.940	o	1	173 216	1 050 850					22
311 664	2 2 15	0 1 - 0	400						
111.664	$3p^2$ $^1\mathrm{D}_2$	$3s4f\ ^{1}\mathrm{F}_{3}^{\mathrm{o}}$	408 880	1 304 360					22
110.019	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p4d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	564 613	1 472 620					20
110.010	333a 172	3p4a F 3	004 613	1 473 630					29
100.835	$3p^{2}$ $^{1}S_{0}$	$3p4d\ ^{1}P_{1}^{o}$	482 832	1 474 550					29
		_	102 002	1 114 000					23
100.591	$3s3p^{-1}P_{1}^{o}$	$3s4d$ $^{1}\mathrm{D}_{2}$	258 972	1 253 100					22
T	_								
96.731 ^T	$3p^2 \ ^3P_2$	$3p4d$ $^3\mathrm{D_3^o}$	420 667	1 454 460?					29
96.246	1	1	414 132	1 453 090					29
95.929	0	1	410 610	1 453 090					29
96.288	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s5f\ ^{1}{ m F}_{3}^{\circ}$	564 613	1 603 140					22
94.085	$3s3p$ $^3P_2^o$	0-4135	101 051	1 044 00-					
94.083		$3s4d$ $^3\mathrm{D}_2$	181 371	1 244 260					22
93.626	2	3	181 371	1 244 630					22
93.589	1	1 2	175 747 175 747	1 243 920 1 244 260					$\begin{array}{c} 22 \\ 22 \end{array}$
93.395	0	1	173 216	1 243 920					22
				_ 213 020					
93.909	$3p^{2} {}^{1}D_{2}$	$3p4d\ ^{1}\mathrm{F_{3}^{o}}$	408 880	1 473 630					29
00.000	<u> </u>	_							
90.966	$3s3d$ $^3\mathrm{D}_3$	$3s5f\ ^{3}\mathrm{F_{4}^{o}}$	500 633	1 599 960					22
90.927	2	3	500 161	1 599 940					22
90.908	1	2	499 858	1 599 850					22

Ti XI - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
87.725	$3s^{2}$ $^{1}S_{0}$	3s4p 1P1	0	1 139 920		2.94 - 1	8.5+10	С	22°,98*
85.290	$3s3p\ ^{3}\mathrm{P}_{2}^{o}$	$3p4p^{-3}D_{3}$	181 371	1 353 860					22
85.290	1	2	175 747	1 348 220					22
85.290	0	1	173 216	1 345 690					22
85.114	$3s3p\ ^{3}P_{2}^{o}$	$3p4p^{-3}P_{1}$	181 371	1 356 280					22
84.876	1	0	175 747	1 353 940					22
84.835	2	2	181 371	1 360 140					22
84.525	0	1	173 216	1 356 280					22
84.433	1	2	175 747	1 360 140					22
84.711	$3s3p\ ^{3}P_{2}^{o}$	$3p4p$ 3S_1	181 371	1 361 780					22
84.321	1	1	175 747	1 361 780					22
83.732	$3p^2$ 1 D ₂	$3s5f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	408 880	1 603 140					22
81.119	$3s3p^{-1}P_1^o$	$3s5s$ $^{1}\mathrm{S}_{0}$	258 972	1 491 740					22
79.076	$3s3d$ $^3\mathrm{D}_3$	3s6f 3F4	500 633	1 765 260					22
79.027	2	3	500 161	1 765 550					22
79.027	1	2	499 858	1 765 250					22
70 701	2 2 3 722	0 = 30							
76.731	$3s3p$ $^3P_2^{\circ}$	$3s5s \ ^{3}S_{1}$	181 371	1 484 620					22
76.403	1	1	175 747	1 484 620					22
75.415	$3s3p$ $^{1}P_{1}^{o}$	$3s5d$ $^{1}\mathrm{D_{2}}$	258 972	1 584 970					22
71.603	$3s3p\ ^{3}P_{2}^{o}$	$3s5d$ 3D_3	181 371	1 577 980					22
71.603	2	2	181 371	1 577 820					22
71.323	1	2	175 747	1 577 820					22
71.323	1	1	175 747	1 577 670					22
71.201	0	1	173 216	1 577 670					22
65.403	$3s^2$ 1 S ₀	$3s5p\ ^{1}{ m P}_{1}^{ m o}$	0	1 528 980		9.9 - 2	5.1+10	C	22°,98*
57.891	$3s^2$ 1 S ₀	$3s6p\ ^{1}P_{1}^{\circ}$	0	1 727 380					22
54.322	$3s^{2}$ $^{1}S_{0}$	$3s7p^{-1}P_{1}^{o}$	0	1 840 880					22

Ti xII

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	vels (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
1322.58	2p ⁶ 7h ² H°	$2p^68i$ 2 I	2 028 510	2 104 120				36
1322.58	$2p^67i$ $^2\mathrm{I}$	$2p^68k$ $^2\mathrm{K}^{\mathrm{o}}$	2 028 590	2 104 200				36
1321.08	$2p^67g$ ² G	$2p^68h$ $^2\mathrm{H}^{\circ}$	2 028 360	2 104 060				36
1308.42	$2p^67f$ $^2\mathrm{F}^{\mathrm{o}}$	$2p^68g$ ² G	2 027 670	2 104 100				36
1237.4 ^C	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^64p\ ^2{ m P}_{1/2}^{ m o}$	1 133 573	1 214 390	4.4 - 1	9.6+8	C	98*
1188.7 ^C	1/2	3/2	1 133 573	1 217 700	9.0 - 1	1.1+9	C	98*
964.35	$2p^64p\ ^2\mathrm{P_{3/2}^o}$	$2p^64d\ ^2{ m D}_{3/2}$	1 217 700	1 321 400	2.1 - 1	3.7+8	C	36°,98*
959.945 934.50	3/2 1/2	5/2 3/2	1 217 700 1 214 390	1 321 870 1 321 400	1.9 1.1	2.3+9 $2.1+9$	C C	33°, 98* 36°, 98*
961.41	$2p^66d$ $^2\mathrm{D}$	2p ⁶ 7p ² P°	1 899 530	2 003 550				36
858.43	$2p^66h^{-2}\mathrm{H^o}$	$2p^67i$ 2 I	1 912 100	2 028 590				36
857.55	$2p^66g^{-2}\mathrm{G}$	2p ⁶ 7h ² H°	1 911 900	2 028 510				36
849.54	2p ⁶ 6f ² F°	$2p^{6}7g^{-2}{ m G}$	1 910 650	2 028 360				36
780.37	$2p^66d$ $^2\mathrm{D}$	$2p^{6}7f^{2}F^{\circ}$	1 899 530	2 027 670				36
670.13	$2p^{6}6p^{-2}P_{3/2}^{o}$	$2p^67d$ ² D	1 871 440	2 020 670				36
576.50	$2p^65d\ ^2\mathrm{D_{3/2}}$	$2p^66p^{-2}{ m P}_{1/2}^{ m o}$	1 697 110	1 870 570	5.96 - 1	6.0+9	C	36°,98*
574.85	5/2	3/2	1 697 480	1 871 440	1.07	5.4 + 9	\mathbf{C}	36°,98*
573.62	3/2	3/2	1 697 110	1 871 440	1.2 - 1	6.2+8	D	36°,98*
517.26	$2p^65g^{-2}G$	$2p^66h^2$ H°	1 718 770	1 912 100				36
512.64	$2p^65f^{-2}F^{\circ}$	$2p^66g$ ² G	1 716 830	1 911 900				36
496.97 492.80	$2p^65p \ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 647 440 1 645 740	1 848 660 1 848 660	6.92 - 1 $3.4 - 1$	9.3+9 4.7+9	C C	36°, 98* 36°, 98*
479.883 ^S	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^6 3p \ ^2P_{1/2}^{\circ}$						
460.746 ^S	2p 33 31/2 1/2	2p 3p F _{1/2} 3/2	0	208 384 217 039	3.04 - 1 $6.40 - 1$	4.40+9 $5.02+9$	B B	33, 35°, 98' 33, 35°, 98'
469.11 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^66f$ $^2F_{5/2}^{\circ}$	1 697 480	1 910 650	1.7 - 1	8.8+8	D	98*
469.11 ^C	5/2	7/2	1 697 480	1 910 650	3.5	1.3+10	C	98*
468.78			1 697 300	1 910 650				36
468.30 ^C	3/2	5/2	1 697 110	1 910 650	2.5	1.2+10	C	98*
396.68 ^C	$2p^65p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2\mathrm{D_{3/2}}$	1 647 440	1 899 530	7.2 - 2	7.5+8	D	98*
396.68 ^C 394.03 ^C	3/2		1 647 440	1 899 530	6.4 - 1	4.5+9	C	98*
	1/2	3/2	1 645 740	1 899 530	3.54 - 1	3.80 + 9	С	98*
378.20 ^C	$2p^65s\ ^2{ m S}_{1/2}$	$2p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	1 606 160	1 870 570	1.3 - 1	3.12 + 9	C	98*
376.96 ^C	1/2	3/2	1 606 160	1 871 440	2.66 - 1	3.13+9	C	98*
351.012 ^S	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^6 3d^{-2}D_{3/2}$	217 039	501 927	1.45 - 1	1.97 + 9	В	33,35°,98
349.917 ^S 340.668 ^S	3/2	5/2	217 039	502 821	1.3	1.2+10	В	33,35°,98
340.668	1/2	3/2	208 384	501 927	7.52 - 1	1.08+10	В	33, 35°, 98
329.12 ^C	$2p^65f^{\ 2}\mathrm{F_{5/2}^o}$	$2p^67d\ ^2{ m D}_{3/2}$	1 716 830	2 020 670	5.2 - 2	7.9+8	D	98*
329.12 ^C	7/2	5/2	1 716 8 30	2 020 670	7.4 - 2	7.6 + 8	D	98*
329.12 ^C	5/2	5/2	1 716 830	2 020 670	3.7 - 3	3.8 + 7	\mathbf{E}	98*
326.72 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^{6}7p^{2}P_{3/2}^{\circ}$	1 697 480	2 003 550	1.77 - 1	2.76+9	C	98*
326.33 ^C	3/2	1/2	1 697 110	2 003 550	9.88 - 2	3.09 + 9	C	98*
326.33^{C}	3/2	3/2	1 697 110	2 003 550	2.0 - 2	3.1 + 8	D	98*
$324.87^{\rm L}$	$2p^53s3p^4D_{7/2}$	$2p^53s3d\ ^4{ m F}^{\circ}_{9/2}$						38
320.94	$2p^{6}5f^{2}F^{o}$	$2p^67g$ ² G	1 716 830	2 028 360				36

Ti XII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
308.32 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^65p^2P_{1/2}^{\circ}$	1 321 400	1 645 740	3.8 - 1	1.31+10	С	98*
307.15 ^C	5/2	3/2	1 321 870	1 647 440	6.6 - 1	1.2 + 10	C	98*
306.71 ^C	3/2	3/2	1 321 400	1 647 440	7.6 - 2	1.3+9	D	98*
302.86 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^67f$ $^2\mathbf{F_{5/2}^o}$	1 697 480	2 027 670	4.9 - 2	6.0+8	D	98*
302.86 ^C	5/2	7/2	1 697 480	2 027 670	9.6 - 1	8.9 + 9	C	98*
302.52 ^C	3/2	5/2	1 697 110	2 027 670	6.8 - 1	8.3+9	C	98*
296.95 ^C	$2p^64f$ $^2{ m F}^{ m o}_{5/2}$	$2p^65d\ ^2{ m D}_{3/2}$	1 360 350	1 697 110	1.19 - 1	2.25 + 9	$^{\mathrm{C}}$	98*
296.75 ^C	7/2	5/2	1 360 500	1 697 480	1.69 - 1	2.13 + 9	$^{\rm C}$	98*
296.62 ^C	5/2	5/2	1 360 350	1 697 480	8.4 - 3	1.1+8	D	98*
292.77 ^C	$2p^65p^{-2}P_{3/2}^{\circ}$	$2p^67s\ ^2{ m S}_{1/2}$	1 647 440	1 989 000	1.32 - 1	5.1+9	C	98*
291.32 ^C	1/2	1/2	1 645 740	1 989 000	6.6 - 2	2.6 + 9	С	98*
279.03	$2p^64f$ $^2\mathrm{F}^{\mathrm{o}}$	$2p^65g^{-2}\mathrm{G}$	1 360 430	1 718 770				36
267.93 ^C	$2p^65p^2P_{3/2}^{\circ}$	$2p^67d\ ^2{ m D_{3/2}}$	1 647 440	2 020 670	2.7 - 2	6.3+8	D	98*
267.93 ^C	3/2	5/2	1 647 440	2 020 670	2.5 - 1	3.9 + 9	C	98*
266.72 ^C	1/2	3/2	1 645 740	2 020 670	1.4 - 1	3.2 + 9	C	98*
258.24	$2p^65f$ $^2\mathrm{F}^{\mathrm{o}}$	$2p^68g$ $^2\mathrm{G}$	1 716 830	2 104 100				36
257.43 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^o}$	$2p^65s \ ^2S_{1/2}$	1 217 700	1 606 160	4.8 - 1	2.4+10	С	98*
255.25 ^C	1/2	1/2	1 214 390	1 606 160	2.4 - 1	1.3+10	\mathbf{C}	98*
256.45 ^C	$2p^65d\ ^2\mathrm{D}_{5/2}$	$2p^68p\ ^2\mathrm{P_{3/2}^{\circ}}$	1 697 480	2 087 420	6.6 - 2	1.7+9	C	98*
256.21 ^C	3/2	1/2	1 697 110	2 087 420	3.6 - 2	1.8+9	D	98*
256.21 ^C	3/2	3/2	1 697 110	2 087 420	7.2 - 3	1.8+8	D	98*
253.19 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2F_{5/2}^{\circ}$	1 321 870	1 716 830	2.0 - 1	3.5+9	D	98*
253.19 ^C	5/2	7/2	1 321 870	1 716 830	4.0	5.2+10	C	98*
253.07			1 321 640	1 716 830				36
252.89^{C}	3/2	5/2	1 321 400	1 716 830	2.8	4.8+10	$^{\rm C}$	98*
246.20 ^C	$2p^65d\ ^2{ m D_{5/2}}$	$2p^68f \ ^2F_{5/2}^{\circ}$	1 697 480	2 103 660	2.2 - 2	4.1+8	D	98*
246.20 ^C		•	1 697 480	2 103 660	4.3 - 1	5.9+9	C	98*
245.97 ^C	5/2 3/2	7/2 5/2	1 697 110	2 103 660	3.1 - 1	5.7+9	č	98*
233.62 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^{\circ}}$	$2p^65p^{-2}P_{1/2}^{\circ}$	1 217 700	1 645 740	E2	2.05+6	С	98*
232.70 ^C		· · · · · · · · · · · · · · · · · · ·	1 217 700	1 647 440	E2	1.05+6	C	98*
230.92 ^C	3/2 1/2	3/2 3/2	1 214 390	1 647 440	E2	1.03+6 $1.09+6$	C	98*
221.50 ^C	$2p^65p^{-2}P_{3/2}^{\circ}$	$2p^68d^{-2}D_{5/2}$	1 647 440	2 098 900	1.2 - 1	2.8+9	С	98*
221.50 ^C	· ·	•	1 647 440	2 098 900	1.2 - 1 $1.4 - 2$	4.7+8	D	98*
220.67 ^C	3/2 1/2	3/2 3/2	1 645 740	2 098 900	6.8 - 2	2.4+9	C	98*
208.59 ^C	$2p^64p~^2\mathrm{P_{3/2}^o}$	$2p^65d^{2}D_{3/2}$	1 217 700	1 697 110	7.6 - 2	3.0+9	D	98*
208.45	3/2	5/2	1 217 700	1 697 480	6.8 - 1	1.8+10	C	36°,98*
207.16 ^C	1/2	3/2	1 214 390	1 697 110	4.0 - 1	1.5+10	C	98*
200.35 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^o}$	$2p^65f^2F_{5/2}^{o}$	1 217 700	1 716 830	E2	1.27+6	C-	98*
200.35 ^C	3/2	7/2	1 217 700	1 716 830	E2	5.7+6	C	98*
199.03 ^C	1/2	5/2	1 214 390	1 716 830	E2	4.6 + 6	C	98*
195.25 ^C	$2p^64s \ ^2S_{1/2}$	$2p^65p^2P_{1/2}^{\circ}$	1 133 573	1 645 740	1.2 - 1	1.1+10	C	98*
194.60 ^C	1/2	3/2	1 133 573	1 647 440	2.52 - 1		C	98*
182.09 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^66p^2P_{1/2}^{o}$	1 321 400	1 870 570	6.04 - 2	6.1+9	C	98*
181.96 ^C	5/2	3/2	1 321 870	1 871 440	1.1 - 1	5.5+9	C	98*
181.80^{C}	3/2	3/2	1 321 400	1 871 440	1.2 - 2	6.2+8	D	98*
181.28	$2p^64f$ $^2\mathrm{F}^{\circ}$	$2p^66g$ 2 G	1 360 430	1 911 900				36
177.45 ^C	$2p^64s^2S_{1/2}$	$2p^65d^2D_{3/2}$	1 133 573	1 697 110	E2	2.57+6	С	98*
177.33 ^C	1/2	5p ou D3/2 5/2	1 133 573	1 697 480	E2	2.57+6	C	98*
	-,-	0/2		300		,	~	

Ti XII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
169.84 ^C	$2p^64d\ ^2\mathrm{D}_{5/2}$	$2p^66f \ ^2F^{\circ}_{5/2}$	1 321 870	1 910 650	5.0 - 2	1.9+9	D	98*
169.84 ^C	5/2	7/2	1 321 870	1 910 650	1.0	2.9 + 10	C	98*
169.81			1 321 640	1 910 650				36
169.71 ^C	3/2	5/2	1 321 400	1 910 650	7.2 - 1	2.8+10	C	98*
158.54 ^C	$2p^6 3d^{-2}D_{5/2}$	$2p^64s$ $^2S_{1/2}$	502 821	1 133 573	$\mathbf{E2}$	2.13+6	C	98*
158.32 ^C	3/2	1/2	501 927	1 133 573	E2	1.44 + 6	C	98*
158.49 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^o}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 217 700	1 848 660	9.2 - 2	1.2+10	C	98*
157.66 ^C	1/2	1/2	1 214 390	1 848 660	4.6 - 2	6.2+9	C	98*
153.17 ^C	$2p^64p~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^66p\ ^2\mathrm{P}^{\circ}_{1/2}$	1 217 700	1 870 570	E2	1.32+6	C	98*
151.48 ^C	$2p^64f\ ^2{ m F}^{\circ}_{7/2}$	$2p^67d\ ^2{ m D}_{5/2}$	1 360 500	2 020 670	9.6 - 3	4.7+8	D	98*
151.44 ^C	5/2	3/2	1 360 350	2 020 670	6.6 - 3	4.8+8	D	98*
151.44 ^C	5/2	5/2	1 360 350	2 020 670	4.8 - 4	2.3 + 7	E	98*
146.70 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^67p$ $^2\mathrm{P_{3/2}^{\circ}}$	1 321 870	2 003 550	4.0 - 2	3.0+9	D	98*
146.60^{C}	3/2	1/2	1 321 400	2 003 550	2.3 - 2	3.5+9	D	98*
146.60^{C}	3/2	3/2	1 321 400	2 003 550	4.4 - 3	3.4+8	E	98*
146.66 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^{\circ}}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	1 217 700	1 899 530	2.9 - 2	2.2+9	D	98*
146.66 ^C	3/2	5/2	1 217 700	1 899 530	2.7 - 1	1.4+10	c	98*
145.96 ^C	1/2	3/2	1 214 390	1 899 530	1.5 - 1	1.1 + 10	\mathbf{C}	98*
144.31 ^C	$2p^64p\ ^2\mathrm{P^o_{3/2}}$	$2p^66f^2F_{5/2}^{\circ}$	1 217 700	1 910 650	E2	6.3+5	C-	98*
144.31 ^C	3/2	7/2	1 217 700	1 910 650	E2	2.9+6	C	98*
143.62 ^C	1/2	5/2	1 214 390	1 910 650	E2	2.26+6	C	98*
141.68 ^C	$2p^64d^{-2}D_{5/2}$	$2p^67f^2F_{5/2}^{\circ}$	1 321 870	2 027 670	2.1 - 2	1.2+9	D	98*
141.68 ^C	5/2	7/2	1 321 870	2 027 670	4.1 - 1	1.7 + 10	C	98*
141.59 ^C	3/2	5/2	1 321 400	2 027 670	3.0 - 1	1.7+10	C	98*
140.361	$2p^6 3d^{-2} D_{3/2}$	$2p^64p^{-2}P_{1/2}^{\circ}$	501 927	1 214 390	1.7 - 1	2.9+10	C	33°,98*
139.884	5/2	3/2	502 821	1 217 700	3.1 - 1	2.6 + 10	C	33°,98*
139.71 ^C	3/2	3/2	501 927	1 217 700	3.5 - 2	3.0+9	D	98*
135.69^{C}	$2p^6 4s\ ^2{ m S}_{1/2}$	$2p^66p\ ^2\mathrm{P}^{\circ}_{1/2}$	1 133 573	1 870 570	4.0 - 2	7.3+9	C	98*
135.53 ^C	1/2	3/2	1 133 573	1 871 440	8.2 - 2	7.5 + 9	C	98*
130.63 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 321 870	2 087 420	2.0 - 2	1.9+9	D	98*
130.54 ^C	3/2	1/2	1 321 400	2 087 420	1.1 - 2	2.1+9	D	98*
130.54 ^C	3/2	3/2	1 321 400	2 087 420	2.2 - 3	2.1 + 8	E	98*
130.56 ^C	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	1 133 573	1 899 530	E2	1.98+6	С	98*
130.56^{C}	1/2		1 133 573	1 899 530	E2	1.98+6	Ċ	98*
129.65 ^C	$2p^64p^{-2}{ m P}_{3/2}^{ m o}$	$2p^67s^{-2}S_{1/2}$	1 217 700	1 989 000	3.5 - 2	7.0+9	D	98*
129.10 ^C	1/2	1/2	1 214 390	1 989 000	1.8 - 2	3.6+9	D	98*
127.91 ^C	$2p^64d^{-2}D_{5/2}$	•	4 004 080	0.100.000			~	
127.91 C	$2p^{-}4a^{-}D_{5/2}$	$2p^68f \ ^2F^o_{7/2}$	1 321 870 1 321 870	2 103 660 2 103 660	2.2 - 1 $1.1 - 2$	1.1+10 7.6+8	C D	98* 98*
	3/2	5/2			1.1 2	1.010	D	30
127.84 127.83 ^C	0.40		1 321 640 1 321 400	2 103 660 2 103 660	1.6 - 1	1.1+10	С	36 98*
	3/2	5/2	1 021 400	2 103 000	1.0 - 1	1.1710	O	30
124.54 ^C 124.54 ^C	$2p^{6}4p^{-2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$2p^67d\ ^2{ m D}_{3/2}$	1 217 700	2 020 670	1.4 - 2	1.5 + 9	D	98*
124.54 124.03 ^C	3/2	5/2	1 217 700 1 214 390	2 020 670 2 020 670	1.3 - 1 $7.4 - 2$	9.3+9 8.0+9	C C	98* 98*
	1/2	3/2	1 211 350	2 020 010	1.4 – 2	6.UT3	C	30
123.46 ^C	$2p^{6}4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$2p^67f\ ^2\mathrm{F_{7/2}^o}$	1 217 700	2 027 670	E2	1.45+6	C	98*
122.96 ^C	1/2	5/2	1 214 390	2 027 670	E2	1.15+6	C	98*
122.16 ^C	$2p^63d^{-2}D_{5/2}$	$2p^64d\ ^2{ m D}_{3/2}$	502 821	1 321 400	E2	1.2+6	D	98*
122.09 ^C	5/2	5/2	502 821	1 321 870	E2	3.20+6	C	98*
122.03 ^C	3/2	3/2	501 927	1 321 400	E2	2.81+6	С	98*
116.61 ^C	$2p^63d^{-2}D_{5/2}$	$2p^{6}4f^{2}F_{5/2}^{\circ}$	502 821	1 360 350	2.6 - 1	2.1 + 10	D	98*
116.594 ^S	5/2	7/2	502 821	1 360 500	5.2	3.2+11	C	33, 35°, 9
116.493 ^S	3/2	5/2	501 927	1 360 350	3.6	3.0 + 11	$^{\rm C}$	33,35°,9

Ti XII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	Reference
113.48 ^C	$2p^64p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^6 8d\ ^2\mathrm{D_{5/2}}$	1 217 700	2 098 900	7.52 - 2	6.5+9	С	98*
113.48 ^C	3/2	3/2	1 217 700	2 098 900	8.4 - 3	1.1 + 9	D	98*
113.06 ^C	1/2	3/2	1 214 390	2 098 900	4.18 - 2	5.5 + 9	C	98*
112.73 ^C	$2p^64s\ ^2{ m S}_{1/2}$	$2p^67d\ ^2\mathrm{D}_{3/2}$	1 133 573	2 020 670	$\mathbf{E}2$	1.4+6	D	98*
112.73 ^C	1/2	5/2	1 133 573	2 020 670	E2	1.4+6	D	98*
109.107	$2p^63p\ ^2\mathrm{P_{3/2}^o}$	$2p^64s\ ^2{ m S}_{1/2}$	217 039	1 100 580				0.0
108.086	2 <i>p</i> 3 <i>p</i> F _{3/2} 1/2	$2p + 4s + 5_{1/2}$	208 384	1 133 573 1 133 573				33 33
		•	200 001	1 100 010				33
100.266 ^C	$2p^63p^{-2}P^{o}_{3/2}$	$2p^64p\ ^2\mathrm{P_{1/2}^o}$	217 039	1 214 390	$\mathbf{E2}$	1.36 + 7	C	98*
99.934 ^C 99.077 ^C	3/2	3/2	217 039	1 217 700	E2	6.9+6	C	98*
33.011	1/2	3/2	208 384	1 217 700	E2	7.2 + 6	С	98*
90.547	$2p^63p^{-2}\mathrm{P^o_{3/2}}$	$2p^64d\ ^2{ m D}_{3/2}$	217 039	1 321 400	9.2 - 2	1.9 + 10	D	33°,98*
90.512	3/2	5/2	217 039	1 321 870	8.56 - 1	1.16+11	C	33°, 98*
89.844	1/2	3/2	208 384	1 321 400	4.8 - 1	9.9 + 10	С	33°, 98*
87.465 ^C	$2p^63p^2P_{3/2}^{\circ}$	$2p^64f$ $^2\mathrm{F}^{\mathrm{o}}_{5/2}$	217 039	1 360 350	E2	1.23 + 7	C-	98*
87.454 ^C	3/2	7/2	217 039	1 360 500	E2	5.5+7	C	98*
86.808 ^C	1/2	5/2	208 384	1 360 350	E2	4.5 + 7	C	98*
87.426	$2p^6 3d\ ^2{ m D_{3/2}}$	$2p^65p^{-2}P_{1/2}^{\circ}$	501 927	1 645 740	2.5 - 2	1.1+10	D	33°, 98*
87.364	5/2	3/2	502 821	1 647 440	4.5 - 2	9.9+9	D	33°,98*
87.297 ^C	3/2	3/2	501 927	1 647 440	5.2 - 3	1.1 + 9	E	98*
83.706 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^65d^{2}D_{5/2}$	502 821	1 697 480	E2	1.5+6	D	98*
83.669 ^C	3/2	2p ou D _{5/2} 3/2	501 927	1 697 110	E2	1.3+6	D	98*
C		•						
82.372 ^C	$2p^63d^{-2}D_{5/2}$	$2p^65f$ $^2\mathrm{F}^{\mathrm{o}}_{5/2}$	502 821	1 716 830	4.8 - 2	7.9+9	D	98*
82.368 82.307	5/2 3/2	7/2 5/2	502 821 501 927	1 716 830 1 716 830	9.78 - 1 $6.88 - 1$	1.2+11 $1.13+11$	C D	33°,98* 33°,98*
	·	•			0.00	1.10 11		
82.344	$2p^63s\ ^2{ m S}_{1/2}$	$2p^64p\ ^2\mathrm{P_{1/2}^o}$	0	1 214 390	1.2 - 1	5.8 + 10	C	33°,98*
82.121	1/2	3/2	0	1 217 700	2.4 - 1	5.9+10	С	33°, 98*
75.677 ^C	$2p^63s\ ^2{ m S_{1/2}}$	$2p^64d^{2}D_{3/2}$	0	1 321 400	E2	2.74 + 7	C	98*
75.650^{C}	1/2	5/2	0	1 321 870	E2	2.76 + 7	C	98*
73.066 ^C	$2p^63d^2D_{5/2}$	$2p^66p\ ^2\mathrm{P}^{\circ}_{3/2}$	502 821	1 871 440	1.7 - 2	5.2+9	D	98*
73.065 ^C		•	501 927	1 871 440	9.2 - 3	5.2+9 $5.7+9$	D	98*
73.019 ^C	3/2 3/2	1/2 3/2	501 927	1 871 440	$\frac{3.2-3}{1.9-3}$	5.9+8	E	98*
	·							
71.987 71.545	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65s\ ^2\mathrm{S}_{1/2}$	217 039	1 606 160	5.40 - 2	3.48+10	C	33°,98*
	1/2	1/2	208 384	1 606 160	2.8 - 2	1.8+10	С	33°, 98*
71.031 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{\circ}$	502 821	1 910 650	1.9 - 2	4.1 + 9	D	98*
71.031	5/2	7/2	502 821	1 910 650	3.7 - 1	6.1+10	C	33°, 98*
70.986	3/2	5/2	501 927	1 910 650	2.6 - 1	5.7 + 10	С	33°, 98*
69.994^{C}	$2p^63p\ ^2\mathrm{P_{3/2}^o}$	$2p^65p^2 P_{1/2}^{\circ}$	217 039	1 645 740	E2	7.5 + 6	D	98*
69.910 ^C	3/2	3/2	217 039	1 647 440	E2	3.8 + 6	D	98*
69.490 ^C	1/2	3/2	208 384	1 647 440	E2	3.9 + 6	D	98*
67.564 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65d^2D_{3/2}$	217 039	1 697 110	3.3 - 2	1.2+10	D	98*
67.555	2p 3p 1 3/2 3/2	5/2	217 039	1 697 480	3.0 - 2	7.2+10	C	33°, 98*
67.171	1/2	3/2	208 384	1 697 110	1.7 - 1	6.2 + 10	C	33°,98*
66.676 ^C	$2p^63p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^65f$ $^2F_{5/2}^{\circ}$	217 039	1 716 830	E2	2.8+6	E	98*
66.676 ^C	3/2 3/2		217 039	1 716 830	E2	2.8+6 1.2+7	D D	98*
66.293 ^C	1/2	7/2 5/2	208 384	1 716 830	E2	9.8+6	D	98*
66.634 ^C			#00 000	0.000 *				
66.634 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^67p\ ^2\mathrm{P_{3/2}^o}$	502 821	2 003 550	7.8 - 3	2.9+9	D	98*
66.595 ^C	3/2	1/2	501 927 501 927	2 003 550 2 003 550	4.4 - 3 $8.8 - 4$	3.3+9 $3.3+8$	D E	98* 98*
	3/2	3/2	001 321	2 003 000	0.0 - 4	3.3+0	Ľ	90
65.580^{C}	$2p^63d\ ^2{ m D}_{5/2}$	$2p^67f$ $^2\mathrm{F}^{\mathrm{o}}_{5/2}$	502 821	2 027 670	9.0 - 3	2.3 + 9	D	98*
			E00 001	0.007.070	10 1	2 5 1 10	_	33°,98*
65.577 65.540	5/2 3/2	7/2 5/2	502 821 501 927	2 027 670 2 027 670	1.8 - 1 $1.2 - 1$	3.5+10 $3.2+10$	C C	33°, 98*

Ti XII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
63.107 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P_{3/2}^o}$	502 821	2 087 420	4.6 - 3	1.9+9	E	98*
63.072^{C}	3/2	1/2	501 927	2 087 420	2.6 - 3	2.1 + 9	\mathbf{E}	98*
63.072 ^C	3/2	3/2	501 927	2 087 420	5.2 - 4	2.2 + 8	\mathbf{E}	98*
62.470	$2p^63d^{-2}D_{5/2}$	$2p^68f\ ^2{ m F}^{\circ}_{7/2}$	502 821	2 103 660	1.04 - 1	2.22+10	C	33°,98*
62.467^{C}	5/2	5/2	502 821	2 103 660	5.3 - 3	1.5 + 9	\mathbf{E}	98*
62.433	3/2	5/2	501 927	2 103 660	7.28 - 2	2.08+10	C	33°,98*
61.286	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	217 039	1 848 660	2.1 - 2	1.8+10	D	33°,98*
60.971	1/2	1/2	208 384	1 848 660	1.0 - 2	9.4 + 9	D	33°,98*
60.762	$2p^63s^2S_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	0	1 645 740	3.8 - 2	3.5+10	C	33°,98*
60.701	1/2	3/2	0	1 647 440	7.6 - 2	3.4+10	C	33°,98*
59.436 ^C	$2p^63p^{-2}P_{3/2}^{o}$	$2p^66d\ ^2{ m D}_{3/2}$	217 039	1 899 530	1.5 - 2	7.2+9	D	98*
59.435	3/2	5/2	217 039	1 899 530	1.4 - 1	4.41+10	C	33°, 98*
59.133	1/2	3/2	208 384	1 899 530	7.8 - 2	3.72+10	Č	33°,98*
59.045 ^C	$2p^6 3p \ ^2P_{3/2}^{\circ}$	$2p^66f$ $^2F_{7/2}^{\circ}$	217 039	1 910 650	E2	4.1+6	D	98*
58.924 ^C	$2p^63s^2S_{1/2}$	$2p^65d\ ^2{ m D}_{3/2}$	0	1 697 110	E2	1.7+7	D	98*
58.911 ^C	1/2	5/2	0	1 697 480	E2	1.6 + 7	D	98*
56.431	$2p^63p^{-2}{ m P}^{\circ}_{3/2}$	$2p^67s\ ^2\mathrm{S}_{1/2}$	217 039	1 989 000	1.0 - 2	1.1+10	D	34°,98*
56.161	1/2	1/2	208 384	1 989 000	5.2 - 3	5.5+9	D	34°,98*
55.444 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^67d\ ^2{ m D}_{3/2}$	217 039	2 020 670	8.8 - 3	4.8+9	D	98*
55.443	3/2	5/2	217 039	2 020 670	7.76 - 2	2.81+10	C	33°,98*
55.181	1/2	3/2	208 384	2 020 670	4.4 - 2	2.4+10	Č	33°,98*
53.457	$2p^6 3s \ ^2 S_{1/2}$	$2p^66p\ ^2\mathrm{P_{1/2}^o}$	0	1 870 570	1.8 - 2	2.1+10	D	33°,98*
53.433	1/2	3/2	0	1 871 440	3.6 - 2	2.1 + 10	C	33°,98*
53.140	$2p^63p^{-2}\mathrm{P}^{\alpha}_{3/2}$	$2p^68d\ ^2{ m D}_{5/2}$	217 039	2 098 900	4.8 - 2	1.9+10	C	33°,98*
53.139^{C}	3/2	3/2	217 039	2 098 900	5.2 - 3	3.2 + 9	D	98*
52.896	1/2	3/2	208 384	2 098 900	2.70 - 2	1.61+10	\mathbf{C}	33°, 98*
52.645^{C}	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^66d\ ^2{ m D}_{5/2}$	0	1 899 530	E2	9.6 + 6	D	98*
51.669	$2p^63p^{-2}\mathrm{P_{3/2}^o}$	$2p^69d\ ^2{ m D}_{5/2}$	217 039	2 152 300				34
51.446	1/2	3/2	208 384	2 152 300				34
50.674	$2p^63p^{-2}\mathrm{P_{3/2}^o}$	$2p^610d\ ^2\mathrm{D}_{5/2}$	217 039	2 190 500				34
50.448	1/2	3/2	208 384	2 190 500				34
49.912	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^67p^2P_{3/2}^{\circ}$	0	2 003 550				34
49.912	1/2	1/2	0	2 003 550				34
47.906	$2p^63s$ $^2S_{1/2}$	$2p^68p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	2 087 420				34
47.906	1/2	1/2	0	2 087 420				34
46.641	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^69p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	0	2 144 000				34
46.641	1/2	1/2	0	2 144 000				34
45.783	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^610p\ ^2 ext{P}^{\circ}_{3/2}$	0	2 184 200				34
45.783	1/2	1/2	0	2 184 200				34
45.167	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^611p\ ^2P_{3/2}^{\circ}$	0	2 214 000				34
45.167	1/2	1/2	0	2 214 000				34 34

Ti XIII

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2774.0 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^{2}2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s\;(\frac{1}{2},\frac{1}{2})_{0}^{\circ}$	3 709 200	3 745 238		M1	1.37+3	C-	98*
745.12 ^C	$2s^22p^5(^2P^{\circ}_{1/2})3s(\frac{1}{2},\frac{1}{2})^{\circ}_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{1}{2}]_1$	3 745 238	3 879 444		6.5 - 3	2.6+7	E	98*
551.60 415.44	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_2$	$2s^22p^5(^2\mathbf{P^o_{3/2}})3p^{\ 2}[\frac{1}{2}]_1$ 0	3 698 153 3 709 200	3 879 444 3 949 910	14 28bl	2.4 - 1	1.8+9	D	42,43°,98* 43
507.64 480.63 474.611	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 3s (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{\ 2}[rac{5}{2}]_2$ 2 3	3 709 200 3 698 153 3 698 153	3 906 203 3 906 203 3 908 849	28 33bl 106	8.5 - 1	3.5+9	D	42,43° 43 42°,43 ^Δ ,98*
506.18 485.623 472.088	$2s^22p^5(^2P_{1/2}^{\circ})3s\ (\frac{1}{2},\frac{1}{2})_1^{\circ}$ 0	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p^{\ 2}[\frac{3}{2}]_1$ 1	3 753 600 3 745 238 3 753 600	3 951 159 3 951 159 3 965 425	10 11 36				43 42°,43 [△] 42°,43 [△]
496.23 492.51 474.45	$2s2p^63s\ ^3{ m S}_1$	$2s2p^63p\ ^3P_0^0$	4 530 260 4 530 260 4 530 260	4 731 780 4 733 300 4 741 030	15 6 106				43 43 43
478.70 459.35 437.212	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{3}{2}]_1$	3 709 200 3 709 200 3 698 153	3 918 095 3 926 887 3 926 887	23 24bl 48				43 42,43° 42°,43 [△]
473.381 455.355 326.29	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})3s\ (\frac{1}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p^{\ 2}[\frac{1}{2}]_1\\ \\ 0$	3 753 600 3 745 238 3 753 600	3 964 847 3 964 847 4 060 030	14bl 16 15bl				42°, 43 42°, 43 ^Δ 43 ^Δ , 44°
457.84 ^C 351.58 346.163	$2s^2 2p^5 (^2\mathbf{P_{3/2}^o}) 3p^{-2} [\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{\ 2}[\frac{1}{2}]^{\mathrm{o}}_{1}$ 0	3 949 910 3 879 444 3 879 444	4 168 326 4 163 874 4 168 326	18bl 18	1.9 - 2 $1.2 - 1$ $3.0 - 1$	2.0+8 6.5+9 5.5+9	D D	98* 43°,98* 42°,43 ^{\(\Delta\)} ,98*
399.63 386.06	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{-2}[\frac{3}{2}]^{\mathrm{o}}_{2}$	3 926 887 3 918 095	4 177 038 4 177 038	23bl 110bl				43 43
392.16^{T}	$2s2p^{6}3p^{-1}P_{1}^{\circ}$	$2s2p^63d$ $^1\mathrm{D}_2$	4 754 000	5 009 000	39				43
380.23 379.20 369.96 369.37 367.89	$2s2p^63p^{-3}\mathrm{P}_2^{\mathrm{o}}$ 2 1 1 0	$2s2p^63d\ ^3{ m D}_2$ 1	4 741 030 4 741 030 4 733 300 4 733 300 4 731 780	5 004 030 5 004 740 5 003 600 5 004 030 5 003 600	144 7bl				43 43 43 43
374.85 285.08	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{2}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})3p^{-2}[\frac{1}{2}]_1$ 0		3 964 847 4 060 030	12bl 9bl				43 43 [△] ,44°
373.69 365.74 354.788	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^2[\frac{3}{2}]_2$ 2	$2s^22p^5(^2P_{1/2}^{\circ})3d^2[\frac{5}{2}]_2^{\circ}$ 3	3 965 425 3 965 425 3 951 159	4 233 020 4 238 843 4 233 020	12bl 91 56bl				43 43 42°,43 [△]
372.87 ^C 369.09	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2P_{3/2}^{\circ})3d^2[\frac{3}{2}]_2^{\circ}$	3 908 849 3 906 203	4 177 038 4 177 038		2.9 - 2	2.7+8	E	98* 43
370.52 ^C 336.029	$2s^22p^5(^2\mathbf{P^{\circ}_{3/2}})3p^{-2}[\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	3 949 910 3 879 444	4 219 800 4 177 038	32	2.0 - 1 $3.3 - 1$	3.3+9 3.7+9	D E	98* 42°,43 [△] ,98*
369.531 362.86 359.311	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{5}{2}]_3$ 3 2	$2s^22p^5(^2P^{\circ}_{3/2})3d^2[\frac{7}{2}]^{\circ}_{4}$ 3	3 908 849	4 179 462 4 184 514 4 184 514	144 49 109	1.3 1.4 – 1	6.7+9 1.0+9	D E	42°,43 [△] ,98* 43°,98* 42°,43 [△]
367.61	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathbf{P_{1/2}^o})3d^2[\frac{3}{2}]_2^o$	3 965 425	4 237 394	7				43
366.910	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{3}{2}]_2^{\circ}$	3 964 847	4 237 394	40				42°,43 ^Δ
366.569 362.518	$2s^22p^5(^2\mathbf{P^o_{3/2}})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{-2}[\frac{5}{2}]^{\circ}_{3}$	3 926 887 3 918 095	4 199 685 4 193 932	70 49bl				$42^{\circ}, 43^{\Delta}$ $42^{\circ}, 43^{\Delta}$
347.563 343.84	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{5}{2}]_2$	$2s^22p^5(^2P^{\circ}_{3/2})3d^2[\frac{5}{2}]^{\circ}_{2}$	3 906 203 3 908 849	4 193 932 4 199 685	32bl 23				42°, 43 [△] 43
321.96	$2s^22p^5(^2P^{\circ}_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5\big(^2{\rm P}_{1/2}^{\circ}\big)3d^{\ 2}\big[\tfrac{3}{2}\big]_2^{\circ}$	3 926 887	4 237 394	bl				43

Ti XIII - Continued

			XIII – Cont	ea					
Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
231.589 ^C	$2s^22p^5(^2P_{1/2}^{o})3s(\frac{1}{2},\frac{1}{2})_0^{o}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d\ ^2[\tfrac{3}{2}]^{\mathrm{o}}_2$	3 745 238	4 177 038		E2	7.6+3	E	98*
214.721 ^C	$2s^22p^5(^2\mathbf{P_{3/2}^o})3s\ (\frac{3}{2},\frac{1}{2})_2^o$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^2[\frac{1}{2}]^{\circ}_0$	3 698 153	4 163 874		E2	2.4+5	E	98*
210.387 ^C 207.767 ^C	$2s^22p^5(^2P^{\circ}_{3/2})3s \ (\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2P^{\circ}_{3/2})3d^2[\frac{7}{2}]^{\circ}_3$	3 709 200 3 698 153	4 184 514 4 179 462		E2 E2	1.5+5 2.7+5	D- D-	98* 98*
128.76^{C}	$2s^22p^5(^2\mathbf{P_{1/2}^o})3s\ (\frac{1}{2},\frac{1}{2})_1^{o}$	$2s2p^63s\ ^3{ m S}_1$	3 753 600	4 530 260		8.7 - 2	1.2+10	D	98*
$120.18^{\rm C}$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	$2s2p^{6}3s^{-3}S_{1}$	3 698 153	4 530 260		3.6 - 1	5.4+10	D	98*
120.17 ^C	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3p^{\ 2}[\frac{5}{2}]_3$	$2s2p^63p$ $^3\mathrm{P}_2^\circ$	3 908 849	4 741 030		4.8 - 1	4.4+10	D	98*
117.32^{C} 117.12^{C}	$2s^2 2p^5 (^2 P_{3/2}^o) 3p^2 [\frac{1}{2}]_1$	$2s2p^{6}3p^{-3}P_{0}^{\circ}$	3 879 444 3 879 444	4 731 780 4 733 300		5.7 - 2 $8.4 - 2$	2.8+10 1.3+10	E D	98* 98*
104.593 99.834	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{3}{2}]_1^{\circ}$	$2s^22p^5(^2P^\circ_{1/2})4f^{\ 2}[rac{5}{2}]_2$ 3	4 281 600 4 237 394	5 237 690 5 239 054	2 15				45 45°,47
102.964 98.490	$2s^22p^5(^2P_{3/2}^{\circ})3d^{\ 2}[\frac{3}{2}]_1^{\circ}$	$2s^22p^5(^2P^{\circ}_{3/2})4f^{\ 2}[rac{5}{2}]_2$	4 219 800 4 177 038	5 191 010 5 192 368	7 10				45 45°,47
100.753 100.200	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\circ}_3$	$2s^22p^5(^2\mathrm{P}^{\alpha}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	4 199 685 4 193 932	5 192 205 5 191 932	20 15				45°,47 45°,47
100.133 99.572	$2s^22p^5(^2P_{1/2}^{\circ})3d^{-2}[\frac{5}{2}]_3^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4f^{\ 2}[\frac{7}{2}]_4$	4 238 843 4 233 020	5 237 513 5 237 320	25 50				45°,47 45°,47
99.572 99.074	$2s^22p^5(^2P_{3/2}^{\circ})3d^{\ 2}[\frac{7}{2}]_3^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[rac{9}{2}]_4$	4 184 514 4 179 462	5 188 814 5 188 812	50 30				45°,47 45°,47
98.76	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_4$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	4 179 462	5 192 205	bl				47
97.758 97.358	$2s^22p^5(^2P^o_{3/2})3d^2[\frac{1}{2}]^o_1$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	4 168 326 4 163 874	5 191 256 5 191 014	5 2				45 45
96.429	$2s^22p^5(^2\mathbf{P}^o_{3/2})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2P_{3/2}^{\circ})4s(\frac{3}{2},\frac{1}{2})_2^{\circ}$	3 926 887	4 963 878	1				45
94.788	$2s^22p^5(^2\mathbf{P_{3/2}^o})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})4s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	3 908 849	4 963 878	2				45°,47
81.611 81.153	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 3p^2 [\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d^{\ 2}[rac{5}{2}]^{\mathrm{o}}_{3}$	3 926 887 3 918 095	5 152 207 5 150 335	10 3				45°,47 45°,46
81.322	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_2^{\circ}$	3 964 847	5 194 527	2				45°, 46
81.258 80.502	$2s^2 2p^5 (^2P_{1/2}^{\circ}) 3p^2 [\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4d^{\ 2}[\frac{5}{2}]^{\mathrm{o}}_{3}$	3 965 425 3 951 159	5 196 075 5 193 359	5 3				45°, 46, 47 45°, 46, 47
80.927 80.610	$2s^22p^5(^2\mathrm{P^o_{3/2}})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{7}{2}]^{\circ}_{4}$	3 908 849 3 906 203	5 144 529 5 146 743	10 3				45°,46,47 45°,47
79.235	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d^{\ 2}[\tfrac{1}{2}]^{\mathrm{o}}_{1}$	3 879 444	5 141 514	1				45
79.004	$2s^22p^5(^2\mathbf{P_{3/2}^o})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d^{\ 2}[\tfrac{3}{2}]^{\mathrm{o}}_2$	3 879 444	5 145 204	1				45
74.74 74.108	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4p^2[\frac{5}{2}]_2$	3 709 200 3 698 153	5 047 200 5 047 533	2				47 45°,47
74.59	$2s^22p^5(^2\mathbf{P_{3/2}^{\circ}})3s\ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4p^2[\tfrac{3}{2}]_1$	3 709 200	5 049 900					47
74.42	$2s^22p^5(^2\mathbf{P_{1/2}^o})3s\ (\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4p^2[\tfrac{3}{2}]_2$	3 753 600	5 097 300					47
70.05	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_4$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})5f^{\ 2}[\frac{9}{2}]_5$	4 179 462	5 607 000	bl				47
27.0405 ^C 26.960	$2s^22p^6$ 1S_0 0	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_{2}$	0	3 698 153 3 709 200		M2 1.00 - 1	2.8+4 3.06+11	D- C-	98* 40°,98*
26.641	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	3 753 600		1.30 - 1	4.06+11	C-	40°,98*
23.991	$2s^22p^{6-1}S_0$	0/2/ (2/1		4 168 326		8.8 - 3	3.4+10	E	40°,98*
23.698	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^2[\frac{3}{2}]_1^0$	0	4 219 800		3.0 - 1	1.2+12	D	40°,98*

Ti XIII - Continued

Wave- length (Å)	Classifi Lower	Classification Lower Upper		Energy Levels (cm ⁻¹)		gf	$A (s^{-1})$	Acc.	References
23.356	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	4 281 600		2.50	1.02+13	C-	40°,98*
21.127	$2s^22p^6$ 1S_0	$2s2p^{6}3p^{-3}P_{1}^{\circ}$	0	4 733 300	2				41
21.035	$2s^22p^{6-1}S_0$	$2s2p^63p^{-1}P_1^{o}$	0	4 754 000	7				41
20.135	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{3/2}^{\circ})4s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	0	4 966 500	1				41
19.943	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})4s\ (\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	5 014 300	1				41
19.366	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P_{3/2}^o})4d^2[\frac{3}{2}]_1^o$	0	5 163 700	4				41
19.204	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P^o_{1/2}})4d^{\ 2}[\frac{3}{2}]^o_1$	0	5 207 200	5				41
17.869	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P_{3/2}^o})5d^{\ 2}[\frac{3}{2}]_1^o$	0	5 596 300	1				41
17.727	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})5d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	0	5 641 100	2				41

Ti xiv

Wave- ength (Å)	Classific Lower	eation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
117.15	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^5$ $^2P_{1/2}^{\circ}$	0	47 219		M1	1.89+3	В	25°, 54, 55, 98*
540.12	$2s^22p^4(^3P)3s^4P_{3/2}$	$2s^22p^4(^3P)3p^4P_{1/2}^{o}$	4 014 945	4 200 090	45				51
533.28	5/2 5/2	5/2	3 995 165	4 182 685	135				51
30.04	5/2	3/2	3 995 165	4 183 830	60				51
37.34	2e ² 2n ⁴ (³ P)3e ² Pava	2s ² 2n ⁴ /3p)3n ² po	4 043 430	4 229 530	45				51
198.56	$2s^22p^4(^3P)3s\ ^2P_{3/2}$	23 29 (1)39 11/2	4 043 430	4 244 010	30				51
	3/2	3/2	. 010 100	1211 010	•				01
528.92	$2s^22p^4(^1D)3s\ ^2D_{3/2}$	$2s^2 2p^4 (^1D) 3p {}^2F_{5/2}^o$	4 114 075	4 303 140	60				51
525.1	5/2	5/2	4 112 700	4 303 140	5				51
01.23	5/2	7/2	4 112 700	4 312 210	140				51
511.61	$2s^22p^4(^3P)3s^4P_{3/2}$	$2s^22n^4(^3P)3n^4D^9$.	4 014 945	4 210 405	100				51
510.1	1/2	3/2	4 036 120	4 232 160	4				51
196.92	1/2	1/2	4 036 120	4 237 360	40				51
174.5	5/2	7/2	3 995 165	4 205 890	1000Ы				51
160.37	3/2	3/2	4 014 945	4 232 160	90				51
04.23	$2s^22p^4(^3P)3s\ ^2P_{1/2}$	$2s^22p^4(^3P)3p^2S_{1/2}^{\circ}$	4 065 750	4 264 070	12				51
02.23	$2s^22p^4(^3P)3s^2P_{1/2}$	$2s^22p^4(^3P)3p^2D_{3/2}^{\circ}$	4 065 750	4 264 860	45				51
196.32	$2s^22p^4(^3P)3s^2P_{1/2}$	5/2	4 043 430	4 244 915	180				51
151.61	3/2	3/2	4 043 430	4 264 860	6				51
171 64	2.22.4/10/2.20	2,22,4/10/2, 200	4 221 200	4 422 200	10				F 1
471.64 450.74	28 2p (5)38 5 _{1/2}	$2s^2 2p^4 (^1S) 3p \ ^2P^{\circ}_{3/2}$	4 221 200 4 221 200	4 433 220 4 443 060	10 6				51 51
100.74			4 221 200	4 443 000	U				91
167.9		$2s^22p^4(^3P)3p^4S_{3/2}^{\circ}$	4 043 430	4 257 150	13				51
164.67	$2s^2 2p^4 (^1D)3s \ ^2D_{3/2}$ 5/2	$2s^22p^4(^1D)3p^2D_{3/2}^{\circ}$	4 114 075	4 329 210	35				51
150.00	5/2	5/2	4 112 700	4 334 920	120				51
150.40	0-20-4/30)2-40	0-20 4/30\0 400	4.000.100	4 057 150	**				
152.43 381.7	28 2p (P)38 P _{1/2}	$2s^22p^4(^3P)3p\ ^4S^{\circ}_{3/2}$	4 036 120 3 995 165	4 257 150	50 30				51
301.1			3 993 103	4 257 150	30				51
444.56	$2s^22p^4(^3P)3p^2D_{5/2}^{\circ}$	$2s^22p^4(^3P)3d^4F_{7/2}$	4 244 915	4 469 865	9				51
	•								
433.49	$2s^2 2p^4 (^3P) 3p \ ^4D_{5/2}^{6}$	$2s^2 2p^4 (^3P) 3d ^4D_{5/2}$	4 210 405	4 441 100	25				51
427.11 425.16	$2s^2 2p^4 (^3P) 3p \ ^4D_{5/2}^{\circ}$ 7/2 7/2	7/2	4 205 890	4 440 080	70				51
123.10			4 205 890	4 441 100	30				51
404.51	$2s^22p^4(^3P)3p^2D_{3/2}^{\circ}$	$2s^22p^4(^3\mathrm{P})3d^2\mathrm{F}_{5/2}$	4 264 860	4 512 075	30				51
394.87	5/2	7/2	4 244 915	4 498 160	300				51
	. 2. 4/1 2	- 2 4.1 2-							
402.7	$2s^22p^4(^1D)3p^2F_{7/2}^o$		4 312 210	4 560 540	9				51
401.07 388.51	7/2	9/2	4 312 210 4 303 140	4 561 545 4 560 540	280 315bl				51
300.01	5/2	7/2	4 303 140	4 300 340	31301				51
397.42	$2s^22p^4(^3P)3p^4P_{1/2}^o$	$2s^22p^4(^3P)3d^4D_{1/2}$	4 200 090	4 451 710	25				51
388.70	3/2	5/2	4 183 830	4 441 100	160				51
388.51 387.01	5/2	7/2	4 182 685	4 440 080	315bl				51
382.33	5/2 3/2	5/2 3/2	4 182 685 4 183 830	4 441 100 4 445 385	110 130				51 51
380.70	5/2	3/2	4 182 685	4 445 385	120				51
373.3	3/2	1/2	4 183 830	4 451 710	17				51
392.37	2,20,4/10)2, 200	$2s^22p^4(^1D)3d^2F_{5/2}$	4 990 010	4 504 050					
392.26	$2s^22p^4(^1D)3p^2D_{3/2}^o$		4 329 210 4 334 920	4 584 070 4 589 870	85 450bl				51
002.20	5/2	7/2	4 334 920	4 309 610	45001				51
392.26	$2s^22p^4(^3P)3p^4D_{7/2}^{\circ}$	$2s^22p^4(^3P)3d^4F_{9/2}$	4 205 890	4 460 850	450bl				51
389.36	3/2	5/2	4 232 160	4 488 995	45				51
385.42	5/2	7/2	4 210 405	4 469 865	300				51
383.12	1/2	3/2	4 237 360	4 498 376	20				51
376.03	$2s^22p^4(^1D)3s^2D_{5/2}$	$2s^22p^4(^1D)3p^2P_{3/2}^{o}$	4 112 700	4 378 635	50				51
360.15	$2s^22p^4(^1D)3p^2F_{7/2}^{\circ}$	$2s^22p^4(^1{ m D})3d\ ^2{ m F}_{7/2}$	4 312 210	4 589 870	165bl				51
347.55	$2s^22p^4(^3P)3p^4D_{5/2}^{\circ}$	$2s^22p^4(^3P)3d\ ^2F_{7/2}$	4 210 405	4 498 160	235bl				51
011.00									
129.440	$2s^22p^5$ ² P $_{1/2}^{\circ}$	$2s2p^6 \ ^2S_{1/2}$	47 219	819 772	8000	1.30 - 1	2.59+10	C+	25,48,49°,98*

Ti XIV - Continued

Wave-	Classific		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper				-14-7			·
25.260	$2s2p^6 \ ^2S_{1/2}$	2s2p ⁵ (³ P°)3s ² P _{3/2}	819 772	4 778 600	30				50
25.086	1/2	$2s2p^{5}(^{3}P^{\circ})3s\ ^{2}P^{\circ}_{3/2}$	819 772	4 806 100	20				50
25.206	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^3P)3s^4P_{3/2}$	47 219	4 014 945	6				50
25.071	1/2	1/2	47 219	4 036 120	4				50
25.025	3/2	5/2	0	3 995 165	50	1.0 - 2	1.8 + 10	E	50°,98*
24.907	3/2	3/2	0	4 014 945	70				50
25.025	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^3P)3s^2P_{3/2}$	47 219	4 043 430	50				50
24.891	1/2	1/2	47 219	4 065 750	60	1.4 - 1	7.5 + 11	C-	50°,98*
24.728	3/2	3/2	0	4 043 430	70				50
24.592	3/2	1/2	0	4 065 750	75	1.10 - 1	6.1+11	C-	50°,98*
24.592	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{1/2}$	$2s^22p^4(^1D)3s^2D_{3/2}$	47 219	4 114 075	75	2.0 - 1	5.5+11	D	50°,98*
24.315	3/2	5/2	0	4 112 700	60	2.7 - 1	5.0+11	D	50°,98*
23.960	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^1S)3s^2S_{1/2}$	47 219	4 221 200	20	6.4 - 2	3.7+11	D	50°,98*
23.690	3/2	1/2	0	4 221 200	90bl	3.6 - 2	2.1+11	E	50°,98*
22.518	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^3P)3d^4P_{3/2}$	47 219	4 488 500	20				50
22.328		•	0	4 479 363	30	8.8 - 2	5 0 + 11	E	
22.279	3/2	1/2	0	4 479 363	30 40	0.0 - 2	5.9 + 11	Ŀ	50°,98* 50
22.215	3/2 3/2	3/2 5/2	0	4 501 500	30				50 50
22.486	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^3P)3d^{2}P_{1/2}$	47 219	4 494 800	15				50
22.328	1/2	3/2	47 219	4 525 100	30				50
22.248	3/2	1/2	0	4 494 800	10				50
22.099	3/2	3/2	0	4 525 100	20				50
22.426	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^3P)3d^2D_{3/2}$	47 219	4 506 500	40				50
22.190	3/2	3/2	0	4 506 500	30				50
22.066	3/2	5/2	Ō	4 531 900	60				50
22.279	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)3d\ ^4F_{5/2}$	0	4 488 995	40				50
22.162	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3{ m P})3d\ ^2{ m F}_{5/2}$	0	4 512 075	30				50
22.047^{C}	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1D)3d^2S_{1/2}$	47 219	4 583 000		2.0 - 1	1.4+12	D	98*
21.82	3/2	1/2	0	4 583 000	60	9.2 - 1	6.4+12	D	50°,98*
21.958	$2s^22p^5$ ² P _{1/2}	$2s^22p^4(^1\mathrm{D})3d\ ^2\mathrm{P}_{3/2}$	47 219	4 600 413	50	3.6 - 1	1.2+12	D	50°,98*
21.737^{C}	3/2	3/2	0	4 600 413		2.5	8.8+12	D	98*
21.883	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	· ·	47 219	4 617 400	70	2.0	7.0.110	Б	EO 00*
21.732						2.0	7.0 + 12	D	50°,98*
21.732	3/2	5/2	0	4 603 263 4 617 400	70 70	3.5 - 1	1 3 : 10	D	50 50° 00*
	3/2	3/2		4 017 400	10	J.J - 1	1.3+12	D	50°,98*
21.815 ^C	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s^22p^4(^1D)3d\ ^2F_{5/2}$	0	4 584 070		1.9 - 1	4.5 + 11	E	98*
21.522	$2s^22p^5$ $^2P_{1/2}^{\circ}$	$2s^22p^4(^1{\rm S})3d\ ^2{\rm D}_{3/2}$	47 219	4 694 000	50	1.2	4.5 + 12	D	50°,98*
21.341	3/2	5/2	0	4 685 800	40	4.0 - 1	9.8 + 11	D	50°,98*
21.304	3/2	3/2	0	4 694 000	6	2.6 - 2	9.6 + 10	\mathbf{E}	50°,98*

Ti xv

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
5212.6 ^C	$2s2p^5$ $^3\mathrm{P}^\mathrm{o}_1$	$2s2p^{5}\ ^{3}\mathrm{P_{0}^{o}}$	742 877	762 056	M1	3.77+2	С	98*
3267.1 ^C	2	1	712 278	742 877	M1	6.4 + 2	С	98*
2545.08	$2s^22p^4$ ³ P ₂	$2s^22p^4$ ³ P ₁	0	39 288	M1	1.29+3	C+	25,54°,55,98*
$1440.2 \\ 919.73$	$2s^22p^4$ 3 P ₁	$2s^22p^{4-1}D_2$	39 288 0	108 730 108 730	M1 M1	$2.2+2 \\ 2.4+3$	D D	56°, 98* 25°, 98*
567.408 ^C	$2s^22p^4$ 3 P ₁	$2s^22p^{4}$ ¹ S ₀	39 288	215 528	M1	2.5+4	D	98*
$^{463.004}^{ m C}_{ m 425.242}^{ m C}$	$2s2p^5$ $^3P_0^{\circ}$	$2s2p^{5-1}P_1^{\circ}$	762 056	978 037	M1	1.6+3	D-	98*
425.242 ^C 376.281 ^C	1 2	1	742 877 712 278	978 037 978 037	M1 M1	1.5+3 3.7+3	D-	98* 98*
189.628 ^C	$2s^22p^4$ ¹ S ₀	$2s2p^{5-3}$ P ₁ °	215 528	742 877	4.3 - 3	2.7+8	E	98*
165.690	$2s^22p^{4-1}D_2$	2s2p ⁵ ³ P ₂ °	108 730	712 278	1.8 - 2	8.5+8	E	49°,98*
148.588	$2s^22p^4$ ³ P ₁	$2s2p^{5-3}P_{2}^{\circ}$	20.000	710.070	1.00 1		0	
142.750	25 27 11	282p F ₂	39 288 42 345	712 278 742 877	1.36 - 1 $1.08 - 1$	8.2+9 $1.18+10$	C C	25, 48, 49°, 98* 25, 48, 49°, 98*
142.130	1	1	39 288	742 877	8.46 - 2	9.3+9	č	25, 48, 49°, 98*
140.395	2	2	0	712 278	4.1 - 1	2.8 + 10	\mathbf{C}	25, 48, 49°, 98*
138.357	1	0	39 288	762 056	1.18 - 1	4.1 + 10	$^{\rm C}$	25, 48, 49°, 98*
134.609	2	1	0	742 877	1.56 - 1	1.91+10	С	25, 48, 49°, 98*
147.436	$2s2p^{5-1}P_1^{o}$	$2p^{6}$ ¹ S ₀	978 037	1 656 300	3.9 - 1	1.2+11	C	49°,98*
131.146	$2s^22p^{4-1}S_0$	$2s2p^{5-1}$ P ₁ °	215 528	978 037	6.5 - 2	8.4 + 9	C	49°,98*
115.031	$2s^22p^{4-1}D_2$	$2s2p^{5-1}P_1^{o}$	108 730	978 037	6.85 - 1	1.15+11	C	25,48,49°,98*
109.48 ^C	$2s2p^{5-3}$ P $_{1}^{lpha}$	$2p^{6}$ ¹ S ₀	742 877	1 656 300	4.8 - 3	2.7+9	E	98*
106.874	$2s^22p^4$ 3 P ₀	$2s2p^{5-1}P_1^{\circ}$	42 345	978 037	2.6 - 3	5.1 + 8	E	49°,98*
106.525^{C}	1	1	39 288	978 037	1.1 - 3	2.2 + 8	\mathbf{E}	98*
102.247	3	1	0	978 037	2.4 - 2	5.1 + 9	E	49°,98*
23.193	$2s^22p^4$ ³ P ₀	$2s^22p^3(^4S^{\circ})3s \ ^3S_1^{\circ}$	42 345	4 354 100	4.9 - 2	2.0 + 11	C-	59,60°,98*
23.177	1	1	39 288	4 354 100	1.13 - 1	4.68 + 11	C-	59,60°,98*
22.966	2	1	0	4 354 100	2.7 - 1	1.1+12	C-	59,60°,98*
23.034	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	215 528	4 557 300	1.5 - 1	6.3+11	D	59,60°,98*
22.936	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	108 730	4 469 100	4.5 - 1	1.1+12	C-	59,60°,98*
22.739	$2s^22p^4$ ³ P ₀	$2s^22p^3(^2D^o)3s^3D_1^o$	42 345	4 440 200	3.4 - 2	1.5+11	C-	59,60°,98*
22.724	ĭ	1	39 288	4 440 200	9.0 - 2	3.9 + 11	C-	60°,98*
22.722 ^C	1	2	39 288	4 440 400	6.9 - 2	1.8 + 11	D	98*
22.518	2	2	0	4 440 400	1.4 - 1	3.7 + 11	D	59,60°,98*
22.464	2	3	0	4 451 600	2.8 - 1	5.2+11	C-	59,60°,98*
22.654 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^o)3s\ ^3P_2^o$	108 730	4 523 000	9.5 - 2	2.5 + 11	E	98*
22.574 ^C	$2s^22p^{4-3}P_1$	$2s^22p^3(^2\mathrm{D^o})3s^{-1}\mathrm{D_2^o}$	39 288	4 469 100	3.3 - 2	8.6 + 10	\mathbf{E}	98*
22.376 ^C	2	2	0	4 469 100	2.4 - 2	6.4 + 10	E	98*
22.482	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	108 730	4 557 300	1.5 - 1	6.4+11	D	59,60°,98*
22.303 ^C 22.109	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^3(^2P^o)3s\ ^3P_2^o$	39 288 0	4 523 000 4 523 000	1.0 - 1 $4.5 - 2$	$^{2.8+11}_{1.2+11}$	D D-	98* 59°,98*
21.094	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^3(^4S^\circ)3d^3D_2^\circ$	39 288	4 780 000	4.5 - 1	1.3+12	D	59,61°,98*
20.92 ^C		20 2p (5)54 B ₂	0	4 780 000	$\frac{4.3-1}{2.8-1}$		D	
20.897	2 2	3		4 785 000	$\frac{2.8 - 1}{1.31}$	8.4+11 $2.85+12$	C-	98* 59,61°,98*
21.05 ^C	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^o)3d^3P_1^o$	215 528	4 965 000	2.5 - 2	1.3+11	Е	98*
20.97 ^C	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^\circ)3d^3D_1^\circ$		4 984 000	3.2 - 2	1.6+11	E	98*
20.88 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^\circ)3d^{-3}D_3^\circ$		4 898 000	4.4 - 2	9.6+10	E	98*
20.823	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^\circ)3d^{-1}D_2^\circ$		4 911 000		,	·	59,61°
20.701	$2s^22p^4$ ¹ S ₀	$2s^22p^3(^2P^\circ)3d^{-1}P_1^\circ$		5 046 000	2.2	1.1+13	D	62°,98*
2001	20 2p 00	20 2p \ 1 /00 1 1	210 020	0 040 000	2.2	1.1713	D	02 , 30

Ti xv - Continued

Wave- length (Å)	Classification Lower	n Upper	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
20.70	$2s^22p^4$ ³ P ₀	2s ² 2p ³ (² D°)3d ³ D ₁ °	42 345	4 873 000				61
20.611	1	2	39 288	4 891 000				61
20.418	2	3	0	4 898 000	3.5	8.0 + 12	C-	61°,98*
20.700	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{D^o})3d\ ^1\mathrm{F_3^o}$	108 730	4 940 000	2.0	4.3+12	D	59,61°,98*
20.59^{C}	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^o)3d\ ^3P_1^o$	108 730	4 965 000	5.5 - 2	2.9+11	E	98*
20.55 ^C	$2s^22p^4$ 3P_0	$2s^22p^3(^2D^\circ)3d^{-3}P_1^\circ$	42 345	4 908 000	2.4 - 1	1.3+12	D	98*
20.538	1	1	39 288	4 908 000	7.2 - 1	3.8+12	D	62°,98*
20.389	2	2	0	4 905 000		0.0 , 22		59,62°
20.37 ^C	2	1	0	4 908 000	4.4 - 2	2.4 + 11	D-	98*
20.418	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m P^o})3d\ ^1{ m F_3^o}$	108 730	5 006 000				61,62°
20.364	$2s^22p^4$ ³ P ₁	$2s^22p^3(^2P^\circ)3d^3P_2^\circ$	39 288	4 950 000				61
20.313	0	1	42 345	4 965 000	6.3 - 1	3.4 + 12	D	62°,98*
20.30 ^C	1	1	39 288	4 965 000	2.0 - 1	1.1 + 12	D	98*
20.312	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^3(^2{ m P^o})3d\ ^1{ m D}_2^{ m o}$	39 288	4 962 000				62
20.24 ^C	$2s^22p^4\ ^3{ m P}_2$	$2s^22p^3(^2{ m D^o})3d\ ^1{ m F}_3^{ m o}$	0	4 940 000	8.0 - 1	1.9+12	E	98*
20.23	$2s^22p^4$ 3P_0	$2s^22p^3(^2P^o)3d^3D_1^o$	42 345	4 984 000	7.8 - 1	4.2+12	C-	61°,98*
20.23	1	1	39 288	4 984 000	9.03 - 1	4.90+12	Č-	62°,98*
20.133	1	2	39 288	5 006 000				61
20.06^{C}	2	1	0	4 984 000	2.1 - 2	1.2 + 11	D	98*
20.051	2	3	0	4 987 000				59,61°
19.97^{C}	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^3(^2{ m P^o})3d\ ^1{ m P_1^o}$	39 288	5 046 000	2.4 - 2	1.3+11	E	98*

Ti xvi

Wave- length (Å)	Lower	Classification	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
7579 ^C	$2s2p^4$	⁴ P _{3/2}	$2s2p^{4-4}P_{1/2}$	620 470	633 660		М1	1.01+2	С	98*
3191 ^C		5/2	3/2	589 140	620 470		M1	7.4+2	С	98*
6805 ^C	$2s^22p^3$	² D _{3/2}	$2s^22p^3$ $^2D_{5/2}^{o}$	116 030	130 720		M1	2.81 + 1	C	98*
4639^{C}	$2s^22p^3$	$^{12}P_{1/2}^{\circ}$	$2s^22p^3$ $^2P_{3/2}^{\circ}$	197 700	219 250		M1	7.2 + 1	C	98*
2722 ^C	2s2p'	4 2 S _{1/2}	$2s2p^4$ 2 P _{3/2}	939 920	976 650		M1	5.3+1	D	98*
1241 ^C		1/2	1/2	939 920	1 020 500	1	M1	2.0+3	D	98*
2280 ^C	$2s2p^4$	$^{12}P_{3/2}$	$2s2p^4\ ^2\mathrm{P}_{1/2}$	976 650	1 020 500	ı	M1	1.4+3	\mathbf{C}	98*
1993 ^C	$2p^{t}$	^{5 2} P _{3/2}	$2p^5 \ ^2P_{1/2}^{o}$	1 537 660	1 587 830)	M1	2.27 + 3	C	98*
1224.1	$2s^22p^3$	D _{3/2}	$2s^22p^3$ $^2P_{1/2}^{\circ}$	116 030	197 700	1	M1	1.6+3	D	56°,98*
1129.2	-	5/2	3/2	130 720	219 250)	M1	2.0+3	D	56°,98*
968.80 ^C		3/2	3/2	116 030	219 250	1	M1	5.2 + 3	D	98*
861.85^{C}	$2s^22p$	3 $^{4}S_{3/2}^{\circ}$	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	0	116 030)	M1	2.0+3	D	98*
627.20^{C}	$2s2p^4$	¹² D _{5/2}	$2s2p^{4-2}P_{3/2}$	817 210	976 650)	M1	1.0+3	D-	98*
611.36^{C}		3/2	3/2	813 080	976 650)	M1	2.1 + 3	D-	98*
482.11^{C}		3/2	1/2	813 080	1 020 500)	M1	2.5 + 3	D-	98*
557.35 ^C	2s2p'	^{4 4} P _{1/2}	$2s2p^{4-2}D_{3/2}$	633 660	813 080)	M1	3.4 + 2	D-	98*
519.18 ^C	•	3/2	3/2	620 470	813 080		M1	1.8+3	D	98*
508.29^{C}		3/2	5/2	620 470	817 210)	M1	4.4 + 2	D	98*
438.46 ^C		5/2	5/2	589 140	817 210)	M1	4.7 + 3	D	98*
505.82 ^C	$2s^22p$	3 4 S $_{3/2}^{\circ}$	$2s^22p^3$ $^2P_{1/2}^{o}$	0	197 700)	M1	4.9 + 3	D-	98*
456.10 ^C	·- F	3/2	3/2	0	219 250		M1	7.8+3	D	98*
313.04 ^C	2s2p	⁴ ⁴ P _{3/2}	$2s2p^4$ 2 S _{1/2}	620 470	939 920)	M1	2.1+4	D	98*
270.35 ^C	$2s^22p$	$^{3} {}^{2}P_{3/2}^{\circ}$	$2s2p^{4} {}^{4}P_{5/2}$	219 250	589 140)	1.1 - 3	1.7+7	E	98*
249.24^{C}		3/2	3/2	219 250	620 470)	2.4 - 3	6.3 + 7	\mathbf{E}	98*
229.38 ^C		1/2	1/2	197 700	633 660)	6.4 - 4	4.1 + 7	\mathbf{E}	98*
218.14 ^C	$2s^22p^3$	$^{3} {}^{2}\mathrm{D}^{\circ}_{5/2}$	$2s2p^4 \ ^4P_{5/2}$	130 720	589 140)	3.1 - 3	7.3+7	E	98*
211.37^{C}		3/2	5/2	116 030	589 140)	3.8 - 3	9.6 + 7	\mathbf{E}	98*
193.19 ^C		3/2	1/2	116 030	633 660)	4.8 - 4	4.3 + 7	E	98*
193.36^{C}	2s2p	⁴ ² P _{1/2}	$2p^5 \ ^2\mathrm{P_{3/2}^o}$	1 020 500	1 537 660)	5.10 - 2	2.27 + 9	С	98*
178.240	_	3/2	3/2	976 650	1 537 660		4.80 - 1	2.52 + 10	C	61,63°,64,98*
176.267		1/2	1/2	1 020 500	1 587 830		2.28 - 1	2.45 + 10	C	63°, 98*
163.610		3/2	1/2	976 650	1 587 830)	1.54 - 1	1.92+10	С	63°,98*
169.740	$2s^22p$	$S_{3/2}^{3}$	$2s2p^4 \ ^4P_{5/2}$	0	589 140)	2.6 - 1	1.0 + 10	C	25, 48, 63°, 64, 98*, 103
161.168		3/2	3/2	0	620 470		1.88 - 1	1.20+10	C	25, 48, 63°, 64, 98*
157.812		3/2	1/2	0	633 660)	9.84 - 2	1.32+10	С	25,48,63°,64,98*
168.40^{C}	$2s^22p$	$^{3} {}^{2}P_{3/2}^{o}$	$2s2p^{4-2}D_{3/2}$	219 250	813 080)	7.2 - 3	4.2 + 8	D	98*
167.242		3/2	5/2	219 250	817 210		1.17 - 1	4.64 + 9	\mathbf{C}	25,48,63°,64,98*
162.503		1/2	3/2	197 700	813 080	0	4.14 - 2	2.61 + 9	C	63°, 64, 98*
167.297	2s2p	9 ⁴ ² S _{1/2}	$2p^5 \ ^2\mathrm{P_{3/2}^o}$	939 920	1 537 660	0	9.20 - 2	5.5 + 9	C	63°,64,98*
154.34 ^C		1/2	1/2	939 920	1 587 830	0	1.3 - 3	1.8+8	E	98*
146.57	$2s^22n$	3 2 D $^{\circ}_{5/2}$	$2s2p^{4-2}D_{3/2}$	130 720	813 086	D	7.8 - 3	6.1+8	D	64°,98*
145.665	P	5/2 5/2	5/2	130 720	817 210		4.4 - 1	2.3+10	C	25, 48, 63°, 64, 98*
143.459		3/2	3/2	116 030	813 086		3.4 - 1	2.8+10	Č	25, 48, 63°, 64, 98*
142.57		3/2	5/2	116 030	817 210	0	4.8 - 4	2.6 + 7	E	64°,98*
138.800	2s2p	4 2 $D_{5/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$	817 210	1 537 666	0	4.0 - 1	3.5+10	C	61,63°,64,98*
138.020		3/2	3/2	813 080	1 537 66		1.00 - 1	8.8 + 9	C	63°,98*
129.075		3/2	1/2	813 080	1 587 83	0	1.90 - 1	3.81+10	С	61,63°,64,98*
138.760	$2s^{2}2p$	$p^{3} {}^{2}P_{3/2}^{o}$	$2s2p^4 \ ^2\mathrm{S}_{1/2}$	219 250	939 92	n	4.84 - 2	8.4+9	С	63°, 64, 98*
100.100	-	3/2	202P 01/2	210 200	000 02	U	1.01	0.473	~	00 ,04,00

Ti XVI - Continued

Wave-	Classific		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
132.022	$2s^22p^3$ $^2P_{3/2}^{\circ}$	$2s2p^4 \ ^2P_{3/2}$	219 250	976 650		9.12 - 2	8.7+9	C	63°, 64, 98*
128.373	1/2	3/2	197 700	976 650		5.38 - 2	5.4 + 9	C	25, 48, 63°, 64, 98°
124.805	3/2	1/2	219 250	1 020 500		2.8 - 1	6.1 + 10	\mathbf{C}	25, 48, 63°, 64, 98*
121.538	1/2	1/2	197 700	1 020 500		2.46 - 2	5.6 + 9	\mathbf{C}	63°, 64, 98*
121.382	$2s^22p^3$ 2 D $_{3/2}^{\circ}$	$2s2p^4$ 2 S _{1/2}	116 030	939 920		1.0 - 1	2.4+10	E	25, 48, 63°, 64, 98*
118.215	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s2p^{4-2}P_{3/2}$	130 720	976 650		6.24 - 1	7.40+10	C	25, 48, 63°, 64, 98*
116.198	3/2	3/2	116 030	976 650		1.18 - 1	1.45 + 10	C	25, 48, 63°, 64, 98*
110.561	3/2	1/2	116 030	1 020 500		1.23 - 1	3.36 + 10	C	63°, 64, 98*
110.62 ^C	$2s2p^{4} {}^{4}P_{1/2}$	$2p^5\ ^2{ m P}^{ m o}_{3/2}$	633 660	1 537 660)	7.8 - 4	1.1+8	Е	98*
109.03^{C}	3/2	3/2	620 470	1 537 660	1	2.3 - 3	3.3+8	E	98*
105.43 ^C	5/2	3/2	589 140	1 537 660		5.8 - 3	8.7+8	E	98*
104.80 ^C	1/2	1/2	633 660	1 587 830		9.6 - 4	2.9+8	E	98*
102.393	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^{4-2}P_{3/2}$	0	976 650)	7.6 - 3	1.2+9	E	63°,98*
97.991 ^C	3/2	1/2	0	1 020 500)	4.4 - 4	1.5+8	E	98*
20.101	$2s^22p^3$ ² $P_{3/2}^{\circ}$	$2s^22p^2(^3\mathrm{P})3d\ ^2\mathrm{P}_{3/2}$	219 250	5 194 100)				61
19.71	$2s^22p^3$ 2 P $^{\circ}_{3/2}$	$2s^22p^2(^3P)3d^2D_{5/2}$	219 250	5 293 300)				61
19.65	1/2	3/2	197 700	5 287 000)				65
19.551	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s^22p^2(^3{\rm P})3d\ ^2{\rm F}_{7/2}$	130 720	5 245 500)				61
19.45	$2s^22p^3$ ² $\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s^22p^2(^1{\rm D})3d\ ^2{ m P}_{3/2}$	219 250	5 361 000)				65
19.370	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s^22p^2(^3P)3d\ ^2D_{5/2}$	130 720	5 293 300)				61
19.210	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s^22p^2(^1D)3d^2F_{7/2}$	130 720	5 336 300	1				61
19.110	3/2	5/2	116 030	5 348 100					61
	· ·	•							
19.112	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^2(^3P)3d^4P_{5/2}$	0	5 232 300					61
19.089	3/2	3/2	0	5 238 600)				61

 \mathbf{Ti} XVII

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
3834.4 3370.8	$2s^22p^2 {\ }^3P_1$	$2s^22p^2$ 3 P ₂	29 658 0	55 730 29 658	M1 M1	2.15+2 4.4+2	C+ C+	25, 54, 55°, 98* 25, 54, 55°, 98*
470.54 ^C	$2s^22p^2$ ³ P ₁	$2s^22p^{2-1}S_0$	29 658	242 180	M1	2.6+4	D	98*
359.8	$2s^22p^2$ ³ P ₂	$2s(^2S)2p^3(^4S^\circ)$ $^5S_2^\circ$	55 730	333 660				69
304.990 ^C 270.431 ^C	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^4\ ^3{ m P}_2$	943 500 943 500	1 271 380 1 313 280	4.2 - 3 $8.7 - 3$	6.0+7 2.6+8	E E	98* 98*
295.92^{C}	$2s^22p^2$ ¹ S ₀	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{1}^{o}$	242 180	580 110	8.8 - 4	2.2+7	E	98*
283.19 ^C	$2s(^{2}S)2p^{3}(^{4}S^{o})^{5}S_{2}^{o}$	$2s(^{2}S)2p^{3}(^{2}P^{o})^{3}P_{2}^{o}$	333 660	686 780	M1	1.5+4	D-	98*
274.27^{C}	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{3}D_{2}^{\circ}$	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{-1}P_{1}^{\circ}$	578 890	943 500	M1	1.2+4	D-	98*
234.610^{C} 213.611^{C}	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D_{2}^{\circ}$	$2p^4\ ^3P_2$	845 140 845 140	1 271 380 1 313 280	1.7 - 2 $1.2 - 3$	4.0+8 5.6+7	E E	98* 98*
230.926 ^C 210.553 ^C 207.727 ^C	$2s(^{2}S)2p^{3}(^{4}S^{\circ})$ $^{3}S_{1}^{\circ}$	$2p^4$ 3P_2	838 340 838 340 838 340	1 271 380 1 313 280 1 319 740	2.3 - 1 $1.7 - 1$ $6.93 - 2$	5.6+9 8.7+9 1.07+10	C C C	67,98* 98* 98*
228.943 ^C	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^4$ $^1\mathrm{D}_2$	943 500	1 380 290	1.35 - 1	3.43+9	С	98*
228.19 ^C 227.56 ^C 224.16 ^C	$2s^22p^2$ ¹ D ₂ ² ₂	$2s(^{2}\mathrm{S})2p^{3}(^{2}\mathrm{D^{o}})\ ^{3}\mathrm{D_{2}^{o}}$ 1 3	140 660 140 660 140 660	578 890 580 110 586 760	1.0 - 3 $1.5 - 3$ $1.7 - 2$	2.6+7 $6.2+7$ $3.2+8$	E E E	98* 98* 98*
$227.93^{\rm C}$	$2s^22p^2$ ¹ S ₀	$2s(^2S)2p^3(^2P^o)^{-3}P_1^o$	242 180	680 910	1.6 - 3	6.8+7	E	98*
191.15^{C} 190.70^{C} 188.312 182.072 181.67^{C}	$2s^22p^2$ ³ P ₂ ² ² 1	$2s(^{2}S)2p^{3}(^{2}D^{\circ})$ $^{3}D_{2}^{\circ}$ 1 3	29 658	578 890 580 110 586 760 578 890 580 110	2.4 - 3 $2.5 - 4$ $1.95 - 1$ $1.7 - 1$ $1.9 - 2$	8.8+7 1.5+7 5.2+9 6.6+9 1.3+9	E E C C	98* 98* 25, 48, 61, 64, 66, 68°, 98* 25, 48, 61, 66, 68°, 98* 98*
172.380	1 0	1		580 110	8.6 - 2	6.4+9	C	25, 48, 61, 64, 66, 67, 68°, 98*
186.863	$2s(^{2}S)2p^{3}(^{2}D^{o})^{-1}D_{2}^{o}$	$2p^{4-1}\mathrm{D}_2$	845 140	1 380 290	6.95 - 1	2.6+10	C	67,68°,98*
185.10 ^C 183.11 ^C	$2s^22p^2$ ¹ D ₂	$2s(^{2}S)2p^{3}(^{2}P^{\circ}) {}^{3}P_{1}^{\circ}$	4 40 000	680 910 686 780	3.0 - 3 $2.8 - 3$	1.9+8 $1.1+8$	E E	98* 98*
171.057 ^C 169.357 ^C 159.617 ^C 158.135 ^C 157.522 ^C 156.536 ^C	$2s(^2S)2p^3(^2P^o)$ ³ P $_2^o$ 1 2 2 1 0 1 0 1 1	$2p^4$ $^3{ m P}_2$ 1 1 1 0 0	680 910 686 780 680 910 678 450	1 271 380 1 271 380 1 313 280 1 313 280 1 313 280 1 313 280 1 319 740	7.70 - 2 $5.91 - 2$ $1.18 - 1$ $1.6 - 3$ $3.78 - 2$ $5.28 - 2$	3.51+9 2.75+9 1.03+10 1.4+8 3.39+9 1.44+10	C C E C C	67,98* 67,98* 67,98* 98* 98* 67,98*
167.74^{C}	$2s^22p^2$ 1 S ₀	$2s(^2S)2p^3(^4S^o)$ $^3S_1^o$	242 180	838 340	2.8 - 3	2.2+8	E	98*
163.049	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^{4-1}\mathrm{S}_0$	943 500	1 556 810	2.5 - 1	6.2+10	C	67,68°,98*
159.955 158.469 154.133 153.554 152.174 146.856	$2s^22p^2$ 3 P ₂ 2 1 1 0	$2s(^2S)2p^3(^2P^\circ) \ ^3P_1^\circ$	55 730 29 658 29 658 29 658 29 658	680 910 686 780 678 450 680 910 686 780 680 910	4.3 - 2 $2.6 - 1$ $5.82 - 2$ $9.0 - 2$ $1.8 - 2$ $3.68 - 2$	3.7+9 1.4+10 1.63+10 8.5+9 1.0+9 3.79+9	D C C C D C	25, 48, 64, 67, 68°, 98* 25, 48, 61, 64, 66, 67, 68°, 98* 25, 48, 66, 67, 68°, 98*, 103 25, 48, 64, 66, 67, 68°, 98* 25, 48, 66, 67, 68°, 98* 25, 48, 67, 68°, 98*
146.067 144.661 ^C 144.405 136.393 136.160 135.202	$2s(^{2}S)2p^{3}(^{2}D^{o})$ $^{3}D_{3}^{o}$ 1 2 2 1 2 1 2 1	(580 110 578 890 580 110 578 890 580 110	1 271 380 1 271 380 1 271 380 1 313 280 1 313 280 1 319 740	4.1 - 1 $2.3 - 2$ $1.48 - 1$ $9.51 - 2$ $1.63 - 1$ $8.04 - 2$	1.95 + 10	C D C C C	61,68°,98* 98* 68°,98* 61,68°,98* 61,68°,98* 68°,98*
144.194 ^C 142.984 ^C	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{3}P_{2}^{\circ}$	$2p^{4-1}\mathrm{D}_{2}$		1 380 290 1 380 290	5.5 - 3 $5.1 - 3$	3.5+8 3.3+8	E E	98 * 98 *
142.589	$2s^22p^2$ 1S ₀	$2s(^2S)2p^3(^2P^o)^{-1}P^o$	242 180	943 500	1.23 - 1	1.35+10	C	25, 48, 61, 64, 66, 68°, 98*
141.948	$2s^22p^{2-1}D_2$	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D$	140 660	845 140	5.85 - 1	3.87+10	C	25,48,61,64,66,68°,98*

Ti XVII - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	vels (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
139.185 ^C	$2s(^{2}S)2p^{3}(^{4}S^{o})^{3}S_{1}^{o}$	$2p^{4}$ 1 S ₀	838 340	1 556 810	8.7 – 3	3.0+9	E	98*
127.782 123.654 119.284	$2s^22p^2$ ³ P ₂	$2s(^2S)2p^3(^4S^\circ)$ $^3S_1^\circ$	55 730 29 658 0	838 340 838 340 838 340	3.4 - 1 $1.6 - 1$ $5.1 - 2$	4.6+10 2.3+10 8.0+9	C C C	25, 48, 61, 64, 66, 68°, 98* 25, 48, 61, 64, 66, 68°, 98* 25, 48, 61, 64, 66, 68°, 98*
126.676	$2s^22p^2$ ³ P ₂	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D_{2}^{\circ}$						
122.63 ^C	28 2p P ₂	$\frac{2s(-S)2p^{-}(-D^{-})}{2}$	55 730 29 658	845 140 845 140	3.6 - 2 $1.5 - 3$	3.0+9 $1.3+8$	E E	25, 48, 68°, 98* 98*
126.004 124.782 ^C	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{3}^{o}$	$2p^{4} \ ^{1}\mathrm{D}_{2}$	586 760 578 890	1 380 290 1 380 290	2.5 - 2 $4.1 - 3$	2.1+9 $3.5+8$	E E	68°, 98* 98*
124.553	$2s^22p^{2-1}D_2$	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	140 660	943 500	3.6 - 1	5.2+10	C	25, 48, 61, 64, 66, 68°, 98*
114.168 ^C	$2s(^{2}S)2p^{3}(^{2}P^{\circ}) {}^{3}P_{1}^{\circ}$	$2p^{4}$ 1S ₀	680 910	1 556 810	2.4 - 3	1.2+9	E	98*
109.432	$2s^22p^2$ ³ P ₁	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{-1}P_{1}^{\circ}$	29 658	943 500	1.2 - 2	2.2+9	E	68°,98*
20.183	$2s^22p^2$ 1S ₀	$2s^22p3s\ ^1{ m P}_1^{\circ}$	242 180	5 204 000				70
19.718	$2s^22p^{2-1}D_2$	$2s^22p3s$ $^1\mathrm{P}_1^\mathrm{o}$	140 660	5 204 000				70
19.651 19.459 19.369	$2s^22p^2$ ³ P ₂ ²	$2s^22p3s$ $^3 ext{P}_1^{ m o}$	55 730 55 730 29 658	5 144 000 5 193 000 5 193 000				70 70 70
19.501	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{3}D_{2}^{\circ}$	$2s2p^{2}(^{2}D)3s^{-3}D_{2}$	578 890	5 707 000				70
19.415	$2s(^{2}S)2p^{3}(^{4}S^{o})^{-5}S_{2}^{o}$	$2s2p^2(^4{ m P})3s\ ^5{ m P_3}$	333 660	5 484 300				70
18.939	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{2}^{o}$	$2s2p^2(^4{ m P})3d\ ^3{ m F}_3$	578 890	5 859 000				70
18.757	$2s^22p^{2-1}D_2$	$2s^22p3d\ ^3{ m F}_2^{ m o}$	140 660	5 472 000				71
18.651	$2s^22p^{2-1}D_2$	$2s^22p3d\ ^1{ m D}^{ m o}_2$	140 660	5 502 000				71
18.623	$2s^22p^{2-1}S_0$	$2s^22p3d\ ^1{ m P}_1^{ m o}$	242 180	5 612 000				70,71°
18.387	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{3}D_{3}^{\circ}$	$2s2p^{2}(^{2}D)3d^{3}F_{4}$	586 760	6 025 000				70
18.350	$2s^22p^2$ ³ P ₂	$2s^22p3d\ ^1{ m D}_2^{ m o}$	55 730	5 502 000				71
18.269	$2s^22p^2$ ¹ D ₂	$2s^22p3d\ ^1{ m F}_3^{ m o}$	140 660	5 614 000				61,70,71°
18.218 18.176 18.141	$2s^22p^2$ 3 P $_1$ 2 1	$2s^22p3d\ ^3{ m D}_1^{ m o} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		5 519 000 5 557 000 5 542 000	3.2	9.2+12	E	71 61,70,71°,98* 70,71°
18.12 ^C	0	1	0	5 519 000	1.2	8.1+12	D	98*
18.154	$2s(^{2}S)2p^{3}(^{4}S^{\circ})^{5}S_{2}^{\circ}$	$2s2p^{2}(^{4}\mathrm{P})3d^{5}\mathrm{P}_{3}$	333 660	5 842 100				70
18.141	$2s^22p^2$ 3 P ₂	$2s^22p3d\ ^3P_2^{\circ}$	55 730	5 568 000				61,71°

 \mathbf{Ti} XVIII

Wave- length (Å)	Classif Lower	ication Upper	Energy Lev	els (cm ⁻¹) Int	gf	$A (s^{-1})$	Acc.	References
9898 ^C	$2p^3 \ ^2D_{3/2}^{\circ}$	$2p^3 \ ^2\mathrm{D}^{\circ}_{5/2}$	1 078 800	1 088 900	M1	1.02+1	С	98*
7505 ^C	$2s2p^2$ 2 P _{1/2}	$2s2p^2\ ^2\mathrm{P}_{3/2}$	733 750	747 070	M1	1.3+1	С-	98*
5290 ^C	$2p^3 \ ^2P_{1/2}^{o}$	$2p^3 \ ^2\mathrm{P}^{\circ}_{3/2}$	1 208 800	1 227 700	M1	5.5+1	C	98*
4311 ^C	$2s2p^{2-4}P_{1/2}$	$2s2p^2 {}^4P_{3/2}$	309 980	333 170	M1	2.76+2	C	98*
3597 ^C	3/2	5/2	333 170	360 960	M1	3.43+2	C	98*
1778.1	$2s^22p\ ^2P_{1/2}^o$	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	56 240	M1	1.6+3	В	25, 54, 55°, 56, 98*
1665 ^C 1363 ^C	$2s2p^2$ $^2S_{1/2}$	$2s2p^2 \ ^2\mathrm{P}_{1/2}$	673 680	733 750	M1	1.9+3	C-	98*
	1/2	3/2	673 680	747 070	M1	1.4+3	C-	98*
769.2 ^C	$2p^{3} {}^{2}D_{3/2}^{o}$	$2p^3 \ ^2P_{1/2}^{\circ}$	1 078 800	1 208 800	M1	3.0 + 3	D	98*
720.5 ^C	5/2	3/2	1 088 900	1 227 700	M1	3.6 + 3	D	98*
671.6 ^C	3/2	3/2	1 078 800	1 227 700	M1	7.8 + 3	D	98*
465.1 ^C	$2s2p^2 \ ^2$ P _{3/2}	$2p^3 \ ^4S^o_{3/2}$	747 070	962 100	1.4 - 3	1.1+7	Е	98*
361.1	$2s^22p^{-2}P_{3/2}^{\circ}$	$2s2p^2$ 4 P $_{3/2}$	56 240	333 170				69
322.6	1/2	1/2	0	309 980				69
301.4 ^C	$2s2p^2 {}^2P_{3/2}$	$2p^{3} \ ^{2}\mathrm{D}_{3/2}^{\circ}$	747 070	1 078 800	4.4 - 3	8.1+7	D	98*
292.5 ^C	3/2	2p D _{3/2} 5/2	747 070	1 088 900	$\frac{4.4 - 3}{2.0 - 1}$	2.6+9	C	98*
		,						
246.2 ^C	$2s2p^2\ ^2\mathrm{D}_{3/2}$	$2p^3 \ ^4\mathrm{S}^o_{3/2}$	555 860	962 100	4.4 - 4	1.2+7	E	98*
216.6^{C}	$2s2p^{2-2}P_{3/2}$	$2p^3 \ ^2P_{1/2}^{\circ}$	747 070	1 208 800	3.3 - 2	2.3 + 9	D	98*
210.51	1/2	1/2	733 750	1 208 800			_	67
208.07	3/2	3/2	747 070	1 227 700	3.2 - 1	1.2+10	С	67°,98*
200.15^{C}	$2s^22p^{-2}P_{3/2}^{\circ}$	$2s2p^2 {}^2\mathrm{D}_{3/2}$	56 240	555 860	4.8 - 3	2.0+8	D	98*
197.838	3/2	5/2	56 240	561 700	1.60 - 1	4.56 + 9	C	25, 48, 61, 72°, 98*, 103
179.902	1/2	3/2	0	555 860	1.2 - 1	6.3+9	C	25, 48, 61, 64, 72°, 98*, 103
193.4^{C}	$2s2p^2$ $^2D_{5/2}$	$2p^{3} {}^{2}\mathrm{D}^{\circ}_{3/2}$	561 700	1 078 800	6.84 - 2	3.05+9	С	98*
191.23	3/2	3/2	555 860	1 078 800	1.45 - 1	6.6 + 9	\mathbf{C}	67°,98*
189.66	5/2	5/2	561 700	1 088 900	3.1 - 1	9.6+9	C	67°,72,98*
187.55	3/2	5/2	555 860	1 088 900	5.2 - 2	1.64+9	С	67°, 98*
180.52	$2s2p^2$ $^2S_{1/2}$	$2p^3\ ^2{ m P}^o_{3/2}$	673 680	1 227 700				67
166.35	$2s2p^2$ 4 P _{5/2}	$2p^3 \ ^4S_{3/2}^{\circ}$	360 960	962 100	2.56 - 1	1.54+10	C	61,64°,72,98*
159.00	3/2	3/2	333 170	962 100	1.76 - 1	1.16+10	C	61,64°,98*
153.346 ^C	1/2	3/2	309 980	962 100	9.4 - 2	6.7 + 9	\mathbf{C}	98*
153.15	$2s2p^2$ 2 D _{3/2}	$2p^3\ ^2{ m P}^{ m o}_{1/2}$	555 860	1 208 800	1.38 - 1	1.97+10	C	67°,98*
150.15	5/2	3/2	561 700	1 227 700	1.55 - 1	1.15+10	C	67°,98*
148.83	3/2	3/2	555 860	1 227 700	4.52 - 2	3.4+9	C	67°,98*
148.438	$2s^22p\ ^2{ m P}_{1/2}^{ m o}$	$2s2p^2$ 2 S _{1/2}	0	673 680				25, 48, 61, 64, 72°, 103
147.607	$2s^22p^{-2}P_{3/2}^{o}$	$2s2p^2 {}^2P_{1/2}$	56 240	733 750				25, 48, 61, 64, 72°, 103
144.759	20 2p 1 3/2 3/2	232p 1 1/2 3/2	56 240	747 070	4.0 - 1	3.2+10	С	25, 48, 61, 64, 72°, 98*, 103
136.280	1/2	1/2	0	733 750	1.0 1	0.2 (10	Ü	25, 48, 61, 72°
133.852	1/2	3/2	0	747 070	5.54 - 2	5.2 + 9	C	25,48,61,64,72°,98*
137.37 ^C	$2s2p^2$ ⁴ P _{5/2}	$2p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{5/2}$	360 960	1 088 900	7.8 - 3	4.6+8	E	98*
134.11 ^C	3/2	$r = \frac{5}{2}$	333 170	1 078 800	4.0 - 3	3.7+8	E	98*
		•						
111.79 ^C	$2s2p^2$ 4 P $_{3/2}$	$2p^3 \ ^2\mathrm{P}^o_{3/2}$	333 170	1 227 700	9.2 - 4	1.2+8	E	98*
111.26 ^C	1/2	1/2	309 980	1 208 800	3.2 - 4	8.7+7	\mathbf{E}	98*
17.920	$2s2p^2\ ^2{ m D}_{5/2}$	$2s2p(^3P^{\circ})3d\ ^2D^{\circ}_{5/2}$	561 700	6 142 000				61
17.715	$2s2p^2$ $^2D_{3/2}$	2s2p(³ P°)3d ² F ^o _{5/2}	555 860	6 201 000				61
17.630	5/2	7/2	561 700	6 234 000				61
15								
17.587	$2s2p^2$ ² P _{3/2}	$2s2p(^{1}P^{\circ})3d^{2}D_{5/2}^{\circ}$	747 070	6 433 000				61

Ti XVIII - Continued

Wave-	Classi	fication	Energy Leve	els (cm ⁻¹) Int	. <i>gf</i>	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper						
17.39 ^C	$2s^22p\ ^2\mathrm{P_{3/2}^o}$	$2s^23d\ ^2{ m D}_{3/2}$	56 240	5 807 000	2.6 - 1	1.4+12	D	98*
17.365	3/2	5/2	56 240	5 815 000	2.3	8.6+12	D	61°,98*
17.22	1/2	3/2	0	5 807 000	1.3	7.3 + 12	D	61°,98*
17.30	$2s2p^2\ ^4{ m P}_{5/2}$	$2s2p(^{3}P^{\circ})3d\ ^{4}D_{7/2}^{\circ}$	360 960	6 143 000				61
17.28	$2s2p^2$ 4 P _{5/2}	$2s2p(^{3}P^{o})3d\ ^{4}P_{5/2}^{o}$	360 960	6 148 000				61
17.150	$2s2p^2\ ^2{ m D}_{5/2}$	$2s2p(^{1}P^{\circ})3d\ ^{2}F_{7/2}^{\circ}$	561 700	6 393 000				61
16.939	$2s^22p$ $^2P_{3/2}^{\circ}$	$2s2p(^{3}P^{o})3p^{-2}P_{3/2}$	56 240	5 960 000				61
16.90	1/2	1/2	0	5 917 000				61
16.624	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s2p(^{3}P^{o})3p^{-2}D_{5/2}$	56 240	6 072 000				61
16.561	1/2	3/2	0	6 038 000				61

Ti xix

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
6085 ^C	$2s2p~^3\mathrm{P_0^o}$	2s2p ³ P ₁ °	288 190	304 620		M1	7.81+1	C+	98*
2344.6	1	2	304 620	347 260		M1	1.04 + 3	C+	25,54°,98*
3633 ^C	$2p^2 \ ^3P_1$	$2p^2 \ ^3P_2$	804 890	832 410		M1	2.77+2	С	98*
3438 ^C	0	1	775 810	804 890		M1	4.19+2	Č	98*
1184 1C	$2p^2$ $^3\mathrm{P}_2$	0.210	000 410	017 500		3.61	0	ъ.	00#
1174.1 ^C 887.39 ^C		$2p^{2} {}^{1}D_{2}$	832 410 804 890	917 580 917 580		M1 M1	2.5+3 $2.1+3$	D+ D	98 * 98*
001.39	1		004 030	911 000		IVII	2.173	D	90
537.29 ^C	$2s2p$ $^{1}P_{1}^{o}$	$2p^{2} {}^{3}P_{0}$	589 692	775 810		5.7 - 4	1.3 + 7	\mathbf{E}	98*
464.69 ^C 412.00 ^C	1	1	589 692	804 890		2.0 - 4	2.0+6	E	98*
412.00	1	2	589 692	832 410		1.3 - 2	1.0+8	D	98*
412.49 ^C	$2s2p$ $^3\mathrm{P}^{\mathrm{o}}_2$	$2s2p\ ^{1}P_{1}^{o}$	347 260	589 692		M1	2.9 + 3	D-	98*
350.79 ^C	1	1	304 620	589 692		M1	2.8 + 3	D-	98*
331.67 ^C	0	1	288 190	589 692		M1	4.5 + 3	D-	98*
334.14 ^C	$2p^2$ $^3\mathrm{P}_1$	$2p^{2-1}S_0$	804 890	1 104 170		M1	3.8+4	D	98*
328.278	$2s^2$ 1 S $_0$	$2s2p$ $^3P_1^{\circ}$	0	304 620		6.6 - 4	1.4+7	D	25,48°,69,98*,103
305.01	$2s2p$ $^{1}P_{1}^{o}$	$2p^{2-1}D_2$	589 692	917 580		2.03 - 1	2.92 + 9	В	67°,98*
218.50	$2s2p\ ^3\mathrm{P_2^o}$	$2p^{2-3}P_1$	347 260	804 890		7.75 - 2	3.61+9	В	67°,98*
212.22	1	0	304 620	775 810		6.48 - 2	9.6+9	В	67° 98*
206.10	2	2	347 260	832 410		2.21 - 1	6.94 + 9	В	67°, 98*
199.89	1	1	304 620	804 890		5.07 - 2	2.82 + 9	В	67°, 98*
193.54 189.47	0 1	1 2	288 190 304 620	804 890 832 410		7.09 - 2 $9.18 - 2$	4.21+9 $3.41+9$	B B	67°,98* 67°,98*
194.37	2s2p ¹ P ₁ °	$2p^{2-1}S_0$	589 692	1 104 170					67°,98*
	•					1.28 - 1	2.27+10	В	·
$175.33 \\ 163.14^{\rm C}$	$2s2p\ ^{3} ext{P}_{2}^{\circ}$	$2p^{2-1}D_2$	347 260 304 620	917 580 917 580		3.4 - 2 $2.3 - 3$	1.5+9 $1.2+8$	C D	67°,98* 98*
		2							
169.580	$2s^{2-1}S_0$	$2s2p^{-1}P_1^{o}$	0	589 692		1.75 - 1	1.35+10	В	25, 48°, 61, 98*, 103
124.24 ^C	$2s^{2}$ $^{1}S_{0}$	$2p^2 \ ^3P_1$	0	804 890		M1	2.2 + 3	E	98*
17.356 ^C	$2p^{2-1}S_0$	$2p3d$ 1 P $_{1}^{o}$	1 104 170	6 866 000		1.29	9.5 + 12	C-	98*
17.201 ^C	$2s2p$ $^3\mathrm{P}_2^{\mathbf{o}}$	$2s3s$ $^3\mathrm{S}_1$	347 260	6 160 800		1.4 - 1	1.1 + 12	D	98*
17.076	1	1	304 620	6 160 800		8.4 - 2	6.4 + 11	D	73,74°,98*
17.028 ^C	0	1	288 190	6 160 800		2.8 - 2	2.1 + 11	D	98*
17.181	$2p^{2-1}\mathrm{D}_2$	$2p3d$ $^{1}\mathrm{D_{2}^{o}}$	917 580	6 738 000		3.7 - 1	1.7+12	C-	73,74°,98*
17.076	$2s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$2s3d$ $^{1}\mathrm{D}_{2}$	589 692	6 445 900		1.8	8.3+12	C-	73,74°,98*
16.960^{C}	$2p^{2-1}D_2$	$2p3d$ $^3\mathrm{P}_2^{\mathrm{o}}$	917 580	6 813 700		3.7 - 1	1.7+12	C-	98*
16.933^{C}	$2p^2\ ^3{ m P}_2$	$2p3d\ ^{1}{ m D}_{2}^{ m o}$	832 410	6 738 000		9.0 - 2	4.2+11	C-	98*
16.855^{C}	1	2	804 890	6 738 000		9.3 - 1	4.4+12	D D	98*
16.876 ^C	$2p^2$ $^3\mathrm{P}_2$	0.01370							
16.795		$2p3d$ $^3D_1^{\circ}$	832 410	6 758 000		4.4 - 3	3.4+10	Ď	98*
16.788 ^C	1	1	804 890 832 410	6 758 000 6 789 100		3.3 - 1	2.6+12	C-	74°,98*
16.736	2 2	2	832 410	6 807 600		1.1 - 1 3.6	5.2 + 11 $1.2 + 13$	D C-	98* 61°,98*
16.719	0	1	775 810	6 758 000		1.28	1.02+13	C-	73,74°,98*
16.70	1	2	804 890	6 789 100		1.5	7.3+12	C-	61°,98*
16.811	$2p^{2-1}\mathrm{D}_2$	$2p3d$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	917 580	6 866 000	1	8.0 - 2	6.3+11	D	73,74°,98*
16.795	$2p^2$ 1 D $_2$	$2p3d$ $^{1}\mathrm{F_{3}^{o}}$	917 580	6 871 700	1	5.35	1.81+13	С-	61°,73,74°,98*
16.719	$2p^2$ $^3\mathrm{P}_2$	$2p3d$ $^3P_2^{\circ}$	832 410	6 813 700		1 50		C	
16.719	2 2	2p3u F ₂	832 410 832 410	6 813 700		1.52 $4.1 - 1$	7.3+12 $3.3+12$	C- C-	73,74°,98* 73,74°,98*
$16.642^{\rm C}$	1	1	804 890	6 813 700		6.6 - 1	5.3+12 5.3+12	C-	98*
16.642 ^C	1		804 890	6 813 700		1.3 - 1	6.2 + 11	D	98*
16.562 ^C	1	2	004 030	0.019.10	,	1.3 - 1	0.4+11	ν	

Ti XIX - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹) In	it. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper			·			
16.575 ^C	$2s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$2s3d\ ^{3}\mathrm{D}_{1}$	347 260	6 380 600	3.6 - 2	2.9+11	C-	98*
16.551 ^C	2	2	347 260	6 389 200	5.5 - 1	2.7 + 12	C-	98*
16.514	2	3	347 260	6 402 700	3.0	1.0 + 13	C-	61°,98*
16.458^{C}	1	1	304 620	6 380 600	5.4 - 1	4.4 + 12	C-	98*
16.440	1	2	304 620	6 389 200	1.7	8.2 + 12	C-	61,73,74°,98*
16.414	0	1	288 190	6 380 600	7.4 - 1	6.1 + 12	C-	73,74°,98*
16.482 ^C	$2s2p^{-1}P_1^o$	$2p3p^{-1}P_1$	589 692	6 657 000	1.7 – 1	1.4+12	D	98*
16.178	$2s2p^{-1}P_1^{\circ}$	$2p3p$ $^{1}\mathrm{D}_{2}$	589 692	6 770 900	7.5 - 1	3.8+12	C-	73,74°,98*
15.866	$2s^{2}$ $^{1}S_{0}$	$2s3p$ $^3P_1^o$	0	6 303 200	3.3 - 1	2.9+12	C-	61,73,74°,98*
15.849 ^C	$2s2p\ ^{3}P_{2}^{\circ}$	$2p3p$ $^3\mathrm{D}_2$	347 260	6 657 000	3.7 - 2	2.0+11	D	98*
15.742	1	2	304 620	6 657 000	4.5 - 1	2.4 + 12	Č-	73°,98*
15.742	2	3	347 260	6 699 700	7.0 - 1	2.7 + 12	C-	61,73°,98*
15.742	$2s2p\ ^3\mathrm{P}_1^o$	$2p3p^{-1}\mathrm{P}_{1}$	304 620	6 657 000				73,74°
15.738	$2s2p~^3\mathrm{P}_2^\circ$	$2p3p^{-3}\mathrm{S}_1$	347 260	6 701 300				73,74°
15.671	$2s2p$ $^3P_1^{\circ}$	$2p3p^3P_0$	304 620	6 685 800	1.2 - 1	3.3+12	D	73,74°,98*
12.726	$2p^{2-1}D_2$	$2p4d$ $^{1}\mathrm{F}_{3}^{\mathbf{o}}$	917 580	8 775 500				75
12.688	$2p^2\ ^3{ m P}_1$	$2p4d$ $^3\mathrm{P}_2^{\mathrm{o}}$	804 890	8 720 700				75
12.622	2	2	832 410	8 720 700				75
12.592	$2p^2$ $^3\mathrm{P}_1$	$2p4d$ $^{1}\mathrm{D_{2}^{o}}$	804 890	8 746 400				75
12.480	$2s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2s4d$ $^3\mathrm{D}_3$	347 260	8 360 100				75
12.410	1	2	304 620	8 362 600				75
12.379	0	1	288 190	8 366 400				75
12.010	$2s^2$ 1 S $_0$	$2s4p^{-1}P_1^o$	0	8 326 400	1.6 - 1	2.5 + 12	D	75°,98*
11.958	$2s2p~^3\mathrm{P_2^o}$	$2p4p$ $^3\mathrm{D}_3$	347 260	8 709 800				75

Ti xx

Wave- length (Å)	Cla Lower	ssification Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1609.1 ^C	1s ² 2p ² P _{1/2}		323 521	385 666		M1	2.15+3	В	98*
	,	-,-							Ju
309.099 ^S	$1s^2 2s {}^2S_{1/2}$	$1s^22p\ ^2\mathrm{P_{1/2}^o}$	0	323 521		4.24 - 2	1.48 + 9	B+	25, 48, 76, 77°, 98*, 103
259.292 ^S	1/2	3/2	0	385 666		1.02 - 1	2.52 + 9	B+	25, 48, 76, 77°, 98*, 103
$102.19^{\rm C}$	$1s^24d ^2 D_{3/2}$	$1s^25p$ $^2P_{1/2}^o$	[8 746 800]	[9 725 400]		1.04 - 1	3.32+10	C	98*
102.03 ^C	5/2	'	[8 749 240]	[9 729 370]		1.9 - 1	3.0 + 10	C	98*
101.77 ^C	3/2	3/2	[8 746 800]	[9 729 370]		2.1 - 2	3.4 + 9	D	98*
99.574 ^C	$1s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d^{2}D_{3/2}$	[8 732 440]	[9 736 720]		2.3 - 1	3.9+10	D	98*
99.450 ^C	3/2		[8 732 440]	[9 737 970]		2.10	2.35+11	C+	98*
98.809 ^C	1/2	·	[8 724 670]	[9 736 720]		1.17	2.00+11	C+	98*
64.7^{C}	$1s^24p\ ^2{ m P}_{3/2}^{\circ}$	$1s^26d\ ^2\mathrm{D}_{5/2}$	[8 732 440]	10 278 000		r 00 1	1 05 1 1 1	C+	0.0*
64.7 ^C			[8 732 440]	10 278 000		5.08 - 1 $5.6 - 2$	1.35+11	D D	98*
64.4 ^C	3/2 1/2		[8 724 670]	10 278 000		3.6 - 2 $2.82 - 1$	2.2+10 $1.12+11$	C+	98* 98*
	•	•				1		0 1	
53.5 ^C	$1s^24p\ ^2\mathrm{P_{3/2}^o}$	$1s^27d\ ^2\mathrm{D}_{5/2}$	[8 732 440]	10 601 000		2.21 - 1	8.59 + 10	C+	98*
53.5 ^C	3/2	3/2	[8 732 440]	10 601 000		2.4 - 2	1.4 + 10	D	98*
53.3 ^C	1/2	•	[8 724 670]	10 601 000		1.24 - 1	7.26 + 10	C+	98*
48.09 ^C	$1s^24p\ ^2\mathrm{P}_{3/2}^{\mathrm{o}}$	$1s^28d\ ^2\mathrm{D}_{5/2}$	[8 732 440]	10 812 000		1.19 - 1	5.68+10	C	98*
48.09 ^C	3/2		[8 732 440]	10 812 000		1.3 - 2	9.6+9	D	98*
47.91 ^C	1/2	· · · · · · · · · · · · · · · · · · ·	[8 724 670]	10 812 000		6.56 - 2	4.79 + 10	\mathbf{C}	98*
47.3265 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	[6 574 040]	[0 607 000]					
46.9175 ^C			[6 574 040] [6 555 620]	[8 687 020] [8 687 020]					
	1/2	· ·	[0 000 020]	[6 087 020]					
47.2467 ^C	$1s^2 3d\ ^2 \mathrm{D}_{3/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	[6 608 120]	[8 724 670]		4.0 - 2	6.0 + 10	C	98*
47.2028 ^C	5/2	3/2	[6 613 920]	[8 732 440]		7.44 - 2	5.6 + 10	C	98*
47.0739 ^C	3/2	3/2	[6 608 120]	[8 732 440]		8.4 - 3	6.3 + 9	D	98*
46.79	$1s^2 3d^2 \mathrm{D}_{5/2}$	$1s^24f ^2F_{7/2}^{\circ}$	[6 613 920]	[8 751 000]					78
46.69	3/2	.,-	[6 608 120]	[8 750 000]					78
46.0244 ^C	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^24d\ ^2{ m D}_{3/2}$	[6 574 040]	[9.746.900]		0.0 1		.	0.0*
45.9728 ^C			[6 574 040] [6 574 040]	[8 746 800] [8 749 240]		2.3 - 1 2.1	1.8+11 $1.1+12$	С+ В	98*
45.6375 ^C	3/2 1/2		[6 555 620]	[8 746 800]		1.2	9.6+11	В	98* 98*
C		•	•				0.01.22	_	00
44.2736 ^C	$1s^23s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{o}$	[6 465 990]	[8 724 670]					
44.1219 ^C	1/2	3/2	[6 465 990]	[8 732 440]					
$32.0981^{\rm C}$	$1s^2 3d^2 D_{5/2}$	$1s^25p^2P_{3/2}^{o}$	[6 613 920]	[9 729 370]		1.5 - 2	2.4+10	D	98*
32.0792^{C}	3/2	5,2	[6 608 120]	[9 725 400]		8.4 - 3	2.7+10	D	98*
$32.0384^{\rm C}$	3/2	•	[6 608 120]	[9 729 370]		1.6 - 3	2.6+9	\mathbf{E}	98*
31.9272 ^C	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1,2=,20	[6 574 040]	[9 706 170]					
31.7405 ^C	13 3p 1 3/2 1/2		[6 555 620]	[9 706 170]					
		•	[0 000 020]	[5 100 110]					
31.6188 ^C	$1s^23p$ $^2P_{3/2}^{\circ}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[6 574 040]	[9 736 720]		5.6 - 2	9.2 + 10	D	98*
31.6063 ^C 31.4357 ^C	3/2	•	[6 574 040]	[9 737 970]		4.92 - 1	5.49 + 11	C+	98*
31.4357	1/2	•	[6 555 620]	[9 736 720]		2.74 - 1	4.64+11	C+	98*
27.32^{C}	$1s^2 3d^2 D_{5/2}$	$1s^26p ^2P_{3/2}^{\circ}$	[6 613 920]	10 274 000		5.5 - 3	1.2+10	D	98*
27.28 ^C	3/2	•	[6 608 120]	10 274 000		3.1 - 3	1.4+10	D	98*
27.28^{C}	3/2		[6 608 120]	10 274 000		6.4 - 4	1.4+9	\mathbf{E}	98*
27.00 ^C	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^26d ^2\mathrm{D}_{5/2}$	[6 574 040]	10 278 000		2.00 - 1	2.05 11	C+	Ac*
27.00 ^C	3/2		[6 574 040]	10 278 000		2.00 - 1 $2.2 - 2$	3.05+11 $5.1+10$	D D	98* 98*
26.86^{C}	1/2	•	[6 555 620]	10 278 000		1.12 - 1	2.58+11	C+	98*
24.83^{C}	$1s^23p^2P_{3/2}^{o}$	· ·	[0.88.5.5.5]						
24.83 ^C			[6 574 040]	10 601 000		1.04 - 1	1.89+11	C+	98*
24.83 °C	3/2	•	[6 574 040] [6 555 620]	10 601 000 10 601 000		1.2 - 2 $5.80 - 2$	3.1+10	D	98*
	1/2	•	[0 000 020]	10 001 000		5.60 - 2	1.57+11	C+	98*
23.60 ^C	$1s^23p\ ^2P_{3/2}^{o}$	$1s^28d\ ^2D_{5/2}$	[6 574 040]	10 812 000		6.4 - 2	1.2+11	C	98*
23.60^{C}	3/2		[6 574 040]	10 812 000		6.8 - 3	2.0+10	D	98*
23.49^{C}			[6 555 620]	10 812 000					

Ti xx - Continued

Wave-		sification	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
16.4465 ^C	$1s^22p$ $^2P_{3/2}^{\circ}$	$1s^23s ^2S_{1/2}$	385 666	[6 465 990]					80,81
16.2801 ^C	10 20 1 3/2	1/2	323 521	[6 465 990]					80,81
16.0708 ^C	$1s^22p^2P_{3/2}^{\circ}$	$1s^23d^{-2}D_{3/2}$	385 666	[6 608 120]		0.7 1	1 0 1 10	ъ	20 21 22*
16.0559 ^C		•	385 666	[6 613 920]		2.7 - 1 2.4	1.8+12 $1.05+13$	B B	80, 81, 98*
15.9119 ^C	3/2 1/2	5/2 3/2	323 521	[6 608 120]		1.34	8.84+12	В	80, 81, 98* 80, 81, 98*
15.2541 ^C	$1s^2 2s {}^2S_{1/2}$	•	0	[6 757 000]				_	
15.2541 15.2113 ^C		$1s^2 3p ^2P_{1/2}^{\circ}$	0	[6 555 620] [6 574 040]		2.50 - 1 $4.86 - 1$	3.58+12	B B	80,98*
	1/2	3/2	U	[0 374 040]		4.80 - 1	3.50+12	Б	80, 98*
12.0462 ^C	$1s^2 2p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^24s$ $^2S_{1/2}$	385 666	[8 687 020]					81
11.9567 ^C	1/2	1/2	323 521	[8 687 020]					81
11.9601 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	385 666	[8 746 800]		4.8 - 2	5.6+11	C+	80,81,98*
11.9566^{C}	3/2	5/2	385 666	[8 749 240]		4.4 - 1	3.4+12	В	80,81,98*
11.8719^{C}	1/2	3/2	323 521	[8 746 800]		2.4 - 1	2.8+12	В	80,81,98*
11.4618 ^C	$1s^2 2s ^2 S_{1/2}$	$1s^24p$ $^2P_{1/2}^{\circ}$	0	[8 724 670]					90.91
11.4516 ^C	15 25 31/2	18 4p F _{1/2} 3/2	0	[8 732 440]					80,81 80,81
				[0 .02 440]					55,01
10.7290 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^25s$ $^2S_{1/2}$	385 666	[9 706 170]					81
10.6580 ^C	1/2	1/2	323 521	[9 706 170]					81
10.6940^{C}	$1s^2 2p ^2P_{3/2}^{o}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	385 666	[9 736 720]		1.8 - 2	2.6+11	D	80, 81, 98*
10.6926 ^C	3/2	5/2	385 666	[9 737 970]		1.62 - 1	1.58+12	C+	80,81,98*
10.6234 ^C	1/2	3/2	323 521	[9 736 720]		9.06 - 2	1.34+12	C+	80,81,98*
10.2824 ^C	$1s^2 2s \ ^2 S_{1/2}$	$1s^25p \ ^2P_{1/2}^{\circ}$	0	[9 725 400]					90.91
10.2324 10.2782 ^C	18 28 31/2		0	[9 725 400]					80,81 80,81
		3/2	J	[0 120 010]					50,61
10.109	$1s^2 2p {}^2P_{3/2}^{\circ}$	$1s^26d\ ^2{ m D}_{5/2}$	385 666	10 278 000		7.92 - 2	8.6 + 11	C+	80°,98*
10.109 10.046	3/2	3/2	385 666	10 278 000		8.8 - 3	1.4+11	D	80°,98*
±0.040	1/2	3/2	323 521	10 278 000		4.42 - 2	7.29+11	C+	80°,98*
9.788	$1s^22p\ ^2\mathrm{P}_{3/2}^{\circ}$	$1s^27d\ ^2\mathrm{D}_{5/2}$	385 666	10 601 000		4.52 - 2	5.26 + 11	C+	80°,98*
9.788	3/2	3/2	385 666	10 601 000		4.8 - 3	8.4+10	D	80°,98*
9.733	1/2	3/2	323 521	10 601 000		2.52 - 2	4.45 + 11	C+	80°,98*
9.733	$1s^2 2s {}^2S_{1/2}$	$1s^26p\ ^2\mathrm{P}_{3/2}^{\circ}$	0	10 274 000					80
9.733	1/2	1/2	0	10 274 000					80
9.591	$1s^22p\ ^2P_{3/2}^{o}$	$1s^28d\ ^2{ m D}_{5/2}$	385 666	10 812 000		28 2	9 4 . 11	D	ono no*
9.591		,	385 666	10 812 000		2.8 - 2 $3.2 - 3$	3.4+11 $5.7+10$	D E	80°,98* 80°,98*
9.534	3/2 1/2	3/2 3/2	323 521	10 812 000		3.2 - 3 $1.6 - 2$	$\frac{5.7+10}{2.9+11}$	D	80°,98*
0.494	$1s^2 2s \ ^2 S_{1/2}$	· ·	_						
9.434 9.434		$1s^27p$ $^2P^{\circ}_{3/2}$	0 0	10 600 000 10 600 000					80
U. AUT	1/2	1/2	U	10 000 000					80
9.246	$1s^2 2s \ ^2 S_{1/2}$	$1s^28p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	10 815 000					80
9.246	1/2	1/2	0	10 815 000					80
9.128	$1s^2 2s ^2S_{1/2}$	$1s^29p\ ^2\mathrm{P_{3/2}^o}$	0	10 955 000					80
9.128	1/2	1/2	0	10 955 000					80
2.6816 ^C	$1s^2 2p ^2 P_{3/2}^{\circ}$	•	005 000						
2.6816° 2.6772°		$1s2s^2$ 2 S _{1/2}	385 666	[37 676 000]					81
	1/2	1/2	323 521	[37 676 000]					81
2.6497 ^C	$1s^2 2p {}^2P_{3/2}^{\circ}$	$1s(^{2}S)2p^{2}(^{3}P)^{4}P_{1/2}$	385 666	[38 125 000]					81
2.6477 ^C	3/2	3/2	385 666	[38 154 000]					81
2.6458 ^C	3/2	5/2	385 666	[38 181 000]					81
2.6454 ^C	1/2	1/2	323 521	[38 125 000]					81
2.6434^{C}	1/2	3/2	323 521	[38 154 000]					81
2.6484^{C}	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{\circ}) ^{4}P_{1/2}^{\circ}$	0	[37 759 000]					79,81
$2.6473^{\rm C}$	1/2	3/2	0	[37 774 000]					79,81
0.0000C				•					
2.6363 ^C 2.6354 ^C	$1s^2 2p \ ^2P^o_{3/2}$	$1s(^{2}S)2p^{2}(^{1}D)^{2}D_{3/2}$	385 666	[38 318 000]					81
2.6354° 2.6320°	3/2	5/2	385 666	[38 330 000]					81
2.0020	1/2	3/2	323 521	[38 318 000]					81

Ti xx - Continued

Wave- length (Å)	Clas Lower	sification Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
		Оррег							
2.6348^{C}	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	385 666	[38 338 000]					81
2.6306 ^C	1/2	1/2	323 521	[38 338 000]					81
2.6302^{C}	3/2	3/2	385 666	[38 405 000]					81
2.6260 ^C	1/2	3/2	323 521	[38 405 000]					81
2.6302^{C}	$1s^22s$ $^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o}) {^{2}P_{1/2}^{o}}$	0	[38 020 000]		1.3 - 1	6.1+13	C	79, 81, 98*, 102
2.6279^{C}	1/2	3/2	0	[38 053 000]		2.0 - 2	4.9+12	D	81,98*
2.6213 ^C	$1s^2 2s {}^2S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o}) \ ^{2}P_{1/2}^{o}$	0	[38 149 000]					79,81
$2.6204^{\rm C}$	1/2	3/2	0	[38 162 000]					79,81,102
$2.6202^{\rm C}$	$1s^22p\ ^2P_{3/2}^{o}$	$1s(^2S)2p^2(^1S)^{-2}S_{1/2}$	385 666	[38 550 000]					79,81,102
2.6160 ^C	1/2	1/2	323 521	[38 550 000]					81
2.255	$1s^22p^2P_{3/2}^{\circ}$	$1s2p3p\ ^{2}\mathrm{D}_{5/2}$	385 666	44 730 000					82
2.243	$1s^23s$ $^2S_{1/2}$	$1s2s3p\ ^{2}P_{1/2}^{\circ}$	[6 465 990]	51 050 000					82
2.243	1/2	3/2	[6 465 990]	51 050 000					82
2.243	$1s^23s$ $^2S_{1/2}$	$1s2p3s^{-2}P_{1/2}^{o}$	[6 465 990]	51 050 000					82
2.151	$1s^22p\ ^2P^o_{3/2}$	$1s2p4p\ ^{2}\mathrm{D}_{5/2}$	385 666	46 880 000					82
2.105	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s2p5p^{-2}D_{5/2}$	385 666	47 890 000					82

Ti xxı

Wave- length (Å)	Classifica Lower	tion Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
9000 ^C	1s5s ¹ S ₀	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[48 452 600]	[48 463 700]	1	.0 – 1	2.7+6	E	98*
8400 ^C 6400 ^C	1s5s ³ S ₁	1s5p ³ P ₁ °	[48 440 800] [48 440 800]	[48 452 700] [48 456 300]	1	1.0 – 1	3.2+6	Е	98*
8300 ^C 6700 ^C	1s4p 3P2	$1s4d$ 3D_2	[47 358 900] [47 358 900]	[47 371 000] [47 373 800]					
5200 ^C	2	3	[47 351 900]	[47 371 000]					
5200 ^C	1	1	[47 351 900]	[47 371 100]					
4880 ^C	0	1	[47 350 600]	[47 371 100]					
4560 ^C	1s4s ¹ S ₀	1s4p ¹ P ₁	[47 351 600]	[47 373 500]	8	3.1 - 2	8.6+6	Е	98*
4270 ^C 3290 ^C	1s4s ³ S ₁	$1s4p$ $^3P_1^o$	[47 328 500] [47 328 500]	[47 351 900] [47 358 900]	8	3.1 - 2	9.9+6	E	98*
1930 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s3p^{-1}P_{1}^{o}$	[44 966 970]	[45 018 670]	5	5.8 - 2	3.5+7	D	98*
1800 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s3p$ $^3P_1^o$	[44 911 910]	[44 967 630]	5	5.7 - 2	3.9+7	E	98*
565.9 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p$ $^{1}\mathrm{P}_{1}^{o}$	[38 131 640]	[38 308 340]	3	3.29 - 2	2.28 + 8	В	98*
523.9^{C}	$1s2s\ ^{3}S_{1}$	$1s2p^{-3}P_0^{o}$	[37 923 880]	[38 114 760]	1	1.20 - 2	2.93+8	В	98*
496.57 ^C	1	1	[37 923 880]	[38 125 260]	3	3.66 - 2	3.31 + 8	В	98*
389.50 ^C	1	2	[37 923 880]	[38 180 620]	8	8.11 – 2	7.13+8	В	88,98*
260.11 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{1}P_{1}^{o}$	[37 923 880]	[38 308 340]	3	3.12 - 3	1.02+8	В	98*
92.67 ^C	$1s4p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[47 373 500]	[48 452 600]	3	1.7 - 1	1.3+11	C	98*
92.43^{C} 91.84^{C}	1s4p ³ P ₂ 1	$1s5s {}^{3}S_{1}$	[47 358 900] [47 351 900]	[48 440 800] [48 440 800]	1	1.7 – 1	4.4+10	D	98*
89.92 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	1s5p ¹ P ₁ °	[47 351 600]	[48 463 700]		4.6 – 1	1.3+11	D	98*
88.95 ^C	$1s4s$ $^3\mathrm{S}_1$	1s5p ³ P ₁ °	[47 328 500]	[48 452 700]		4.56 - 1	1.28+11	C	98*
42.865 ^C	1s3p ¹ P ₁ °	1s4s ¹ S ₀	[45 018 670]	[47 351 600]		1.1 – 1	3.8+11	C	98*
42.782 ^C	1s3d ³ D ₁	1s4p ³ P ₀ °	[45 013 170]	[47 350 600]		1.1 - 1	J.0711	O	30
42.758 ^C	1	134p 1 ₀	[45 013 170]	[47 350 000]					
42.754 ^C	2	1	[45 012 940]	[47 351 900]					
42.745 ^C	3	2	[45 019 460]	[47 358 900]					
42.626 ^C	2	2	[45 012 940]	[47 358 900]					
42.656 ^C 42.357 ^C	$1s3p\ ^{3}\mathrm{P}_{2}^{\mathrm{o}}$	$1s4s {}^{3}S_{1}$	[44 984 160] [44 967 630]	[47 328 500] [47 328 500]	1	1.0 – 1	1.3+11	C	98*
$42.511^{\rm C}$	$1s3d$ $^{1}\mathrm{D}_{2}$	1s4p 1P1	[45 021 140]	[47 373 500]	;	5.5 - 2	6.8+10	С	98*
42.448 ^C	$1s3p^{-1}\mathrm{P_1^o}$		[45 018 670]	[47 374 500]	1	1.9	1.4+12	С	98*
41.896 ^C	$1s3p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[44 984 160]	[47 371 000]					
41.847 ^C	2	3	[44 984 160]	[47 373 800]					
41.608 ^C	1	2	[44 967 630]	[47 371 000]					
41.607 ^C 41.553 ^C	1 0	1 1	[44 967 630] [44 964 560]	[47 371 100] [47 371 100]					
41.554 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[44 966 970]	[47 373 500]	4	4.10 – 1	5.3+11	C	98*
40.984 ^C	$1s3s\ ^{3}S_{1}$	$1s4p$ $^3\mathrm{P}_1^{\mathrm{o}}$	[44 911 910]	[47 351 900]		4.08 - 1	5.4+11	C	98*
40.867 ^C	1	2	[44 911 910]	[47 358 900]		1.00 – 1	J.4+11	C	36
$29.121^{\rm C}$	$1s3p$ $^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[45 018 670]	[48 452 600]	:	2.3 - 2	1.8+11	C	98*
28.930 ^C 28.792 ^C	$1s3p \ ^{3}P_{2}^{o}$	$1s5s \ ^{3}S_{1}$	[44 984 160] [44 967 630]	[48 440 800] [48 440 800]	:	2.3 - 2	6.2+10	D	98*
28.598^{C}	$1s3s$ $^{1}\mathrm{S}_{0}$	1s5p 1P ₁ °	[44 966 970]	[48 463 700]		1.06 - 1	2.88+11	C+	98*
28.242 ^C	$1s3s\ ^{3}S_{1}$	1s5p ³ P ₁ °	[44 011 010]						
28.242 28.214 ^C	1838 51	185p P ₁	[44 911 910] [44 911 910]	[48 452 700] [48 456 300]		1.1 - 1	2.9+11	C	98*
15.018 ^C	$1s2p^{-1}\mathrm{P_1^o}$	$1s3s$ $^{1}\mathrm{S}_{0}$	[38 308 340]	[44 966 970]		4.5 - 2	1.3+12	C+	98*
			-	•					

Ti XXI - Continued

Wave-	Classifica	tion.	Energy Level	s (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	Ellergy Devel	s (cm) m	. 9)	A (5)	Acc.	References
14.897 ^C	$1s2p^{-1}P_{1}^{o}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[38 308 340]	[45 021 140]	2.1	1.3+13	C+	75, 98*
14.031	_	133a D2	[30 300 340]	[45 021 140]	2.1	1.3713	O T	13, 98
14.856 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s3s$ $^3\mathrm{S}_1$	[38 180 620]	[44 911 910]				
14.735^{C}	1	1	[38 125 260]	[44 911 910]	4.5 - 2	4.6 + 11	C-	98*
_		_	•	•				
14.636 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s3d$ $^3\mathrm{D}_2$	[38 180 620]	[45 012 940]				
14.622 ^C	2	3	[38 180 620]	[45 019 460]				75
14.519 ^C	1	2	[38 125 260]	[45 012 940]				75
14.518 ^C	1	1	[38 125 260]	[45 013 170]				
14.496^{C}	0	1	[38 114 760]	[45 013 170]				
C	10	1 2 120	[00 404 040]	[45 000 050]			~	
14.520^{C}	$1s2s\ ^{1}S_{0}$	$1s3p\ ^{1}P_{1}^{o}$	[38 131 640]	[45 018 670]	3.73 - 1	3.93 + 12	C	98*
14.197 ^C	$1s2s\ ^{3}S_{1}$	$1s3p\ ^{3}P_{1}^{o}$	[37 923 880]	[44 967 630]	3.72 - 1	4.10+12	С	75,98*
14.164 ^C		-	[37 923 880]	[44 984 160]	3.72 - 1	4.10+12	Ç	75, 98 75
14.104	1	2	[31 323 660]	[44 504 100]				73
11.058^{C}	$1s2p^{-1}P_{1}^{o}$	$1s4s$ $^{1}S_{0}$	[38 308 340]	[47 351 600]	9.6 - 3	5.2 + 11	C	98*
		-515 20	[00 000 010]	[]	5.0	0.2 , 22	Ü	00
11.030^{C}	$1s2p^{-1}P_{1}^{o}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[38 308 340]	[47 374 500]	3.6 - 1	4.0 + 12	C	98*
_	_							
10.931 ^C	$1s2p\ ^{3}P_{2}^{\circ}$	$1s4s$ $^3\mathrm{S}_1$	[38 180 620]	[47 328 500]				
10.866^{C}	1	1	[38 125 260]	[47 328 500]	9.6 - 3	1.8 + 11	D	98*
C	370	3 –	f==					
10.881 ^C 10.878 ^C	$1s2p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[38 180 620]	[47 371 000]				
	2	3	[38 180 620]	[47 373 800]				
10.816 ^C	1	2	[38 125 260]	[47 371 000]				
10.816 ^C	1	1	[38 125 260]	[47 371 100]				
10.803 ^C	0	1	[38 114 760]	[47 371 100]				
10.820 ^C	$1s2s^{-1}S_0$	$1s4p^{-1}P_{1}^{o}$	[38 131 640]	[47 373 500]	9.0 - 2	1.7+12	C+	98*
10.020	1323 50	1349 11	[30 131 040]	[41 373 300]	9.0 - 2	1.7+12	O+	98
$10.607^{\rm C}$	$1s2s\ ^{3}S_{1}$	$1s4p\ ^{3}P_{1}^{o}$	[37 923 880]	[47 351 900]	9.0 - 2	1.8+12	C+	98*
10.599 ^C	1	2	[37 923 880]	[47 358 900]	V.0 -	1.0 12	0,	
	•		[,	[]				
9.8578^{C}	$1s2p\ ^{1}P_{1}^{o}$	$1s5s\ ^{1}{ m S}_{0}$	[38 308 340]	[48 452 600]	3.9 - 3	2.7 + 11	$^{\rm C}$	98*
	-	_		•				
9.7464 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s5s {}^{3}S_{1}$	[38 180 620]	[48 440 800]				
9.6941^{C}	1	1	[38 125 260]	[48 440 800]	3.9 - 3	9.2 + 10	D	98*
9.6786 ^C	$1s2s^{-1}S_0$	1 5 100	[00 101 040]	[40, 400, 700]			~ .	
9.0780	$1828 S_0$	$1s5p^{-1}P_{1}^{o}$	[38 131 640]	[48 463 700]	3.7 - 2	8.8 + 11	C+	98*
9.4977 ^C	$1s2s\ ^{3}S_{1}$	1s5p 3P2	[37 923 880]	[48 452 700]	3.6 - 2	97111	CI	0.0.*
9.4945 ^C	=	1307 1 1	[37 923 880]	[48 456 300]	3.0 - 2	8.7+11	C+	98*
0.1010	1	2	[37 323 330]	[40 400 500]				
2.636861^{C}	$1s^{2-1}S_0$	$1s2s {}^{3}S_{1}$	0	[37 923 880]	MI	3.85 + 7	В	98*
		•		[0. 000 000]	****	0.00 , .	2	30
2.622933 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2p\ ^{3}P_{1}^{\circ}$	0	[38 125 260]	3.46 - 2	1.12 + 13	В	74,79,83,98*
2.619130^{C}	0	2	0	[38 180 620]	M2	1.69 + 9	В	83,98*
		_						•
2.610398 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[38 308 340]	7.35 - 1	2.40 + 14	В	74, 79, 83, 84, 85, 86, 87, 98*
2.5396^{C}	ilo Ing	a 2 la	[00.000.010]	f=== a				
2.5396	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2s^{2-1}S_0$	[38 308 340]	[77 684 000]	3.9 - 2	4.1 + 13	D	81,98*
2.5279^{C}	$1s2p\ ^{3}P_{1}^{o}$	$2s^{2}$ $^{1}S_{0}$	[38 125 260]	[77 684 000]		10.10	Б	
2.0210	1329 1 1	28 50	[36 123 200]	[11 004 000]	1.1 - 2	1.2 + 13	D	81,98*
$2.5249^{\rm C}$	$1s2p^{-1}P_1^{o}$	$2p^2 \ ^3P_0$	[38 308 340]	[77 913 000]				81
2.5227^{C}	1	-p - 0	[38 308 340]	[77 948 000]				81
2.5204^{C}	1	2	[38 308 340]	[77 984 000]	1.2 - 1	2.6+13	D	81, 89, 98*
			[[001 000]	1.2 1	2.0 , 10		01, 09, 90
2.5248^{C}	$1s2s\ ^{1}S_{0}$	$2s2p\ ^{3}P_{1}^{o}$	[38 131 640]	[77 739 000]				81
6	9	_	•	,				
2.5146 ^C	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^2 \ ^3P_1$	[38 180 620]	[77 948 000]	3.4 - 1	1.2 + 14	C	81,98*
2.5134 ^C	1	0	[38 125 260]	[77 913 000]	2.6 - 1	2.7 + 14	C	81,98*
2.5124 ^C	2	2	[38 180 620]	[77 984 000]	8.5 - 1	1.8 + 14	$^{\rm C}$	81,89,98*
2.5111 ^C	1	1	[38 125 260]	[77 948 000]	2.0 - 1	6.9 + 13	\mathbf{C}	81,98*
2.5105 ^C	0	1	[38 114 760]	[77 948 000]	2.7 - 1	9.6 + 13	C	81,98*
2.5089 ^C	1	2	[38 125 260]	[77 984 000]	3.6 - 1	7.9 + 13	D	81,89,98*
2.5140 ^C	$1s2p^{-1}P_{1}^{o}$	c 2 1r	[21.2.200.00]	[mo oo= ====			_	
2.5140	182p P ₁	$2p^{2-1}D_2$	[38 308 340]	[78 085 000]	1.1	2.4 + 14	C	81, 83, 89, 98*
2.5130 ^C	$1s2s\ ^{3}S_{1}$	2s2p 3P0	[37 923 880]	[77 717 000]	19 1	1 4 1 1 4	0	01 00*
2.5116 ^C		=	[37 923 880]	[77 717 000] [77 739 000]	1.3 - 1	1.4+14	C	81,98*
2.5079 ^C	1	1 2	ioi	[77 798 000]	3.9 - 1 $6.6 - 1$	1.4+14 $1.4+14$	C C	81,98*
	1	2	[0. 020 000]	[11 130 000]	J.U — I	1.4714	C	81,83,89,98*

Ti XXI - Continued

Wave-	Classific		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
2.5060 ^C 2.5026 ^C	$1s2p\ ^{3}\mathrm{P_{2}^{o}}$	$2p^{2}$ 1 D_{2} 2	[38 180 620] [38 125 260]	[78 085 000] [78 085 000]		1.7 – 1	3.5+13	D	81,98* 81
2.5053^{C}	$1s2s$ $^{1}S_{0}$	$2s2p^{-1}P_1^{\circ}$	[38 131 640]	[78 046 000]		4.0 - 1	1.4+14	C	81,89,98*
2.4981 ^C	1s2p 1P1	$2p^2$ ¹ S ₀	[38 308 340]	[78 338 000]		2.3 - 1	2.4 + 14	\mathbf{C}	81,98*
2.4924 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^{1}P_{1}^{o}$	[37 923 880]	[78 046 000]					81
2.4868^{C}	$1s2p$ $^3P_1^o$	$2p^{2-1}S_0$	[38 125 260]	[78 338 000]					81
$2.22658^{\rm C}$	$1s^2$ 1 S ₀	$1s3s$ $^3\mathrm{S}_1$	0	[44 911 910]		M1	1.50+7	C	98*
$2.22382^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s3p$ $^3P_1^{\circ}$	0	[44 967 630]		8.4 - 3	3.8+12	E	82,98*
$2.22130^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s3p$ $^{1}P_{1}^{o}$	0	[45 018 670]		1.41 - 1	6.35+13	C+	82,85,98*
2.11289^{C}	$1s^2$ 1 S ₀	$1s4s$ $^3\mathrm{S}_1$	0	[47 328 500]		M1	6.76+6	C	98*
$2.11185^{\rm C}$	$1s^2$ 1 S ₀	$1s4p$ $^3\mathrm{P}_1^\mathrm{o}$	0	[47 351 900]		3.1 - 3	1.5+12	E	82,98*
$2.11088^{\rm C}$	$1s^{2} {}^{1}S_{0}$	1s4p 1Po	0	[47 373 500]		5.22 - 2	2.60+13	C+	82, 85, 87, 98*
2.06387 ^C	$1s^{2} {}^{1}S_{0}$	$1s5p$ $^3P_1^{\circ}$	0	[48 452 700]		1.6 - 3	8.4+11	E	82,98*
$2.06340^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	1s5p ¹ P ₁ °	0	[48 463 700]		2.52 - 2	1.32+13	C+	82,85,87,98*
2.041	$1s^{2} {}^{1}S_{0}$	$1s6p\ ^{1}\mathrm{P_{1}^{o}}$	0	49 000 000					82°,85
2.041	$1s^{2}$ $^{1}S_{0}$	$1s6p$ $^3\mathrm{P}^{\mathrm{o}}_1$	0	49 000 000					82
2.026	$1s^{2} {}^{1}S_{0}$	$1s7p$ $^{1}P_{1}^{o}$	0	49 360 000				-	82°,85
2.026	$1s^{2} {}^{1}S_{0}$	$1s7p$ $^3P_1^{\circ}$	0	49 360 000					82
2.015	$1s^{2}$ $^{1}S_{0}$	$1s8p$ $^{1}P_{1}^{o}$	0	49 630 000					82°,85
2.015	$1s^{2}$ $^{1}S_{0}$	$1s8p\ ^{3}P_{1}^{o}$	0	49 630 000					82

 \mathbf{Ti} XXII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
3991 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[47 501 650]	[47 526 700]	3.40 - 2	3.55+6	A	97*
3876 ^C	$3p^{-2}P_{1/2}^{o}$	$3d$ $^2\mathrm{D}_{3/2}$	[47 500 860]	[47 526 650]	2.18 - 2	2.42+6	A	97*
1182 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p^2 P_{3/2}^{\circ}$	[40 056 750]	[40 141 340]	1.91 - 2	2.28+7	Α	97*
38.6888 ^C	$3d^{2}\mathrm{D}_{5/2}$	$4f^{2}F_{7/2}^{\circ}$	[47 535 160]	[50 119 890]	5.82	3.24+12	Α	97*
38.5892 ^C	$3p\ ^{2}P_{3/2}^{\circ}$	$4d~^2\mathrm{D}_{5/2}$	[47 526 700]	[50 118 100]	2.23	1.67+12	A	97*
38.2719^{C}	$3s$ $^2\mathrm{S}_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	[47 501 650]	[50 114 530]	6.54 - 1	7.45+11	A	97*
26.4550^{C}	$3d^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{\circ}$	[47 535 160]	[51 315 160]	8.94 - 1	1.07+12	A	97*
26.4024 ^C	$3p\ ^{2}P_{3/2}^{o}$	$5d^2\mathrm{D}_{5/2}$	[47 526 700]	[51 314 240]	5.04 - 1	8.01+11	A	97*
26.2415 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$5p^{2}P_{3/2}^{\circ}$	[47 501 650]	[51 312 410]	1.63 - 1	3.94+11	A	97*
13.5248 ^C	$2p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3d^2\mathrm{D}_{5/2}$	[40 141 340]	[47 535 160]	2.51	1.53+13	A	97*
13.3870 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[40 056 750]	[47 526 700]	5.88 - 1	5.47+12	A	97*
10.0233 ^C	$2p$ $^2\mathrm{P}^{\circ}_{3/2}$	$4d~^2\mathrm{D}_{5/2}$	[40 141 340]	[50 118 100]	4.40 - 1	4.86+12	Α	97*
9.94255 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p^{2}P_{3/2}^{o}$	[40 056 750]	[50 114 530]	1.38 - 1	2.33+12	A	97*
8.95023 ^C	$2p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$5d^2\mathrm{D}_{5/2}$	[40 141 340]	[51 314 240]	1.60 - 1	2.22+12	A	97*
8.88442^{C}	$2s$ $^2\mathrm{S}_{1/2}$	$5p\ ^{2}P_{3/2}^{\circ}$	[40 056 750]	[51 312 410]	5.64 - 2	1.19+12	Α	97*
2.496618 ^C	$1s$ $^2\mathrm{S}_{1/2}$	$2p^{2}P_{1/2}^{\circ}$	0	[40 054 190]	2.80 - 1	1.49+14	Α	83, 90, 93, 97*
2.491197 ^C	1/2	3/2	0	[40 141 340]	5.60 - 1	1.50 + 14	A	83, 90, 93, 97*
2.105225^{C}	$1s^{-2}S_{1/2}$	$3p^{2}P_{1/2}^{\circ}$	0	[47 500 860]	5.30 - 2	3.99+13	A	97*
2.104080°	1/2	3/2	0	[47 526 700]	1.06 - 1	4.00+13	Α	97*
1.995429 ^C	$1s^{-2}S_{1/2}$	$4p\ ^{2}P_{3/2}^{o}$	0	[50 114 530]	3.90 - 2	1.63+13	A	97*
1.948846 ^C	$1s^{-2}S_{1/2}$	$5p^{2}P_{3/2}^{o}$	0	[51 312 410]	1.87 - 2	8.21+12	A	97*

2.2.3. References for Comments and Tables for Ti Ions

- [1] B. Edlén and J. W. Swensson, Phys. Scr. 12, 21 (1975).
- [2] H. N. Russell and R. J. Lang, Astrophys. J. 66, 13 (1927).
- [3] J. W. Swensson and B. Edlén, Phys. Scr. 9, 335 (1974).
- [4] L. A. Svensson, Phys. Scr. 13, 235 (1976).
- [5] S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577 (1977).
- [6] L. A. Svensson and J. O. Ekberg, Ark. Fys. 37, 65 (1968).
- [7] L. A. Svensson, Phys. Scr. 4, 111 (1971).
- [8] B. Edlén, Z. Phys. 104, 407 (1937).
- [9] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [10] P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 621 (1937).
- [11] J. O. Ekberg and L. A. Svensson, Phys. Scr. 2, 283 (1970).
- [12] R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [13] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [14] E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B 5, 2173 (1988).
- [15] B. C. Fawcett, J. Phys. B 3, 1732 (1970).
- [16] U. Litzén and A. Redfors, Phys. Lett. A127, 88 (1988).
- [17] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [18] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [19] E. H. Pinnington, W. Ansbacher, E. Träbert, P. H. Heck-mann, H. M. Hellmann, and G. Möller, Z. Phys. D 6, 241 (1987).
- [20] E. H. Pinnington, W. Ansbacher, A. Tauheed, E. Träbert, P. H. Heckmann, G. Möller, and J. H. Blanke, Z. Phys. D 17, 5 (1990).
- [21] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [22] J. O. Ekberg, Phys. Scr. 4, 101 (1971).
- [23] L. A. Svensson and J. O. Ekberg, Ark. Fys. 40, 145 (1969).
- [24] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [25] N. J. Peacock, M. F. Stamp, and J. D. Silver, Phys. Scr. T8, 10 (1984).
- [26] A. Redfors, Phys. Scr. 38, 702 (1988).
- [27] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).
- [28] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [29] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [30] B. C. Fawcett, J. Opt. Soc. Am. 66, 632 (1976).
- [31] S. Bashkin, E. Träbert, P. H. Heckmann, H. v. Buttlar, and K. Brand, Phys. Scr. 28, 193 (1983).
- [32] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [33] J. O. Ekberg and L. A. Svensson, Phys. Scr. 12, 116 (1975).
- [34] L. Cohen and W. E. Behring, J. Opt. Soc. Am. 66, 899 (1976).
- [35] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [36] M. Westerlind, Phys. Rev. A 42, 3996 (1990).
- [37] P. G. Burkhalter, L. Cohen, R. D. Cowan, and U. Feldman, J. Opt. Soc. Am. 69, 1133 (1979).
- [38] C. Jupén, L. Engström, R. Hutton, and E. Träbert, J. Phys. B 21, L347 (1988).
- [39] B. Edlén, Phys. Scr. 17, 565 (1978).
- [40] B. Edlén and F. Tyrén, Z. Phys. 101, 206 (1936).
- [41] U. Feldman and L. Cohen, Astrophys. J. 149, 265 (1967).
- [42] C. Jupén and U. Litzén, Phys. Scr. 30, 112 (1984).
- [43] E. Träbert, Z. Phys. A 319, 25 (1984).
- [44] E. Träbert and C. Jupén, Phys. Scr. 36, 586 (1987).
- [45] C. Jupén, U. Litzén, V. Kaufman, and J. Sugar, Phys. Rev. A 35, 116 (1987).
- [46] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).

- [47] B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 186, 113 (1979).
- [48] M. F. Stamp and N. J. Peacock, J. Phys. B 15, L703 (1982).
- [49] V. Kaufman, J. Sugar, and D. Cooper, Phys. Scr. 25, 623 (1982).
- [50] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [51] C. Jupén, N. Reistad, E. Träbert, J. H. Blanke, P. H. Heck-mann, H. Hellmann, and R. Hucke, Phys. Scr. 32, 527 (1985).
- [52] K. T. Cheng, unpublished material (1981).
- [53] W. C. Martin, unpublished material (1982).
- [54] K. D. Lawson, N. J. Peacock, and M. F. Stamp, J. Phys. B 14, 1929 (1981).
- [55] S. Suckewer, R. Fonck, and E. Hinnov, Phys. Rev. A 22, 2278 (1980).
- [56] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, J. Appl. Phys. 56, 2012 (1984).
- [57] B. C. Fawcett, J. Phys. B 4, 981, (1971).
- [58] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417, (1974).
- [59] S. Goldsmith, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 61, 615 (1971).
- [60] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 63, 1463 (1973).
- [61] B. C. Fawcett and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 170, 185 (1975).
- [62] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 178, 591 (1977).
- [63] V. Kaufman, J. Sugar, and D. Cooper, Phys. Scr. 26, 163 (1982).
- [64] Y. S. Kasyanov, E. Y. Kononov, V. V. Korobkin, K. N. Koshelev, A. N. Ryabtsev, R. V. Serov, and E. V. Skokan, Opt. Spectrosc. 36, 4 (1974).
- [65] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 179, 683 (1977).
- [66] B. C. Fawcett, M. Galanti, and N. J. Peacok, J. Phys. B 7, 1149 (1974).
- [67] B. C. Fawcett, A. Ridgeley, and T. Hatter, J. Opt. Soc. Am. 70, 1349 (1980).
- [68] J. Sugar, V. Kaufman, and D. Cooper, Phys. Scr. 26, 189 (1982).
- [69] B. Denne and E. Hinnov, Phys. Rev. A 29, 3442 (1984).
- [70] S. Goldsmith, U. Feldman, A. Crooker, and L. Cohen, J. Opt. Soc. Am. 62, 260 (1972).
- [71] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 178, 605 (1977).
- [72] J. Sugar, V. Kaufman, and D. Cooper, Phys. Scr. 26, 293 (1982).
- [73] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [74] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [75] J. C. Moreno, S. Goldsmith, H. R. Griem, L. Cohen, and M. C. Richardson, J. Opt. Soc. Am. B 4, 1931 (1987).
- [76] E. Hinnov, the TFTR Operating Team, B. Denne, and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).
- [77] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [78] B. C. Fawcett and A. Ridgely, J. Phys. B 14, 203 (1981).
- [79] E. V. Aglitskii, V. A. Boiko, S. M. Zakharov, S. A. Pikuz, and A. Ya. Faenov, Sov. J. Quant. Electron. 4, 500 (1974).
- [80] E. V. Aglitskii, V. A. Boiko, S. A. Pikuz, and A. Ya. Faenov, Sov. J. Quant. Electronics 4, 956 (1975).
- [81] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [82] E. V. Aglitskii and A. M. Panin, Opt. Spectrosc. 58, 453 (1985).
- [83] J. J. Turechek and H. J. Kunze, Z. Phys. A 273, 111 (1975).
- [84] S. Morita, J. Phys. Soc. Jpn. **52**, 2673 (1983).
- [85] L. A. Vainshtein, M. A. Mazing, and A. P. Shevel'ko, Sov. Phys. Lebedev Institute Reports, 39 (1983).

- [86] S. Morita and J. Fujita, Nucl. Instrum. Meth. B 9, 713 (1985).
- [87] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [88] E. J. Galvez, A. E. Livingston, A. J. Mazure, H. G. Berry, L. Engström, J. E. Hardis, L. P. Somerville, and D. Zei, Phys. Rev. A 33, 3667 (1986).
- [89] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [90] K. T. Cheng, unpublished material (1996).
- [91] W. R. Johnson and G. Soff, At. Data Nucl. Data Tables 33, 405 (1985).
- [92] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [93] M. Bitter, S. von Goeler, S. Cohen, K. W. Hill, S. Sesnic, F. Tenney, J. Timberlake, U. I. Safronova, L. A. Vainshtein, J. Dubau, M. Loulergue, F. Bely-Dubau, and L. Steenman-Clark, Phys. Rev. A 29, 661 (1984).

- [94] T. N. Lie and R. C. Elton, Phys. Rev. A 3, 865 (1971).
- [95] P. J. Mohr, At. Data Nucl. Data Tables 29, 453 (1983).
- [96] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [97] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 4, Vol. I, U.S. Govt. Print. Office, Washington, D.C. (1966).
- [98] G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. No. 3 (1988).
- [99] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. 79A, 629 (1975).
- [100] B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. 91, 973 (1967).
- [101] M. Finkenthal, R. E. Bell, H. W. Moos, Phys. Lett. 88A, 165 (1982).
- [102] M. A. Mazing, A. M. Panin, and A. P. Shevelko, Opt. Spectrosc. 59, 579 (1985).
- [103] J. H. Davé, U. Feldman, J. F. Seely, A. Wouters, S. Suckewer, E. Hinnov, and J. L. Schwob, J. Opt. Soc. Am. B 4, 635 (1987).

2.3. Vanadium

2.3.1. Brief Comments on Each Vanadium Ion

 \mathbf{V} IV

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 376 730 \pm 40 cm⁻¹ (46.709 \pm 0.005 eV)

An extensive study was reported by Iglesias [1], who identified 340 lines in the region 675-5940 Å comprising transitions among the $3d^2$, 3d4s, 3d4p, 3d4d, 3d4f, 3d5s, 3d5p, 3d5d, 3d5g, and 3d6s configurations. Wavelengths were observed with an uncertainty of ± 0.01 Å by using as light sources a condensed spark and a hollow cathode discharge. Classification of the lines at 2413.256 Å and 5227.89 Å has been changed to 3d4f $^1F_3^\circ - 3d5g$ $^2[\frac{7}{2}]_4$ and 3d5s $^3D_2 - 3d5p$ $^3D_3^\circ$, respectively. Both classifications in Ref. [1] contain misprints. The 3d5p $^3P_2^\circ - 3d5d$ 3P_1 line at 3229.92 Å should be 3d5p $^3P_1^\circ - 3d5d$ 3P_2 . In a further correction we have removed the 3d4f $^3G_3^\circ - 3d5d$ 3F_2 line at 4966.38 Å because the calculated wavelength does not fit this value.

Wyart [2] provided a calculation of eigenvectors for the mixed configurations 3d4f + 3d5p in a private communication, which are reported by Sugar and Corliss [3]. He also reported calculations of percentage compositions for the 3d4d, 3d5s, 3d5d, and 3d6s configurations.

Nineteen $3d^2-3d4f$ and three $3d^2-3d5p$ transitions were identified by Shalimoff and Conway [4] in the range of 378-402 Å observed with a vacuum sliding-spark. The uncertainty of wavelengths is estimated to be ± 0.001 Å.

The value for the ionization energy was derived by Iglesias [1] from the 3-member 3dns series.

 \mathbf{V} v

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 526 532 \pm 1.4 cm⁻¹ (65.2817 \pm 0.0002 eV)

The $3p^63d$ $^2\mathrm{D} - 3p^5(^2\mathrm{P^o})3d^2$ $^2\mathrm{D^o}$ and $^2\mathrm{F^o}$ transitions were first identified by Gabriel et al. [5]. The most extensive observation, surpassing the earlier observations of Gabriel et al., Van Deurzen et al. [6], Ekberg [7], and Iglesias [1], was carried out by Van Deurzen [8] with a vacuum sliding-spark discharge. He identified 139 lines in the extended range of 199-7600 Å with an uncertainty of ± 0.008 Å.

Additional $n=6-7,\,6-8,\,$ and 7-9 transitions between high J states were identified by Berry [9] using the beam-foil technique, although no J-values were

assigned. Average level values are used for such high J states. He also found the $3p^64d^2\mathrm{D}_{5/2}-3p^53d^2(^1\mathrm{D})^2\mathrm{F}_{7/2}^{\circ}$ line at 2620.5 Å. The uncertainty of the wavelengths is estimated to be ± 1 Å.

In an erratum Van Deurzen [10] slightly altered the values of five wavelengths to read 484.5108 Å, 483.0098 Å, 481.5564 Å, 286.8395 Å, and 285.9791 Å. He also changed the uncertainty estimates to be ± 0.004 Å for $\lambda < 222$ Å, ± 0.002 Å for 222 Å $< \lambda < 2100$ Å, and ± 0.008 Å for $\lambda > 2100$ Å.

Van Deurzen [10] calculated the ionization energy with the ng, nh, and ni series by means of a polarization formula.

 \mathbf{V} VI

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^6$ $^{1}S_0$

Ionization energy 1 033 400 \pm 200 cm⁻¹ (128.13 \pm 0.02 eV)

The resonance transitions $3p^6$ $^1S_0 - 3p^5nl$ with nl = 4s, 5s were observed by Kruger and Weissberg (1935) [11] in the range of 128 - 182 Å, by Alexander $et \ al.$ [12] for nl = 4d at 139.553 Å and 138.261 Å, and by Feldman $et \ al.$ [13] and Gabriel $et \ al.$ [14] for nl = 3d at 224.50 Å. Wagner and House [15] classified the $3p^53d - 3p^54f$ transitions, comprising 12 lines in the range of 213 - 227 Å. Extensive observations were carried out by Ekberg [16] in the wavelength range of 117 - 1630 Å using a vacuum spark discharge. He identified 170 lines as transitions among 56 levels of the $3s^23p^6$, $3s^23p^53d$, 4s, 4p, 4d, 4f, 5s, 5d, and $3s3p^63d$ configurations. We quoted Ekberg's results.

Kastner et al. [17] identified seven lines of the innershell transitions $3s^23p^6$ $^1S_0 - 3s3p^6np$ $^3P_1^{\circ}$ (n = 4, 5) and $3s^23p^6$ $^1S_0 - 3s3p^6np$ $^1P_1^{\circ}$ (n = 4 - 8) in the range of 85 - 119 Å with an uncertainty of ± 0.005 Å.

It should be noted that the lines classified as $3p^6 \, ^1\mathrm{S}_0 - 3p^5(^2\mathrm{P}^{\circ}_{3/2,1/2})5d$ at 118.7 Å and 117.7 Å in Fawcett et al. [18] and Ref. [16] were revised as the $3s^23p^6 \, ^1\mathrm{S}_0 - 3s^3p^64p^{3,1}\mathrm{P}^{\circ}_1$ transitions in Ref. [17]. Also, the remaining $3s^23p^6 \, ^1\mathrm{S}_0 - 3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})5d^{\,2}[\frac{1}{2}]^{\circ}_1$ line at 119.3 Å in Ref. [18] has been deleted because this line was not observed by Ekberg [16].

The value for the ionization energy was derived from the $3s3p^6np$ series (n=4-8) by Kastner *et al.* [17].

 \mathbf{V} VII

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ $^2 P_{3/2}^{\circ}$

Ionization energy 1 215 000 cm^{-1} (150.6 eV)

Weissberg and Kruger [19] identified the $3s^23p^5$ $^2\mathrm{P}^{\circ}_{1/2,3/2}-3s3p^6$ $^2\mathrm{S}_{1/2}$ transitions. Subsequently, Smitt et~al. [20] measured these wavelengths as 472.828 ± 0.008 Å and 456.284 ± 0.008 Å in a vacuum spark.

Gabriel et al. [5, 14] identified the transitions $3p^5$ $^2\mathrm{P}_{3/2}^{\circ}-3p^43d$ $^2\mathrm{P}_{3/2}^{\circ}$ and $^2\mathrm{P}_{1/2,3/2}^{\circ}-^2\mathrm{D}_{3/2,5/2}^{\circ}$. Fawcett and Gabriel [21] reobserved these three lines at 229.38 Å, 225.79 Å and 225.16 Å using vacuum sparks, and also identified six new lines in the range of 221 – 242 Å as the $3p^5$ $^2\mathrm{P}^{\circ}-3p^4(^1\mathrm{D})3d$ $^2\mathrm{S}$, $(^3\mathrm{P})^2\mathrm{P}$, $(^3\mathrm{P})^2\mathrm{D}$ array. The parent states of the $3p^43d$ configuration have been taken from the calculation by Bromage [22].

The $3p^5$ 2 P° $-3p^44s$ 2 P doublet was first observed by Weissberg and Kruger [19] in the range of 159-163 Å. Edlén [23] reobserved the spectrum in the extended range of 148-165 Å with a vacuum spark and identified the additional 2 P° $-^2$ D, 2 S doublets and the 2 P° $-^4$ P spin-forbidden transitions.

Fawcett et~al.~[18] identified six lines as the $3p^5-3p^44d$ transitions in the range of 117-127 Å. These lines, except for the $^2\mathrm{P}_{3/2}^{\circ}-(^1\mathrm{S})^2\mathrm{D}_{5/2}$ line at 117.2 Å, were remeasured by Fawcett et~al.~[24], who also included identifications of the $^2\mathrm{P}_{1/2,3/2}^{\circ}-(^1\mathrm{P})^2\mathrm{S}_{1/2}$ and $^2\mathrm{P}_{3/2}^{\circ}-(^1\mathrm{D})^2\mathrm{D}_{3/2}$ transitions at 124.24 Å, 123.07 Å and 121.89 Å and the $3p^43d-3p^44f$ transitions. The latter include the spin-forbidden $^4\mathrm{F}_{7/2}-^2\mathrm{G}_{9/2}^{\circ}$ line. Their observations were made in the range of 177-184 Å with a laser-produced plasma with an uncertainty of ± 0.02 Å.

The ionization energy was obtained by Lotz [25] by extrapolation.

\mathbf{V} VIII

S I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{4-3}P_2$

Ionization energy 1 399 000 cm^{-1} (173.4 eV)

Fawcett and Peacock [26] and Fawcett [27] observed the $3s^23p^4$ $^3P - 3s3p^5$ $^3P^\circ$ and 1D_2 $^{-1}P_1^\circ$ lines in the range of 398-473 Å in laser-produced plasmas. Improved measurements for these lines in a vacuum spark with an uncertainty of ± 0.008 Å were made by Smitt et~al. [20], whose wavelengths are given here. They also identified the $^1S_0 - ^1P_1^\circ$ line at 459.647 Å and the $^3P_2 - ^1P_1^\circ$ spinforbidden transition at 359.454 Å. A blended $^3P_1 - ^3P_2^\circ$ line at 472.839 Å deviates by 0.022 Å from the wavelength recalculated from the levels.

Gabriel et al. [5] identified the $3p^4$ $^3P - 3p^33d$ $^3D^\circ$ triplet and $^1D_2 - ^1F_3^\circ$ singlet in the range of 228 - 232 Å. Their observations were made with vacuum sparks with an uncertainty of ± 0.05 Å. Fawcett and Gabriel [21] identified the three lines of the $^3P_{1,2} - ^3P_2^\circ$ and $^1D_2 - ^1D_2^\circ$

transitions at 243.69 Å, 240.22 Å and 236.01 Å. The designation of the parent term of the upper $3p^33d$ configuration adopted here was provided by Bromage [22].

Nineteen lines of $3p^4 - 3p^34s$ transitions in the range of 135 - 148 Å, including the spin-forbidden transitions $^1D_2 - ^3P_2^\circ$ and $^3P_2 - ^1D_2^\circ$ at 140.934 Å and 139.188 Å, were identified by Edlén [28] using vacuum spark observations.

Fawcett et al. [24] identified eight lines in the range of 154-158 Å as $3p^33d-3p^34f$ transitions and six lines within 113-116 Å as $3p^4-3p^34d$ transitions. Wavelengths of these transitions were obtained with a laser-produced plasma with uncertainties of ± 0.02 Å and ± 0.015 Å, respectively. Fawcett et al. [29] gave additional identifications of the $3p^4-3p^34d$ transitions in the range of 110-112 Å and the $3p^33d$ $^1G_4^{\circ}-3p^34f$ 1H_5 transition at 159.24 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

\mathbf{V} IX

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 1 660 000 cm^{-1} (205.8 eV)

Fawcett and Peacock [26] and Fawcett [27] classified lines of the $3s^23p^3-3s3p^4$ transition array in the range of 364-468 Å, obtained with laser-produced plasmas. Additional classifications were given by Smitt *et al.* [20] in the extended range of 364-489 Å. They observed 16 lines belonging to this array in a vacuum spark discharge with an uncertainty of ± 0.008 Å. The lines at 485.110 Å ($^2\mathrm{P}^\circ_{1/2}-^2\mathrm{D}_{3/2}$), 437.005 Å ($^2\mathrm{D}^\circ_{5/2}-^2\mathrm{D}_{3/2}$), and 399.719 Å ($^2\mathrm{P}^\circ_{1/2}-^2\mathrm{P}_{1/2}$) are blends.

Gabriel et al. [5, 14] classified the line at 235.72 \pm 0.05 Å as the $3p^3$ $^2\mathrm{D}_{5/2}^{\circ}-3p^2(^3\mathrm{P})3d$ $^2\mathrm{F}_{7/2}$ transition. The $^3\mathrm{P}$ parent is from the calculations by Bromage [22]. Fawcett et al. [30] identified the $3p^3$ $^4\mathrm{S}^{\circ}-3p^2(^3\mathrm{P})3d$ $^4\mathrm{P}$ resonance transitions at \sim 244 Å. Fawcett [31] observed more completely the $3p^3-3p^23d$ array in the range of 240 – 276 Å with measurement uncertainties of \pm 0.05 Å.

Six lines due to $3p^3-3p^24s$ transitions in the range of 125-127 Å were observed in a vacuum spark by Kruger and Pattin [32]. In the longer wavelength region, Fawcett et~al. [24] identified the $3p^3~^2\mathrm{P}^\circ-3p^2(^3\mathrm{P})4s~^2\mathrm{P}$, $(^1\mathrm{D})^2\mathrm{D}$ and $^2\mathrm{D}^\circ-(^3\mathrm{P})^2\mathrm{P}$ doublets in the range of 129-135 Å, as well as the $3p^23d-3p^24f$ transitions at 137-141 Å. Wavelengths were obtained with a laser-produced plasma with an uncertainty of ± 0.02 Å. The spin-forbidden $3p^3~^2\mathrm{D}_{5/2}^\circ-3p^24d~^4\mathrm{D}_{7/2}$ line at 88.48 Å was reported by Fawcett et~al. [29]. Except for this line no intersystem connection has been established.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

 $\mathbf{V} \mathbf{x}$

Si I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^2$ 3P_0

Ionization energy 1 859 000 cm $^{-1}$ (230.5 eV)

Fawcett and Peacock [26] and Fawcett [27, 31] analyzed the $3s^23p^2-3s3p^3$ transition array in the range of 308-471 Å. Improved wavelengths with an uncertainty of ± 0.008 Å were obtained by Smitt *et al.* [20] with a vacuum spark discharge. They identified 19 lines, including the spin-forbidden transitions $^1D_2-^3D_3^\circ$ at 527.439 Å, $^3P_2-^1D_2^\circ$ at 369.612 Å, and $^3P_2-^1P_1^\circ$ at 301.283 Å. The wavelength of the blended $^3P_1-^3P_2^\circ$ line at 399.719 Å is different by 0.03 Å from that recalculated with the level values.

Fawcett et al. [30] and Fawcett [31] provided classifications of the $3p^2 - 3p3d$ lines in the range of 245 - 266 Å. They measured wavelengths in a vacuum spark discharge with uncertainties of ± 0.03 Å and ± 0.05 Å, respectively.

The 3p3d-3p4f, $3p^2-3p4s$ and $3p^2-3p4d$ transitions in the ranges of ~ 124 Å, 115-119 Å and ~ 94 Å, respectively, were identified by Fawcett *et al.* [24] in the spectrum of a laser-produced plasma.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

 \mathbf{V} XI

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 2 062 000 cm^{-1} (255.7 eV)

The transitions $3s^23p - 3s3p^2$ in the range of 320 - 448 Å were identified by Fawcett and Peacock [26] and Fawcett [27], and were remeasured more accurately by Smitt *et al.* [20] with an uncertainty of ± 0.008 Å in a vacuum spark discharge.

Fawcett [27] also reported classifications of the $3s3p^2$ ⁴P $-3p^3$ ⁴S° lines in the range of 347-359 Å. Litzén and Redfors [33] provided wavelengths for this array with an uncertainty of ± 0.02 Å, which are given here. An extension of the analysis was made by Redfors and Litzén [34] with data in the range of 238-514 Å measured with an uncertainty of ± 0.02 Å using a laser-produced plasma. They added to the $3s3p^2-3p^3$ array the doublets ²P -²P°, ²D -²D°, and ²D -²P° and also identified the $3s^23d-3s3p(^1P^\circ)3d$, $3s3p^2-3s3p(^3P^\circ)3d$, and $3s3p^2-3s3p(^1P^\circ)3d$ transitions. In addition Redfors and Litzén classified the $3s^23p^2-3s^23d^2D$ lines. Two $3s3p^2-3s3p(^3P^\circ)3d$ lines were reobserved by Levashov et al. [35] at 266.656 Å for ⁴P_{3/2}-⁴P $_{1/2}^\circ$ and at 266.762 Å for ⁴P_{1/2}-⁴D $_{1/2}^\circ$. The values of 267.249 Å and 266.675 Å in Ref. [34] have been replaced with the above lines.

The transition arrays $3p^3$, $3s3p3d - 3p^23d$, $3s3d^2$ were newly identified by Churilov and Levashov [36] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å. We have adopted their results except for the energy levels of $3s^23p$ ²P°, $3s3p^2$ ²D and ²P_{1/2}, $3s^23d$ ²D, and $3p^3$ ²P°_{3/2} taken from Redfors and Litzén [34].

The transitions $3s^23p$ $^2P^{\circ} - 3s^24d$ 2D were identified by Edlén [37] at ~ 87 Å. Fawcett et al. [38] identified the doublets 3p $^2P^{\circ} - 4s$ 2S and 3d $^2D - 4f$ $^2F^{\circ}$ and the quartets $3s3p^2$ $^4P - 3s3p4s$ $^4P^{\circ}$ and 3s3p3d $^4F^{\circ} - 3s3p4f$ 4G at 104 - 120 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

 \mathbf{V} XII

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ 1S_0

Ionization energy 2 485 000 \pm 3000 cm⁻¹ (308.1 \pm 0.4 eV)

Classifications of the n = 3 - 3 transitions were made in a series of articles of Fawcett and Peacock [26], Fawcett [27], and Fawcett et al. [24] for the transitions between levels in the $3s^2$, 3s3p, 3s3d, $3p^2$, and 3p3d configurations. Litzén and Redfors [39] reobserved lines in the range of 246-610 Å in a laser-produced plasma and identified 42 lines, including the 19 lines of their earlier observations. Wavelengths were measured with an uncertainty of ± 0.02 Å. Following this, Redfors [40] reported 10 lines of the $3p3d-3d^2$ array in the range of 273-383 Å. With a similar source Churilov et al. [41] increased this to 19 lines. Wavelengths given to the third or to the second decimal place have uncertainties of ± 0.01 Å and ±0.02 Å, respectively. Energy levels of the configurations with n = 3 are taken from Ref. [39], with the addition of $3d^2$ levels from Ref. [41]. We have interchanged the designations of the $3p3d^3D_1^{\circ}$ and $^3P_1^{\circ}$ terms in Ref. [41], as required by the percentage compositions in Ref. [39]. We have added 30 cm⁻¹ to all the $3d^2$ levels given by Churilov et al. as a result of redetermining the $3d^2$ levels with their measured wavelengths and the 3p3d levels from Ref. [39]. However, their classifications for the $3p3d\ ^3D_3^{\circ} - 3d^2\ ^3P_2$ and $3p3d\ ^3P_1^{\circ} - 3d^2\ ^3P_1$ lines at 301.46 Å and 302.080 Å are questionable, because these lines do not fit the level scheme. The spin-forbidden $3s^2 {}^{1}S_0 - 3s3p {}^{3}P_1^{\circ}$ line at 522.4±0.2 Å was observed in a tokamak plasma by Finkenthal et al. [42].

Edlén [37] first identified triplet systems of the 3s3p-3s4s, 3s3p-3snd (n=4,5), and 3s3d-3snf (n=4,5) transitions in the range of 61-107 Å, and also the $3s^2$ $^1S_0-3s4p$ $^1P_1^\circ$ resonance line at 76.307 Å. Fawcett et al. [38] identified the 3s3d $^1D_2-3s4f$ $^1F_3^\circ$ transition at 113.78 ± 0.02 Å, and Fawcett et al. [24] reported the 3s3p $^1P_1^\circ-3s4d$ 1D_2 and $3p^2$ $^1D_2-3s4f$ $^1F_3^\circ$ transitions at 87.363 ± 0.01 Å and 95.58 ± 0.015 Å. Fawcett et al. [38]

also provided nine lines of the 3p3d-3p4f transitions in the range of 104-114 Å. Thirty-five additional lines below 105.74 Å are given by Fawcett *et al.* [29] for the triplets, 3s3p $^3P^{\circ}-3sns$ 3S (n=5-7), 3s3p $^3P^{\circ}-3snd$ 3D (n=5-8), and 3s3d $^3D_3-3snf$ $^3F_4^{\circ}$ (n=6-8) and the singlets $3s^2$ $^1S_0-3snp$ $^1P_1^{\circ}$ (n=5-10), 3s3p $^1P_1^{\circ}-3s4s$ 1S_0 , 3s5d 1D_2 and also for the 3s3p-3p4p and $3p^2-3p4s$, 4d transitions.

The value for the ionization energy was obtained by Sugar and Corliss [3] from the 3s - nf series.

 \mathbf{v} xiii

Na i isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^{-2} S_{1/2}$

Ionization energy 2 712 250 \pm 100 cm⁻¹ (336.276 \pm 0.010 eV)

The 3s-3p and 3p-3d lines in the range of 313-444 Å were identified by Fawcett and Peacock [26] and remeasured by Fawcett et~al. [24], except for $3p~^2\mathrm{P}_{3/2}^{\circ}-3d~^2\mathrm{D}_{3/2}$. An isoelectronic comparison of the measured wavelengths, including the 3d-4f doublet, with Dirac-Fock calculations was made by Reader et~al. [43] for Ar^{7+} to Xe^{43+} , and least-squares adjusted wavelengths were derived. The overall uncertainty estimate is ± 0.007 Å. We give these results and correct the level values with them.

Edlén [44] identified the transitions 3s - np (n = 4, 5), 3p - 4s, 3p - nd (n = 4, 5), and 3d - nf (n = 4, 5) in a vacuum spark discharge. Except for the 3d - 4f doublet, Edlén's wavelengths are given here. The 3d - 4p lines at ~ 118 Å and the $3d^2D_{5/2} - 5p^2P_{3/2}^{\circ}$ line at 74.321 ± 0.01 Å were identified by Fawcett *et al.* [24, 38], respectively.

Identifications along Rydberg series have been taken from Fawcett et al. [29] for the 3p-ns (n=6-11), 3p-10d, and 3d-nf (n=10,11) transitions and from Cohen and Behring [45] for the 3p-5s, 3s-np (n=6-11), 3p-nd (n=6-9,11), and 3d-nf (n=6-9) transitions.

The inner-shell transitions $2p^63s^2\mathrm{S}_{1/2}-2p^53s^2$ $^2\mathrm{P}^{\circ}_{3/2,1/2}$ at 24.517 ± 0.005 Å and 24.202 ± 0.005 Å were observed by Feldman and Cohen [46] with a low-inductance vacuum spark source.

The value for the ionization energy was derived by Edlén [44] from core polarization theory applied to the nf series.

V xiv

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 7 227 000 \pm 3000 cm⁻¹ (896.0 \pm 0.4 eV)

The $2p^6-2p^53s$ and 3d transitions were identified by Edlén and Tyrén [47] with lines at ~ 23 Å and ~ 21 Å in a vacuum spark discharge. The $2s^22p^6-2s2p^63p$ and $2p^6-2p^5nd$ (n=3-5), 4s lines in the range of 15.6-21.3 Å were observed with a low-inductance spark source by Feldman and Cohen [48], who measured wavelengths with an uncertainty of ± 0.005 Å.

The 3s-3p and 3p-3d arrays were observed by Jupén and Litzén [49, 50] in laser-produced plasmas. In the latter article, 21 lines from 328-508 Å were identified.

The 3p-4d transitions were first found by Kastner et al. [51] in the wavelength range of 70.5-71.6 Å and also reported by Fawcett et al. [52], together with the 3d-4f transitions in the range of 85.4-87.2 Å. Improved measurements were carried out by Jupén et al. [53], who identified 26 lines of the n=3-4 transitions, including the $2p^5(^2\mathrm{P}_{3/2}^\circ)3s(\frac{3}{2},\frac{1}{2})^\circ_2-2p^5(^2\mathrm{P}_{3/2}^\circ)4p^2[\frac{5}{2}]_3$ and $2p^5(^2\mathrm{P}_{1/2}^\circ)3s(\frac{1}{2},\frac{1}{2})^\circ_1-2p^5(^2\mathrm{P}_{1/2}^\circ)4p^2[\frac{3}{2}]_2$ lines at 65.330 Å and 65.571 Å. Their measurements are quoted. The wavelength uncertainty varies from ± 0.005 to ± 0.01 Å. The wavelength of 72.317 Å for the $2p^5(^2\mathrm{P}_{1/2}^\circ)3p^2[\frac{1}{2}]_1-2p^5(^2\mathrm{P}_{1/2}^\circ)4d^2[\frac{3}{2}]_2^\circ$ transition is apparently a misprint and should be 71.317 Å.

Jupén et al. [53] derived new energy levels of the $2s^22p^53l$ and $2s^22p^54l$ configurations. We have adopted their level values except for the $2p^5(^2\mathrm{P}^\circ_{3/2})3d^{-2}[\frac{1}{2}]^\circ_1$, $2p^5(^2\mathrm{P}^\circ_{3/2,1/2})4f^{-2}[\frac{5}{2}]_2$, and $2p^5(^2\mathrm{P}^\circ_{3/2})4f^{-2}[\frac{3}{2}]_2$ levels. These levels have been modified to fit the observed wavelengths. The identification of a blended line at 342.202 Å in Ref. [50] is questionable because it does not fit the level scheme. Therefore, we have deleted it here.

The value for the ionization energy was derived by Sugar and Corliss [3] from the $2p^5nd$ $^3D_1^{\circ}$ series for n=3 to 5.

 \mathbf{V} xv

F I isoelectronic sequence

Ground state $1s^22s^22p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 7 878 000 cm^{-1} (976.7 eV)

Finkenthal et al. [54] identified the magnetic-dipole transition $2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$ - $^2\mathrm{P}^{\circ}_{1/2}$ at 1719.4±1.7 Å in a tokamak plasma.

Fawcett [55], Doschek et al. [56], and Kaufman et al. [57] observed the $2s^22p^5$ 2 P° $-2s2p^6$ 2 S doublet in laser-produced plasmas. Wavelength values of 122.005 Å and 113.930 Å with an uncertainty of ± 0.005 Å are taken from the measurements of Ref. [57].

Feldman et al. [58] reported the most extensive set of measurements of the arrays $2s2p^6 - 2s2p^53s$, $2p^5 - 2p^43s$ and $2p^5 - 2p^43d$ in the range of 19 - 23 Å, compared with the earlier works of Fawcett [59] and Cohen et al. [60]. We give the Feldman et al. results, which have an uncertainty of ± 0.01 Å. Three additional lines at 19.91 Å, 19.45 Å,

and 19.38 Å, belonging to the $2p^5 - 2p^43d$ array have been excluded because these lines were not observed in Ref. [58].

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

 \mathbf{V} xvi

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ 3P_2

Ionization energy 8 567 000 cm^{-1} (1062.2 eV)

Finkenthal et al. [54] identified the magnetic-dipole transitions $2p^4$ $^3P_2 - ^3P_1$ and $^3P_1 - ^1S_0$ at 2042.7 ± 0.8 Å (in air) and 529.9 ± 0.2 Å, respectively, in a tokamak plasma.

Identifications of the triplet array $2s^22p^4$ $^3\mathrm{P}-2s2p^5$ $^3\mathrm{P}^\circ$ and the singlet $^1\mathrm{S}-^1\mathrm{P}^\circ$ and $^1\mathrm{D}-^1\mathrm{P}^\circ$ transitions were made by Fawcett [55] and Doschek et al. [56], comprising eight lines in the range of 108-141 Å. In addition, the line at 138.17 ± 0.02 Å was identified by Fawcett et al. [63] as the $2s2p^5$ $^1\mathrm{P}_1^\circ-2p^6$ $^1\mathrm{S}_0$ transition. All the lines were remeasured by Kaufman et al. [57] in a laser-produced plasma. They identified four spin-forbidden transitions: $2s^22p^4$ $^1\mathrm{D}_2-2s2p^5$ $^3\mathrm{P}_2^\circ$ at 156.060 Å, $^3\mathrm{P}_{0,2}-^1\mathrm{P}_1^\circ$ at 100.440 Å, 95.640 Å, and $2s2p^5$ $^3\mathrm{P}_1^\circ-2p^6$ $^1\mathrm{S}_0$ at 103.043 Å. The uncertainty of the wavelengths is ±0.005 Å. The observed levels of $2s^22p^4$ $^3\mathrm{P}_1$ and $^1\mathrm{S}_0$ agree with those from the above magnetic-dipole lines within the experimental uncertainties.

The $2p^4-2p^33s$ array was first identified by Goldsmith et al. [64], whose wavelengths were remeasured more accurately by Doschek et al. [65] with an uncertainty of ± 0.01 Å. The wavelengths of Doschek et al. are adopted here, although most of the lines are doubly classified. The line $2p^4$ $^1D_2-2p^3(^2P^\circ)3s$ $^1P_1^\circ$, at 20.082 Å in Ref. [64] has been omitted because it does not fit with the levels quoted here.

Analysis of the $2p^4 - 2p^33d$ array was made by Goldsmith et al. [64], Fawcett [55], and Fawcett et al. [66]. They were reobserved with a laser-produced plasma source by Fawcett and Hayes [67]. We adopt the latter results. Additional identifications made by Bromage and Fawcett [68] are the $^3P_1-(^2P^\circ)$ $^3D_1^\circ$ and $^1D_2-(^2P^\circ)$ $^1F_3^\circ$ lines at 18.12 Å and 18.265 Å.

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

V XVII

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 9 394 000 cm^{-1} (1164.7 eV)

The $2s^22p^3 - 2s^2p^4$ array was found in the range of 102 - 160 Å by Fawcett [55], by Fawcett et al. [63], and by Doschek et al. [56], who assigned six new lines to this array. Feldman et al. [69] observed the transition ${}^{2}D_{3/2}^{\circ}$ – $^2\mathrm{S}_{1/2}$ at 113.78±0.02 Å. Fawcett *et al.* [63] also identified the doublets $2s2p^4$ $^2\mathrm{D},^2\mathrm{P}-2p^5$ $^2\mathrm{P}^\circ$. The $^2\mathrm{P}_{1/2}-^2\mathrm{P}_{1/2}^\circ$ line at 151.69 Å was revised as 165.32 ± 0.015 Å by Fawcett and Hayes [67]. Doschek et al. [70] identified the ${}^{2}D_{3/2} - {}^{2}P_{3/2}^{\circ}$ line at 129.94±0.015 Å. New observations of the above transitions were made by Kaufman et al. [71] in the range of 96 - 168 Å, using a laserproduced plasma. Improved wavelengths are reported for the 22 allowed lines observed previously. They added several $2s2p^4 - 2p^5$ lines, ${}^2P_{3/2} - {}^2P_{1/2}^{\circ}$ at 151.656 Å and $^2\mathrm{S}_{1/2} - ^2\mathrm{P}_{3/2}^\circ$ at 157.070 Å, as well as the spin-forbidden $2s^22p^3$ ${}^4S_{3/2}^{\circ} - 2s2p^4$ ${}^2P_{3/2}$ line at 96.270 Å. Their wavelength uncertainty is ± 0.005 Å. We give their results.

The $2p^3-2p^23d$ transitions at ~17 Å were observed by Fawcett [55], Fawcett et~al. [66], and Fawcett and Hayes [67] with laser-produced plasmas. The $2p^3~^2\mathrm{P}^\circ_{3/2}-2p^2(^3\mathrm{P})3d~^2\mathrm{D}_{5/2}$ line at 17.644 Å has been omitted because of its inconsistency with the $2p^3~^2\mathrm{D}^\circ_{5/2}-2p^2(^3\mathrm{P})3d~^2\mathrm{D}_{5/2}$ line at 17.373 Å.

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

 \mathbf{V} xVIII

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 10 164 000 cm^{-1} (1260.2 eV)

Finkenthal et al. [54] identified the magnetic-dipole transitions $2s^22p^2$ 3P_2 $^{-1}D_2$ and 3P_1 $^{-1}S_0$ at 1078.2 ± 1.4 Å and 434.2 ± 0.2 Å, respectively, in a tokamak plasma. The latter line, which was tentatively identified, is 1.4 Å longer than the wavelength calculated from the levels.

The $2s^22p^2-2s2p^3$ array was observed in the range of 111-177 Å by Fawcett et~al.~[63] and by Feldman et~al.~[69] and Fawcett and Hayes [67]. Fawcett and Hayes also first identified three lines of the $2s2p^3$ $^3\mathrm{D^\circ}-2p^4$ $^3\mathrm{P}$ triplet in the range of 127-139 Å. Measurements in the range of 136-217 Å using a laser-produced plasma were reported by Fawcett et~al.~[72], who gave identifications for 13 transitions including $2s^22p^2$ $^3\mathrm{P}-2s2p^3$ $^3\mathrm{P^\circ}$ and

 $2s2p^3$ $^3\mathrm{P}^{\circ}-2p^4$ $^3\mathrm{P}.$ Improved measurements were made by Sugar et~al.~[73] for 16 allowed lines of this array including spin-forbidden transitions. The $2s^22p^2$ $^3\mathrm{P}_2-2s2p^3$ $^1\mathrm{D}_2^{\circ}$ line at 119.015 Å and the $^3\mathrm{P}_1-^1\mathrm{P}_1^{\circ}$ at 102.410 Å were newly identified. We give their results with an uncertainty of ± 0.005 Å. Wavelengths with one or two decimal places are taken from Refs. [63, 67, 72]. Designations of the $2s2p^3$ $^3\mathrm{D}_1^{\circ}-2p^4$ $^3\mathrm{P}_0$ transition at 127.27 Å and the $^3\mathrm{P}_1^{\circ}-^3\mathrm{P}_0$ line at 147.30 Å are revised as $2s2p^3$ $^3\mathrm{D}_1^{\circ}-2p^4$ $^3\mathrm{P}_1$ and $^3\mathrm{P}_0^{\circ}-^3\mathrm{P}_1$, respectively, to fit with the level scheme adopted from Sugar et~al.

The $2s^22p^2-2s^22p3s$, 3d and $2s2p^3-2s2p^23s$, 3d transitions were reported by Goldsmith et al. [74] in the range of 16 – 18 Å observed with a vacuum spark. Their measurement uncertainty is ± 0.005 Å. The $2s2p^3$ ⁵S₂° level of 366 870 cm⁻¹ is adopted from predicted values along an isoelectronic sequence by Edlén [75]. An analysis of the $2s^22p^2 - 2s^22p3d$ transitions was made by Bromage and Fawcett [76] with the spectrum measured by Fawcett et al. [66] and Fawcett and Hayes [67]. They confirmed the classifications ${}^3P_2 - {}^3D_3^{\circ}$ at 16.378 Å and ${}^1D_2 - {}^1F_3^{\circ}$ at 16.460 Å in Refs. [66] and [67], and also identified the ${}^{1}\text{S}_{0} - {}^{1}\text{P}_{1}^{\circ}$ and ${}^{1}\text{D}_{2} - {}^{3}\text{F}_{2}^{\circ}$ lines at 16.787 Å and 16.914 Å, respectively. The classifications of Goldsmith et al. [74] for the lines at 16.423 Å and 16.816 Å have been omitted. They contradict those of Fawcett and Hayes [67] and Bromage and Fawcett [76].

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

\mathbf{V} xix

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy $10\ 924\ 000\ cm^{-1}\ (1354.4\ eV)$

The magnetic-dipole transition ${}^2P_{1/2}^{\circ} - {}^2P_{3/2}^{\circ}$ at 1457.6 ± 0.9 Å within the ground $2s^22p$ configuration was observed in a tokamak plasma by Finkenthal *et al.* [54].

Fawcett et al. [63] identified seven of the $2s^22p - 2s2p^2$ transitions in the range of 124 - 186 Å. Their identification of $^2P^{\circ}-^2D$ was revised by Fawcett and Hayes [67], who also identified the three lines of the $2s2p^2$ $^4P-2p^3$ $^4S^{\circ}$ quartet in the range of 143-158 Å using a laser-produced plasma. The position of the $2p^3$ $^4S^{\circ}$ level is estimated by Sugar and Corliss [3] as $1\ 030\ 850\ {\rm cm}^{-1}$. The uncertainty of wavelengths quoted here is ± 0.015 Å. The $2s2p^2-2p^3$ doublet was measured by Fawcett et al. [72] with an uncertainty of ± 0.05 Å in a similar light source.

Fawcett et al. [66] and Fawcett and Hayes [67] identified the $2s2p^2-2s2p3d$, $2s^22p-2s^23d$, and $2s^22p-2s2p3p$ transitions in the range of 14-16 Å in a laser-produced plasma. The uncertainty of the wavelengths is ± 0.007 Å

except for the blended line at 15.63 Å, where it is ± 0.01 Å.

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

$\mathbf{V} \mathbf{x} \mathbf{x}$

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 11 996 000 cm⁻¹ (1487.3 eV)

The $2s2p-2p^2$ transitions, including the spin-forbidden $^3\mathrm{P}_2^\circ-^1\mathrm{D}_2$ transition at 164.59 ± 0.05 Å, were identified by Fawcett et~al.~[72] in the range of 164-282 Å using a laser-produced plasma. The $2s^2$ $^1\mathrm{S}_0-2s2p$ $^1\mathrm{P}_1^\circ$ resonance transition at 159.355 Å has been taken from the smoothed wavelengths of Edlén [77].

The n=2-3 transition arrays in the range of 14-16 Å were measured by Fawcett et~al.~[66], Fawcett and Hayes [67], Boiko et~al.~[78,~79] in laser-produced plasmas. Bromage et~al.~[80] reported their measurements with no uncertainty estimate for the $2s^2-2snp$, 2s2p-2pnp, 2s2p-2snd, and $2p^2-2pnd$ transitions with n=3 and 4 in the ranges of 14-16 Å and 10-12 Å, respectively. We adopted their results except for the $2s2p~^3P_2^\circ-2s3d~^3D_3$ line at 14.976 ± 0.007 Å taken from Ref. [66]. The difference between the wavelengths in Ref. [80] and Ref. [66] is ±0.02 Å at most.

For the ionization energy we use a value calculated by Cheng [61] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [62].

\mathbf{V} xxi

Li I isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 12 660 000 \pm 2400 cm⁻¹ (1569.6 \pm 0.3 eV)

Fawcett et al. [72] identified the resonance transition $2s \, ^2\mathrm{S}_{1/2} - 2p \, ^2\mathrm{P}_{3/2}^\circ$ at $240.37 \pm 0.05 \, \text{Å}$ in a laser-produced plasma. Kim et al. [81] obtained smoothed wavelengths for the 2s-2p doublet of $240.422 \, \text{Å}$ and $293.742 \, \text{Å}$. Goldsmith et al. [82] reported the 2s-3p, 4p and 2p-3s, 3d, 4d transitions. Extensive measurements along Rydberg series were made by Aglitskii et al. [83] in a laser-produced plasma. They identified the 2s-np (n=3-7), 2p-3s, and 2pnd (n=3-8) transitions in the range of $8.5-15 \, \text{Å}$ with an uncertainty of $\pm 0.003 \, \text{Å}$. Many of the doublets with $n \geq 4$ are blended lines, from which only the $n \geq 6$ doublets are taken.

Vainshtein and Safronova [84] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. Their energy levels are adjusted to the $1s^22p^2P_{1/2,3/2}^{\circ}$ levels of Kim et al. by adding 90 cm⁻¹. They are used to calculate the wavelengths of doublet transitions between these levels.

Identifications of transitions from doubly excited levels were reported by Aglitskii et~al.~[85,~86] and Boiko et~al.~[79] for $1s^22p-1s2p^2$ and $1s^22s-1s2s2p$. The lines at 2.3992 Å and 2.4140 Å were identified as the blends of three lines of the transitions $1s^22p~^2\mathrm{P^{\circ}}-1s2p^2~^2\mathrm{P}$ and of seven lines of $1s^22p~^2\mathrm{P^{\circ}}-1s2p^2~^4\mathrm{P}$ and $1s^22s~^2\mathrm{S}-1s(^2\mathrm{S})2s2p(^3\mathrm{P^{\circ}})~^4\mathrm{P^{\circ}}$, respectively. The uncertainty of the wavelengths is ± 0.0005 Å. Using an electron-beam ion trap technique, Beiersdorfer et~al.~[87] resolved 10 lines, one of which at 2.3912 Å is a blend of two lines. The wavelength uncertainties range from ± 0.0001 Å to ± 0.0003 Å. Vainshtein and Safronova also calculated wavelengths of the $1s^22s-1s2s2p$, $1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing levels.

The value for the ionization energy was derived by Edlén [88] from a polarization formula.

V xxii

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 55 259 730 cm^{-1} (6851.336 eV)

Aglitskii et al. [85, 86] identified the resonance transitions $1s^2$ $^1\mathrm{S}_0 - 1s2p$ $^{3,1}\mathrm{P}_1^\circ$ at 2.3939 ± 0.0005 Å and 2.3823 ± 0.0005 Å in a laser-produced plasma. Morita and Fujita [89] and Aglitsky et al. [90] remeasured the latter line at 2.3820 ± 0.0004 Å and 2.38175 ± 0.00025 Å, respectively, in vacuum sparks. Beiersdorfer et al. [91] measured the $1s^2$ $^1\mathrm{S}_0 - 1snp$ $^1\mathrm{P}_1^\circ$ (n=2,3) transitions at 2.38190 ± 0.0001 Å and 2.02627 ± 0.00012 Å in a tokamak plasma. In a recent measurement with an electron-beam ion trap technique, Beiersdorfer et al. [87] identified three new forbidden lines from the 1s2p $^3\mathrm{P}_{2,1}^\circ$ and 1s2s $^3\mathrm{S}_1$ levels to the $1s^2$ $^1\mathrm{S}_0$ ground state at 2.38943 ± 0.00010 Å, 2.39338 ± 0.00010 Å, and 2.40564 ± 0.00014 Å. They used the $1s^2$ $^1\mathrm{S}_0 - 1s2p$ $^1\mathrm{P}_1^\circ$ line at the semiempirical value of 2.38187 Å as reference line.

Cheng et al. [92] give total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [93] for all elements from Ti through Cu and Kr

for the n = 1 and 2 configurations. With these data and the binding energy of the H-like ions [94] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [95].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [84] have been tabulated after increasing them by 1300 cm^{-1} to correspond with corrected values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

Vainshtein and Safronova also calculated wavelengths of the transitions 1s2s - 2s2p, $1s2p - 2s^2$, and $1s2p - 2p^2$, which we have compiled without correction.

 \mathbf{V} XXIII

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 58 443 920 \pm 10 cm⁻¹ (7246.125 \pm 0.001 eV)

No observations of this spectrum have been reported. We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [94] for the n=2 shell. Their estimated uncertainty is ± 10 cm⁻¹. Their energy differences are in close agreement with those of Mohr [96]. The levels for n=2-5 have been calculated by Erickson [97]. We use his values for the binding energies subtracted from the binding energy of the ground state obtained by Johnson and Soff.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for hydrogen spectra by Wiese *et al.* [98]. The scaling was actually performed for the line strengths S, which for a hydrogen-like ion of nuclear charge Z are reduced according to $S_Z = Z^{-2}S_H$, so that

$$S_{\text{V XXIII}} = S_{\text{H}}(23)^{-2} = S_{\text{H}}/529.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [99]. For these conversions the very accurate wavelengths listed in the first column of the V XXIII table were used, for which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-3% for V XXIII, according to the work by Younger and Weiss [100], and have been neglected.

The value for the ionization energy was calculated by Johnson and Soff [94].

2.3.2. Spectroscopic Data for V $\ensuremath{\text{IV}}$ through V $\ensuremath{\text{XXIII}}$

 \mathbf{v} \mathbf{v}

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
5940.12	$3d5s$ $^{1}\mathrm{D_{2}}$	$3d5p$ $^{1}\mathrm{D_{2}^{o}}$	237 638.8	254 468.8	40	1.6	5.9+7	D	1°,99*
5710.10	$3d5s~^1\mathrm{D}_2$	$3d5p$ $^3\mathrm{D}_2^\circ$	237 638.8	255 146.8	8				1
5608.71 5520.63	$3d5s$ $^{1}\mathrm{D}_{2}$ 2	$3d5p \ ^3F_2^{\circ}$	237 638.8 237 638.8	255 463.3 255 747.6	20 2				1 1
5509.19	$3d5s$ $^3\mathrm{D}_2$	$3d5p^{-1}\mathrm{D_2^o}$	236 322.4	254 468.8	30				1
5496.67	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3d5d$ $^{1}\mathrm{F}_{3}$	265 271.6	283 459.4	1				1
5387.210	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d5d~^1\mathrm{F}_3$	264 902.2	283 459.4	3				1
5353.090	$3d5s$ $^3\mathrm{D}_1$	$3d5p$ $^3D_1^o$	236 148.6	254 824.1	25	9.6 - 1	7.4+7	D	1°,99*
5352.320	3	3	236 766.9	255 445.5	60	2.5	8.4 + 7	D	1°,99*
5310.77 5262.164	2	2	236 322.4 236 148.6	255 146.8	20	8.0 - 1	3.8 + 7	D	1°,99*
5227.89	1 2	2 3	236 322.4	255 146.8 255 445.5	50 10	9.9 - 1	4.7+7	D	1°,99* 1
5267.045	$3d5s$ $^3\mathrm{D}_3$	$3d5p$ $^3\mathrm{F}_3^{\circ}$	236 766.9	255 747.6	10	5.9 - 1	2.0+7	D	1°,99*
5222.93	2	2	236 322.4	255 463.3	5	6.0 - 1	3.0+7	D	1°,99*
5175.950	1	2	236 148.6	255 463.3	30	1.2	6.1 + 7	Ď	1°,99*
5146.502	2	3	236 322.4	255 747.6	40	2.6	9.2 + 7	D	1°,99*
5130.78	3	4	236 766.9	256 251.7	50	4.2	1.2+8	D	1°,99*
5074.90	$3d4f ^{3}H_{4}^{\circ}$	$3d5d\ ^{3}G_{3}$	264 401.9	284 101.1	5	7.2 - 1	2.7 + 7	D	1°,99*
5035.460	6	5	264 845.7	284 699.3	10	2.2	5.4 + 7	D	1°,99*
4971.941	5	5	264 591.9	284 699.3	1	2.4 - 1	5.9 + 6	D	1°,99*
4985.653	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d5p^{-1}F_3^{\circ}$	237 638.8	257 690.8	50	3.3	1.3+8	D	1°,99*
4970.348	$3d4f\ ^{3}F_{4}^{o}$	$3d5d$ $^3\mathrm{D}_3$	264 113.1	284 226.7	3	6.5 - 1	2.5 + 7	D	1°,99*
4916.94	3	2	263 608.3	283 940.4	2	5.6 - 1	3.1+7	D	1°,99*
4954.408 4891.52	$3d4f$ $^3\mathrm{G}^{\mathrm{o}}_{5}$	3d5d ³ G ₄	264 161.8 263 902.3	284 340.1 284 340.1	1	6.1 - 1	1.9+7	D	1°,99* 1
4913.083	$3d4f$ $^{1}\mathrm{G_{4}^{o}}$	$3d5d$ $^{1}\mathrm{F}_{3}$	263 111.4	283 459.4	10	1.1	4.2+7	D	1°,99*
4906.280	$3d5s$ $^3\mathrm{D_3}$	$3d5p$ $^3\mathrm{P}_2^\mathrm{o}$	236 766.9	257 143.2	40	2.0	1.1+8	D	1°,99*
4886.36	2	1	236 322.4	256 781.8	20	1.0	9.3 + 7	D	1°,99*
4855.05	1	0	236 148.6	256 739.9	3	4.8 - 1		D	1°,99*
4845.21 4801.54	1 2	1 2	236 148.6 236 322.4	256 781.8 257 143.2	3 2	3.9 - 1 $3.7 - 1$	3.6+7 $2.1+7$	D D	1°,99* 1°,99*
4899.56	$3d4f$ $^3G_4^{\circ}$	$3d5d$ $^3\mathrm{D}_3$	263 822.4	284 226.7		3.8 - 1	1.5+7	D	1°,99*
4841.26	$3d5s$ $^{1}\mathrm{D}_{2}$	$3d5p\ ^{1}P_{1}^{o}$	237 638.8	258 288.8	20	1.4	1.3+8	D	1°,99*
4828.990	$3d4d$ $^{1}\mathrm{S}_{0}$	$3d5p\ ^{3}D_{1}^{o}$	234 121.8	254 824.1	1				1
4643.985	$3d4f^{-1}H_{5}^{o}$	$3d5d$ $^{1}\mathrm{G}_{4}$	266 600.3	288 127.6	10	1.9	6.5+7	D	1°,99*
4616.57	$3d4f$ $^3H_4^o$	$3d5d$ 3 F ₃	264 401.9	286 056.9	1	3.7 - 1	1.7+7	D	1°,99*
4608.15	5	4	264 591.9	286 286.5	1	4.1 – 1		Ď	1°,99*
4565.63	$3d4f$ $^3G_3^{\circ}$	$3d5d$ $^3\mathrm{F}_2$	263 902.3	285 798.9	_	4.8 - 1		D	1°,99*
4518.58	5	4	264 161.8	286 286.5	8	1.1	4.0+7	D	1°,99*
4508.67	$3d4f$ $^3\mathrm{F}^\mathrm{o}_4$	$3d5d$ $^3\mathrm{F}_4$	264 113.1	286 286.5	2	3.5 - 1		D	1°,99*
4505.17	3	2	263 608.3	285 798.9	1	3.9 - 1	2.6+7	D	1°,99*
4479.195	$3d4f$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d5d$ $^{1}\mathrm{D}_{2}$	264 902.2	287 221.4	2				1
4450.75	$3d4f$ $^3D_3^{\circ}$	$3d5d$ $^3\mathrm{P}_2$	265 271.6	287 733.4					1
4136.72	$3d4d$ $^{1}\mathrm{S}_{0}$	$3d5p^{-1}P_{1}^{o}$	234 121.8	258 288.8	5	2.8 - 1	3.6 + 7	D	1°,99*
3833.74	$3d5p^{-1}P_{1}^{0}$	$3d5d$ $^{1}\mathrm{P}_{1}$	258 288.8	284 365.7?	15	1.6	2.4+8	D	1°,99*
3691.236	$3d5p$ $^3\mathrm{P}_2^\mathrm{o}$	$3d5d$ $^3\mathrm{D_3}$	257 143.2	284 226.7	15	1.9	1.3+8	D	1°,99*
3681.04	1	2	256 781.8	283 940.4	10	1.2	1.2+8	D	1°,99*

V IV - Continued

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1+8 1.5+8 5.7+7 3.1+7 1.9+7 4.7+8 4.4+8 3.2+8 1.5+7 2.1+7 6.9+7	D D D D D D D D D D D D D D D D D D D	1°,99* 1°,99* 1°,99* 1°,99* 1°,99* 1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.7+7 3.1+7 1.9+7 4.7+8 4.4+8 3.2+8 1.5+7 2.1+7	D D D D D D D	1°,99* 1°,99* 1°,99* 1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9+7 4.7+8 4.4+8 3.2+8 1.5+7 2.1+7	D D D D	1°,99* 1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7+8 4.4+8 3.2+8 1.5+7 2.1+7	D D D	1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4+8 3.2+8 1.5+7 2.1+7	D D	1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2+8 1.5+7 2.1+7	D D	1°,99* 1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1+7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T)	1°,99*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.9+7	D	1°,99*
3471.989 2 2 255 146.8 283 940.4 20 1.6 3459.40 1 1 254 824.1 283 722.7 10 1.1 3433.52 1 2 254 824.1 283 940.4 5.1 - 1		D	1°,99*
3471.989 2 2 255 146.8 283 940.4 20 1.6 3459.40 1 1 254 824.1 283 722.7 10 1.1 3433.52 1 2 254 824.1 283 940.4 5.1 - 1	1.9 + 8	D	1°,99*
$\frac{3433.52}{1}$ $\frac{2}{1}$ $\frac{254824.1}{2}$ $\frac{283940.4}{2}$ $\frac{5.1-1}{2}$	1.8 + 8	D	1°,99*
	2.0 + 8	D	1°,99*
3455.325 $3d5p^{-1}P_1^{\circ}$ $3d5d^{-1}D_2$ 258 288.8 287 221.4 15 9.9 - 1	5.7+7	D	1°,99*
	1.1+8	D	1°,99*
$3d5p$ $^3D_2^{\circ}$ $3d5d$ 3G_3 255 146.8 284 101.1 3 1.1	8.8+7	D	1°,99*
3448.410 $3d5p$ $^{1}D_{2}^{o}$ $3d5d$ $^{1}F_{3}$ 254 468.8 283 459.4 50 3.8	3.0+8	D	1°,99*
3385.336 $3d5p$ $^{1}F_{3}^{o}$ $3d5d$ $^{1}D_{2}$ 257 690.8 287 221.4 1 1.9 - 1	2.2 + 7	D	1°,99*
3334.79 $3d4d\ ^{1}G_{4}$ $3d5p\ ^{1}F_{3}^{o}$ 227 712.5 257 690.8 60 2.4	2.1+8	D	1°,99*
3333.986 $3d4d^{3}P_{2}$ $3d5p^{3}P_{1}^{\circ}$ 226 796.3 256 781.8 15 2.0 - 1	3.9+7	D	1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 + 8	D	1°,99*
3314.175 1 226 617.1 256 781.8 2 1.4 - 1	2.9 + 7	$\tilde{\mathbf{D}}$	1°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9 + 7	D	1°,99*
3294.259 2 2 226 796.3 257 143.2 40 7.5 - 1 3274.931 1 2 226 617.1 257 143.2 5 2.7 - 1	$9.3+7 \\ 3.3+7$	D D	1°,99* 1°,99*
3328.527 $3d5p$ $^{3}F_{4}^{\circ}$ $3d5d$ $^{3}F_{4}$ 256 251.7 286 286.5 30 2.6	1.7+8	D	1°,99*
3298.371 3 3 255 747.6 286 056.9 20 2.0 3295.501 2 2 255 463.3 285 798.9 10 1.3	1.7+8 $1.5+8$	D D	1°,99* 1°,99*
3284.560 $3d5p$ $^{1}F_{3}^{\circ}$ $3d5d$ $^{1}G_{4}$ 257 690.8 288 127.6 50 7.7	5.3+8	D	1°,99*
3268.077 $3d5p$ $^{3}P_{2}^{\circ}$ $3d5d$ $^{3}P_{2}$ 257 143.2 287 733.4 15 2.2	2.7+8	D	1°,99*
3229.92 1 2 256 781.8 287 733.4			1
3241.460 $3d5p$ $^3D_3^{\circ}$ $3d5d$ 3F_4 255 445.5 286 286.5 40 5.3	3.7 + 8	D	1°,99*
3234.251 2 3 255 146.8 286 056.9 20 3.2 3227.507 1 2 254 824.1 285 798.9 15 2.3	2.9+8 $2.9+8$	D D	1°,99* 1°,99*
3135.192 $3d4d\ ^{1}D_{2}$ $3d5p\ ^{1}F_{3}^{\circ}$ $225\ 804.1$ $257\ 690.8$ 20	2.0 (0	-	1
200		10	
$3d4d$ $^{6}F_{2}$ $3d5p$ $^{6}D_{1}^{6}$ 222 794.6 254 824.1 10 $7.0-1$ 3113.022 3 2 223 033.0 255 146.8 25 1.1	1.7+8 $1.4+8$	D D	1°,99* 1°,99*
3110.416 4 3 223 304.6 255 445.5 30 1.6	1.6+8	D	1°,99*
3084.36 3 3 223 033.0 255 445.5 1	1.0 0	D	1
3096.226 $3d5p$ $^3D_3^{\circ}$ $3d5d$ 3P_2 255 445.5 287 733.4 2 $6.8-1$	9.4 + 7	D	1°,99*
3067.85 2 255 146.8 287 733.4 1.9 - 1	2.6+7	D	1°,99*
3077.476 $3d4d \ ^{1}D_{2}$ $3d5p \ ^{1}P_{1}^{o}$ 225 804.1 258 288.8 15 3.9 - 1	9.1+7	D	1°,99*
3060.146 3 $d4d$ $^{3}F_{2}$ 3 $d5p$ $^{3}F_{2}^{\circ}$ 222 794.6 255 463.3 5 4.0 - 1	5.7+7	D	1°,99*
3055.864 3 3 223 033.0 255 747.6 5 5.7 - 1	5.9 + 7	D	1°,99*
3034.27 4 4 223 304.6 256 251.7 10 7.6 - 1	6.1+7	D	1°,99*
3052.346 $3d5p$ $^{1}D_{2}^{o}$ $3d5d$ $^{1}D_{2}$ 254 468.8 287 221.4 10 1.6	2.3+8	D	1°,99*
2899.575 $3d5p \ ^{1}P_{1}^{o}$ $3d6s \ ^{1}D_{2}$ 258 288.8 292 766.7 2 7.5 - 1	1.2+8	D	1°,99*
2850.160 $3d5p \ ^{1}F_{3}^{o}$ $3d6s \ ^{1}D_{2}$ 257 690.8 292 766.7 2 1.6	2.7+8	\mathbf{p}	1°,99*
2834.089 $3d5p$ $^{3}P_{2}^{\circ}$ $3d6s$ $^{3}D_{3}$ 257 143.2 292 417.6 5 1.1	1.2+8	D	1°,99*
		D	1°,99*

V IV - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2764.219	$3d5p^{-3}F_{4}^{\circ}$	3d6s ³ D ₃	256 251.7	292 417.6	15	2.2	2.7+8	D	1°,99*
2763.860	3	2	255 747.6	291 918.1	15	1.3	2.2 + 8	D	1°,99*
2751.528	2	1	255 463.3	291 796.0	10	6.5 - 1	1.9 + 8	D	1°,99*
2743.523	$3d4d$ 3S_1	$3d5p^{-3}P_{1}^{o}$	220 343.5	256 781.8	20	2.3 - 1	6.9+7	D	1°,99*
2716.594	1	2	220 343.5	257 143.2	20	3.9 - 1	6.9 + 7	D	1°,99*
2740.966	$3d5p$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3d6s$ $^3\mathrm{D_2}$	255 445.5	291 918.1	5	3.2 - 1	5.7+7	D	1°,99*
727.780	2	1	255 146.8	291 796.0	1	5.0 - 1		Ď	1°,99*
718.722 703.933	2	2	255 146.8	291 918.1	2	2.8 - 1	5.1 + 7	D	1°,99*
703.933	3 1	3	255 445.5 254 824.1	292 417.6 291 796.0	20 20				1 1
740.545	$3d4d\ ^1\mathrm{P}_1$	$3d5p^{-1}\mathrm{D_2^o}$	217 990.7	254 468.8	5	1.2 - 1	2.2+7	D	1°,99*
2669.483	$3d5p^{-1}D_2^{\circ}$	$3d6s$ $^3\mathrm{D}_2$	254 468.8	291 918.1	10				1
2667.837	$3d4d$ $^{1}\mathrm{P}_{1}$	3d5p 3F2	217 990.7	255 463.3	1				1
2656.868	$3d4d$ $^3\mathrm{G}_3$	$3d5p$ 3 F $_2^{\circ}$	217 836.3	255 463.3	50	1.3	9 8.10	D	1°,99*
2655.408	3444 G3 4	3 <i>u</i> 3 <i>p</i> F ₂	218 100.0	255 747.6	50 50	$\frac{1.3}{2.0}$	$2.5+8 \\ 2.7+8$	D	1°,99*
2645.541	5	4	218 463.6	256 251.7	80	2.6	2.8 + 8	D	1°,99*
636.936 620.320	3	3	217 836.3	255 747.6	10	1.1 - 1		D	1°,99*
020.020	4	4	218 100.0	256 251.7	25	1.2 - 1	1.3+7	D	1°,99*
650.613	$3d4d$ $^3\mathrm{D}_2$	$3d5p$ $^3\mathrm{D_1^o}$	217 108.0	254 824.1	8	1.2 - 1		D	1°,99*
644.946 636.401	3	2	217 350.0 216 905.0	255 146.8	8	1.4 - 1		D	1°,99* 1°,99*
628.090	1 2	1 2	217 108.0	254 824.1 255 146.8	30 20	3.3 - 1 $4.5 - 1$		D D	1°,99*
624.213	3	3	217 350.0	255 445.5	50	8.4 - 1		D	1°,99*
614.154 607.633	1	2	216 905.0	255 146.8	1				1
623.483	2 $_3d4d\ ^3\mathrm{P}_2$	$3d4f \ ^{1}F_{3}^{o}$	217 108.0 226 796.3	255 445.5 264 902.2	5 15				1
610.323	$3d5p \ ^{1}D_{2}^{\circ}$	3d6s ¹ D ₂	254 468.8	292 766.7	10	4.6 - 1	8.9+7	D	1 1°,99*
	• •		201 400.0	232 100.1	10	4.0 – 1	0.571	D	1 ,55
603.213 599.983	$3d4d$ $^{3}\mathrm{P}_{1}$	$3d4f \ ^{3}D_{1}^{o}$	226 617.1	265 019.7	10	3.6 - 1		D	1°,99*
598.287	1 2	2 3	226 617.1 226 796.3	$265\ 067.4$ $265\ 271.6$	30 30	1.7	3.4 + 8	D	1°,99* 1
596.761	0	1	226 521.6	265 019.7	15	8.3 - 1	2.7+8	D	1°,99*
595.858	$3d4d~^1\mathrm{F}_3$	$3d5p$ $^{1}\mathrm{D_{2}^{o}}$	215 957.7	254 468.8	20	9.8 - 1	2.0+8	D	1°,99*
2592.747	$3d4d$ $^3\mathrm{D_1}$	$3d5p^{\ 3}F_{2}^{\circ}$	216 905.0	255 463.3					•
2587.258	2	3d0p r ₂	217 108.0	255 747.6	10				1 1
2569.812	3	4	217 350.0	256 251.7	10				1
2584.636	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	225 804.1	264 482.8	40	1.3	2.6+8	D	1°,99*
2570.724	$3d4d$ $^{1}\mathrm{G}_{4}$	$3d4f^{-1}H_{5}^{o}$	227 712.5	266 600.3	80	8.3	7.6+8	D	1°,99*
2557.897	$3d4d$ $^{3}P_{2}$	$3d4f$ $^3P_2^o$	226 796.3	265 879.2	15				1
2546.228	1	2	226 617.1	265 879.2	20				1
2556.915	$3d4d\ ^1\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{F_{3}^{o}}$	225 804.1	264 902.2	50				1
2550.971	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p$ $^3\mathrm{D}^{\circ}_2$	215 957.7	255 146.8	2	,			1
2532.982	$3d4d$ $^{1}\mathrm{D}_{2}$	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_3$	225 804.1	265 271.6	20				1
2530.520	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d5p$ $^3\mathrm{F_2^o}$	215 957.7	255 463.3	2				1
2519.803	$3d4d$ $^3\mathrm{D}_2$	$3d5p^{-3}P_{1}^{o}$	217 108.0	256 781.8	20	3.2 - 1	1.1+8	D	1°,99*
2512.242 2509.606	3	2	217 350.0	257 143.2	-	5.6 - 1		D	1°,99*
2509.000 2506.969	1 1	0	216 905.0 $216 905.0$	256 739.9 256 781.8	5 10	1.3 - 1 $1.0 - 1$		D D	1°,99* 1°,99*
2497.049	2	2	217 108.0	257 143.2	10	1.0 - 1	. 0.0- _F 1		1 , 99
2511.377	$3d4d$ 3 F ₄	$3d4f$ $^{1}G_{4}^{\circ}$	222 204 6	060 111 4	,				,
2494.351	3d4d °F4 3	3d4f G ₄	223 304.6 223 033.0	263 111.4 263 111.4	$\frac{1}{20}$				1
2480.739	$3d4d$ $^{1}P_{1}$	3d5p ¹ P ₁		258 288.8	30	4.8 - 1	1.7+8	D	1°,99*
2478.119	$3d4d~^3\mathrm{D_3}$	$3d5p^{-1}F_3^{\circ}$	217 350.0	257 690.8	1				1

V IV - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
2467.287	3d4d ³ F ₄	$3d4f$ $^{3}G_{4}^{\circ}$	223 304.6	263 822.4	20	2.8 - 1	3.4+7	D	1°,99*
2450.869	3	4	223 033.0	263 822.4	50	1.98	2.4 + 8	D	1°,99*
2446.802	4	5	223 304.6	264 161.8	50	5.2	5.3 + 8	D	1°,99*
2446.017	3	3	223 033.0	263 902.3	30	1.3	2.0 + 8	D	1°,99*
2431.885	2	3	222 794.6	263 902.3	30	2.0	3.2+8	D	1°,99*
2464.720	$3d4d\ ^3\mathrm{F}_3$	$3d4f$ $^3F_2^{\circ}$	223 033.0	263 593.0	2				1
2463.796	3	3	223 033.0	263 608.3	10	3.2 - 1	5.1 + 7	D	1°,99*
2450.329	2	2	222 794.6	263 593.0	20	1.0	2.2 + 8	D	1°,99*
2449.723	4	4	223 304.6	264 113.1	20	1.6	2.0+8	D	1°,99*
2449.404 2433.530	2 3	3	222 794.6 223 033.0	263 608.3 264 113.1	40 50	$\frac{2.0}{1.3}$	3.2+8 $1.6+8$	D D	1°,99* 1°,99*
		·							
2432.518	$3d4d$ $^3\mathrm{F}_4$	$3d4f ^{3}H_{4}^{o}$	223 304.6	264 401.9	10	2.6 - 1	3.2 + 7	D	1°,99*
2421.317 2416.552	4	5	223 304.6 223 033.0	264 591.9 264 401.9	50 30	$1.6 \\ 1.4$	1.6+8	D D	1°,99*
2410.332	3	4	223 033.0	204 401.9	30	1.4	1.8+8	D	1°,99*
2413.524	$3d4f\ ^{1}\mathrm{F_{3}^{o}}$	$3d(^2D_{3/2})5g\ [\frac{7}{2}]_3$	264 902.2	306 323.1	5				1
2413.256	3	4	264 902.2	306 327.7	20				1
2402.855	$3d4f$ $^3D_3^{\circ}$	$3d(^{2}D_{5/2})5g\ [\frac{9}{2}]_{4}$	265 271.6	306 876.3	5				1
2395.450	$3d4d~^1\mathrm{F}_3$	$3d5p$ $^1\mathrm{F_3^o}$	215 957.7	257 690.8	10	4.6 - 1	7.6 + 7	D	1°,99*
2387.663	$3d4d\ ^3{ m F}_3$	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	223 033.0	264 902.2	3				1
2384.729	$3d4f$ $^3\mathrm{H_4^o}$	$3d(^2D_{3/2})5g\ [\frac{7}{2}]_3$	264 401.9	306 323.1	10				1
2381.712	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d(^{2}D_{5/2})5g\ [\frac{9}{2}]_{4}$	264 902.2	306 876.3	10				1
2378.290	$3d4d\ ^3\mathrm{F}_3$	$3d4f$ $^3\mathrm{D}^\mathrm{o}_2$	223 033.0	265 067.4	1	1.8 - 1	4.1+7	D	1°,99*
2364.512	$3d4f$ $^3\mathrm{H}^\mathrm{o}_5$	$3d(^{2}D_{5/2})5g\ [\frac{9}{2}]_{5}$	264 591.9	306 871.0	1				1
2353.639	4	4	264 401.9	306 876.3	3				1
2356.624	$3d4f$ ${}^{3}G_{3}^{o}$	$3d(^{2}D_{3/2})5g\ [\frac{7}{2}]_{3}$	263 902.3	306 323.1	5				1
2356.369	3	4	263 902.3	306 327.7	10				1
2351.934	4	4	263 822.4	306 327.7	5				1
2340.704	$3d4f$ ${}^{3}G_{5}^{\circ}$	$3d(^{2}D_{5/2})5g \left[\frac{9}{2}\right]_{5}$	264 161.8	306 871.0	5				1
2326.291	3	4	263 902.3	306 876.3	3				î
2322.259	4	5	263 822.4	306 871.0	5				1
2321.962	4	4	263 822.4	306 876.3	1				1
2340.140	$3d4f$ $^3\mathrm{F}^\mathrm{o}_3$	$3d(^{2}D_{3/2})5g\ [\frac{7}{2}]_{4}$	263 608.3	306 327.7	10				1
2339.548	2	3	263 593.0	306 323.1	20				1
2338.032	$3d4f \ ^{3}F_{4}^{\circ}$	$3d(^{2}D_{5/2})5g\left[\frac{9}{2}\right]_{5}$	264 113.1	306 871.0	10				1
2313.236	$3d4f^{-1}G_{4}^{o}$	$3d(^{2}D_{3/2})5g\left[\frac{7}{2}\right]_{4}$	263 111.4	306 327.7	1				1
2268.298	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p \ ^{1}D_{2}^{\circ}$	100 200.7	144 273.1	500	1.3	3.2+8	D	1°,99*
2195.388	3d4d ³ S ₁	3d4f ³ P ₂	220 343.5	265 879.2	10	1.0	0.210	D	1 ,33
0107 500		_							
2187.562 2186.394	$3d4d$ $^3\mathrm{G}_5$	$3d4f$ $^3G_5^{\circ}$	218 463.6	264 161.8	5	6.0 - 1		D	1°,99*
2173.893	4 3	4	218 100.0 217 836.3	263 822.4 263 822.4	10	1.5 - 1		D	1°,99*
2170.384	3 4	4 5	217 836.3	263 822.4 264 161.8	10 40	8.0 - 1 2.5	$1.2+8 \\ 3.2+8$	D D	1°,99* 1°,99*
2167.200	$3d4d~^3\mathrm{G}_5$	3d4f ³ H ₅ °	218 4626	264 501 0	00				
2159.055	3u4u G5 4	344 II 15	218 463.6 218 100.0	264 591.9 264 401.9	20 10	$\frac{1.1}{9.6-1}$	1.4+8 $1.5+8$	D D	1°,99* 1°,99*
2155.336	* 5	6	218 463.6	264 845.7	100	1.0+1	1.3+8 $1.2+9$	D	1°,99 1°,99*
2150.231	4	5	218 100.0	264 591.9	40	2.5	3.2+8	D	1°,99*
2146.828	3	4	217 836.3	264 401.9	50	4.1	6.6+8	D	1°,99*
2162.498	$3d4s$ $^1\mathrm{D}_2$	$3d4p$ $^3\mathrm{D}^{\circ}_2$	100 200.7	146 429.3	30				1
2160.222	$3d4d\ ^3{ m G}_3$	$3d4f$ $^3\mathrm{F_4^o}$	217 836.3	264 113.1	20	2.0	3.1+8	D	1°,99*
2151.087	$3d4d\ ^3\mathrm{D}_3$	$3d4f$ $^3G_4^{\circ}$	217 350.0	263 822.4	20	2.7	4.3+8	D	1°,99*
2136.330	2	3	217 108.0	263 902.3	10	1.2	2.4+8	D	1°,99*
2150.231	$3d4d$ $^{1}\mathrm{P}_{1}$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	217 990.7	264 482.8	40				1

V IV - Continued

		Upper						Acc.	References
2149.852	$3d4d~^3\mathrm{D}_2$	3d4f ³ F ₃ °	217 108.0	263 608.3	20	2.5	5.1+8	D	1°,99*
2141.199 2137.741	1 3	2	216 905.0 217 350.0	263 593.0 264 113.1	40 20	$\frac{2.4}{1.9}$	7.0+8 $3.0+8$	D D	1°,99* 1°,99*
2129.934	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^3F_2^{\circ}$	100 200.7	147 135.2	30				1
2106.560	2	3	100 200.7	147 656.5	2				1
2120.052	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^{1}\mathrm{G_{4}^{o}}$	215 957.7	263 111.4	40	4.9	8.1+8	D	1°,99*
2105.709 2088.737	$3d4s$ $^3\mathrm{D_3}$	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	96 798.0	144 273.1					1
2079.300	2 1	2 2	$96\ 412.1$ $96\ 196.1$	144 273.1 144 273.1	50 30				1 1
2086.073	$3d4d$ $^3\mathrm{D_3}$	$3d4f$ $^{3}D_{3}^{o}$	217 350.0	265 271.6	30				1
2084.433	2	2	217 108.0	265 067.4	20	1.3	4.0+8	D	1°,99*
2063.563	$3d4d$ $^1\mathrm{F}_3$	$3d4f$ $^{3}H_{4}^{o}$	215 957.7	264 401.9	2				1
2060.113	$3d4d~^1\mathrm{F}_3$	$3d4f$ $^{1}D_{2}^{o}$	215 957.7	264 482.8		1.4 - 1	4.3 + 7	D	1°,99*
2042.454	$3d4d$ $^{1}\mathrm{F}_{3}$	3d4f ¹ F ^o ₃	215 957.7	264 902.2	20				1
2027.144	$3d4d$ $^{1}\mathrm{F}_{3}$	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_3$	215 957.7	265 271.6	1				1
2014.199	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3D_2^{\circ}$	96 798.0	146 429.3	40	2.9 - 1	9.7+7	D	1°,99*
2011.180 2002.480	2	1	96 412.1	146 117.7	40	3.0 - 1	1.7+8	D	1°,99*
1999.320	1 2	1 2	$96\ 196.1$ $96\ 412.1$	$146\ 117.7 \\ 146\ 429.3$	$\frac{100}{200}$	6.6 - 1 1.1	3.6+8 $3.6+8$	D D	1°,99* 1°,99*
1997.722	3	3	96 798.0	146 855.1	500	2.0	4.7+8	Ď	1°,99*
1990.712	1	2	96 196.1	146 429.3	40				1
1982.422	2	3	96 412.1	146 855.1	15	2.7 - 1	6.5+7	D	1°,99*
1971.471	$3d4s$ $^3\mathrm{D}_2$	$3d4p$ $^3F_2^o$	96 412.1	$147\ 135.2$	40				1
1966.244	3	3	96 798.0	147 656.5	20	2.8 - 1	6.9 + 7	D	1°,99*
1963.103 1951.432	1	2	96 196.1 96 412.1	$147\ 135.2$ $147\ 656.5$	300	$\frac{1.4}{2.0}$	4.8+8	D	1°,99* 1°,99*
1939.065	2 3	3 4	96 798.0	148 369.2	400 500	$\frac{2.0}{2.9}$	5.0+8 $5.8+8$	D D	1°,99*
1946.772	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^3\mathrm{P}_2^{\mathrm{o}}$	100 200.7	151 567.3	5				1
1861.558	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^{1}\mathrm{F_{3}^{o}}$	100 200.7	153 918.7	300	2.4	6.6+8	D	1°,99*
1825.836	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3\mathrm{P}_2^\mathrm{o}$	96 798.0	151 567.3	200	1.3	5.3+8	D	1°,99*
1817.676 1813.050	2	1	96 412.1	151 427.0	100	7.0 - 1	4.8 + 8	D	1°,99*
1810.566	2 1	2	96 412.1 96 196.1	151 567.3 151 427.0	50 30	3.7 - 1 $3.3 - 1$	1.5+8 $2.3+8$	D D	1°,99* 1°,99*
1809.854	1	1 0	96 196.1	151 449.1	60	3.6 - 1	7.2+8	D	1°,99*
1806.184	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	100 200.7	155 565.5	80	1.1	7.3+8	D	1°,99*
1611.879	$3d4p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d4d$ $^{1}\mathrm{F}_{3}$	153 918.7	215 957.7	80	1.4	5.2+8	D	1°,99*
1601.915	$3d4p\ ^1\mathrm{P_1^o}$	$3d4d\ ^{1}\mathrm{P}_{1}$	155 565.5	217 990.7	80	1.4	1.2+9	D	1°,99*
1527.721	$3d4p$ $^3P_0^{\circ}$	$3d4d$ 3D_1	151 449.1	216 905.0	15	3.6 - 1	3.5+8	D	1°,99*
1527.223	1	1	151 427.0	216 905.0	15	2.3 - 1	2.2+8	D	1°,99*
1525.756	2	2	151 567.3	217 108.0	10	1.6 - 1	9.3+7	D	1°,99*
1522.493	1	2	151 427.0	217 108.0	40	9.6 - 1	5.5 + 8	D	1°,99*
1520.142	2	3	151 567.3	217 350.0	60	1.8	7.2 + 8	D	1°,99*
1454.000	$3d4p\ ^{3}P_{2}^{o}$	$3d4d$ 3S_1	151 567.3	220 343.5	40	1.1	1.1+9	D	1°,99*
1451.496	0	1	151 449.1	220 343.5	10	2.4 - 1	2.5+8	D	1°,99*
1451.042	1	1	151 427.0	220 343.5	30	6.6 - 1	7.0+8	D	1°,99*
1449.681	$3d4p$ $^3F_4^{\circ}$	$3d4d$ 3D_3	148 369.2	217 350.0	20	2.8 - 1	1.2+8	D	1°,99*
1439.834	3	2	147 656.5	217 108.0	1	2.0 - 1	1.270	D	1,99
1434.842	3	3	147 656.5	217 350.0	15	1.2	5.4+8	D	1°,99*
1433.276	2	1	147 135.2	216 905.0	1				1
1429.114 1424.197	2 2	2 3	147 135.2 147 135.2	217 108.0 217 350.0	10	7.5 - 1 $1.5 - 1$	5.0+8 $7.1+7$	D D	1°,99* 1°,99*
1447.120	$3d4p~^3\mathrm{D_3^o}$	$3d4d$ $^{1}\mathrm{F}_{3}$	146 855.1	215 957.7					1
1434.092	$3d4p$ $^3F_4^{\circ}$	$3d4d$ $^{3}G_{4}$	148 360 9	210 100 0	15	24 1	1010	D	
1426.654	344p F ₄	3444 G4	148 369.2 148 369.2	218 100.0 218 463.6	15 100	3.4 - 1 7.4	$1.2+8 \\ 2.2+9$	D	1°,99* 1°,99*
1424.916	3	3	147 656.5	217 836.3	100	$\frac{7.4}{2.6-1}$		D D	1°,99*
1419.580	3	4	147 656.5	218 100.0	80	3.5	1.3+9	Ď	1°,99*
1414.409									

V IV - Continued

Wave-	Classification	Unno-	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
ength (Å)	Lower	Upper —							
423.719	$3d4p^{-1}P_1^{\circ}$	$3d4d\ ^1\mathrm{D_2}$	155 565.5	225 804.1	30	1.1	7.1+8	D	1°,99*
423.420	$3d4p$ $^3\mathrm{D}^{\circ}_3$	$3d4d$ 3D_2	146 855.1	217 108.0	10	4.7 - 1	3.1+8	D	1°.99*
418.921	2	1	146 429.3	216 905.0	10	3.5 - 1	3.8+8	Ď	1°,99* 1°,99*
418.533	3	3	146 855.1	217 350.0	30	1.1	5.2+8	D	1°,99*
414.842	2	2	146 429.3	217 108.0	20	7.0 - 1	4.6+8	D	1°,99*
112.686		-	146 117.7	216 905.0	20	9.6 - 1	1.1+9	Ď	1°,99*
110.018	1	1	146 429.3	217 350.0	8	0.0 1	1.170	D	1
108.639	2	3	146 117.7	217 108.0	8	2.5 - 1	1.7+8	D	1°,99*
108.039	1	2	140 117.7	217 108.0	0	2.5 1	1.7+6	ע	1,99
103.618	$3d4p\ ^{3}D_{3}^{\circ}$	$3d4d\ ^{3}G_{4}$	146 855.1	218 100.0	8	2.2	8.4 + 8	D	1°,99*
100.416	2	3	146 429.3	217 836.3	5	1.6	7.5 + 8	D	1°,99*
395.001	$3d4p~^1\mathrm{D}^{\mathrm{o}}_2$	$3d4d$ $^{1}\mathrm{F}_{3}$	144 273.1	215 957.7	60	3.0	1.4+9	D	1°,99*
391.105	$3d4p\ ^{1}{ m F_{3}^{o}}$	$3d4d~^{1}\mathrm{D_{2}}$	153 918.7	225 804.1	20	2.0 - 1	1.4+8	D	1°,99*
356.529	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	$3d4d$ $^{1}\mathrm{P}_{1}$	144 273.1	217 990.7	10	4.1 - 1		D	1°,99*
	_								
355.131	$3d4p$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	3d4d ¹ G ₄	153 918.7	227 712.5	80	6.2	2.5+9	D	1°,99*
347.030 344.493	$3d4p\ ^{3}P_{2}^{\circ}$	$3d4d$ $^{1}\mathrm{D}_{2}$	151 567.3 151 427.0	225 804.1 225 804.1	1				1 1
							_	_	
339.335	$3d4p$ $^3F_4^{\circ}$	$3d4d\ ^3\mathrm{F}_3$	148 369.2	223 033.0	5	1.4 - 1		D	1°,99*
334.493	4	4	148 369.2	223 304.6		2.0	8.3 + 8	D	1°,99*
326.666	3	3	147 656.5	223 033.0	5	2.3 - 1		D	1°,99*
321.917	3	4	147 656.5	223 304.6	10	2.3	9.9 + 8	D	1°,99*
321.719	2	2	147 135.2	222 794.6	10	1.3 - 1	9.4 + 7	D	1°,99*
317.566	2	3	147 135.2	223 033.0	5	1.6	8.7+8	D	1°,99*
332.459	$3d4p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3d4d~^3\mathrm{P}_1$	151 567.3	226 617.1	3	6.0 - 1	7.5+8	D	1°,99*
331.665			151 427.0	226 521.6	J	4.5 - 1		D	1°,99*
	1	0			10				1 , 99
30.355	o	1	151 449.1	226 617.1	10	4.8 - 1		D	1°,99* 1°,99*
329.968	1	1	151 427.0	226 617.1	10	3.9 - 1		D	
329.288 326.807	2	2	151 567.3	226 796.3	10 5	2.0 $5.1 - 1$	1.5+9	D D	1°,99*
320.801	1	2	151 427.0	226 796.3	э	5.1 - 1	4.0+8	D	1°,99*
312.717	$3d4p$ $^3\mathrm{D}^{\circ}_3$	$3d4d$ 3 F $_3$	146 855.1	223 033.0	20	1.5	8.6+8	D	1°,99*
									1°,99*
309.502	2	2	146 429.3	222 794.6	10	1.1	8.7+8	D	1,99
308.061	3	4	146 855.1	223 304.6	50	1.8	7.9 + 8	Ď	1°,99*
805.420	2	3	146 429.3	223 033.0	40	1.3	7.0 + 8	D	1°,99*
304.173	1	2	146 117.7	222 794.6	30	1.9	1.5 + 9	D	1°,99*
273.529	$3d4p^{-1}D_{2}^{o}$	$3d4d$ $^3\mathrm{F}_2$	144 273.1	222 794.6	10				1
272.972	$3d4p$ $^{1}P_{1}^{\circ}$	$3d4d$ $^{1}\mathrm{S}_{0}$	155 565.5	234 121.8	30	6.6 - 1	2.7+9	D	1°,99*
271.153	$3d4p$ $^3F_2^{\circ}$	$3d4d$ $^{1}\mathrm{D_{2}}$	147 135.2	225 804.1	2				1
250.918	$3d4p\ ^{3}\mathrm{D_{3}^{o}}$	$3d4d$ $^{3}\mathrm{P}_{2}$	146 855.1	226 796.3	20	3.9 - 1	1 2210	D	1°,99*
247.069	-				20			D	T 'AA.
244.287	2	1	146 429.3	226 617.1	30	3.3 - 1	4.7+8	D	1°,99*
243.718	2	2	$146\ 429.3$ $146\ 117.7$	226 796.3	2	00 -	0.4.6	Б	1
242.248	1	0	146 117.7	226 521.6 226 617.1	10 3	2.2 - 1	9.4+8	D	1°,99* 1
226.523	$3d4p~^{1}\mathrm{D_{2}^{o}}$	$3d4d$ $^{1}\mathrm{D}_{2}$				1 0	1510	Б	
220.323 222.352 ^C			144 273.1	225 804.1	60	1.8	1.5+9	D	1°,99*
	$3d^{2}$ ${}^{1}G_{4}$	3d4s ¹ D ₂	18 391.2	100 200.7		E 2	1.0+3	E	99*
194.462	$3d4p$ 1 F $_{3}^{\circ}$	$3d5s$ $^{1}\mathrm{D}_{2}$	153 918.7	237 638.8	20	1.1	1.0+9	D	1°,99*
131.255	$3d4p\ ^{3}F_{4}^{o}$	$3d5s$ $^3\mathrm{D}_3$	148 369.2	236 766.9	20	1.3	9.4+8	D	1°,99*
127.836	3	2	147 656.5	236 322.4	20	8.4 — 1	8.9+8	D	1°,99*
112.436	$3d4p$ $^3D_2^{\circ}$	$3d5s$ $^3\mathrm{D}_2$	146 429.3	236 322.4	5	4.7 - 3	1 5.0+8	D	1°,99*
112.199			146 855.1	236 766.9	5	8.4		D	1°,99*
110.720	3 1	3	146 855.1	236 148.6	2	2.8 - 1		D	1°,99*
006 275									
096.375	$3d4p$ $^3\mathrm{D}^{\mathrm{o}}_2$	$3d5s$ 1 D ₂	146 429.3	237 638.8	2				1
086.382	$3d4p$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	$3d5s$ $^3\mathrm{D}_2$	144 273.1	236 322.4	5				1
		_						_	
071.054	$3d4p^{-1}D_{2}^{\circ}$	$3d5s$ 1 D $_{2}$	$144\ 273.1$	237 638.8	20	5.4 —	1 6.1+8	D	10.99*
071.054	$3d4p$ $^{1}\mathrm{D_{2}^{\circ}}$	$3d5s$ $^{1}\mathrm{D}_{2}$	144 273.1	237 638.8	20	5.4 —	1 6.1+8	D	1°,99*
071.054 040.980 ^C 039.543 ^C	$3d4p^{-1}D^{\mathrm{o}}_{2}$ $3d^{2-3}\mathrm{F}_{4}$	$3d5s$ $^{1}\mathrm{D}_{2}$ $3d4s$ $^{3}\mathrm{D}_{3}$	144 273.1 734.7	237 638.8 96 798.0	20	5.4 — E2	1 6.1+8	E ·	1°,99*

V IV - Continued

Wave- ength (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
884.146	$3d^{2} {}^{1}S_{0}$	3d4p ¹ P ₁ °	42 462.1	155 565.5	30	1.7 - 1	4.7+8	D	1°,99*
778.433	$3d^{2} {}^{1}G_{4}$	$3d4p$ $^3\mathrm{D}_3^{\mathrm{o}}$	18 391.2	146 855.1					1
752.568	$3d^2 \ ^3P_1$	$3d4p$ $^3D_1^{\circ}$	13 239.2	146 117.7	20				1
752.038	2	2	13 458.3	146 429.3	30				î
751.908	0	1	13 122.8	146 117.7	30				1
750.809			13 239.2	146 429.3	40				1
749.641	1 2	2 3	13 458.3	146 855.1	40				1
750.110	$3d^2$ $^1\mathrm{D}_2$	$3d4p^{-1}D_2^{\circ}$	10 959.3	144 273.1	150				1
745.165	$3d^2\ ^3P_2$	3d4p ³ F ₃ °	13 458.3	147 656.5	20				1
737.854	$3d^2$ $^1\mathrm{G_4}$	$3d4p$ $^{1}\mathrm{F_{3}^{o}}$	18 391.2	153 918.7	400	1.4	2.4+9	D	1°,99*
734.344	$3d^2$ $^1\mathrm{D}_2$	$3d4p \ ^{3}F_{2}^{\circ}$	10 959.3	147 135.2	20		2.210	~	1
		_						_	
724.809	$3d^2 \ ^3P_2$	$3d4p\ ^{3}P_{1}^{o}$	13 458.3	151 427.0	.5	1.3 - 1	5.6 + 8	D	1°,99*
724.068	2	2	13 458.3	151 567.3	40	4.5 - 1	1.1 + 9	D	1°,99*
723.652	1	1	13 239.2	151 427.0	40				1
723.537	1	0	13 239.2	151 449.1	40	1.1 - 1	1.5 + 9	D	1°,99*
723.045	0	1	13 122.8	151 427.0	40				1
722.912	1	2	13 239.2	151 567.3	40	1.2 - 1	3.1+8	D	1°,99*
711.911	$3d^2$ 1 D ₂	$3d4p$ $^3P_1^{\circ}$	10 959.3	151 427.0	20				1
702.035	$3d^2$ 3P_0	$3d4p$ $^{1}\mathrm{P_{1}^{o}}$	13 122.8	155 565.5	1				1
699.497	$3d^{2}$ ¹ D ₂	$3d4p$ $^{1}\mathrm{F_{3}^{o}}$	10 959.3	153 918.7	30				1
693.128	$3d^2$ 3 F ₂	$3d4p$ $^{1}\mathrm{D_{2}^{\circ}}$	0.0	144 273.1	50				1
691.530	$3d^{2}$ ¹ D ₂	$3d4p$ $^{1}P_{1}^{o}$	10 959.3	155 565.5	100	2.3 - 1	1.1+9	D	1°,99*
684.450	$3d^2 \ ^3F_3$	$3d4p$ $^3D_2^{o}$	325.4	146 429.3	100	2.7 - 1	7.7+8	D	1°,99*
684.368	4	3	734.7	146 855.1	500		·		1
684.368	2	1	0.0	146 117.7	500				ī
682.923	2	2	0.0	146 429.3	40	2.4 - 1	6.9 + 8	D	1°,99*
682.455	3	3	325.4	146 855.1	40	3.2 - 1	6.5+8	D	1°,99*
691 145	$3d^2 \ ^3F_3$	$3d4p$ $^3F_2^{\circ}$	207.4	147 107 0	40	0.0 1		-	10 00*
681.145	3a F3		325.4	147 135.2	40	3.9 - 1	1.1 + 9	D	1°,99*
680.632	4	3	734.7	147 656.5	40	5.6 - 1	1.2 + 9	D	1°,99*
679.647	2	2	0.0	147 135.2	50				1
678.740	3	3	325.4	147 656.5	60				1
677.345	4	4	734.7	148 369.2	200	4.1 - 1	6.7 + 8	D	1°,99*
675.469	3	4	325.4	148 369.2	30				1
402.885	$3d^{2} {}^{1}G_{4}$	$3d4f$ $^{1}\mathrm{H}_{5}^{\mathrm{o}}$	18 391.2	266 600.3	6				4
397.122	$3d^{2} {}^{3}P_{2}$	$3d4f$ $^3\mathrm{D}^{\mathrm{o}}_3$	13 458.3	265 271.6	4				4
397.097	_		13 239.2	265 067.4	3				4
396.991	1	2 1	13 122.8	265 019.7	3				4
394.441	$3d^{2-1}D_2$	$3d4f$ $^{1}\mathrm{D_{2}^{o}}$	10 959.3	264 482.8	3				4
393.790	$3d^{2-1}\mathrm{D}_2$	3d4f ¹ F ₃ °	10 959.3	264 902.2	4				4
393.217	$3d^{2-1}\mathrm{D}_2$	$3d4f$ $^3D_3^{\circ}$	10 959.3	265 271.6					4
392.602	$3d^{2}$ 3 F ₄	$3d5p$ $^{3}D_{3}^{\circ}$			_				
392.428	3dF4 2	3d5p D ₃	734.7 0.0	255 445.5 254 824.1	2 3				4 4
391.362	$3d^2 \ ^3F_4$	$3d5p\ ^{3}F_{4}^{o}$	734.7	256 251.7					4
380.537	$3d^2 \ ^3F_3$	$3d4f {}^{1}\mathrm{G}_{4}^{\circ}$	325.4	263 111.4					4
380.101	$3d^2 \ ^3F_4$	$3d4f$ $^3G_4^{\circ}$	734.7	ეგი იიი 4					4
379.613		-		263 822.4	~				4
379.512	4	5	734.7	264 161.8	7				4
	3	4	325.4	263 822.4	5				4
379.395 378.929	3	3	325.4	263 902.3	3				4
010.748	2	3	0.0	263 902.3	4				4
	$3d^{2} {}^{3}F_{4}$	$3d4f {}^{3}F_{4}^{o}$	734.7	264 113.1	4				4
	04 14	041, 14							•
379.682 379.372	2	2	0.0	263 593.0	3				4

V IV - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
378.993 378.678	$3d^2 \ ^3F_4$	3d4f ³ H ₅ 4	734.7 325.4	264 591.9 264 401.9	4 3				4

 \mathbf{v} v

Wave- length (Å)	Classific Lower	cation Upper	Energy Le	vels (cm ⁻¹)	Int.	9f	$A (s^{-1})$	Acc.	References
8457.555	$3p^66s\ ^2S_{1/2}$	$3p^66p^2P_{3/2}^{\circ}$	403 855.12	415 675.69	1				6,8°
7595.511	3p ⁶ 7h ² H°	$3p^68i$ 2 I	470 488.77	483 650.82	3				8
6635.164	$3p^66d\ ^2{ m D_{3/2}}$	$3p^66f^2F_{5/2}^{\circ}$	434 303.77	449 370.81	4				8
6628.796	5/2	7/2	434 340.92	449 422.47	7				8
65.41.400	$3p^66d\ ^2{ m D}_{3/2}$	a 6g. 2pe	404 000 88	440 500 51					
6541.429 6478.300	•	$3p^67p^{-2}P_{1/2}^{o}$	434 303.77 434 340.92	449 586.71 449 772.79	3 6				8 8
6462.734	5/2 3/2	3/2 3/2	434 303.77	449 772.79	1				8
		•							
6188.907	$3p^65f^2F_{7/2}^{\circ}$	$3p^66d\ ^2{ m D}_{5/2}$	418 187.47	434 340.92	5				8
6020.741	5/2	3/2	417 699.10	434 303.77	3				8
6135.907	$3p^67p^2P_{3/2}^{o}$	$3p^68s ^2S_{1/2}$	449 772.79	466 065.79	2				8
6066.620	1/2	1/2	449 586.71	466 065.79	1				8
- 1 10 70 1	a 5/2paya (2/3p) 2pa	0.65 20	007 000 00	414 001 80					0.09
5442.704	$3p^5(^2P^\circ)3d^2(^3F)^2F^\circ_{7/2}$	$3p^65g^{\ 2}G_{9/2}$	397 993.66	416 361.78	3				6,8°
5366.750	$3p^66p~^2P_{3/2}^{\circ}$	$3p^66d^2D_{3/2}$	415 675.69	434 303.77	1				6,8°
5356.070	3/2	5/2	415 675.69	434 340.92	8				6,8°
5294.115	1/2	3/2	415 420.10	434 303.77	4				6,8°
E000 0	$3p^66g$ ² G	$3p^{6}7f^{2}F^{0}$	450 004 07	460 714					0
5080.0 5079.413	3p 6g -G 7/2	3p-7f-F- 5/2	450 024.87 450 024.54	469 714 469 706.4	1				9 8
4976.8	$3p^66h^2H^o$	$3p^{6}7g^{-2}G$	450 247.99	470 333.55					9
4930.533	$3p^66h^2H^o$	$3p^67i^{-2}I$	450 247.99	470 524.11	15				6,8°
4330.033		-	400 241.99	470 024.11	10				0, 8
4885.299	$3p^{6}6g^{2}G$	$3p^67h^2H^{\circ}$	450 024.87	470 488.77	7				6,8°
4700 707	$3p^66f^2F_{7/2}^{\circ}$	$3p^67g^2G_{9/2}$	440 400 47	470 999 7T	0				8°,9
4780.787 4769.064		•	449 422.47 449 370.81	470 333.75 470 333.35	3 1				8°,9
4103.004	5/2	7/2	449 510.61	410 000.00					0,9
4515.9	$3p^67i$ 2 I	$3p^{6}9k^{2}K^{o}$	470 524.11	492 662					9
4510.4	$3p^67h^{-2}\mathrm{H}^{\mathrm{o}}$	$3p^{6}9i^{2}I$	470 400 77	400.050					
4510.4	sp in H	3p 9i 1	470 488.77	492 653					9
4484.8	$3p^{6}7g^{-2}G$	$3p^{6}9h^{2}H^{o}$	470 333.55	492 625					9
	2 6 272	. 6. 20							_
4375.1	$3p^67f$ ² F°	$3p^69g$ ² G	469 714	492 564					9
4293.735	$3p^65s$ $^2S_{1/2}$	$3p^65p^2P_{1/2}^{\circ}$	328 217.30	351 500.51	10				6,8°
4200.322	1/2	3/2	328 217.30	352 018.34	20				6,8°
	·	F (2-a) -2 (1-a) 2-a							
3989.471	$3p^64d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1G)\ ^2F^\circ_{5/2}$	294 047.24	319 106.19	1				8
3966.598 3746.36	3/2	5/2	293 902.86 294 047.24	319 106.19 320 731.60	$\begin{array}{c} 5 \\ 12 \end{array}$				8°,9 8°,9
3740.50	5/2	7/2	234 041.24	320 731.00	12				0,9
3648.724	$3p^{6}6p^{2}P_{3/2}^{\circ}$	$3p^67s\ ^2S_{1/2}$	415 675.69	443 074.72	4				6,8°
3615.039	1/2	1/2	415 420.10	443 074.72	2				6,8°
3642.887	$3p^65d\ ^2\mathrm{D}_{3/2}$	$3p^66p\ ^2\mathrm{P}^o_{1/2}$	387 977.07	415 420.10	8				6,8°
3617.966	5p ou D3/2 5/2	3p 3p 1 1/2 3/2	388 043.69	415 675.69					6,8°
3609.269	3/2	3/2	387 977.07	415 675.69					6, 8°
		. 6 270							
3371.089	$3p^65d\ ^2{ m D}_{5/2}$	$3p^65f^2F_{5/2}^o$	388 043.69	417 699.10					8
3363.517 3316.470	3/2 5/2	5/2 7/2	387 977.07 388 043.69	417 699.10 418 187.47					8 8
00101110				110 101111	**				Ü
3139.94	$3p^65f$ $^2F_{7/2}^{\circ}$	$3p^66g\ ^2{ m G}_{9/2}$		450 025.20					8°,9
3092.641	5/2	7/2	417 699.10	450 024.54	4				$8^{\circ}, 9$
3004.2	$3p^66h^{-2}H_{11/2}^{\circ}$	$3p^68g^{-2}G_{9/2}$	450 247.99	483 526					9
500 F.M	•	·		400 020					ð
2992.0	$3p^66h^2H_{11/2}^{\circ}$	$3p^68i\ ^2I_{13/2}$	450 247.99	483 650.82	:				9
	•								
2950.134	$3p^65g^{-2}G_{9/2}$	$3p^66h^{-2}H_{11/2}^{o}$	416 361.78	450 247.99	8				6,8°
2931.2	$3p^66f^2F_{7/2}^{\circ}$	$3p^68g^{-2}G_{9/2}$	440 400 45	409 500					0
		·	440 050 01	483 526 483 523					9 9
2927.2	5/2	7/2							

V v ~ Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (A)	Dowel	Opper							
2780.139	$3p^65p^2P_{3/2}^{o}$	$3p^65d\ ^2\mathrm{D}_{3/2}$	352 018.34	387 977.07	3				6,8°
2774.997	3/2	5/2	352 018.34	388 043.69	15				6,8°
740.669	1/2	3/2	351 500.51	387 977.07	10				6,8°
620.5	$3p^64d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^1D)^2F_{7/2}^o$	294 047.24	332 198.1					9
326.749	5/2	5/2	294 047.24	337 012.59	6				8
318.95	3/2	5/2	293 902.86	337 012.59	20				8°,9
2610.098	$3p^{6}4f^{2}F_{5/2}^{\circ}$	$3p^65d\ ^2D_{3/2}$	349 675.57	387 977.07	10				6,8°
2605.523	5/2	5/2	349 675.57	388 043.69	4				6,8°
2577.127	7/2	5/2	349 252.40	388 043.69	20				6,8°
2373.458	$3p^66g^{-2}G_{7/2}$	$3p^69f ^2F^o_{5/2}$	450 024.54	492 144.3	1				8
370.260	9/2	7/2	450 025.20	492 201.8	3				8
		•							
962.154	$3p^{5}(^{2}\mathrm{P^{o}})3d^{2}(^{1}\mathrm{D})\ ^{2}\mathrm{F}_{5/2}^{o}$	$3p^65d\ ^2{ m D}_{3/2}$	337 012.59	387 977.07	1				8
1929.138	$3p^65p^2P_{3/2}^{\circ}$	$3p^66s\ ^2S_{1/2}$	352 018.34	403 855.12	9				6,8°
910.062	1/2	1/2	351 500.51	403 855.12	4				6,8°
		•							-,-
921.915	$3p^5(^2P^\circ)3d^2(^3F)\ ^2F_{7/2}^\circ$	$3p^66g^{-2}G_{9/2}$	397 993.66	450 025.20	1				8
1917.686	$3p^65f^2F_{7/2}^{o}$	$3p^67g^{-2}G_{9/2}$	418 187.47	470 333.75	1				8
	·	•	120 201.11	2.000.10					
811.425	$3p^64d\ ^2{ m D}_{5/2}$	$3p^64f {}^2F^{o}_{7/2}$	294 047.24	349 252.40	30				1,6,8°
797.646	5/2	5/2	294 047.24	349 675.57	6				6,8°
792.992	3/2	5/2	293 902.86	349 675.57	25				6,8°
736.182	$3p^64d^{2}D_{3/2}$	$3p^65p^2P_{1/2}^{\circ}$	293 902.86	351 500.51	10				6,8°
724.994	5/2	3/2	294 047.24	352 018.34	15				6,8°
720.712	3/2	3/2	293 902.86	352 018.34	4				6,8°
716.725	$3p^64s\ ^2\mathrm{S}_{1/2}$	$3p^64p^2P_{1/2}^o$	148 143.35	206 393.72	50				1,6,8°
680.204	1/2	3/2	148 143.35	207 660.00	100				1, 6, 8°
	•	,							
.499.596 .490.107	$3p^{6}4f^{2}F_{5/2}^{o}$	$3p^65g^{-2}G_{7/2}$	349 675.57	416 360.29	10				6,8°
490.107	7/2	9/2	349 252.40	416 361.78	20				6,8°
260.278	$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}D) ^{2}F_{5/2}^{\circ}$	$3p^65g^{-2}G_{7/2}$	337 012.59	416 360.29	1				8
188.161	7/2	9/2	332 198.1	416 361.78	6				7
1159.516	$3p^64p\ ^2{ m P}^{\circ}_{3/2}$	$3p^64d^2D_{3/2}$	207 660 00	293 902.86	c				1 0 00
157.575	3p 4p 1 3/2 3/2	•	207 660.00 207 660.00	293 902.86	$\begin{array}{c} 6 \\ 25 \end{array}$				1,6,8° 1,6,8°
142.737	1/2	5/2 3/2	206 393.72	293 902.86	15				1, 6, 8°
1142 205	$3p^65s^2S_{1/2}$	0 60 270							
1143.395	$3p^{\circ}5s^{-}S_{1/2}$	$3p^{6}6p^{2}P_{3/2}^{o}$	328 217.30	415 675.69	1				8
.098.222	$3p^65p^{-2}P_{3/2}^{o}$	$3p^67s^2S_{1/2}$	352 018.34	443 074.72	2				6,8°
092.00	1 1 - 3/2	1/2	351 500.51	443 074.72	1				6,8°
		•							0,0
045.711	$3p^5(^2P^o)3d^2(^1G)^2F^o_{7/2}$	$3p^65g^{-2}G_{9/2}$	320 731.60	416 361.78	2				8
996.521	$3p^64f\ ^2{ m F}^{ m o}_{5/2}$	$3p^{6}6g^{2}G_{7/2}$	349 675.57	450 024.54	5				6,8°
992.330	7/2	9/2	349 252.40	450 025.20	10				6,8°
070 545		,							0,0
979.547 978.166	$3p^64d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^3F)\ ^2F^o_{5/2}$	294 047.24	396 135.24	1				6,8°
962.031	3/2 5/2	5/2 7/2	293 902.86 294 047.24	396 135.24 397 993.66	10 15				6,8°
	•	•	-0.1 011.21	557 555.00	10				6,8°
897.124	$3p^64f\ ^2{ m F}^{f o}_{7/2}$	$3p^67d\ ^2{ m D}_{5/2}$	349 252.40	460 719.7	2				8
829.483	$3p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3p^65s^2S_{1/2}$	207 640 00	200 0*** **	6.0				
820.859	$\frac{3p}{4p} \frac{4p}{r_{3/2}}$	$3p^{\circ}5s^{\circ}5_{1/2}$	207 660.00 206 393.72	328 217.30 328 217.30	30 20				1,6,8°
		•		020 211.00	20				1, 6, 8°
828.791	$3p^64f~^2\mathrm{F}^{\circ}_{5/2}$	$3p^67g\ ^2{ m G}_{7/2}$	349 675.57	470 333.35	1				6,8°
825.891	7/2	9/2	349 252.40	470 333.75	2				6,8°
822.927	$3p^64d\ ^2\mathrm{D}_{3/2}$	$3p^66p^{-2}P_{1/2}^{\circ}$	293 902.86	415 420.10	3				e 0°
822.176	5 <i>p</i> 4 <i>a D</i> _{3/2} 5/2	3p 0p F _{1/2} 3/2	294 047.24	415 675.69	3 6				6,8° 6,8°
821.202	3/2	3/2	293 902.86	415 675.69					6,8°
	$3p^65s\ ^2\mathrm{S}_{1/2}$	$3p^67p^2P_{3/2}^{o}$	328 217.30						-
822.668				449 772.79	1				8

V v - Continued

Wave- ength (Å)	Classifi Lower	cation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
643.603	$3p^64d\ ^2{ m D}_{5/2}$	$3p^66f^2F_{7/2}^{\circ}$	294 047.24	449 422.47	1			_	8
509.697	$3p^64p^2P_{3/2}^{\circ}$	$3p^66s \ ^2S_{1/2}$	207 660.00	403 855.12	2				6,8°
506.429	3/2 1/2	1/2	206 393.72	403 855.12	1				6,8°
401 746	$3p^64s\ ^2S_{1/2}$	2-6r - 2me	140 140 05	051 500 51					2 00
491.746 490.496	•	$3p^65p^{-2}P_{1/2}^{\circ}$	148 143.35 148 143.35	351 500.51 352 018.34	2 4				6,8° 6,8°
100.100	1/2	3/2	140 143.33	302 016.34	4				0, 8
484.5108	$3p^63d^2D_{3/2}$	$3p^64p^2P_{1/2}^{\circ}$	0.00	206 393.72	25				6,7,8,10°
483.0098	5/2	3/2	624.87	207 660.00	35				6,7,8,10°
481.5564	3/2	3/2	0.00	207 660.00	8				6,7,8,10°
424.782	$3p^64p\ ^2{ m P}_{3/2}^{ m o}$	$3p^67s\ ^2\mathrm{S}_{1/2}$	207 660.00	443 074.72	1				8
313.993	$3p^63d^2D_{5/2}$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}G)^{2}F_{5/2}^{\circ}$	624.87	319 106.19	10				7,8°
313.376	3/2	5/2	0.00	319 106.19	14				7,8°
312.394	5/2	7/2	624.87	320 731.60	17				7,8°
301.604	$3p^63d^{\ 2}D_{5/2}$	$3p^5(^2P^o)3d^2(^1D) ^2F^o_{7/2}$	624.87	332 198.1	10				7,8°
297.276	5/2	5/2	624.87	337 012.59	2				7,8°
296.724	3/2	5/2	0.00	337 012.59	5				7,8°
200 8205	$3p^63d^{2}D_{5/2}$	a 6442mg	004.0=	0.40 40					
286.8395 286.490	·	$3p^64f\ ^2F^o_{7/2}$	624.87 624.87	349 252.40 349 675.57	20 5				6, 7, 8, 10° 7, 8°
285.9791	5/2 3/2	5/2 5/2	0.00	349 675.57	18				6,7,8,10°
	,	·							
284.581	$3p^63d\ ^2{ m D}_{5/2}$	$3p^65p\ ^2\mathrm{P_{3/2}^o}$	624.87	352 018.34	11				7,8°
284.494 284.075	3/2	1/2	0.00 0.00	351 500.51 352 018.34	8 2				7,8°
204.010	3/2	3/2	0.00	332 016.34	2				7,8°
252.838	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)^2F_{5/2}^\circ$	624.87	396 135.24	8	1.3 - 1	2.3 + 9	\mathbf{E}	7,8°,99*
252.440	3/2	5/2	0.00	396 135.24	18	1.8	3.1+10	$\bar{\mathbf{p}}$	5,7,8°,99
251.655	5/2	7/2	624.87	397 993.66	20	2.6	3.5 + 10	D-	5, 7, 8°, 99
240.933	$3p^63d^{2}D_{5/2}$	$3p^66p~^2P_{3/2}^o$	624.87	415 675.69	7				7,8°
240.719	3/2	1/2	0.00	415 420.10	4				8
240.572	3/2	3/2	0.00	415 675.69	1				8
239.765	$3p^63d\ ^2{ m D}_{5/2}$	$3p^65f\ ^2{ m F}^{ m o}_{5/2}$	624.87	417 699.10	7				7,8°
239.485	5/2	7/2	624.87	418 187.47	19				7,8°
239.407	3/2	5/2	0.00	417 699.10	16				7,8°
228.301	$3p^63d^{2}D_{3/2}$	$3p^5(^2P^\circ)3d^2(^3P)^2P_{1/2}^\circ$	0.00	438 018.3	14	2.7	1.7+11	D-	7,8°,99*
227.885	5/2	3/2	624.87	439 442.7	17	4.7	1.5+11	D-	7,8°,99*
227.561	3/2	3/2	0.00	439 442.7	10	5.2 - 1		\mathbf{E}	7,8°,99*
225.465	$3p^63d\ ^2{ m D}_{5/2}$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}F) {^{2}D_{5/2}^{\circ}}$	694.97	444 150 7	0.0	0.0	0.0111	Б.	* * 00 00
225.225	·		624.87 624.87	444 153.7 444 620.8	20 13	$9.6 \\ 7.2 - 1$	2.2+11 $2.3+10$	D- E	5,7,8°,99 7,8°,99*
225.146	5/2 3/2	3/2 5/2	0.00	444 153.7			1.5+10	E	7,8°,99*
224.913	3/2	3/2	0.00	444 620.8	18	6.4	2.1 + 11		5,7,8°,99
222.842	$3p^63d^2D_{5/2}$	$3p^66f$ $^2F^o_{5/2}$	624.87	449 370.81	3				8
222.818	$5p \ 5d \ D_{5/2}$	3 <i>p</i> 0 <i>f</i> 15/2 7/2	624.87	449 422.47					o 7,8°
222.533	3/2	5/2	0.00	449 370.81					7, 8°
213.178	$3p^63d^{-2}D_{5/2}$	$3p^67f^{-2}F_{7/2}^{\circ}$	624.87	469 721	9				7,8°
212.901	3/2	5/ 17/2 5/2	0.00	469 706.4	7				7,8°
910 500		·							
210.568 209.230	$3p^63d^2D_{5/2}$	$3p^53d(^3F^o)4s\ ^2F^o_{7/2}$	624.87	475 531	12				7,8°
209.230	5/2	5/2	$624.87 \\ 0.00$	478 566 478 566	1 10				8 7,8°
	3/2	5/2	0.00	1.0 000	10				٠,٠
207.291	$3p^63d\ ^2{ m D}_{5/2}$	$3p^68f\ ^2{ m F}^{\circ}_{7/2}$	624.87	483 039	6				7,8°
207.031	3/2	5/2	0.00	483 019	4				7,8°
203.428	$3p^63d\ ^2{ m D}_{5/2}$	$3p^69f^{-2}F_{7/2}^{\circ}$	624.87	A00 001 0	-				7 00
203.194	$3p \ 3a \ D_{5/2}$ 3/2	3p-9j -F _{7/2} 5/2	0.00	492 201.8 492 144.3	5 2				7,8° 7,8°
		•	0.00	104 144.0	4				1,0
201.746	$3p^63d^{\ 2}D_{5/2}$	$3p^53d(^1F^o)4s\ ^2F^o_{5/2}$	624.87	496 296	2				7,8°
201.493	3/2	5/2	0.00	496 296	1				7,8°
201.235	5/2	·, -	624.87	497 556	4				7,8°

V v - Continued

Wave-	Classifica	ation	Energy Leve	$els (cm^{-1})$	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
200.202	$3p^63d\ ^2{ m D}_{5/2}$	$3p^{5}3d(^{3}D^{\circ})4s^{2}D_{5/2}^{\circ}$	624.87	500 117	1				8
200.050	5/2	3/2	624.87	500 502	5				8
199.955	3/2	5/2	0.00	500 117	5				8
199.799	3/2	3/2	0.00	500 502	1				8

 \mathbf{v} vi

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Classific Lower	Cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1629.786	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_0^{\circ}$	$3s^23p^5(^2P^o)4p^{-3}D_1$	553 820.1	615 177.8	6		-		16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	590.506	$3s^23p^5(^2P^{\circ}_{1/2})4s^{\ 2}[\frac{1}{2}]^{\circ}_{1}$	$3s^23p^5(^2\mathrm{P^o})4p^{-1}\mathrm{P_1}$	557 636.1	620 509.2	9				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	584.942	$3s^23p^5(^2P_{3/2}^{\circ})4s^2[\frac{3}{2}]_1^{\circ}$	$3s^23p^5(^2P^\circ)4p^{-3}D_2$	549 298.8	612 392.8	10				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517.931	1	1	549 298.8		9				
$\begin{array}{c} 151.517 & 2 & 1 & 546 284 0 & 615 177.8 & 6 & 16 \\ 5636.373 & 3s^23p^6(2^{\rm P}_{1/2})4s^2(\frac{1}{2})\frac{1}{1} & 3s^23p^6(2^{\rm P}_{1})4p^4 D_2 & 557 636.1 & 622 724.5 & 10 \\ 3s^23p^6(2^{\rm P}_{1/2})4s^2(\frac{1}{2})\frac{1}{1} & 3s^23p^6(2^{\rm P}_{1})4p^3 D_1 & 557 636.1 & 623 584.5 & 8 & 16 \\ 163.5189 & 3s^23p^6(2^{\rm P}_{1/2})4s^2(\frac{1}{2})\frac{1}{1} & 3s^23p^6(2^{\rm P}_{1})4p^3 D_1 & 558 820.1 & 623 584.5 & 8 & 16 \\ 163.5189 & 3s^23p^6(2^{\rm P}_{3/2})4s^2(\frac{1}{2})\frac{1}{1} & 3s^23p^6(2^{\rm P}_{1})4p^3 D_2 & 540 288.8 & 617 480.0 & 7 & 16 \\ 164.3180 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 778 194.1 & 1 & 16 \\ 169.329.148 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 425.525 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 426.335 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 426.335 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 426.335 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 425.525 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 747.4 & 779 550.9 & 2 & 16 \\ 426.335 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 645.6 & 778 194.1 & 2 & 16 \\ 425.525 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 645.6 & 778 194.1 & 3 & 16 \\ 410.641 & 3s^23p^6(2^{\rm P}_{3/2})4d^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 709 645.6 & 779 189.3 & 3 & 16 \\ 410.641 & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 3s^23p^6(2^{\rm P}_{3/2})4f^2(\frac{1}{2})\frac{1}{2} & 641 890.3 & 772 890.3 & 16 \\ 410.641 & 3s^23p^6(2^{\rm P}_{3$		2	3	546 284.0	612 289.7	12				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	451.517	2	1	546 284.0	615 177.8	6				16
$\begin{array}{c} 433.188 \\ 433.188 \\ 38^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{1}^{5} \\ 3s^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{1}^{5} \\ 3s^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{1}^{5} \\ 3s^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{1}^{5} \\ 3s^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{2}^{5} \\ 3s^{2}3p^{5}(2^{2}P_{3/2})4s^{2}(\frac{3}{2})_{$	536.373	$3s^23p^5(^2P_{1/2}^o)4s^{-2}[\frac{1}{2}]_1^o$	$3s^23p^5(^2P^\circ)4p^{-1}D_2$	557 636.1	622 724.5	10				16
$\begin{array}{c} 433.188 \\ 466.460 \\ 3s^2 3p^5 (2^{\circ} P_{3/2}) 4s^2 [\frac{1}{2}]_3^2 \\ 615 177.8 \\ 615 177.8 \\ 610102.904 \\ 3s^2 3p^5 (2^{\circ} P_{3/2}) 4s^2 [\frac{1}{2}]_3^2 \\ 3s^2 3p^$	516.104	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_1^{\circ}$	$3s^23p^5(^2P^o)4p^3P_1$	557 636.1	623 594.5	8				16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	433.189	0	1	553 820.1	623 594.5	5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s^23p^5(^2P_{3/2}^{\circ})4s^2[\frac{3}{2}]_1^{\circ}$	$3s^23p^5(^2P^o)4p^3P_2$		617 490.0					16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293.463	2	_		023 394.3	4				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•		778 194.1	1				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•		779 550.9					16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•							16
$\begin{array}{c} 1416.416 \\ 1410.054 \\ 3s^23p^5(^2P_{3/2}^\circ)4d^2[^2]_1^\circ \\ 3s^23p^5(^2P_{3/2}^\circ)4f^2[^2]_2^\circ \\ 3s^23p^5(^2P_{3/2}^\circ)4f^2[^2]_2^\circ \\ 4 \\ 711 426.2 \\ 782 345.4 \\ 3 \\ 3 \\ 3s^23b^5(^2P_{1/2}^\circ)4g^2[^2]_3^\circ \\ 3s^23p^5(^2P_{1/2}^\circ)4f^2[^2]_4^\circ \\ 2[^2]_4 \\ 720 836.0 \\ 791 839.6 \\ 3 \\ 3s^23p^5(^2P_{3/2}^\circ)4g^2[^2]_3^\circ \\ 3s^23p^5(^2P_{3/2}^\circ)4g^1D_2 \\ 3s^23p^5(^2P_{3/2}^\circ)4g^1D_2 \\ 3s^23p^5(^2P_{3/2}^\circ)4g^1D_2 \\ 3s^23p^5(^2P_{3/2}^\circ)4g^2[^2]_3^\circ \\ 4 \\ 16134.039 \\ 3s^23p^5(^2P_{1}^\circ)4p^1S_0 \\ 3s^23p^5(^2P_{3/2}^\circ)4g^2[^2]_3^\circ \\ 3s^23p^5(^2P_{3/2}^\circ)4g^2[^2]_3^\circ \\ 4 \\ 1614.340 \\ 161$		$3s^2 3p^3 (^2 P_{3/2}^o) 4d^2 [\frac{1}{2}]_1^o$	$3s^2 3p^5 (^2 P_{3/2}^o) 4f^{-2} [\frac{3}{2}]_2$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1423.100	0	1	707 280.3	777 549.4	3				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	416.416	$3s^23n^5(^2P^{\circ}_{-1})4d^{-2}[\frac{7}{2}]^{\circ}_{-1}$	$3s^23n^5(^2P^0) / 4f^2[^9]_{\pi}$	710 695 2	781 295 9	5				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	4							
$334.039 3s^23p^5(^2P^\circ)4p^1S_0 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 641800.3 716760.4 1$ $225.178 3s^23p^5(^2P^\circ)4p^1S_0 3s^23p^5(^2P^\circ_{1/2})4d^2[\frac{3}{2}]_0^\circ 641800.3 723421.6 3$ 16 $194.950 3s^23p^5(^2P^\circ)4p^3P_1 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{1}{2}]_0^\circ 623594.5 707280.3 16$ $184.130 1 1 627490.0 708044.6 1$ $1 167490.0 708044.6 1$ $168.158.159 3s^23p^5(^2P^\circ)4p^3P_1 3s^23p^5(^2P^\circ)4p^1S_0 557636.1 641800.3 9$ $169.168.179 3s^23p^5(^2P^\circ)4p^3P_1 3s^23p^5(^2P^\circ)4p^1S_0 557636.1 641800.3 9$ $169.168.3917 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{1}{2}]_0^\circ 615177.8 707280.3 1$ $169.169.3917 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 615177.8 707280.3 1$ $169.169.3917 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 615177.8 709747.4 2$ $169.169.3917 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 615177.8 709747.4 2$ $169.169.3918 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 615177.8 716760.4 16$ $1010.77438 3s^23p^5(^2P^\circ)4p^3P_1 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 615177.8 716760.4 16$ $1029.044 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 620509.2 716760.4 16$ $1029.044 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 620509.2 716760.4 16$ $1029.044 3s^23p^5(^2P^\circ)4p^3P_2 3s^23p^5(^2P^\circ_{3/2})4d^2[\frac{3}{2}]_0^\circ 620509.2 716760.4 16$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 621757.1 723421.6 4$ $1010.01.714 1 1 1 621757.1 723$	408.381	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_3^{\circ}$	$3s^23p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\frac{7}{2}]_4$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.361.923	$3s^23p^5(^2P_{3/2}^{o})4s^2[\frac{3}{2}]_1^{o}$	$3s^23p^5(^2{ m P}^{ m o})4p^{-1}{ m D}_2$	549 298.8	622 724.5	3				16
$\begin{array}{c} 194.950 \\ 1184.130 \\ 1184.130 \\ 1194.300 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $.334.039	$3s^23p^5(^2P^\circ)4p^{-1}S_0$	$3s^23p^5(^2P^o_{3/2})4d^2[\frac{3}{2}]^o_1$	641 800.3	716 760.4	1				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225.178	$3s^23p^5(^2P^o)4p^{-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_1^{\circ}$	641 800.3	723 421.6	3				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194.950	$3s^23p^5(^2P^o)4p^{-3}P_1$	$3s^23p^5(^2P_{9/2}^{\circ})4d^{-2}[\frac{1}{9}]_0^{\circ}$	623 594.5	707 280.3					16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1			1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	188.159	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_1^{\circ}$	$3s^23p^5(^2P^{\circ})4p^{-1}S_0$	557 636.1	641 800.3	9				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	085.742	$3s^23p^5(^2P^o)4p^3D_1$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_0$	615 177.8	707 280.3	1				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1083 017	3e ² 3n ⁵ (2po)4n 3po	3 e 2 3 n 5 / 2 Do) A d 2 [3] o	617 400 0	700 747 4	9				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 3 3 5 (1)4 1 2	3s $3p \left(\begin{array}{cc} 1 & 3/2 \end{array} \right)^{2d} \left[\begin{array}{c} \overline{2} \end{array} \right]_{2}$			2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1057.438	$3s^23n^5(^2P^\circ)4n^3D_1$	$3s^23v^5(^2P^9) / 4d^2[\frac{3}{2}]^9$	615 177 8	709 747 4					16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00 00 (1)10 21	00 0p (1 _{3/2})10 [2]2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s^23p^5(^2P^o)4p^{-1}P_1$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1029.044	$3s^23p^5(^2P^\circ)4p^{-3}P_2$	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d^{\ 2}[\frac{5}{2}]^{\mathrm{o}}_3$	617 490.0	714 667.9	5				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1027.219	$3s^23p^5(^2P^o)4p^{-1}D_2$	$3s^23p^5(^2P_{1,2}^{\circ})4d^{-2}[\frac{5}{2}]_{2}^{\circ}$	622 724.5	720 074 9					16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-F \ - 1/2/ - 1212 3							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1004 225	0.20.5/2001: 3-	0.20.5/200 2***							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s^{-}3p^{\circ}(^{\circ}P^{\circ})4p^{\circ}P_{1}$	$3s^{2}3p^{3}(^{2}P_{1/2}^{0})4d^{2}[\frac{3}{2}]_{2}^{0}$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1							
1009.758 2 3 612 392.8 711 426.2 5 16 1008.709 3 612 289.7 711 426.2 16	004.041		2	011 450.0	121 101.0					10
1009.758 2 3 612 392.8 711 426.2 5 16 1008.709 3 612 289.7 711 426.2 16	1016.204	$3s^23p^5(^2P^\circ)4p^3D_3$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{7}{2}]_4^{\circ}$	612 289.7	710 695.2	7				16
· · · · · · · · · · · · · · · · · · ·		2	3							16
$3s^23n^5(^2P^\circ)4n^3D$, $3s^23n^5(^2P^\circ)4d^2[5]\circ$ 615 177 8 712 742 2 4	1008.709	3	3	612 289.7	711 426.2					16
	1014.565	$3s^23p^5(^2P^\circ)4p^3D_1$	$3s^23p^5(^2P_{3/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_2^{\circ}$	615 177.8	713 742.3	4				16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-F (-)-P D1	1 - 3/2/*** 1232							
976.767 3 3 612 289.7 714 667.9 1 16		3	2							

V VI - Continued

Wave- ength (Å)	Classifi Lower	cation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
004.361	$3s^23p^5(^2P^o)4p^{-1}P_1$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_2^{\circ}$	620 509.2	720 074.9	4				16
971.700	$3s^23p^5(^2P^o)4p^{-1}P_1$	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{3}{2}]_1^{\circ}$	620 509.2	723 421.6					16
958.716 951.753	$3s^23p^5(^2P^o)4p^{-3}S_1$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_0$	602 974.3 602 974.3	707 280.3 708 044.6	2				16 16
936.557	$3s^23p^5(^2P^o)4p^{-3}S_1$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_2$	602 974.3	709 747.4	3				16
826.458	$3s^23p^5(^2P^\circ)3d^{-1}P_1^\circ$	$3s3p^63d^{-1}D_2$	445 435.6	566 433.0					16
640.135	$3s^23p^5(^2P^o)4p^{-1}D_2$	$3s^23p^5(^2\mathbf{P_{1/2}^{\circ}})5s^{\ 2}[\frac{1}{2}]_1^{\circ}$	622 724.5	778 944.0	1				16
632.509	$3s^23p^5(^2P^o)4p^3D_2$	$3s^23p^5(^2P^{\circ}_{3/2})5s^2[\frac{3}{2}]^{\circ}_2$	612 392.8	770 494.5					16
632.084 627.627	3 2	2 1	612 289.7 612 392.8	770 494.5 771 723.1	$\frac{3}{2}$				16 16
331.164	$3s^23p^5(^2P^o)4p^{-1}P_1$	$3s^23p^5(^2\mathbf{P_{1/2}^o})5s^2[\frac{1}{2}]_1^o$	620 509.2	778 944.0					16
596.947	$3s^23p^5(^2P^o)4p^3S_1$	$3s^23p^5(^2\mathbf{P}^{\circ}_{3/2})5s^{\ 2}[\frac{3}{2}]^{\circ}_2$	602 974.3	770 494.5	1				16
581.214 561.297	$3s^23p^5(^2P^o)3d^{-1}P_1^o$	$3s^23p^5(^2P^\circ)4p^3P_2$	445 435.6 445 435.6	617 490.0 623 594.5					16 16
571.190	$3s^23p^5(^2P^o)3d^{-1}P_1^o$	$3s^23p^5(^2P^\circ)4p^{-1}P_1$	445 435.6	620 509.2					16
509.260	$3s^23p^5(^2P^\circ)3d^{-1}P_1^\circ$	$3s^23p^5(^2P^\circ)4p^{-1}S_0$	445 435.6	641 800.3	8				16
500.644	$3s^23p^5(^2P^\circ)3d^{-1}F_3^\circ$	$3s3p^63d\ ^3{ m D_3}$	350 644.5	550 384.6	3				16
196.985 196.180	$3s^23p^5(^2P^\circ)3d^{-3}D_2^\circ$	$3s3p^63d^{-3}D_1$	348 325.3 348 325.3	549 538.0 549 863.6	1 4				16 16
95.940	1	2	347 899.9	549 538.0	3				16
195.138	1	2	347 899.9	549 863.6	2				16
194.909	2	3	348 325.3	550 384.6	2				16
189.360	3	2	345 516.5	549 863.6					16
188.120	3	3	345 516.5	550 384.6	6				16
188.462 187.217	$3s^23p^5(^2P^\circ)3d^{-1}D_2^\circ$	$3s3p^{6}3d^{3}D_{2}$	345 139.4 345 139.4	549 863.6 550 384.6	1				16 16
163.418	$3s^23p^5(^2P^o)3d^{-1}F_3^o$	$3s3p^63d^{-1}D_2$	350 644.5	566 433.0	6				16
458.487 452.660	$3s^23p^5(^2P^o)3d^{-3}D_2^o$	$3s3p^63d^{-1}{ m D_2}$	348 325.3 345 516.5	566 433.0 566 433.0	3 3				16 16
451.890	$3s^23p^5(^2P^o)3d^{-1}D_2^o$	$3s3p^63d^{-1}D_2$	345 139.4	566 433.0	7				16
449.795	$3s^23p^5(^2P^\circ)3d^3F_0^\circ$	$3s3p^63d^{3}D_1$	327 214.9	F 40 F 99 0					
449.129	,			549 538.0	8				16
444.634	2 3	2 2	327 214.9 324 958.0	549 863.6 549 863.6	9				16 16
443.601	3	3	324 958.0	550 384.6	Ü				16
139.344	4	3	322 773.6	550 384.6	10				16
420.940	$3s^23p^5(^2P^o)3d\ ^3P_2^o$	$3s3p^{6}3d^{3}D_{1}$	311 977.9	549 538.0					16
420.370	2	2	311 977.9	549 863.6	5				16
419.458 416.418	2	3	311 977.9	550 384.6	8				16
415.861	1	1	309 394.8 309 394.8	549 538.0	4				16
414.273	1 0	2	308 149.8	549 863.6 549 538.0	7 6				16 16
118.041	$3s^23p^5(^2P^\circ)3d^3F_2^\circ$	$3s3p^63d^{-1}D_2$	327 214.9	566 433.0	J				16
392.990	$3s^23p^5(^2P^\circ)3d^{-3}P_2^\circ$	$3s3p^63d$ $^1\mathrm{D}_2$	311 977.9	566 433.0					16
382.185	$3s^23p^5(^2P^o)3d\ ^1F_3^o$		350 644.5	612 289.7	1				16
382.049 378.834	$3s^23p^5(^2P^o)3d\ ^3D_2^o$	$3s^23p^5(^2\mathrm{P^o})4p\ ^3\mathrm{D_3}$	350 644.5	612 392.8	4				16
378.834	38 3p (P)3d D2	$3s^{\circ}3p^{\circ}(^{\circ}P^{\circ})4p^{\circ}D_3$	348 325.3	612 289.7					16
378.081	2	2 2	348 325.3 347 899.9	612 392.8 612 392.8	3 2				16 16
			345 516.5	612 289.7	5				16
374.851	4	2							
374.851 374.747	3 2	3	348 325.3	615 177.8	1				16 16

V VI - Continued

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
—————		— Opper							
371.523	$3s^23p^5(^2P^o)3d^{-3}D_2^o$	$3s^23p^5(^2P^o)4p^3P_2$	348 325.3	617 490.0	3				16
370.936 367.683	1	2	347 899.9	617 490.0	•				16
365.154	3	2	345 516.5	617 490.0	9				16
363.285	1	0	347 899.9 348 325.3	621 757.1 623 594.5	4 8				16 16
362.717	2	1	347 899.9	623 594.5	2				16
		_							
370.314	$3s^23p^5(^2P^\circ)3d^{-1}D_2^\circ$	$3s^23p^5(^2P^\circ)4p^{-3}D_1$	345 139.4	615 177.8	2				16
367.543	$3s^23p^5(^2P^o)3d^{-1}F_3^o$	$3s^23p^5(^2P^\circ)4p^{-1}D_2$	350 644.5	622 724.5	9				16
367.404	$3s^23p^5(^2P^\circ)3d^{-3}D_2^\circ$	$3s^23p^5(^2P^o)4p^{-1}P_1$	348 325.3	620 509.2					16
367.173	$3s^23p^5(^2P^o)3d^{-1}D_2^o$	$3s^23p^5(^2P^o)4p^3P_2$	345 139.4	617 490.0					16
363.153	$3s^23p^5(^2P^\circ)3d^{-1}D_2^\circ$	$3s^23p^5(^2P^\circ)4p^{-1}P_1$	345 139.4	620 509.2	8				16
360.741	$3s^23p^5(^2P^\circ)3d^{-3}D_3^\circ$	$3s^23p^5(^2P^\circ)4p^{-1}D_2$	345 516.5	622 724.5	1				16
360.250	$3s^23p^5(^2P^\circ)3d^{-1}D_2^\circ$	$3s^23p^5(^2P^\circ)4p^{-1}D_2$	345 139.4	622 724.5	1				16
350.781	$3s^23p^5(^2P^\circ)3d\ ^3F_2^\circ$	$3s^23p^5(^2P^\circ)4p^3D_3$	327 214.9	612 289.7	1				
350.659	00 0P (1)04 F ₂	00 Up (1)4p D3	327 214.9	612 392.8	3				16 16
348.024	3	2 3	324 958.0	612 289.7	4				16
347.911	3	2	324 958.0	612 392.8	10				16
347.265	2	1	327 214.9	615 177.8	8				16
345.405	4	3	322 773.6	612 289.7	11				16
343.646 340.622	$3s^23p^5(^2P^{\circ})3d\ ^3P_2^{\circ}$	$3s^23p^5(^2\mathrm{P^o})4p\ ^3\mathrm{S}_1$	311 977.9	602 974.3	9				16
339.187	0	1	309 394.8 308 149.8	602 974.3 602 974.3	7 6				16 16
340.953	$3s^23p^5(^2P^o)3d\ ^3F_2^o$	$3s^23p^5(^2P^\circ)4p^{-1}P_1$	327 214.9	620 509.2	4				16
338.392	$3s^23p^5(^2P^\circ)3d\ ^3F_2^\circ$	$3s^23p^5(^2{ m P}^{ m o})4p^{-1}{ m D}_2$	327 214.9	622 724.5	1				16
335.831		2	324 958.0	622 724.5	2				16
332.984	$3s^23p^5(^2P^\circ)3d^3P_2^\circ$	$3s^23p^5(^2P^\circ)4p^{-3}D_3$	311 977.9	612 289.7					16
332.878	2	2	311 977.9	612 392.8					16
330.027	1	2	309 394.8	612 392.8					16
329.810	2	1	311 977.9	615 177.8	1				16
325.697	0	1	308 149.8	615 177.8					16
327.322	$3s^23p^5(^2P^o)3d^3P_2^o$	$3s^23p^5(^2P^o)4p^3P_2$	311 977.9	617 490.0	5				16
324.575	1	2	309 394.8	617 490.0	3				16
320.915	2	1	311 977.9	623 594.5	4				16
320.134	1	0	309 394.8	621 757.1	3				16
318.265	1	1	309 394.8	623 594.5	2				16
317.006	0	1	308 149.8	623 594.5					16
324.105 321.425	$3s^23p^5(^2P^o)3d^3P_2^o$	$3s^23p^5(^2P^\circ)4p^{-1}P_1$	311 977.9	620 509.2					16
	20 6 1g	1 20 5/2000 1300	309 394.8	620 509.2					16
323.209	$3s^23p^6$ ¹ S ₀	$3s^23p^5(^2P^\circ)3d\ ^3P_1^\circ$	0.0	309 394.8	9				16
321.810 319.149	$3s^2 3p^3 (^2P^0) 3d ^3P_2^0$	$3s^23p^5(^2P^\circ)4p^{-1}D_2$	311 977.9 309 394.8	622 724.5 622 724.5	3 1				16 16
287.440		$3s^23p^5(^2P^o)3d\ ^3D_1^o$	0.0	347 899.9	11	2.1 - 3	5.7+7	Е	16°,99*
		•			-		, •	-	-= ,==
231.893 230.398	$3s^2 3p^3 (^2P^9) 3d ^3D_2^9$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	348 325.3 345 516.5	779 550.9 779 550.9	1				16 16
231.646	$3s^23p^5(^2P^\circ)3d^{-1}F_3^\circ$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	350 644.5	782 345.4	1				16
	· · · · · · · · · · · · · · · · · · ·				-				2.0
230.841 229.856	$3s^23p^5(^2P^\circ)3d^{-1}F_3^\circ$	$3s^23p^5(^2P_{3/2}^o)4f^2[\frac{7}{2}]_3$	350 644.5 350 644.5	783 852.1 785 705.4	4 1				16 16
229.606	$3s^23n^5(^2P^\circ)3d^{-3}D^\circ$	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	348 325.3	783 852.1	1				
227.172	00 op (1 jou D ₂	00 0p (13/2)41 [2]3	345 516.5	783 852.1 785 705.4	1 5				16
	3	4	0.010	100 100.4	ð				16
226.656	$3s^23p^5(^2P^\circ)3d^{-1}F_3^\circ$	$3s^23p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\frac{7}{2}]_4$	350 644.5	791 839.6	6				15,16°
224.500	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P^{\circ})3d^{-1}P_1^{\circ}$	0.0	445 435.6	15	3.30	1.46+11	C+	5,13,14,16°,9
224.052		$3s^23p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_4$,	- 1	
224.002	35 3p (1)3α 'D ₃	$50 \text{ sp } (F_{1/2})^4 J^{-1}[\frac{1}{2}]_4$	345 516.5	791 839.6					15,16°

V vi - Continued

Wave-	Classifi		Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
218.994	$3s^23p^5(^2P^o)3d\ ^3F_2^o$	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	327 214.9	783 852.1	7				15,16°
218.636	$3s^23p^5(^2P^\circ)3d\ ^3F_3^\circ$	$3s^23p^5(^2P^{\circ}_{3/2})4f^{-2}[\frac{9}{2}]_4$	324 958.0	782 345.4	9				15,16°
218.091	4	5	322 773.6	781 295.9	10				15,16°
217.597	4	4	322 773.6	782 345.4					16
214.495	$3s^23p^5(^2P^o)3d^3P_2^o$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{-2}[\frac{3}{2}]_2$	311 977.9	778 194.1	2				15, 16°
213.604	1	1	309 394.8	777 549.4	3				15,16°
213.313	1	2	309 394.8	778 194.1	7				15,16°
213.044	0	1	308 149.8	777 549.4	6				15, 16°
213.871	$3s^23p^5(^2P^o)3d\ ^3P_2^o$	$3s^23p^5(^2P^o_{3/2})4f^2[\frac{5}{2}]_3$	311 977.9	779 550.9	8				15,16°
182.050	$3s^23p^{6}$ ¹ S ₀	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4s^2[\frac{3}{2}]^{\circ}_1$	0.0	549 298.8	10	1.1 - 1	7.4+9	D	11,16°,99*
179.330	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P_{1/2}^o})4s^2[\frac{1}{2}]_1^o$	0.0	557 636.1	13	3.1 - 1	2.1+10	D	11,16°,99*
141.238	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_1$	0.0	708 044.6					16
139.518	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{3/2}^o)4d^{\ 2}[\frac{3}{2}]_1^o$	0.0	716 760.4	9				12,16°
138.235	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0.0	723 421.6	8				12,16°
129.580	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_1^{\circ}$	0.0	771 723.1	4				11,16°
128.379	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})5s^2[\frac{1}{2}]_1^{\circ}$	0.0	778 944.0	3				11,16°
118.767	$3s^23p^{6-1}S_0$	$3s3p^64p\ ^3P_1^0$	0.0	841 980	8				17
117.762	$3s^23p^{6-1}S_0$	$3s3p^{6}4p^{-1}P_{1}^{o}$	0.0	849 170	8				17
98.319	$3s^23p^{6-1}S_0$	$3s3p^65p\ ^3P_1^{\circ}$	0.0	1 017 100	4				17
97.932	$3s^23p^{6-1}S_0$	$3s3p^65p^{-1}P_1^{\circ}$	0.0	1 021 120	4				17
90.700	$3s^23p^{6-1}S_0$	$3s3p^{6}6p^{-1}P_{1}^{o}$	0.0	1 102 540	6				17
87.106	$3s^23p^{6-1}S_0$	$3s3p^67p^{-1}P_1^{\circ}$	0.0	1 148 030	3				17
85.071	$3s^23p^{6-1}S_0$	$3s3p^68p^{-1}P_1^{\circ}$	0.0	1 175 490	1				17

 \mathbf{v} vII

Wave- length (Å)	Classification		Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	Lower	Upper							
472.828	$3s^23p^5 \ ^2P_{1/2}^{o}$	$3s3p^6 \ ^2S_{1/2}$	7 668	219 162		6.94 - 2	1.04+9	C-	19,20°,99*
456.284	3/2	1/2	0	219 162		1.43 - 1	$^{2.29+9}$	C-	19, 20°, 99*
241.91	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1D)3d^2S_{1/2}$	7 668	421 050		5.92 - 1	3.38+10	C-	21°,99*
237.50	3/2	1/2	0	421 050		1.42	8.40+10	C-	21°,99*
233.47	$3s^23p^5$ $^2P_{1/2}^o$	$3s^23p^4(^3P)3d\ ^2P_{3/2}$	7 668	435 970					21
231.99	1/2	1/2	7 668	438 770					21
229.38	3/2	3/2	0	435 970					5,14,21°
227.88	3/2	1/2	0	438 770					21
225.79	$3s^23p^5$ $^2P_{1/2}^o$	$3s^23p^4(^3P)3d\ ^2D_{3/2}$	7 668	450 550		3.94	1.29+11	C	5,14,21°,99*
225.16	3/2	5/2	0	444 130		6.24	1.37 + 11	C	5, 14, 21°, 99*
221.95	3/2	3/2	0	450 550		2.0 - 1	6.9 + 9	D	21°,99*
183.46 ^L	$3s^23p^4(^3P)3d^4F_{7/2}$	$3s^23p^4(^3P)4f ^4G_{9/2}^o$							24°, 29
183.00^{L}	9/2	11/2							24°,29
182.43 ^L	5/2	7/2			bl				24°,29
$183.12^{\mathbf{L}}$	$3s^23p^4(^1\mathrm{D})3d\ ^2\mathrm{G}_{9/2}$	$3s^23p^4(^1D)4f^2H_{11/2}^o$							24°,29
$182.27^{\rm L}$	$3s^23p^4(^3P)3d^4F_{7/2}$	$3s^23p^4(^3P)4f\ ^2G_{9/2}^{\circ}$							24°,29
$177.20^{\rm L}$	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)4f\ ^4F_{9/2}^{\circ}$							24°,29
164.523	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)4s^4P_{1/2}$	7 668	615 490					23
164.302	3/2	5/2	0	608 640	1				23
163.182	3/2	3/2	0	612 810	4				23
163.135	$3s^23p^5$ ² P $_{1/2}^{\circ}$	$3s^23p^4(^3P)4s^{-2}P_{3/2}$	7 668	620 650	2				19,23°
161.836	1/2	1/2	7 668	625 570	4				19,23°
161.122	3/2	3/2		620 650	6				19,23°
159.855	3/2	1/2	0	625 570	3				19,23°
158.467	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s^23p^4(^1D)4s^2D_{3/2}$	7 668	638 710	6				23
156.608	3/2	5/2		638 540	7				23
150.625	$3s^23p^5$ $^2P_{1/2}^{o}$	$3s^23p^4(^1S)4s^2S_{1/2}$	7 668	671 570	2				23
148.903	3/2	1/2	0	671 570	3				23
127.08	$3s^23p^5 {}^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)4d^2D_{3/2}$	7 668	794 570	4				18 [△] , 24°, 29
126.00			_	793 650	8				18 ^Δ , 24°
120.00	3/2	5/2		793 650	0				18 -, 24
124.24	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1P)4d^2S_{1/2}$	7 668	812 550					24°,29
123.07	3/2	1/2	_	812 550					24°, 29
123.03	$3s^23p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$3s^23p^4(^1\mathrm{D})4d^{-2}\mathrm{D}_{3/2}$	7 668	820 440	4				18 [△] , 24°, 29
121.95	3/2	5/2	_	820 010	6				18 [△] ,24°
121.89	3/2	3/2		820 440	-				24°, 29
122.60	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^1{ m D})4d\ ^2{ m P}_{3/2}$	0	815 660	5				18 [△] ,24°
117.2	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^1S)4d^2D_{5/2}$	0	853 200	3				18

 \mathbf{v} viii

Wave- length (Å)	Classificati Lower	on Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3692.8 ^C	$3s^23p^4$ 3P_2	$3s^23p^{4-1}D_2$	0.0	27 072		M1	1.6+1	D-	99*
1830.4 ^C	$3s^23p^4$ 3 P ₁	$3s^23p^{4-1}S_0$	6 007.8	60 641		M1	1.9+2	E	99*
472.839 465.493 462.112 459.799 456.134 449.629	$3s^23p^4$ 3P_1 0 1 2 1 2	$3s3p^5$ $^3 ext{P}_2^\circ$ 1 1 2 2 0 1	6 007.8 7 579.6 6 007.8 0.0 6 007.8	217 486.3 222 405.6 222 405.6 217 486.3 225 241.6 222 405.6	12bl 7 6 10 7 8	2.0 - 1	1.3+9	D	20°,27 20°,26,27 20°,26,27 20°,26,27,99* 20°,27
459.647	$3s^23p^{4}$ ¹ S ₀	$3s3p^{5}$ $^{1}P_{1}^{o}$	60 641	278 200	1				20
398.204	$3s^23p^{4-1}D_2$	$3s3p^5$ ¹ P $_1^{\circ}$	27 072	278 200	10	3.5 - 1	4.9+9	D	20°, 26, 27, 99*
359.454	$3s^23p^4\ ^3P_2$	$3s3p^{5-1}P_1^{\circ}$	0.0	278 200					20
$243.69 \\ 240.22$	$3s^23p^4\ ^3\mathrm{P}_1$	$3s^23p^3(^2D^{\circ})3d\ ^3P_2^{\circ}$	6 007.8 0.0	416 330 416 330		8.7 - 1 3.6	2+10 8.3+10	D D	21°,99* 21°,99*
236.01	$3s^23p^{4}$ ¹ D ₂	$3s^23p^3(^2\mathrm{D^o})3d^{-1}\mathrm{D_2^o}$	27 072	450 780		4.1	9.8+10	C	21°,99*
231.33 230.82 230.12 230.00 228.15	$3s^23p^4$ 3P_1 0 2 1 2	$3s^23p^3(^4S^\circ)3d\ ^3D_2^\circ$ 1 3 1 2	6 007.8 7 579.6 0.0 6 007.8 0.0	438 300 440 800 434 560 440 800 438 300					5 5 5 5
228.67	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})3d^{-1}\mathrm{F_3^o}$	27 072	464 380		7.15	1.3+11	C	5°,99*
$224.83^{\rm C}$	$3s^23p^4\ ^3P_1$	$3s^23p^3(^2{\rm D^o})3d\ ^1{\rm D_2^o}$	6 007.8	450 780		9.9 - 2	2.6+9	D	99*
159.24 ^{T,L}	$3s^23p^3(^2{\rm D^o})3d\ ^1{\rm G_4^o}$	$3s^23p^3(^2\mathrm{D^o})4f^{-1}\mathrm{H}_5$							29
158.04 ^L	$3s^23p^3(^2{\rm P^o})3d\ ^3{ m F_4^o}$	$3s^23p^3(^2P^{\circ})4f^{\ 3}G_5$							24°, 29
157.53 ^L	$3s^23p^3(^2D^{\circ})3d\ ^3G_5^{\circ}$	$3s^23p^3(^2D^{\circ})4f^{\ 3}H_6$							24°, 29
155.45 ^L	$3s^23p^33d\ ^5{ m D_4^o}$	$3s^23p^34f$ ⁵ F ₅							24°, 29
155.38 ^L 155.38 ^L	3 2	4 3			ld ld				24°,29 24°,29
$154.68^{ m L} \ 154.55^{ m L} \ 154.42^{ m L}$	$3s^23p^3(^2D^{\circ})3d\ ^3F_4^{\circ}$ 3	$3s^23p^3(^2\mathrm{D^o})4f\ ^3\mathrm{G}_5$							24°, 29 24°, 29 24°, 29
147.126 146.789 145.507	$3s^23p^4$ 3P_0	$3s^23p^3(^4S^{\circ})4s \ ^3S_1^{\circ}$	7 579.6 6 007.8 0.0	687 260 687 260 687 260	$\frac{1}{2}$				28 28 28
146.613	$3s^23p^{4-1}S_0$	$3s^23p^3(^2P^{\circ})4s^{-1}P_1^{\circ}$	60 641	742 720	1				28
144.653	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{\rm D^o})4s^{-1}{\rm D_2^o}$	27 072	718 430	3				28
142.247 141.924 141.864 140.665 140.451	$3s^23p^4$ 3P_0 1 1 2 2 2	$3s^23p^3(^2\mathrm{D}^\circ)4s\ ^3\mathrm{D}_1^\circ$	7 579.6 6 007.8 6 007.8 0.0 0.0	710 600 710 600 710 910 710 910 711 990	1 1 3				28 28 28 28 28
140.934	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^{\circ})4s \ ^3P_2^{\circ}$	27 072	736 640					28
139.730	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)4s^{-1}P_1^o$	27 072	742 720	1				28
139.188	$3s^23p^4$ 3P_2	$3s^23p^3(^2D^o)4s^1D_2^o$	0.0	718 430					28
137.491 137.316 137.194 136.867 136.078 135.751	$3s^23p^4$ 3P_0 1 1 1 2 2 2	$3s^23p^3(^2\mathrm{P}^o)4s\ ^3\mathrm{P}^o_1$ 0 1 2 2 1 2	7 579.6 6 007.8 6 007.8 6 007.8 0.0	734 890 734 250 734 890 736 640 734 890 736 640	1				28 28 28 28 28 28 28
115.58 115.42 114.59	$3s^23p^4$ 3P_0	$3s^23p^3(^4S^\circ)4d\ ^3D_1^\circ$	7 579.6 6 007.8 0.0	872 780 872 410 872 680					24°, 29 24°, 29 24°, 29

V VIII - Continued

Wave-	Classification		Energy Levels (cm ⁻¹)		Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				·			
113.92	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^4S^\circ)4d^{-1}P_1^o$	60 641	938 450					24°,29
113.60	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})4d^{-1}\mathrm{D_2^o}$	27 072	907 350					24°,29
113.27	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})4d\ ^1\mathrm{F_3^o}$	27 072	909 920					24°,29
111.44	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2D^\circ)4d\ ^3P_2^\circ$	6 007.8	903 350					29
111.11 110.55	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2D^{\circ})4d\ ^3D_2^{\circ}$	6 007.8	905 990 904 570					29 29
110.38	2	2	0.0	905 990					29

 \mathbf{v} ix

Wave- length (Å)	Lower	Classifica	tion Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4110.7°C	$3s^23p^3$	200	$3s^23p^3 {}^2P_{1/2}^{\circ}$	24.709 :	#0.000 t		M.	1.011		00*
4110.7 ^C	3s*3p°			34 708+x	59 028+x		M1	1.6+1	D	99*
4014.1 ^C		5/2	3/2	36 319+x	61 224+x		M1	1.6+1	C	99*
3770.2 ^C		3/2	3/2	34 708+x	61 224+x		M1	3.4+1	С	99*
1694.1 ^C	$3s^23p^3$	$^{4}S_{3/2}^{\circ}$	$3s^23p^3$ 2 P $_{1/2}^{o}$	0	59 028+x		M1	3.3 + 1	D	99*
1633.3 ^C		3/2	3/2	0	61 224+x		M1	7.1 + 1	D	99*
488.735	$3s^23p^3$	${}^{2}P_{3/2}^{o}$	$3s3p^{4-2}D_{5/2}$	61 224+x	265 835+x		7.6 - 2	3.5+8	D	20°,99*
485.110		1/2	3/2	59 028+x	265 160+x		2.8 - 2	2.0+8	D	20°,99*
467.143	$3s^23p^3$	4S2/2	$3s3p^4 \ ^4P_{5/2}$	0	214 067		2.0 - 1	9.9+8	D	20°, 26, 27, 99
457.010	<u>-</u>	3/2	3/2	0	218 814		1.3 - 1	1.1 + 9	D	20°, 27, 99*
452.132		3/2	1/2	0	221 174		6.8 - 2	1.1+9	D	20°, 27, 31, 99
437.005	$3s^23p^3$	$^{2}D_{5/2}^{o}$	$3s3p^{4-2}D_{3/2}$	36 319+x	265 160+x		8.4 - 3	7.3+7	E	20°,99*
435.699		5/2	5/2	36 319+x	265 835+x		3.1 - 1	1.8 + 9	D	20°, 27, 99*
433.930		3/2	3/2	34708 + x	$265\ 160+x$		2.3 - 1	2.0 + 9	D	20°, 27, 99*
432.663 ^C		3/2	5/2	34 708+x	265 835+x		6.4 - 3	3.8 + 7	E	99*
409.097	$3s^23p^3$	${}^{2}P_{3/2}^{o}$	$3s3p^{4-2}P_{3/2}$	61 224+x	305 664+x	1				20°,27
405.461		1/2	3/2	59~028+x	305 664+x					20°, 27
399.719		1/2	1/2	59 028+x	309 210+x	2bl				20
387.657	$3s^23p^3$	${}^{2}P_{3/2}^{o}$	$3s3p^{4} {}^{2}S_{1/2}$	61 224+x	319 184+x	6				20°, 27
384.382	•	1/2	1/2	59 028+x	319 184+x					20°, 27
371.271	$3s^23p^3$	² D _{5/2}	$3s3p^{4} {}^{2}P_{3/2}$	36 319+x	305 664+x	8				20°,27
369.064	F	3/2	3/2	34 708+x	305 664+x	2				20 , 21
364.296		3/2	1/2	34 708+x	309 210+x	6				20°, 27
276.08	$3s^23p^3$	² D°	$3s^23p^2(^3P)3d^2P_{3/2}$	36 319+x	398 530+x					01
270.38	33 3p	2 _{5/2} 3/2	38 3p (F)3u F _{3/2}	36 319+x 34 708+x	398 530+x 404 560+x					31 31
268.79 ^C	$3s^23p^3$		$3s^23p^2(^3P)3d^4P_{5/2}$	36 319+x	400 250		97 ^	4010	12	00*
267.64 ^C	эг эр	$D_{5/2}$ 3/2	5/2	36 319+x 34 708+x	408 350 408 350		2.7 - 2 $6.4 - 3$	• -	E E	99* 99*
265.36 ^C	$3s^23p^3$		$3s^23p^2(^1D)3d^2D_{5/2}$					•		
265.36 ^C	<i>3s</i> −3 <i>p</i> °		· ·	61 224+x	438 070+x		3.3 - 1	5.2+9	D	99*
263.58 ^C		3/2	3/2	61 224+x 59 028+x	438 420+x		1.4 - 3		E	99*
		1/2	3/2	39 020+X	438 420+x		1.7 - 1	4.1 + 9	D	99*
254.17	$3s^23p^3$	$^{2}P_{1/2}^{o}$	$3s^23p^2(^1{ m D})3d\ ^2{ m P}_{1/2}$	59~028+x	452 470+x	bl				31
253.21		3/2	3/2	61 224+x	456 150+x	bi	1.6	4.1+10	E	31°,99*
251.82		1/2	3/2	59 028+x	456 150+x	bl	4.2 - 1	1.1+10	E	31°,99*
248.91	$3s^23p^3$	$^2\mathrm{D}^\mathrm{o}_{5/2}$	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{5/2}$	36 319+x	$438\ 070+x$		2.5	4.4 + 10	D	31°,99*
248.69 ^C		5/2	3/2	$36\ 319 + x$	438 420+x		2.6 - 1	6.9 + 9	D	99*
247.92 ^C		3/2	5/2	34 708+x	438 070+x		1.1 - 1		D	99*
247.70		3/2	3/2	34 708+x	438 420+x		1.7	4.7+10	D	31°,99*
244.89	$3s^23p^3$	3 4 S _{3/2}	$3s^23p^2(^3{ m P})3d\ ^4{ m P}_{5/2}$		408 350		3.6	6.7+10	D	30°,99*
244.46 243.58		3/2 3/2	3/2	0 0	409 060 410 540		$\frac{2.5}{1.2}$	6.9+10 $6.9+10$	D	30°,99*
	. 9. 9		1/2				1.2	0.9+10	D	30°,99*
240.30		² P _{3/2}	$3s^23p^2(^3P)3d^{2}D_{5/2}$	61 224+x	477 370+x					31
238.19^{C}	$3s^23p^3$	² D _{5/2}	$3s^23p^2(^1D)3d^2P_{3/2}$	36 319+x	456 150+x		3.3 - 2	9.7+8	E	99*
237.28^{C}	ŕ	3/2	3/2	34 708+x	456 150+x		1.5 - 2		E	99*
235.72	$3s^23p^3$	² D°, ,	$3s^23p^2(^3P)3d^2F_{7/2}$	36 319+x	460 550+x		5.5	8.3+10	E	5°, 14, 99*
		•	•						E.	0 ,14,99
228.27 ^C		³ ⁴ S _{3/2}	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{5/2}$	0	438 070+x		3.8 - 3	8.2+7	E	99*
140.31^{L}	$3s^23p^2(^{1}D)3d$	$^{2}G_{9/2}$	$3s^23p^24f$ $^2H_{11/2}^{o}$							24°,29
139.98 ^L	. (= /	7/2	9/2							24°, 29 24°, 29
137.83 ^L	$3s^23p^23a$		$3s^23p^24f$ $^4G_{11/2}^{\circ}$							
101.00			•							24°, 29
134.54	$3s^23p^3$	^{3 2} P _{1/2}	$3s^23p^2(^3P)4s^2P_{1/2}$	$59\ 028 + x$	802 220+x	bl				24°,29
133.99		3/2	3/2		807 570+x					24°, 29
131.22	3 s 2 2 n 3	^{3 2} P _{3/2}	$3s^23p^2(^1{\rm D})4s^{-2}{\rm D}_{5/2}$	61 224+x	833 300 1					949 90
131.13	38 3p		·		823 290+x 823 570+x					24°, 29
101.10		3/2	3/2	01 224+X	823 570+x					24°, 29
		-/-	3/2	• •						, 20

V IX - Continued

Wave-	Classifica	tion	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
130.32	$3s^23p^{3-2}D_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^2P_{1/2}$	34 708+x	802 220+x					24°,29
129.66	5/2	3/2	36 319+x	807 570+x					24°,29
127.068	$3s^23p^3$ ² D $_{5/2}^{\circ}$	$3s^23p^2(^1D)4s^2D_{5/2}$	36 319+x	823 290+x	10				24, 29, 32°
126.810	3/2	5/2	34 708+x	823 290+x					32
126.765	3/2	3/2	34 708+x	823 570+x	5				$24,29,32^{\circ}$
126.732	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^4P_{1/2}$	0	789 070	5				24, 29, 32°
126.152	3/2	3/2	0	792 690	8				24, 29, 32°
125.420	3/2	5/2	0	797 320	12				24, 29, 32°
88.48	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^24d\ ^4{ m D}_{7/2}$	36 319+x	1 166 500+x					29

 \mathbf{v} x

Wave- length (Å)	Classificatio Lower	n Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4330.0 ^C	$3s^23p^2\ ^3P_2$	$3s^23p^2$ ¹ D ₂	9 421	32 509		M1	1.5+1	E	99*
3101.5 ^C	$3s3p^3\ ^3{ m D}_3^{ m o}$	$3s3p^3 \ ^3P_2^{\circ}$	222 104	254 337		М1	1.8+1	E	99*
3033.8 ^C	1	. 2	220 984	253 936		M1	2.3 + 1	E	99*
3014.5 ^C			220 984	254 147		M1	2.3+1	E	99*
3005.3 ^C	1 2	1 2	221 072	254 337		M1	1.4+1	E	99*
1573.0 ^C	$3s^23p^2$ 3 P ₁	$3s^23p^2$ ¹ S ₀	4 180	67 751		M1	2.1+2	E	99*
558.329 ^C	$3s3p^3 \ ^3D_3^{\circ}$	$3s^23p3d\ ^3D_3^{\circ}$	222 104	401 210		M1	3.5 + 1	E	99*
527.439	$3s^23p^{2-1}D_2$	$3s3p^3 \ ^3D_3^{\circ}$	32 509	222 104		5.5 - 3	1.9+7	E	20°,99*
472.672 ^C	$3s^23p^2$ 3P_2	$3s3p^{3} \ ^{3}D_{1}^{o}$	9 421	220 984		7.5 - 4	7.7 + 6	E	99*
472.476 ^C	2	2	9 421	221 072		1.3 - 2	7.7 + 7	D-	99*
470.183	2	3	9 421	222 104		2.0 - 1	8.4 + 8	D	20°, 27, 99*
461.245	1	1	4 180	220 984		2.6 - 2	2.7+8	Ď–	20°, 99*
461.059	1	2	4 180	221 072		1.3 - 1	8.3+8	Ď	20°, 27, 99*
452.522	0	1	0	220 984		6.1 - 2	6.6+8	Ď	20°, 27, 99*
408.630	$3s^23p^2$ 3P_2	$3s3p^{3} {}^{3}P_{1}^{o}$	9 421	254 147		5.5 - 2	7.4 + 8	D	20°, 27, 99*
408.304	2	2	9 421	254 337		2.5 - 1	2.0 + 9	D	20°, 26, 27, 31, 99*
400.390	1	0	4 180	253 936		6.0 - 2	2.6 + 9	$^{\mathrm{C}-}$	20°,99*
400.056	1	1	4 180	254 147		6.9 - 2	9.6 + 8	D	20°, 26, 27, 99*
399.719	1	2	4 180	254 337		4.8 - 2	3.9 + 8	D	20°, 27, 99*
393.469	0	1	0	254 147		5.7 - 2	8.2+8	D	20°, 26, 27, 99*
404.106	$3s^23p^{2-1}D_2$	$3s3p^{3-1}D_2^{\circ}$	32 509	279 969	7				20°,31
369.612	$3s^23p^2$ 3P_2	$3s3p^{3-1}D_2^{\alpha}$	9 421	279 969	1bl				20
365.518	$3s^23p^2$ 1S_0	$3s3p^{3-1}P_1^{\circ}$	67 751	341 335	1				20°, 27
323.811	$3s^23p^{2-1}D_2$	$3s3p^{3-1}P_{1}^{\circ}$	32 509	341 335	3bl				20°, 27
313.990	$3s^23p^2$ 3P_2	$3s3p^3 \ ^3S_1^{\circ}$	9 421	327 902	5				20°, 27
308.903		_	4 180	327 902	2				
304.974	1 0	1	0	327 902	1				20°, 27 20
			· ·	02. 002	-				20
301.283	$3s^23p^2$ 3P_2	$3s3p^{3} {}^{1}P_{1}^{o}$	9 421	341 335					20
271.22 ^C	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^3{ m D}_3^{ m o}$	32 509	401 210		5.0 - 2	6.5+8	E	99*
265.70	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^3P_2^{\circ}$	9 421	385 790					31
262.04	1	2	4 180	385 790					31
258.28	1	1	4 180	391 340					31
255.54	0	1	0	391 340	bl				31
	v		Ū	001 010	٠.				31
255.54	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3D_2^{o}$	9 421	400 740					30
255.24	2	_	9 421	401 210		3.6	5.2 + 10	D	30°,99*
253.21		3	4 180	399 130	bl	3.0	0.2710	D	
252.17	1	1	4 180	400 740	01				30, 31°
250.53	1 0	2	0	399 130	bl				30 30, 31°
	$3s^23p^2$ ¹ D ₂				٠.			~	
245.35		3s ² 3p3d ¹ F ₃ °	32 509	440 090		3.5	5.5+10	С	30°,99*
232.20^{C}	$3s^23p^2$ 3P_2	$3s^23p3d\ ^1F_3^o$	9 421	440 090		5.0 - 2	8.8+8	E	99*
124.40 ^L	$3s^23p3d\ ^3F_4^{\circ}$	$3s^23p4f\ ^3{ m G}_5$							24°, 29
118.18	$3s^23p^2$ ¹ D ₂	$3s^23p4s$ ¹ P ₁ °	32 509	878 700					24°, 29
116.85	$3s^23p^2$ 3P_2	$3s^23p4s$ $^3P_1^o$	9 421	865 200					24°,29
115.78	2	2	9 421	873 100					24°, 29
115.58	0	1	0	865 200					24°,29
115.09	1	2	4 180	873 100					24°, 29
94.96	$3s^23p^2$ ¹ D ₂	$3s^23p4d$ $^1\mathrm{F}_3^\circ$	32 509	1 085 600					24°,29
94.23	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3D_3^{\circ}$							24°, 29

 \mathbf{v} xi

Wave-	Classificati		Energy Lev	els (cm^{-1}) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper			·			
515.796 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^{3} {}^{2}P_{1/2}^{\circ}$	311 890	505 765	4.4 - 2	5.4+8	D	99*
513.315	3/2	3/2	311 890	506 695	2.8 - 1	1.7 + 9	D	34°,99*
502.602	1/2	1/2	306 801	505 765	1.5 - 1	2.0 + 9	D	34°,99*
500.265 ^C	1/2	3/2	306 801	506 695	6.6 - 3	4.5 + 7	E	99*
164.449 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^3P^{\circ})3d^{-2}F_{5/2}^{\circ}$	377 650	592 959	3.5 - 2	1.8+8	Е	99*
462.830 ^C	3/2	5/2	376 897	592 959	2.2 - 1	1.2 + 9	\mathbf{E}	99*
148.445 ^C	5/2	7/2	377 650	600 643	3.7 - 1	1.6+9	E	99*
461.955	$3s3p(^{3}P^{\circ})3d^{4}D_{5/2}^{\circ}$	$3p^2(^3P)3d^4F_{7/2}$	555 759+x	772 238+x				36
454.195	7/2	9/2	555 583+x	775 753+x				36
461.146 ^C	$3s3p^2$ 2 S _{1/2}	$3p^{3-2}P_{1/2}^{\circ}$	288 914	505 765	2.2 - 2	3.5+8	D	99*
459.177 ^C	1/2	3/2	288 914	506 695	1.6 - 1	1.2+9	D	99*
456.040 ^C	$3s3p^2$ 2 D _{5/2}	$3p^{3} {}^{2}D_{3/2}^{\circ}$	233 778	453 057	5.9 - 2	4.8+8	E	99*
454.325	3/2	3/2	232 972	453 057	2.1 - 1	1.7+9	E	34°,99*
453.162	5/2	5/2	233 778	454 448	3.8 - 1	2.0+9	Ē	34°,99*
451.516 ^C	3/2	5/2	232 972	454 448	3.4 - 2	1.8+8	E	99*
455.554	3s3p(³ P°)3d ⁴ P° _{3/2}	$3p^2(^3P)3d^4F_{5/2}$	549 713+x	769 226+x				36
446.015	585P(F)54 F 3/2 5/2	3p (P)3a F _{5/2}	549 713+x 548 037+x	769 226+x 772 238+x				36 36
447.881	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2$ 2 D _{3/2}	9 696	232 972	1.2 - 2	9.6+7	E	20°, 26, 99*
446.265		•	9 696	232 778	1.2 - 2 $2.2 - 1$	1.3+9	D	20°, 26, 27, 99*
429.232	3/2 1/2	5/2 3/2	0	232 972	1.5 - 1	1.3+9	D	20°, 20, 21, 99 20°, 27, 99*
412.859	3s3p(3P°)3d 4P° _{5/2}	$3p^2(^3P)3d^{-4}D_{7/2}$	548 037+x	790 250+x				36
386.722	$3s3p(^{3}P^{\circ})3d\ ^{4}F^{\circ}_{9/2}$	$3p^2(^3P)3d^4F_{9/2}$	517 171+x	775 753+x				36
386.370	3/2	3/2						36
386.067	5/2	5/2	510 204+x	769 226+x				36
385.935 381.526	7/2 5/2	7/2 7/2	513 127+x 510 204+x	772 238+x 772 238+x				36 36
375.563 ^C	$3s^23d^{-2}D_{5/2}$	·				10.0		
374.504 ^C	•	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	377 650 376 897	643 917 643 917	1.1 - 2 $1.4 - 2$	1.3+8 $1.6+8$	E E	99* 99*
	3/2	3/2			1.4 - 2	1.0+8	E,	99
375.391	$3s3p(^{3}P^{\circ})3d\ ^{2}F^{\circ}_{7/2}$	$3p^2(^1S)3d\ ^2D_{5/2}$	600 643	867 032				36
369.384	$3s3p(^{3}P^{\circ})3d^{2}P_{1/2}^{\circ}$	$3p^2(^3P)3d^2D_{3/2}$	647 577	918 298				36
368.457	3/2	5/2	643 917	915 319				36
367.813	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	$3p^2(^3P)3d^4P_{5/2}$	555 583+x	827 452+x				36
367.126	5/2	3/2	555 759+x	828 147+x				36
366.028	3/2	1/2	555 472+x	828 675+x				36
367.516	$3s^23d^2D_{5/2}$	3s3p(1P°)3d 2F°/2	377 650	649 771	2.9	1.9+10	E	34°,99*
365.097 ^C	5/2	5/2	377 650	651 550	1.1 - 1	9.0+8	E	99*
364.073	3/2	5/2	376 897	651 550	2.1	1.7+10	E	34°,99*
366.579	$3s3p^2$ 2 D _{3/2}	$3p^3 {}^2P_{1/2}^{o}$	232 972	505 765	3.6 - 1	8.8+9	D	34°,99*
366.403	5/2	3/2	233 778	506 695	5.8 - 1	7.2 + 9	D	34°,99*
365.333 ^C	3/2	3/2	232 972	506 695	7.2 - 2	9.0 + 8	D	99*
366.197	$3s3p(^{3}P^{\circ})3d^{4}F_{9/2}^{\circ}$	$3p^2(^3P)3d^4D_{7/2}$	517 171+x	790 250+x				36
364.639	7/2	5/2	513 127+x	787 371+x				36
361.249	5/2	3/2	510 204+x	787 021+x				36
362.356	$3s3p(^{3}P^{\circ})3d^{2}F^{\circ}_{7/2}$	$3p^2(^3P)3d^2F_{7/2}$	600 643	876 608				26
355.494	5/2	5 <i>p</i> (1)3 <i>a</i> 1 7/2 5/2	592 959	874 258				36 36
358.846	$3s3p^2$ 4 P _{5/2}	$3p^3 \ ^4S_{3/2}^{\circ}$	184 992+x	463 653+x	9.6 - 1	1.2+10	D	27, 33°, 99*
352.334	3/2	3/2	179 839+x	463 653+x	6.8 - 1	9.1 + 9	D	27,33°,99*
347.787	1/2	3/2	176 117+x	463 653+x	3.4 - 1	4.6 + 9	D	27,33°,99*
358.144	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2$ 2 S _{1/2}	9 696	288 914	9.2 - 2	2.4+9	D	20°, 26, 27, 99*
346.123	1/2	1/2	0	288 914	3.2 - 2 $3.2 - 1$	2.4+9 8.8+9	D	20°, 26, 27, 99*
257 004	•				- · · ·		~	
357.884	$3s3p(^{3}P^{o})3d^{4}P_{5/2}^{o}$	$3p^2(^3P)3d\ ^4P_{5/2}$	548 037+x	$827\ 452+x$				36

V xI - Continued

	Wave- length (Å)	Classificat Lower	ion Upper	Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
342.982	342.982	3s ² 3d ² D _{5/2}	3s3p(¹ P°)3d ² P°,	377 650	669 304				34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342.982	·	· ·			8.0 - 1	2.3+10	D	
333.611 $5/2$ $8/$	338.971	$3s^23d^{-2}D_{3/2}$	3s3p(1P°)3d 2D°	376 897	671 902				34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-,-			1.4	1.4+10	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337.790 ^C		•	376 897	672 939	5.2 - 2	5.1 + 8	\mathbf{E}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	336.580	$3s^23p^2P_{3/2}^{o}$	$3s3p^2 {}^2P_{1/2}$	9 696	306 801	4.8 - 1	1.4+10	D	20°.26.27.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•						20°, 26, 27, 99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•						20°, 26, 27, 99
330.314	320.626	1/2	3/2	0	311 890	3.28 - 1	5.3+9	C-	20°, 26, 27, 99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	332.358	$3s3p(^{1}P^{\circ})3d^{2}F_{5/2}^{\circ}$	$3s3d^2$ 2 G _{7/2}	651 550	952 430				36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	330.314	•	9/2	649 771	952 513				36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	323.633	$3s3p(^3P^{\circ})3d\ ^2D_{5/2}^{\circ}$	$3p^2(^3P)3d\ ^2F_{7/2}$	567 610	876 608				36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318.209^{C}	$3s3p^2\ ^2{ m D}_{5/2}$	$3s3p(^3P^\circ)3d\ ^4P^\circ_{5/2}$	233 778	548 037+x	3.1 - 2	3.4+8	E	99*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	318.09	$3p^3 \ ^2P_{3/2}^{\circ}$	$3p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	506 695	821 098				36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312.782	3s3p(1P°)3d 2D°	3 c3d2 2 F =	672 939	992.650				36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	310.747 ^C	$3s3p^2\ ^2{ m D}_{5/2}$	•	233 778	555 583+x	1.2 - 2	1.0+8	E	99*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	307.241	$3p^3 \ ^2D_{5/2}^{\circ}$	$3p^2(^3P)3d^{-2}P_{3/2}$	454 448	779 925				36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	305 945 ^C	3e3n2 4Pa 10	3 ₂ 3 2 _D 0	170 830±v	506 605	90 3	1 4 1 0	100	00*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	,	110 111 (1	000 000	J.4 - J	0.2-1	15	33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s3p^2 {}^2P_{3/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	311 890	643 917	4.8 - 1	8.8 + 9	D	99*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3/2	1/2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	296.634° 293.448 ^C								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200.110	·	•	300 801	047 377	4.4 - 1	1.7+10	D	99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3s3p^2 {}^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}D_{5/2}^{\circ}$						34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.960		3/2	232 972	567 465				34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.934	$3s3p(^{3}P^{\circ})3d^{-4}D_{5/2}^{\circ}$	$3s3d^{2}$ 4 F _{7/2}	555 759+x	893 672+x				36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.251		•	555 583+x	894 278+x				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294.412^{C}	$3s3p^2\ ^2\mathrm{P}_{3/2}$	$3s3p(^{1}P^{\circ})3d\ ^{2}F_{5/2}^{\circ}$	311 890	651 550	5.2 - 3	6.7+7	E	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	281.668	$3s3p^2$ 2 S _{1/2}	3s3n(3P°)3d 2P°	288 914	643 017	1 2	27 10	D	240 00*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281 485	3 _m 3 2 _D 0	•	EOG 60F	001.054				·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	300 093	801 934				36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s3p^2 {}^2P_{3/2}$	$3s3p(^{1}P^{o})3d^{2}P_{1/2}^{o}$	311 890	668 411	1.47 - 1	6.24 + 9	C-	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3/2						34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.5 - 1	6.7+9	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270 411C		•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		·	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-							34°,99* 34°,99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	977 779		·				·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•			0.0	40.40	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						3.2	4.6+10	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	275 448 ^C	3,22,2 4D		104.0007	F40.007 :	0.5	0.00	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			·						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1.1	1.7+10	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	266.656		` - '			4.8 – 1	2.2+10	E	
274.351 $_{3/2}$ $_{3/2}$ $_{463}$ $_{653+x}$ $_{828}$ $_{147+x}$ $_{36}$ $_{272.740}$ $_{3p^3}$ $_{2D_{5/2}}^{\circ}$ $_{3p^2}$ $_{1D}^{\circ}$ $_{3d}$ $_{2D_{5/2}}^{\circ}$ $_{454}$ $_{448}$ $_{821}$ $_{98}$ $_{36}$	264.028 ^C								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274.883	3p3 4S2.	3p ² (³ P)3d ⁴ P	463 6534v	827 452±v				36
272.740 $3p^3 {}^2D_{5/2}^{\circ}$ $3p^2({}^1D)3d {}^2D_{5/2}$ 454 448 821 098 36									
970 951	272 740								
3/2 3/2 300 001 023 003 36			•						
	· -	3/2	3/2	400 001	020 000				30

V XI - Continued

Wave-	Classificat	Energy Lev	vels (cm ⁻¹) Int.	qf	qf $A(s^{-1})$		References	
length (Å)	Lower	Upper		,		,	Acc.	
272.332	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^23d^{-2}D_{3/2}$	9 696	376 897	2.6 - 1	5.8+9	D	34°,99*
271.773	3/2	5/2	9 696	377 650	2.1	3.2 + 10	D	5,34°,99*
265.324	1/2	3/2	0	376 897	1.1	2.7+10	D	5,34°,99*
269.828	$3s3p^2 {}^4 ext{P}_{5/2}$	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	184 992+x	555 583+x	2.84	3.25+10	C-	34°,99*
269.718	5/2	5/2	184 992+x	555 759+x	1.3	1.9 + 10	D	34°,99*
266.762	1/2	1/2	176 117+x	550 994+x	6.2 - 1	2.9 + 10	\mathbf{E}	34,35°,99*
266.202	3/2	3/2	179 839+x	555 472+x				34
265.988	3/2	5/2	179 839+x	555 759+x	7.2 - 1	1.1+10	D	34°,99*
265.196	$3s3p(^{3}P^{\circ})3d\ ^{4}F_{9/2}^{\circ}$	$3s3d^2$ 4 F _{9/2}	517 171+x	894 278+x				36
263.507 ^C	$3s3p^2$ 2 S _{1/2}	$3s3p(^{1}P^{\circ})3d\ ^{2}P_{1/2}^{\circ}$	288 914	668 411	2.6 - 1	1.2+10	D	99*
241.193 ^C	$3s3p^2\ ^2{ m D}_{3/2}$	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{1/2}$	232 972	647 577	4.4 - 4	2.6+7	\mathbf{E}	99*
240.586 ^C	$3s3p^2 {}^4 ext{P}_{5/2}$	$3s3p(^{3}P^{o})3d\ ^{2}F_{7/2}^{o}$	184 992+x	600 643	8.4 - 3	1.2+8	E	99*
240.333	$3s3p^2$ 2 D _{5/2}	3s3p(1P°)3d 2F°	233 778	649 771	1.5	2.2+10	Е	34°,99*
239.365 ^C	-,-	5/2	233 778	651 550	6.6 - 2	1.3+9	E	99*
238.892	5/2 3/2	5/2 5/2	232 972	651 550	1.1	2.1+10	Ē	34°,99*
	, ,	5/2	202 012	001 000	1.1	2.1710	ב	34 , 33
236.88	$3p^{3} {}^{2}\mathrm{D}^{\circ}_{5/2}$	$3p^2(^3P)3d^2F_{7/2}$	454 448	876 608				36
229.653 ^C	$3s3p^2\ ^2{ m D}_{3/2}$	$3s3p(^{1}P^{o})3d^{2}P_{1/2}^{o}$	232 972	668 411	2.6 - 3	1.7+8	E	99*
213.767 ^C	$3s3p^2$ ⁴ P _{1/2}	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	176 117+x	643 917	3.0 - 3	1.1+8	E	99*
119.36	$3s^23d^2D_{5/2}$	$3s^24f ^2F^o_{7/2}$	377 650	1 215 500				38
119.28	3/2	5/2	376 897	1 215 300				38
112.76 ^L	3s3p3d ⁴ F _{7/2}	$3s3p4f\ ^{4}G_{9/2}$						38
112.63 ^L	5/2	7/2						38
$112.34^{ m L}$	9/2	11/2						38
107.57	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s^24s\ ^2S_{1/2}$	9 696	939 500				38
106.42	1/2	1/2	0	939 500				38
106.00	$3s3p^2 {}^4P_{5/2}$	3s3p4s ⁴ P _{3/2}	184 992+x	1 128 300+x				38
105.34	5/2	5/2	184 992+x	1 134 400+x				38
105.03	1/2	3/2	176 117+x	1 128 300+x				38
104.74	3/2	5/2	179 839+x	1 134 400+x				38
87.868	$3s^23p^{-2}P_{3/2}^{o}$	$3s^24d\ ^2{ m D}_{5/2}$	9 696	1 147 770				37
87.166	1/2	3/2	0	1 147 240				37

 \mathbf{v} xII

Wave- ength (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
596.083 ^C	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	613 354	757 015		1.9 – 1	5.2+8	D-	99*
09.20	$3s3p\ ^1\mathrm{P_1^o}$	$3p^{2}$ ¹ D ₂	281 627	445 775		3.3 - 1	1.2+9	E	24, 29, 39°, 99*
62.25	$3s3p$ $^{1}P_{1}^{o}$	$3p^2$ 3 P ₂	281 627	459 478					39
22.4	$3s^2$ ¹ S ₀	$3s3p$ $^3P_1^o$	0	191 509		1.4 - 3	1.1+7	E	42°,99*
02.147 ^C	$3s3d\ ^3\mathrm{D}_3$	$3p3d$ 3 F $_2^{\circ}$	545 169	744 314		2.3 - 3	1.2+7	E	99*
00.448 ^C	2	2	544 493	744 314		1.2 - 1	6.1+8	D	99*
99.38	1	2	544 068	744 314		4.8 - 1	2.6+9	D-	27, 39°, 99*
90.08 88.47	3 2	3	545 169 544 493	749 216 749 216		1.5 - 1 $8.0 - 1$	$5.8+8 \\ 3.2+9$	C C-	39°,99* 27,39°,99*
76.78	3	3 4	545 169	754 909		1.25	4.06+9	C	27,39°,99*
21.02	$3s3d$ $^1\mathrm{D}_2$	$3p3d\ ^{1}\mathrm{F_{3}^{o}}$	613 354	850 871		2.6	1.3+10	D-	39°,99*
11.05	$3s3d$ $^3\mathrm{D}_3$	$3p3d$ $^3P_2^{\circ}$	545 169	788 448					39
98.498 ^C	1	0	544 068	795 010		1.9 - 1	8.0 + 9	C-	99*
97.72	1	1	544 068	795 499					39
09.64	$3s3p$ 1 P $_{1}^{o}$	$3p^{2} {}^{1}S_{0}$	281 627	525 745		3.3 - 1	1.3+10	C	27,39°,99*
08.65	$3s3d$ $^3\mathrm{D}_2$	$3p3d\ ^{3}D_{1}^{o}$	544 493	789 199					39
99.70	3	3	545 169	795 356		9.8 - 1	5.8 + 9	C-	27,39°,99*
98.624 ^C	2	3	544 493	795 356		1.9 - 1	1.1 + 9	C-	99*
97.72	2	2	544 493	795 927					39
04.79 93.30	$3s3p$ $^3\mathrm{P}_2^\circ$	$3p^{2} {}^{1}D_{2}$	198 737 191 509	445 775 445 775		1.2 - 1 $5.4 - 2$	9.2+8 4.5+8	E E	39°,99* 39°,99*
02.90	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}P_{1}^{o}$	613 354	861 555		7.0 - 1	9.6+9	D-	39°,99*
96.53	$3s3p\ ^{3}P_{2}^{\circ}$	$3p^{2} {}^{3}P_{1}$	198 737	450 927		3.9 - 1	5.5+9	C-	26,39°,99*
92.53	1	0	191 509	446 265		3.0 - 1	1.3 + 10	$^{\rm C}$	26.39°.99*
85.47	1	1	191 509	450 927		2.4 - 1	3.6 + 9	$^{\rm C}$	26,39°,99*
83.53	2	2	198 737	459 478		1.1	9.3 + 9	D-	26,39°,99*
80.78 73.17	0 1	1 2	188 311 191 509	450 927 459 478		3.2 - 1 $3.3 - 1$	$4.9+9 \\ 3.2+9$	C D	26,39°,99* 26,39°,99*
82.462	$3p3d\ ^{1}P_{1}^{\circ}$	$3d^2$ ¹ D ₂	861 555	1 123 022	3				40,41°
65.134	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d^2$ 1 G ₄	850 871	1 124 757	6	2.93	1.63+10	C-	40,41°,99*,10
55.07	$3s^{2}$ 1 S ₀	3s3p ¹ P ₁ °	0	281 627		9.47 - 1	1.67+10	C+	26,39°,99*
34.97	$3p^{2-1}D_2$	$3p3d$ 3 F $_2^{\circ}$	445 775	744 314					39
330.78	$3p3d$ $^3P_1^o$	$3d^{2} {}^{3}F_{2}$	795 499	1 097 824	2				41°, 102
22.513	2	3	788 448	1 098 514	1				40,41°
330.486	$3p3d\ ^{3}\mathrm{D_{2}^{o}}$	$3d^{2} {}^{3}F_{3}$	795 927	1 098 514	3				40,41°,102
28.954	3	4	795 356	1 099 356	5				40,41°,102 40,41°,102
24.014	1	2	789 199	1 097 824	2				40, 41°
21.30	$3p^{2-1}D_2$	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	445 775	757 015		9.5 - 1	1.2+10	E	39°,99*
302.080	$3p3d\ ^{3}\mathrm{D_{2}^{o}}$	$3d^2 \ ^3P_2$	795 927	1 126 966	3				41
301.46 ^T	3	2	795 356	1 126 966	ы				41
96.728	1	0	789 199	1 126 208	2				41
302.080	$3p3d$ $^3P_1^o$	$3d^{2} {}^{3}P_{1}$	795 499	1 126 476	3				41
301.680	0	1	795 010	1 126 476	2				41
01.680	1	2	795 499	1 126 966	2				41
95.841 95.405	2 2	1	788 448 788 448	1 126 476	$\frac{2}{1}$				41
301.45		2 $3s3d\ ^1\mathrm{D}_2$		1 126 966	1	0.0		_	41
	3s3p ¹ P ₁ °		281 627	613 354		2.2	3.2+10	D-	24, 29, 39°, 99*
	$3p^{2-1}S_0$	$3p3d^{-1}P_{1}^{o}$	525 745	861 555		7.9 - 1	2.0+10	C-	39°,99*
	0.5								
97.73	$3p^2$ 3 P $_2$	$3p3d$ $^3D_3^o$	459 478	795 356		2.0	2.1+10	E	27,39°,99*
297.73 297.73 297.22 291.60	$3p^2 \ ^3P_2$ 2 0	$3p3d \ ^3D_3^{o}$ 2	459 478 459 478 446 265	795 356 795 927 789 199		2.0	2.1+10	E	27, 39°, 99* 39 39

V XII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
296.28	$3p^2 \ ^3P_1$	$3p3d$ $^3P_2^{\circ}$	450 927	788 448		0.0	10:10	0	39
290.63 290.21	1 1	0	450 927 450 927	795 010 795 499		2.0 - 1	1.6 + 10	C-	39°,99* 39
			300 841	190 499					Ja
290.31	$3p3d$ $^3F_4^{\circ}$	$3d^{2} {}^{3}F_{4}$	754 909	1 099 356	3				40,41°,102
286.287 282.880	3	3	749 216	1 098 514	$\frac{3}{2}$				40,41°,102
602.000	2	2	744 314	1 097 824	Z				40,41°,102
289.577 ^C	$3s3p^{-3}P_{2}^{\circ}$	$3s3d$ $^3\mathrm{D}_1$	198 737	544 068		1.9 - 2	4.9 + 8	$\mathbf{D}-$	99*
289.22	2	2	198 737	544 493		2.8 - 1	4.4+9	C-	24,29,39°,99*
288.65 283.64	2	3	198 737 191 509	545 169 544 068		1.54 $2.8 - 1$	1.76+10 $7.7+9$	C	24, 27, 29, 39°, 99 39°, 99*
283.30	1 1	1 2	191 509	544 493		8.4 - 1	1.4+10	G-	24, 27, 29, 39°, 99
281.09	o	1	188 311	544 068		3.7 - 1	1.0+10	C-	24, 29, 39°, 99*
286.05	$3p^{2-1}\mathrm{D_2}$	$3p3d \ ^{3}D_{3}^{\circ}$	445 775	795 356					39
200.03	•	- 3	445 715	190 300					39
273.215	$3p3d$ $^{1}\mathrm{D}_{2}^{\circ}$	$3d^{2}$ ¹ D ₂	757 015	1 123 022	3				40,41°
255.50	$3p^2 \ ^3P_2$	$3p3d^{-1}F_{3}^{0}$	459 478	850 871					39
	0.215	ū						_	
246.86	$3p^{2}$ ¹ D ₂	$3p3d\ ^{1}F_{3}^{o}$	445 775	850 871		1.2	1.8+10	\mathbf{E}	39°,99*
240.512^{C}	$3p^{2-1}D_2$	$3p3d\ ^{1}P_{1}^{o}$	445 775	861 555		7.0 - 3	2.7+8	E	99*
112.70	0.0110	0.44170		1 100 100					
113.78	$3s3d$ $^{1}\mathrm{D}_{2}$	3s4f ¹ F ₃ °	613 354	1 492 100					38
113.39	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3p4f$ $^{1}\mathrm{G}_{4}$	850 871	1 732 800					38
108.93	$3p3d\ ^{3}D_{3}^{o}$	$3p4f$ $^{3}F_{4}$	795 356	1 713 400					38
100.00	· ·		150 300	1 113 400					30
107.83	$3p3d$ $^3D_3^{o}$	$3p4f$ 3D_3	795 356	1 722 700					38
107.29	$3p3d$ $^3P_1^{\circ}$	$3p4f^{-3}D_{1}$	795 499	1 727 500					38
107.25	0	3 p x j D 1	795 010	1 727 500					38
106.885	$3s3d\ ^3\mathrm{D_3}$	3s4f ³ F ₄ °	5/E 160	1 400 000	4				20. 270
106.820	383a D ₃	384 <i>f</i> F ₄	545 169 544 493	1 480 800 1 480 600	4 3				29, 37° 29, 37°
106.781	1	2	544 068	1 480 600	2				29, 37°
105.74	$3s3p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$3s4s$ $^{1}\mathrm{S}_{0}$	001 607	1 997 200	L.I				00
103.74	əsəp F ₁	3848 50	281 627	1 227 300	bl				29
105.49	$3p3d\ ^{1}{ m D_{2}^{o}}$	$3p4f$ 3 F ₃	757 015	1 705 000					38
104.66	$3p3d$ $^3F_3^{\circ}$	0.4430	740.010	1 704 700					
104.66 104.58		$3p4f$ $^{3}G_{4}$	749 216 744 314	1 704 700 1 700 500					38
104.45	2 4	3 5	754 909	1 712 300					38 38
									•
100.37	$3p^2 \ ^3P_1$	$3p4s$ $^3P_0^o$	450 927	1 447 200					29
100.13	2	2	459 478	1 458 200					29
98.630	$3s3p\ ^{3}P_{2}^{\circ}$	$3s4s$ $^3\mathrm{S}_1$	198 737	1 212 500	3				29,37°
97.938	1	1	191 509	1 212 500	2				29,37°
97.642	0	1	188 311	1 212 500					29, 37°
95.58	$3p^{2-1}D_2$	$3s4f^{-1}F_{3}^{o}$	445 775	1 492 100					24°,29
		•							
87.363	$3s3p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$3s4d$ $^{1}D_{2}$	281 627	1 426 300					24°, 29, 38
83.677	$3p^{2-1}D_2$	$3p4d\ ^{1}\mathrm{F_{3}^{o}}$	445 775	1 640 800					29
		_							
83.134	$3p^2$ 3 P ₂	$3p4d$ $^3D_3^{\circ}$	459 478	1 662 400					29
82.844 82.514	1 0	2	450 927 446 265	1 658 000 1 658 200					29 29
				1 000 200					20
82.348^{T}	$3p^{2} {}^{1}D_{2}$	$3p4d$ 3 F $_3^o$	445 775	1 660 1007	?				29
82.024	$3p^2$ $^3\mathrm{P}_2$	3p4d ³ P ₂ °	459 478	1 678 600					29
		_							
81.550	$3s3p\ ^{3}P_{2}^{o}$	$3s4d$ 3D_2	198 737	1 425 000					37
81.513 81.098	2	3	198 737 191 509	1 425 500 1 424 500	4				29, 37°
81.077	1 1	1	191 509	1 424 500	2				37 29,37°
80.896	0	2	188 311	1 424 500	1				29, 37° 29, 37°
	ű	1		2.000	•				20,01
	$3s3d$ $^3\mathrm{D}_3$	$3s5f$ 3 F $_4^{\circ}$							

V XII - Continued

Wave-	Classification		Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
76.307	$3s^{2}$ 1 S ₀	$3s4p^{-1}P_1^{\circ}$	0	1 310 500	3	3.17 - 1	1.21+11	C-	29,37°,99*
74.32	$3s3p$ $^3P_2^{\circ}$	$3p4p$ $^3\mathrm{D_3}$	198 737	1 544 300	bl				29
74.257	$3s3p\ ^{3}P_{2}^{\circ}$	$3p4p$ 3 P ₁	198 737	1 545 400					29
73.978	2	2	198 737	1 550 600					29
73.576	1	2	191 509	1 550 600					29
73.856	$3s3p\ ^{3}P_{2}^{\circ}$	$3p4p\ ^{3}S_{1}$	198 737	1 552 600					29
73.474	1	1	191 509	1 552 600					29
66.806	$3s3d$ $^3\mathrm{D_3}$	3s6f ³ F ₄ °	545 169	2 042 000					29
65.848	$3s3p^{-3}P_{2}^{\circ}$	$3s5s ^3S_1$	100 727	1 716 000					00
65.564	=		198 737 191 509	1 716 900 1 716 900					29 29
65.445	1 0	1	188 311	1 716 900					29 29
30.110			100 311	1 110 900					23
64.920	$3s3p\ ^{1}\mathrm{P_{1}^{o}}$	$3s5d$ $^{1}\mathrm{D}_{2}$	281 627	1 822 000					29
61.921	$3s3d\ ^3\mathrm{D}_3$	$3s7f$ 3 F $_{f 4}^{f o}$	545 169	2 160 100					29
61.717	$3s3p$ $^3P_2^{\circ}$	$3s5d$ $^3\mathrm{D_3}$	198 737	1 819 000	1				29,37°
61.455	1	2	191 509	1 818 700					29,37°
61.352	0	1	188 311	1 818 300					29
59.092	$3s3d$ $^3\mathrm{D_3}$	$3s8f$ 3 F $_4^{\circ}$	545 169	2 237 400					29
56.655	$3s^2 {}^1S_0$	$3s5p^{-1}P_1^{o}$	0	1 765 100		1.04 - 1	7.2+10	C	29°,99*
56.53	$3s3p$ $^3P_2^{\circ}$	$3s6s$ $^3\mathrm{S}_1$	198 737	1 967 700					29
54.702	$3s3p$ $^3P_2^{\circ}$	$3s6d$ $^3\mathrm{D}_3$	198 737	2 026 800					29
54.493	1	2	191 509	2 026 600					29
52.315	$3s3p$ $^3P_2^{lpha}$	$3s7s$ $^3\mathrm{S}_1$	198 737	2 110 200					29
51.208	$3s3p$ $^3P_2^{\circ}$	$3s7d$ $^3\mathrm{D}_3$	198 737	2 151 600					29
50.056	$3s^2$ 1 S $_0$	$3s6p$ $^{1}P_{1}^{\circ}$	0	1 997 800					29
49.226	$3s3p$ $^3\mathrm{P}_2^\circ$	$3s8d\ ^3\mathrm{D}_3$	198 737	2 230 200					29
46.913	$3s^{2}$ 1 S ₀	$3s7p^{-1}P_{1}^{o}$	0	2 131 600					29
45.071	$3s^2 \ ^1{ m S}_0$	$3s8p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	2 218 700					29
44.03	$3s^2 {}^1S_0$	$3s9p\ ^{1}P_{1}^{o}$	0	2 271 200					29
43.358	$3s^2$ 1 S ₀	3s10p 1P1	0	2 306 400					29
		3010p 1 1	_	2 000 400					43

 \mathbf{v} xiii

Wave- length (Å)	Classification Lower	u Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
884.02 ^C	$2p^64p~^2P^{\circ}_{3/2}$	$2p^64d\ ^2{ m D}_{3/2}$	1 392 780	1 505 900		2.0 - 1	4.2+8	С	99*
879.51 ^C		•	1 392 780	1 506 480		1.8	2.5+9	C	99*
851.14 ^C	3/2 1/2	5/2 3/2	1 388 410	1 505 900		1.0	2.4+9	C	99*
487.40 ^C	$2p^65d^{-2}\mathrm{D_{3/2}}$	$2p^66p^2 P_{1/2}^{\circ}$	1 946 230	2 151 400)	5.6 - 1	7.8+9	C	99*
485.67 ^C	5/2	3/2	1 946 500	2 152 400	1	1.00	7.1 + 9	C	99*
485.04 ^C	3/2	3/2	1 946 230	2 152 400)	1.1 - 1	8.0+8	D	99*
465.29 ^C	$2p^65f$ $^2F_{5/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	1 967 880	2 182 800		2.9 - 1	2.2+9	C	99*
465.09 ^C 464.86 ^C	7/2	5/2	1 967 990	2 183 000		4.1 - 1	2.1+9	C	99*
464.86	5/2	5/2	1 967 880	2 183 000	•	2.0 - 2	1.0+8	D	99*
443.427 ^S	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^63p^{-2}P_{1/2}^{\circ}$	0	225 520)	2.90 - 1	4.90 + 9	В	24, 26, 29, 43°, 99*
422.784 ^S	1/2	3/2	0	236 530)	6.10 - 1	5.69 + 9	В	24, 26, 29, 43°, 99*
424.50 ^C	$2p^65p^2P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 891 430	2 127 000)	6.8 - 1	1.2+10	С	99*
420.80 ^C	1/2	1/2	1 889 360	2 127 000		3.34 - 1	6.3+9	C	99*
402.58 ^C	$2p^65d\ ^2{ m D_{5/2}}$	$2p^66f \ ^2F^o_{5/2}$	1 040 500	0.104.000				_	
402.25 ^C	,	· · · · · · · · · · · · · · · · · · ·	1 946 500 1 946 500	2 194 900 2 195 100		1.7 - 1 3.5	1.2+9 $1.8+10$	D C	99* 99*
402.14 ^C	5/2 3/2	7/2 5/2	1 946 230	2 194 900		2.5	1.8+10 $1.7+10$	C	99*
343.21 ^C	•	•						_	
343.21° 342.97 ^C	$2p^65p^2P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	1 891 430	2 182 800		8.0 - 2	1.1+9	D	99*
340.79 ^C	3/2 1/2	5/2 3/2	1 891 430 1 889 360	2 183 000 2 182 800		7.2 - 1 $3.98 - 1$	6.7+9 5.7+9	C C	99* 99*
	•	•							
327.55 ^C 326.48 ^C	$2p^65s\ ^2{ m S}_{1/2}$	$2p^{6}6p^{2}P_{1/2}^{\circ}$	1 846 100	2 151 400		1.4 - 1	4.50+9	C	99*
326.48	1/2	3/2	1 846 100	2 152 400)	2.90 - 1	4.53 + 9	$^{\mathrm{C}}$	99*
$324.496^{\rm S}$	$2p^63p^{-2}P_{3/2}^{\alpha}$	$2p^6 3d\ ^2{ m D}_{3/2}$	236 530	544 700)	1.35 - 1	2.13+9	В	26,43°,99*
323.189 ^S	3/2	5/2	236 530	545 950)	1.22	1.3 + 10	В	24, 26, 29, 43°, 99°
313.305 ^S	1/2	3/2	225 520	544 700)	7.00 - 1	1.19+10	В	24, 26, 29, 43°, 99*
280.25^{C}	$2p^65f^{-2}F_{5/2}^{\circ}$	$2p^67d\ ^2{ m D}_{3/2}$	1 967 880	2 324 700)	4.7 - 2	1.0+9	\mathbf{D}	99*
280.10 ^C	7/2	5/2	1 967 990	2 325 000)	6.8 - 2	9.7 + 8	D	99*
280.02^{C}	5/2	5/2	1 967 880	2 325 000)	3.4 - 3	4.8+7	E	99*
278.40 ^C	$2p^65d\ ^2\mathrm{D}_{5/2}$	$2p^{6}7p^{2}P_{3/2}^{o}$	1 946 500	2 305 700)	1.69 - 1	3.63+9	C	99*
278.19 ^C	3/2	1/2	1 946 230	2 305 700)	9.6 - 2	4.1 + 9	\mathbf{C}	99*
278.19 ^C	3/2	3/2	1 946 230	2 305 700)	1.9 - 2	4.0+8	D	99*
260.78 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^65p^2P_{1/2}^{o}$	1 505 900	1 889 360)	3.5 - 1	1.7+10	C	99*
259.77 ^C	5/2	3/2	1 506 480	1 891 430)	6.6 - 1	1.6+10	C	99*
259.38^{C}	3/2	3/2	1 505 900	1 891 430)	7.2 - 2	1.7 + 9	D	99*
259.07 ^C	$2p^65d^{-2}D_{5/2}$	$2p^67f^2F_{5/2}^{\circ}$	1 946 500	2 332 500)	4.9 - 2	8.2+8	D	99*
258.89 ^C	3/2	5/2	1 946 230	2 332 500		6.8 - 1	1.2+10	C	99*
258.87^{C}	5/2	7/2	1 946 500	2 332 800)	9.6 - 1	1.2 + 10	C	99*
252.00 ^C	$2p^{6}4f^{2}F_{5/2}^{\circ}$	$2p^65d^{2}D_{3/2}$	1 549 410	1 946 230	D	1.1 – 1	3.0+9	\mathbf{C}	99*
251.97 ^C	7/2	5/2	1 549 620	1 946 500		1.65 - 1	2.89+9	C	99*
251.83^{C}	5/2	5/2	1 549 410	1 946 500		8.4 - 3	1.5+8	D	99*
250.65 ^C	$2p^65p\ ^2\mathrm{P_{3/2}^o}$	$2p^67s\ ^2\mathrm{S}_{1/2}$	1 891 430	2 290 400	n	1.28 - 1	6.8+9	С	99*
249.35 ^C	1/2	1/2	1 889 360	2 290 400		6.4 - 2	3.4+9	C	99*
230.80 ^C 230.64 ^C	$2p^65p\ ^2\mathrm{P_{3/2}^o}$	$2p^67d\ ^2{ m D}_{3/2}$	1 891 430	2 324 700		3.0 - 2	9.5+8	D	99*
230.64 229.71 ^C	3/2	5/2	1 891 430 1 889 360	2 325 000 2 324 700		2.6 - 1 $1.5 - 1$	5.5+9 $4.6+9$	C C	99* 99*
	1/2	3/2	1 009 500	2 324 100	U	1.5 - 1	4.0+9	C	99
223.01 ^C	$2p^65f^{-2}\mathrm{F_{5/2}^o}$	$2p^6 8d\ ^2{ m D}_{3/2}$	1 967 880	2 416 30		1.8 - 2	5.9+8	D	99*
222.96 ^C 222.91 ^C	7/2	5/2	1 967 990	2 416 50		2.6 - 2	5.8+8	D	99*
222.91	5/2	5/2	1 967 880	2 416 50	U	1.3 – 3	2.9 + 7	E	99*
220.59 ^C	$2p^64p^{-2}P_{3/2}^{\circ}$	$2p^65s \ ^2S_{1/2}$	1 392 780	1 846 10	0	4.8 - 1	3.2 + 10	C	99*
218.49 ^C	1/2	1/2	1 388 410	1 846 10	0	2.4 - 1	1.7 + 10	\mathbf{C}	99*
218.53 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 946 500	2 404 10	0	6.0 - 2	2.2+9	C	99*
218.40 ^C	2p 04 155/2 3/2	2p Sp 1 3/2 1/2	1 946 230	2 404 10		3.5 - 2	2.2+9 $2.4+9$	D	99 99*

V XIII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
216.73 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2F_{5/2}^{\circ}$	1 506 480	1 967 880) 2	.1 – 1	5.0+9	D	99*
16.68 ^C	5/2	7/2	1 506 480	1 967 990) 4	.1	7.2 + 10	C	99*
16.46 ^C	3/2	5/2	1 505 900	1 967 880) 2	2.8	6.7+10	C	99*
10.53 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^68f$ $^2F_{7/2}^o$	1 946 500	2 421 500) 4	-3 - 1	8.2+9	C	99*
210.53 ^C	5/2	5/2	1 946 500	2 421 500		2.2 - 2	5.4 + 8	D	99*
10.41 ^C	3/2	5/2	1 946 230	2 421 500) 3	1.0 – 1	7.6+9	C	99*
199.37 ^C	$2p^65p\ ^2\mathrm{P_{3/2}^o}$	$2p^68s \ ^2\mathrm{S}_{1/2}$	1 891 430	2 393 000) 5	0.00 - 2	4.19 + 9	\mathbf{C}	99*
98.55 ^C	1/2	1/2	1 889 360	2 393 000) 2	2.50 - 2	2.11+9	С	99*
190.52 ^C	$2p^65p^2P_{3/2}^{\circ}$	$2p^6 8d\ ^2{ m D}_{3/2}$	1 891 430	2 416 300) 1	.5 – 2	6.8+8	D	99*
190.45 ^C	3/2	5/2	1 891 430	2 416 500		.3 – 1	4.1 + 9	$^{\rm C}$	99*
89.77 ^C	1/2	3/2	1 889 360	2 416 300) 7	1.40 - 2	3.43+9	С	99*
183.59 ^C	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^6 3d^2 D_{3/2}$	0	544 700)	E2	4.89 + 5	C	99*
183.17 ^C	1/2	5/2	0	545 950		E2	4.89+5	C	99*
180.68 ^C	$2p^64p\ ^2{ m P}^{ m o}_{3/2}$	$2p^65d\ ^2{ m D}_{3/2}$	1 392 780	1 946 230	3 (3.4 - 2	4.4+9	D	99*
180.60 ^C	3/2	5/2	1 392 780	1 946 500) 7	7.6 - 1	2.6+10	C	99*
179.27 ^C	1/2	3/2	1 388 410	1 946 230) 4	1.4 - 1	2.3+10	C	99*
169.82 ^C	$2p^64s\ ^2{ m S}_{1/2}$	$2p^65p^2P_{1/2}^{\circ}$	1 300 490	1 889 360) 1	.4 – 1	1.6+10	C	99*
.69.22 ^C	1/2	3/2	1 300 490	1 891 430) :	2.70 - 1	1.57 + 10	C	99*
57.88 ^C	$2p^64f$ $^2\mathrm{F}^{\mathrm{o}}_{7/2}$	$2p^66d\ ^2{ m D}_{5/2}$	1 549 620	2 183 000	o :	2.7 - 2	1.2+9	D	99*
157.88 ^C	5/2	3/2	1 549 410	2 182 800)	1.9 - 2	1.3+9	D	99*
157.83 ^C	5/2	5/2	1 549 410	2 183 000		1.4 - 3	6.1+7	\mathbf{E}	99*
54.92 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^66p^{-2}P_{1/2}^{o}$	1 505 900	2 151 400		5.6 - 2	7.9+9	C	99*
154.82 ^C	5/2	3/2	1 506 480	2 152 400	0 :	1.0 - 1	7.2 + 9	C	99*
154.68 ^C	3/2	3/2	1 505 900	2 152 400	0 :	1.2 - 2	8.1+8	D	99*
145.26 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^66f^2F_{5/2}^{\circ}$	1 506 480	2 194 900	0 :	5.0 - 2	2.6+9	D	99*
145.22 ^C	5/2	7/2	1 506 480	2 195 100	0 :	1.0	4.1 + 10	\mathbf{C}	99*
145.14 ^C	3/2	5/2	1 505 900	2 194 900	0 7	7.2 - 1	3.8+10	C	99*
136.20 ^C	$2p^64p^{-2}P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 392 780	2 127 000	0 9	9.2 - 2	1.6+10	C	99*
135.39 ^C	1/2	1/2	1 388 410	2 127 000	0 4	4.4 - 2	8.2+9	C	99*
128.98 ^C	$2p^64f$ $^2F_{5/2}^o$	$2p^67d\ ^2{ m D}_{3/2}$	1 549 410	2 324 700	0 (6.6 - 3	6.6+8	D	99*
128.97 ^C	7/2	5/2	1 549 620	2 325 000	0 :	9.6 - 3	6.4+8	D	99*
128.93 ^C	5/2	5/2	1 549 410	2 325 000	0 .	4.7 – 4	3.2 + 7	\mathbf{E}	99*
126.58 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^{\circ}}$	$2p^66d\ ^2{ m D}_{3/2}$	1 392 780	2 182 800	0 :	3.1 - 2	3.2 + 9	D	99*
126.55 ^C	3/2	5/2	1 392 780	2 183 006		2.6 - 1	1.8 + 10	\mathbf{C}	99*
125.88 ^C	1/2	3/2	1 388 410	2 182 800	0	1.5 - 1	1.6+10	C	99*
125.12 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^67p^2P_{3/2}^{o}$	1 506 480	2 305 700	0 :	3.9 - 2	4.1+9	D	99*
125.03 ^C	3/2	3/2	1 505 900	2 305 70	0	4.0 - 3	4.4+8	E	99*
125.03 ^C	3/2	1/2	1 505 900	2 305 70	0	2.1 - 2	4.5+9	D	99*
121.06 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^67f^2F_{5/2}^o$	1 506 480	2 332 50	0	2.1 - 2	1.6+9	D	99*
121.02 ^C	5/2	7/2	1 506 480	2 332 80		4.3 - 1	2.4 + 10	\mathbf{C}	99*
120.98 ^C	3/2	5/2	1 505 900	2 332 50	0	3.0 - 1	2.3+10	C	99*
118.50	$2p^63d\ ^2{ m D}_{3/2}$	$2p^64p\ ^2\mathrm{P_{1/2}^o}$	544 700	1 388 41		1.6 - 1	3.8+10	C	38°,99*
118.08	5/2	3/2	545 950	1 392 78		2.88 - 1	3.45+10	C	38°,99*
117.91 ^C	3/2	3/2	544 700	1 392 78	0	3.1 - 2	3.7+9	D	99*
117.52 ^C	$2p^{6}4s^{2}S_{1/2}$	$2p^66p\ ^2\mathrm{P}_{1/2}^{\circ}$	1 300 490	2 151 40	0	4.4 - 2	1.1+10	C	99*
117.38 ^C	1/2	3/2	1 300 490	2 152 40	0	8.8 - 2	1.1 + 10	C	99*
115.36 ^C	$2p^64f\ ^2\mathrm{F}^{\circ}_{7/2}$	$2p^6 8d\ ^2{ m D}_{5/2}$	1 549 620	2 416 50	0	4.7 - 3	4.0+8	E	99*
115.35 ^C	5/2	3/2	1 549 410	2 416 30	0	3.2 - 3	4.0+8	\mathbf{E}	99*
115.33 ^C	5/2	5/2	1 549 410	2 416 50	0	2.3 - 4	2.0+7	E	99*
111.41 ^C	$2p^64p^2P_{3/2}^{\circ}$	$2p^67s \ ^2S_{1/2}$	1 392 780	2 290 40	0	3.6 - 2	9.5+9	D	99*
110.87^{C}									

V XIII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
			 					
111.41 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2{ m P}^{ m o}_{3/2}$	1 506 480	2 404 100	1.8 - 2	2.4 + 9	D	99*
111.33 ^C 111.33 ^C	3/2	1/2	1 505 900	2 404 100	1.0 - 2	2.7+9	D	99*
	3/2	3/2	1 505 900	2 404 100	2.0 - 3	2.7+8	E	99*
109.29 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68f \ ^2F^{o}_{5/2}$	1 506 480	2 421 500	1.1 - 2	1.0+9	D	99*
109.29 ^C	5/2	7/2	1 506 480	2 421 500	2.2 - 1	1.6 + 10	\mathbf{C}	99*
109.22 ^C	3/2	5/2	1 505 900	2 421 500	1.6 - 1	1.5+10	С	99*
107.31 ^C	$2p^64p^2P_{3/2}^{o}$	$2p^67d\ ^2{ m D}_{3/2}$	1 392 780	2 324 700	1.5 - 2	2.2+9	D	99*
107.27 ^C	3/2	5/2	1 392 780	2 325 000	1.4 - 1	1.3 + 10	$^{\rm C}$	99*
106.80 ^C	1/2	3/2	1 388 410	2 324 700	7.6 - 2	1.1+10	С	99*
99.978 ^C	$2p^{6}4p^{-2}P_{3/2}^{\circ}$	$2p^68s \ ^2S_{1/2}$	1 392 780	2 393 000	1.8 - 2	6.0+9	D	99*
99.543 ^C	1/2	1/2	1 388 410	2 393 000	9.2 - 3	3.1 + 9	D	99*
99.655 ^C	$2p^63d^2D_{5/2}$	$2p^64f^{-2}F_{5/2}^{o}$	545 950	1 549 410	2.6 - 1	2.9+10	D	99*
99.634 ^S	5/2	7/2	545 950	1 549 620	5.2	4.4+11	C	43°, 44, 99*
99.531 ^S	3/2	5/2	544 700	1 549 410	3.7	4.1+11	Ċ	43°, 44, 99*
97.702 ^C	$2p^64p~^2P_{3/2}^{\circ}$	$2p^68d\ ^2{ m D}_{3/2}$	1 392 780	2 416 300	8.8 - 3	1540	D	99*
97.683 ^C	2 <i>p</i> 4 <i>p</i> 13/2 3/2	2p 8d D3/2 5/2	1 392 780	2 416 500	7.88 - 2	1.5+9 $9.2+9$	C	99*
97.287 ^C	1/2	3/2	1 388 410	2 416 300	4.40 - 2	7.8+9	Ċ	99*
93.994	2m62m 2D0	$2p^64s\ ^2{ m S}_{1/2}$	026 520	1 700 400				4.4
93.025	$2p^63p \ ^2\mathrm{P_{3/2}^{\circ}}$	2p 4s 5 _{1/2}	236 530 225 520	1 300 490 1 300 490				44 29, 44°
		·						
78.783	$2p^63p^{-2}P_{3/2}^{o}$	$2p^64d\ ^2{ m D}_{3/2}$	236 530	1 505 900		2.8+10	D	44°, 45 ^{\(\Delta\)} , 99*
78.746 78.101	3/2 1/2	5/2 3/2	236 530 $225 520$	1 506 480 1 505 900	9.28 - 1 $5.20 - 1$	1.66+11 $1.42+11$	C	29,44°,99* 29,44°,99*
74.368 ^C	$2p^6 3d\ ^2{ m D}_{3/2}$					•		
74.308		$2p^65p\ ^2P_{1/2}^{\circ}$	544 700 545 950	1 889 360 1 891 430		1.5+10	D	$99*$ $24^{\circ}, 29, 45^{\triangle}, 99*$
74.254 ^C	5/2 3/2	3/2 3/2	544 700	1 891 430		1.4+10 $1.5+9$	D E	99*
70.005								
72.025 71.799	$2p^6 3s \ ^2 S_{1/2}$	$2p^{6}4p^{2}P_{1/2}^{o}$	0	1 388 410 1 392 780		8.3+10 $7.9+10$	B B	29,44°,99* 29,44°,99*
	•	3/2	Ü	1 332 100	2.44 - 1	1.5-10	Ь	29,44 ,99
70.327 ^C	$2p^63d^{2}D_{5/2}$	$2p^65f\ ^2{ m F}^{ m o}_{5/2}$	545 950	1 967 880		1.1 + 10	D	99*
70.323 70.262	5/2 3/2	7/2 5/2	545 950 544 700	1 967 990 1 967 880		1.65+11 $1.54+11$	C C	29, 44°, 99* 29, 44°, 99*
				2 00, 000	0.01	1.01,11	V	20, 11 , 55
62.249^{C} 62.239^{C}	$2p^63d^{\ 2}{ m D_{5/2}}$	$2p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	545 950	2 152 400		6.7 + 9	D	99*
62.239 ^C	3/2	1/2	544 700 544 700	2 151 400 2 152 400		7.6+9 $7.4+8$	D E	99* 99*
	3/2	3/2	044 100	2 102 400	1.7 – 3	1.470	15	99
62.132	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65s \ ^2\mathrm{S}_{1/2}$	236 530	1 846 100		4.56 + 10	C	29,45°,99*
61.705	1/2	1/2	225 520	1 846 100	2.6 - 2	2.3+10	\mathbf{C}	29,45°,99*
60.645^{C}	$2p^63d\ ^2{ m D}_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{o}$	545 950	2 194 900		5.6 + 9	D	99*
60.640 60.596	5/2	7/2	545 950 544 700	2 195 100		8.4+10	C	29, 45°, 99*
	3/2	5/2	544 700	2 194 900	2.6 - 1	7.9+10	С	45°, 99*
58.490 ^C	$2p^63p\ ^2P_{3/2}^{\circ}$	$2p^65d\ ^2{ m D}_{3/2}$	236 530	1 946 230	3.5 - 2	1.7 + 10	D	99*
58.482	3/2	5/2	236 530	1 946 500		1.0 + 11	C	29, 44°, 45 ^Δ , 99*
58.116	1/2	3/2	225 520	1 946 230	1.7 – 1	8.5+10	C	29,44°,45 [△] ,99*
56.826^{C}	$2p^63d\ ^2{ m D}_{5/2}$	$2p^67p^2P_{3/2}^{\circ}$	545 950	2 305 700	7.2 - 3	3.9 + 9	D	99*
56.786 ^C	3/2	1/2	544 700	2 305 700		4.4 + 9	D	99*
56.786 ^C	3/2	3/2	544 700	2 305 700	8.4 - 4	4.4 + 8	E	99*
55.974 ^C	$2p^63d^{-2}D_{5/2}$	$2p^67f^{-2}F_{5/2}^{\circ}$	545 950	2 332 500	9.0 - 3	3.3+9	D	99*
55.967	5/2	7/2	545 950	2 332 800	1.8 - 1	4.8 + 10	C	29,45°,99*
55.932	3/2	5/2	544 700	2 332 500		4.4+10	C	45°, 99*
53.817 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2P_{3/2}^{\circ}$	545 950	2 404 100	4.4 – 3	2.5+9	E	99*
53.781 ^C	3/2	1/2	544 700	2 404 100		2.8+9	\mathbf{E}	99*
53.781 ^C	3/2	3/2	544 700	2 404 100	4.8 - 4	2.8 + 8	\mathbf{E}	99*
53.318	$2p^63d^{-2}D_{5/2}$	$2p^68f ^2F^{\circ}_{7/2}$	545 950	2 421 500	1.04 – 1	3.04+10	С	29,45°,99*
53.318 ^C	5/2	5/2	545 950	2 421 500		2.0+9	E	99*
53.281				000	U			

V XIII - Continued

Wave- ength (Å)	Classification Lower	u Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
52.928	$2p^63s\ ^2S_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	0	1 889 360	4	.0 – 2	4.8+10	C	29,44°,99*
52.870	1/2	3/2	0	1 891 430	8	0 - 2	4.8+10	C	29,44°,99*
2.897 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	236 530	2 127 000	2	0.0 - 2	2.4+10	D	99*
2.590	1/2	1/2	225 520	2 127 000		.0 - 2	1.3+10	Ď	29°,99*
1.620	$2p^6 3d\ ^2\mathrm{D}_{5/2}$	$2p^69f\ ^2F^{\circ}_{7/2}$	545 950	2 483 200					29,45°
51.380 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	236 530	2 182 800	1	.6 - 2	1.0+10	D	99*
51.376	3/2	2p 0d D3/2 5/2	236 530	2 183 000		.46 - 1	6.2+10	C	29,45°,99*
1.091	1/2	3/2	225 520	2 182 800		3.14 - 2	5.2 + 10	C	29,45°,99*
0.494	$2p^63d\ ^2{ m D}_{5/2}$	$2p^610f\ ^2\mathrm{F}^{\mathrm{o}}_{7/2}$	545 950	2 526 400					29
19.642	$2p^63d\ ^2{ m D}_{5/2}$	$2p^611f$ $^2F_{7/2}^{\circ}$	545 950	2 560 400					29
18.682	$2p^63p^2 P_{3/2}^{\circ}$	$2p^67s$ $^2S_{1/2}$	236 530	2 290 400	1	.1 - 2	1.5+10	D	29°,45 [△] ,99*
48.435	1/2	1/2	225 520	2 290 400		5.2 - 3	7.4+9	D	29°,45 [△] ,99*
w nooC		•							
47.889 ^C 47.884	$2p^63p$ 2 P $^{\circ}_{3/2}$	$2p^67d\ ^2{ m D}_{3/2}$	236 530	2 324 700 2 325 000		3.8 - 3 3.12 - 2	6.5+9	D C	99* 29,45°,99*
17.637	3/2 1/2	5/2 3/2	236 530 225 520	2 325 000		1.6 - 2	3.94+10 $3.3+10$	C	29,45°,99* 29,45°,99*
		•							
46.482 46.460	$2p^63s \ ^2S_{1/2}$	$2p^66p\ ^2\mathrm{P_{1/2}^o}$	0 0	2 151 400		3.9 - 2 3.8 - 2	2.9+10	D	45°,99*
10.400	1/2	3/2	U	2 152 400	3	a − 2	2.9+10	С	29,45°,99*
16.395	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^68s\ ^2{ m S}_{1/2}$	236 530	2 393 000		3.0 - 3	9.4+9	D	29°,99*
6.118	1/2	1/2	225 520	2 393 000	3	3.0 - 3	4.9+9	D	29°,99*
5.876 ^C	$2p^63p\ ^2P_{3/2}^{\circ}$	$2p^68d\ ^2{ m D}_{3/2}$	236 530	2 416 300	F	5.6 - 3	4.5+9	D	99*
5.873	3/2	5/2	236 530	2 416 500		5.2 - 2	2.7+10	Č	29,45°,99*
5.645	1/2	3/2	225 520	2 416 300	2	2.82 - 2	2.25 + 10	C	29,45°,99*
4.919	$2p^63p\ ^2\mathrm{P}^o_{3/2}$	$2p^69s\ ^2\mathrm{S}_{1/2}$	236 530	2 462 800					29
14.594	$2p^63p^2P_{3/2}^{\circ}$	$2p^69d\ ^2\mathrm{D}_{5/2}$	236 530	2 479 000					29,45°
14.376	1/2	3/2	225 520	2 479 000					29, 45°
14.013	$2p^63p~^2P_{3/2}^{\circ}$	$2p^6 10s\ ^2{ m S}_{1/2}$	236 530	2 508 600					29
13.741	$2p^63p^2P_{3/2}^{\circ}$	$2p^610d\ ^2\mathrm{D}_{5/2}$	236 530	2 522 800					29
43.371	$2p^63s\ ^2{ m S}_{1/2}$	$2p^67p^{-2}P_{3/2}^{\circ}$	0	2 305 700	ı				29,45°
43.371	1/2	1 1 - 3/2	0	2 305 700					45
13.268	$2p^63p\ ^2{ m P}^{lpha}_{3/2}$	$2p^611s\ ^2\mathrm{S}_{1/2}$	236 530	2 547 800	,				29
43.103	$2p^63p^{-2}P_{3/2}^{o}$	$2p^611d\ ^2\mathrm{D}_{5/2}$	236 530	2 556 600	1				45
42.909	1/2	3/2	225 520	2 556 000					45
41.596	$2p^63s\ ^2\mathrm{S}_{1/2}$		^						
41.596 41.596		$2p^68p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	2 404 100 2 404 100					29,45°
	1/2	1/2	U	2 404 100	•				45
40.477	$2p^63s\ ^2{ m S}_{1/2}$	$2p^69p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	2 470 500					29,45°
40.477	1/2	1/2	0	2 470 500	•				45
39.721	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^610p\ ^2{ m P}_{3/2}^{ m o}$	0	2 517 600)				29,45°
39.721	1/2	1/2	0	2 517 600					45
39.181	$2p^63s\ ^2{ m S}_{1/2}$	$2p^611p^2P_{3/2}^{\circ}$	0	0 550 000	,				45
39.181	2p 3s 31/2 1/2	2p 11p F _{3/2} 1/2	0	2 552 300 2 552 300					45 45
	•	•							7.0
24.517	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^53s^2 {}^2P^{o}_{3/2}$	0	4 079 000					46
24.202	1/2	1/2	0	4 132 000)				46

 \mathbf{v} xiv

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
720.456 ^C	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3s (\frac{1}{2}, \frac{1}{2})_0^{\circ}$	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{1}{2}]_1$	4 248 410	4 387 211		5.3 - 3	2.3+7	E	99*
508.625 379.694	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{1}{2}]_1$	4 190 606 4 202 700	4 387 211 4 466 070	2_2	2.4 - 1	2.1+9	D	50°,99* 50
471.884 437.516	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_2$	4 202 700 4 190 606	4 414 607 4 419 174	4 5	7.5 - 1	3.8+9	D	50 49,50°,99*
451.865 434.887	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_0^{\circ}$	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^{-2}[\frac{3}{2}]_1$	4 248 410 4 257 100	4 469 715 4 487 045	2 3				50 49,50°
442.779 423.92 403.239	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{3}{2}]_1$	4 202 700 4 202 700 4 190 606	4 428 554 4 438 597 4 438 597	2 2 3				50 50 50
436.978 304.211	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3s (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^5(^2P^o_{1/2})3p^{-2}[\frac{1}{2}]_1$	4 257 100 4 257 100	4 485 944 4 585 819	3bl 1				50 50
434.91 ^C 327.55 ^C 323.85 ^C	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 3p^2 [\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{1}{2}]^{\circ}_{1}$ 0	4 466 070 4 387 211 4 387 211	4 696 000 4 692 510 4 696 000		1.6 - 2 $1.2 - 1$ $2.9 - 1$	1.9+8 7.5+9 6.2+9	D- D D	99* 99* 99*
346.161 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^{\ 2}[\frac{3}{2}]_2^o$	4 419 174	4 708 057		2.8 - 2	3.1+8	E	99*
343.715 337.53 332.373	$2s^22p^5(^2P^{\circ}_{3/2})3p^2[\frac{5}{2}]_3$	$2s^22p^5(^2P^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_4$	4 419 174 4 419 174 4 414 607	4 710 105 4 715 469 4 715 469	5 1 5	1.1	7.2+9	D	49,50°,99* 50 49,50°
342.783 ^C 311.676	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	4 466 070 4 387 211	4 757 800 4 708 057	2	1.9 - 1 $2.9 - 1$	3.7+9 4.0+9	D E	99* 50°,99*
340.954	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})3d^2[\frac{3}{2}]_2^{\circ}$	4 485 944	4 779 239	3				50
340.392 336.177	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2P_{3/2}^{\circ})3d^2[\frac{5}{2}]_3^{\circ}$	4 438 597 4 428 554	4 732 377 4 726 016	3 2				49,50° 50
339.852 328.342	$2s^22p^5(^2P_{1/2}^{\circ})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2P_{1/2}^{\circ})3d^2[\frac{5}{2}]_3^{\circ}$	4 487 045 4 469 715	4 781 291 4 774 275	4 3				49,50° 49,50°
109.67 ^C	$2s^22p^5(^2P^{\circ}_{3/2})3p^2[\frac{1}{2}]_1$	$2s2p^{6}3p^{-3}P_{1}^{\circ}$	4 387 211	5 299 000		8.1 - 2	1.5+10	E	99*
90.227 86.356	$2s^22p^5(^2\mathbf{P_{1/2}^o})3d^{-2}[\frac{3}{2}]_1^o$	$2s^22p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_2$	4 827 200 4 779 239	5 935 500 5 937 239	5 20				53 52,53°
89.103 85.360	$2s^22p^5(^2P_{3/2}^{\circ})3d^{-2}[\frac{3}{2}]_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{5}{2}]_2$	4 757 800 4 708 057	5 880 100 5 879 567	5 20				53 52,53°
87.141 86.684	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{-2}[\frac{5}{2}]^{\circ}_{3}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	4 732 377 4 726 016	5 879 941 5 879 633	60 30				52,53° 52,53°
86.609 86.125	$2s^22p^5(^2\mathbf{P_{1/2}^o})3d^{\ 2}[\frac{5}{2}]_3^o$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\frac{7}{2}]_4$	4 781 291 4 774 275	5 935 911 5 935 375	40 15				52,53° 52,53°
86.148 85.758	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\mathrm{o}}_3$	$2s^22p^5(^2P^{\circ}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	4 715 469 4 710 105	5 876 259 5 876 175	80bl 60				52,53° 52,53°
85.899 85.482	$2s^22p^5(^2P^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_{3}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	4 715 469 4 710 105	5 879 633 5 879 941	10 15				53 52,53°
84.757 84.420	$2s^22p^5(^2P^{\circ}_{3/2})3d^2[\frac{1}{2}]^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	4 696 000 4 692 510	5 875 800 [5 877 442]	5 3				53 53
71.589 71.187	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d\ ^2[\frac{5}{2}]^{\mathrm{o}}_3$	4 438 597 4 428 554	5 835 457 5 833 302	5 4				51,52,53° 51,53°
71.317	$2s^22p^5(^2P_{1/2}^{\circ})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_2^{\circ}$	4 485 944	5 888 124	2				51,53°
71.290 70.573	$2s^22p^5(^2P_{1/2}^{\circ})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})4d\ ^2[\frac{5}{2}]^{\circ}_3$	4 487 045 4 469 715	5 889 775 5 886 695	4 2				51,53° 51,52,53°
71.022 70.677	$2s^2 2p^5 (^2P_{3/2}^{\circ})3p^2 [\frac{5}{2}]_3$	$2s^22p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{7}{2}]^{\circ}_4$	4 419 174 4 414 607	5 827 194 5 829 497	10 5				51, 52, 53° 51, 52, 53°

V xIV - Continued

Wave-	Classifi Lower		Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							·
70.487	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{\ 2}[\frac{5}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{5}{2}]^{\circ}_2$	4 414 607	5 833 302	1				52,53°
69.726 69.609	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[rac{1}{2}]_1$	$2s^22p^5(^2P_{3/2}^{\circ})4d^{\ 2}[\frac{1}{2}]_0^{\circ}$	4 387 211 4 387 211	5 821 381 5 823 811	2 1				53 53
65.571	$2s^22p^5(^2\mathbf{P_{1/2}^o})3s\ (\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2P_{1/2}^{\circ})4p^2[\frac{3}{2}]_2$	4 257 100	5 782 170	1				53
65.330	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_2^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4p^2[\frac{5}{2}]_3$	4 190 606	5 721 285	3				53
23.794	$2s^22p^{6}$ ¹ S ₀	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_1$	0	4 202 700		1.07 - 1	4.2+11	C-	47°,99*
23.490	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	4 257 100		1.23 - 1	4.96+11	C-	47°,99*
21.294	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d^{\ 2}[\frac{1}{2}]^{\circ}_{1}$	0	4 696 000		9.6 - 3	4.7+10	E	48°, 59, 99*
21.018	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	0	4 757 800		3.8 - 1	1.9+12	D	47°,99*
20.716	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3d^2[\frac{3}{2}]_1^{\circ}$	0	4 827 200		2.51	1.30+13	C-	47°,99*
18.870	$2s^22p^{6-1}S_0$	$2s2p^63p^{-3}P_1^{\circ}$	0	5 299 000	3				48
18.782	$2s^22p^{6-1}S_0$	$2s2p^63p^{-1}P_1^{\circ}$	0	5 324 000	7				48°,59
17.754	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4s~(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	5 632 000	1				48
17.575	$2s^22p^6$ 1 S ₀	$2s^22p^5(^2\mathbf{P}^{\circ}_{1/2})4s\;(\frac{1}{2},\frac{1}{2})^{\circ}_{1}$	0	5 690 000	1				48
17.094	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{3}{2}]^{\circ}_{1}$	0	5 850 000	4				48°, 59
16.939	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	5 904 000	5				48°,59
15.748	$2s^22p^{6}$ ¹ S ₀	$2s^22p^5(^2P_{3/2}^{\circ})5d\ ^2[\frac{3}{2}]_1^{\circ}$	0	6 350 000	1				48
15.609	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})5d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	6 407 000	2				48

 \mathbf{v} xv

Wave- length (Å)	Classifica Lower	tion Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
									
719.4	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^5$ $^2P_{1/2}^{\circ}$	0	58 093		M1	3.53+3	В	54°,99*
122.005	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s2p^{6-2}S_{1/2}$	58 093	877 732		1.24 - 1	2.77 + 10	C+	55, 56, 57°, 99
113.930	3/2	1/2	0	877 732		2.68 - 1	6.90 + 10	C+	55,56,57°,99
22.375	$2s2p^6$ 2 S _{1/2}	$2s2p^{5}(^{3}P^{o})3s^{2}P_{3/2}^{o}$	877 732	5 347 000	16				58°, 59, 60
22.214	1/2	1/2	877 732	5 379 400	12				58 , 59, 60
22.211	· ·	,	011 132	5 515 400	12				56
22.232	$2s^22p^5$ $^2P^{\circ}_{1/2}$	$2s^22p^4(^3\mathrm{P})3s\ ^4\mathrm{P}_{1/2}$	58 093	4 556 100	6				58
22.192	3/2	5/2	0	4 506 100	18	1.3 - 2	3.0 + 10	\mathbf{E}	58°, 59, 60, 99
22.083	3/2	3/2	0	4 528 400	35				58°, 59, 60
22.192	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^3P)3s^2P_{3/2}$	58 093	4 564 300	18				58
22.083	1/2	1/2	58 093	4 586 800	35	1.3 - 1	9.0 + 11	C-	58°,99*
21.909	3/2	3/2	0	4 564 300	30	1.0 1	0.0 , 11	~	58°, 59, 60
21.800	3/2	1/2	ő	4 586 800	20	1.12 - 1	7.9 + 11	C-	58°,99*
21.832	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1D)3s^2D_{3/2}$	ro 000	4 600 500	90	0.0	70.11	Б	*0 9 *0 00 00
21.568		·	58 093 0	4 638 500 4 636 500	20	2.0 - 1	7.0+11	D	58°, 59, 60, 99
21.506	3/2	5/2	U	4 636 500	30	2.6 - 1	6.2+11	D	58°, 59, 60, 99
21.285	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{1/2}$	$2s^22p^4(^1S)3s^2S_{1/2}$	58 093	4 756 200	20	6.8 - 2	5.0+11	D	58°,99*
21.019	3/2	1/2	0	4 756 200	40bl	3.0 - 2	2.3+11	E	58°,99*
20.078	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^3P)3d^4P_{3/2}$	58 093	5 039 000	20				58
19.888	3/2	1/2	0	5 028 200	15	1.2 - 1	9.8 + 11	E	58°,99*
19.844	3/2 3/2	•	ő	5 039 000	25	1.2 - 1	3.0-11	ш	58
19.782	3/2	3/2 5/2	ő	5 055 100	10				58
20.038	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^3P)3d^2P_{1/2}$	58 093	5 048 600	3				E90 60
19.903		•	58 093	5 082 500	18				58°,60
19.80	1/2	3/2	00 093	5 048 600	5bl				58°,60
19.671	3/2	1/2	0	5 082 500	9bl				58°,60 58°,60
10.011	3/2	3/2	v	0 002 000	901				38 ,00
19.988	$2s^22p^5$ $^2P_{1/2}^{\circ}$	$2s^22p^4(^3P)3d\ ^2D_{3/2}$	58 093	5 061 300	17				58
19.757	3/2	3/2	0	5 061 300	6				58°,60
19.645	3/2	5/2	0	5 090 400	15				58°, 59, 60
19.844	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3{\rm P})3d\ ^4{\rm F}_{5/2}$	0	5 039 300	25				58
19.725	$2s^22p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3\mathrm{P})3d\ ^2\mathrm{F}_{5/2}$	0	5 069 700	8				58
19.671	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^1{\rm D})3d\ ^2{\rm S}_{1/2}$	58 093	5 143 200	9bl	2.0 - 1	1.7+12	D	58°,99*
19.443	3/2	1/2	00 033	5 143 200	25	9.6 - 1	8.5+12	D	58°,99*
	•	•	ŭ	5 2 10 2 30		0.0 1	0.0 12	~	55 ,55
19.589	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^1D)3d^2P_{3/2}$	58 093	5 163 000	15	3.6 - 1	1.6 + 12	D	58°,99*
19.369^{C}	3/2	3/2	0	5 163 000		2.5	1.1+13	D	99*
19.518	$2s^22p^5$ ² P° _{1/2}	$2s^22p^4(^1{ m D})3d\ ^2{ m D}_{3/2}$	EQ 000	F 101 000	0.5	0.0	0.0:40	Б.	F09 65*
		•	58 093	5 181 800	35	2.0	8.8 + 12	D	58°,99*
19.366 19.298	3/2 3/2	5/2	0 0	5 163 700 5 181 800	50 30	3.9 - 1	1.8+12	D	58°, 59, 60 58°, 99*
		3/2	v		50	5.5 - 1	1.0712	ט	00 , dd
19.203	$2s^22p^5$ $^2\mathrm{P_{1/2}^o}$	$2s^22p^4(^1S)3d^2D_{3/2}$	58 093	5 265 600	15	1.4	6.3 + 12	D	58°, 60, 99*
19.028	3/2	5/2	0	5 255 400	12	3.6 - 1	1.1+12	D	58°, 60, 99*
18.991^{C}	3/2	3/2	0	5 265 600		2.2 - 2	1.0+11	E	99*

 \mathbf{v} xvi

Wave- length (Å)	Lower	Classification	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2042.7	$2s^22p^4$	³ P ₂	$2s^22p^4 \ ^3P_1$	0	48 937		M1	2.48+3	C+	54°,99*
1386.9 ^C	$2s^22p^4$	³ P ₁	$2s^22p^{4-1}D_2$	48 937	121 039		M1	3.0+2	D	99*
826.180 ^C	r	2	2	0	121 039		M1	4.0+3	D	99*
529.9	$2s^22p^4$	$^{3}P_{1}$	$2s^22p^{4-1}S_0$	48 937	237 705		M1	4.2+4	D	54°,99*
178.191 ^C	$2s^22p^4$	1 1 S ₀	$2s2p^5$ $^3P_1^{\circ}$	237 705	798 899		5.3 - 3	3.7+8	E	99*
156.060	$2s^22p^4$	$^{1}\mathrm{D_{2}}$	$2s2p^5\ ^3{ m P}_2^{ m o}$	121 039	761 824		2.1 - 2	1.1+9	\mathbf{E}	57°,99*
140.277	$2s^22p^4$	³ P ₁	$2s2p^5 \ ^3P_2^{o}$	48 937	761 824		1.29 - 1	8.7+9	C	55,56,57°,99*
133.525		0	1	49 970	798 899		1.02 - 1	1.27 + 10	C	55, 56, 57°, 99*
133.338		1	1	48 937	798 899		8.07 - 2	1.01 + 10	C	55, 56, 57°, 99*
131.263		2	2	0	761 824		3.9 - 1	3.0+10	C	55, 56, 57°, 99*
129.195 125.173		1 2	0	48 937 0	822 961 798 899		1.13 - 1 $1.52 - 1$	$4.52+10 \\ 2.16+10$	C C	55,56,57°,99* 55,56,57°,99*
138.168	$2s2p^5$		$2p^{6-1}S_0$	1 045 590	1 769 360		3.72 - 1	1.30+11	С	57°, 63, 70, 99*
123.780	$2s^22p^4$	-	$2s2p^{5-1}{ m P}_1^{ m o}$	237 705	1 045 590		6.2 - 2	9.0+9	C	55, 56, 57°, 99*
	$2s^22p^4$		2s2p				6.50 - 1			
108.160	$2s 2p$ $2s2p^5$		_	121 039	1 045 590			1.24+11	С	55,56,57°,99*
103.043		-	$2p^{6-1}S_0$	798 899	1 769 360	1	6.3 - 3	4.0+9	E	57°,99*
100.440	$2s^22p^4$	³ P ₀	$2s2p^{5-1}P_1^{o}$	49 970	1 045 590)	3.2 - 3	7.1 + 8	\mathbf{E}	57°,99*
100.336^{C}		1	1	48 937	1 045 590)	1.5 - 3	3.3 + 8	\mathbf{E}	99*
95.640		2	1	0	1 045 590)	2.8 - 2	6.7 + 9	E	57°,99*
20.659	$2s^22p^4$	1 3 Po	$2s^22p^3(^4S^o)3s \ ^3S_1^o$	49 970	4 891 000	١	5.0 - 2	2.6+11	C-	64,65°,99*
20.659	20 2p	1		48 937	4 891 000		1.02 - 1	5.3+11	C-	64,65°,99*
20.444		2	1 1	0	4 891 000		2.7 - 1	1.4 + 12	Č-	64,65°,99*
20.513	$2s^22p'$	⁴ ¹ S ₀	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	237 705	5 113 000)	1.5 - 1	7.9+11	D	64,65°,99*
20.444	$2s^22p^4$	1 D ₂	$2s^22p^3(^2D^o)3s^{-1}D_2^o$	121 039	5 012 000)	4.3 - 1	1.4+12	C-	64,65°,99*
20.278	$2s^22p^4$	^{4 3} P ₀	$2s^22p^3(^2D^\circ)3s^3D_1^\circ$	49 970	4 981 000)	3.0 - 2	1.6+11	C-	64,65°,99*
20.278	•	1	2	48 937	4 980 000		6.0 - 2	1.9 + 11	Ď	64,65°,99*
20.28^{C}		1	1	48 937	4 981 000)	9.9 - 2	5.4 + 11	C-	99*
20.079		2	2	0	4 980 000		1.5 - 1	4.8 + 11	Ď-	64,65°,99*
20.017		2	3	0	4 996 000		2.7 - 1	6.4 + 11	C-	64,65°,99*
20.21^{C}	$2s^22p^4$	1 1 D_{2}	$2s^22p^3(^2P^\circ)3s\ ^3P_2^\circ$	121 039	5 068 000)	1.0 - 1	3.2+11	E	99*
20.15 ^C	$2s^22p^4$	4 3 _D .	$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	48 937	F 010 000		3.9 - 2	10.11	-	00*
19.95 ^C	23 2p	2	25 2p (D)35 D ₂	40 937	5 012 000 5 012 000		3.9 - 2 $2.3 - 2$	1.3+11 $7.7+10$	E E	99* 99*
20.03 ^C	$2s^22p^4$	1 1 Da	$2s^22p^3(^2P^\circ)3s^{-1}P^\circ$	121 039	5 113 000	1	1.4 - 1	7.5+11	D	99*
19.92 ^C	$2s^22p'$	_	1							
19.730	2s*2p	2	$2s^22p^3(^2P^o)3s\ ^3P_2^o$	48 937 0	5 068 000 5 068 000		1.1 - 1 $3.7 - 2$	3.5 + 11 $1.3 + 11$	D D-	99* 64°,99*
18.890	$2s^{2}2p^{4}$	^{4 3} P ₁	$2s^22p^3(^4S^\circ)3d^{-3}D_2^\circ$	48 937	5 343 000)	3.9 - 1	1.5+12	D	64 [△] ,67°,99*
18.72 ^C	•	2	2	0	5 343 000		2.8 - 1	1.1+12	Ď	99*
18.689		2	3	_	5 351 000		1.30	3.55+12	Č-	66,67°,99*
18.68^{C}	$2s^22p^4$	1 1 D_{2}	$2s^22p^3(^2{\rm D^o})3d\ ^3{\rm D_3^o}$	121 039	5 475 000)	5.5 - 2	1.5+11	E	99*
18.630	$2s^22p^4$	4 $^{1}D_{2}$	$2s^22p^3(^2{ m D}^{ m o})3d\ ^1{ m D}_2^{ m o}$	121 039	5 489 000	0				64,67°
18.525	$2s^22p'$	4 $^{1}D_{2}$	$2s^22p^3(^2{ m D^o})3d\ ^1{ m F}_3^{ m o}$	121 039	5 518 000	D	2.0	5.6+12	D	64,66,67°,99*
18.492	$2s^{2}2p$	^{4 3} P ₁	$2s^22p^3(^2D^{\circ})3d^{-3}D_2^{\circ}$	48 937	5 457 00	0				66°,67
18.265		2	3	_	5 475 00		3.6	1.0 + 13	C-	55,66,67°,99*
18.265	$2s^22p^4$	4 $^{1}D_{2}$	$2s^22p^3(^2\mathrm{P^o})3d\ ^1\mathrm{F_3^o}$	121 039	5 596 00	0				66,67 [△] ,68°
18.26	$2s^22p$	⁴ ³ P ₂	$2s^22p^3(^2{ m D}^{ m o})3d\ ^3{ m P}_2^{ m o}$	0	5 476 00	0				64,67°
18.123 ^C	$2s^22p$	⁴ ³ P ₂	$2s^22p^3(^2{ m D^o})3d\ ^1{ m F}_3^{ m o}$	0	5 518 00	0	8.5 - 1	2.5+12	Е	99*
18.12	$2s^{2}2p$	$^{4} {}^{3}P_{0}$	$2s^22p^3(^2P^o)3d^3D_1^o$	49 970	5 568 00	0				55,67°
18.12		1	1	48 937	5 568 00	0				68
18.008		2	3	. 0	5 552 00	Λ				55, 64, 66, 67°

 ${f v}$ xvII

Wave- length (Å)	Classific Lower	ation Upper	Energy Leve	els (cm ⁻¹)	Int. gf	A (s ⁻¹)	Acc.	References
5172. ^C	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s^22p^3$ $^2D_{5/2}^{\circ}$	120 930	140 260	M1	6.2+1	С	99*
3438. ^C	$2s^22p^3$ $^2P_{1/2}^{\circ}$	$2s^22p^3$ $^2P_{3/2}^{\circ}$	211 420	240 500	M1	1.71+2	C	99*
1624. ^C	$2p^5 \ ^2\mathrm{P}^{\alpha}_{3/2}$	$2p^5 \ ^2P_{1/2}^{\circ}$	1 636 530	1 698 100	M1	4.29+3	C+	99*
1105. ^C	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s^22p^3$ 2 P $_{1/2}^{\circ}$	120 930	211 420	M1	2.4 + 3	D	99*
997.61 ^C	•	3/2	140 260	240 500	M1	3.3+3	D	99*
836.33 ^C	5/2 3/2	3/2	120 930	240 500	M1	9.0+3	D	99*
826.92 ^C	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ 2 D $_{3/2}^{\circ}$	0	120 930	M1	3.6+3	D	99*
712.96 ^C	23 2p 3 _{3/2} 3/2	25 2p D _{3/2} 5/2	0	140 260	M1	1.5+2	D-	99*
C	2 3 4 3 5	. 2. 3.2						
472.99 ^C	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ 2 P $_{1/2}^{\circ}$	0	211 420	M1	8.2 + 3	D-	99*
415.80 ^C	3/2	3/2	0	240 500	M1	1.1 + 4	D	99*
258.36 ^C	$2s^22p^3$ ² P $_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{4}P_{5/2}$	240 500	627 560	1.2 - 3	2.0 + 7	\mathbf{E}	99*
234.90 ^C	3/2	3/2	240 500	666 210	2.8 - 3	8.6+7	E	99*
212.69^{C}	1/2	1/2	211 420	681 580	8.8 - 4	6.5+7	E	99*
20 T 2 : C	·							
205.21 ^C	$2s^22p^3$ $^2D_{5/2}^{o}$	$2s(^{2}S)2p^{4}(^{3}P) {^{4}P_{5/2}}$	140 260	627 560	3.9 - 3	1.0 + 8	\mathbf{E}	99*
197.38 ^C	3/2	5/2	120 930	627 560	5.6 - 3	1.6+8	E	99*
183.39 ^C	3/2	3/2	120 930	666 210	4.4 - 4	2.2 + 7	\mathbf{E}	99*
178.36 ^C	3/2	1/2	120 930	681 580	7.2 - 4	7.5 + 7	\mathbf{E}	99*
184.05 ^C	$2s(^2S)2p^4(^3P)^2P_{1/2}$	$2p^{5} {}^{2}P_{3/2}^{\circ}$	1 093 200	1 636 530	4.40 - 2	2.17+9	С	99*
167.279	•		1 033 200	1 636 530	4.48 - 2 $4.48 - 1$	2.67+10	C	63, 67, 71°, 99*
165.322	3/2	3/2	1 093 200	1 698 100	2.16 - 1	2.64+10	Č	63, 67, 71°, 99*
151.656	1/2 3/2	1/2 1/2	1 038 740	1 698 100	1.56 - 1	2.26+10	Ċ	71°,99*
159.65 ^C	$2s^22p^3$ ² P° _{3/2}	$2s(^2S)2p^4(^1D)^{-2}D_{3/2}$	240 500	866 880	8.0 - 3	5.2+8	D	99*
158.143	3/2	5/2	240 500	872 820	1.12 - 1	5.0+9	ć	63,71°,99*
152.566	1/2	3/2	211 420	866 880	3.82 - 2	2.74+9	Č	56,63,71°,99*
159.347	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{4}P_{5/2}$	0	627 560	2.5 - 1	1.1+10	C	55,56,63,71°,99*
150.103	3/2	3/2	0	666 210	1.81 - 1	1.34 + 10	C	55,56,63,71°,99*
146.719	3/2	1/2	0	681 580	9.52 - 2	1.47 + 10	C	56,63,71°,99*
157.070	$2s(^{2}S)2p^{4}(^{1}S) {^{2}S_{1/2}}$	$2p^{5} {}^{2}\mathrm{P}^{\mathrm{o}}_{3/2}$	999 840	1 636 530	9.30 - 2	6.3+9	С	71°,99*
143.21 ^C	1/2	2p 1 3/2 1/2	999 840	1 698 100	2.8 - 3	4.6+8	D	99*
C	20 3 200	. (20) - 4(15) 25					_	
137.62 ^C	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s(^2S)2p^4(^1D) ^2D_{3/2}$	140 260	866 880	5.1 - 3	4.5 + 8	\mathbf{E}	99*
136.511	5/2	5/2	140 260	872 820	4.3 - 1	2.5 + 10	C	55, 56, 63, 71°, 99*
134.056 133.00 ^C	3/2	3/2	120 930	866 880	3.3 - 1	3.1+10	C	55, 56, 63, 71°, 99°
133.00	3/2	5/2	120 930	872 820	1.1 - 4	7.0+6	E	99*
131.687	$2s^22p^3$ ² P $_{3/2}^{\circ}$	$2s(^2S)2p^4(^1S) ^2S_{1/2}$	240 500	999 840	3.6 - 2	6.8+9	D	55,69,71°,99*
126.832	1/2	1/2	211 420	999 840	1.4 - 1	2.9+10	\mathbf{C}	55,69,71°,99*
130.941	$2s(^2S)2p^4(^1D)^{-2}D_{5/2}$	$2p^5 \ ^2\mathrm{P_{3/2}^o}$	872 820	1 636 530	3.8 - 1	3.7+10	С	63, 67, 70, 71°, 99*
129.927	3/2	3/2	866 880	1 636 530			Ċ	70,71°,99*
120.304	3/2	1/2	866 880	1 698 100			č	63,67,70,71°,99
125.278	$2s^22p^3$ ² P $_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{2}P_{3/2}$	240 500	1 038 740	8.28 - 2	8.8+9	C	56,63,71°,99*
120.873			211 420	1 038 740			C	55, 56, 63, 71°, 99'
117.276	1/2 3/2	3/2 1/2	240 500	1 093 200		6.9 + 10	C	55, 56, 63, 71°, 99
113.406	1/2	1/2	211 420	1 093 200			Č	56,63,71°,99*
115.36 ^C	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{1}D)^{2}D_{3/2}$	0	866 880	2.6 - 3	3.3+8	E	99*
113.785	$2s^22p^3$ 2 D $_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{1}S)^{2}S_{1/2}$	120 930	999 840	1.1 – 1	2.9+10	E	69,71°,99*
111.299	$2s^2 2p^{3-2} D_{5/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{2}P_{3/2}$	140 260					, ,
108.952		•	120 930	1 038 740 1 038 740			C C	55, 56, 63, 71°, 99°
102.854	3/2 3/2	3/2 1/2	120 930	1 038 740				56,63,71°,99° 55,56,63,71°,99
104.72 ^C	$2s(^{2}S)2p^{4}(^{3}P)^{4}P_{1/2}$	•	00					
	$2s(-5)2p^{-}(-P)^{-}P_{1/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$		1 636 530		1.6+8	E	99*
103.06^{C}	3/2	3/2	666 210	1 636 530		4.9 + 8	\mathbf{E}	99*
20 a C	E /D	3/2	627 560	1 636 530	7.2 - 3	1.2 + 9	\mathbf{E}	99*
99.111 ^C	5/2	0/2						
99.111 ^C 98.375 ^C	1/2	1/2	681 580	1 698 100		4.1+8	E	99*

V XVII - Continued

Wave-	Classific	ation	Energy Lev	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
96.270	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{2}P_{3/2}$	0	1 038 740	1	9.6 - 3	1.7+9	E	71°,99*
91.475^{C}	3/2	1/2	0	1 093 200		4.0 - 4	1.6+8	E	99*
17.644	$2s^22p^3$ ² D° _{3/2}	$2s^22p^2(^3P)3d^2F_{5/2}$	120 930	5 789 000	4				66
17.536	5/2	7/2	140 260	5 843 000	3				66°,67
17.490	$2s^22p^3$ 2 P $^{\circ}_{3/2}$	$2s^22p^2(^1{ m D})3d\ ^2{ m D}_{5/2}$	240 500	5 958 000	3				66°,67
17.373	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s^22p^2(^3{\rm P})3d\ ^2{\rm D}_{5/2}$	140 260	5 897 000	4				66°,67
17.259	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s^22p^2(^1D)3d^2F_{7/2}$	140 260	5 934 000	6				55,66°,67
17.16	3/2	5/2	120 930	5 948 000	1bl				67
17.158	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^2(^3P)3d^4P_{3/2}$	0	5 828 000	1				66°,67
17.158	3/2	5/2	0	5 828 000	1				66°,67

 \mathbf{v} xv \mathbf{u}

Wave-	Classifi	cation	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	Ellergy Lev		1116.		A (5)	Acc.	itererences
3307. ^C 2634. ^C	$2s^22p^2$ ³ P ₁	$2s^22p^2$ 3 P ₂	37 960 0	68 190 37 960		M1 M1	3.24+2 $9.21+2$	C+ E	99* 99*
1078.2 813.34 ^C	$2s^22p^2$ ³ P ₂	$2s^22p^2$ ¹ D ₂	68 190 37 960	160 910 160 910		M1 M1	3.7+3 3.2+3	D+ D	54°,99* 99*
434.2^{T}	$2s^22p^2$ ³ P ₁	$2s^22p^2$ ¹ S ₀	37 960	[269 000]		M1	4.3+4	D	54°,99*
334.81 ^C 304.03 ^C	$2s^22p^2$ 3 P ₂	$2s(^2S)2p^3(^4S^{\circ}) \ ^5S_2^{\circ}$	68 190 37 960	[366 870] [366 870]		1.0 - 3 $6.3 - 4$	1.2+7 $9.1+6$	E E	99* 99*
290.45^{C} 252.30^{C}	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{-1}P_{1}^{\circ}$	$2p^4\ ^3{ m P}_2$	1 014 420 1 014 420	1 358 710 1 410 770		4.8 - 3 $1.0 - 2$	7.6+7 $3.6+8$	E E	99* 99*
280.87^{C}	$2s^22p^{2-1}S_0$	$2s(^2S)2p^3(^2D^o) \ ^3D_1^o$	[269 000]	625 040		1.0 - 3	2.8+7	E	99*
$222.08^{ m C}$ $199.06^{ m C}$	$2s(^{2}S)2p^{3}(^{2}D^{o})^{-1}D_{2}^{o}$	$2p^4\ ^3{ m P}_2$	908 420 908 420	1 358 710 1 410 770		1.9 - 2 $1.6 - 3$	5.1+8 9.0+7	E E	99* 99*
216.69 194.76 ^C 192.76 ^C	$2s(^2S)2p^3(^4S^\circ)\ ^3S_1^\circ$	$2p^4$ 3P_2 1 0	897 330 897 330 897 330	1 358 710 1 410 770 1 416 110		2.1 - 1 $1.7 - 1$ $6.93 - 2$	6.0+9 9.8+9 1.24+10	C C	72°,99* 99* 99*
$216.01^{ m C} \ 215.46^{ m C} \ 210.95^{ m C}$	$2s^22p^2$ ¹ D ₂ 2	$2s(^2S)2p^3(^2D^\circ)\ ^3D_2^\circ$	160 910 160 910 160 910	623 860 625 040 634 950		1.1 - 3 $1.9 - 3$ $2.2 - 2$	3.0+7 8.8+7 4.6+8	E E E	99* 99* 99*
214.63 ^C	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{-1}P_{1}^{\circ}$	$2p^{4-1}\mathrm{D}_2$	1 014 420	1 480 330		1.31 - 1	3.79+9	C	99*
214.40 ^C	$2s^22p^{2-1}S_0$	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{3}P_{1}^{\circ}$	[269 000]	735 420		1.8 - 3	8.7+7	E	99*
179.96 ^C 179.58 ^C 176.440 170.678	$2s^22p^2$ 3 P $_2$ 2 2 2 2 1	$2s(^{2}S)2p^{3}(^{2}D^{o})$ $^{3}D_{2}^{o}$ 1 3 2	68 190 68 190 68 190 37 960	623 860 625 040 634 950 623 860		9.5 - 4 $2.7 - 4$ $1.82 - 1$ $1.6 - 1$	3.9+7 1.8+7 5.6+9 7.4+9	E C C	99* 99* 63,67,73°,99* 63,67,73°,99*
170.33 ^C 159.991	1 0	1 1	37 960 0	625 040 625 040		1.6 - 2 $8.7 - 2$	1.2+9 $7.6+9$	D C	99* 63,67,72,73°,99*
174.852	$2s(^{2}S)2p^{3}(^{2}D^{o})^{-1}D_{2}^{o}$	$2p^{4-1}\mathrm{D}_2$	908 420	1 480 330		6.60 - 1	2.88+10	C	72,73°,99*
174.06 ^C 171.69 ^C	-	$2s(^{2}S)2p^{3}(^{2}P^{\circ}) \ ^{3}P_{1}^{\circ}$	160 910 160 910	735 420 743 350		3.3 - 3 $3.4 - 3$	2.4+8 1.5+8	E E	99* 99*
162.53 160.40 149.86 148.07 ^C 147.30 146.91 ^C	$2s(^2S)2p^3(^2P^o)$ $^3P_2^o$ 1 2 2 1 0 0 1	$2p^4\ ^3\mathrm{P}_2$ 2 1 1 1 0	743 350 735 420 743 350 735 420 731 870 735 420	1 358 710 1 358 710 1 410 770 1 410 770 1 410 770 1 416 110		6.95 - 2 $5.82 - 2$ $1.21 - 1$ $4.8 - 4$ $3.67 - 2$ $5.16 - 2$	3.51+9 3.02+9 1.2+10 4.9+7 3.76+9 1.59+10	C C C C	72°,99* 72°,99* 72°,99* 72°,99*
$159.15^{\rm C}$	$2s^22p^2$ ¹ S ₀	$2s(^{2}S)2p^{3}(^{4}S^{\circ})^{3}S_{1}^{\circ}$	[269 000]	897 330		3.5 - 3	3.0+8	E	99*
152.933	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{-1}P_{1}^{\circ}$	$2p^{4}$ 1 S ₀	1 014 420	1 668 300		2.3 - 1	6.7+10	\mathbf{C}	72,73°,99*
149.86 148.113 144.111 143.377 141.73 136.00	$2s^22p^2$ $^3\mathrm{P}_2$ 2 1 1 0	$2s(^{2}S)2p^{3}(^{2}P^{o})$ $^{3}P_{1}^{o}$ 2 2 2 3	68 190 68 190 37 960 37 960 37 960 0	735 420 743 350 731 870 735 420 743 350 735 420		3.7 - 2 $2.5 - 1$ $5.61 - 2$ $9.36 - 2$ $1.3 - 2$ $3.27 - 2$	3.6+9 1.5+10 1.8+10 1.01+10 8.8+8 3.93+9	D C C D C	63 ⁴ , 72°, 99* 63, 67, 69, 72, 73°, 99* 63, 72, 73°, 99* 63, 72, 73°, 99* 63°, 99* 63°, 72, 99*
138.168 136.30 ^C 136.08 ^C 127.27 127.079 126.411	$2s(^{2}S)2p^{3}(^{2}D^{\circ})\ ^{3}D_{3}^{\circ}$ 1 2 2 1 2 1	$2p^4$ 3P_2 2 2 1 1 0	634 950 625 040 623 860 625 040 623 860 625 040	1 358 710 1 358 710 1 358 710 1 410 770 1 410 770 1 416 110		3.9 - 1 $2.6 - 2$ $1.48 - 1$ $9.03 - 2$ $1.47 - 1$ $7.44 - 2$	2.7+10 1.9+9 1.06+10 1.24+10 2.02+10 3.11+10	C C C C	67,73°,99* 99* 99* 67°,99* 67,73°,99* 73°,99*
135.69^{C} 134.24^{C}	$2s(^{2}S)2p^{3}(^{2}P^{\circ}) {^{3}P_{2}^{\circ}}$	$2p^4$ $^1\mathrm{D}_2$ 2	743 350 735 420	1 480 330 1 480 330		8.5 - 3 $6.6 - 3$	6.2+8 4.9+8	E E	99* 99*
134.1	$2s^22p^2$ ¹ S ₀	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	[269 000]	1 014 420		1.17 - 1	1.45+10	C	63°,99*
133.778	$2s^22p^{2-1}D_2$	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D_{2}^{\circ}$	160 910	908 420		5.50 - 1	4.10+10	C	63,67,69,73°,99*

V XVIII - Continued

Wave- length (Å)	· Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
129.71 ^C	$2s(^{2}S)2p^{3}(^{4}S^{\circ})$ $^{3}S_{1}^{\circ}$	$2p^{4}$ 1 S ₀	897 330	1 668 300		9.3 - 3	3.7+9	E	99*
120.607 116.365 111.442	$2s^22p^2\ ^3\mathrm{P}_2$	$2s(^{2}S)2p^{3}(^{4}S^{\circ}) \ ^{3}S_{1}^{\circ}$	68 190 37 960 0	897 330 897 330 897 330		3.3 - 1 $1.44 - 1$ $4.73 - 2$	5.0+10 2.37+10 8.5+9	C C	63,67,69,73°,99* 63,67,69,73°,99* 63,67,69,73°,99*
119.015 114.88 ^C	$2s^22p^2$ ³ P ₂	$2s(^{2}\mathrm{S})2p^{3}(^{2}\mathrm{D}^{\circ})\ ^{1}\mathrm{D}_{2}^{\circ}$	68 190 37 960	908 420 908 420		4.4 - 2 $1.8 - 3$	4.1+9 1.8+8	E E	73°,99* 99*
118.29 ^C 116.76 ^C	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{3}^{o}$	$2p^{4} \ ^{1}\mathrm{D}_{2}$	634 950 623 860	1 480 330 1 480 330		3.0 - 2 $4.5 - 3$	2.9+9 4.4+8	E E	99* 99*
117.163	$2s^22p^{2-1}D_2$	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	160 910	1 014 420		3.5 - 1	5.6+10	C	63,67,69,73°,99*
107.19 ^C	$2s(^{2}S)2p^{3}(^{2}P^{o})^{3}P_{1}^{o}$	$2p^4$ 1 S ₀	735 420	1 668 300		3.0 - 3	1.7+9	E	99*
102.410	$2s^22p^2$ ³ P ₁	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	37 960	1 014 420		1.3 - 2	2.8+9	E	73°,99*
17.717	$2s^22p^{2-1}D_2$	$2s^22p3s\ ^1P_1^{\circ}$	160 910	5 805 000	1				74
17.678 17.482 17.400	$2s^22p^2$ 3P_2 2 2	$2s^22p3s$ $^3P_1^{\circ}$ 2	68 190 68 190 37 960	5 726 000 5 786 000 5 786 000	4bl 8bl 9bl				74 74 74
17.545	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{2}^{o}$	$2s2p^{2}(^{2}D)3s^{-3}D_{2}$	623 860	6 323 300	2				74
17.442	$2s(^2S)2p^3(^4S^{\circ})$ $^5S_2^{\circ}$	$2s2p^{2}(^{4}\mathrm{P})3s^{5}\mathrm{P}_{3}$	[366 870]	6 100 000?	4				74
17.018	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{2}^{o}$	$2s2p^{2}(^{4}\mathrm{P})3d^{3}\mathrm{F}_{3}$	623 860	6 500 000	2				74
16.914	$2s^22p^{2-1}D_2$	$2s^22p3d\ ^3{ m F}_2^{ m o}$	160 910	6 073 000					76
16.787	$2s^22p^{2-1}S_0$	$2s^22p3d\ ^1 ext{P}_1^{f o}$	[269 000]	6 226 000	3				74 [△] ,76°
16.558	$2s(^2S)2p^3(^2D^o)$ $^3D_3^o$	$2s2p^{2}(^{2}D)3d^{3}F_{4}$	634 950	6 674 000	7				66,74°
16.467	$2s^22p^{2-1}D_2$	$2s^22p3d\ ^1{ m F}_3^{ m o}$	160 910	6 234 000	8				66,67,74°
16.378	$2s^22p^2$ 3 P ₂	$2s^22p3d\ ^3{ m D}_3^{\circ}$	68 190	6 174 000	bl	3.1	1.1+13	E	66,67°,74,99*
16.32 ^C 16.24 ^C	$2s^22p^2$ 3 P ₂	$2s^22p3d$ $^3P_1^{\circ}$	68 190 37 960	6 195 000 6 195 000		3.5 - 1 $6.9 - 1$	2.9+12 5.8+12	E E	99* 99*

 \mathbf{V} xix

Wave- length (Å)	Classifica Lower	ation Upper	Energy Le	vels (cm ⁻¹)	Int.	9 f	A (s ⁻¹)	Acc.	References
1457.6	$2s^22p^{-2}P_{1/2}^{\circ}$	$2s^22p\ ^2{ m P}_{3/2}^{\circ}$	0	68 610		M1	2.9+3	В	54°, 99*
438.0^{C}	$2s2p^2$ 2 P $_{3/2}$	$2p^{3} {}^{4}S_{3/2}^{\circ}$	802 560	1 030 850+x		1.7 – 3	1.4+7	E	99*
306.8 ^C	$2s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s2p^2$ $^4P_{5/2}$	68 610	394 560+x		1.8 - 3	2.2+7	Е	99*
301.0 ^C	1/2	1/2	00 010	332 180+x		7.8 - 4	2.2+7 $2.9+7$	E	99*
			ÿ	002 100 K		1.0 1	2.0 ()	4.7	99
285.4 ^C	$2s2p^2 {}^2P_{3/2}$	$2p^{3-2}D_{3/2}^{\circ}$	802 560	1 152 900		3.2 - 3	6.5 + 7	\mathbf{E}	99*
275.1 ^C	3/2	5/2	802 560	1 166 100		1.89 - 1	2.78 + 9	C	99*
230.8 ^C	$2s2p^2\ ^2\mathrm{D}_{3/2}$	$2p^3$ $^4S^{\circ}_{3/2}$	597 590	1 030 850+x		7.2 - 4	2.3+7	E	99*
204.0 ^C	$2s2p^2 {}^2P_{3/2}$	$2p^{3} {}^{2}P_{1/2}^{o}$	802 560	1 292 800		2.9 - 2	2.3+9	D	99*
198.51	1/2	1/2	788 850	1 292 800		2.0 2	2.070	D	72
193.93	3/2	3/2	802 560	1 318 200		3.1 - 1	1.4+10	\mathbf{C}	72°,99*
C	2- 2-0	2.2-							
189.04 ^C	$2s^22p^2P_{3/2}^{o}$	$2s2p^2$ 2 $D_{3/2}$	68 610	597 590		3.3 - 3	1.6 + 8	\mathbf{E}	99*
186.32 167.34	3/2	5/2	68 610	605 320		1.54 - 1	4.92 + 9	C	63,67°,99*
107.34	1/2	3/2	0	597 590		1.2 - 1	7.3 + 9	C	63,67°,99*
182.6 ^C	$2s2p^2$ 2 D _{5/2}	$2p^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$	605 320	1 152 900		7.08 - 2	3.54+9	C	99*
180.07	3/2	$\frac{2p}{3/2}$	597 590	1 152 900		1.33 - 1	6.9+9	C	72°,99*
178.32	5/2	5/2	605 320	1 166 100		2.98 - 1	1.04+10	č	72°,99*
175.9^{C}	3/2	5/2	597 590	1 166 100		5.52 - 2	1.98 + 9	C	99*
166.19	$2s2p^2 {}^2S_{1/2}$	$2p^3 \ ^2P_{3/2}^{\circ}$	716 370	1 318 200					72
157.17	$2s2p^2 {}^4\mathrm{P}_{5/2}$	ე _თ 3 4 ლი	204 560 1 **	1 020 950 1		0.44 1	1.04.110	<u> </u>	cm9 oo*
149.42		$2p^{3} {}^{4}S_{3/2}^{o}$	394 560+x 361 600+x	1 030 850+x		2.44 - 1 $1.68 - 1$	1.64+10	C C	67°,99*
143.13	3/2 1/2	3/2 3/2	332 180+x	1 030 850+x 1 030 850+x		9.12 - 2	1.25+10 $7.4+9$	C	67°,99* 67°,99*
		•	, ,	/ /			, 0	~	J. , J. J
143.82	$2s2p^2$ 2 $D_{3/2}$	$2p^{3} {}^{2}P_{1/2}^{o}$	597 590	1 292 800		1.35 - 1	2.18 + 10	\mathbf{C}	72°,99*
140.25	5/2	3/2	605 320	1 318 200		1.43 - 1	1.21 + 10	C	72°,99*
138.78	3/2	3/2	597 590	1 318 200		4.44 - 2	3.84 + 9	C	72°,99*
139.59	$2s^22p$ 2 P $_{1/2}^{o}$	$2s2p^2$ 2 S _{1/2}	0	716 370					63,67°
138.84	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s2p^2 {}^2P_{1/2}$	68 610	788 850					63,67°
136.25	3/2	3/2	68 610	802 560		3.8 - 1	3.4+10	C	63,67°,99*,10
124.60^{C}	1/2	3/2	0	802 560		5.06 - 2	5.4+9	Č	63 [△] ,99*
C									,
129.6 ^C	$2s2p^2$ ⁴ P _{5/2}	$2p^{3-2}D_{5/2}^{o}$	$394\ 560+x$	1 166 100		1.0 - 2	6.7 + 8	\mathbf{E}	99*
126.4 ^C	3/2	3/2	361 600+x	1 152 900		6.0 - 3	6.3 + 8	E	99*
108.3 ^C	$2s2p^2$ ⁴ P _{5/2}	$2p^{3} {}^{2}P_{3/2}^{\circ}$	304 550 1	1 219 000		60 4	06.5	172	00*
104.5 ^C		·	394 560+x	1 318 200		6.0 - 4	8.6+7	E	99*
104.1 ^C	3/2	3/2	361 600+x 332 180+x	1 318 200 1 292 800		1.0 - 3 $3.6 - 4$	1.6+8	E E	99*
20 2	1/2	1/2	002 10U+X	1 494 000		5.0 - 4	1.1+8	ட	99*
16.007	$2s2p^2$ 2 $D_{3/2}$	$2s2p(^{3}P^{\circ})3d^{2}F_{5/2}^{\circ}$	597 590	6 845 000	4				66°,67
15.924	5/2	7/2	605 320	6 885 000	4				66°,67
C		·							
15.73 ^C	$2s^22p\ ^2{ m P}^{ m o}_{3/2}$	$2s^23d\ ^2{ m D}_{3/2}$	68 610	6 427 000		2.6 - 1	1.7 + 12	D	99*
15.702 15.560	3/2	5/2	68 610	6 437 000	3	2.3	1.0+13	D	66°, 67, 99*
10.000	1/2	3/2	0	6 427 000	3	1.3	9.0 + 12	D	66°,67,99*
15.63	$2s2p^2 {}^4P_{5/2}$	$2s2p(^{3}P^{\circ})3d\ ^{4}D_{7/2}^{\circ}$	394 560+x	6 792 000+x	361				67
15.63	$2s2p^2$ ⁴ P _{5/2}	$2s2p(^{3}P^{\circ})3d\ ^{4}P^{\circ}_{5/2}$	394 560+x	6 792 000+x	3bl				67
15.495	$2s2p^2\ ^2{ m D}_{5/2}$	$2s2p(^{1}P^{o})3d\ ^{2}F_{7/2}^{o}$	605 320	7 059 000	3				66°,67
15.333	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s2p(^{3}P^{\circ})3p^{-2}P_{3/2}$	68 610	6 590 000	3				66°,67
15.039	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s2p(^3P^{\circ})3p^{\ 2}D_{5/2}$	68 610	6 718 000	6				66°,67
14.636	$2s^22p\ ^2{ m P}_{3/2}^{ m o}$	$2s2p(^{1}P^{\circ})3p^{-2}D_{5/2}$	68 610	6 901 000	2				66
•	3/2	202P(1)0P D5/2	00 010	0 901 000	2				66

 \mathbf{v} xx

Wave- length (Å)	Classificati Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
5127. ^C	2s2p ³ P ₀ °	2s2p ³ P ₁ °	303 100	322 600		M1	1.29+2	C+	99*
1908. ^C	1	2	322 600	375 000		M1	1.91+3	C+	99*
3154. ^C	$2p^2\ ^3{ m P}_1$	$2p^2 \ ^3P_2$	856 900	888 600		M1	3.53+2	C	99*
2717. ^C	0	1	820 100	856 900		M1	8.3 + 2	\mathbf{C}	99*
1064. ^C	$2p^2\ ^3{ m P}_2$	$2p^{2-1}\mathrm{D}_2$	888 600	982 600		M1	4.1+3	D+	99*
795.5 ^C	1	2	856 900	982 600		M1	4.1 + 3	D+	99*
686.8 ^C	$2s3p$ $^{1}P_{1}^{o}$	$2s3d$ $^{1}\mathrm{D}_{2}$	6 964 000	7 109 600		1.6 - 1	4.5+8	E	99*
519.2 ^C	2s2p 1P1	$2p^2 \ ^3P_0$	627 500	820 100		6.3 - 4	1.6+7	\mathbf{E}	99*
435.9 ^C	1	1	627 500	856 900		2.5 - 4	2.9 + 6	E	99*
383.0 ^C	1	2	627 500	888 600		1.6 - 2	1.5+8	D	99*
396.0 ^C	$2s2p$ $^3\mathrm{P}_2^o$	$2s2p^{-1}P_{1}^{o}$	375 000	627 500		M1	4.5 + 3	D	99*
328.0 ^C	1	1	322 600	627 500		M1	4.8+3	D-	99*
308.3 ^C	0	1	303 100	627 500		M1	7.7+3	D-	99*
311.8 ^C	$2p^2$ 3 P ₁	$2p^{2}$ 1 S ₀	856 900	1 177 600		M1	6.2+4	D	99*
310.0 ^C	$2s^{2}$ $^{1}S_{0}$	$2s2p$ $^3\mathrm{P_1^o}$	0	322 600		8.3 - 4	1.9+7	D	99*
281.62	$2s2p$ $^{1}P_{1}^{o}$	$2p^2$ 1 D ₂	627 500	982 600		1.94 - 1	3.26 + 9	В	72°, 99*
207.51	$2s2p$ $^3P_2^{\circ}$	$2p^{2} {}^{3}P_{1}$	375 000	856 900		7.40 - 2	3.82 + 9	В	72°,99*
201.02	1	0	322 600	820 100		6.21 - 2	1.03+10	В	72°,99*
194.74 187.17	2	2	375 000 322 600	888 600 856 900		2.04 - 1 $4.89 - 2$	7.18+9 $3.10+9$	B B	72°,99* 72°,99*
180.58	1 0	1	303 100	856 900		6.88 - 2	4.69+9	В	72°,99*
176.68	1	2	322 600	888 600		8.94 - 2	3.82+9	В	72°,99*
181.78	$2s2p^{-1}P_1^o$	$2p^{2}$ ¹ S ₀	627 500	1 177 600		1.23 - 1	2.48+10	В	72°,99*
164.59	$2s2p$ $^3P_2^o$	$2p^{2-1}D_2$	375 000	982 600		4.2 - 2	2.1+9	\mathbf{C}	72°,99*
151.5 ^C	1	2	322 600	982 600		2.9 - 3	1.7+8	D	99*
159.355 ^P	$2s^{2}$ ¹ S ₀	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	627 500		1.69 - 1	1.48+10	В	77°,99*
15.639	$2p^{2}$ 1 S ₀	$2p3d$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	1 177 600	7 571 900		1.29	1.17+13	C-	80°,99*
15.526^{C}	$2p^2$ 1 D $_2$	$2p3d$ $^{1}\mathrm{D_{2}^{o}}$	982 600	7 423 300		3.0 - 1	1.7+12	C-	99*
15.427	$2s2p\ ^1\mathrm{P}_1^o$	$2s3d$ $^{1}\mathrm{D}_{2}$	627 500	7 109 600		1.8	1.0+13	C-	67,78,79,80°,99*
15.336	$2p^2 \ ^3P_2$	$2p3d$ 3 F $_3^{\circ}$	888 600	7 409 200		7.0 - 1	2.8+12	C-	80°,99*
15.332 ^C	$2p^{2-1}\mathrm{D}_2$	$2p3d$ $^3\mathrm{P}_2^{\mathrm{o}}$	982 600	7 505 000		4.5 - 1	2.6+12	C	99*
15.303 ^C	$2p^2 \ ^3P_2$	$2p3d\ ^{1}{ m D_{2}^{o}}$	888 600	7 423 300		1.1 - 1	6.3 + 11	C-	99*
15.229	1	2	856 900	7 423 300		1.1	6.4 + 12	D	80°,99*
15.272^{C}	$2p^2 \ ^3P_2$	$2p3d\ ^{3}D_{1}^{o}$	888 600	7 436 500		6.5 - 3	6.2 + 10	D	99*
15.198 ^C	1	1	856 900	7 436 500		3.0 - 1	2.9 + 12	C-	99*
15.187 ^C	2	2	888 600	7 473 300		1.3 - 1	7.5 + 11	D	99*
15.141 15.114	2	3	888 600 856 900	7 493 200 7 473 300		3.5	1.5 + 13	C-	66, 67, 79, 80°, 99*
15.114	1 0	2	820 100	7 473 300		$\frac{1.36}{1.28}$	7.9+12 $1.25+13$	C-	67,80°,99* 80°,99*
15.216	$2p^{2-1}\mathrm{D}_2$	$2p3d$ $^{1}\mathrm{F_{3}^{o}}$	982 600	7 554 600		5.25	2.16+13	C-	66,67,79,80°,99*
15.176 ^C	$2p^{2-1}D_2$	2p3d ¹ P ₁ °	982 600	7 571 900		7.5 - 2	7.2+11	D	99*
15.114	$2p^2\ ^3{ m P}_2$	$2p3d$ $^3P_2^{\circ}$	888 600	7 505 000		1.44	8.4+12	C-	80°,99*
15.042 ^C	1	2		7 505 000		1.5 - 1	8.8+11	D D	99*
14.989 ^C	$2s2p^{-3}P_{2}^{o}$	$2s3d$ $^3\mathrm{D}_1$	375 000	7 046 600		3.6 - 2	3.6+11	C-	99*
14.987 ^C	2	2	375 000	7 047 500		5.5 - 1	3.3+12	C-	99*
14.976	2	3	375 000	7 052 400		3.0	1.3+13	Č-	66°, 67, 78, 79, 99*
14.872 ^C	1	. 1	322 600	7 046 600		5.4 - 1	5.4 + 12	Ç-	99*
14.870 14.829	1 0	2	000 100	7 047 500 7 046 600		$1.7 \\ 7.4 - 1$	1.0+13 $7.5+12$	C-	66, 67, 78, 79, 80°, 99* 80°, 99*
									,
14.759 ^C	$2s2p\ ^1\mathrm{P}_1^{\mathrm{o}}$	$2p3p$ $^3\mathrm{P}_2$	627 500	7 402 900		1.4 - 1	8.6+11	D	99*

V xx - Continued

Wave- length (Å)	Classificati Lower	on Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
14.649	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p3p^{-1}\mathrm{D}_2$	627 500	7 453 900		7.2 - 1	4.5+12	C-	78,79,80°,99*
14.401	$2s^2$ ¹ S ₀	$2s3p$ $^3P_1^{\circ}$	0	6 943 800		3.1 - 1	3.3+12	C-	80°,99*
14.387 ^C	$2s2p$ $^3P_2^{\circ}$	$2p3p^{-3}\mathrm{D}_2$	375 000	7 325 900		3.2 - 2	2.0+11	D	99*
14.279	1	2	322 600	7 325 900		4.5 - 1	2.9 + 12	C-	78,79,80°,99*
14.279	2	3	375 000	7 378 300		7.0 - 1	3.3 + 12	C-	66, 67, 78, 80°, 99*
14.360	$2s^{2}$ 1 S ₀	$2s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	6 964 000		3.8 - 1	4.1+12	C-	66, 67, 78, 79, 80°, 99*
14.229	$2s2p$ $^3P_2^{\circ}$	$2p3p$ $^3\mathrm{P}_2$	375 000	7 402 900		4.9 - 1	3.2+12	C-	66,80°,99*
14.124^{C}	1	2	322 600	7 402 900		3.9 - 2	2.6+11	Ď	99*
11.615	$2s2p$ 1 P $_{1}^{\circ}$	$2s4d$ $^{1}\mathrm{D}_{2}$	627 500	9 237 100	1				80
11.523	$2p^2$ ¹ D ₂	$2p4d$ $^1\mathrm{F}^{\circ}_3$	982 600	9 660 900	4				80
11.523	$2p^2\ ^3P_2$	$2p4d$ $^3\mathrm{F}^o_3$	888 600	9 567 000					80
11.478	$2p^2$ 3 P $_1$	$2p4d$ $^3\mathrm{D_2^\circ}$	856 900	9 569 200	1				80
11.427	0	-r ₂	820 100	9 571 300	4bl				80
11.427	2	3	888 600	9 639 800	4bl				80
11.427	$2p^2$ 3 P $_2$	$2p4d$ $^3\mathrm{P}_2^\circ$	888 600	9 639 800	4bl				80
11.378	$2p^2\ ^3{ m P}_1$	$2p4d~^1\mathrm{D}^o_2$	856 900	9 645 800	1				80
11.308	$2s2p$ $^3P_2^{\circ}$	$2s4d$ $^3\mathrm{D}_3$	375 000	9 218 300	2				80
11.243	1	2	322 600	9 217 000					80
11.215	0	1	303 100	9 219 700	1				80
10.941	$2s^2$ 1 S $_0$	$2s4p$ $^{1}P_{1}^{o}$	0	9 140 000		1.6 - 1	3.0+12	D	80°,99*
10.838	$2s2p$ $^3P_2^o$	$2p4p$ $^3\mathrm{D}_3$	375 000	9 601 800	1				80

 \mathbf{v} xxi

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
324.5 ^C	$1s^2 2p^{-2} P_{1/2}^o$	$1s^22p \ ^2P_{3/2}^{\circ}$	340 435	415 935	y	1 1	3.87+3	В	99*
293.74 ^S	$1s^2 2s ^2 S_{1/2}$	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	0	340 435	4.0	04 - 2	1.56+9	B+	81°,99*
240.42 ^S	1/2	3/2	0	415 935	9.9	96 - 2	2.87 + 9	B+	72,81°,99*
90.358 ^C	$1s^24p\ ^2P_{3/2}^{o}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[9 614 130]	[10 720 840]	2.:	3 – 1	4.8+10	D	99*
90.234 ^C	3/2	5/2	[9 614 130]	[10 722 360]	2.6	08	2.89 + 11	C+	99*
89.594 ^C	1/2	3/2	[9 604 690]	[10 720 840]	1.3	15	2.41 + 11	C+	99*
48.52 ^C	$1s^24p\ ^2P_{3/2}^{o}$	$1s^27d\ ^2D_{5/2}$	[9 614 130]	11 675 000	2.:	21 – 1	1.05+11	C+	99*
48.52 ^C	3/2	3/2	[9 614 130]	11 675 000	2.	4 - 2	1.8 + 10	D	99*
48.30 ^C	1/2	3/2	[9 604 690]	11 675 000	1.3	23 - 1	8.79 + 10	C+	99*
42.9183^{C}	$1s^23p^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	[7 235 050]	[9 565 060]					
42.5100 ^C	1/2	1/2	[7 212 670]	[9 565 060]					
41.7676 ^C	$1s^23p ^2P_{3/2}^{\circ}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	[7 235 050]	[9 629 250]	2.:	3 - 1	2.2+11	C+	99*
41.7159 ^C	3/2 3/2	5/2	[7 235 050]	[9 632 220]	2.		1.4+12	В	99*
41.3808 ^C	1/2	3/2	[7 212 670]	[9 629 250]	1.		1.1+12	В	99*
40.2194 ^C	$1s^23s ^2S_{1/2}$	$1s^24p$ $^2P_{1/2}^o$	[7 118 330]	[9 604 690]					
40.0673 ^C	1/2	3/2	[7 118 330]	[9 614 130]					
28.9604 ^C	$1s^23p\ ^2P_{3/2}^{\circ}$	$1s^25s \ ^2S_{1/2}$	[7 00r oro]	[10 000 040]					
28.7739 ^C			[7 235 050] [7 212 670]	[10 688 040] [10 688 040]					
	1/2	1/2							
28.6879 ^C	$1s^23p\ ^2P_{3/2}^{\circ}$	$1s^25d^{2}D_{3/2}$	[7 235 050]	[10 720 840]		6 - 2	1.1+11	D	99*
28.6754 ^C 28.5049 ^C	3/2	5/2 3/2	[7 235 050] [7 212 670]	[10 722 360] [10 720 840]		96 - 1 $76 - 1$	6.68+11 $5.67+11$	C+ C+	99* 99*
	1/2	,	[. 212 010]	[10 120 040]	2.	10 – 1	0.07 711	O+	99
24.51 ^C 24.51 ^C	$1s^23p\ ^2P_{3/2}^o$	$1s^26d\ ^2D_{5/2}$	[7 235 050]	11 315 000		1 – 00	3.70+11	C+	99*
24.38 ^C	3/2 1/2	3/2 3/2	[7 235 050] [7 212 670]	11 315 000 11 315 000		$2-2 \\ 12-1$	6.2+10 $3.14+11$	D C+	99* 99*
		,	[. 212 010]	11 010 000	1.	12 – 1	3.14711	O+	99
14.9200 ^C 14.7538 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^23s$ $^2S_{1/2}$	415 935	[7 118 330]					66,82,83,84
14.7538	1/2	1/2	340 435	[7 118 330]					66,82,83,84
14.5879 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^23d^2D_{3/2}$	415 935	[7 270 940]	2.	7 – 1	2.1 + 12	В	83,84,99*
14.5729 ^C 14.4290 ^C	3/2	5/2	415 935	[7 277 990]		44	1.28+13	В	66, 82, 83, 84, 99*
	1/2	3/2	340 435	[7 270 940]	1.	34	1.07+13	В	66, 82, 83, 84, 99*
13.8645 ^C	$1s^2 2s ^2 S_{1/2}$	$1s^23p\ ^2\mathrm{P_{1/2}^o}$	0	[7 212 670]	2.	52 - 1	4.37 + 12	В	66, 82, 83, 84, 99*
$13.8216^{\rm C}$	1/2	3/2	0	[7 235 050]	4.	88 – 1	4.26 + 12	В	66, 82, 83, 84, 99*
10.9300 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	415 935	[9 565 060]					84
10.8405 ^C	1/2	1/2	340 435	[9 565 060]					84
10.8539 ^C	$1s^22p\ ^2{ m P}^{ m o}_{3/2}$	$1s^24d\ ^2{ m D}_{3/2}$	415 935	[9 629 250]	4	8 – 2	6.7+11	C+	83,84,99*
10.8504 ^C	3/2	5/2	415 935	[9 632 220]		4 - 1	4.2+12	В	82, 83, 84, 99*
10.7656 ^C	1/2	3/2	340 435	[9 629 250]		4 - 1	3.5+12	В	82, 83, 84, 99*
10.4116 ^C	$1s^2 2s ^2 S_{1/2}$	$1s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	0	[9 604 690]					82,83,84
10.4014^{C}	1/2	3/2	0	[9 614 130]					82,83,84
9.7351 ^C	$1s^22p\ ^2{ m P}^{ m o}_{3/2}$	$1s^25s$ $^2S_{1/2}$	415 935	[10 688 040]					84
9.6641 ^C	1/2	1/2	340 435	[10 688 040]					84
9.7041 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	415 935	[10 720 840]		Q O	2011	n	
9.7027 ^C	3/2 3/2	18 5 <i>u</i> 12 _{3/2} 5/2	415 935	[10 720 840]		8 - 2 62 - 1	3.2+11 $1.91+12$	D C+	83,84,99* 83,84,99*
9.6335 ^C	1/2	3/2	340 435	[10 720 840]		06 - 2	1.63+12	C+	83,84,99*
9.33857 ^C	$1s^2 2s \ ^2 S_{1/2}$	$1s^25p\ ^2{ m P}_{1/2}^{ m o}$	0	[10 708 280]					
9.33437 ^C	1/2	3/2	0	[10 708 280]					83,84 83,84
9.175	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^26d\ ^2\mathrm{D}_{5/2}$		•	_	00 5	101.1	0	
9.175	$\frac{1s}{2p} \frac{P_{3/2}}{8/2}$	$1s^{-}6a^{-}D_{5/2}$	415 935 415 935	11 315 000 11 315 000		.92 - 2 .8 - 3	1.04+12 $1.8+11$	C+ D	83°,99* 83°,99*
9.111	1/2	3/2	340 435	11 315 000		.44 - 2	8.91+11	C+	83°,99*
8.882	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^27d\ ^2\mathrm{D}_{5/2}$	415 935	11 675 000	А	.52 – 2	6.36+11	C+	83°,99*
8.882	3/2 3/2	3/2	415 935	11 675 000		32 - 2 3 - 3	0.30+11 $1.1+11$	D	83°,99*
8.826	1/2	3/2	340 435	11 675 000		.52 - 2		C+	83°,99*

V XXI - Continued

Wave-	Classification		Energy Levels (cm ⁻¹)		Int.	gf	$A (s^{-1})$	Acc.	References	
length (Å)	Lower	Upper		. ,						
8.843	$1s^22s$ $^2S_{1/2}$	$1s^26p\ ^2P_{3/2}^{\circ}$	0	11 308 000					83	
8.843	1/2	1/2	0	11 308 000					83	
8.703	$1s^22p\ ^2P_{3/2}^o$	$1s^28d\ ^2\mathrm{D}_{5/2}$	415 935	11 906 000					83	
8.703	3/2	3/2	415 935	11 906 000					83	
8.643	1/2	3/2	340 435	11 906 000					83	
8.576	$1s^2 2s ^2 S_{1/2}$	$1s^27p$ $^2P_{3/2}^{\circ}$	0	11 660 000					83	
8.576	1/2	1/2	0	11 660 000					83	
2.4452 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s2s^2$ 2 S _{1/2}	415 935	[41 312 000]					84,87	
2.4408^{C}	1/2	1/2	340 435	[41 312 000]					84,87	
2.4171 ^C	$1s^22p^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-4}P_{1/2}$	415 935	[41 788 000]					84	
2.4150 ^C	3/2	3/2	415 935	[41 824 000]					84	
2.4131 ^C	3/2	3/2 5/2	415 935	[41 856 000]					79,84,87	
2.4127 ^C	· · · · · · · · · · · · · · · · · · ·	5/2 1/2	340 435	[41 788 000]						
2.4106 ^C	1/2 1/2	3/2	340 435	[41 824 000]					84 84	
2.4156^{C}	$1s^2 2s^2 S_{1/2}$	$1s(^2S)2s2p(^3P^\circ) ^4P_{1/2}^\circ$	0	[41 398 000]					84	
2.4145 ^C	1/2	3/2	0	[41 416 000]					84	
2.4050 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s(^{2}S)2p^{2}(^{1}D)^{2}D_{3/2}$	415 935	[41 995 000]					84	
2.4040 ^C			415 935	[42 013 000]		7.2 - 1	1.4+14	C		
2.4040 2.4007 ^C	3/2	5/2	340 435	[42 013 000]		6.6 - 1		C	79,84,85,86,87,99*	
	1/2	3/2	340 433	[41 995 000]		6.6 – 1	1.9+14	C	79,84,85,86,87,99*	
2.4039^{C}	$1s^2 2p ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	415 935	[42 015 000]					84	
2.3996^{C}	1/2	1/2	340 435	[42 015 000]					84	
2.3992^{C}	3/2	3/2	415 935	[42 095 000]		1.4	3.9 + 14	C	79,84,85,86,87,99*	
2.3950^{C}	1/2	3/2	340 435	[42 095 000]					84	
2.3996 ^C	$1s^22s$ $^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{\circ}) \ ^{2}P_{1/2}^{\circ}$	0	[41 674 000]		1.56 - 1	9.0+13	C	84,87,99*	
2.3973^{C}	1/2	3/2	0	[41 714 000]		2.4 - 2	7.2+12	D	84,87,99*	
2.3915^{C}	•	$1s(^2S)2s2p(^1P^o)^{-2}P_{1/2}^o$	0	[41 015 000]					70.04.05.00.05	
2.3915 2.3906 ^C		•		[41 815 000]					79,84,85,86,87	
2.3900 -	1/2	3/2	0	[41 830 000]					79,84,86,87	
2.3907^{C}	$1s^2 2p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s(^2S)2p^2(^1S)^2S_{1/2}$	415 935	[42 245 000]		2.4 - 1	1.4 + 14	D	79, 84, 85, 86, 87, 99*	
$2.3864^{\rm C}$	1/2	1/2	340 435	[42 245 000]	1				84	

 \mathbf{v} xxII

Section Sect	Wave- length (Å)	Classifica Lower	tion Upper	Energy Leve	els (cm ⁻¹)	Int.	9 f	A (s ⁻¹)	Acc.	References
1	8100°	1s5s ¹ S ₀	1s5p ¹ P ₁ °	[53 119 700]	[53 132 000]		1.0 - 1	3.4+6	E	99*
\$\frac{6000^{G}}{4000^{G}}\$ = \frac{1}{2} =			-		. ,		9.6 - 2	3.4+6	Е	99*
1		$1s4p$ $^3\mathrm{P}_2^\mathrm{o}$								
1				• •	•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4720° 4690°C				•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4130^{C}	1s4s ¹ S ₀	$1s4p$ $^{1}P_{1}^{o}$	[51 910 900]	[51 935 100]		8.1 - 2	1.0+7	E	99*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			=				7.8 - 2	1.1+7	E	99*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1760 ^C	$1s3s$ $^{1}S_{0}$	1s3p ¹ P ₁ °	[49 292 760]	[49 349 740]		5.8 - 2	4.2+7	D	99*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1700 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s3p$ $^3P_1^{\circ}$	[49 234 710]	[49 293 700]		5.4 - 2	4.2+7	E	99*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	514.0 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p^{-1}P_1^o$	[41 787 830]	[41 982 380]		3.27 - 2	2.76+8	В	99*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	496 89 ^C	1 e2 e 3 C.	1 c2n 3 po	[41 568 880]	[41 770 120]		1 16 9	3.12±8	В	qq*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	469.00 ^C									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355.78 ^C									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241.84 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[41 568 880]	[41 982 380]		3.72 - 3	1.41+8	В	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.42^{C}	$1s4p$ $^{1}P_{1}^{o}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[51 935 100]	[53 119 700]		1.7 - 1	1.6+11	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.22^{C} 83.62^{C}						1.7 - 1	5.2+10	D	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.89 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[51 910 900]	[53 132 000]		4.5 - 1	1.5+11	D	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.08 ^C	$1s4s$ $^3\mathrm{S}_1$	1s5p ³ P ₁ °	[51 886 600]	[53 119 900]		4.56 - 1	1.54+11	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.045 ^C	$1s3p^{-1}P_{1}^{o}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[49 349 740]	[51 910 900]]	1.0 - 1	4.5+11	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.980 ^C	$1s3d$ $^3\mathrm{D}_1$	1s4p 3P0	[49 344 470]	[51 909 900]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		[49 344 470]	[51 911 400)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.944 ^C			• .		,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				[49 344 160]	[51 919 900	J				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.0 - 1	1.5+11	C-	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.742 ^C	$1s3d$ $^{1}\mathrm{D}_{2}$	1s4p 1P1	[49 353 910]	[51 935 100]	5.5 - 2	8.2+10	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.654 ^C	$1s3p$ $^{1}P_{1}^{o}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[49 349 740]	[51 936 800]	1.9	1.7+12	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.188 ^C	1s3p 3P2	1s4d ³ D ₂	[49 313 970]	[51 932 600	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38.141^{C}									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2	[49 293 700]	[51 932 600	j				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.845 ^C				·	•	4.08 - 1	6.3+11	C	99*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 360 ^C	1 e 2 e 3 C -	•	[49 224 710]	[51 011 400	1	408 1	65111	C	00*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-				4.00 - 1	0.0-11	Ç	ਰਹ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.525^{C}	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[49 349 740]	[53 119 700]	2.3 - 2	2.2+11	C	99*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s3p$ $^3P_2^{\circ}$			-	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	[49 293 700]	[53 107 300]	2.3 - 2	7.5+10	D	99*
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{49}$ $\frac{234}{710}$ $\frac{7}{10}$ $\frac{1}{2}$		$1s3s$ $^{1}\mathrm{S}_{0}$	-	•	[53 132 000)]	1.05 - 1	3.44+11	C+	99*
							1.1 - 1	3.5+11	C	99*
	13.679 ^C				•	-	4.5 - 2	1.6+12	C+	99*

V XXII - Continued

Wave-	Classificat		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				,			
13.566 ^C	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[41 982 380]	[49 353 910]	2	2.1	1.5+13	C+	99*
13.541 ^C	$1s2p$ $^3\mathrm{P}_2^\circ$	1 <i>s</i> 3 <i>s</i> ³ S ₁	[41 849 950]	[49 234 710]					
13.418 ^C	1	1	[41 782 100]	[49 234 710]	4	4.2 - 2	5.2 + 11	C-	99*
13.344 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s3d$ $^3\mathrm{D}_2$	[41 849 950]	[49 344 160]					
13.330 ^C	2	3	[41 849 950]	[49 352 090]					
13.224 ^C	1	2	[41 782 100]	[49 344 160]					
13.223 ^C 13.202 ^C	1	1 1	[41 782 100] [41 770 130]	[49 344 470] [49 344 470]					
13.224 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[41 787 830]	[49 349 740]	;	3.70 - 1	4.70+12	C	99*
12.945 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s3p$ $^3\mathrm{P}_1^\mathrm{o}$	[41 568 880]	[49 293 700]	:	3.72 - 1	4.94+12	C	99*
10.072 ^C	$1s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[41 982 380]	[51 910 900]	9	9.3 - 3	6.1+11	C	99*
10.046 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[41 982 380]	[51 936 800]	;	3.6 - 1	4.8 + 12	C	99*
9.9635 ^C	$1s2p\ ^{3}P_{2}^{\circ}$	$1s4s\ ^{3}\mathrm{S}_{1}$	[41 849 950]	[51 886 600]					
9.8966 ^C	1	1	[41 782 100]	[51 886 600]	:	9.6 - 3	2.2+11	D	99*
9.9180 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s4d\ ^3\mathrm{D}_2$	[41 849 950]	[51 932 600]					
9.9149^{C}	2	3	[41 849 950]	[51 935 800]					
9.8517 ^C	1	2	[41 782 100]	[51 932 600]					
9.8516 ^C	1	1	[41 782 100]	[51 932 700]					
9.8400 ^C	0	1	[41 770 130]	[51 932 700]					
9.8549 ^C	$1s2s\ ^{1}\mathrm{S}_{0}$	1s4p ¹ P ₁	[41 787 830]	[51 935 100]	!	9.0 - 2	2.1+12	C+	99*
9.6688 ^C 9.6609 ^C	1s2s ³ S ₁	1s4p ³ P ₁	[41 568 880] [41 568 880]	[51 911 400] [51 919 900]	!	9.0 - 2	2.1 + 12	C+	99*
8.9788 ^C	1 1s2p ¹ P ₁ °	1s5s ¹ S ₀	[41 982 380]	[53 119 700]		3.9 – 3	3.2+11	С	99*
	- •		. ,		,	3.9 – 3	3.2+11	C	99
8.8831 ^C	$1s2p\ ^3\mathrm{P}_2^\mathrm{o}$	$1s5s\ ^{3}{ m S}_{1}$	[41 849 950]	[53 107 300]					
8.8299 ^C	1	1	[41 782 100]	[53 107 300]	1	3.9 - 3	1.1+11	D	99*
8.8151 ^C	1s2s ¹ S ₀	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[41 787 830]	[53 132 000]		3.7 - 2	1.1+12	C+	99*
8.6572 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s5p$ $^3\mathrm{P}^{\mathrm{o}}_1$	[41 568 880]	[53 119 900]		3.6 - 2	1.1 + 12	C+	99*
8.6539 ^C	1	2	[41 568 880]	[53 124 300]					
2.405646 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2s$ 3S_1	0	[41 568 880]		M1	6.07+7	В	87,99*
2.394055 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2p\ ^{3}P_{0}^{\circ}$	0	[41 770 130]					87
2.393369 ^C	0	1	0	[41 782 100]		4.22 - 2	1.64 + 13	В	85, 86, 87, 99*
2.389489 ^C	0	2	0	[41 849 950]		M2	2.43 + 9	В	87,99*
2.381952 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[41 982 380]		7.28 - 1	2.85+14	В	85, 86, 89, 90, 91, 99*,
2.3211 ^C	$1s2p\ ^1\mathrm{P}_1^\mathrm{o}$	$2s^2$ 1 S $_0$	[41 982 380]	[85 064 000]		3.6 - 2	4.6+13	С	84,99*
2.3105 ^C	$1s2p$ $^3\mathrm{P}_1^\mathrm{o}$	$2s^{2}$ $^{1}S_{0}$	[41 782 100]	[85 064 000]		1.6 - 2	2.0+13	D	84,99*
2.3080 ^C	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^2 \ ^3P_0$	[41 982 380]	[85 309 000]					84
2.3057 ^C 2.3036 ^C	1 1	1 2	[41 982 380] [41 982 380]	[85 352 000] [85 392 000]		1.7 - 1	4.3+13	D	84 84,99*
2.3076^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3\mathrm{P}^\mathrm{o}_1$	[41 787 830]	[85 123 000]					84
	$1s2p$ $^3P_2^{\circ}$	$2p^2$ 3 P ₁	[41 849 950]	[85 352 000]		3.4 - 1	1.4+14	C	84,99*
2.2987 ^C	-	0	$[41\ 782\ 100]$	[85 309 000]		2.5 - 1	3.2 + 14	C	84,99*
$2.2975^{\rm C}$	1		[41 849 950]	[85 392 000]		8.0 - 1	2.0 + 14	C	84,99*
2.2975 ^C 2.2966 ^C	1 2	2	[41 649 900]			0.0 1			
2.2975 ^C 2.2966 ^C 2.2952 ^C			[41 782 100]	[85 352 000]		2.0 - 1	8.2 + 13	D	84,99*
2.2975 ^C 2.2966 ^C 2.2952 ^C 2.2946 ^C	2 1 0	2 1 1	[41 782 100] [41 770 130]	[85 352 000] [85 352 000]		2.8 - 1	1.2 + 14	C	84,99*
2.2975 ^C 2.2966 ^C 2.2952 ^C 2.2946 ^C 2.2931 ^C	2 1 0	2 1 1 2	[41 782 100] [41 770 130] [41 782 100]	[85 352 000] [85 352 000] [85 392 000]		2.8 - 1 $3.9 - 1$	1.2+14 1.0+14	C	84,99* 84,99*
2.2975 ^C 2.2966 ^C 2.2952 ^C 2.2946 ^C 2.2931 ^C 2.2976 ^C	2 1 0 1 1s2p ¹ P ₁ °	$egin{smallmatrix} 2 & & & & & & & & & & & & & & & & & & $	[41 782 100] [41 770 130] [41 782 100] [41 982 380]	[85 352 000] [85 352 000] [85 392 000] [85 505 000]		2.8 - 1 $3.9 - 1$ 1.1	1.2+14 1.0+14 2.9+14	C C	84,99* 84,99* 84,99*
2.2975 ^C 2.2966 ^C 2.2952 ^C 2.2946 ^C 2.2931 ^C	2 1 0	2 1 1 2	[41 782 100] [41 770 130] [41 782 100]	[85 352 000] [85 352 000] [85 392 000]		2.8 - 1 $3.9 - 1$	1.2+14 1.0+14	C	84,99* 84,99*

V XXII - Continued

Wave-			Energy Levels (cm ⁻¹) I		Int.	gf	$A (s^{-1})$	4 (s ⁻¹) Acc.	References
length (Å)	Lower	Upper							
2.2907 ^C 2.2872 ^C	$1s2p\ ^{3}\mathrm{P}_{2}^{\circ}$	$2p^{2} \ ^{1}\mathrm{D}_{2}$	[41 849 950] [41 782 100]	[85 505 000] [85 505 000]		2.2 - 1	5.6+13	D	84,99* 84
2.2902^{C}	$1s2s$ 1 S $_{0}$	$2s2p$ $^{1}P_{1}^{\circ}$	[41 787 830]	[85 452 000]		4.0 - 1	1.7+14	C	84,99*
2.2839 ^C	$1s2p^{-1}\mathrm{P_{I}^{o}}$	$2p^2$ 1 S ₀	[41 982 380]	[85 766 000]		2.3 - 1	2.9+14	C	84,99*
2.2788^{C}	$1s2s$ $^3\mathrm{S}_1$	$2s2p^{-1}P_1^o$	[41 568 880]	[85 452 000]					84
2.2736^{C}	$1s2p$ $^3\mathrm{P}_1^\circ$	$2p^{2}$ $^{1}S_{0}$	[41 782 100]	[85 766 000]					84
2.02866^{C}	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^3\mathrm{P}^{\mathrm{o}}_1$	0	[49 293 700]		1.1 - 2	5.9+12	E	99*
2.02635 ^C	$1s^{2}$ $^{1}S_{0}$	1s3p ¹ P ₁ °	0	[49 349 740]		1.40 - 1	7.58+13	C+	91,99*
1.92636 ^C	$1s^{2}$ $^{1}S_{0}$	$1s4p$ $^3P_1^o$	0	[51 911 400]		3.8 - 3	2.3+12	E	99*
$1.92548^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	1s4p 1P1	0	[51 935 100]		5.18 - 2	3.11+13	C+	99*
1.88253 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p$ $^3\mathrm{P}^{\mathbf{o}}_1$	0	[53 119 900]		1.9 - 3	1.2+12	E	99*
1.88210 ^C	$1s^2$ 1 S ₀	1s5p ¹ P ₁	0	[53 132 000]		2.50 - 2	1.57+13	C+	99*

 \mathbf{v} xxIII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int. gf	A (s ⁻¹)	Acc.	References
3340 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$3p {}^{2}P_{3/2}^{\circ}$	[51 948 740]	[51 978 720]	3.72 - 2	5.55+6	A	98*
3240 ^C	$3p$ 2 P $^{\circ}_{1/2}$	$3d$ $^2\mathrm{D}_{3/2}$	[51 947 810]	[51 978 660]	2.40 - 2	3.80+6	A	98*
987.36 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p\ ^{2}P_{3/2}^{\circ}$	[43 804 530]	[43 905 810]	2.10 - 2	3.58+7	A	98*
35.3940 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$4f^{2}F_{7/2}^{o}$	[51 988 830]	[54 814 170]	5.82	3.88+12	Α	98*
35.2943 ^C	$3p^{2}P_{3/2}^{\circ}$	$4d~^2\mathrm{D}_{5/2}$	[51 978 720]	[54 812 040]	2.23	1.99+12	A	98*
34.9769 ^C	$3s$ 2 S _{1/2}	4p 2P3/2	[51 948 740]	[54 807 770]	6.56 - 1	8.93+11	A	98*
24.2027 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{o}$	[51 988 830]	[56 120 600]	8.94 - 1	1.28+12	Α	98*
24.1500 ^C	$3p\ ^{2}P_{3/2}^{\circ}$	$5d$ $^2\mathrm{D}_{5/2}$	[51 978 720]	[56 119 500]	5.04 - 1	9.61+11	A	98*
23.9890 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$5p\ ^{2}P_{3/2}^{\circ}$	[51 948 740]	[56 117 320]	1.63 - 1	4.72+11	A	98*
12.3716 ^C	$2p\ ^{2}P_{3/2}^{o}$	$3d$ $^2\mathrm{D}_{5/2}$	[43 905 810]	[51 988 830]	2.51	1.82+13	A	98*
12.2336 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{o}$	[43 804 530]	[51 978 720]	5.88 - 1	6.55+12	Α	98*
9.169071 ^C	$2p\ ^2{ m P}_{3/2}^{ m o}$	$4d$ $^2\mathrm{D}_{5/2}$	[43 905 810]	[54 812 040]	4.40 - 1	5.81+12	A	98*
9.088232 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	[43 804 530]	[54 807 770]	1.39 - 1	2.80+12	Α	98*
$8.187534^{\rm C}$	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$5d$ $^2\mathrm{D}_{5/2}$	[43 905 810]	[56 119 500]	1.60 - 1	2.65+12	A	98*
8.121636^{C}	$2s$ $^2\mathrm{S}_{1/2}$	5p ² P _{3/2}	[43 804 530]	[56 117 320]	5.64 - 2	1.43+12	A	98*
2.283024 ^C	$1s^{-2}S_{1/2}$	$2p^{2}P_{1/2}^{\circ}$	0	[43 801 550]	2.80 - 1	1.79+14	A	98*
2.277603 ^C	1/2	3/2	0	[43 905 810]	5.60 - 1	1.80 + 14	Α	98*
1.925009 ^C	$1s^{-2}S_{1/2}$	$3p^{2}P_{1/2}^{o}$	0	[51 947 810]	5.32 - 2	4.78+13	A	98*
$1.923864^{\rm C}$	1/2	3/2	0	[51 978 720]	1.06 - 1		A	98*
1.824559 ^C	$1s^{-2}S_{1/2}$	4p 2P3/2	0	[54 807 770]	3.90 - 2	1.95+13	A	98*
1.781981 ^C	$1s$ $^2\mathrm{S}_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	0	[56 117 320]	1.87 - 2	9.83+12	A	98*

2.3.3. References for Comments and Tables for V Ions

- L. Iglesias, J. Res. Natl. Bur. Stand. 72A, 295 (1968).
- [2] J. -F. Wyart, Phys. Scr. 12, 33 (1975).
- [3] J. Sugar and C. Corliss, J. Chem. Phys. Ref. Data 14, Suppl. 2 (1985).
- [4] G. V. Shalimoff and J. G. Conway, J. Opt. Soc. Am. 68, 267 (1978).
- [5] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [6] C. H. H. Van Deurzen, J. G. Conway, and S. P. Davis, J. Opt. Soc. Am. 64, 498 (1974).
- [7] J. O. Ekberg, Phys. Scr. 9, 96 (1974).
- [8] C. H. H. Van Deurzen, J. Opt. Soc. Am. 67, 476 (1977).
- [9] H. G. Berry, Phys. Scr. 13, 36 (1976).
- [10] C. H. H. Van Deurzen, J. Opt. Soc. Am. 67, 1135 (1977).
- [11] P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935).
- [12] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [13] U. Feldman, B. S. Fraenkel, and S. Hoory, Astrophys. J. 142, 719 (1965).
- [14] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Nature 206, 390 (1965).
- [15] W. J. Wagner and L. L. House, Astrophys. J. 166, 683 (1971).
- [16] J. O. Ekberg, Phys. Scr. 13, 111 (1976).
- [17] S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577 (1977).
- [18] B. C. Fawcett, N. J. Peacock, and R. D. Cowan, J. Phys. B 1, 295 (1968).
- [19] S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (1936).
- [20] R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [21] B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262 (1966).
- [22] G. E. Bromage, Astron. Astrophys. Suppl. Series 41, 79 (1980).
- [23] B. Edlén, Z. Phys. 104, 407 (1937).
- [24] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [25] W. Lotz, J. Opt. Soc. Am. 57, 873 (1967).
- [26] B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. **91**, 973 (1967).
- [27] B. C. Fawcett, J. Phys. B 3, 1732 (1970).
- [28] B. Edlén, Z. Phys. 104, 188 (1937).
- [29] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, Supplementary Publication No. SUP 70005, unpublished (1972).
- [30] B. C. Fawcett, A. H. Gabriel, and P. A. H. Saunders, Proc. Phys. Soc. 90, 863 (1967).
- [31] B. C. Fawcett, J. Phys. B 4, 1577 (1971).
- [32] P. G. Kruger and H. S. Pattin, Phys. Rev. 52, 621 (1937).
- [33] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [34] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [35] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [36] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [37] B. Edlén, Z. Phys. 103, 536 (1936).
- [38] B. C. Fawcett, R. D. Cowan, E. Y. Kononov, and R. W. Hayes, J. Phys. B 5, 1255 (1972).
- [39] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [40] A. Redfors, Phys. Scr. 38, 702 (1988).
- [41] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [42] M. Finkenthal, R. E. Bell, and H. W. Moos, Phys. Lett. 88A, 165 (1982).
- [43] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [44] B. Edlén, Z. Phys. 100, 621 (1936).

- [45] L. Cohen and W. E. Behring, J. Opt. Soc. Am. 66, 899 (1976).
- [46] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [47] B. Edlén and F. Tyrén, Z. Phys. 101, 206 (1936).
- [48] U. Feldman and L. Cohen, Astrophys. J. 149, 265 (1967).
- [49] C. Jupén and U. Litzén, Phys. Scr. 30, 112 (1984).
- [50] C. Jupén and U. Litzén, Phys. Scr. 33, 509 (1986).
- [51] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [52] B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 186, 113 (1979).
- [53] C. Jupén, U. Litzén, V. Kaufman, and J. Sugar, Phys. Rev. A 35, 116 (1987).
- [54] M. Finkenthal, R. E. Bell, and H. W. Moos, J. Appl. Phys. 56, 2012 (1984).
- [55] B. C. Fawcett, J. Phys. B 4, 981 (1971).
- [56] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [57] V. Kaufman, J. Sugar, and D. Cooper, Phys. Scr. 25, 623 (1982).
- [58] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [59] B. C. Fawcett, Proc. Phys. Soc. 86, 1087 (1965).
- [60] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [61] K. T. Cheng, unpublished material (1981).
- [62] W. C. Martin, unpublished material (1982).
- [63] B. C. Fawcett, M. Galanti, and N. J. Peacock, J. Phys. B 7, 1149 (1974).
- [64] S. Goldsmith, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 61, 615 (1971).
- [65] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 63, 1463 (1973).
- [66] B. C. Fawcett, M. Galanti, and N. J. Peacock, J. Phys. B 7, L106 (1974).
- [67] B. C. Fawcett and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 170, 185 (1975).
- [68] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 178, 591 (1977).
- [69] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [70] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).
- [71] V. Kaufman, J. Sugar, and D. Cooper, Phys. Scr. 26, 163 (1982).
- [72] B. C. Fawcett, A. Ridgeley, and A. T. Hatter, J. Opt. Soc. Am. 70, 1349 (1980).
- [73] J. Sugar, V. Kaufman, and D. Cooper, Phys. Scr. 26, 189 (1982).
- [74] S. Goldsmith, U. Feldman, A. Crooker, and L. Cohen, J. Opt. Soc. Am. 62, 260 (1972).
- [75] B. Edlén, Phys. Scr. 31, 345 (1985).
- [76] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 178, 605 (1977).
- [77] B. Edlén, Phys. Scr. 22, 593 (1981).
- [78] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [79] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [80] G. E. Bromage, R. D. Cowan, B. C. Fawcett, and A. Ridgeley, J. Opt. Soc. Am. 68, 48 (1978).
- [81] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [82] S. Goldsmith, U. Feldman, L. Oren, and L. Cohen, Astrophys. J. 174, 209 (1972).
- [83] E. V. Aglitskii, V. A. Boiko, S. A. Pikuz, and A. Y. Faenov, Sov. J. Quant. Electron. 4, 956 (1975).
- [84] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [85] E. V. Aglitskii, V. A. Boiko, S. M. Zakharov, S. A. Pikuz, and A. Y. Faenov, J.E.T.P. Letters 19, 8 (1974).

- [86] E. V. Aglitskii, V. A. Boiko, S. M. Zakharov, S. A. Pikuz, and A. Y. Faenov, Sov. J. Quant. Electron. 4, 500 (1974).
- [87] P. Beiersdorfer, M. H. Chen, R. E. Marrs, M. B. Schneider, and R. S. Walling, Phys. Rev. A 44, 396 (1991).
- [88] B. Edlén, Phys. Scr. 19, 255 (1979).
- [89] S. Morita and J. Fujita, Nucl. Instrum. Meth. B 9, 713 (1985).
- [90] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).
- [91] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [92] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [93] K. T. Cheng, Private communication (1996).
- [94] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).

- [95] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [96] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).
- [97] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [98] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 4, Vol. I, U.S. Govt. Print. Office, Washington, D.C. (1966).
- [99] G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 3 (1988).
- [100] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. (U.S.) 79A, 629 (1975).
- [101] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 65, 463 (1975).
- [102] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).
- [103] S. Morita, J. Phys. Soc. Jpn. 52, 2673 (1983).

2.4. Chromium

2.4.1. Brief Comments on Each Chromium Ion

Cr v

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 560 200 \pm 300 cm⁻¹ (69.46 \pm 0.04 eV)

Ekberg [1] classified 134 lines due to the 3d4s-3d4p, 3d4p-3d4d, 3d4p-3d5s, and $3d^2-3d4p$ transition arrays in the range of 433-1837 Å. The observations were made with a vacuum spark. An estimated wavelength uncertainty of ± 0.01 Å was reported. The lines at 1042.544 Å, 818.803 Å, and 438.618 Å are blended. The 3d4s $^{1}D_{2}-3d4p$ $^{1}D_{2}^{\circ}$ and 3d4p $^{3}F_{2}^{\circ}-3d5s$ $^{3}D_{3}$ transitions at 1837.442 Å and 780.428 Å, respectively, are lower by about 0.06 Å than those calculated from the energy level differences.

The value for the ionization energy was derived by Ekberg [1] from the series 3d4s and 3d5s.

Cr VI

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 731 020 \pm 6 cm⁻¹ (90.6356 \pm 0.0007 eV)

Alexander et al. [2] observed the 3d - nf (n = 5 - 10)doublets in the range of 144 - 176 Å. Gabriel et al. [3] found the 4f ²F° term, replacing an earlier value reported by Kruger and Weissberg [4]. Gabriel et al. [5] identified the transitions from the levels of $3p^53d^2$ to the ground term in the range of 201–227 Å. Feldman and Fraenkel [6] observed 17 lines in the range of 161-174 Å, which were subsequently assigned to the $3p^63d - 3p^53d4s$ inner-shell transitions by Cowan [7]. The first observation of the 4p-4d transitions was reported by Fawcett [8], who identified the $^2\mathrm{P}^\circ_{1/2,(3/2)}-^2\mathrm{D}_{3/2,(5/2)}$ lines at 942.75 Å and 957.01 Å. New and more extensive measurements were carried out by Ekberg [9] with a vacuum spark discharge. He identified 95 lines in the range of 144 - 2496 Å classified as transitions among 57 levels of the $3p^6ns$ (n=46), np(n = 4-6), nd(n = 3-5), nf(n = 4-10), ng(n = 4-10)5,6), $nh(n = 6,7), 3p^53d^2$, and $3d^53d4s$ configurations. We quote his results. Wavelengths in vacuum are given for all lines. The reported uncertainties are estimated to be ± 0.004 Å and ± 0.01 Å for wavelength ranges below 385 Å and above 420 Å, respectively.

The level values of 619419 cm^{-1} and 618491 cm^{-1} for the $3p^53d(^3D^\circ)4s$ $^2D^\circ_{3/2,5/2}$ levels in Ref. [9] are apparently misprints and have been interchanged.

The value for the ionization energy was derived by Ekberg [9] from the nh series.

Cr VII

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^6$ $^{1}S_0$

Ionization energy 1 291 900 \pm 600 cm⁻¹ (160.18 \pm 0.07 eV)

The $3p^6 - 3p^5nl$ transitions were observed by Kruger and Weissberg [10] for nl = 4s, 5s, by Alexander et al. [2] for nl = 4d, and by Alexander et al. [11], Feldman et al. [12] and Gabriel et al. [3,5] for nl = 3d. Wagner and House [13] classified the $3p^53d - 3p^54f$ transitions. New observations of the spectrum were reported by Ekberg [14], comprising 138 lines in the wavelength range of 92 - 1448 Å obtained with a vacuum spark discharge. Two lines at 92.128 Å and 92.969 Å are from unpublished work of Edlén. The new list contained transitions among 60 levels of the $3s^23p^5nl$ (nl = 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5d, 6s) and $3s3p^6nl$ (nl = 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5d, 6s) $3d_24p$) configurations. The classification $3p^53d$ $^3P_1^{\circ}$ – $3p^{5}(^{2}P_{3/2}^{\circ})4f^{-2}[\frac{3}{2}]_{1}$ for the line at 166.560 Å contains a misprint and has been changed to $3p^53d$ $^3P_1^{\circ}$ - $3p^5(^2\vec{P}_{3/2}^{\circ})4f^{\ 2}[\frac{3}{2}]_2.$

Classifications of inner-shell transitions were given by Kastner et al. [15] in the range of 71-102 Å with a similar light source. They identified five new lines, belonging to the $3s^23p^6-3s3p^6np$ (n=4,7) transitions, with an estimated uncertainty of ± 0.005 Å.

The value for the ionization energy was derived by Ekberg [14] by extrapolation. The same value may be derived from the 3-member ns series.

Cr VIII

Cl I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 1 490 000 ${\rm cm^{-1}}$ (184.7 eV)

The transitions $3s^23p^5 - 3s3p^6$ were first identified by Weissberg and Kruger [16]. Smitt et al. [17] obtained the values 430.713 ± 0.008 Å and 413.112 ± 0.008 Å in a vacuum spark. The latter line was reobserved in a solar flare by Dere [18], but his wavelength of 413.00 ± 0.03 Å is less accurate.

Gabriel et al. [3,5] identified the $3p^5 - 3p^4(^1D)3d$ transitions. Their wavelengths were remeasured by Fawcett and Gabriel [19], who also assigned six new lines in the range of 201 - 221 Å to this group. The designation of

parent term has been changed from ^{1}D to ^{3}P for the upper levels $3p^{4}3d$ ^{2}P and ^{2}D , as indicated by the calculated levels of Fe x by Bromage *et al.* [20].

The $3p^5$ 2 P° $-3p^44s$ 2 P doublet was first observed by Weissberg and Kruger [16] in the range of 132-135 Å. Edlén [21] observed lines in the range of 124-136 Å with vacuum sparks and identified not only the additional 2 P° $-^2$ D, 2 S doublets but also the 2 P° $-^4$ P spin-forbidden transitions.

Fawcett et al. [22] observed six lines of the $3p^43d-3p^44f$ array with an estimated uncertainty of ± 0.02 Å and seven lines of $3p^5-3p^44d$ with an estimated uncertainty of ± 0.015 Å in the ranges of 143-147 Å and 102-107 Å, respectively. The wavelengths were measured in a laser-produced plasma.

The value for the ionization energy was derived by Lotz [23] by extrapolation.

Cr IX

S 1 isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^4$ ³P₂

Ionization energy 1 688 000 cm^{-1} (209.3 eV)

Fawcett [8,24] identified the $3s^23p^4 - 3s3p^5$ array in the range of 363 - 433 Å. Improved measurements with vacuum spark spectra were made by Smitt *et al.* [17] who extended the range of observations to 327 - 433 Å. In addition to the lines previously observed by Fawcett, they reported the $^1S_0 - ^1P_1^{\circ}$ line at 418.925 Å and the spin-forbidden $^3P_2 - ^1P_1^{\circ}$ line at 327.267 Å. Wavelengths are from Ref. [17]. Their uncertainty is estimated to be ± 0.008 Å.

Gabriel et al. [5] and Fawcett and Gabriel [19] identified three lines each of the $3p^4-3p^33d$ array with a vacuum spark. This work was extended by Fawcett [24], who measured a theta-pinch spectrum with an estimated uncertainty of ± 0.05 Å in the range of 209-224 Å. He identified nine lines. Except for the $^3P_2-(^4S^\circ)$ $^3D_3^\circ$ line at 210.61 ± 0.02 Å remeasured by Davé et al. [25] in a tokamak plasma, Fawcett's results are given.

Eleven lines of the $3p^4-3p^34s$ transition array in the range of 117-123 Å were identified by Edlén [26] in vacuum spark observations. It should be noted that the $3s^23p^4$ $^1S_0-3s^23p^3$ $^2P^\circ)4s$ $^1P_1^\circ$ line is given as 122.720 Å, and is longer by 0.014 Å than the calculated wavelength of 122.706 Å.

Fawcett et al. [22] identified seven lines in the range of 127 - 130 Å of the $3p^33d - 3p^34f$ array and six lines at 96 - 98 Å as $3p^4 - 3p^34d$. Wavelengths of these transitions were measured in a laser-produced plasma with uncertainties estimated to be ± 0.02 Å and ± 0.015 Å, respectively. Additional identifications were given by Fawcett et al. [27]

The magnetic-dipole transition $3p^4$ ($^3P_2 - ^1D_2$) at 3302.8 Å, which was identified by Jefferies *et al.* [28] from solar coronal observations, has been deleted because it

does not fit with the level scheme adopted here within their estimated uncertainty.

The value for the ionization energy was derived by Lotz [23] by extrapolation.

 $\mathbf{Cr} \mathbf{x}$

P I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 1 971 000 cm^{-1} (244.4 eV)

Sandlin *et al.* [29] and Feldman and Doschek [30] identified the magnetic-dipole transitions $3p^3$ $^4S_{3/2}^{\circ}-^2P_{1/2,3/2}^{\circ}$ in the solar corona. The wavelengths of 1564.10 Å and 1489.04 Å are adopted from the latter article.

Fawcett and Peacock [31] and Fawcett [8,24] identified the $3s^23p^3-3s3p^4$ transition array in the range of 333-427 Å. In the extended range of 333-448 Å, Smitt et al. [17] found 16 lines, including seven new lines, for this array in the vacuum spark discharge. Their results are given with an estimated uncertainty of ± 0.008 Å.

Gabriel et al. [3,5] observed the $3p^3$ $^2\mathrm{D}^{\circ}_{5/2}$ – $3p^2(^3\mathrm{P})3d$ $^2\mathrm{F}_{7/2}$ transition at 216.72±0.05 Å. In their article, the parent term was designated as $^1\mathrm{D}$, instead of $^3\mathrm{P}$. Fawcett et al. [32] identified the $3p^3$ $^4\mathrm{S}^{\circ}$ – $3p^2(^3\mathrm{P})3d$ $^4\mathrm{P}$ resonance transitions in the range of 223 – 226 Å. With a theta-pinch plasma, Fawcett [24] analyzed more fully the $3p^3-3p^23d$ transitions in the range of 216 – 254 Å. The uncertainty of the wavelengths is estimated to be ±0.05 Å.

The $3p^23d - 3p^24f$ and $3p^3 - 3p^24s$ transitions in the ranges of 115 - 117 Å and 106 - 114 Å were identified by Fawcett *et al.* [22] in a laser-produced plasma with an estimated uncertainty of ± 0.015 Å.

The value for the ionization energy was obtained by Lotz [23] by extrapolation.

Cr XI

Si I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ 3P_0

Ionization energy 2 184 000 cm $^{-1}$ (270.8 eV)

Jefferies et al. [28] and Svensson [33] classified the line at 3996.8 \pm 0.4 Å measured by Jefferies [34] in the solar corona to the magnetic-dipole transition $3s^23p^2$ $^3P_2 - ^1D_2$. Jefferies et al. also proposed the $^3P_1 - ^1D_2$ transition for the line at 3167.0 Å, but this line has not been adopted here because it does not fit with the present level scheme. This M1 line was identified at 3178 Å by Magnant-Crifo [35] in the solar coronal spectrum. Sandlin et al. [29] identified a coronal line at 1440.01 Å as the $^3P_1 - ^1S_0$ transition.

Fawcett [8,24] interpreted the $3s^23p^2-3s3p^3$ transition array in the range of 285-431 Å. Improved wavelengths with an estimated uncertainty of ± 0.008 Å were given by Smitt et~al. [17] for 14 lines, including the spin-forbidden transition $^3P_2-^1D_2^\circ$ at 339.446 Å, using a vacuum spark discharge. Recently, two additional $^3P_{2,1}-^5S_2^\circ$ spin-forbidden transitions at 600.7 ± 0.4 Å and 578.0 ± 0.8 Å were identified by Träbert et~al. [36] in a beam-foil spectrum. It should be noted that the $^1S_0-^1P_1^\circ$ line reported at 334.95 Å in Ref. [8] has been omitted because of the disagreement with the calculated wavelength of 336.11 Å.

Fawcett [24] provided classifications of 12 lines due to the $3p^2-3p3d$ transitions in the range of 226-256 Å in theta-pinch plasma discharges. The uncertainty of the wavelengths is estimated to be ± 0.05 Å.

The 3p3d-3p4f, $3p^2-3p4s$ and $3p^2-3p4d$ transitions in the ranges of ~ 105 Å, 98-101 Å and ~ 82 Å, respectively, were identified by Fawcett et al. [22] in a laser-produced plasma. Their measurements have an estimated uncertainty of ± 0.015 Å. We have adopted their measurement only for the $3p^2-3p4s$ transitions. For the other transitions, Kastner et al. [37] provided more comprehensive identifications than Fawcett et al. They also identified the two-electron transitions $3s3p^3$ $^1D_2^\circ - 3s^23p4f$ 3G_3 , 1F_3 at 100.09 Å and 99.13 Å.

The value for the ionization energy was derived by Lotz [23] by extrapolation.

Cr XII

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 2 404 000 cm^{-1} (298.0 eV)

Jefferies et al. [28] identified the line at 8153.8 Å measured by Jefferies [34] in the solar corona to the magnetic-dipole transition $3s^23p$ $^2P_{1/2}^{\circ} - ^2P_{3/2}^{\circ}$.

Träbert et al. [36] observed the $3s^23p$ $^2\mathrm{P}^\circ - 3s3p^2$ $^4\mathrm{P}$ spin-forbidden transitions in beam-foil spectra, with estimated uncertainties ranging from 0.4 Å to 0.8 Å. The wavelength of 555.0 ± 0.5 Å for the $^2\mathrm{P}^\circ_{3/2}-^4\mathrm{P}_{1/2}$ line is shorter by 1 Å than the calculated one, 556.0 Å.

Gabriel et al. [5] and Fawcett et al. [32] identified the $3s^23p$ $^2\mathrm{P}^\circ - 3s^23d$ $^2\mathrm{D}$ doublet. The $3s^23p - 3s3p^2$ array was given by Fawcett and Peacock [31]. These identifications were followed by Fawcett [8,24] who added the $3s3p^2$ $^4\mathrm{P} - 3p^3$ $^4\mathrm{S}^\circ$, the $3s^23p$ $^2\mathrm{P}^\circ - 3s3p^2$ $^2\mathrm{S}$, and the $3s^23p$ $^2\mathrm{P}^\circ_{1/2} - 3s3p^2$ $^2\mathrm{P}_{3/2}$ lines. These results were revised and extended by Litzén and Redfors [38] and Redfors and Litzén [39] in observations of laser-produced plasmas in the range of 220-471 Å. They reported 46 transitions between levels in the $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d configurations. Wavelengths were measured with an estimated uncertainty of ± 0.02 Å. Two $3s3p^2-3s3p(^3\mathrm{P}^\circ)3d$ lines were reobserved by Levashov

et al. [40] at 245.87 Å for ${}^4\mathrm{P}_{3/2} - {}^4\mathrm{P}_{1/2}^{\circ}$ and at 246.27 Å for ${}^4\mathrm{P}_{1/2} - {}^4\mathrm{D}_{1/2}^{\circ}$.

The transition arrays $3p^3$, $3s3p3d - 3p^23d$, $3s3d^2$ were newly identified by Churilov and Levashov [41] in a laser-produced plasma with an estimated uncertainty of ± 0.02 Å. We have adopted their results except for the energy levels of $3p^3$ $^2\mathrm{P}_{1/2}^\circ$ and $^2\mathrm{D}_{3/2}^\circ$, $3s3p(^1\mathrm{P}^\circ)3d$ $^2\mathrm{P}_{1/2}^\circ$ taken from Redfors and Litzén [39]. The line at 412.46 Å identified by Fawcett [24] as the $3s^23p$ $^2\mathrm{P}_{3/2}^\circ-3s3p^2$ $^2\mathrm{D}_{3/2}$ transition has been omitted, because this line was not observed by Redfors and Litzén.

The $3p^2P^{\circ}-4d^2D$ doublet was identified by Edlén [42] at ~76 Å. Fawcett *et al.* [43] identified the $3d^2D-4f^2F^{\circ}$ doublet, the $3s3p3d^4F^{\circ}-3s3p4f^4G$, and $3s3p^2^4P-3s3p4s^4P^{\circ}$ quartets in the range of 90-101 Å.

The value for the ionization energy was obtained by Lotz [23] by extrapolation.

Cr XIII

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{1}S_0$

Ionization energy 2 862 000 cm^{-1} (354.8 eV)

Classifications of the n=3-3 transitions were made in a series of articles of Fawcett et al. [22,32], Fawcett and Peacock [31], and Fawcett [8] for the transitions between levels in the $3s^2$, 3s3p, 3s3d, $3p^2$, and 3p3d configurations. Litzén and Redfors [44] reobserved the spectrum in the range of 228 - 635 Å in a laser-produced plasma and identified 42 lines, including 20 lines from the earlier works. Wavelengths were measured with an estimated uncertainty of ± 0.02 Å. Their results are adopted here. However, the 3s3d $^{1}D_{2} - 3p3d$ $^{1}D_{2}^{\circ}$ line at 634.78 Å differs by about 0.05 Å from the calculated wavelength. Therefore, we have modified the upper 3p3d ¹D₂ level to 819 961 cm⁻¹. The $3p^2$ $^3\mathrm{P}_0 - 3p3d$ $^3\mathrm{D}_1^\circ$ line at 269.47 Å is perturbed. The $3s^2$ $^1\mathrm{S}_0 - 3s3p$ $^3\mathrm{P}_1^\circ$ transition at 482.17±0.02 Å and the $^1\mathrm{S}_0 - ^1\mathrm{P}_1^\circ$ resonance transition at 328.267±0.004 Å were observed in a tokamak plasma by Peacock et al. [45]. Their mesurements are the most accurate for these lines, compared with the earlier observations in Refs. [18,25,44,46].

The $3p3d-3d^2$ transitions were identified by Levashov and Churilov [47], Redfors [48] and more comprehensively by Churilov *et al.* [49] in the range of 252-353 Å in laser-produced plasmas. Wavelengths of Redfors given to the third decimal place are adopted except for a blended 3p3d $^3F_4^{\circ} - 3d^2$ 3F_4 line at 269.446 Å. For this line, we have adopted 269.411 Å from Ref. [49]. There appear to be some exceptions to the stated experimental uncertainty estimated to be ± 0.02 Å in the identifications in Ref. [49]. The designations of the lower 3p3d $^3P_1^{\circ}$ and $^3D_1^{\circ}$ levels have been interchanged, according to the level scheme of Litzén and Redfors [44]. Futhermore, 25 cm⁻¹

is added to the $3d^2$ $^3P_{1,2}$ levels, so that their wavelengths agree better with calculated ones. The line at 305.87 Å is blended and tentatively identified as the 3p3d $^3D_2^\circ - 3d^2$ 3F_3 transition.

Edlén [42] first identified triplet systems of the 3s3p-3s4s, 3s3p-3snd (n=4,5), and 3s3d-3snf (n=4,5) transitions in the range of 53-92 Å, together with the $3s^2$ ¹S -3s4p ¹P° resonance line at 66.983 Å. Singlet systems were identified by Fawcett et al. [43] for the 3s3d-3s4f transition at 97.25 ± 0.01 Å and by Fawcett et al. [22] for the 3s3p-3s4d and $3p^2-3s4f$ transitions at 76.17 ± 0.015 Å and 82.79 ± 0.015 Å. Fawcett et al. [43] also provided the 3p3d-3p4f transitions with 10 lines in the range of 90-97 Å. Identifications of the 3s3d-3snf (n=6,7), $3p^2-3p4s$, 3s3p-3sns (n=4-6), 3s3p-3snd (n=5,6), $3p^2-3p4d$, $3s^2-3snp$ (n=5-7), and 3s3p-3p4p transitions in the range of 40-92 Å are taken from Fawcett et al. [27]

The value for the ionization energy was obtained by Lotz [23] by extrapolation.

Cr XIV

Na I isoelectronic sequence

Ground state $1s^22s^22p^63s^{-2}S_{1/2}$

Ionization energy 3 098 520 \pm 200 cm⁻¹ (384.171 \pm 0.025 eV)

Fawcett et~al.~[32] and Fawcett and Peacock [31] identified five lines of the 3s-3p and 3p-3d transition arrays in the ranges of 389-412 Å and 289-302 Å, respectively, in a laser-produced plasma. These n=3-3 arrays were remeasured in Refs. [18,22,45,50,51,52]. An isoelectronic comparison of the measured wavelengths, including the 3d-4f doublet, with Dirac-Fock calculations was made by Reader et~al.~[53] for ${\rm Ar}^{7+}$ to ${\rm Xe}^{43+}$, and least-squares adjusted wavelengths were derived. The overall uncertainty estimate is ± 0.007 Å. Levels of the $2p^63p,~2p^63d$, and $2p^64f$ configurations have been derived from these wavelengths.

Jupén et al. [54] identified the line at 281.67 ± 0.05 Å measured by Buchet-Poulizac et al. [52] in a beamfoil spectrum, to the core-excited $2p^53s3p$ $^4\mathrm{D}_{7/2}-2p^53s3d$ $^4\mathrm{F}^{\circ}_{9/2}$ transition.

The 4f $^2\mathrm{F}^\circ$ – 5g $^2\mathrm{G}$ and 4d $^2\mathrm{D}$ – 5f $^2\mathrm{F}^\circ$ doublets at ~205 Å and ~187 Å were identified by Lawson and Peacock [55]. Their observations were made in a laser-produced plasma with an estimated uncertainty of ± 0.06 Å. The 4d $^2\mathrm{D}_{5/2}$ – 5f $^2\mathrm{F}^\circ_{7/2}$ line at 187.30 Å is blended.

Edlén [56] identified the transitions 3s - np (n = 4, 5), 3p - 4s, 3p - nd (n = 4, 5), and 3d - nf (n = 4 - 6) in vacuum spark discharges. Except for the 3s - 4p and 3p - 4d transitions his results are quoted. The 3d - 4p lines at ~ 101 Å were identified by Fawcett *et al.* [43].

Identifications along Rydberg series have been taken

from Fawcett et al. [27] for the 3d-nf (n=9,10) and 3p-nd (n=10,11) transitions and from Cohen and Behring [51] for the 3s-np (n=4,6-9),3p-ns (n=5-7),3p-nd (n=4,6-9),3d-5p and 3d-nf (n=6-8) transitions.

The inner-shell transitions $2p^63s^2S_{1/2} - 2p^53s^2$ $^2P_{3/2,1/2}^{\circ}$ at 21.770 ± 0.005 Å and 21.467 ± 0.005 Å were observed by Feldman and Cohen [57] with a low-inductance vacuum spark source.

The value for the ionization energy was derived by Edlén [58] using core polarization theory applied to the nf series.

Cr xv

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 8 151 000 \pm 5000 cm⁻¹ (1010.6 \pm 0.6 eV)

Edlén and Tyrén [59], and Tyrén [60] identified the $2p^6-2p^53s$, 3d resonance lines in the range of 18.5-21.2 Å with a vacuum spark. Tyrén's wavelengths are quoted here. These lines were reobserved by Klapisch et al. [61] in a tokamak plasma and by McKenzie and Landecker [62] in the solar corona, both of whom also found the magnetic quadrupole $2p^6$ $^1S_0-2p^53s$ $(\frac{3}{2},\frac{1}{2})^\circ_2$ line. The wavelength of 21.213 Å is from Ref. [61]. In the wavelength range shorter than 17 Å, Tyrén also identified the $2s^22p^6-2s2p^63p$ and $2p^6-2p^54d$ transitions. Swartz et al. [63] found the $2p^6-2p^5nd$ (n=5,6) transitions with a vacuum spark. The lines at 15.788 Å and 15.509 Å in Ref. [63] are omitted because the upper $2p^54s$ $(\frac{3}{2},\frac{1}{2})^\circ_1$ and $(\frac{1}{2},\frac{1}{2})^\circ_1$ levels disagree with those of Jupén et al. [64].

The 3s-3p and 3p-3d arrays were observed by Jupén and Litzén [65,66] in laser-produced plasmas and by Buchet-Poulizac et al. [52] and Buchet et al. [67] in beam-foil spectra. Wavelengths in the range of 240-471 Å are taken mainly from Ref. [66] and additionally from Refs. [52,67]. The estimated uncertainty of the wavelengths range from ± 0.02 Å to ± 0.1 Å. The doubly classified line at 405.035 Å in Ref. [66] and two lines at 298.11 Å and 240.2 Å in Ref. [67] are compiled, although there appear discrepancies of -0.20 Å, 0.16 Å, and -0.12 Å between the observed and calculated wavelengths. But, the line at 453.40 Å in Ref. [67] is omitted, because it shows a large deviation of 1.65 Å from the calculated wavelength, 451.75 Å.

Kastner [68] identified a coronal line at 1696.26 Å as the $2p^53s(\frac{3}{2},\frac{1}{2})_1^{\circ}-(\frac{1}{2},\frac{1}{2})_0^{\circ}$ transition. But it is excluded, because the splitting of the terms is inconsistent with that of Jupén *et al.* [64].

Finkenthal et al. [69] identified five lines in the range of 97-111 Å as the $2s^22p^53s-2s2p^63s$ transitions in a tokamak plasma with a measurement uncertainty estimated to be $\pm 0.02 \text{ Å}$. Three lines at 111.27 Å, 103.51 Å, and

102.18 Å of the ${}^{1}P_{1}^{\circ}$, ${}^{3}P_{1,2}^{\circ} - {}^{3}S_{1}$ transitions are omitted, because the upper ${}^{3}S_{1}$ level values obtained from these lines are incompatible with each other.

The 3p-4d transitions were first identified by Kastner et~al.~[70] and also by Fawcett et~al.~[71], together with the 3s-4p and 3d-4f transitions. More complete and improved measurements were reported by Jupén et~al.~[64] with a laser-produced plasma. They found 54 lines, including the 3p-4s transitions, in the range of 57-79 Å, which are quoted here. The estimated wavelength uncertainty varies from ± 0.005 to ± 0.01 Å. The wavelengths of 74.029 Å and 63.016 Å in Ref. [64] have been changed to 74.209 Å and 63.061 Å because they appear to be misprints. We have adopted the energy levels of Jupén et~al. for the $2s^22p^53l$ and $2s^22p^54l$ configurations, except for their predicted $2s^22p^5(^2\mathrm{P}^{\circ}_{1/2,3/2})4f~^2[\frac{5}{2}]_2$ levels.

The ionization energy was derived [72] from the $2p^5nd$ 3D_1 series for the n=3-5. The n=6 term does not fit well to this series calculation.

Cr xvi

F I isoelectronic sequence

Ground state $1s^2 2s^2 2p^5$ ${}^2P_{3/2}^{\circ}$

Ionization energy 8 8450 000 cm^{-1} (1096.64 eV)

Hinnov et al. [73], Peacock et al. [45] and Finkenthal et al. [74] observed the magnetic-dipole $2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$ – $^2\mathrm{P}^{\circ}_{1/2}$ transition in tokamak discharges. The most accurate wavelength of 1410.60 ± 0.02 Å is given by Peacock et al.

The $2s^22p^5$ 2 P° $-2s2p^6$ 2 S doublet was observed by Fawcett [75], Doschek *et al.* [76] and Lawson and Peacock [55] in laser-produced plasmas, by Breton *et al.* [77], Sugar *et al.* [78] and Davé *et al.* [25] in tokamak plasmas, and by Buchet-Poulizac *et al.* [52] in a beam-foil spectrum. Wavelength values of 115.355 Å and 106.633 Å with an estimated uncertainty of ± 0.005 Å are taken from the most accurate measurement of Sugar *et al.* [78].

Feldman et al. [79] reported observations with a low-inductance vacuum spark, in which the transitions $2s2p^6 - 2s2p^53s$, $2p^5 - 2p^43s$ and $2p^5 - 2p^43d$ in the range of 17 - 20 Å were identified, revising and extending the earlier work of Cohen et al. [80]. We give the Feldman et al. results with an uncertainty estimated to be ± 0.01 Å. Four lines at 17.81 Å, 17.86 Å, 17.46 Å and 17.38 Å, identified in the $2p^5 - 2p^43d$ array in Ref. [80] have been excluded, because these lines were not confirmed by Feldman et al. [79]. Remeasurement of the $2p^5 - 2p^43s$, 3d transitions in the solar corona was made by McKenzie and Landecker [62], whose wavelengths agree with those in Ref. [79] within 0.006 Å.

Spector et al. [81] identified the forbidden transition $2p^5 \, ^2\mathrm{P}_{3/2}^{\circ} - 2p^4 (^1\mathrm{D}) 4d \, ^2\mathrm{F}_{5/2}$ at $13.528 \pm 0.005 \, \text{Å}$ in a laser-produced plasma. This line has been omitted, because it is an isolated identification.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr XVII

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 9 576 300 cm^{-1} (1187.31 eV)

Four magnetic-dipole transitions within the ground configuration were identified in tokamak discharges. We adopted the following results: the $^3P_2 - ^3P_1$ and $^3P_1 - ^1S_0$ lines at 1656.3 ± 0.2 Å and 493.8 ± 0.3 Å of Hinnov et al. [73], the $^3P_1 - ^1D_2$ line at 1340.7 ± 0.4 Å of Finkenthal et al. [74], and the $^3P_2 - ^1D_2$ line at 740.75 ± 0.03 Å of Peacock et al. [45].

The $2s^22p^4 - 2s2p^5$ arrays were observed by Fawcett [75], Doschek et al. [76] and Lawson and Peacock [55] in laser-produced plasmas, by Breton et al. [77] Davé et al. [25], and Sugar et al. [78] in tokamak plasmas, and by Buchet-Poulizac et al. [52] in a beam-foil spectrum. The measurement of Lawson and Peacock in the range of 94 - 148 Å is the most comprehensive and their wavelengths are adopted here except for four strong lines comprising the $2s^22p^4$ $^3P - 2s2p^5$ $^3P^\circ$ triplet and the $^1D_2 - ^1P_1^\circ$ transition, remeasured by Sugar et al. [78] with an uncertainty of ± 0.005 Å. The estimated uncertainty of the wavelengths in Ref. [55] is ± 0.03 Å. They also found the $2s2p^5$ $^1P_1^\circ - 2p^6$ 1S_0 transition at 129.78 Å, identified first by Doschek et al. [84], and the $^3P_1^\circ - ^1S_0$ transition at 97.20 Å.

The $2p^4-2p^33s$ array at ~ 18 Å was identified by Doschek *et al.* [85]. Wavelengths with an uncertainty estimated to be ± 0.01 Å were measured in laser-produced plasmas. Some lines are doubly classified.

An analysis of the $2p^4-2p^33d$ arrays at ~16 Å containing eight lines was made by Fawcett and Hayes [86] with a laser-produced plasma. The estimated uncertainty of the wavelengths is ± 0.01 Å.

Spector et al. [81] identified the $2p^4$ 1D_2 – $3p^3(^2D^\circ)4d$ $^1D_2^\circ$, $^3F_3^\circ$ transitions at 12.909 ± 0.005 Å and 12.779 ± 0.005 Å in a laser-produced plasma.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr XVIII

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 10 438 000 cm^{-1} (1294.15 eV)

Hinnov et al. [73] and Denne and Hinnov [87] identified the magnetic-dipole transitions within the ground configuration with seven lines in the range of $378-4039\,\text{Å}$ in tokamak plasmas.

Fawcett [75] first identified the $2s^22p^3$ 2 D $^{\circ}$ - $2s2p^4$ ²D, ²P doublets in a laser-produced plasma. Extended analyses were carried out by Doschek et al. [76] and Feldman et al. [88]. Remeasurements of this array were made by Breton et al. [77] and Davé et al. [25] in tokamak plasmas, by Lawson and Peacock [55] in a laserproduced plasma, and by Buchet-Poulizac et al. [52] in a beam-foil spectrum. Wavelengths are from the comprehensive measurements of Lawson and Peacock, who identified 20 lines in the range of 90 - 150 Å, including the spin-forbidden transitions from the ${}^2D_{3/2}$, ${}^2S_{1/2}$ and $^2\mathrm{P}_{3/2}$ terms to the ground $^4\mathrm{S}^{\circ}_{3/2}$. The estimated uncertainty of the wavelengths is ±0.03 Å. Recently, Sugar et al. [78] obtained wavelengths with an uncertainty of ± 0.005 Å for nine lines of the $2s^22p^3 - 2s2p^4$ transition arrays in the range of 104.9 - 150.0 Å and gave new level values. Their results are adopted to supercede the results of Ref. [55]. For the transitions at 149.94, 147.79, and 119.62 Å in Ref. [55], the wavelengths differ by about ± 0.06 Å from the recalculated ones using the level values adopted from Ref. [78].

Lawson and Peacock [55] also identified seven lines in the range of 93-157 Å of the $2s2p^4-2p^5$ array, including the $^2D-^2P^{\circ}$ doublet in the earlier works of Fawcett and Hayes [86] and Doschek *et al.* [84].

Fawcett and Hayes [86] and McKenzie and Landecker [62] identified the $2p^3 - 2p^23d$ transitions at 15.60 Å in a laser-produced plasma and at 15.519±0.01 Å in the solar corona, respectively.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr XIX

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 11 259 900 cm^{-1} (1396.05 eV)

The magnetic-dipole transitions within the ground configuration were observed in tokamak plasmas by Hinnov and Suckewer [89], Hinnov et al. [73], Denne and Hinnov [87], and Finkenthal et al. [74]. Wavelengths adopted

here are taken from Ref. [73] for the ${}^3P_{1,(0)} - {}^3P_{2,(1)}$ lines at 2885.4 Å and 2090.9 Å and ${}^3P_1 - {}^1S_0$ at 398.4 Å and from Ref. [87] for the ${}^3P_{2,1} - {}^1D_2$ lines at 979.1 Å and 731.1 Å.

Feldman et al. [88] and Fawcett and Hayes [86] identified the $2s^22p^2 - 2s2p^3$ arrays in laser-produced plasmas and Breton et al. [77] reobserved them in a tokamak plasma. Fawcett and Hayes also reported the $2s2p^3$ ³D° – $2p^4$ ³P triplet. Tabulated wavelengths are taken from a more extensive analysis with a laser-produced plasma of Lawson and Peacock [55], who gave identifications for 39 lines due to the $2s^22p^2 - 2s2p^3$ and $2s2p^3 - 2p^4$ transitions in the range of 95 - 202 Å. The uncertainties of the wavelengths are estimated to be ± 0.03 Å below 180 Å and ± 0.06 Å above 180 Å. Some lines were recently reobserved by Buchet-Poulizac et al. [52] in beam-foil spectra and by Davé et al. [25] and Sugar et al. [78] in tokamak plasmas. In Ref. [78], wavelengths with an uncertainty of ± 0.005 Å are given for 10 lines of the $2s^22p^2 - 2s2p^3$ array in the range of 109.6 - 165.5 Å, and also the energy levels are derived. Their results are adopted here. The $2s2p^3$ ${}^5S_2^{\circ} - 2p^4$ 3P_2 transition at 95.62 Å in Ref. [55] is questionable and has been omitted, because the lower ⁵S₂° level is inconsistent with that of Edlén [90].

The TFR group et al. [91] observed four lines of innershell transitions $1s^22s^22p^2 - 1s2s^22p^3$ at ~ 2.2 Å.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr xx

B i isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy 12 061 300 cm^{-1} (1495.41 eV)

The magnetic-dipole transition ${}^2P_{1/2}^{\circ} - {}^2P_{3/2}^{\circ}$ within the ground configuration was observed in tokamak plasmas by Hinnov and Suckewer [89], Hinnov *et al.* [73] and Finkenthal *et al.* [74]. The wavelength of 1205.9±0.3 Å adopted here is from Ref. [73].

The $2s^22p - 2s2p^2$ arrays were identified by Doschek et al. [92] and Fawcett and Hayes [86] in laser-produced plasmas and more fully by Breton et al. [77] in a tokamak plasma. Extensive measurements of both the $2s^22p - 2s2p^2$ and the $2s^2p^2 - 2p^3$ arrays were made with a laser-produced plasma by Lawson and Peacock [55], who classified 28 lines in the range of 116 - 272 Å. Their results are adopted here except for new results of Sugar et al. [78] who remeasured seven lines of the $2s^22p - 2s2p^2$ array in the range of 116.0 - 175.5 Å with an uncertainty of ± 0.005 Å. The uncertainties of the wavelengths in Ref. [55] are estimated to be ± 0.03 Å below 180 Å and ± 0.06 Å above 180 Å. A recent reobservation of the $2s^22p - 2s2p^2$ arrays in a tokamak plasma are reported

by Davé et al. [25]. The designation of the two levels $2s2p^2$ $^2P_{1/2}$ and $^2S_{1/2}$ has been interchanged, according to Edlén [93] and to the percentage composition given by Sugar and Corliss [72].

The $2s^22p - 2s^24l$ (l = s, d) transitions at ~11 Å were identified by Spector *et al.* [81] in a laser-produced plasma with an estimated uncertainty of ± 0.005 Å. They also identified two lines due to the $2s2p^2 - 2s2p3d$ transitions. Burkhalter *et al.* [94] extended the identifications to 24 lines in the range of 14.0-14.7 Å with a similar light source but there are many blends and the match to the calculation is not very good. We give their wavelengths with an estimated uncertainty of ± 0.003 Å.

The TFR group et al. [91] observed four lines of the inner-shell transitions $1s^22s^22p - 1s2s^22p^2$ at ~ 2.2 Å.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr XXI

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 13 185 400 cm^{-1} (1634.78 eV)

The $2s^2$ $^1S_0 - 2s2p$ $^3P_1^{\circ}$ transition was observed in the solar corona by Widing [95], Sandlin et al. [96], and Dere [18]. Dere's wavelength of 293.15±0.03 Å is given in this compilation. The resonance transition $2s^2$ ¹S₀ -2s2p ¹P₁° was observed by Breton *et al.* [77], Hinnov [97], and Sugar et al. [78] in tokamak plasmas and by Lawson and Peacock [55] in a laser-produced plasma. The wavelength of 149.907±0.005 Å and the energy levels were taken from Sugar et al. Davé et al. [25] reobserved both lines at 293.24 ± 0.02 Å and 149.87 ± 0.02 Å in a tokamak plasma, but both are blended. Lawson and Peacock also identified the $2s2p-2p^2$ transitions, including the intercombination line ${}^{3}P_{2}^{\circ} - {}^{1}D_{2}$, in the range of 154-260 Å. The uncertainties of the wavelengths are estimated to be ± 0.03 Å below 180 Å and ± 0.06 Å above 180 Å.

The n=2-3 transition arrays in the range of 13-14 Å were first identified by Fawcett and Hayes [86] and more extensively by Boiko et al. [98,99] in laser-produced plasmas. Some of the lines are given as unresolved blended lines. Except for the line at 13.55 ± 0.01 Å of Fawcett and Hayes, the estimated uncertainty of the wavelengths is ±0.003 Å. Remeasurements were made by Spector et al. [81] and Burkhalter et al. [94] but their wavelengths do not fit with the level scheme of Boiko et al. It should be noted that the designation of the $2s^2$ $^1S_0 - 2s3p$ $^1P_1^\circ$ line at 13.123 Å from Ref. [99] has been changed to $2s^2$ $^1S_0 - 2s3p$ $^3P_1^\circ$, according to the identification of Bromage et al. [100] for the V and Fe ions.

The TFR group et al. [91] identified the inner-shell transitions $1s^22s2p - 1s2s2p^2$ and $1s^22s^2 - 1s2s^22p$ in the range of 2.20 - 2.22 Å.

For the ionization energy we use a value calculated by Cheng [82] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [83].

Cr XXII

Li I isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 13 882 000 \pm 2900 cm⁻¹ (1721.4 \pm 0.4 eV)

The resonance transitions were identified by Widing and Purcell [101], Sandlin et al. [96], and Dere [18] from solar coronal observations. They were also measured by Lawson and Peacock [55] in a laser-produced plasma, by Grandin et al. [102] in a beam-foil spectrum, and by Hinnov [97], Davé et al. [25], Knize et al. [103], Hinnov et al. [104], Sugar et al. [78], and Knize [105] in tokamak plasmas. Wavelengths of 279.733 \pm 0.005 Å and 223.017 \pm 0.005 Å for the 2s 2 S_{1/2} - 2p 2 P $^{\circ}_{1/2,3/2}$ lines are from the more accurate measurement of Sugar et al. [78]. Levels of the 2p configuration, however, are derived from the smoothed wavelengths of Kim et al. [106].

The first identification of the n=2-3 doublets was made with a low-inductance vacuum spark by Goldsmith $et\ al.\ [107]$, from which the $2p\ ^2\mathrm{P}_{3/2,1/2}^\circ-3s\ ^2\mathrm{S}_{1/2}$ doublet at 13.549 ± 0.005 Å and 13.393 ± 0.005 Å are quoted here. Observations with an estimated uncertainty of ±0.003 Å in the range of 9.4-13.3 Å were carried out with a laser-produced plasma by Aglitskii $et\ al.\ [108]$, improving on the results for the 2s-3p, 4p and 2p-3d, 4d doublets of Goldsmith $et\ al.$ Vainshtein and Safronova [109] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. Their energy levels are adjusted to the $1s^22p\ ^2\mathrm{P}_{1/2,3/2}^\circ$ levels of Kim $et\ al.$ by subtracting $120\ \mathrm{cm}^{-1}$.

The $1s^22p - 1s2p^2$ and $1s^22s - 1s2s2p$ inner-shell transitions were observed at ~ 2.2 Å in tokamak discharges by the TFR group et~al.~[91], and by Bryzgunov et~al.~[110]. Apicella et~al.~[111] remeasured the $1s^22s~^2S_{1/2}-~1s2s2p~^2P_{1/2}^{\circ}$ line as well as the $1s^2nl-~1s2pnl~(nl=3s,3p,3d,4p)$ transitions. Except for the $1s^23p~^2P_{3/2}^{\circ}-~1s2p3p~^2D_{5/2}$ line, they are given as the aggregates of emission lines. Vainshtein and Safronova also calculated wavelengths of the $1s^22s-1s2s2p,1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing levels.

The ionization energy was determined by Edlén [112] from the 2p-nd series.

Cr xxIII

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy $60~345~500~{\rm cm}^{-1}~(7481.889~{\rm eV})$

Grandin et al. [102] observed the 1s2s $^3S_1 - 1s2p$ $^3P_2^{\circ}$ transition at 325.36 ± 0.5 Å in a beam-foil spectrum.

The TFR group et al. [91] identified the forbidden transitions $1s^2$ $^1S_0 - 1s2s$ 3S_1 at 2.2035 Å, $1s^2$ $^1S_0 - 1s2p$ $^3P_{1,2}^{\circ}$ at 2.1927 Å and 2.1886 Å, and the resonance line $1s^2$ $^1S_0 - 1s2p$ $^1P_1^{\circ}$ at 2.1818 Å. For the resonance line, the more accurate wavelength of 2.18193±0.00015 Å was obtained from a tokamak plasma observation of Beiersdorfer et al. [113], who also identified the $1s^2$ $^1S_0 - 1snp$ $^1P_1^{\circ}$ (n = 4,5) transitions at 1.76342 Å and 1.72357 Å. Other measurements of these lines in Refs. [110,111,114,115,116] are less accurate.

Cheng et al. [117] give calculated total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [118] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [119] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [120].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [109] have been tabulated after increasing them by $1300~\rm cm^{-1}$ to correspond with the values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

The 1s2s - 2s2p, $1s2p - 2s^2$, and $1s2p - 2p^2$ transitions were identified by Bitter *et al.* [121] with five lines near 2.51 Å. We have adopted the calculated wavelengths of Vainshtein and Safronova [109] without correction for transitions from the n = 2 doubly excited states.

Cr XXIV

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 63 675 850 \pm 20 cm⁻¹ (7894.802 \pm 0.002 eV)

Decaux et al. [122] first observed the 1s 2 S - 3p 2 P° resonance transitions in a tokamak plasma.

We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [119] for the n=2 shell whose estimated uncertainty is $\pm 10 \text{cm}^{-1}$. Their energy differences are in close agreement with those of Mohr [123]. The levels for n=3-5 have been calculated by Erickson [124]. We use his values for the binding energies subtracted from the binding energy of the ground state obtained by Johnson and Soff.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for hydrogen spectra by Wiese *et al.* [125]. The scaling was actually performed for the line strengths S, which for a hydrogen-like ion of nuclear charge Z are reduced according to $S_{\rm Z} = Z^{-2}S_{\rm H}$, so that

$$S_{\text{Cr XXIV}} = S_{\text{H}}(24)^{-2} = S_{\text{H}}/576.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [126]. For these conversions the very accurate wavelengths listed in the first column of the Cr XXIV table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-3% for Cr XXIV, according to the work by Younger and Weiss [127], and have been neglected.

The value for the ionization energy is from Johnson and Soff [119].

2.4.2. Spectroscopic Data for Cr v through Cr XXIV

 $\mathbf{Cr} \ \mathbf{v}$

$ \begin{array}{c} 1728.497 \\ 1705.698 \\ \end{array} \begin{array}{c} 3d4s^{3} D_{2} \\ 2 \\ 3 & 3171698.1 \\ \end{array} \begin{array}{c} 229 531.7 \\ 3 & 171698.1 \\ \end{array} \begin{array}{c} 229 531.7 \\ 20 316.3 \\ \end{array} \begin{array}{c} 2 \\ 2 \\ 3 & 171698.1 \\ \end{array} \begin{array}{c} 229 531.6 \\ 220 316.3 \\ \end{array} \begin{array}{c} 2 \\ 4 \\ 3.4 - 1 \\ 1.648.8 \\ \end{array} \begin{array}{c} 1 \\ 1055.639 \\ 1685.639 \\ \end{array} \begin{array}{c} 3d4s^{3} D_{2} \\ 3d4s^{3} D_{3} \\ \end{array} \begin{array}{c} 3d4p^{3} D_{2}^{2} \\ 1687.636 \\ \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Wave- ength (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1705.668	.837.442	3d4s ¹ D ₂	$3d4p$ $^{1}\mathrm{D_{2}^{\circ}}$	171 698.1	226 119.8	15	1.1	4.3+8	D	1°,126*
$ \begin{array}{c} 1705.629 \\ 1856.529 \\ 3 & 3 & 44s^{3}D_{2} \\ 3 & 3 & 44p^{3}D_{2} \\ 1656.529 \\ 3 & 3 & 34p^{3}D_{2} \\ 167.010 \\ 3 & 3 & 34p^{3}D_{2} \\ 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 228.681 \\ 3 & 3 & 167.010 \\ 229.120.8 \\ 3 & 167.4010 \\ 229.120.8 \\ 3 & 20.01 \\ 239.120.8 \\ 3 & 20.01 \\ 3 & 20.01 \\ 3 & 20.01 \\ 3 & 20.01 \\ 3 & 20.01 \\ 3 & 20.01 \\ 4.94.7 \\ 4.95.8 \\ 4.95.9$.728.497	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p$ $^3F_2^{\circ}$	171 698.1	229 551.7	5				1
1655.639	705.968		_	171 698.1	230 316.3	2				1
16525656	705.629	$3d4s$ $^3\mathrm{D}_2$	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	167 491.0	226 119.8	4				1
1644.063	655.639	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3D_2^{\circ}$							1°,126*
1639.403		2								1°,126*
1683.495 3 168 089.5 229 120.8 8 1.9 6.8+8 D 1622.607 2 3 167 691.0 229 120.8 3 2.0 - 1 7.4+7 D 1613.309 3 3 3 3 3 3 3 3 3										1°,126*
$\begin{array}{c} 1630.989 \\ 1 \\ 1022.607 \\ 2 \\ 3 \\ 167.7640 \\ 2 \\ 3 \\ 167.7640 \\ 3 \\ 167.4910 \\ 2 \\ 2 \\ 2 \\ 3 \\ 167.7640 \\ 2 \\ 2 \\ 3 \\ 3 \\ 167.7640 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$										1°,126* 1°,126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.0	0.0 1 0	ט	1 ,120
$\begin{array}{c} 1607.055 \\ 1607.055 \\ 1608.191 \\ 1 \\ 1 \\ 1608.191 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $							2.0 - 1	7.4 + 7	D	1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1611.330	$3d4s$ $^3\mathrm{D}_2$	3d4p 3F2	167 491.0	229 551.7	3	4.5 - 2	2.3+7	D	1°,126*
1603.191			_							1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= = = = = = = = = = = = = = = = = = =								1°,126*
$ \begin{array}{c} 1519,030 \\ 1497,966 \\ 3d4s^3D_3 \\ 1497,966 \\ 1498,711 \\ 120 \\ 1488,666 \\ 2 \\ 2 \\ 167,491.0 \\ 248,666 \\ 3d4s^3D_3 \\ 248,866 \\ 2 \\ 2 \\ 167,491.0 \\ 248,666 \\ 3d4s^3D_3 \\ 248,866 \\ 2 \\ 2 \\ 167,491.0 \\ 248,666 \\ 248,466 \\ 248,466 \\ 250,418,46 \\ 248,466 $		2	3							1°,126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1579.696	3	4	168 089.5	231 392.9	15	2.9	8.6+8	D	1°,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1519.030	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p^{-1}F_3^{o}$	171 698.1	237 529.5	13	2.3	9.5+8	D	1°,126*
$\begin{array}{c} 1484.666 \\ 1482.757 \\ 1 \\ 1481.651 \\ 1 \\ 1477.769 \\ 1 \\ 1 \\ 1461.651 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1497.966	$3d4s$ $^3\mathrm{D}_3$	$3d4p$ $^3P_2^{\circ}$	168 089.5	234 846.4	12	1.3	7.5+8	D	1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1							1°,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1°,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1°, 126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							3.3 – 1	1.079	D	1°,126* 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1465.861	$3d4s$ $^{1}\mathrm{D}_{2}$	$3d4p\ ^{1}\mathrm{P_{1}^{o}}$	171 698.1	239 917.5	12	1.0	1.1+9	D	1°,126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1263.501	$3d4p$ $^{1}\text{F}_{3}^{\circ}$	$3d4d$ $^{1}\mathrm{F}_{3}$	237 529.5	316 674.9	10				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1259.986	$3d4p$ $^{1}P_{1}^{\circ}$	$3d4d$ $^{1}\mathrm{P}_{1}$	239 917.5	319 284.0	7				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1210.499	$3d4p$ $^{1}P_{1}^{o}$	$3d4d$ $^3\mathrm{S}_1$	239 917.5	322 528.1	7				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1204.126	3d4n ³ P°	3d4d ³ D ₁	234 846 4	317 893 8	4				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	234 618.4	318 227.6	9				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1193.950	2	3	234 846.4	318 601.7	10				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1146.668	$3d4p$ $^3F_4^{\circ}$	$3d4d$ $^3\mathrm{D}_3$	231 392.9	318 601.7	3				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1140.489	$3d4v^{3}P_{2}^{0}$	$3d4d^{3}S_{1}$	234 846.4	322 528.1	6				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1137.529				322 528.1					1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1134.768	3d4p 3F2	3d4d ³ G ₄	231 392.9	319 516.8	3	3.4 - 1	2.0+8	D	1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1127.631									1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	230 316.3	319 119.1					1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	4				3.6	2.1 + 9	\mathbf{D}	1°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1116.478	2	3	229 551.7	319 119.1	. 10				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1122.255	3d4n 3D°	3d4d ³ D ₂	229 120 8	318 997 6	. 1				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				000 100 0						î
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				228 489.1	318 227.6	8				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1							1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>-</u>			G#0 000.0	•				
		$3d4p$ $^3\mathrm{D}^{\mathrm{o}}_3$								1°,126* 1°,126*
1080 070 3dAn ¹ Fo 3dAd ¹ D ₂ 227 520 5 220 250 2 1	1104.296	$3d4p$ $^{1}\mathrm{D_{2}^{\circ}}$	$3d4d$ $^{1}\mathrm{F}_{3}$	226 119.8	316 674.9	9 6				1
1009.079 504p 13 5040 D2 237 329.3 329 330.3 1	1089.079	$3d4p$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d4d$ $^{1}\mathrm{D}_{2}$	237 529.5	329 350.3	3 1				1
$3d4p$ $^{1}D_{2}^{\circ}$ $3d4d$ $^{1}P_{1}$ 226 119.8 319 284.0 2	1073.367									1

Cr v - Continued

Wave-	Classification	. 	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		, ,			` ,		
1062.933	$3d4p\ ^{3}F_{4}^{o}$	3d4d ³ F ₃	231 392.9	325 472.5					1
1058.298	4	4	231 392.9	325 884.2	5				1
1054.991	3	2	230 316.3	325 104.1	U				1
1050.901	3	3	230 316.3	325 472.5	4				1
1046.542	2	2	229 551.7	325 104.1	2				1
1046.364	3	4	230 316.3	325 884.2	3				1
1042.544	2	3	229 551.7	325 472.5	3				1
1060.651	$3d4p$ $^{1}\mathrm{F_{3}^{o}}$	$3d4d$ $^{1}G_{4}$	237 529.5	331 811.2	8				1
1048.236	$3d4p$ $^3P_2^{\circ}$	$3d4d$ $^{3}P_{1}$	234 846.4	330 245.1	2				1
1047.494	1	0	234 618.4	330 084.8	1				î
1046.294	0	1	234 668.5	330 245.1	2				1
1045.733	1	1	234 618.4	330 245.1	1				î
1045.044	2	2	234 846.4	330 536.8	7				1
1042.544	1	2 2	234 618.4	330 536.8	3				1
1035.037	$3d4p$ $^3\mathrm{D}^\circ_2$	$3d4d~^3\mathrm{F}_2$	228 489.1	205 104 1	,				4
1033.452				325 104.1	1				1
1031.105	3	4	229 120.8 228 489.1	325 884.2	5				1
1029.842	2 1	3 2	228 489.1 228 001.8	325 472.5 325 104.1	5 4				1 1
1002.024	$3d4p\ ^3{ m F}_2^{ m o}$	$3d4d~^{1}\mathrm{D}_{2}$	229 551.7	329 350.3					1
	$3d4p \ ^{3}D_{3}^{o}$								
997.709	-	$3d4d$ $^{1}\mathrm{D}_{2}$	229 120.8	329 350.3					1
986.035	$3d4p\ ^{3}\mathrm{D_{3}^{o}}$	$3d4d$ $^{3}P_{2}$	229 120.8	330 536.8	5				1
982.736	2		228 489.1	330 245.1	4				1
979.934	2	2	228 489.1	330 536.8					1
979.590	1	0	228 001.8	330 084.8					î
978.064	1	1	228 001.8	330 245.1					1
968.703	$3d4p$ $^{1}\mathrm{D_{2}^{o}}$	$3d4d~^{1}\mathrm{D_{2}}$	226 119.8	329 350.3	7				1
842.195	$3d4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3d5s$ $^{1}\mathrm{D}_{2}$	239 917.5	358 653.8	2				1
837.157	2 dan 1 po	2 de - 3m	007 500 5	054 001 0					_
832.309	$3d4p\ ^{1}\mathrm{F_{3}^{o}}$	$3d5s$ 3D_2	237 529.5 237 529.5	356 981.3 357 675.9					1 1
			201 025.0	301 010.3					1
825.600	$3d4p$ $^{1}\mathrm{F}_{3}^{\circ}$	$3d5s$ $^{1}\mathrm{D}_{2}$	237 529.5	358 653.8	7				1
819.153	$3d4p$ $^3P_0^{\circ}$	$3d5s$ $^3\mathrm{D}_1$	234 668.5	356 744.8					1
818.803	1	1	234 618.4	356 744.8					1
818.803	2	2	234 846.4	356 981.3					1
817.246	1	2	234 618.4	356 981.3	1				1
814.148	2	3	234 846.4	357 675.9	3				1
791.872	$3d4p\ ^{3}F_{4}^{o}$	$3d5s$ $^3\mathrm{D}_3$	021 200 0	057 675 0					_
789.492		$3d5s$ $^{\circ}D_3$	231 392.9	357 675.9	6				1
	3	2	230 316.3	356 981.3	5				1
786.210	2	1	229 551.7	356 744.8					1
780.428	2	3	229 551.7	357 675.9	1				1
779.209	$3d4p$ $^3F_3^{\circ}$	$3d5s$ $^{1}\mathrm{D}_{2}$	230 316.3	358 653.8					1
778.253	$3d4p$ $^3D_2^o$	$3d5s$ $^3\mathrm{D}_2$	228 489.1	356 981.3	9				1
777.873			228 489.1 229 120.8						1
776.743	3	3		357 675.9					1
775.308	1	1	228 001.8 228 001.8	356 744.8					1
774.079	1 2	2 3	228 489.1	356 981.3 357 675.9					1 1
768.251	$3d4p$ $^3\mathrm{D}^{\mathrm{o}}_2$	$3d5s$ $^{1}\mathrm{D}_{2}$	228 489.1	358 653.8					1
764.151	$3d4p^{-1}\mathrm{D_2^o}$	$3d5s$ 3D_2	226 119.8	356 981.3					1
754.521	$3d4p ^{1}D_{2}^{o}$								
	_	$3d5s$ $^{1}\mathrm{D}_{2}$	226 119.8	358 653.8	5				1
668.097 ^C	$3d^2$ 1 G ₄	$3d4s$ $^{1}\mathrm{D}_{2}$	22 019.2	171 698.1		E2	9.6+3	E	126*
660.284 ^C	$3d^2$ $^3\mathrm{P}_2$	$3d4s$ $^3\mathrm{D}_2$	16 041.0	167 491.0		E2	1.8+3	\mathbf{E}	126*
660.067^{C}	1		15 676.6	167 176.4		É2	2.6+3	E	126*
657.898 ^C		1	15 491.8						
657.685 ^C	0	2		167 491.0		E2	1.2+3	E	126*
656.112 ^C	2	3	16 041.0	168 089.5		E2	2.3 + 3	E	126*
000.112	1	3	15 676.6	168 089.5		E2	1.2 + 3	\mathbf{E}	126*
630.875 ^C	$3d^{2} {}^{1}D_{2}$	$3d4s$ $^{1}\mathrm{D}_{2}$	12 100 A	171 600 1		Εo	60.0	170	100*
300.010	$\sigma_u = D_2$	3a4s ⁻D2	13 188.0	171 698.1		E2	6.8 + 3	\mathbf{E}	126*

Cr v - Continued

Wave-	Classification		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		·					
601.145 ^C	$3d^{2}$ 3 F ₄	$3d4s$ $^3\mathrm{D}_2$	1 141.7	167 491.0		E2	2.7+3	E	126*
599.994 ^C	3	1	508.2	167 176.4		E2	4.3 + 3	Ē	126*
598.990 ^C			1 141.7	168 089.5		E2	1.0+4	E	126*
598.864 ^C	4	3	508.2	167 491.0		E2	6.5+3	E	126*
598.171 ^C	3	2				E2			
598.171 -	2	1	0.0	167 176.4			8.8+3	E	126*
597.047 ^C	2	2	0.0	167 491.0		E2	3.8+3	E	126*
596.725 C	3	3	508.2	168 089.5		$\mathbf{E2}$	2.9 + 3	\mathbf{E}	126*
594.921 ^C	2	3	0.0	168 089.5		E2	2.7 + 10	\mathbf{E}	126*
529.742	$3d^{2}$ 1 S ₀	$3d4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	51 146.4	239 917.5	6				1
470.976	$3d^2 {}^3P_1$	$3d4p$ $^3D_1^{\circ}$	15 676.6	228 001.8	1				1
470.697	2	2	16 041.0	228 489.1	2				1
470.567	0	1	15 491.8	228 001.8	3	4.9 - 2	4.9 + 8	D	1°,126*
469.893	1	2	15 676.6	228 489.1	4	8.1 - 2	4.9 + 8	D	1°,126*
469.311	2	3	16 041.0	229 120.8	5	9.0 - 2	3.9 + 8	D	1°,126*
469.634	$3d^2$ $^1\mathrm{D}_2$	$3d4p~^1\mathrm{D}^{\circ}_2$	13 188.0	226 119.8	7	3.8 - 1	2.3+9	D	1°,126*
464.015	$3d^2$ 1 G_4	$3d4p$ $^{1}\mathrm{F}_{3}^{\circ}$	22 019.2	237 529.5	10	8.1 - 1	3.6+9	D	1°,126*
457.504	$3d^2 \ ^3P_2$	$3d4p$ $^3P_1^{\circ}$	16 041.0	234 618.4	4	1.1 - 1	1.2+9	D	1°,126*
457.028	2	2	16 041.0	234 846.4	6	4.2 - 1	2.7 + 9	Ď	1°,126*
456.743	1	1	15 676.6	234 618.4	3	8.7 - 2	9.2 + 8	D	1°,126*
456.637	1	0	15 676.6	234 668.5	4	1.0 - 1	3.3 + 9	D	1°,126*
456.357	0	1	15 491.8	234 618.4	4	8.9 - 2	9.5 + 8	D	1°,126*
456.272	1	2	15 676.6	234 846.4	5	1.0 - 1	6.7+8	D	1°, 126*
451.607	$3d^{2} {}^{1}D_{2}$	$3d4p\ ^{3}P_{1}^{o}$	13 188.0	234 618.4	1				1
451.141	2	2	13 188.0	234 846.4	1				1
446.672	$3d^2$ 3 P $_2$	$3d4p$ $^{1}P_{1}^{o}$	16 041.0	239 917.5	1				1
445.751	$3d^{2}$ ¹ D ₂	$3d4p~^1\mathrm{F_3^o}$	13 188.0	237 529.5	2	3.9 - 2	1.9+8	D	1°,126*
442.243	$3d^2$ 3 F $_2$	$3d4p~^1\mathrm{D}_2^{\mathrm{o}}$	0.0	226 119.8	2				1
441.056	$3d^{2-1}D_2$	$3d4p$ $^{1}\mathrm{P_{1}^{o}}$	13 188.0	239 917.5	5	2.0 - 1	2.3+9	D	1°,126*
438.618	$3d^2 \ ^3F_4$	$3d4p$ $^3\mathrm{D_3^o}$	1 141.7	229 120.8	10				1
438.618	3	2	508.2	228 489.1	10				1
438.618	2	1	0.0	228 001.8	10				1
437.655	2	2	0.0	228 489.1	3	1.9 - 1		D	1°,126*
437.420	3	3	508.2	229 120.8	4	2.7 - 1	1.4 + 9	D	1°,126*
436.601	$3d^2 \ ^3F_3$	$3d4p$ 3 F $_2^{o}$	508.2	229 551.7	4	3.0 - 1	2.1+9	D	1°,126*
436.351	4	. 2	1 141.7	230 316.3	4	4.8 - 1		D	
435.636	2	2	0.0	229 551.7	5	4.0 - 2		$\bar{\mathbf{D}}$	1°,126* 1°,126*
435.143	3	3	508.2	230 316.3	5	5.7 - 2		Ď	1°,126*
434.306	4	4	1 141.7	231 392.9	7	3.8 - 1		D	1°,126*
434.180	2	3	0.0	230 316.3				_	1
433.119	3	4	508.2	231 392.9					1

Cr vi

Wave- length (Å)	Classifi Lower	cation Upper	Energy Level	s (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	· · · · · · · · · · · · · · · · · · ·								
2495.708	$3p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)^2F_{7/2}^\circ$	402 888.6	442 945.4	5				9
2176.648	$3p^6(^1S)5p^2P_{3/2}^{\circ}$	$3p^6(^1S)5d^2D_{5/2}$	488 561.9	534 489.7	8				9
2136.433	1/2	3/2	487 589.5	534 381.7	6				9
2044.777	$3p^6(^1S)5g^{-2}G_{9/2}$	$3p^{6}(^{1}S)6h^{2}H_{9/2}^{o}$	572 274.4	621 162.9	9				9
2044.777 2044.777	9/2	11/2	572 274.4	621 162.9	9				9
2044.777	7/2	9/2	572 272.3	621 162.9	9				9
1933.955	$3p^6(^1S)5f^2F_{7/2}^o$	$3p^6(^1S)6g^2G_{9/2}$	568 993.0	620 700.5	3				9
1932.783	5/2	7/2	568 957.4	620 696.3	2				9
1924.089	$3p^6(^1S)4f^2F_{7/2}^{\circ}$	$3p^6(^1{ m S})5d\ ^2{ m D}_{5/2}$	482 517.1	534 489.7	5				9
1907.462	5/2	3/2	481 956.0	534 381.7	4				9
1455.282	$3p^6(^1S)4s\ ^2S_{1/2}$	$3p^{6}(^{1}S)4p^{2}P_{1/2}^{o}$	227 857.9	296 573.2	15				9
1417.659	1/2	3/2	227 857.9	298 396.7	16				9
1360.504	$3p^6(^1S)5p^2P_{3/2}^{o}$	$3p^6(^1S)6s\ ^2S_{1/2}$	488 561.9	562 064.1	5				9
1342.741	1/2	1/2	487 589.5	562 064.1	4				9
1281.439	$3p^6(^1S)5g^{-2}G_{9/2}$	$3p^6(^1S)7h^{-2}H_{9/2}^{\circ}$	572 274.4	650 210 0	=				0
1281.439	9/2	$\frac{3p}{11/2}$	572 274.4	650 310.8 650 310.8	5 5				9 9
1281.439	7/2	9/2	572 272.3	650 310.8	5				9
1264.746	$3p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$3p^6(^1S)4f^2F_{5/2}^{\circ}$	402 888.6	481 956.0	4				9
1261.128	3/2	5/2	402 661.7	481 956.0					9
1255.832	5/2	7/2	402 888.6	482 517.1	8				9
1177.469	$3p^6(^1S)4d\ ^2D_{3/2}$	$3p^6(^1S)5p^2P_{1/2}^{\circ}$	402 661.7	487 589.5	5				9
1167.222	5/2	3/2	402 888.6	488 561.9	6				9
1164.146	3/2	3/2	402 661.7	488 561.9	2				9
1114.114	$3p^6(^1S)4f^{-2}F^{o}_{7/2}$	$3p^6(^1{ m S})5g\ ^2{ m G}_{9/2}$	482 517.1	572 274.4	8				9
1107.225	5/2	7/2	481 956.0	572 272.3	7				9
1103.926	$3p^6(^1S)4d^2D_{3/2}$	$3p^5(^2P^o)3d^2(^3P)^2P_{1/2}^o$	402 661.7	493 247.1	2				9
1086.681	5/2	$3p^5(^2P^o)3d^2(^3P) \ ^2P^o_{1/2}$ 3/2	402 888.6	494 911.2	2				9
959.093	$3p^6(^1S)4p\ ^2P_{3/2}^{\circ}$	$3p^6(^1S)4d^2D_{3/2}$	298 396.7	402 661.7	10				9
957.009	3/2	5/2	298 396.7	402 888.6					8,9°
942.610	1/2	3/2	296 573.2	402 661.7	13				8,9°
773.223	$3p^5(^2P^\circ)3d^2(^3F) \ ^2F^\circ_{7/2}$	$3p^6(^1S)5g\ ^2G_{9/2}$	442 945.4	572 274.4	3				9
756.786	5/2	7/2	440 135.2	572 272.3	2				9
723.675	$3p^6(^1{ m S})4f~^2{ m F}^o_{7/2}$	$3p^6(^1S)6g^{-2}G_{9/2}$	482 517.1	620 700.5	1				9
720.771	5/2	7/2	481 956.0	620 696.3					9
614.028	$3p^6(^1S)4p^2P_{3/2}^{\circ}$	$3p^6(^1S)5s^2S_{1/2}$	298 396.7	461 253.0					0
607.239	3p (5) +p 1 3/2 1/2	3p (3)38 S _{1/2}	296 573.2	461 253.0					9 9
600 011	,	·							
602.011	$3p^6(^1S)4d\ ^2D_{5/2}$	$3p^6(^1S)5f\ ^2F^{\circ}_{7/2}$	402 888.6	568 993.0					9
562.572	$3p^5(^2P^o)3d^2(^3F)\ ^2F^o_{7/2}$	$3p^6(^1S)6g\ ^2G_{9/2}$	442 945.4	620 700.5					9
423.559	$3p^6(^1S)4p^2P_{3/2}^{\circ}$	2-6/10/5425	000 000 #	F04 400 =					_
420.499	$3p \ (3)4p \ F_{3/2}$	$3p^6(^1S)5d^2D_{5/2}$	298 396.7 296 573.2	534 489.7 534 381.7					9 9
	•	•		001 001.					J
385.015 383.575	$3p^6(^1S)4s\ ^2S_{1/2}$	$3p^6(^1S)5p^2P_{1/2}^{\circ}$	227 857.9	487 589.5					9
000.010	1/2	3/2	227 857.9	488 561.9					9
337.185	$3p^6(^1{ m S})3d\ ^2{ m D}_{3/2}$	$3p^6(^1S)4p^2P_{1/2}^{\circ}$	0	296 573.2					9
336.184 335.123	5/2 3/2	3/2	940 0	298 396.7 298 396.7					9 9
		3/2	.	200 300.1	,				J
280.879 280.143	$3p^6(^1S)3d\ ^2D_{5/2}$	$3p^{5}(^{2}\mathrm{P^{o}})3d^{2}(^{1}\mathrm{G})^{2}\mathrm{F}_{5/2}^{o}$	940	356 962	2	2.8 - 3	4.0+7	D	9°,126*
279.154	3/2 5/2	5/2 7/2	0 940	356 962 359 165	4 5	4.0 - 2 $5.8 - 2$	5.7+8 $6.2+8$	D- D-	9°,126* 9°,126*
					v				
269.776 264.732	$3p^6(^1S)3d^2D_{5/2}$	$3p^5(^2P^\circ)3d^2(^1D)^2F^\circ_{7/2}$	940	371 618	10	2.3 - 1	2.7+9	D-	9°,126*
264.732	5/2 3/2	5/2 5/2	940 0	378 677 378 677	2 9	1.1 - 2 $1.6 - 1$	1.8+8 $2.6+9$	E D-	9°,126* 9°,126*
	3/2	5/2	•	010 011	3	1.0 - 1	2.0-79	D-	0 ,120

Cr VI - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy	Levels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
227.689	$3p^6(^1S)3d^2D_{5/2}$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}F)^{2}F^{\circ}_{5/2}$	940	440 135.2	5	2.2 - 1	4.6+9	E	9°,126*
227.202	3/2	5/2	0	440 135.2	11	3.1	6.6 + 10	D-	5,9°,126*
226.241	5/2	7/2	940	442 945.4	12	4.4	7.2 + 10	D-	5,9°,126*
207.892	$3p^6(^1S)3d\ ^2D_{5/2}$	$3p^6(^1S)4f^2F_{5/2}^{\circ}$	940	481 956.0	6				9
207.651	5/2	7/2	940	482 517.1	12				5,9°
207.489	3/2	5/2	0	481 956.0	11				5, 9°
205.084	$3p^6(^1S)3d\ ^2D_{5/2}$	$3p^{6}(^{1}S)5p^{2}P_{3/2}^{\circ}$	940	488 561.9	12				9
205.084	3/2	1/2	0	487 589.5	12				9
204.682	3/2	3/2	0	488 561.9	6				9
202.739	$3p^6(^1S)3d^2D_{3/2}$	$3p^5(^2P^\circ)3d^2(^3P)^2P_{1/2}^\circ$	0	493 247.1	10	1.4	1.2+11	D-	9°,126*
202.442	5/2	3/2	940	494 911.2		2.6	1.0 + 11	D-	9°,126*
202.057	3/2	3/2	0	494 911.2	6	2.8 - 1	1.2+10	E	9°,126*
201.606	$3p^6(^1{ m S})3d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^3F) ^2D_{5/2}^o$	940	496 958	12	9.6	2.6 + 11	D-	3,5,9°,126*
201.388	5/2	3/2	940	497 495	8	6.6 - 1	2.7 + 10	\mathbf{E}	3,5,9°,126*
201.224	3/2	5/2	0	496 958	9	6.8 - 1	1.8+10	E	3, 5, 9°, 126*
201.007	3/2	3/2	0	497 495	11	6.0	2.5 + 11	D-	3, 5, 9°, 126*
176.037	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)5f^{-2}F^o_{7/2}$	940	568 993.0	8				2,9°
175.756	3/2	5/2	0	568 957.4	7				2,9°
174.175	$3p^6(^1S)3d^2D_{3/2}$	$3p^6(^1S)6p^2P_{1/2}^o$	0	574 135	2				9
173.973	5/2	3/2	940	575 742	1				9
179 041	$3p^6(^1S)3d^2D_{3/2}$	2,524/3D0\4, 2D0	0	E70 E66	4	10 1	1.0 / 10	<i>D</i>	C 7 09 100*
172.841 172.487	·	$3p^5 3d(^3P^\circ) 4s \ ^2P^\circ_{1/2}$	0 940	578 566 580 697	4 5	1.0 - 1 $1.9 - 1$	1.2+10	D D	6,7,9°,126*
172.204	5/2 3/2	3/2 3/2	0	580 697	1	$\frac{1.9-1}{2.8-2}$	1.1+10 $1.6+9$	E	6,7,9°,126* 6,7,9°,126*
171 400		•			_				
171.400 170.569	$3p^6(^1S)3d^2D_{5/2}$	$3p^53d(^3F^\circ)4s\ ^4F^\circ_{7/2}$	940 0	584 371 586 273	3 2				6,7,9° 6,7,9°
170.303	3/2	5/2	U	360 213	2				0,7,9
169.435	$3p^6(^1{ m S})3d\ ^2{ m D}_{5/2}$	$3p^53d(^3F^o)4s\ ^2F^o_{7/2}$	940	591 137	7	5.6 - 1	1.6 + 10	D	6,7,9°,126*
168.355 168.088	5/2	5/2	940	594 926	1	2.7 - 2		E	6, 7, 9°, 126*
100.000	3/2	5/2	0	594 926	6	5.2 - 1	2.0+10	D	6,7,9°,126*
164.833	$3p^6(^1{ m S})3d\ ^2{ m D}_{5/2}$	$3p^5 3d(^3D^{\circ})4s \ ^4D^{\circ}_{7/2}$	940	607 615	2				6,7,9°
164.564	5/2	5/2	940	608 631	2				6, 7, 9°
164.301 164.159	3/2	5/2	0	608 631 609 166	1				6,7,9° 6,7,9°
1011100	3/2	3/2	·	003 100					0, 1, 9
163.801	$3p^6(^1{ m S})3d\ ^2{ m D}_{3/2}$	$3p^53d(^1D^{\circ})4s \ ^2D^{\circ}_{5/2}$	0	610 497	2				9
163.514	3/2	3/2	0	611 568	2				9
163.014	$3p^6(^1S)3d^2D_{5/2}$	$3p^53d(^1F^o)4s\ ^2F^o_{5/2}$	940	614 385	4				9
162.764	3/2	5/2	0	614 385	2				9
162.565	5/2	7/2	940	616 079	6	2.6 - 1	8.3+9	D	9°,126*
161.930	$3p^6(^1S)3d^2D_{5/2}$	$3p^5 3d(^3D^{\circ})4s \ ^2D_{3/2}^{\circ}$	940	618 491		4.7 - 2	3.0+9	\mathbf{E}	6,7,9°,126*
161.687	5/2	5/2	940	619 419	5	4.0 - 1		D	6,7,9°,126*
161.687	3/2	3/2	0	618 491	5	2.2 - 1		D	6,7,9°,126*
161.908	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)6f^2F_{5/2}^o$	940	618 583	2				9
161.836	5/2	7/2	940	618 849	5				2,9°
161.659	3/2	5/2	0	618 583	5				2,9°
154.418	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)7f^2F_{7/2}^{\circ}$	940	648 533	4				2,9°
154.197	3/2	5/2	0	648 521	3				2,9°
140.010									
149.918	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)8f^2F_{7/2}^{\circ}$	940	667 973	2				2,9°
149.706	3/2	5/2	0	667 973	1				2,9°
146.980	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)9f^2F_{7/2}^{\circ}$	940	681 307	1				2,9°
146.776	3/2	5/2	0	681 307					2,9°
144.961	$3p^6(^1S)3d^2D_{5/2}$	$3p^6(^1S)10f\ ^2F^o_{7/2}$	940	690 781					2,9°
	Sp (5)04 D5/2	OF (S)101 F7/2	940	690 781	1				4, 9

Cr VII

1448.457	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_1^{\circ}$						
	1 (1/2/ 1211	$3s^23p^54p$ 3P_2	682 610.2	751 649.3	3	 	 14
1426.644	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_0^{\circ}$	$3s^23p^54p$ 3D_1	678 534.7	748 629.3	7		14
1393.366	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_1^{\circ}$	$3s^23p^54p^{-1}\mathrm{P}_1$	682 610.2	754 378.9	5		14
1319.885	$3s^23p^5(^2P_{1/2}^{\circ})4s^{\ 2}[\frac{1}{2}]_1^{\circ}$	$3s^23p^54p^{-1}D_2$	682 610.2	758 374.4	7		14
1312.307	$3s^23p^5({}^{\dot{2}}{\rm P}^{\circ}_{3/2})4s^{\ 2}[{\textstyle{3\over2}}]^{\circ}_{1}$	$3s^23p^54p\ ^3\mathrm{D}_1$	672 427.7	748 629.3	7		14
1307.696 1302.551	2 2	2 3	668 858.6 668 858.6	745 328.9 745 631.1	6 9		14 14
1207.866 1181.920	$3s^23p^5(^2P^{\circ}_{3/2})4s^2[\frac{3}{2}]^{\circ}_2$	$3s^23p^54p$ $^3\mathrm{P}_2$ 0	668 858.6 672 427.7	751 649.3 757 035.8	7 3		14 14
1198.481	$3s^23p^5(^2P^{\circ}_{1/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_2$	$3s^23p^5(^2\mathbf{P}_{1/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	873 565.5	957 004.6	2		14
1193.492 1193.492	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{5}{2}]^{\circ}_3$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	865 155.8 864 129.5	948 943.9 947 917.4	4 4		14 14
1190.867 1186.561	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{7}{2}]^{\circ}_4$	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{9}{2}]_5$	860 444.3 861 198.4	944 416.8 945 475.7	2 1		14 14
1189.640	$3s^23p^5(^2P_{1/2}^{o})4d^2[\frac{5}{2}]_3^{o}$	$3s^23p^5(^2\mathbf{P_{1/2}^o})4f^{\ 2}[\frac{7}{2}]_4$	873 146.1	957 205.1	1		14
1170.143	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{5}{2}]_3$	859 407.1	944 866.7	1		14
1163.947	$3s^23p^5(^2P_{3/2}^{o})4d^2[\frac{1}{2}]_1^{o}$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{3}{2}]_2$	857 234.5	943 149.1			14
1163.516	$3s^23p^5(^2P_{3/2}^{\circ})4s^{\ 2}[\frac{3}{2}]_1^{\circ}$	$3s^23p^54p^{-1}D_2$	672 427.7	758 374.4	1		14
936.492	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P_{3/2}^{\circ})4d^2[\frac{5}{2}]_3^{\circ}$	758 374.4	865 155.8			14
926.520	$3s^23p^54p\ ^3\mathrm{P}_1$	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	758 572.1	866 502.8	2		14
881.012	$3s^23p^54p\ ^3{ m P}_2$	$3s^23p^5(^2P^o_{3/2})4d^2[\frac{5}{2}]^o_3$	751 649.3	865 155.8	4		14
871.296	$3s^23p^54p^{-1}D_2$	$3s^23p^5(^2P_{1/2}^{\circ})4d^2[\frac{5}{2}]_3^{\circ}$	758 374.4	873 146.1	5		14
870.980 863.043	$3s^23p^54p\ ^3{ m D_3}$	$3s^23p^5(^2P_{3/2}^{\circ})4d^{\ 2}[\frac{7}{2}]_4^{\circ}$	745 631.1 745 328.9	860 444.3 861 198.4	7 6		14 14
869.615	$3s^23p^54p$ $^3\mathrm{P}_1$	$3s^23p^5(^2\mathbf{P_{1/2}^o})4d\ ^2[\frac{3}{2}]_2^o$	758 572.1	873 565.5	2		14
844.989 820.239	0 2	1 2	757 035.8 751 649.3	875 380.5 873 565.5	1 1		14 14
865.800 841.747	$3s^23p^54p$ 3D_1	$3s^23p^5(^2P^{\circ}_{3/2})4d^{\ 2}[\frac{5}{2}]^{\circ}_2$	748 629.3	864 129.5	4		14
836.644	3	2 3	745 328.9 745 631.1	864 129.5 865 155.8	2 2		14 14
848.517		$3s^23p^5(^2\mathbf{P_{1/2}^o})4d^{\ 2}[\frac{5}{2}]_2^o$	754 378.9	872 231.6	3		14
821.788 815.474	$3s^23p^54p$ $^3\mathrm{S}_1$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_0$	734 605.3 734 605.3	856 292.2 857 234.5			14 14
801.277	$3s^23p^54p$ 3S_1	$3s^23p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d\ ^2[\frac{3}{2}]^{\mathrm{o}}_2$	734 605.3	859 407.1	3		14
741.889	$3s^23p^53d^{-1}P_1^{\circ}$	$3s3p^63d$ $^1\mathrm{D}_2$	493 035.4	627 826.7	2		14
453.183	$3s^23p^53d$ ¹ F ^o ₃	$3s3p^63d\ ^3{ m D}_3$	389 226.2	609 887.8	5		14
450.314 449.386	$3s^23p^53d$ $^3D_2^{\circ}$	$3s3p^63d\ ^3{ m D}_1$	386 616.6 386 616.6	608 679.6 609 142.7			14 14
448.729	1	1	385 828.3	608 679.6			14
447.882	2	3	386 616.6	609 887.8			14
447.792	1	2	385 828.3	609 142.7			14
441.680 440.244	3	2	382 737.4	609 142.7			14
441.584	$3s^23v^53d$ ¹ D ^o	$3s3p^63d\ ^3{ m D}_2$	382 737.4 382 682.3	609 887.8 609 142.7			14 14
440.121	$3s^23p^53d$ $^1D_2^o$	3	382 682.3	609 887.8			14
419.104	$3s^23p^53d\ ^1\mathrm{F_3^o}$	$3s3p^63d$ ¹ D ₂	389 226.2	627 826.7	5		14

Cr VII - Continued

Wave- ength (Å)	Classificatio Lower	n Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
414.582	$3s^23p^53d\ ^3\mathrm{D_2^\circ}$	$3s3p^63d^{-1}D_2$	386 616.6	627 826.7	6				14
408.019	3	2	382 737.4	627 826.7	6				14
407.918	$3s^23p^53d\ ^1{ m D}_2^{ m o}$	$3s3p^63d\ ^1{ m D}_2$	382 682.3	627 826.7	7				14
407.138	$3s^23p^53d\ ^3F_2^{\circ}$	$3s3p^63d^{-3}D_1$	363 060.9	608 679.6	8				14
406.369	2	2	363 060.9	609 142.7	4				14
401.658 400.452	3	2	360 171.9 360 171.9	609 142.7 609 887.8	9 3				14 14
396.288	3 4	3	357 543.7	609 887.8	10				14
380.897	$3s^23p^53d\ ^3P_2^{\circ}$	$3s3p^63d^{-3}D_1$	346 137.1	608 679.6					14
380.219	2 of the 12	2	346 137.1	609 142.7	5				14
379.153	2	3	346 137.1	609 887.8	9				14
376.073	1	1	342 773.5	608 679.6	4				14
375.425	1	2	342 773.5	609 142.7	7				14
377.687	$3s^23p^53d\ ^3{ m F}_2^o$	$3s3p^63d^{-1}D_2$	363 060.9	627 826.7	1				14
355.012	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s3p^63d$ $^1\mathrm{D}_2$	346 137.1	627 826.7					14
291.738	$3s^23p^6$ ¹ S ₀	$3s^23p^53d\ ^3P_1^{\circ}$	0.0	342 773.5	2				14
		•							
280.823 280.571	$3s^23p^53d$ ¹ F ^o ₃	$3s^23p^54p$ 3D_2	389 226.2 389 226.2	745 328.9 745 631.1	2				14
	3	3		140 031.1					14
275.926	$3s^23p^53d$ ¹ F ^o ₃	$3s^23p^54p$ 3P_2	389 226.2	751 649.3	1				14
275.792	$3s^23p^53d\ ^3\mathrm{D_3^o}$	$3s^23p^54p$ 3D_2	382 737.4	745 328.9					14
275.635	1	1	385 828.3	748 629.3	1				14
275.563	3	3	382 737.4	745 631.1					14
75 756	$3s^23p^53d\ ^1{ m D}_2^{ m o}$	$3s^23p^54p^{-3}D_2$	383 660 5	7/5 200 0					1.4
275.756 273.269	$3s^2 3p^2 3a^2 D_2^2$	3s-3p-4p D ₂	382 682.3 382 682.3	745 328.9 748 629.3	1				14 14
			002 002.0	120 020.0					17
273.952	$3s^23p^53d\ ^3{ m D}_2^{ m o}$	$3s^23p^54p$ 3P_2	386 616.6	751 649.3					14
271.070	3	2	382 737.4	751 649.3					14
269.397 268.852	1 2	0	385 828.3 386 616.6	757 035.8 758 572.1	2 4				14 14
	$3s^23p^53d^{-1}F_3^{\circ}$	$3s^23p^54p^{-1}D_2$							
270.897	ű		389 226.2	758 374.4					14
269.038	$3s^23p^53d^{-1}D_2^{o}$	$3s^23p^54p^{-1}P_1$	382 682.3	754 378.9	4				14
266.172	$3s^23p^53d^{-1}D_2^{\circ}$	$3s^23p^54p^{-1}D_2$	382 682.3	758 374.4					14
261.598	$3s^23p^53d\ ^3F_2^{\circ}$	$3s^23p^54p$ 3D_2	363 060.9	745 328.9	2				14
259.636	3	2	360 171.9	745 328.9	9				14
259.432	3	3	360 171.9	745 631.1					14
259.360 257.676	2	1	363 060.9	748 629.3					14
257.676	4	3	357 543.7	745 631.1	10				14
259.181	$3s^23p^{6}$ ¹ S ₀	$3s^23p^53d\ ^3D_1^{\circ}$	0.0	385 828.3	8	2.8 - 3	9.3 + 7	E	14°,126*
257,422	$3s^23p^53d^3P_2^9$	$3s^23p^54p$ $^3\mathrm{S}_1$ 1	346 137.1	734 605.3	4				14
255.210	1	1	342 773.5	734 605.3					14
254.177	0	1	341 179.3	734 605.3					14
255.545	$3s^23p^53d\ ^3{ m F_2^o}$	$3s^23p^54p^{-1}$ P ₁	363 060.9	754 378.9	3				14
OFF 4:-	_								
255.447 252.837	$3s^23p^33d\ ^3F_3^9$	$3s^23p^54p$ 3P_2	360 171.9	751 649.3					14
202.001	2	1	303 000.9	758 572.1	-				14
251.124	$3s^23p^53d\ ^3\mathrm{F_3^o}$	$3s^23p^54p^{-1}D_2$	360 171.9	758 374.4	2				14
250.311	3s ² 3n ⁵ 3d 3po	$3e^22n^54n^3$	346 137.1	745 691 1	9				1.4
245.431	$3s^23p^53d\ ^3\mathrm{P}_2^\circ \ 0$	38 3p 4p D3	340 137.1	745 631.1 748 629.3					14 14
246.599				751 640 1	, ,				
244.565	$3s^23p^53d$ $^3P_2^{\circ}$	$3s^23p^54p\ ^3P_2$	346 137.1 342 773.5	751 649.3 751 649.3					14 14
242.461	2	2	346 137.1	758 572.1					14
241.393	1	0	342 773.5	757 035.8					14
242.953	$3s^23p^53d\ ^3\mathrm{P_1^o}$	$3s^23p^54p^{-1}P_1$	342 773.5	754 378.9	9 2				14
	$3s^23p^53d^{-3}P_2^{\circ}$	$3s^{2}3p^{5}4p^{-1}$ D ₂		.01010.	. 2				± ·2
				758 374.4	4				14

Cr VII - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
202.828	$3s^23p^{6-1}S_0$	$3s^23p^53d\ ^1{ m P_1^o}$	0.0	493 035.4	14	3.09	1.67+11	С	3,5,11,12,14°,126*
179.776	$3s^23p^53d^{-1}F_3^{o}$	$3s^23p^5(^2P^{o}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	389 226.2	945 475.7	3				14
179.682	$3s^23p^53d\ ^3{ m D}_2^{ m o}$	$3s^23p^5(^2\mathbf{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	386 616.6	943 149.1	1				14
178.851	$3s^23p^53d\ ^1{ m D}_2^{ m o}$	$3s^23p^5(^2P^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_1$	382 682.3	941 811					14
177.895	$3s^23p^53d\ ^3{ m D}_3^{ m o}$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	382 737,4	944 866.7	4				14
$176.053 \\ 175.812$	2	2 2	386 616.6 385 828.3	954 623 954 623	5 4				14 13,14°
177.694	$3s^23p^53d\ ^3{ m D}_3^{\circ}$	$3s^23p^5(^2P^{o}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	382 737.4	945 475.7	4				14
176.916	$3s^23p^53d\ ^1{ m D}_2^{ m o}$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	382 682.3	947 917.4	3				14
176.613	$3s^23p^53d\ ^3{ m D}_3^{ m o}$	$3s^23p^5(^2P_{3/2}^{o})4f^2[\frac{7}{2}]_4$	382 737.4	948 943.9	8				13,14°
176.295	$3s^23p^53d$ $^1\mathrm{F}_3^\mathrm{o}$	$3s^23p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_3$	389 226.2	956 454	1				14
175.315	$3s^23p^53d\ ^3{ m D}_2^{ m o}$	$3s^23p^5(^2P^{\circ}_{1/2})4f^{-2}[\frac{5}{2}]_3$	386 616.6	957 004.6	7				13,14°
174.286	$3s^23p^53d^{-1}D_2^{o}$	$3s^23p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_3$	382 682.3	956 454	6				13,14°
174.070	$3s^23p^53d\ ^3\mathrm{D_3^o}$	$3s^23p^5(^2P_{1/2}^{\circ})4f^{-2}[\frac{7}{2}]_4$	382 737.4	957 205.1	1				14
170.982	$3s^23p^53d\ ^3F_2^{\circ}$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{-2}[\frac{7}{2}]_3$	363 060.9	947 917.4	6				13,14°
170.139 169.842	3	3	360 171.9 360 171.9	947 917.4 948 943.9	$\frac{2}{1}$				14 14
169.084	4	4	357 543.7	948 943.9	1				14
170.850	$3s^23p^53d\ ^3\mathrm{F_3^o}$	$3s^23p^5(^2\mathbf{P^o_{3/2}})4f^{-2}[\frac{9}{2}]_4$	360 171.9	945 475.7					13,14°
$170.393 \\ 170.086$	4	5 4	357 543.7 357 543.7	944 416.8 945 475.7					13,14° 14
168.523 167.496	$3s^23p^53d\ ^3\mathrm{F_2^\circ}$	$3s^23p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_3$	363 060.9 360 171.9	956 454 957 205.1	3 5				14 14
167.496	$3s^23p^53d\ ^3\mathrm{P_2^o}$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	346 137.1	943 149.1	5				13,14°
166.936 166.560	1 1	1 2	342 773.5 342 773.5	941 811 943 149.1	3 4				13,14° 13,14°
166.488	0	1	341 179.3	941 811	2				13, 14°
167.020	$3s^23p^53d\ ^3\mathrm{P_2^o}$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{5}{2}]_3$	346 137.1	944 866.7	7				13,14°
148.714	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P_{3/2}^o})4s^2[\frac{3}{2}]_1^{\circ}$	0.0	672 427.7	10	1.3 - 1	1.3+10	D	10,14°,126*
146.497	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})4s^2[\frac{1}{2}]_1^{\circ}$	0.0	682 610.2	12	2.9 - 1	3.0+10	D	10,14°,126*
116.654	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P_{3/2}^o})4d^{\ 2}[\frac{1}{2}]_1^{\mathbf{o}}$	0.0	857 234.5	1				14
115.407	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P_{3/2}^o})4d^2[\frac{3}{2}]_1^{\mathbf{o}}$	0.0	866 502.8	8				2,14°
114.235	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P}^o_{1/2})4d^{\ 2}[\frac{3}{2}]^o_1$	0.0	875 380.5	8				2,14°
105.139	$3s^23p^6$ 1S_0	$3s^23p^5(^2P_{3/2}^{\circ})5s^2[\frac{3}{2}]_1^{\circ}$	0.0	951 122	3				10,14°
104.127	$3s^23p^6$ 1S_0	$3s^23p^5(^2P_{1/2}^{\circ})5s^2[\frac{1}{2}]_1^{\circ}$	0.0	960 366	3				10,14°
101.565	$3s^23p^{6-1}S_0$	$3s3p^{6}4p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	0.0	984 590	1				15
100.593	$3s^23p^6$ ¹ S ₀	$3s3p^64p\ ^1 ext{P}_1^{\circ}$	0.0	994 105	2				14°,15
96.760	$3s^23p^6$ ¹ S ₀	$3s^23p^5(^2P^o_{3/2})5d^{\ 2}[\frac{3}{2}]^o_1$	0.0	1 033 485	2				14
95.917	$3s^23p^{6}$ 1S_0	$3s^23p^5(^2P_{1/2}^{\circ})5d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0.0	1 042 568	1				14
92.969	$3s^23p^{6}$ ¹ S ₀	$3s^23p^5(^2P_{3/2}^{\circ})6s^2[\frac{3}{2}]_1^{\circ}$	0.0	1 075 627	1				14
92.128	$3s^23p^6$ 1S_0	$3s^23p^5(^2P_{1/2}^{\circ})6s^2[\frac{1}{2}]_1^{\circ}$	0.0	1 085 446					14
81.980	$3s^23p^{6-1}S_0$	$3s3p^65p$ $^3P_1^{\circ}$	0.0	1 219 810	1				15
		-							

Cr VII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Levels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
81.491	$3s^23p^6$ 1S_0	$3s3p^65p^{-1}P_1^{o}$	0.0 1 227 130	4				15
74.875	$3s^23p^6$ ¹ S ₀	$3s3p^{6}6p^{-1}P_{1}^{o}$	0.0 1 335 560	1				15
71.744	$3s^23p^6$ ¹ S ₀	$3s3p^67p^{-1}P_1^o$	0.0 1 393 840					15

 \mathbf{Cr} VIII

Wave-	Classif		Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
430.713	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s3p^6 {}^2S_{1/2}$	9 892	242 065		7.0 - 2	1.2+9	C-	8, 16, 17°, 31, 126*
413.112	3/2	1/2	0	$242\ 065$		1.43 - 1	2.79+9	C-	8,16,17°,18,31,126*
221.41	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1D)3d^2S_{1/2}$	9 892	461 540		5.40 - 1	3.68+10	C-	19°,126*
216.67	3/2	1/2	0	461 540		1.3	9.5 + 10	C-	19°,126*
213.03	$3s^23p^5$ $^2P_{1/2}^{o}$	$3s^23p^4(^3P)3d^2P_{3/2}$	9 892	479 310					19
211.42	1/2	1/2	9 892	482 910					19
208.63	3/2	3/2	0	479 310					3,5,19°
207.07	3/2	1/2	0	482 910					19
205.65	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2D_{3/2}$	9 892	496 170		3.66	1.44+11	C	3,5,19°,126*
205.01	3/2	5/2	0	487 780		5.76	1.52 + 11	C	3,5,19°,126*
201.54	3/2	3/2	0	496 170		1.6 - 1	6.8+9	D	19°,126*
147.49 ^L	$3s^23p^4(^3P)3d\ ^4F_{7/2}$	$3s^23p^4(^3P)4f^4G^o_{9/2}$							22°,27
147.20^{L}	9/2	11/2							22°, 27
146.63^{L}	5/2	7/2							22°, 27
147.30 ^L	$3s^23p^4(^1{ m D})3d\ ^2{ m G}_{9/2}$	$3s^23p^4(^1D)4f^2H^o_{11/2}$							22°,27
146.37 ^L	$3s^23p^4(^3P)3d\ ^4F_{7/2}$	$3s^23p^4(^3P)4f\ ^2G_{9/2}^{\circ}$							22°,27
143.17 ^L	$3s^23p^4(^3P)3d\ ^4D_{7/2}$	$3s^23p^4(^3P)4f\ ^4F^{o}_{9/2}$							22°,27
135.892	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^3P)4s^4P_{5/2}$	0	735 880					21
134.942	3/2	3/2	0	741 060					21
135.185	$3s^23p^5$ 2 P $^{\circ}_{1/2}$	$3s^23p^4(^3P)4s^2P_{3/2}$	9 892	749 640	8				16 [△] , 21°
134.076	1/2	1/2		755 740	3				16 [△] ,21°
133.395	3/2	3/2	_	749 640	5				16 ^Δ ,21°
132.321	3/2	1/2	0	755 740	10				16 ^Δ , 21°
131.638	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1{ m D})4s\ ^2{ m D}_{3/2}$	9 892	769 550					21
129.998			9 692	769 240					21
123.330	3/2	5/2	U	109 240					21
125.728	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1S)4s\ ^2S_{1/2}$	9892	805 260					21
124.184	3/2	1/2	0	805 260					21
106.68	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s^23p^4(^3P)4d^{2}D_{3/2}$	9 892	947 300					22°,27
105.69	3/2	5/2	0	946 200					22°, 27
103.92	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^1\mathrm{D})4d\ ^2\mathrm{P}_{1/2}$	9 892	972 200					22°,27
103.03	3/2	3/2	_	970 600					22°,27
103.48	$3s^23p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^1\mathrm{D})4d\ ^2\mathrm{S}_{1/2}$		966 400					22°, 27
103.36	$3s^23p^5$ $^2\mathrm{P}_{1/2}^{\mathrm{o}}$	$3s^23p^4(^1{ m D})4d\ ^2{ m D}_{3/2}$	9 892	977 400					22°,27
103.30		•	•	976 100					,
102.40	3/2	5/2	U	910 100					22°, 27

 \mathbf{Cr} ix

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
3301.1 ^C	$3s^23p^4$ 3 P ₂	$3s^23p^4$ ¹ D ₂	0	30 284		M1	3.0+1	D-	126*
1693.9 ^C	$3s^23p^{4-3}P_1$	$3s^23p^{4-1}S_0$	7 821	66 855		M1	3.3+2	E	126*
432.440 424.146 421.057 418.290 414.602 407.637	$3s^23p^4$ 3 P ₁ 0 1 2 1 2	$3s3p^5$ $^3 ext{P}^{\circ}_2$ 1 1 2 2 0 1	7 821 9 549 7 821 0 7 821 0	239 068 245 317 245 317 239 068 249 016 245 317	4 4 5 6 5 5	1.9 - 1	1.4+9	Е	8,17°,24 8,17°,24 8,17°,24 8,17°,24,126* 8,17°,24 8,17°,24
418.925	$3s^23p^{4}$ 1 S ₀	$3s3p^{5-1}P_{1}^{o}$	66 855	305 561	4b				17
363.271	$3s^23p^{4-1}D_2$	$3s3p^5$ $^1\mathrm{P_1^o}$	30 284	305 561	5	3.4 - 1	5.7+9	D	8,17°,24,126*
327.267	$3s^23p^4\ ^3P_2$	$3s3p^{5-1}P_1^{\circ}$	0	305 561					17
223.87 220.02	$3s^23p^4\ ^3{ m P}_1$	$3s^23p^3(^2D^{\circ})3d\ ^3P_2^{\circ}$	7 821 0	454 510 454 510		3.3	9.2+10	E	19,24° 19,24°,126*
215.97	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^\circ)3d^{-1}D_2^\circ$	30 284	493 310		3.8	1.1+11	D	19,24°,126*
215.04	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2D^{\circ})3d^{-1}P_1^{\circ}$	66 855	531 880		2.6	1.3+11	D	24°,126*
211.97 211.32 210.61 208.53	$3s^23p^4\ ^3\mathrm{P}_1$ 0 2 2	$3s^23p^3(^4S^\circ)3d\ ^3D_2^\circ$ 1 3 2	7 821 9 549 0	479 570 482 760 474 810 479 570					5, 24° 5, 24° 5, 24, 25° 24
209.44	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})3d^{-1}\mathrm{F_3^o}$	30 284	507 750		6.5	1.4+11	D	5,24°,126*
180.57 ^L	$3s^23p^33d\ ^3{ m G}_5^{\circ}$	$3s^23p^34p^3F_4$							27
176.86 ^L	$3s^23p^33d\ ^5{ m D}_4^{\circ}$	$3s^23p^34p^5$ P ₃							27
131.08 ^{T,L}	$3s^23p^3(^2\mathrm{D^o})3d\ ^1\mathrm{G_4^o}$	$3s^23p^3(^2D^{\circ})4f^{-1}H_5$							27
129.99 ^L	$3s^23p^3(^2P^\circ)3d\ ^3F_4^\circ$	$3s^23p^3(^2P^o)4f^{-3}G_5$							22°, 27
$129.77^{\rm L}$	$3s^23p^3(^2{\rm D^o})3d\ ^3{\rm G_5^o}$	$3s^23p^3(^2\mathrm{D^o})4f^{\ 3}\mathrm{H_6}$							22°,27
$127.95^{L} \\ 127.88^{L}$	$3s^23p^33d\ ^5\mathrm{D}_4^\circ$	$3s^23p^34f\ ^5{ m F}_5$							22°, 27 22°, 27
127.53^{L} 127.42^{L} 127.31^{L}	$3s^23p^3(^2\mathrm{D^o})3d\ ^3\mathrm{F_4^o}$	$3s^23p^3(^2\mathrm{D^o})4f\ ^3\mathrm{G}_5$							22°,27 22°,27 22°,27
123.226 122.964 121.781	$3s^23p^4$ 3P_0	$3s^23p^3(^4S^\circ)4s \ ^3S_1^\circ$	9 549 7 821 0	821 100 821 100 821 100	1				26 26 26
122.720	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2P^{\circ})4s^{-1}P_1^{\circ}$	66 855	881 810	1				26
121.293	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^{\circ})4s^{-1}D_2^{\circ}$	30 284	854 730	3				26
119.569 119.320 119.269 118.165 117.942	$3s^23p^4$ 3P_0 1 2 2	$3s^23p^3(^2\mathrm{D^o})4s\ ^3\mathrm{D^o_1}$ 1 2 3	9 549 7 821 7 821 0 0	845 900 845 900 846 260 846 260 847 870	$\begin{array}{ccc} 1 \\ 2 \\ 1 \end{array}$				26 26 26 26 26
117.435	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)4s^{-1}P_1^o$	30 284	881 810) 1				26
98.08 97.97 97.19	$3s^23p^4\ ^3{ m P}_0$	$3s^23p^3(^4S^\circ)4d\ ^3D_1^0$	9 549 7 821 0	1 029 100 1 028 500 1 028 900)				22°,27 22°,27 22°,27
96.55	$3s^23p^{4-1}S_0$	$3s^23p^34d^{-1}P_1^{\circ}$	66 855	1 102 600)				22°,27
96.48	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^\circ)4d^{-1}D_2^\circ$		1 066 806					22°,27
96.17	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^\circ)4d^{-1}F_3^\circ$		1 070 100					22°,27
94.33	$3s^23p^4$ 3P_1	$3s^23p^3(^2D^\circ)4d^{3}D_2^\circ$		1 067 900					27

 $\mathbf{Cr} \ \mathbf{x}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Lower	Classification	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3725.8 ^C	$3s^23p^3$	² D ₂ , 2	3s ² 3p ³ ² P°	37 103	63 935		M1	2.6+1	C	126*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2694.4 ^C	$3s^23p^3$		•	0	37 103		M1	1.1+1	D	126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1564.10			•	0	63 035		Mi	6.0.1.1	D	29 [△] , 30°, 126*
$\begin{array}{c} 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.521 \\ 447.5222 \\ 447.5222 \\ 447.$		ou op		•							29 ^Δ , 30°, 126*
$ \begin{array}{c} 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.529 \\ 447.551 \\ 457.551 $	449.479 ^C	$3s^23p^3$	² P _{3/2}	$3s3p^{4} {}^{2}D_{3/2}$	67 157	289 637		4.0 - 4	3.3+6	E	126*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5/2	67 157	290 606	2	7.6 - 2	4.1 + 8	D	17°,126*
416.660 411.665 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2	443.062		1/2	3/2	63 935	289 637		2.8 - 2	2.4 + 8	D	17°,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	427.551	$3s^23p^3$	^{3 4} S _{3/2}	$3s3p^{4} {}^{4}P_{5/2}$	0	233 890	7	1.9 - 1	1.2 + 9	D	8,17°,24,31,126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3/2	3/2			-				$8,17^{\circ},24,126^{*}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	411.655			•	0	242 922	4	6.8 - 2	1.3+9	D	17°,24,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	399.707	$3s^23p^3$	$^{2}D_{5/2}^{o}$	$3s3p^{4} {}^{2}D_{3/2}$	39 450	289 637	3	6.6 - 3	7.1 + 7	\mathbf{E}	17°,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				·			10		2.1 + 9	D	8,17°,24,126*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	,			9		2.4 + 9		8,17°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	394.473 ^C		3/2	5/2	37 103	290 606		4.8 - 3	3.4 + 7	E	126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s^23p^3$	$^{2}P_{3/2}^{o}$	$3s3p^4 {}^2P_{3/2}$	67 157	333 412					17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1/2	•							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	365.718			,		337 370	2				17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	355.112	$3s^23p^3$	$^{^{1}}{}^{2}P_{3/2}^{\circ}$	$3s3p^4$ $^2S_{1/2}$	67 157	348 760	3				8,17°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	351.092			•							•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	340.181	$3s^23p^3$	² D _{5/2}	$3s3p^{4-2}P_{3/2}$	39 450	333 412	7				8,17°,24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337.490	•		·							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	333.035					337 370	4				8,17°,24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	254.15	$3s^23p^3$	² D° ₂ ,	$3s^23p^2(^3P)3d^{2}P_{3/2}$	39 450	432 830					24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	252.75	•		•	0= 100						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	247.67										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	248.41 ^C	$3s^23p^3$	² D _{5/2}	$3s^23p^2(^3P)3d^4P_{5/2}$	39 450	442 010		3.2 - 2	5.7+8	E	126*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	246.97^{C}	_		•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	244.14 ^C			·							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	244.19 ^C	$3s^23p^3$	3 2P°	$3s^23p^2(^1D)3d^{-2}D_{5/2}$	67 157	476 680		3.1 - 1	5.8+9	D	126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	244.10 ^C			•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· ·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233.80	$3s^23n^3$	3 2 po	$3s^23n^2(^1D)3d^2P_{1/2}$	63 935	491 650					24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55 Op		•				1.4	4.4+10	E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•								24°,126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228.71	$3s^23n^3$	3 2D° (c	$3s^23v^2(^1D)3d^{-2}D_{\pi/2}$	39 450	476 680		2.1	4.5+10	D	24° 126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· • • • •		•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227.42		•								24°, 126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226.24	$3s^23n$	3 4 S _{3 /2}	3s ² 3p ² (³ P)3d ⁴ P _E /2	0	442 010		3.4	7.3+10	D	24°, 32, 126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P		•	_						24°, 32, 126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	223.86				_						24°, 32, 126*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221.18	$3s^23n^3$	^{3 2} P _{2/2}	$3s^23p^2(^3P)3d^{-2}D_{=12}$	67 157	519 280					24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P		, -							
217.71 ^C $3/2$ $3/2$ $37 103$ 496 430 $2.1-2$ 7.4+8 E 126* 216.72 $3s^23p^3$ $^2D_{5/2}^{\circ}$ $3s^23p^2$ 3P)3d $^2F_{7/2}$ 39 450 500 880 5.0 9.0+10 E 3,5,24° 209.78 ^C $3s^23p^3$ $^4S_{3/2}^{\circ}$ $3s^23p^2$ 1D)3d $^2D_{5/2}$ 0 476 680 4.4 - 3 1.1+8 E 126*											
217.71 ^C $3/2$ $3/2$ $37 103$ 496 430 $2.1-2$ 7.4+8 E 126* 216.72 $3s^23p^3$ $^2D_{5/2}^{\circ}$ $3s^23p^2$ 3P)3d $^2F_{7/2}$ 39 450 500 880 5.0 9.0+10 E 3,5,24° 209.78 ^C $3s^23p^3$ $^4S_{3/2}^{\circ}$ $3s^23p^2$ 1D)3d $^2D_{5/2}$ 0 476 680 4.4 - 3 1.1+8 E 126*	218.83 ^C	$3s^23n^5$	^{3 2} D°	3s ² 3n ² (¹ D)3d ² P	30.450	40£ 49D		209	10.10	F	196*
216.72 $3s^2 3p^3 {}^2D_{5/2}^{\circ}$ $3s^2 3p^2 ({}^3P) 3d {}^2F_{7/2}$ 39 450 500 880 5.0 9.0+10 E 3,5,24° 209.78 ^C $3s^2 3p^3 {}^4S_{3/2}^{\circ}$ $3s^2 3p^2 ({}^1D) 3d {}^2D_{5/2}$ 0 476 680 4.4 - 3 1.1+8 E 126*		53 5p		•							
209.78 ^C $3s^2 3p^3 {}^4S_{3/2}^{\circ}$ $3s^2 3p^2 ({}^1D) 3d {}^2D_{5/2}$ 0 476 680 4.4 - 3 1.1+8 E 126*		_ 0		·					,		
, ·			•	•		500 880		5.0	9.0+10	Е	3, 5, 24°, 126*
$3c^23n^2(^{1}D)3d^2C_{0.0}$ $3c^23n^2d^{4}D^{2}C_{0.0}$ $3c^23n^2d^{4}D^{2}D^{2}$			•	•		476 680		4.4 - 3	1.1+8	E	126*
$22^{\circ}.27$	117.09 ^L 3	$3s^23p^2(^{1}D)3a$	$d^{2}G_{9/2}$	$3s^23p^24f$ $^2\mathrm{H}^{\mathrm{o}}_{11/2}$,						22°, 27
$7/2$ $7/2$ $9/2$ 116.75^{L} $7/2$ $9/2$ $22^{\circ}, 27$. ,	•								

Cr x - Continued

Wave-	Classifica Lower		Energy Lev	vels (cm ⁻¹) Int.	gf A	(s ⁻¹) Acc.	References
ength (Å)	Lower	Upper					
115.29 ^L	$3s^23p^23d\ ^4{ m F}_{9/2}$	$3s^23p^24f$ $^4G^{\circ}_{11/2}$					22°,27
113.70	$3s^23p^3 {}^2P_{1/2}^{\circ}$	$3s^23p^2(^3P)4s^2P_{1/2}$	63 935	943 300			22°,27
113.31	3/2	3/2	67 157	949 800			22°, 27
111.16	$3s^23p^3$ 2 P $^{\circ}_{3/2}$	$3s^23p^2(^1D)4s^2D_{5/2}$	67 157	967 000			22°,27
111.02	3/2	3/2	67 157	967 800			22°, 27
110.37	$3s^23p^3$ 2 D $_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^2P_{1/2}$	37 103	943 300			22°,27
109.84	5/2	3/2	39 450	949 800			22°, 27
107.80	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^1D)4s^2D_{5/2}$	39 450	967 000			22°,27
107.45	3/2	3/2	37 103	967 800			22°,27
107.70	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^4P_{1/2}$	0	928 500			22°, 27
107.14	3/2	3/2	0	933 400			22°,27
106.49	3/2	5/2	0	939 100			22°, 27

 \mathbf{Cr} XI

Wave- length (Å)	Classification Lower	u Upper	Energy Lev	vels (cm ⁻¹) In	ıt. gf	$A (s^{-1})$	Acc.	References
1996.8	$3s^23p^2$ 3P_2	$3s^23p^2$ ¹ D ₂	11 980	36 994	M1	2.6+1	E	28°, 33, 34, 126
177.9 ^C	1	2	5 536	36 994	M1	1.8+1	E	126*
874.2 ^C	$3s3p^3 \ ^3D_3^{o}$	$3s3p^{3} {}^{3}P_{2}^{\circ}$	243 916	278 698	M1	3.2+1	E	126*
799.3 ^C	1	0	242 346	278 059	M1	4.2+1	Ē	126*
773.3 ^C	1	1	242 346	278 394	M1	4.2 + 1	\mathbf{E}	126*
758.4 ^C	2	2	242 456	278 698	M1	2.5 + 1	E	126*
440.01	$3s^23p^2\ ^3{ m P}_1$	$3s^23p^2$ ¹ S ₀	5 536	74 980	M1	3.7+2	E	29°,126*
.001 ^C	$3s3p^3 \ ^5S_2^{\circ}$	$3s3p^{3} \ ^{3}P_{1}^{\circ}$	178 470	278 394	M1	1.3+2	\mathbf{E}	126*
997.7 ^C	2	2	178 470	278 698	M1	2.4 + 2	Е	126*
600.7 578.0	$3s^23p^2$ 3P_2	$3s3p^3 \ ^5\mathrm{S}^{\circ}_{2}$	11 980 5 536	178 470 178 470				36 36
519.12 ^C	$3s3p^3 \ ^3D_3^{\circ}$	$3s^23p3d\ ^3{ m D}_3^{ m o}$	243 916	436 550	M1	4.1+1	E	126*
491.608 ^C	$3s^23p^2$ ¹ S ₀	$3s3p^3 \ ^3P_1^{\circ}$	74 980	278 394	1.1 - 3	9.7+6	E	126*
483.274 ^C	$3s^23p^2$ ¹ D ₂	$3s3p^3 \ ^3D_3^{\circ}$	36 994	243 916	7.5 - 3	3.1+7	E	126*
434.092 ^C	$3s^23p^2$ 3 P ₂	$3s3p^{3-3}D_1^{\circ}$	11 980	242 346	7.0 - 4	8.3+6	E	126*
433.885 ^C	2	2 2	11 980	242 456	1.0 - 4 $1.0 - 2$	7.4+7	D-	126*
431.154	2	3	11 980	243 916	1.9 - 1	9.8 + 8	D	8,17°,24,126
422.282 422.083	1	1	5 536	242 346	2.4 - 2	3.0+8	D-	17°, 126*
412.629	1 0	2	5 536 0	$242 \ 456$ $242 \ 346$	1.4 - 1 $6.3 - 2$	$1.0+9 \\ 8.3+8$	D D	8,17°,24,126° 17°,126*
375.356 ^C	$3s^23p^2$ 3 P ₂	$3s3p^{3-3}P_1^{\circ}$	11 980	278 394	5.0 - 2	0.010	D	100*
374.927	38 3p 1 2 2	ssap r ₁	11 980	278 594 278 698	3.0 - 2 $2.4 - 1$	8.0+8 $2.3+9$	D D	126* 17°, 24, 126*
366.942	1	0	5 536	278 059	6.0 - 2	3.0+9	C-	17°, 126*
366.491	1	1	5 536	278 394	7.2 - 2	1.2+9	Ď	17°,126*
366.085	1	2	5 536	278 698	4.2 - 2	4.1 + 8	D	17°,126*
359.203 ^C	0	1	0	278 394	5.5 - 2	9.5+8	D	126*
370.959	$3s^23p^{2-1}D_2$	$3s3p^{3} {}^{1}D_{2}^{0}$	36 994	306 570				17°,24
339.446	$3s^23p^2$ 3P_2	$3s3p^{3-1}D_2^o$	11 980	306 570				17
298.059	$3s^23p^{2-1}D_2$	$3s3p^{3-1}P_1^{o}$	36 994	372 498				8,17°,24
290.323	$3s^23p^2$ 3 P ₂	$3s3p^3 \ ^3S_1^{\circ}$	11 980	356 424				8,17°,24,25
284.988	1	1	5 536	356 424				8,17°,24,25
280.572	0	1	0	356 424				17
256.32	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^1{ m D}_2^{ m o}$	36 994	427 090				24
250.28 ^C	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3{ m D}_3^{ m o}$	36 994	436 550	6.5 - 2	1.0+9	Е	126*
245.70	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3P_2^{o}$	11 980	418 980				24
241.87	1	2	5 536	418 980				24
235.03	0	1	0	425 480				24
240.76	$3s^23p^2$ ¹ S ₀	$3s^23p3d\ ^1{ m P}_1^{ m o}$	74 980	490 330	1.2	4.8+10	D	24°,126*
237.24	$3s^23p^2\ ^3{ m P}_1$	$3s^23p3d^{-1}D_2^{\alpha}$	5 536	427 090				24
235.74	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3D_2^{o}$	11 980	436 210				24
235.53	2	3	11 980	436 550	3.2	5.5 + 10	D	24°, 32, 126*
233.26 232.18	1 1	1 2	5 536 5 536	434 240 436 210				$\frac{24}{24}$
230.29	0	1	0	434 240				24 24
226.45	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m F}_3^{ m o}$	36 994	478 590	3.2	6.0+10	C	24°, 32, 126*
214.31 ^C	$3s^23p^2$ ³ P ₂	$3s^23p3d\ ^1{ m F}_3^{ m o}$	11 980	478 590	6.5 - 2	1.4+9	E	126*
203.94 ^C	$3s^23p^2\ ^3{ m P}_0$	$3s^23p3d\ ^1\mathrm{P_1^o}$	0	490 330	4.9 - 3	2.6+8	E	126*
117.13	$3s^23p3d\ ^1{ m P}_1^{ m o}$	$3s^23p4f\ ^1{ m D}_2$	490 330	1 344 100				37
	o 20 o 1 mo	0.20 + 1.10	450 500	. 0.15.000				27
115.13	$3s^23p3d\ ^1{ m F}_3^{ m o}$	$3s^23p4f^{-1}G_4$	478 590	1 347 200				37
115.13 105.65 ^L 105.26 ^L	$3s^23p3d$ $^3F_3^\circ$	$3s^{2}3p4f^{-1}G_{4}$ $3s^{2}3p4f^{-3}G_{4}$	478 590	1 347 200				22, 27, 37°

Cr xI - Continued

Wave- length (Å)	Classification Lower	u Upper	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
100.90	$3s^23p^2$ ¹ D ₂	$3s^23p4s\ ^1P_1^{\circ}$	36 994	1 028 100				22°, 27
100.13	$3s^23p^2$ 3P_2	$3s^23p4s$ $^3P_1^0$	11 980	1 010 700				22°,27
99.67	1	ō	5 536	1 008 800				22°,27
99.48	1	1	5 536	1 010 700				22°, 27
99.10	2	2	11 980	1 021 100				22°,27
98.94	0	1	0	1 010 700				22°,27
98.47	1	2	5 536	1 021 100				22°, 27
100.09 ^T	$3s3p^{3-1}D_2^{o}$	$3s^23p4f\ ^3{ m G}_3$	306 570	1 305 700?				37
99.13 ^T	$3s3p^{3-1}D_2^{\alpha}$	$3s^23p4f\ ^1{ m F}_3$	306 570	1 315 400?				37
83.31	$3s^23p^2$ ¹ S ₀	$3s^23p4d\ ^1P_1^{\circ}$	74 980	1 275 300				37
82.05	$3s^23p^{2-1}D_2$	$3s^23p4d\ ^1{ m F}_3^{ m o}$	36 994	1 255 800				22, 27, 37°
81.55	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3D_3^{\circ}$	11 980	1 238 200				22, 27, 37°
81.23	1	2	5 536	1 236 600				37
81.02	ō	1	0	1 234 300				37
81.18	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3{ m F}_3^{ m o}$	11 980	1 243 800				37

Cr XII

Wave- ength (Å)	Classifica Lower	ution Upper	Energy Leve	els (cm ⁻¹) I	\mathbf{nt} . $\mathbf{g}\mathbf{f}$	$A (s^{-1})$	Acc.	References
3153.8	$3s^23p\ ^2P_{1/2}^{\circ}$	$3s^23p\ ^2P_{3/2}^{\circ}$	0	12 261	M1	1.55+1	С	28°, 34, 126*
605.400 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	339 251	504 431	6.4 - 3	3.0+7	E	126*
555.0	$3s^23p^2P_{3/2}^{\circ}$	$3s3p^{2} {}^{4}P_{1/2}$	12 261	192 120				36
541.0	3/2	3/2	12 261	196 911				36
523.26	3/2	3/2 5/2	12 261	203 349				36
520.83	1/2	1/2	0	192 120				36
508.3	1/2	3/2	0	196 911				36
474.030 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^3 {}^2P_{1/2}^{\circ}$	339 251	550 208	4.0 - 2	6.0+8	D	126*
470.868	3/2	3/2	339 251	551 641	2.7 - 1	2.0 + 9	D	39°,126*
460.775	1/2	1/2	333 196	550 208	1.6 - 1	2.5 + 9	D	39°,126*
457.781 ^C	1/2	3/2	333 196	551 641	2.8 - 3	2.2 + 7	E	126*
428.544 ^C	$3s^23d^{2}D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}F_{5/2}^{\circ}$	409 741	643 089	3.7 - 2	2.2+8	\mathbf{E}	126*
426.532^{C}	3/2	5/2	408 640	643 089	2.1 - 1	1.3 + 9	\mathbf{E}	126*
411.430 ^C	5/2	7/2	409 741	652 796	3.5 - 1	1.7+9	\mathbf{E}	126*
425.26	$3s3p(^{3}P^{\circ})3d^{4}D_{5/2}^{\circ}$	$3p^2(^3{ m P})3d\ ^4{ m F}_{7/2}$	604 331	839 496				41
422.899 ^C	$3s3p^2 {}^2S_{1/2}$	$3p^3 {}^2P_{1/2}^{o}$	313 745	550 208	1.5 - 2	2.8+8	E	126*
420.352 ^C	1/2	3 <i>p</i> 1/2 3/2	313 745	551 641	1.6 - 1	1.5+9	D	126*
420.396 ^C	$3s3p^2$ 2 D _{5/2}	•	0.5.5.5.5					
	· ·	$3p^{3} {}^{2}D_{3/2}^{\circ}$	255 566	493 437	6.6 - 2	6.2 + 8	\mathbf{E}	126*
418.406	3/2	3/2	254 428	493 437	2.0 - 1	$^{1.9+9}$	E	39°,126*
417.006	5/2	5/2	255 566	495 368	3.7 - 1	$^{2.4+9}$	E	39°,126*
415.041 ^C	3/2	5/2	254 428	495 368	3.4 - 2	2.2+8	E	126*
412.938 ^C	$3s^23p^{-2}P_{3/2}^{o}$	$3s3p^2$ 2 $D_{3/2}$	12 261	254 428	9.6 - 3	9.4 + 7	E	126*
410.989	3/2	5/2	12 261	255 566	2.2 - 1	1.5 + 9	D	8, 24, 31, 39°, 126
393.028	1/2	3/2	0	254 428	1.5 - 1	1.7 + 9	D	8,24,39°,126*
108.89	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	$3p^2(^3\mathrm{P})3d\ ^4\mathrm{F}_{7/2}$	594 946	839 496				41
405.46	$3s3p(^{1}P^{o})3d\ ^{2}F_{7/2}^{o}$	$3p^2(^3{ m P})3d\ ^2{ m F}_{7/2}$	704 993	951 626				41
362.87	$3s3p(^{3}P^{o})3d^{4}F_{9/2}^{o}$	$3p^2(^3P)3d^4F_{7/2}$	563 915	839 496				41
361.15	7/2	5/2	558 684	835 577				41
357.12	9/2	9/2	563 915	843 933				41
356.80	3/2	3/2						41
356.28	5/2	5/2	554 899	835 577				41
356.11	7/2	7/2	558 684	839 496				41
347.204 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	409 741	697 756	1.5 - 2	2.1+8	E	126*
345.882 ^C	3/2	3/2	408 640	697 756	1.8 - 2	2.6+8	E	126*
0.47 17		·	704.000					
347.17	$3s3p(^{1}P^{o})3d^{2}F^{o}_{7/2}$	$3p^2(^3P)3d\ ^2D_{5/2}$	704 993	993 036				41
345.40	5/2	3/2	707 142	996 661				41
345.57	$3s3p(^{3}P^{\circ})3d^{2}F^{\circ}_{7/2}$	$3p^2(^1S)3d^2D_{5/2}$	652 796	942 162				41
341.36	5/2	3/2	643 089	936 050				41
344.723 ^C	$3s3p^2 {}^4P_{5/2}$	$3p^{3} {}^{2}D_{3/2}^{\circ}$	203 349	493 437	1.1 - 2	1.5+8	E	126*
331.876 ^C	1/2	3/2	192 120	493 437	3.4 - 3	5.3+7	E	126*
339.38	$3s3p(^{3}P^{\alpha})3d^{-4}D^{\alpha}_{7/2}$	$3p^2(^3{ m P})3d\ ^4{ m P}_{5/2}$	603 995	898 650				41
339.23	5/2	3/2	604 331	899 116				41
338.689	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{1}P^{o})3d^{2}F_{7/2}^{o}$	409 741	704 993	2.8	2.0+10	E	39°,126*
$336.246^{\rm C}$	5/2	5/2	409 741	707 142	9.0 - 2	8.9+8	E	126*
335.017	3/2	5/2	408 640	707 142	2.0	2.0+10	E	39°,126*
338.116	$3s3p^2 {}^2D_{3/2}$	$3p^{3-2}P_{1/2}^{\circ}$	954 400	##D 000	9.4	10110	Б	000 100*
337.772	·			550 208	3.4 - 1	1.0+10	D	39°,126*
337.772 336.459 ^C	5/2	3/2	255 566 254 428	551 641	5.5 - 1	8.0+9	D	39°,126*
550.100	3/2	3/2	254 428	551 641	6.8 - 2	1.0+9	D	126*
334.64 327.39	$3s3p(^{3}P^{\circ})3d^{2}F^{\circ}_{7/2}$	$3p^2(^3P)3d^2F_{7/2}$	652 796 643 089	951 626 948 525				41 41
		·		U 10 U 20				41
	- 24	~ .						
332.126	$3s3p^2$ ⁴ P _{5/2}	$3p^3 \ ^4S_{3/2}^{\circ}$	203 349	504 431	9.0 - 1	1.4 + 10	D	8,24,38°,39,12
	$3s3p^2 \ ^4P_{5/2} = 3/2$	$3p^3 \ ^4S_{3/2}^{\circ}$	203 349 196 911 192 120	504 431 504 431 504 431	9.0 - 1 $6.4 - 1$ $3.2 - 1$	1.4+10 $9.9+9$ $5.2+9$	D D D	8,24,38°,39,126 8,24,38°,39,126 8,24,38°,39,126

Cr XII - Continued

Wave- ength (Å)	Classifica Lower	tion Upper	Energy Lev	vels (cm ⁻¹) Int.	. gf	A (s ⁻¹)	Acc.	References
331.687 318.722	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s3p^2 \ ^2\mathrm{S}_{1/2}$	12 261 0	313 745 313 745	6.8 - 2 $3.4 - 1$	2.1+9 1.1+10	D D	8,24,39°,126* 8,24,39°,126*
316.466 316.466	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{1}P^{\circ})3d^{2}P^{\circ}_{3/2}$	409 741 408 640	725 710 724 656	7.6 - 1	2.5+10	D	39 39°,126*
312.949	$3s^23d\ ^2{ m D}_{3/2}$	3s3p(¹ P°)3d ² D _{3/2}	408 640	728 200				39
312.949	5/2	5/2	409 741	729 281	1.4	1.5 + 10	E	39°,126*
311.875 ^C	3/2	5/2	408 640	729 281	4.0 - 2	4.6+8	E	126*
311.587	$3s^23p^{-2}P_{3/2}^{\circ}$	$3s3p^2 {}^2P_{1/2}$	12 261	333 196	4.8 - 1	1.6 + 10	D	8,24,31,39°,126
305.816	3/2	3/2	12 261	339 251	1.55	2.76 + 10	<u>C</u>	8,24,31,39°,126
300.120 294.758	1/2	1/2	0 0	333 196 339 251	3.8 - 1 $3.14 - 1$	$1.4+10 \\ 6.0+9$	D C-	39°,126* 24,39°,126*
.54.100	1/2	3/2	Ü	333 201	3.14 - 1	0.0 3	0-	24,33 ,120
307.35	$3s3p(^3P^{\circ})3d^{\ 2}D^{\circ}_{5/2}$	$3p^2(^1S)3d^2D_{5/2}$	616 790	942 162				41
305.84	$3s3p(^{1}P^{\circ})3d^{2}F_{5/2}^{\circ}$	$3s3d^2$ 2 G _{7/2}	707 142	1 034 110				41
303.75	7/2	9/2	704 993	1 034 211				41
301.19	$3s3p(^{3}P^{o})3d^{2}D_{3/2}^{o}$	$3p^2(^3P)3d^2F_{5/2}$	616 498	948 525				41
298.64	5/2	7/2	616 790	951 626				41
294.655 ^C	$3s3p^2$ ² D _{5/2}	3s3p(3P°)3d 4P5/2	255 566	594 946	3.8 - 2	4.9+8	Е	126*
200 44	$3s3p(^{1}P^{\circ})3d^{2}D_{5/2}^{\circ}$	$3s3d^2$ 2 $F_{7/2}$	729 281	1 075 074				41
288.44 288.18	•	383a F _{7/2}	729 281	1 075 974 1 075 203				41 41
	3/2	·	120 200	1 010 200				**
287.003 ^C	$3s3p^2$ 2 D _{5/2}	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	255 566	603 995	1.5 - 2	1.5+8	Е	126*
286.13	$3s3p(^{1}P^{o})3d^{2}P_{3/2}^{o}$	$3s3d^2$ 2 $F_{5/2}$	725 710	1 075 203				41
284.35	$3p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{5/2}$	$3p^2(^3P)3d\ ^2P_{3/2}$	495 368	847 047				41
281.905 ^C	$3s3p^{2-4}P_{3/2}$	$3p^{3} {}^{2}P_{3/2}^{\circ}$	196 911	551 641	1.0 - 2	2.1+8	E	126*
278.148 ^C	1/2	3/2		551 641	4.4 - 3	9.4 + 7	E	126*
278.936 ^C	$3s3p^2 {}^2P_{3/2}$	•				0.010	-	
278.936° 274.303 ^C		$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	339 251 333 196	697 756 697 756	4.4 - 1 $3.4 - 2$	9.6+9 $7.6+8$	D D	126*
214.303	1/2	3/2		091 150	3.4 - 2	1.0+8	Ъ	126*
276.818	$3s3p^{2-2}D_{5/2}$	$3s3p(^{3}P^{o})3d^{2}D_{5/2}^{o}$	$255\ 566$	616 790				39
276.191	3/2	3/2	254 428	616 498				39
273.48	$3s3p(^3P^o)3d^4D^o_{3/2}$	$3s3d^2$ 4 F _{5/2}	604 158	969 815				41
273.23	5/2	7/2	001001	970 307				41
272.36	7/2	9/2		971 156				41
271.820 ^C	$3s3p^2 \ ^2P_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}F_{5/2}^{\circ}$	339 251	707 142	8.0 - 3	1.2+8	E	126*
266.41	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	$3s3d^2$ 4 F $_{7/2}$	594 946	970 307				41
260.429	$3s3p^2$ 2 S _{1/2}	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	313 745	697 756	1.3	3.2+10	D	39°,126*
260.13	$3p^3 \ ^2P_{3/2}^{\circ}$	$3p^2(^1{ m S})3d\ ^2{ m D}_{3/2}$	551 641	936 050				41
259.467 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2P°	339 251	724 656	1.42 - 1	7.0+9	C-	126*
255.456	1/2	1/2	000 100	724 656	1.42 - 1 $1.3 - 1$	6.7+9	D D	39°,126*
254.768	1/2	3/2		725 710	_	•		39
258.049 ^C	$3s3p^2$ ² D _{5/2}	3s3p(³ P°)3d ² F _{5/2} °	255 566	643 089	1.0 - 1	1.7+9	E	126*
257.282	$\frac{333p}{55/2}$ $\frac{55/2}{3/2}$	535 <i>p</i> (1)5 <i>a</i> F _{5/2}	0= 1 100	643 089	6.8 - 1	1.1+10	E	39°,126*
251.744	5/2	7/2		652 796	1.0	1.3+10	Ē	39°,126*
257.112	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2D°3/2	339 251	728 200				30
256.370	383p F _{3/2} 3/2	-,-	000 051	728 200	3.0	5.0+10	E	39 39°,126*
253.168	3/2 1/2	5/2 3/2		728 200	5.0	5.5 10		39 , 120
255.365 ^C	$3s3p^2$ ⁴ P _{5/2}	$3s3p(^{3}P^{\circ})3d^{-4}P_{5/2}^{\circ}$	909.046	504.040	0.0 1	9.410	Τ.	100*
251.223				594 946 594 946	2.0 - 1 1.1	3.4+9 $2.0+10$	D D	126* 39°,126*
247.065	3/2 1/2	5/2 3/2	100 100	596 837		2.0110	ב	39
245.87 243.025 ^C	3/2	1/2	196 911	603 600	4.4 - 1	2.4 + 10	D	39,40°,126*
			192 120	603 600	2.2 - 2	1.2 + 9	D	126*

Cr XII - Continued

Wave-	Classifica	tion	Energy Lev	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
252.276	$3s^23p^2P_{3/2}^{\circ}$	$3s^23d^2D_{3/2}$	12 261	408 640	2.5 - 1	6.6+9	D	32,39°,126*
251.578	3/2	5/2	12 261	409 741	1.9	3.4+10	D	5, 24, 25, 32, 39°, 126*
244.708	1/2	3/2	0	408 640	1.1	3.0+10	D	5, 24, 32, 39°, 126*
249.572	$3s3p^2 \ ^4P_{5/2}$	3s3p(3P°)3d 4D°	203 349	603 995	2.62	3.5+10	C-	39°,126*
249.374	5/2	5/2	203 349	604 331	1.2	2.2 + 10	D	39°,126*
246.27	1/2	1/2	192 120	598 172	6.0 - 1	3.3 + 10	D	39, 40°, 126*
245.469	3/2	5/2	196 911	604 331	6.0 - 1	1.1 + 10	D	39°,126*
245.469	3/2	3/2	196 911	604 158				39
243.362^{C}	$3s3p^2$ 2 S _{1/2}	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	313 745	724 656	2.6 - 1	1.5+10	D	126*
$222.496^{\rm C}$	$3s3p^2\ ^4{ m P}_{5/2}$	$3s3p(^{3}P^{\circ})3d\ ^{2}F_{7/2}^{\circ}$	203 349	652 796	1.1 - 2	1.9+8	E	126*
222.491	$3s3p^2$ 2 D _{5/2}	3s3p(1P°)3d 2F°	255 566	704 993	1.4	2.3+10	E	39°,126*
$221.447^{\rm C}$	5/2	5/2	255 566	707 142	5.9 - 2	1.3+9	E	126*
220.890	3/2	5/2	254 428	707 142	1.0	2.3+10	Ē	39°,126*
212.663 ^C	$3s3p^2 \ ^2D_{3/2}$	$3s3p(^{1}P^{\circ})3d\ ^{2}P_{1/2}^{\circ}$	254 428	724 656	2.2 - 3	1.6+8	E	126*
199.345 ^C	$3s3p^2 {}^4 ext{P}_{5/2}$	$3s3p(^{1}P^{o})3d\ ^{2}F_{7/2}^{o}$	203 349	704 993	7.2 - 3	1.5+8	E	126*
197.771 ^C	$3s3p^2 {}^4P_{1/2}$	$3s3p(^3P^o)3d\ ^2P^o_{3/2}$	192 120	697 756	3.6 - 3	1.6+8	E	126*
101.46	$3s^23d\ ^2{ m D}_{5/2}$	$3s^24f ^2F^{o}_{7/2}$	409 741	1 395 400				43
101.39	3/2	5/2	408 640	1 395 000				43
96.50^{L}	$3s3p3d\ ^{4}\mathrm{F}_{7/2}^{\circ}$	3s3p4f 4G _{9/2}						43
96.35^{L}	5/2	7/2						43
96.11 ^L	5/2 9/2	11/2						43
90.86	$3s3p^2 {}^4 ext{P}_{5/2}$	3s3p4s ⁴ P _{5/2}	203 349	1 303 900				43
76.488	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^24d\ ^2{ m D}_{5/2}$	12 261	1 319 660				42
75.815		•	0	1 319 000				42
	1/2	3/2		1 010 000				7 4

Cr XIII

Wave-	Classification		Energy Le	vels (cm ⁻¹) Int	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
634.78	$3s3d$ $^{1}\mathrm{D}_{2}$	3p3d ¹ D ₂ °	662 428	819 961	1.8 - 1	6.0+8	D	44°,126*
560.18	3s3p ¹ P ₁ °	$3p^{2-1}D_2$	304 629	483 144	3.0 - 1	1.3+9	E	22, 27, 44°, 126*
514.01	3s3p 1P1	$3p^2 \ ^3P_2$	304 629	499 174				44
482.17	$3s^{2}$ 1 S ₀	$3s3p^{-3}P_{1}^{o}$	0	207 399	1.9 - 3	1.8+7	E	45°, 46, 126*
464.92 ^C	$3s3d$ $^3\mathrm{D}_3$	$3p3d$ $^3F_2^{\circ}$	590 063	805 156	2.0 - 3	1.3+7	E	126*
462.95	2	2	589 150	805 156	1.1 - 1	6.8+8	D	44°,126*
461.69	1	2	588 562	805 156	4.5 - 1	2.8 + 9	D	8,44°,126*
451.69	3	3	590 063	811 454	1.5 - 1	6.9 + 8	$^{\rm C}$	44°,126*
449.83	2	3	589 150	811 454	7.5 - 1	3.5 + 9	C	8,44°,126*
437.32	3	4	590 063	818 730 .	1.20	4.64+9	C	8,44°,126*
387.40	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	662 428	920 560	2.3	1.5+10	D	44°,126*
380.70	$3s3d$ 3D_3	$3p3d$ $^3P_2^{\circ}$	590 063	852 734				44
366.48	1	1	588 562	861 427				44
378.79	$3s3d$ $^3\mathrm{D}_2$	$3p3d$ $^3D_1^o$	589 150	853 150				44
369.22	3	3	590 063	860 904	9.1 - 1	6.4 + 9	\mathbf{C}	8,44°,126*
367.98^{C}	2	3	589 150	860 904	1.9 - 1	1.3 + 9	C	126*
366.77	2	2	589 150	861 799				44
377.65	$3s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3p^{2} {}^{1}S_{0}$	304 629	569 421	3.3 - 1	1.5+10	C	8,44°,126*
375.11	$3s3p\ ^{3}P_{2}^{o}$	$3p^{2-1}D_2$	216 557	483 144	1.3 - 1	1.3+9	E	44°,126*
362.66	1	2	207 399	483 144	6.3 - 2	6.4+8	\mathbf{E}	44°,126*
371.30	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}P_{1}^{o}$	662 428	931 754	6.5 - 1	1.1+10	D	44°,126*
368.10	$3s3p\ ^{3}P_{2}^{o}$	$3p^{2} {}^{3}P_{1}$	216 557	488 223	3.7 - 1	6.1 + 9	C	31, 44°, 126*
364.00	1	0	207 399	482 122	3.0 - 1	1.5 + 10	C	31,44°,126*
356.10	1	1	207 399	488 223	2.3 - 1	4.0 + 9	$^{\rm C}$	31, 44°, 126*
353.84	2	2	216 557	499 174	9.5 - 1	1.0+10	D	31, 44°, 126*
351.15 342.73	0 1	1 2	$203\ 444$ $207\ 399$	488 223 499 174	3.1 - 1 $3.0 - 1$	$5.6+9 \\ 3.4+9$	C D	31,44°,126* 31,44°,126*
352.736	$3p3d$ $^{1}P_{1}^{o}$	$3d^{2}$ ¹ D ₂	931 754	1 215 243				48°, 49
336.308	$3p3d\ ^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d^2$ 1 G ₄	920 560	1 217 906	2.86	1.88+10	C-	47, 48°, 49, 126*
328.267	$3s^2$ 1 S $_0$	$3s3p$ $^{1}P_{1}^{o}$	0	304 629	9.02 - 1	1.86+10	В	18, 25, 31, 32, 44 ^{\(\Delta\)} , 45°, 126*
310.55	$3p^2$ 1 D $_2$	$3p3d$ $^3\mathrm{F}^{\circ}_2$	483 144	805 156				44
306.448	$3p3d\ ^{3}P_{1}^{o}$	$3d^{2} {}^{3}F_{2}$	861 427	1 187 767				48
297.631	2	3	852 734	1 188 753				48
$305.87^{\mathbf{T}}$	$3p3d$ $^3D_2^{\alpha}$	$3d^{2} {}^{3}F_{3}$	861 799	1 188 753				47
303.960 298.853	3	4	860 904	1 189 901				47, 48°, 49
	1	2	853 150	1 187 767				47, 48°, 49
296.89	$3p^{2-1}D_2$	$3p3d$ $^{1}\mathrm{D}_{2}^{\circ}$	483 144	819 961	8.5 - 1	1.3+10	E	44°,126*
282.84	$3p^2 \ ^3P_2$	$3p3d\ ^{3}P_{2}^{o}$	499 174	852 734				8,44°
274.34	1	2	488 223	852 734				44
267.95	1	1	488 223	861 427				44
279.84	$3p3d\ ^{3}P_{1}^{o}$	$3d^{2} {}^{3}P_{1}$	861 427	1 218 751				49
273.23	2	1	852 734	1 218 751				49
272.61	2	2	852 734	1 219 532				49
279.48	$3s3p^{-1}P_1^{\circ}$	$3s3d$ $^{1}\mathrm{D}_{2}$	304 629	662 428	2.1	3.5+10	D	22, 27, 44°, 126*
278.86	$3p3d$ $^3D_3^{\circ}$	$3d^2 \ ^3P_2$	860 904	1 219 532				49
273.74	1	o	853 150	1 218 447				49
276.44	$3p^2 \ ^3P_2$	$3p3d\ ^{3}D_{3}^{o}$	499 174	860 904	1.8	2.2+10	D	44°,126*
275.77	2	2		861 799	-	• - •	-	44
269.47	0	1	100 100	853 150				44
276.00	$3p^2$ 1 S ₀	$3p3d\ ^{1}P_{1}^{\circ}$	569 421	931 754	7.3 - 1	2.1 + 10	C	8,44°,126*

Cr XIII - Continued

Wave-	Classification		Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
269.411	$3p3d$ $^3F_4^{\circ}$	$3d^2 \ ^3F_4$	818 730	1 189 901					47, 48, 49°
265.042	3	3	811 454	1 188 753					47, 48°, 49
261.359	2	2	805 156	1 187 767					47, 48°, 49
268.81 ^C	$3s3p^{-3}P_{2}^{o}$	$3s3d$ $^3\mathrm{D}_1$	216 557	588 562		1.7 - 2	5.2 + 8	D	126*
268.38 267.74	2	2	216 557	589 150		2.6 - 1	4.8+9	C	44°,126*
262.36	2 1	3	216 557 $207 399$	590 063 588 562		1.43 $2.6 - 1$	$1.9+10 \\ 8.4+9$	C C	8, 22, 27, 32, 44°, 126* 22, 27, 32, 44°, 126*
261.95	1	2	207 399	589 150		7.8 - 1	1.5 + 10	C	8, 22, 27, 32, 44°, 126*
259.66	0	1	203 444	588 562		3.5 - 1	1.2 + 10	С	22, 27, 32, 44°, 126*
264.73	$3p^2$ ¹ D ₂	$3p3d$ $^3\mathrm{D}_3^\circ$	483 144	860 904					44
252.983	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3d^2$ $^1\mathrm{D}_2$	819 961	1 215 243					48°,49
228.62	$3p^{2-1}D_2$	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	483 144	920 560		1.0	1.8+10	E	44°,126*
222.911^{C}	$3p^{2-1}D_2$	$3p3d$ $^{1}P_{1}^{\circ}$	483 144	931 754		6.5 - 3	2.9 + 8	E	126*
97.25	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	662 428	1 690 860					43
96.86	$3p3d$ $^1\mathrm{F}^{\mathrm{o}}_3$	$3p4f$ $^{1}G_{4}$	920 560	1 953 000					43
93.42	$3p3d$ $^3\mathrm{D}^\mathrm{o}_3$	$3p4f$ 3 F ₄	860 904	1 931 340					43
92.61	$3p3d$ $^3D_3^{\circ}$	$3p4f^{-3}D_{3}$	860 904	1 940 700					43
92.37	2	2	861 799	1 944 400					43
92.16	$3p3d$ $^3P_1^o$	$3p4f ^{3}D_{1}$	861 427	1 946 500					43
92.01	0	3 <i>p</i> 4 <i>j D</i> 1	859 662	1 946 500					43
91.855	$3s3d$ $^3\mathrm{D}_3$	$3s4f$ 3 F $_4^{\circ}$	590 063	1 678 740					27, 42°
91.792	2	3	589 150	1 678 570					27, 42° 27, 42°
91.749	1	2	588 562	1 678 490					27, 42°
91.30	$3s3p^{-1}P_{1}^{o}$	$3s4s$ $^{1}\mathrm{S}_{0}$	304 629	1 400 000					27
90.85	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3p4f$ 3 F $_3$	819 961	1 920 670					43
90.17	$3p3d$ $^3F_3^{\circ}$	$3p4f^{-3}G_{4}$	811 454	1 920 470					43
90.02	2	3	805 156	1 916 020					43
89.99	4	5	818 730	1 929 970					43
86.78	$3p^2$ 3 P $_2$	$3p4s$ $^3P_2^{\circ}$	499 174	1 652 000					27
85.566	$3s3p\ ^{3}P_{2}^{o}$	$3s4s$ $^3\mathrm{S}_1$	216 557	1 385 260					42
84.898	1	1	207 399	1 385 260					42
84.616	0	1	203 444	1 385 260					42
82.79	$3p^{2-1}D_2$	$3s4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	483 144	1 690 860					22°, 27
76.17	$3s3p$ $^{1}\mathrm{P}_{1}^{\circ}$	$3s4d\ ^1\mathrm{D}_2$	304 629	1 617 480					22°, 27, 43
73.31	$3p^2$ $^1\mathrm{D}_2$	$3p4d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	483 144	1 847 000					27
72.88	$3p^2 \ ^3P_2$	$3p4d$ $^3D_3^{\circ}$	499 174	1 871 000					27
72.57	1	2	488 223	1 866 000					27
72.27	0	1	482 122	1 866 000					27
72.13	$3p^{2-1}D_2$	$3p4d$ $^3F_3^{\circ}$	483 144	1 870 000					27
71.86	$3p^2\ ^3{ m P}_2$	$3p4d$ $^3\mathrm{P}_2^{\mathrm{o}}$	499 174	1 891 000					27
71.435	$3s3p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3s4d$ $^3\mathrm{D}_2$	216 557	1 616 450					42
71.398 70.973	2 1	3 1	216 557 $207 399$	1 617 160 1 616 210					27, 42° 42
70.973	1	2	207 399	1 616 450					27, 42°
70.792	0	1	203 444	1 616 210					27, 42°
66.983	$3s^{2}$ 1 S ₀	$3s4p$ $^{1}P_{1}^{o}$	0	1 492 920		3.38 - 1	1.67+11	E	27,42°,126*
65.968	$3s3d$ $^3\mathrm{D}_3$	$3s5f$ $^3\mathrm{F}^{\mathrm{o}}_4$	590 063	2 105 950					27,42°
65.39^{T}	$3s3p$ $^3P_2^{\circ}$	$3p4p$ 3D_3	216 557	1 746 000?	?				27
65.13	$3s3p$ $^3\mathrm{P}_2^\mathrm{o}$	$3p4p$ $^3\mathrm{P}_2$	216 557	1 752 000					27

Cr XIII - Continued

Wave-	Classificat	ion	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
65.04	$3s3p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3p4p$ 3S_1	216 557	1 754 000					27
57.24	$3s3d\ ^3\mathrm{D}_3$	$3s6f$ $^3\mathrm{F}^\circ_4$	590 063	2 337 000					27
57.24 56.96	$3s3p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3s5s \ ^{3}S_{1}$	216 557 207 399	1 963 000 1 963 000					27 27
56.37	$3s3p$ 1 P $_{1}^{\circ}$	$3s5d$ $^{1}\mathrm{D}_{2}$	304 629	2 079 000					27
53.765 53.506 53.39	$3s3p\ ^3P_2^{\circ}$ 1 0	$3s5d\ ^3{ m D}_3$	216 557 207 399 203 444	2 076 500 2 076 350 2 076 000					27, 42° 27, 42° 27
53.02	$3s3d$ $^3\mathrm{D}_3$	$3s7f$ 3 F $_4^{\circ}$	590 063	2 476 000					27
49.59	$3s^{2}$ $^{1}S_{0}$	$3s5p$ $^{1}\mathrm{P_{1}^{o}}$	0	2 017 000		1.09 - 1	9.9+10	C	27°,126*
49.03	$3s3p$ $^3P_2^o$	$3s6s$ $^3\mathrm{S}_1$	216 557	2 256 000					27
47.55 47.34 47.26	$3s3p\ ^3P_2^{\circ}$ 1 0	$3s6d$ $^3\mathrm{D}_3$ 2 1	216 557 207 399 203 444	2 320 000 2 320 000 2 319 000					27 27 27
43.75	$3s^{2}$ 1 S ₀	$3s6p$ $^{1}P_{1}^{\circ}$	0	2 286 000					27
40.92	$3s^{2}$ 1 S ₀	$3s7p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	2 444 000	-				27

 \mathbf{Cr} XIV

Wave- length (Å)	Classific Lower	cation Upper	Energy Lev	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
823.99 ^C	$2p^64p$ $^2P_{3/2}^{\circ}$	$2p^64d\ ^2{ m D}_{3/2}$	1 579 180	1 700 540	1.8 - 1	4.5+8	С	126*
818.73 ^C			1 579 180	1 701 320	1.7	2.8+9	C	126*
789.27 ^C	3/2 1/2	5/2 3/2	1 573 840	1 700 540	9.6 - 1	2.6+9	C	126*
416.23 ^C	$2p^65d\ ^2{ m D}_{3/2}$	$2p^66p^2P_{1/2}^{\circ}$	2 210 730	2 450 980	5.2 1	1.0+10	С	126*
414.97 ^C	5/2	3/2	2 211 080	2 452 060	9.36 - 1	9.1+9	C	126*
414.37 ^C	3/2	3/2	2 210 730	2 452 060	1.0 - 1	1.0+9	D	126*
412.047 ^S	$2p^63s \ ^2S_{1/2}$	$2p^6 3p^2 P_{1/2}^o$	0	242 690	9.74 1	5.37+9	В	18, 31, 45, 50, 52, 53°, 126*
389.862 ^S	•		0	242 690 256 500	2.74 - 1 $5.84 - 1$	6.41+9	В	18, 31, 45, 50, 52, 53°, 126*
	1/2	3/2	Ū	230 300	5.64 - 1	0.4173	ь	18, 31, 43, 30, 32, 33 , 120
400.49 ^C	$2p^65f$ $^2F_{5/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	$2\ 235\ 295$	2 484 990	2.7 - 1	2.8 + 9	C	126*
400.37 ^C	7/2	5/2	2 235 440	2 485 210	3.8 - 1	2.7 + 9	\mathbf{C}	126*
400.14 ^C	5/2	5/2	2 235 295	2 485 210	2.0 - 2	1.4+8	D	126*
367.04 ^C	$2p^65p^{-2}P_{3/2}^{o}$	$2p^66s$ $^2S_{1/2}$	2 152 020	2 424 470	6.4 - 1	1.6+10	C	126*
363.40 ^C	· ·	<u>.</u>	2 149 290	2 424 470	3.24 - 1	8.2+9	C	126*
	1/2	1/2	2 140 200	2 124 110	5.24 - 1	0.273	C	120
347.19 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^66f$ $^2F_{5/2}^{\circ}$	2 211 080	2 499 105	1.9 - 1	1.7 + 9	D	126*
347.01 ^C	5/2	7/2	$2\ 211\ 080$	2 499 260	3.6	2.5 + 10	\mathbf{C}	126*
346.77 ^C	3/2	5/2	2 210 730	2 499 105	2.6	2.4 + 10	C	126*
301.819 ^S	$2p^63p^2P_{3/2}^{o}$	$2p^6 3d\ ^2{ m D}_{3/2}$	256 500	587 825	1.26 - 1	2.3+9	В	31,51,52,53°,126*
300.287 ^S	•		256 500	589 515	1.20 - 1 1.14	1.41+10	В	22, 27, 31, 32, 51, 52, 53°, 126*
289.742 ^S	3/2 1/2	5/2 3/2	242 690	587 825	6.58 - 1	1.31+10	В	18, 22, 27, 31, 32, 51, 52, 53°, 126°
_		•			3.00	1.01 , 10		10, 22, 21, 01, 02, 01, 02, 00 , 120
300.33 ^C	$2p^65p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	2 152 020	2 484 990	8.8 - 2	1.6+9	D	126*
300.13 ^C	3/2	5/2	2 152 020	2 485 210	8.0 - 1	9.7 + 9	C	126*
297.89 ^C	1/2	3/2	2 149 290	2 484 990	4.42 - 1	8.3 + 9	C	126*
287.19 ^C	$2p^65s ^2S_{1/2}$	$2p^{6}6p^{-2}P_{1/2}^{\circ}$	2 102 780	2 450 980	1.6 - 1	6.3+9	С	126*
286.30 ^C	1/2	2P 0P 1 1/2 3/2	2 102 780	2 452 060	3.10 - 1	6.3+9	C	126*
			2 102 100	2 102 000	5.10	0.0 (5	O	120
281.67 ^L	$2p^53s3p^4D_{7/2}$	$2p^53s3d\ ^4\mathrm{F}^{\circ}_{9/2}$						52,54°
241.67^{C}	$2p^65f^2F_{5/2}^{\circ}$	$2p^67d\ ^2{ m D}_{3/2}$	2 235 295	2 649 080	4.8 - 2	1.4 + 9	D	126*
241.49 ^C	7/2	5/2	2 235 440	2 649 530	6.9 - 2	1.3 + 9	D	126*
241.41 ^C	5/2	5/2	2 235 295	2 649 530	3.4 - 3	6.5 + 7	\mathbf{E}	126*
239.23 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^67p^{-2}P_{3/2}^{\circ}$	2 211 080	2 629 090	1.61 - 1	4.71+9	C	126*
239.03 ^C			2 211 080	2 629 090	9.2 - 2	5.3+9	C	126*
239.03 ^C	3/2 3/2	1/2 3/2	2 210 730	2 629 090	1.8 - 2	5.2+8	D	126*
							_	
223.65 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^67f$ $^2\mathrm{F}^{\mathrm{o}}_{5/2}$	2 211 080	2 658 215	5.0 - 2	1.1 + 9	D	126*
223.61 ^C	5/2	7/2	2 211 080	2 658 280	1.0	1.7 + 10	C	126*
223.47 ^C	3/2	5/2	2 210 730	2 658 215	6.8 - 1	1.5 + 10	C	126*
222.84 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^65p^2P_{1/2}^{\circ}$	1 700 540	2 149 290	3.3 - 1	2.2 + 10	C	126*
221.88^{C}	5/2	3/2	1 701 320	2 152 020	5.9 - 1	2.0+10	C	126*
221.49^{C}	3/2	3/2	1 700 540	2 152 020	6.4 - 2	2.2+9	Ď	126*
C		-						
217.38 ^C	$2p^65p^2 P_{3/2}^{\circ}$	$2p^67s\ ^2{ m S}_{1/2}$		2 612 050	1.2 - 1	8.8 + 9	$^{\rm C}$	126*
216.09^{C}	1/2	1/2	2 149 290	2 612 050	6.28 - 2	4.49 + 9	С	126*
216.97^{C}	$2p^64f$ $^2F_{5/2}^o$	$2p^65d^{-2}D_{3/2}$	1 749 830	2 210 730	1.1 - 1	4.0+9	C	126*
216.92 ^C	·	•	1 750 080	2 211 080	1.61 - 1	3.80+9	C	126*
216.80 ^C	7/2 5/2	5/2 5/2	1 749 830	2 211 080	7.8 - 3	1.9+8	D	126*
						, -		
205.01	$2p^64f \ ^2F^{o}_{7/2}$	$2p^65g\ ^2{ m G}_{9/2}$	1 750 080	2 237 860				55
204.91	5/2	7/2	1 749 830	2 237 850				55
201.18 ^C	$2p^65p^2P_{3/2}^{o}$	$2p^67d\ ^2{ m D}_{3/2}$	2 152 020	2 649 080	3.2 - 2	1.3+9	D	126*
201.10 201.00 ^C	2p 0p 1 3/2 3/2	2p 10 D _{3/2} 5/2	2 152 020	2 649 530	3.2 - 2 $2.9 - 1$	7.9+9	C	126*
200.08 ^C	3/2 1/2	5/2 3/2	2 149 290	2 649 080	1.5 - 1	6.3+9	C	126*
	•	•			*		-	-
190.99 ^C 189.06 ^C	$2p^64p^{-2}P_{3/2}^{o}$	$2p^65s \ ^2\mathrm{S}_{1/2}$	1 579 180	2 102 780	4.52 - 1	4.12 + 10	C	126*
			1 573 840	2 102 780	2.28 - 1	2.13+10	C	

Cr XIV - Continued

Wave-	Classifica		Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper							
188.25 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P}^{\circ}_{3/2}$	2 211 080	2 742 280		6.0 - 2	2.8+9	С	126*
188.13 ^C	$2p \ 5a \ D_{5/2}$ 3/2	2p op P _{3/2}	2 211 080	2 742 280		0.0 - 2 $3.4 - 2$	3.2+9	D	126*
188.13 ^C	3/2 3/2	1/2 3/2	2 210 730	2 742 280		6.8 - 3	3.1+8	D	126*
107 20	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f^2F_{7/2}^{\circ}$		0.005.440		4.1		C	
187.30 187.27 ^C	•	•	1 701 320 1 701 320	2 235 440 2 235 295		4.1 $2.1 - 1$	9.6+10 6.7+9	C D	55°,126* 126*
187.02	5/2 3/2	5/2 5/2	1 700 540	2 235 295		2.1 - 1	9.3+10	C	55°, 126*
C	•	•				n.		_	
170.12 ^C 169.63 ^C	$2p^63s \ ^2S_{1/2}$	$2p^6 3d ^2 D_{3/2}$	0 0	587 825 589 515		${f E}_2$	5.5+5 5.5+5	C C	126* 126*
109.03	1/2	5/2	U	369 313	•	11.2	3.3+3	C	120
165.74 ^C	$2p^65p$ $^2\mathrm{P}^{\circ}_{3/2}$	$2p^6 8d\ ^2 \mathrm{D}_{5/2}$	2 152 020	2 755 380)	1.4 - 1	5.7 + 9	C	126*
165.71 ^C	3/2	3/2	2 152 020	2 755 500		1.6 - 2	9.5+8	D	126*
164.96 ^C	1/2	3/2	2 149 290	2 755 500	}	7.86 - 2	4.81 + 9	С	126*
158.34 ^C	$2p^{6}4p^{2}P_{3/2}^{\circ}$	$2p^65d^{-2}D_{3/2}$	1 579 180	2 210 730)	9.2 - 2	6.2 + 9	D	126*
158.25^{C}	3/2	5/2	1 579 180	2 211 080)	8.4 - 1	3.7 + 10	C	126*
157.01 ^C	1/2	3/2	1 573 840	2 210 730)	4.8 - 1	3.3 + 10	C	126*
149.07 ^C	$2p^64s$ $^2S_{1/2}$	$2p^65p^2P_{1/2}^{\circ}$	1 478 480	2 149 290)	1.4 - 1	2.1+10	C	126*
148.47 ^C	1/2	2P 0P 1 1/2 3/2	1 478 480	2 152 020		2.88 - 1	2.18+10	C	126*
133.26 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	1 700 540	2 450 980		5.6 - 2	1.0+10	С	126*
133.20 ^C 133.06 ^C	5/2	3/2	1 701 320 1 700 540	2 452 060 2 452 060		9.6 - 2 $1.1 - 2$	$9.2+9 \\ 1.0+9$	C D	126* 126*
	3/2	3/2	1 100 040	2 402 UOU	,	1.1 – 2	1.079	ט	120
125.35 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{o}$	1 701 320	2 499 105	5	5.1 - 2	3.6 + 9	D	126*
125.32 ^C	5/2	7/2	1 701 320	2 499 260		1.0	5.4+10	C	126*
125.22 ^C	3/2	5/2	1 700 540	2 499 105)	7.2 - 1	5.0+10	C	126*
118.30 ^C	$2p^64p$ $^2P_{3/2}^{\circ}$	$2p^66s \ ^2S_{1/2}$	1 579 180	2 424 470)	8.8 - 2	2.1+10	\mathbf{C}	126*
117.56 ^C	1/2	1/2	1 573 840	2 424 470)	4.4 - 2	1.1 + 10	$^{\rm C}$	126*
110.40 ^C	$2p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	1 579 180	2 484 990	1	3.3 - 2	4540	D	126*
110.40 110.37 ^C	2p 4p F _{3/2} 3/2	$2p \ 0d \ D_{3/2}$ 5/2	1 579 180	2 484 990		3.3 - 2 $3.0 - 1$	4.5+9 $2.8+10$	C	126*
109.75 ^C	1/2	5/2 3/2	1 573 840	2 484 990		1.7 - 1	2.3+10	C	126*
107.79 ^C	$2p^64d\ ^2{ m D}_{5/2}$	·	1 701 990	0.600.600	`	0.77 0	F 0 + 0	Б	100*
107.79° 107.69°		$2p^67p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 701 320 1 700 540	2 629 090 2 629 090		3.7 - 2 $2.0 - 2$	5.3+9 5.7+9	D D	126* 126*
107.69 ^C	3/2 3/2	1/2 3/2	1 700 540	2 629 090		4.0 - 3	5.7+8	E	126*
	•	•							
104.50 ^C 104.50 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^67f$ $^2F_{5/2}^o$	1 701 320	2 658 215		2.0 - 2	2.1+9	D	126*
104.50° 104.42 ^C	5/2	7/2 5/2	1 701 320 1 700 540	2 658 280 2 658 215		4.1 - 1 $2.9 - 1$	3.1+10 $3.0+10$	C C	126* 126*
	3/2			2 000 210	,	2.3 — 1	3.0·T10	O	120
102.83 ^C	$2p^64s\ ^2{ m S}_{1/2}$	$2p^{6}6p^{2}P_{1/2}^{o}$	1 478 480	2 450 980		4.8 - 2	1.5+10	C	126*
102.71 ^C	1/2	3/2	1 478 480	2 452 060)	9.2 - 2	1.4+10	$^{\rm C}$	126*
101.42	$2p^63d^{2}D_{3/2}$	$2p^{6}4p^{2}P_{1/2}^{\circ}$	587 825	1 573 840)	1.49 - 1	4.83+10	C	43°,51 [△] ,126*
101.05	5/2	3/2	589 515	1 579 180		2.7 - 1	4.4+10	C	43°,51 ^Δ ,126*
$100.87^{\rm C}$	3/2	3/2	587 825	1 579 180		3.0 - 2	4.9+9	Ď	126*
99.473 ^C	$2p^64f$ $^2F_{7/2}^{\circ}$	$2p^68d\ ^2\mathrm{D}_{5/2}$	1 750 080	9 755 991	n	16 9	£ 1 + 0	TC.	196*
99.473 99.448 ^C	,	•	1 750 080	2 755 386 2 755 386		4.6 - 3 $2.3 - 4$	5.1+8 $2.5+7$	E E	126* 126*
99.446 ^C	5/2 5/2	5/2 3/2	1 749 830	2 755 500		2.3 - 4 $3.1 - 3$	2.5+7 $5.2+8$	E	126* 126*
96.818 ^C 96.320 ^C	$2p^64p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^67s\ ^2\mathrm{S}_{1/2}$	1 579 180	2 612 050		3.4 - 2	1.2+10	D	126*
90.320	1/2	1/2	1 573 840	2 612 050	υ	1.7 - 2	6.0+9	D	126*
96.065 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P}^{\circ}_{3/2}$	1 701 320	2 742 280	0	1.8 - 2	3.3+9	D	126*
95.993 ^C	3/2	1/2	1 700 540	2 742 28		1.0 - 2	3.7 + 9	D	126*
95.993 ^C	3/2	3/2	1 700 540	2 742 28	0	2.0 - 3	3.6 + 8	E	126*
93.467 ^C	$2p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^67d^2D_{3/2}$	1 579 180	2 649 08	0	1.6 - 2	3.0+9	D	126*
93.427^{C}	3/2	5/2	1 579 180	2 649 53		1.4 - 1	1.8+10	C	126*
93.002^{C}	1/2	3/2		2 649 08		8.2 - 2	1.6+10	C	126*
86.183 ^C	$2p^6 3d^{2}D_{5/2}$	$2p^64f^2F_{5/2}^{\circ}$	500 515	1 740 00	0	26 1	20110	D	196*
86.183 ⁵	•		589 515 589 515	1 749 83 1 750 08		2.6 - 1 5.3	3.9+10 $5.9+11$	D D	126* 27,53°,56,126*
86.059 ^S	5/2 3/2	7/2 5/2		1 749 83		3.5	5.9+11 $5.3+11$	C	27,53°,56,126*
	5/2	3/2					, .		

Cr XIV - Continued

Wave- ength (Å)	Classifica Lower	ation Upper	Energy Lev	els (cm ⁻¹)	nt. gf	$A (s^{-1})$	Acc.	References
85.020 ^C	$2p^{6}4p^{2}P_{3/2}^{\circ}$	$2p^68d\ ^2\mathrm{D}_{5/2}$	1 579 180	0 7755 000	0.00	1.07 10		196*
85.020 85.011 ^C	· ·	, -		2 755 380	8.28 - 2	1.27+10	C	126*
85.011 ^C 84.627 ^C	3/2	3/2	1 579 180 1 573 840	2755500 2755500	9.2 - 3 $4.64 - 2$	2.1+9 $1.08+10$	D C	126* 126*
04.027	1/2	3/2	1 373 640	2 155 500	4.04 - 2	1.00+10	C	120
81.838	$2p^63p^2P_{3/2}^{\circ}$	$2p^64s$ $^2S_{1/2}$	256 500	1 478 480				51 [△] ,56°
80.916	1/2	1/2	242 690	1 478 480				27,51 [△] ,56°
	o fo 250	2 6 25					_	
69.247	$2p^63p^2P_{3/2}^{\circ}$	$2p^64d\ ^2{ m D}_{3/2}$	256 500	1 700 540	1.1 - 1	3.8+10	D	51°, 56, 126*
69.213 68.594	3/2	5/2	256 500 242 690	1 701 320 1 700 540	9.96 - 1 $5.58 - 1$	2.31+11 $1.98+11$	C C	27,51°,56,126* 27,51°,56,126*
00.001	1/2	3/2	212 000	1 100 040	0.00 1	1.50-11	O	27,01 ,00,120
64.042^{C}	$2p^6 3d\ ^2{ m D}_{3/2}$	$2p^65p^2P_{1/2}^{\circ}$	587 825	2 149 290	2.4 - 2	1.9 + 10	D	126*
64.005	5/2	3/2	589 515	2 152 020	4.3 - 2	1.7 + 10	D	22, 27, 51°, 126*
63.931 ^C	3/2	3/2	587 825	2 152 020	4.8 - 3	1.9 + 9	\mathbf{E}	126*
63.539	$2p^63s$ $^2S_{1/2}$	$2p^64p\ ^2{ m P}^{ m o}_{1/2}$	0	1 573 840	1.37 - 1	1.13+11	C+	27,51°,56,126*
63.324			0	1 579 180	2.58 - 1	1.13+11 $1.07+11$	C+	27,51°,56,126*
00.024	1/2	3/2	Ü	1 013 100	2.00 - 1	1.07 711	O+	27,01 ,00,120
60.761 ^C	$2p^6 3d^2 D_{5/2}$	$2p^65f$ $^2F_{5/2}^{\circ}$	589 515	2 235 295	4.9 - 2	1.5 + 10	D	126*
60.756	5/2	7/2	589 515	2 235 440	9.72 - 1	2.19+11	\mathbf{C}	27,51 ^{\(\Delta\)} ,56°,126*
60.699	3/2	5/2	587 825	$2\ 235\ 295$	6.80 - 1	2.05 + 11	C	$27,51^{\Delta},56^{\circ},126^{*}$
E 4 1 C 4	0_60_ 250	0-6- 20	950 500	0.100 =00	F 0 0	F 0 1 1 2	~	07 719 100*
54.164	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65s \ ^2S_{1/2}$	256 500	2 102 780	5.2 - 2	5.9+10	C	27,51°,126*
53.760	1/2	1/2	242 690	2 102 780	2.60 - 2	3.0+10	С	27,51°,126*
53.690 ^C	$2p^63d^{2}D_{5/2}$	$2p^66p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	589 515	2 452 060	1.5 - 2	8.5+9	D	126*
53.672^{C}	3/2	1/2	587 825	2 450 980	8.4 - 3	9.8+9	D	126*
53.641 ^C	3/2	3/2	587 825	2 452 060	1.6 - 3	9.5+8	E	126*
		•						
52.367 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^66f\ ^2{ m F}^{ m o}_{5/2}$	589 515	2 499 105	1.8 - 2	7.3 + 9	D	126*
52.363	5/2	7/2	589 515	2 499 260	3.7 - 1	1.1+11	C	27,51 ^{\(\Delta\)} ,56°,126*
52.321	3/2	5/2	587 825	2 499 105	2.6 - 1	1.0+11	C	51°,126*
51.171 ^C	$2p^63p^2P_{3/2}^{o}$	$2p^65d\ ^2{ m D}_{3/2}$	256 500	2 210 730	3.6 - 2	2.3+10	D	126*
51.162	3/2	5/2	256 500	2 211 080	3.3 - 1	1.4+11	C	27,51 ^{\Delta} ,56°,126*
50.812	1/2	3/2	242 690	2 210 730	1.9 - 1	1.2+11	Ċ	27,51 ^Δ ,56°,126*
49.030 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^67p^2P_{3/2}^{\circ}$	589 515	2 629 090	6.6 3	4.7 + 9	D	126*
48.989 ^C	3/2	1/2	587 825	2 629 090	3.9 - 3	5.4+9	E	126*
48.989 ^C	3/2	3/2	587 825	2 629 090	8.0 - 4	5.6 + 8	E	126*
48.340 ^C	$2p^63d^2D_{5/2}$	$2p^67f^{-2}F_{5/2}^{o}$	589 515	2 658 215	9.0 - 3	4.2+9	D	126*
48.338	5/2	7/2	589 515	2 658 280	1.78 - 1	6.3+10	C	27,51°,126*
48.300	3/2	5/2	587 825	2 658 215	1.24 - 1	5.9 + 10	č	51°,126*
							_	Δ .
46.527	$2p^63s\ ^2{ m S}_{1/2}$	$2p^65p^2P_{1/2}^{o}$	0	2 149 290	4.4 - 2	6.7 + 10	C	51 ^Δ , 56°, 126*
46.468	1/2	3/2	0	2 152 020	8.4 - 2	6.6 + 10	C	51 [△] , 56°, 126*
46.452 ^C	$2p^63d^{2}D_{5/2}$	$2p^68p~^2\mathrm{P}^{\circ}_{3/2}$	589 515	2 742 280	4.3 - 3	3 3 ፲ ሀ	T.	126*
46.415 ^C	-	•	589 515 587 825	2 742 280	4.3 - 3 $2.4 - 3$	3.3+9 $3.7+9$	E E	126*
46.415 ^C	3/2 3/2	1/2 3/2		2 742 280	2.4 - 3 $4.8 - 4$	3.7+9 3.7+8	E	126*
			20. 020	_ , 12 200	4.0 4	0., 10		
46.125	$2p^63p^2P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	256 500	2 424 470	2.0 - 2	3.1 + 10	D	27,51°,126*
45.835	1/2	1/2	242 690	2 424 470	1.0 - 2	1.6 + 10	D	27,51°,126*
40.000	0-60-25	060 * 200	F00 ***	0.702.702				07 519
46.039	$2p^6 3d^{2} D_{5/2}$	$2p^68f\ ^2\mathrm{F}^{\circ}_{7/2}$	589 515	2 761 590				27,51°
44.873 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	256 500	2 484 990	1.7 - 2	1.4+10	D	126*
44.869	$\frac{2p}{3p} \frac{3p}{1} \frac{1}{3/2}$	2p 0a D _{3/2} 5/2	256 500 256 500	2 484 990	1.7 - 2 $1.51 - 1$	· · · · · · · · · · · · · · · · · · ·	C	27,51°,126*
44.597	1/2	5/2 3/2		2 484 990	8.44 - 2		č	27,51°,126*
	•					•		
44.59	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^69f\ ^2{ m F}^{\circ}_{7/2}$	589 515	2 832 000				27
49.60	060.325	2-6104 200	E00 545	0.000.00=				07
43.60	$2p^6 3d^2 D_{5/2}$	$2p^610f^2F_{7/2}^{\circ}$	589 515	2 883 000				27
42.453	$2p^63p^2P_{3/2}^{\circ}$	$2p^67s$ $^2S_{1/2}$	256 500	2 612 050	1.1 - 2	2.0+10	D	51°,126*
42.205 ^C	•	•	0.10 000	2 612 050	5.2 - 3	9.8+9	D	126*
	1/2	1/2		2 012 030	3.2 - 3	3.073	ט	120
41.796 ^C	$2p^63p^2P_{3/2}^{\circ}$	$2p^67d\ ^2{ m D}_{3/2}$	256 500	2 649 080	9.6 - 3	9.0+9	D	126*
	3/2	. 3/2			,		_	
41.788	3/2	5/2	256 500	2 649 530	8.36 - 2	5.3 + 10	C	27,51°,126*

Cr XIV - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References	
length (Å)	Lower	Upper				. ,			
40.800	$2p^63s ^2S_{1/2}$	$2p^66p^{-2}P_{1/2}^{\circ}$	0	2 450 980	1.9 - 2	3.9+10	D	51°, 126*	
40.782	1/2	3/2	0	2 452 060	3.8 - 2	3.9+10	C	27,51°,126*	
40.018	$2p^63p^2 P_{3/2}^{\circ}$	$2p^68d\ ^2{ m D}_{5/2}$	256 500	2 755 380	5.2 - 2	3.6+10	C	27,51°,126*	
40.016^{C}	3/2	3/2	256 500	2 755 500	5.6 - 3	6.0+9	D	126*	
39.796	1/2	3/2	242 690	2 755 500	2.90 - 2	3.05 + 10	C	27,51°,126*	
38.899	$2p^63p$ $^2P_{3/2}^o$	$2p^69d\ ^2\mathrm{D}_{5/2}$	256 500	2 827 260				27,51°	
38.679	1/2	3/2	242 690	2 828 070				27,51°	
38.1	$2p^63p^2P_{3/2}^{\circ}$	$2p^610d\ ^2{ m D}_{5/2}$	256 500	2 880 000				27	
38.036	$2p^63s$ $^2S_{1/2}$	$2p^67p^{-2}P_{3/2}^{\circ}$	0	2 629 090				27,51°	
38.036	1/2	1/2	0	2 629 090				51	
37.60	$2p^63p\ ^2{ m P}^{ m o}_{3/2}$	$2p^611d\ ^2{ m D}_{5/2}$	256 500	2 916 000				27	
36.466	$2p^63s \ ^2S_{1/2}$	$2p^68p\ ^2P_{3/2}^{\circ}$	0	2 742 280				27,51°	
36.466	1/2	1/2	0	2 742 280				51	
35.450	$2p^63s \ ^2S_{1/2}$	$2p^69p\ ^2P_{3/2}^{\circ}$	0	2 820 870				27,51°	
35.450	1/2	1/2	0	2 820 870				51	
21.770	$2p^63s$ $^2S_{1/2}$	$2p^53s^2$ $^2P_{3/2}^o$	0	4 593 500				57	
21.467	1/2	1/2	0	4 658 300				57	

 $\mathbf{Cr}\ xv$

Wave- length (Å)	Classifi Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1764.5 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_0^{\circ}$	4 727 500	4 784 174		M1	5.2+3	D+	126*
702.96^{C}	$2s^22p^5(^2P_{1/2}^o)3s(\frac{1}{2},\frac{1}{2})_0^o$	$2s^22p^5(^2\mathbf{P_{3/2}^o})3p^{-2}[\frac{1}{2}]_1$	4 784 174	4 926 429		4.2 - 3	1.9+7	E	126*
471.30 348.356	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{1}{2}]_1$ 0	4 714 294 4 727 500	4 926 429 5 014 563	2 2	2.4 - 1	2.5+9	D	52,66°,126* 52,66°,67
440.722 416.59 405.035	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s~(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_2$	4 727 500 4 714 294 4 714 294	4 954 368 4 954 368 4 961 187	3 2 4	7.5 – 1	4.4+9	D	52,66° 52,66° 52,65,66°,126*
439.15 422.33 402.346	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p^{\ 2}[\tfrac{3}{2}]_1\\ 1\\ 2$	4 793 200 4 784 174 4 793 200	5 020 941 5 020 941 5 041 714	1 3				52 52, 66° 52, 65, 66°
411.28 392.81 373.487	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3s~(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{\ 2}[\frac{3}{2}]_1$	4 727 500 4 727 500 4 714 294	4 970 636 4 982 062 4 982 062	2 2 2				52,66° 52,66° 52,66°
408.40 ^C 305.83 300.30	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{-2}[\frac{1}{2}]^{\mathrm{o}}_{1}$	5 014 563 4 926 429 4 926 429	5 259 419 5 253 448 5 259 419	bl bl	1.3 - 2 $1.2 - 1$ $2.8 - 1$	1.8+8 8.5+9 7.0+9	D- D D	126* 52°,126* 52°,126*
405.035 390.959 285.375	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})3s\;(\frac{1}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})3p^{-2}[\frac{1}{2}]_1$	4 793 200 4 784 174 4 793 200	5 039 971 5 039 971 5 143 616	4 3bl 1				66 52,66°,67 52,66°,67
346.189	$2s^22p^5(^2\mathbf{P}^o_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathbf{P}^o_{3/2})3d\ ^2[\frac{3}{2}]^o_2$	4 982 062	5 270 945	2				66°,67
325.9 317.404 305.205	$2s^2 2p^5 (^2P_{1/2}^{\circ})3p^{-2} [\frac{3}{2}]_2$	$2s^22p^5(^2\mathbf{P_{1/2}^{\circ}})3d^{\ 2}[\frac{5}{2}]_2^{\circ}$	5 041 714 5 041 714 5 020 941	5 348 574 5 356 770 5 348 574	2 2				52 52,65,66° 52,66°
$322.96^{\mathrm{C}} \\ 290.18$	$2s^2 2p^5 (^2P_{3/2}^{\circ})3p^2 [\frac{1}{2}]_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d\ ^2[\tfrac{3}{2}]^{\circ}_{1}$	5 014 563 4 926 429	5 324 200 5 270 945		1.9 - 1	4.0+9	D	126* 52
321.244 315.51 308.895	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2P_{3/2}^{\circ})3d^{-2}[\frac{7}{2}]_4^{\circ}$	4 961 187 4 961 187 4 954 368	5 272 468 5 278 128 5 278 128	4 1 4	1.1	8.1+9	D	52,65,66°,126* 66°,67 52,65,66°
320.13	$2s^22p^5(^2P_{1/2}^{\circ})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2P_{1/2}^{\circ})3d^{-2}[\frac{3}{2}]_2^{\circ}$	5 041 714	5 354 045					52
318.439	$2s^22p^5(^2P_{1/2}^o)3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2P^{o}_{1/2})3d^2[\frac{3}{2}]^{o}_{2}$	5 039 971	5 354 045	2				52,66°
317.682 313.319	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{-2}[\frac{5}{2}]^{\circ}_{3}$	4 982 062 4 970 636	5 296 812 5 289 794	2 2				52,65,66° 52,66°
298.11 298.11	$2s^2 2p^5 (^2 P_{3/2}^o) 3p^{-2} [\frac{5}{2}]_2$	$2s^22p^5(^2P^{\circ}_{3/2})3d^{-2}[\frac{5}{2}]^{\circ}_{2}$	4 954 368 4 961 187	5 289 794 5 296 812	bl bl				52 67
240.2	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^2 2p^5 (^2P_{1/2}^{\circ}) 3p^2 [\frac{1}{2}]_0$	4 727 500	5 143 616					52,67°
104.59	$2s^22p^5(^2\mathbf{P_{1/2}^o})3s(\frac{1}{2},\frac{1}{2})_1^o$	$2s2p^63s^{-1}S_0$	4 793 200	5 749 300					69
103.30 ^C	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 3p^2 [\frac{1}{2}]_1$	$2s2p^63p^{-3}P_1^{o}$	4 926 429	5 894 500		7.5 - 2	1.5+10	E	126*
97.87	$2s^22p^5(^2\mathbf{P_{3/2}^o})3s\ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s2p^63s^{-1}S_0$	4 727 500	5 749 300	bl				69
78.625 75.446	$2s^22p^5(^2P^{\circ}_{1/2})3d^{-2}[\frac{3}{2}]^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{-2}[\frac{5}{2}]_2$	5 406 300 5 354 045	6 678 200 6 679 495	10 70				64 64°,71
77.874 74.695	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d\ ^2[\tfrac{3}{2}]^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{-2}[\frac{5}{2}]_2$	5 324 200 5 270 945	6 608 300 6 609 778	10 60				64 64°,71
76.371	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\circ}_3$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[rac{9}{2}]_4$	5 296 812	6 606 203	6				64
76.162	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\mathrm{o}}_3$	$2s^22p^5(^2\mathbf{P_{3/2}^o})4f^{\ 2}[\frac{5}{2}]_3$	5 296 812	6 609 778	25				64
76.125 75.743	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\circ}_{3}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{-2}[\frac{7}{2}]_4$	5 296 812 5 289 794	6 610 470 6 610 006	100 90				64°,71 64°,71
75.886	$2s^22p^5(^2P^{\circ}_{3/2})3d^{-2}[\frac{5}{2}]^{\circ}_2$	$2s^22p^5(^2P^{\circ}_{3/2})4f^{-2}[\frac{3}{2}]_2$	5 289 794	6 607 601	1				64

Cr xv - Continued

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
75.670 75.241	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{5}{2}]_3^{\circ}$	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 4f^{-2} [\frac{7}{2}]_4$	5 356 770 5 348 574	6 678 300 6 677 634	90 50				64°,71 64°,71
75.605	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{5}{2}]_3^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\tfrac{5}{2}]_3$	5 356 770	6 679 495	1				64
75.297 74.975	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_{3}$	$2s^22p^5(^2P^{\alpha}_{3/2})4f^{\ 2}[rac{9}{2}]_4$	5 278 128 5 272 468	6 606 203 6 606 248	90 100				64°,71 64°,71
75.084 75.054 74.738	$2s^{2}2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3d^{2}[\frac{7}{2}]_{3}^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	5 278 128 5 278 128 5 272 468	6 610 006 6 610 470 6 610 470	3 7 8				64 64 64°,71
74.813	$2s^22p^5(^2P_{3/2}^o)3d^2[\frac{3}{2}]_2^o$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	5 270 945	6 607 601	10				64°,71
74.209 74.173 73.884	$2s^22p^5(^2P_{3/2}^{\circ})3d^{\ 2}[\frac{1}{2}]_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_1$	5 259 419 5 259 419 5 253 448	6 606 943 6 607 601 6 606 943	9 20 10				64 64 64
73.627 73.286 72.692	$2s^22p^5(^2\mathbf{P^o_{3/2}})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4s~(\frac{3}{2},\frac{1}{2})^{\circ}_{2}$ 1	4 982 062 4 982 062 4 970 636	6 340 270 6 346 291 6 346 291	5 3 1				64 64 64
72.971 72.849	$2s^2 2p^5 (^2P^{\alpha}_{1/2})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4s\;(\frac{1}{2},\frac{1}{2})^{\mathrm{o}}_{0}$	5 039 971 5 039 971	6 410 346 6 412 678	1 5				64 64
72.941 71.975	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4s\;(\frac{1}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	5 041 714 5 020 941	6 412 678 6 410 346	2 1				64 64
72.511 72.157 71.845	$2s^22p^5(^2P^o_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathrm{P}^o_{3/2})4s~(\frac{3}{2},\frac{1}{2})^o_2$	4 961 187 4 954 368 4 954 368	6 340 270 6 340 270 6 346 291	20 5 10				64 64 64
70.728 70.428	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2 ext{P}^{\circ}_{3/2})4s\;(rac{3}{2},rac{1}{2})^{\circ}_2$	4 926 429 4 926 429	6 340 270 6 346 291	4 1				64 64
63.637 62.233	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_{2}$	4 982 062 4 970 636	6 553 480 6 577 496	3 2				64 64
63.061	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})4d^2[\frac{3}{2}]_2^{\circ}$	5 039 971	6 625 741	40				64°,70
63.061 62.378	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3p^{-2} [\frac{3}{2}]_2$	$2s^2 2p^5 (^2P_{1/2}^{\circ})4d^{-2} [\frac{5}{2}]_3^{\circ}$	5 041 714 5 020 941	6 627 484 6 624 071	40 10				64°,70,71 64°,70,71
62.958	$2s^22p^5(^2\mathbf{P^o_{3/2}})3p^{-2}[\frac{3}{2}]_1$	$2s^22p^5(^2P_{3/2}^{\circ})4d^{-2}[\frac{5}{2}]_2^{\circ}$	4 970 636	6 559 009	10				64°,70,71
62.842 62.754 62.485	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^2 2p^5 (^2P_{3/2}^{\circ}) 4d^{\ 2} [\frac{7}{2}]_4^{\circ}$	4 961 187 4 961 187 4 954 368	6 552 477 6 554 730 6 554 730	50 3 25				64°,70,71 64 64°,70,71
62.318	$2s^22p^5(^2P^o_{3/2})3p^{-2}[\frac{5}{2}]_2$	$2s^22p^5(^2\text{P}^{\circ}_{3/2})4d^{\ 2}[\frac{5}{2}]^{\circ}_{2}$		6 559 009	4				64°,71
61.746 61.639	•	•		6 545 969 6 548 779	1 5				64 64
61.460	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{3}{2}]^{\circ}_{2}$		6 553 480	3				64
58.555 58.107 58.008	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4p^{\ 2}[\frac{5}{2}]_2$	4 714 294	6 435 277 6 435 277 6 438 194	3 3 10				64 64 64°,71
58.469 58.194	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4p^{-2}[rac{3}{2}]_1$		6 503 510 6 511 590	1 2				64 64°,71
58.350 57.775	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4p^{\ 2}[\frac{3}{2}]_1$	4 727 500 4 714 294	6 441 300 6 445 145	10 2				64 64
58.350	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_2^{\circ}$	$2s^22p^5(^2P_{3/2}^{\circ})4p^{-2}[\frac{1}{2}]_1$	4 714 294	6 428 094	10				64
21.213 21.153	$2s^22p^{6-1}S_0$	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 3s (\frac{3}{2}, \frac{1}{2})_2^{\circ}$	0	4 714 294 4 727 500	4	1.1 – 1	5.6+11	C-	61°,62 59,60°,61,62,126
20.863	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	4 793 200	3	1.2 - 1	6.0+11	C-	59,60°,61,62,126

Cr xv - Continued

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
19.015	$2s^22p^{6-1}S_0$	$2s^2 2p^5 (^2P_{3/2}^{\circ}) 3d^2 [\frac{1}{2}]_1^{\circ}$	0	5 259 419		1.0 - 2	6.3+10	E	60°,126*
18.782	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P^{o}_{3/2})3d^{\ 2}[\frac{3}{2}]^{o}_{1}$	0	5 324 200	2	4.4 - 1	2.8+12	D	59,60°,61,62,126
18.497	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	5 406 300	4	2.49	1.62+13	C-	59,60°,61,62,126
16.965	$2s^22p^{6}$ ¹ S ₀	$2s2p^63p\ ^3{ m P}_1^{ m o}$	0	5 894 500					60
16.889	$2s^22p^{6-1}S_0$	$2s2p^63p^{-1}$ P $_1^{\circ}$	0	5 921 000	1				60
15.21	$2s^22p^{6-1}S_0$	$2s^22p^5(^2{\rm P}^{\rm o}_{3/2})4d\ ^2[\tfrac{3}{2}]^{\rm o}_1$	0	6 577 496					60
15.06	$2s^22p^{6-1}S_0$	$2s^22p^5(^2{\rm P}^{\rm o}_{1/2})4d\ ^2[\tfrac{3}{2}]^{\rm o}_1$	0	6 641 000					60
13.991	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P^{\circ}_{3/2})5d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	0	7 148 000	2				63
13.862	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})5d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	7 215 000	2				63
13.416	$2s^22p^{6}$ $^1\mathrm{S}_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})6d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	0	7 452 000	1				63
13.294	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})6d^2[\frac{3}{2}]_1^{\circ}$	0	7 524 000	1				63

 \mathbf{Cr} XVI

Wave- ength (Å)	Clas Lower	sification Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1410.60	$2s^22p^5$ $^2P^{o}_{3/2}$	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	0	70 892		M1	6.39+3	В	45°,73,74,126*
115.355	$2s^22p^5$ ² P _{1/2}	$2s2p^6 {}^2S_{1/2}$	70 892	937 790	10	1.18 - 1	2.95+10	C+	25, 52, 55, 75, 76, 77, 78°, 126*
106.633	3/2	1/2	0	937 790	30	2.58 - 1	7.58 + 10	C+	25,52,55,75,76,77,78°,126*
10.005	0.20.5 2D0	$2s^22p^4(^3P)3s^4P_{3/2}$	70 892	5 072 300	2				79
19.995 19.847	$2s^22p^5$ $^2P_{1/2}^{\circ}$	•	70 892	5 109 300	1				79
19.807	1/2	1/2 5/2	0	5 048 700	10bl	1.5 - 2	4.3 + 10	E	62,79°,80,126*
19.714	3/2 3/2	3/2	0	5 072 300	20		,	_	62,79°,80
10.051	$2s2p^6 \ ^2\mathrm{S}_{1/2}$	$2s2p^{5}(^{3}P^{\circ})3s^{2}P_{3/2}^{\circ}$	027 700	E 050 200	6				79°,80
19.951 19.807		The state of the s	937 790 937 790	5 950 200 5 986 600	0 10bl				79 ,80 79
19.807	1/2	1/2	937 190	5 960 000	1001				19
19.807	$2s^22p^{5-2}P_{1/2}^{o}$	$2s^22p^4(^3P)3s^2P_{3/2}$	70 892	5 118 200	10bl				62,79°
19.714	1/2	1/2	70 892	5 143 400	20	1.3 - 1	1.1 + 12	D	62,79°,126*
19.538	3/2	3/2		5 118 200	10		00111	n	62,79°,80
19.442	3/2	1/2	0	5 143 400	6	1.1 - 1	9.9+11	D	79°, 80, 126*
19.511	$2s^22p^5$ $^2P_{1/2}^o$	$2s^22p^4(^1D)3s^2D_{3/2}$	70 892	5 196 100	10	2.0 - 1	8.8+11	D	62,79°,80,126*
19.255	3/2	5/2	_	5 193 500	15	2.6 - 1	7.7 + 11	D	62,79°,80,126*
19.038	$2s^22p^5$ 2 P $^{\alpha}_{1/2}$	$2s^22p^4(^1S)3s^2S_{1/2}$	70 892	5 323 500	8	7.0 - 2	6.4+11	D	79°,126*
18.775	23 2p 1 1/2 3/2	23 2p (5)03 51/2 1/2	_	5 323 500	30bl	2.7 - 2	2.6+11	E	79°,126*
							,		·
18.017	$2s^22p^5$ 2 P $_{1/2}^{o}$	$2s^22p^4(^3P)3d^4P_{3/2}$		5 620 600	2				79
17.833	3/2	1/2		5 607 600	2				79
17.793 17.730	3/2 3/2	3/2 5/2		5 620 600 5 640 200	2 3				62, 79° 79
		,							
17.993	$2s^22p^5$ $^2P_{1/2}^{\circ}$	$2s^22p^4(^3P)3d^2P_{1/2}$	50 000	5 628 500	3				79°, 80
17.856	1/2	3/2		5 671 200 5 671 200	$egin{matrix} 2 \\ 2 \end{matrix}$				79°, 80
17.633	3/2	3/2		5 671 200	2				79°,80
17.931	$2s^22p^5$ $^2P_{1/2}^o$	$2s^22p^4(^3P)3d^2D_{3/2}$	70 892	5 648 100	2				79
17.704	3/2	3/2		5 648 100	2				79°, 80
17.603	3/2	5/2	0	5 680 800	5				79°,80
17.785	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3{ m P})3d\ ^4{ m F}_{5/2}$. 0	5 622 700	5				79
17.671	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3{ m P})3d\ ^2{ m F}_{5/2}$. 0	5 659 000	4				79
17.656 ^C	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^1\mathrm{D})3d^2\mathrm{S}_{1/2}$	70 892	5 734 600		1.9 - 1	2.0+12	D	126*
17.438	3/2	1/2	•	5 734 600	6	9.6 - 1	1.1+13	D	79°,126*
	·							_	
17.589	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1D)3d^2P_{3/2}$		5 756 200	2	3.8 - 1	2.0+12	E	79°,126*
17.373 ^C	3/2	3/2	. 0	5 756 200		2.5	1.4+13	E	126*
17.514	$2s^22p^5$ 2 P $_{1/2}^{o}$	$2s^22p^4(^1\mathrm{D})3d^{-2}\mathrm{D}_{3/2}$	70 892	5 780 500	3	1.9	1.1+13	E	79°,126*
17.370	3/2	5/2	2	5 757 100	8				62,79°,80
17.300 ^C	3/2	3/2	_	5 780 500		4.4 - 1	2.5 + 12	E	126*
17.242	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1S)3d^2D_{3/2}$	70 892	5 870 600	æ	1 5	96110	D	709 90 100*
17.242		*	_	5 857 200	5 3	$1.5 \\ 3.1 - 1$	8.6+12 $1.2+12$	D	79°, 80, 126* 79°, 80, 126*
17.013	3/2 3/2	5/2 3/2	_	5 870 600	3	3.1 - 1 $1.7 - 2$	9.9+10	E	19,80,126
	3/2	3/:					3.3+10		

 \mathbf{Cr} XVII

Wave- length (Å)	Classi Lower	fication Upper	Energy Leve	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
1656.3	$2s^22p^4\ ^3{ m P}_2$	$2s^22p^4$ 3 P ₁	0	60 376	M1	4.59+3	C+	73°, 74, 126*
1340.7 740.75	$2s^22p^4$ 3P_1	$2s^22p^{4-1}D_2$	60 376 0	134 980 134 980	M1 M1	$4.0+2 \\ 6.6+3$	D D	74°,126* 45°,73,74,126*
493.8	$2s^22p^4$ 3 P ₁	$2s^22p^{4-1}S_0$	60 376	262 970	M1	6.5+4	D	73°,126*
168.15 ^C	$2s^22p^{4-1}S_0$	$2s2p^5$ $^3P_1^{\circ}$	262 970	857 690	6.4 - 3	5.0+8	E	126*
147.40	$2s^22p^{4-1}D_2$	$2s2p^5$ $^3\mathrm{P}_2^\circ$	134 980	813 180	2.4 - 2	1.4+9	E	55°,126*
132.76 125.35 125.00 122.974	$2s^{2}2p^{4}$ $^{3}P_{1}$ 1 0 2	$2s2p^{5-3}{ m P}_2^{ m o}$ 1 1 2	60 376 60 376 57 680 0	813 180 857 690 857 690 813 180	1.23 - 1 $7.71 - 2$ $9.6 - 2$ $3.7 - 1$	9.3+9 1.09+10 1.4+10 3.3+10	C C C	25, 52, 55°, 75, 76, 77, 126* 55°, 75, 76, 126* 55°, 75, 76, 126* 25, 52, 55, 75, 76, 77, 78°, 126*
$\frac{120.895}{116.592}$	1 2	0 1	60 376 0	887 540 857 690	1.09 - 1 $1.49 - 1$	4.99+10 $2.44+10$	C C	52, 55, 75, 76, 77, 78°, 126* 52, 55, 75, 76, 77, 78°, 126*
129.78	$2s2p^{5-1}$ P ₁ °	$2p^{6-1}\mathrm{S}_0$	1 116 080	1 886 850	3.54 - 1	1.4+11	C	55°,84,126*
117.20	$2s^22p^{4-1}S_0$	$2s2p^{5-1}P_1^{o}$	262 970	1 116 080	5.9 - 2	9.6+9	C	55°, 76, 126*
101.926	$2s^22p^{4-1}D_2$	$2s2p^{5-1}P_1^{\circ}$	134 980	1 116 080	6.15 - 1	1.32+11	С	52, 55, 75, 76, 77, 78°, 126*
97.20	$2s2p^5$ $^3\mathrm{P}_1^{\mathrm{o}}$	$2p^{6-1}S_0$	857 690	1 886 850	8.4 - 3	5.9 + 9	E	55°,126*
94.69 94.49 89.599 ^C	$2s^22p^4$ 3P_1 0 2	$2s2p^{5-1}P_1^{\circ}$	60 376 57 680 0	1 116 080 1 116 080 1 116 080	2.0 - 3 $3.8 - 3$ $3.0 - 2$	4.8+8 9.5+8 8.5+9	E E E	55°, 126* 55°, 126* 55, 126*
18.531 18.531 18.336	$2s^22p^4$ 3P_1	$2s^22p^3(^4S^\circ)3s\ ^3S_1^\circ$	60 376 57 680 0	5 455 000 5 455 000 5 455 000	9.0 - 2 $5.0 - 2$ $2.6 - 1$	5.8+11 3.2+11 1.7+12	C- C- C-	85°,126* 85°,126* 85°,126*
18.389	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	262 970	5 700 700	1.4 - 1	9.2+11	D	85°,126*
18.336	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{D^o})3s^{-1}\mathrm{D_2^o}$	134 980	5 588 700	4.0 - 1	1.6+12	D	85°,126*
18.227 ^C 18.219 18.219 18.020 17.957	$2s^22p^4$ 3 P $_1$ 0 1 2 2	$2s^22p^3(^2\mathrm{D^o})3s\ ^3\mathrm{D^o_1}$	60 376 57 680 60 376 0	5 546 800 5 546 800 5 549 400 5 549 400 5 568 900	1.0 - 1 $2.6 - 2$ $5.1 - 2$ $1.5 - 1$ $2.6 - 1$	7.0+11 $1.7+11$ $2.0+11$ $6.4+11$ $7.8+11$	D D D C	126* 85°,126* 85°,126* 85°,126* 85°,126*
18.089 ^C 17.893 ^C	$2s^22p^4$ 3 P ₁	$2s^22p^3(^2\mathrm{D^o})3s\ ^1\mathrm{D^o_2}$	60 376 0	5 588 700 5 588 700	4.2 - 2 $2.3 - 2$	1.7+11 9.6+10	E E	126* 126*
17.968	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m P}^{ m o})3s^{-1}{ m P}_1^{ m o}$	134 980	5 700 700	1.2 - 1	8.6+11	D	85°,126*
17.201 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^4S^0)3d\ ^3D_3^0$	134 980	5 948 500	2.1 - 2	6.8+10	E	126*
16.84^{C}	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{D^o})3d\ ^3\mathrm{D_3^o}$	134 980	6 074 000	6.0 - 2	2.0+11	E	126*
16.811	$2s^22p^4$ ³ P ₂	$2s^22p^3(^4S^{\circ})3d\ ^3D_3^{\circ}$	0	5 948 500	1.3	4.4+12	D	86°,126*
16.696	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^{\circ})3d\ ^1F_3^{\circ}$	134 980	6 124 400	2.0	6.8+12	D	86°,126*
$16.64 \\ 16.46$	$2s^22p^4$ 3P_1	$2s^22p^3(^2D^o)3d\ ^3D_2^o$	60 376 0	6 070 000 6 074 000	3.7	1.3+13	D	86 86°, 126*
16.328^{C}	$2s^22p^4$ 3 P ₂	$2s^22p^3(^2{ m D}^{ m o})3d\ ^1{ m F}_3^{ m o}$	0	6 124 400	9.0 - 1	3.2+12	E	126*
16.31	$2s^22p^4$ 3P_2	$2s^22p^3(^2P^\circ)3d\ ^3P_2^\circ$	0	6 131 000				86
16.31 16.249 16.221	$2s^22p^4$ 3P_0	$2s^22p^3(^2P^\circ)3d\ ^3D_1^\circ$	57 680 60 376 0	6 189 000 6 214 600 6 164 800				86 86 86
12.909	$2s^22p^{4-1}\mathrm{D}_2$	$2s^22p^3(^2{ m D}^{ m o})4d\ ^1{ m D}_2^{ m o}$	134 980	7 882 000				81
12.779	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{\rm D^o})4d\ ^3{ m F}_3^{ m o}$	134 980	7 960 000				81

Cr XVIII

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
4038.6	$2s^22p^3 \ ^2\mathrm{D}^{\circ}_{3/2}$	$2s^22p^3 \ ^2D_{5/2}^{\circ}$	126 060	150 810	M1	1.27+2	C+	73,87°,126*
2606.4	$2s^22p^3$ $^2P_{1/2}^{\circ}$	$2s^22p^3$ $^2P_{3/2}^{\circ}$	226 180	264 540	M1	3.82+2	C	87°,126*
1336 ^C	$2p^5 \ ^2P_{3/2}^{\circ}$	$2p^5 \ ^2P_{1/2}^{\circ}$	1 738 700	1 813 560	M1	7.6+3	C+	126*
998.8 ^C	$2s^22p^3$ $^2\mathrm{D}^{\mathrm{o}}_{3/2}$	$2s^22p^3 \ ^2P_{1/2}^{\circ}$	126 060	226 180	M1	3.4+3	D	126*
879.28 ^C	5/2	3/2	150 810	264 540	M1	5.2+3	D	126*
722.1	3/2	3/2	126 060	264 540	M1	1.6 + 4	D	87°,126*
793.4	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ $^2D_{3/2}^{\circ}$	0	126 060	M1	6.1 + 3	D	73,87°,126*
663.1	3/2	5/2	0	150 810	M1	3.2 + 2	D-	87°,126*
442.1	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ 2 P $_{1/2}^{\circ}$	0	226 180	M1	1.3+4	E	87°,126*
378.0	3/2	3/2	0	264 540	M1	1.6+4	E	87°,126*
248.42 ^C	$2s^22p^3$ $^2P_{3/2}^{\circ}$	2s2p4 4P _{5/2}	264 540	667 080	1.3 - 3	2.3+7	E	126*
222.29 ^C	3/2 3/2	3/2	264 540	714 400	3.4 - 3	1.1+8	E	126*
197.68 ^C	1/2	1/2	226 180	732 050	1.2 - 3	1.0+8	E	126*
193.70 ^C	$2s^22p^3$ ² D $_{5/2}^o$	$2s2p^{4} {}^{4}P_{5/2}$	150 810	667 080	4.8 - 3	1 4 1 0	E	126*
184.84 ^C	·		126 060	667 080	8.0 - 3	1.4+8 $2.6+8$	E	126*
169.97 ^C	3/2 3/2	5/2 3/2	126 060	714 400	7.2 - 4	4.2+7	E	126*
165.02 ^C	3/2	1/2	126 060	732 050	1.0 - 3	1.3+8	E	126*
175.98 ^C	$2s2p^{4-2}P_{1/2}$	$2p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 170 450	1 729 700	2 90 0	0.0510	C	100*
157.40	282p F _{1/2} 3/2	2p F _{3/2} 3/2	1 103 370	1 738 700 1 738 700	3.80 - 2 $4.20 - 1$	2.05+9 $2.83+10$	C	126* 55°,126*
155.46	1/2	1/2	1 170 450	1 813 560	2.06 - 1	2.84+10	Č	55°,126*
140.81 ^C	3/2	1/2	1 103 370	1 813 560	1.58 - 1	2.66+10	C	55,126*
151.93 ^C	$2s^22p^3$ 2 P $_{3/2}^{\circ}$	$2s2p^{4-2}D_{3/2}$	264 540	922 720	8.4 - 3	6.1+8	D	126*
149.94	3/2	5/2	264 540	931 180	1.08 - 1	5.3+9	$^{\mathrm{C}}$	55°, 76, 126*
143.53	1/2	3/2	226 180	922 720	3.52 - 2	2.85 + 9	C	55°,126*
149.907	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^{4} {}^{4}P_{5/2}$	0	667 080	2.4 - 1	1.2+10	C	25, 52, 55, 76, 77, 78°, 126*
139.977	3/2	3/2	0	714 400	1.75 - 1	1.49+10	\mathbf{C}	25, 52, 55, 76, 77, 78°, 126*
136.602	3/2	1/2	0	732 050	9.28 - 2	1.66 + 10	\mathbf{C}	25, 52, 55, 76, 77, 78°, 126*
147.79	$2s2p^{4} {}^{2}S_{1/2}$	$2p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 061 750	1 738 700	9.38 - 2	7.2+9	С	55°,126*
133.01 ^C	1/2	1/2	1 061 750	1 813 560	4.6 - 3	8.7+8	D	126*
129.55 ^C	$2s^22p^3$ 2 D $_{5/2}^{\circ}$	$2s2p^{4-2}D_{3/2}$	150 810	922 720	2.9 - 3	2.9+8	E	126*
128.145	25 2p D _{5/2} 5/2	252p D3/2 5/2	150 810	931 180	2.9 - 3 $4.1 - 1$	2.9+8 $2.8+10$	C	52, 55, 75, 76, 77, 78°, 126*
125.524	3/2	3/2	126 060	922 720	3.2 - 1	3.4+10	C	25, 55, 75, 76, 77, 78°, 126*
125.438	$2s^22p^3$ ² P°	$2s2p^4 \ ^2S_{1/2}$	264 540	1 061 750	25.2	5210	D	** 700 100*
119.62	$\frac{2s^{2}p^{2}}{1/2}$	252p S _{1/2}	226 180	1 061 750 1 061 750	2.5 - 2 $1.4 - 1$	5.3+9 $3.2+10$	C	55,78°,126* 55°,88,126*
	·	·						•
123.87 122.56	$2s2p^{4-2}D_{5/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$	931 180	1 738 700	3.6 - 1	3.9+10	C	55°, 84, 86, 126*
112.27	3/2 3/2	3/2 1/2	922720 922720	1 738 700 1 813 560	1.12 - 1 $1.60 - 1$	1.24+10 $4.24+10$	C	55°, 84, 86, 126* 55°, 84, 126*
110.01								, ,
119.21 114.012	$2s^22p^3$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s2p^4$ 2 P _{3/2}	264 540	1 103 370	7.60 - 2	8.9+9	C	55°, 76, 126*
110.386	1/2 3/2	3/2 1/2	$226\ 180$ $264\ 540$	1 103 370 1 170 450	5.48 - 2 $2.9 - 1$	7.0+9 $7.9+10$	C C	55,76,77,78°,126* 55,76,77,78°,126*
105.92	1/2	1/2	226 180	1 170 450	1.7 - 2	4.9+9	D	55°, 76, 126*
108.37	$2s^22p^3$ 4 S $^{\circ}_{3/2}$	$2s2p^{4}$ $^{2}D_{3/2}$	0	922 720	4.4 - 3	6.2+8	E	55°,126*
106.84	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s2p^4$ 2 S _{1/2}	126 060	1 061 750	1.2 - 1	3.4+10	E	55°,88,126*
104.980	$2s^22p^3$ $^2D_{5/2}^{o}$	$2s2p^{4} {}^{2}P_{3/2}$	150 810	1 103 370	5.8 - 1	8.7+10	С	52,55,75,76,77,78°,126*
102.32	3/2	3/2	126 060	1 103 370	9.68 - 2	1.54+10	C	55°,76,126*
95.77	3/2	1/2	126 060	1 170 450	8.48 - 2	3.08+10	Ċ	55°, 75, 76, 126*
99.339 ^C	$2s2p^4 {}^4 ext{P}_{1/2}$	$2p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	732 050	1 738 700	1.5 - 3	2.5+8	E	126*
97.628 ^C	3/2	3/2	714 400	1 738 700	4.0 - 3	7.0+8	E	126*
93.36	5/2 5/2	3/2	667 080	1 738 700	9.0 - 3	1.7+9	Ē	55°,126*
92.463^{C}	1/2	1/2	732 050	1 813 560	1.4 - 3	5.5+8	E	126*
94.16	$2s^22p^3$ ${}^4S^{o}_{3/2}$	$2s2p^4$ 2 S _{1/2}	0	1 061 750	2.4 - 3	9.2+8	E	55°,126*

Cr XVIII - Continued

Wave- length (Å)	Classification Lower Upper		Energy Levels (cm ⁻¹) Int.		gf	$A (s^{-1})$	Acc.	References	
ength (A)	Lower	Opper							
90.63	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^4\ ^2\mathrm{P}_{3/2}$	0	1 103 370	1.2 - 2	2.4+9	E	55°,126*	
15.60	$2s^22p^3$ $^2D_{5/2}^{o}$	$2s^22p^2(^1D)3d\ ^2F_{7/2}$	150 810	6 555 000				86	
15.519	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^2(^3P)3d^4P_{5/2}$	0	6 443 000				62°,86	
15.519	3/2	3/2	0	6 443 000				62	

Cr xix

Wave-	Classifica		Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						,
2885.4 2090.9	$1s^22s^22p^2$ $^3\mathrm{P}_1$ 0	$1s^22s^22p^2$ ³ P ₂	47 811 0	82 458 47 811	M1 M1	4.69+2 $1.81+3$	C+ C+	73°,89,126* 73°,89,126*
979.1 731.1	$1s^2 2s^2 2p^2$ 3 P ₂	$1s^2 2s^2 2p^2$ ¹ D ₂	82 458 47 811	184 600 184 600	M1 M1	5.7+3 5.7+3	C D	73,87°,126* 73,74,87°,126*
398.4	$1s^22s^22p^2$ ³ P ₁	$1s^2 2s^2 2p^2$ ¹ S ₀	47 811	298 800	M1	6.4+4	D	73°,126*
311.71 ^C 281.33 ^C	$1s^22s^22p^2$ ³ P ₂	$1s^2 2s 2p^3$ ${}^5\mathrm{S}^{\mathrm{o}}_2$	82 458 47 811	[403 268] [403 268]	1.3 - 3 $8.7 - 4$	1.7+7 $1.5+7$	E E	126* 126*
278.18 ^C 236.12 ^C	$1s^2 2s 2p^3$ 1 P $_1^o$	$1s^22p^4$ 3 P ₂	1 090 510 1 090 510	1 449 990 1 514 020	5.1 - 3 $1.2 - 2$	8.8+7 4.7+8	E E	126* 126*
267.54 ^C	$1s^22s^22p^2$ ¹ S ₀	$1s^22s2p^3$ 3 D_1°	298 800	672 580	1.2 - 3	3.7+7	Е	126*
210.97 ^C	$1s^2 2s 2p^{3-1} D_2^{\circ}$	$1s^22p^4$ ³ P ₂	976 000	1 449 990	2.1 - 2	6.3+8	E	126*
185.87 ^C	2	1	976 000	1 514 020	2.2 - 3	1.4+8	E	126*
205.37^{C}_{-}	$1s^2 2s^2 2p^2$ ¹ D ₂	$1s^2 2s 2p^3$ $^3 D_2^o$	184 600	671 520	1.0 - 3	3.3 + 7	\mathbf{E}	126*
204.93 ^C	2	1	184 600	672 580	2.3 - 3	1.2 + 8	\mathbf{E}	126*
199.15 ^C	2	3	184 600	686 730	2.6 - 2	6.2+8	E	126*
203.91 ^C	$1s^2 2s 2p^3$ $^3S_1^{\circ}$	$1s^22p^4$ 3P_2	959 570	1 449 990	1.9 - 1	6.3+9	C	126*
180.37	1	1	959 570	1 514 020	1.6 - 1	1.1+10	C	55°,126*
179.18	1	0	959 570	1 517 690	6.96 - 2	1.45 + 10	C	55°,126*
$202.06^{\rm C}$	$1s^22s^22p^2$ ¹ S ₀	$1s^2 2s 2p^3$ 3 P $_1^{o}$	298 800	793 710	2.0 - 3	1.1+8	E	126*
201.82	$1s^2 2s 2p^{3-1} P_1^{\circ}$	$1s^22p^{4-1}D_2$	1 090 510	1 586 020	1.27 - 1	4.16 + 9	C	55°,126*
169.73	$1s^22s^22p^2$ ³ P ₂	$1s^2 2s 2p^3$ 3 D_2°	82 458	671 520	2.1 - 4	9.5 + 6	E	55°,126*
169.46^{C}	2	1	82 458	672 580	3.3 - 4	2.6 + 7	\mathbf{E}	126*
165.488	2	3	82 458	686 730	1.69 - 1	5.9+9	C	25, 52, 55, 77, 78°, 86, 126*
160.331 160.01	1	2	47 811 47 811	671 520 672 580	1.6 - 1 $1.2 - 2$	$8.3+9 \\ 1.1+9$	C D	25, 52, 55, 77, 78°, 86, 126* 55°, 126*
148.681	0	1	0	672 580	8.9 - 2	9.0+9	C	25, 52, 55, 78°, 126*
164.17 ^C	$1s^22s^22p^{2-1}D_2$	$1s^2 2s 2p^3$ ³ P ₁ °	104.000					
164.17 161.35 ^C	18 28 2p D ₂	1s 2s2p P ₁	184 600 184 600	793 710 804 380	3.3 - 3 $3.8 - 3$	2.8+8 $1.9+8$	E E	126* 126*
163.94	$1s^2 2s 2p^{3-1} D_2^{\circ}$	$1s^22p^{4-1}D_2$	976 000	1 586 020	6.25 - 1	3.10+10	C	55°,126*
154.92	$1s^2 2s 2p^3$ ³ P ₂ °	$1s^22p^4$ ³ P ₂	804 380	1 440 000	0.05 0		0	
152.42	18 282p F ₂	• -	793 710	1 449 990 1 449 990	6.35 - 2 5.70 - 2	3.53+9 $3.27+9$	C C	55°,126* 55°,126*
140.92	2	2	804 380	1 514 020	1.23 - 1	1.38+10	Č	55°,126*
138.86	1	1	793 710	1 514 020	1.20	1.00 10	Ü	55
138.15	1	0	793 710	1 517 690	5.01 - 2	1.75 + 10	C	25,55°,126*
137.89	0	1	788 830	1 514 020	3.56 - 2	4.16+9	C	25,55°,126*
151.34 ^C	$1s^22s^22p^{2-1}S_0$	$1s^2 2s 2p^3$ $^3S_1^o$	298 800	959 570	4.3 - 3	4.2+8	Е	126*
143.57	$1s^2 2s 2p^{3-1} P_1^{\circ}$	$1s^22p^{4-1}S_0$	1 090 510	1 786 900	2.2 - 1	7.2+10	С	25, 55°, 126*
140.51	$1s^22s^22p^2$ ³ P ₂	$1s^22s2p^3$ $^3P_1^{\circ}$	82 458	793 710	3.1 - 2	3.5 + 9	D	55°,126*
138.519 134.949	2	2	82 458	804 380	2.45 - 1	1.71 + 10	C	55,77,78°,86,88,126*
134.066	1	0	47 811 47 811	788 830 793 7 10	5.40 - 2 $9.75 - 2$	1.98+10 $1.21+10$	C C	55, 78°, 126* 55, 78°, 126*
132.11	1	2	47 811	804 380	9.3 - 3	7.1+8	D	55°,126*
125.93	0	1	0	793 710	2.89 - 2	4.05+9	č	55°,126*
130.99	$1s^2 2s 2p^3$ 3 D_3°	$1s^22p^4$ ³ P ₂	686 730	1 449 990	3.7 - 1	2.9+10	C	55°,86,126*
128.63	1	2	672 580	1 449 990	2.9 - 2	2.3+9	ă	55°,126*
128.43	2	2	671 520	1 449 990	1.47 - 1	1.19 + 10	C	55°,126*
118.83 118.67	1	1	$672\ 580$ $671\ 520$	1 514 020	8.58 - 2	1.35+10	C	55°, 86, 126*
118.31	2	1 0	672 580	1 514 020 1 517 690	1.33 - 1 $6.90 - 2$	2.10+10 $3.29+10$	C	55°, 86, 126* 55°, 126*
129.04 ^C	$1s^22s^22p^{2-1}D_2$	$1s^22s2p^3$ $^3S_1^{\circ}$	184 600	959 570	5.5 - 4	7.3+7	E	126*
127.95	$1s^2 2s 2p^3$ 3 P $_2^{\circ}$	$1s^22p^{4-1}D_2$	804 380	1 586 020	10 0	1010	I.	EE0 196*
126.21 ^C	18 282p F ₂	18 2p D ₂	793 710	1 586 020 1 586 020	1.2 - 2 $8.4 - 3$	1.0+9 $7.0+8$	E E	55°, 126* 126*
126.358	$1s^22s^22p^{2-1}D_2$	$1s^2 2s 2p^{3-1} D_2^{\circ}$	184 600	976 000	5.20 - 1	4.35+10	С	55,77,78°,86,88,126*
126.30	$1s^2 2s^2 2p^2$ ¹ S ₀	$1s^2 2s 2p^{3-1} P_1^{o}$	298 800	1 090 510	1.12 - 1	1.56+10	C	55°,126*

Cr XIX - Continued

Wave-	Classifica	tion	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
114.012	$1s^22s^22p^2$ ³ P ₂	$1s^2 2s 2p^3$ 3 S ₁ °	82 458	959 570		3.2 - 1	5.5+10	С	25, 55, 77, 78°, 86, 88, 126*
109.676	1	1	47 811	959 570		1.33 - 1	2.46 + 10	C	55, 77, 78°, 86, 88, 126*
104.18	0	1	0	959 570		4.38 - 2	9.0 + 9	C	55°, 77, 88, 126*
111.88	$1s^22s^22p^2$ ³ P ₂	$1s^2 2s 2p^{3-1} D_2^{\circ}$	82 458	976 000		5.0 - 2	5.3+9	E	55°,126*
107.74 ^C	1	2	47 811	976 000		2.1 - 3	2.4 + 8	E	126*
111.18	$1s^22s2p^3$ 3 D_3^o	$1s^22p^{4-1}D_2$	686 730	1 586 020		3.4 - 2	3.7+9	E	55°,126*
109.35^{C}	2	2	671 520	1 586 020		4.9 - 3	5.5 + 8	E	126*
110.386	$1s^22s^22p^{2-1}D_2$	$1s^22s2p^{3-1}P_1^{\circ}$	184 600	1 090 510		3.3 - 1	6.0+10	C	55,77,78°,86,88,126*
100.69 ^C	$1s^2 2s 2p^3$ $^3 P_1^o$	$1s^22p^{4-1}S_0$	793 710	1 786 900		3.9 - 3	2.6+9	${f E}$	126*
95.88	$1s^22s^22p^2$ ³ P ₁	$1s^2 2s 2p^{3-1} P_1^{o}$	47 811	1 090 510		1.5 - 2	3.6+9	Е	55°,126*
95.536 ^C	$1s^2 2s 2p^3$ 5 S ₂ °	$1s^22p^4$ ³ P ₂	[403 268]	1 449 990		4.9 - 3	7.2+8	E	126*
$90.029^{\rm C}$	2	1	[403 268]	1 514 020		6.5 - 4	1.8+8	\mathbf{E}	126*
2.2414	$1s^22s^22p^{2-1}S_0$	$1s2s^22p^3$ 1 P $_1^{\circ}$	298 800	44 924 000					91
2.2386	$1s^22s^22p^{2-1}D_2$	$1s2s^22p^{3-1}\mathrm{D}_2^{\mathrm{o}}$	184 600	44 855 000					91
2.2371	$1s^22s^22p^2$ ³ P ₁	$1s2s^22p^3$ $^3P_0^o$	47 811	44 749 000					91
2.2347	$1s^22s^22p^{2-1}D_2$	$1s2s^22p^{3-1}P_1^{\circ}$	184 600	44 924 000					91

 $\mathbf{Cr} \ \mathbf{xx}$

Wave- length (Å)	Cl	assification Upper	Energy Le	evels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1205.9	1s ² 2s ² 2p ² P _{1/2} °	$1s^2 2s^2 2p \ ^2 P_{3/2}^o$	0	82 970		M1	5.11+3	В	73°, 74, 89, 126*
416.08 ^C	$1s^2 2s 2p^2$ ² P _{3/2}	• •	861 500	1 101 840		2.0 - 3	1.9+7	E	126*
368.19 ^C	$1s^2 2s^2 2p$ ² P _{3/2}			354 570		4.4 - 4	1 1 1 7	E	126*
	•		00.050				1.1+7		
287.62 ^C	3/2			430 650		2.4 - 3	3.3+7	E	126*
282.03 ^C	1/2			354 570		1.0 - 3	4.2+7	E	126*
271.72	$1s^2 2s 2p^2$ ² P _{3/2}	$1s^2 2p^3 \ ^2D_{3/2}^o$	861 500	1 229 600	2	2.4 - 3	5.4 + 7	E	55°,126*
258.48^{C}	3/2	5/2	861 500	1 248 380		1.79 - 1	2.98 + 9	$^{\rm C}$	126*
213.10	1/2	3/2	760 270	1 229 600	4bl				55
$216.97^{\rm C}$	$1s^2 2s 2p^2$ ² D _{3/2}	$1s^2 2p^3 \ ^4S_{3/2}^{\circ}$	640 950	1 101 840		1.2 - 3	4.2+7	E	126*
192.82	$1s^2 2s 2p^2$ ² P _{3/2}	$1s^2 2p^{3-2} P_{1/2}^{\circ}$	861 500	1 380 140	1	2.6 - 2	2.3+9	D	55°,126*
180.85	3/2			1 414 510	5	3.1 - 1	1.6 + 10	C	55°,126*
161.33	1/3	•		1 380 140	2		•		55
152.86	1/3			1 414 510	3				55
187.79	$1s^2 2s 2p^2$ 2 S _{1/2}	$1s^2 2p^3 \ ^2P_{1/2}^{\circ}$	847 560	1 380 140	3				55
176.42	1/2			1 414 510	1				55
170.01	$1s^2 2s^2 2p$ ² P _{3/3}	$1s^2 2s 2p^2$ 2 $D_{3/2}$	00.070	240.050	45.1	0.0	1110	Б	rr0 100*
179.21		= *	00.050	640 950	4bl	2.2 - 3	1.1+8	E	55°,126*
175.404 156.019	3/: 1/:			653 080 640 950	10 100	1.47 - 1 $1.2 - 1$	$5.3+9 \\ 8.4+9$	C C	25, 55, 77, 78°, 126* 25, 55, 77, 78°, 126*
		•							
173.42	$1s^2 2s 2p^2$ ² D _{5/2}	$1s^2 2p^{3-2} D_{3/2}^{\circ}$		1 229 600	4	7.26 - 2	4.03 + 9	C	55°, 126*
169.87	3/:	3/2		1 229 600	5	1.22 - 1	7.1 + 9	C	55°, 126*
167.97	5/:			1 248 380	8	2.84 - 1	1.12+10	C C	55°, 126*
164.63	3/:	•		1 248 380	4	5.88 - 2	2.41+9	C	55°, 126*
148.99	$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^2 2p^3 \ ^4S_{3/2}^{\circ}$		1 101 840	9	2.33 - 1	1.75 + 10	C	55°,126*
140.75	3/:		054 550	1 101 840	9bl	1.60 - 1	1.35+10	C	55°, 126*
133.82	1/:	·	354 570	1 101 840	7	8.90 - 2	8.3+9	C	55°,126*
147.62^{T}	$1s^2 2s^2 2p^{-2} P_{3/2}^{\circ}$	$1s^2 2s 2p^2 {}^2 P_{1/2}$	82 970	760 270	1				55
131.532	1/:		_	760 270	80				25, 55, 77, 78°
128.448	3/:	•	00.000	861 500	60	3.7 - 1	3.8 + 10	$^{\rm C}$	25, 55, 77, 78°, 86, 92, 126*
116.077	1/	2 3/2	0	861 500	5	4.60 - 2	5.7 + 9	C	55, 78°, 92, 126*
135.26	$1s^2 2s 2p^2$ ² D _{3/}	$1s^2 2p^{3/2} P_{1/2}^{\circ}$	640 950	1 380 140	6	1.32 - 1	2.41+10	С	55°,126*
131.31	5/:		252 222	1 414 510	7	1.31 - 1	1.27+10	č	55°,126*
129.26	3/			1 414 510	4	4.28 - 2	4.27+9	č	55°,126*
130.789	$1s^2 2s^2 2p \ ^2 P_{3/}^o$	$1s^2 2s 2p^2$ 2 $S_{1/2}$	82 970	947 560	20				OF FF 700 00
117.986	18 28 2p F _{3/}			847 560 847 560	20 40bl				25, 55, 78°, 86 55, 78°
	•	,		0 - 1 0 0 0					00,10
$122.29^{\mathbf{T}}$	$1s^2 2s 2p^2$ ⁴ P _{5/}	$1s^2 2p^{3-2} D_{5/2}^{\circ}$		1 248 380	2	1.3 - 2	9.8 + 8	\mathbf{E}	55°,126*
119.30 ^C	3/	2 3/2	391 360	1 229 600		8.4 - 3	9.8 + 8	\mathbf{E}	126*
101.64 ^C	$1s^2 2s 2p^2 {}^4P_{5/}$	$1s^2 2p^3 \ ^2 P_{3/2}^{\circ}$	430 650	1 414 510		6.6 - 4	1.1+8	E	126*
97.737 ^C	3/	·	001 000	1 414 510		1.1 - 3	2.0+8	E	126*
$97.507^{\rm C}$	1/	•		1 380 140		4.2 - 4	1.5+8	E	126*
14.685	$1s^2 2s 2p^2$ ² P _{1/}	$_{2}$ $1s^{2}2s2p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	760 270	7 570 100	25				94
14.660	1 s ² 2 s2n ² 2D-	2 1s ² 2s2p(³ P°)3d ² D _{5/2} °	653 080	7 473 700	30				0.4
14.660			0.40 0.00	7 462 300	30				94
14.635	3/ 3/		•	7 473 700	25				94 94
		•							•
14.533	$1s^2 2s 2p^2 {}^2 \mathrm{D}_{5/2}$	$_{2}$ $1s^{2}2s2p(^{3}P^{\circ})3d^{2}F_{5/2}^{\circ}$		7 533 800	5				94
14.508	3/	•		7 533 800	35				94
14.442	5/	2 7/2	653 080	7 577 200	65				94
14.466	$1s^2 2s 2p^2$ ² P _{3/}	$_{2}$ $1s^{2}2s2p(^{1}P^{\circ})3d^{2}D_{5/2}^{\circ}$	861 500	7 774 400	35				94
14.457^{T}	$1s^2 2s 2p^2$ ² S _{1/}	$_{2}$ $1s^{2}2s2p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	847 560	7 764 800?	30				94
14.402	$1s^2 2s 2p^2$ ² P ₃	$_{2} = 1s^{2}2s2p(^{1}P^{\circ})3d^{2}P_{3/2}^{\circ}$	861 500	7 806 900	80				94
14.213	1/	2 1/		7 796 200	90				94
14.366	$1s^2 2s 2p^2$ ² S _{1/}	$_{'2}$ $1s^2 2s2p(^1P^\circ)3d^2P^\circ_{3/}$	847 560	7 806 900	40				94

Cr xx - Continued

Wave-	Clas	ssification	Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
14.323	$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^2 2s2p(^3P^{\circ})3d\ ^4F^{\circ}_{7/2}$	430 650	7 412 400	35				81,94°
14.213	$1s^2 2s 2p^2 {}^4P_{3/2}$	$1s^2 2s2p(^3P^{\circ})3d^4P^{\circ}_{5/2}$	391 360	7 427 200	90				94
14.152	5/2		430 650	7 498 700	55				94
14.066	3/2	3/2 3/2	391 360	7 498 700	65				94
14.066	3/2	1/2	391 360	7 500 700	65				94
14.172	$1s^2 2s 2p^2 ^4 P_{5/2}$	$1s^2 2s2p(^3P^o)3d^4D_{7/2}^o$	430 650	7 486 800	65				94
14.152	5/2		430 650	7 496 800	55				94
14.121	1/2	5/2 3/2	354 570	7 436 200	65				94
14.121	1/2	1/2	354 570	7 436 200	65				81,94°
14.121	$1s^2 2s 2p^2$ ⁴ P _{3/2}	$1s^2 2s2p(^3P^{\circ})3d\ ^2D_{5/2}^{\circ}$	391 360	7 473 700	65				94
14.066	$1s^2 2s 2p^2$ ² D _{5/2}	1s ² 2s2p(¹ P°)3d ² F ^o _{7/2}	653 080	7 762 300	65				94
14.037	3/2	5/2	640 950	7 765 000	100				94
11.030	1s ² 2s ² 2n ² P°	1 s ² 2 s ² 4 s ² 5	82 970	9 145 000	5				81
10.940	13 23 29 1 3/2	$1s^2 2s^2 4s$ $^2 S_{1/2}$	02 970	9 145 000	3				81
10.040					_				
10.840		$1s^2 2s^2 4d\ ^2{ m D}_{5/2}$		9 308 000	2				81
10.712	1/2	3/2	0	9 335 000	3				81
2.2263	$1s^2 2s^2 2p \ ^2{ m P}^{ m o}_{3/2}$	$1s2s^22p^2$ $^2D_{5/2}$	82 970	45 000 000					91
2.2233	$1s^2 2s^2 2p^2 P_{1/2}^{o}$	$1s2s^22p^2$ 2 P _{1/2}	0	44 978 000					91
2.2222	3/2	3/2							91
2.2199	$1s^2 2s^2 2p \ ^2 P_{3/2}^{\circ}$	$1s2s^22p^2$ $^2S_{1/2}$	82 970	45 130 000					91

Cr xxi

Wave-	Classificat		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
4330 ^C	$1s^2 2s2p$ 3 P $_0^{\circ}$	$1s^2 2s2p \ ^3P_1^{\circ}$	318 030	341 120		M1	2.18+2	C+	126*
1565 ^C	1	2	341 120	405 020		M1	3.45 + 3	C+	126*
2777 ^C	$1s^22p^2$ ³ P ₁	$1s^22p^2$ ³ P ₂	911 080	947 080		M1	5.2+2	C	126*
2157 ^C	0	1	864 730	911 080		M1	1.72+3	Č	126*
055 11C	$1s^22p^2$ 3 P ₂	1 20 2 1D	0.45 000						
955.11 ^C 710.73 ^C	1s-2p- P ₂	$1s^22p^{2-1}D_2$	947 080 911 080	1 051 780 1 051 780		M1 M1	6.8+3 $6.3+3$	D+ D+	126* 126*
710.75			311 000	1 001 100		IVII	0.5+5	DΤ	120
505.94 ^C	$1s^2 2s 2p^{-1} P_1^{\circ}$	$1s^22p^2$ 3P_0	667 080	864 730		7.2 - 4	1.9 + 7	Е	126*
409.84 ^C	1	1	667 080	911 080		3.0 - 4	4.0+6	E	126*
357.14 ^C	1	2	667 080	947 080		2.0 - 2	2.1+8	D	126*
381.59 ^C	$1s^2 2s 2p \ ^3P_2^{\circ}$	$1s^2 2s2p \ ^1P_1^{\circ}$	405 020	667 080		M1	6.0 + 3	D	126*
306.79 ^C	1	1	341 120	667 080		M1	6.8 + 3	D-	126*
286.49 ^C	0	1	318 030	667 080		M1	1.1 + 4	D	126*
293.15	$1s^22s^2$ 1 S ₀	$1s^2 2s2p \ ^3P_1^o$	0	341 120		1.0 - 3	2.6 + 7	D	18°, 25, 95, 96, 126*
290.91^{C}	$1s^22p^2$ 3 P ₁	$1s^22p^{2-1}S_0$	911 080	1 254 830		M1	9.2+4	D	126*
259.97	$1s^2 2s 2p \ ^1 P_1^o$	$1s^22p^{2-1}D_2$	667 080	1 051 780		1.85 - 1	3.65+9	В	55°,126*
197.61	$1s^2 2s2p \ ^3P_2^{o}$	$1s^22p^2$ 3 P ₁	405 020	911 080		7.05 - 2	4.01+9	В	55°,126*
190.98	13 2329 1 2	13 29 11	341 120	864 730		5.97 - 2	1.09+10	В	55°,126*
184.48	2	2	405 020	947 080		1.88 - 1	7.37 + 9	В	55°,126*
175.45	1	1	341 120	911 080		4.74 - 2	3.42+9	В	55°,126*
$168.62 \\ 165.03$	0	1 2	318 030 341 120	911 080 947 080		6.70 - 2 $8.73 - 2$	5.24+9 $4.28+9$	B B	55°,126* 55°,126*
170.16	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p^{2-1}S_0$	667 080	1 254 830		1.18 – 1	2.71+10	В	55°, 126*
1,0,10	_		00. 000	1 201 000		1.10	2.11 10	ב	00 ,120
154.61	$1s^2 2s2p^{-3} P_2^{\circ}$	$1s^22p^{2-1}D_2$	405 020	1 051 780		5.05 - 2	2.82 + 9	C	55°,126*
140.71 ^C	1	2	341 120	1 051 780)	3.6 - 3	2.4 + 8	D	126*
149.907	$1s^22s^2$ 1S_0	$1s^2 2s2p \ ^1P_1^o$	0	667 080)	1.64 - 1	1.62+10	В	25, 55, 77, 78°, 97, 126*
14.24^{C}	$1s^22p^{2-1}S_0$	$1s^22p3d\ ^1\mathrm{P}_1^o$	1 254 830	8 275 000)	1.29	1.41 + 13	C-	126*
14.17^{C}	$1s^2 2s2p \ ^3P_2^{\circ}$	$1s^22s3s$ 3S_1	405 020	7 463 000)	1.3 - 1	1.4+12	D	126*
14.041	1	1	341 120	7 463 000		8.1 - 2	9.1 + 11	D	98,99°,126*
14.00 ^C	0	1	318 030	7 463 000)	2.8 - 2	3.2 + 11	D	126*
13.950	$1s^22p^{2-1}D_2$	$1s^22p3d\ ^3{ m P}_2^{ m o}$	1 051 780	8 219 000)	5.5 - 1	3.8+12	C-	94,98,99°,126*
13.94 ^C	$1s^22p^2$ 3P_2	$1s^22p3d\ ^3D_2^{\circ}$	947 080	8 121 000)	1.6 - 1	1.1+12	D	126*
13.91 ^C	2	1	947 080	8 134 000		9.0 - 3	1.0+11	D	126*
13.870	1	2	911 080	8 121 000)	1.22	8.5 + 12	Č-	81,98,99°,126*
13.844	1	1	911 080	8 134 000		3.0 - 1	3.5 + 12	C-	98,99°,126*
13.779 13.752	2 0	3	947 080 864 730	8 204 000 8 134 000		$\frac{3.4}{1.29}$	1.7+13 $1.51+13$	C-	81,86,94,98,99°,126* 98,99°,126*
									•
13.844	$1s^22p^2$ $^{1}\mathrm{D}_2$	$1s^22p3d$ $^1P_1^o$	1 051 780	8 275 000		7.5 - 2	8.7+11	D	98,99°,126*
13.844	$1s^22p^{2-1}D_2$	$1s^22p3d\ ^1\mathrm{F}_3^o$	1 051 780	8 275 000)	5.20	2.59 + 13	C-	81,94,99°,126*
13.752	$1s^22p^2 {}^3P_2$	$1s^2 2p3d ^3P_1^0$	947 080	8 219 000)	3.8 - 1	4.5 + 12	C-	94,98,99°,126*
13.752	2	2	947 080	8 219 000		1.35	9.5 + 12	C-	94, 98, 99°, 126*
13.684 13.684	1 1	2	911 080 911 080	8 219 000 8 219 000		1.7 - 1 $3.3 - 1$	1.2+12 $1.2+13$	D C-	94,98,99°,126* 94,98,99°,126*
13.684	1	0	911 080	8 219 000		6.9 - 1	8.2+12	C-	94, 98, 99°, 126*
13.60 ^C	0	1	864 730	8 219 000		5.1 - 3	6.1+10	D D	126*
	_								
13.67 ^C 13.647	$1s^2 2s 2p \ ^3 P_2^{\circ}$	$1s^2 2s3d\ ^3 \mathrm{D}_2$	405 020	7 721 000		5.5 - 1	3.9+12	C-	126*
13.55	2	3 2	405 020 341 120	7 733 000 7 721 000		$\frac{3.0}{1.6}$	1.5+13 $1.2+13$	C- C-	86,94,98,99°,126* 81,86°,94,126*
13.60 ^C	$1s^2 2s 2p^{-1} P_1^o$	$1s^2 2p3p^{-1}P_1$	667 080	8 022 000		1.3 - 1	1.6+12	D	126*
13.44 ^C	$1s^2 2s2p \ ^1 P_1^0$	$1s^22p3p$ 3P_2	667 080	8 109 000	0	1.6 - 1	1.2+12	D	126*
13.203	$1s^2 2s2p^{-1} P_1^o$	$1s^2 2s3s$ 1S_0	667 080	8 241 300	0				98,99°
13.123	$1s^22s^2$ 1S_0	$1s^2 2s3p \ ^3P_1^0$	0	7 620 000	0	2.9 - 1	3.7 + 12	C-	98,99°,126*

Cr XXI - Continued

Wave-	Classifica		Energy Lev	rels (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
13.060	$1s^22s2p\ ^3\mathrm{P_0^o}$	$1s^22p3p^{-3}D_1$	318 030	7 975 100	8.2 - 2	1.1+12	D	98,99°,126*
13.018	1	2	341 120	8 023 000	4.8 - 1	3.8 + 12	C-	98,99°,126*
13.018	2	3	405 020	8 087 000	7.0 - 1	3.9 + 12	C-	81,98,99°,126*
13.018	$1s^2 2s2p \ ^3P_1^{o}$	$1s^22p3p^{-1}P_1$	341 120	8 022 000				98,99°
12.981	0	1	318 030	8 022 000				98, 99°
12.981	$1s^2 2s 2p\ ^3 { m P}_2^{ m o}$	$1s^22p3p\ ^3{ m S}_1$	405 020	8 108 700				99
12.981	$1s^22s2p$ $^3P_2^{\circ}$	$1s^22p3p^{-3}P_2$	405 020	8 109 000	4.9 - 1	3.9+12	C-	99°,126*
12.981	1	0	341 120	8 045 000	1.2 - 1	4.8 + 12	D	81,99°,126*
12.87 ^C	1	2	341 120	8 109 000	3.3 - 2	2.7 + 11	D	126*
2.2173	$1s^2 2s 2p^{-1} P_1^o$	$1s2s2p^{2-1}D_2$	667 080	45 770 000				91
2.2140	$1s^2 2s2p$ 3 P $_2^{\circ}$	$1s2s2p^{2-3}D_3$	405 020	45 570 000				91
2.2115	1	2	341 120	45 560 000				91
2.2103	1	1	341 120	45 580 000				91
2.2079	$1s^22s^2$ 1 S ₀	$1s2s^22p^{-1}P_1^{\circ}$	0	45 290 000				91

Cr xxii

Wave-	Classification		E	-1- (1)	T 4		4 (==1)	A	c. References	
length (Å)	Lower	Upper	Energy Lev	eis (cm -)	Int.	gf 	A (s ⁻¹)	Acc.	References	
1100.0 ^C	$1s^22p \ ^2P_{1/2}^{\circ}$	$1s^22p\ ^2{ m P}_{3/2}^{\circ}$	357 476	448 394		M1	6.76+3	В	126*	
279.739 ^S	$1s^2 2s \ ^2\mathrm{S}_{1/2}$	$1s^22p\ ^2P_{1/2}^{o}$	0	357 476		3.86 - 2	1.65 + 9	B+	18, 25, 55, 78 ^{\triangle} , 96, 97,	
223.018 ^S	1/2	3/2	0	448 394		9.80 - 2	3.29+9	B+	$101, 103, 104, 106^{\circ}, 126^{*}$ $18, 25, 55, 78^{\triangle}, 96, 97,$ $101, 102, 103, 104, 105,$ $106^{\circ}, 126^{*}$	
82.238 ^C 81.599 ^C	3/2 1/2	5/2 3/2	[10 539 180] [10 527 820]	[11 755 160] [11 753 320]						
39.0995 ^C 38.6919 ^C	$1s^2 3p \ ^2P_{3/2}^{\circ}$	$1s^24s\ ^2\mathrm{S}_{1/2}$	[7 928 620] [7 901 680]	[10 486 200] [10 486 200]						
38.0744 ^C	$1s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	[7 928 620]	[10 555 060]		2.3 - 1	2.7+11	C+	126*	
38.0225 ^C	3/2	5/2	[7 928 620]	[10 558 640]		2.1	1.7 + 12	В	126*	
37.6878 ^C	1/2	3/2	[7 901 680]	[10 555 060]		1.2	1.4 + 12	В	126*	
36.6942^{C}	$1s^23s ^2S_{1/2}$	$1s^24p$ $^2P_{1/2}^{\circ}$	[7 802 590]	[10 527 820]						
36.5418 ^C	1/2	3/2	[7 802 590]	[10 539 180]						
26.3886 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^25s$ $^2S_{1/2}$	[7 928 620]	[11 718 140]						
26.2023 ^C	1/2	1/2	[7 901 680]	[11 718 140]						
$26.1458^{\rm C}$	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2D_{3/2}$	[7 928 620]	[11 753 320]						
26.1333 ^C	3/2	5/2	[7 928 620]	[11 755 160]						
25.9630^{C}	1/2	3/2	[7 901 680]	[11 753 320]						
13.5977 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^23s^2S_{1/2}$	448 394	[7 802 590]					107,109	
13.4316 ^C	1/2	1/2	357 476	[7 802 590]					107,109	
13.3015 ^C	$1s^2 2p ^2P_{3/2}^{\circ}$	$1s^23d^2D_{3/2}$	448 394	[7 966 320]		2.7 - 1	2.6+12	В	109, 126*	
13.2866 ^C	3/2 3/2	13 3u D _{3/2} 5/2	448 394	[7 974 800]		2.7 - 1 2.44	1.54+13	В	81, 107, 108, 109, 126*	
13.1426^{C}	1/2	3/2	357 476	[7 966 320]		1.34	1.29+13	В	81, 107, 108, 109, 126*	
12.6555 ^C	$1s^22s$ $^2S_{1/2}$	$1s^23p\ ^2\mathrm{P}_{1/2}^{\circ}$	0	[7 001 600]		0 5 4 1	E 00 1 10	ъ	01 107 100 100 100*	
12.6125 ^C	18 28 51/2	18 Sp F _{1/2} 3/2	0	[7 901 680] [7 928 620]		2.54 - 1 $4.90 - 1$	5.28+12 $5.13+12$	B B	81, 107, 108, 109, 126* 81, 107, 108, 109, 126*	
	•			•		1.00	3,10 12	2	01, 101, 100, 100, 120	
9.96234 ^C 9.87291 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^24s \ ^2S_{1/2}$	448 394	[10 486 200]					109	
9.87291	1/2	1/2	357 476	[10 486 200]					109	
9.89446 ^C	$1s^2 2p {}^2P_{3/2}^{o}$	$1s^24d\ ^2{ m D}_{3/2}$	448 394	[10 555 060]		4.8 - 2	7.9 + 11	C+	109,126*	
9.89096 ^C	3/2	5/2	448 394	[10 558 640]		4.4 - 1	4.9 + 12	В	108, 109, 126*	
9.80624 ^C	1/2	3/2	357 476	[10 555 060]	l	2.4 - 1	4.1+12	В	108, 109, 126*	
9.49864^{C}	$1s^2 2s \ ^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	0	[10 527 820]					108,109	
9.48840 ^C	1/2	3/2	0	[10 539 180]	i				108,109	
8.87331 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25s$ $^2S_{1/2}$	448 394	[11 718 140]	ı				109	
8.80230 ^C	1/2		357 476	[11 718 140					109	
8.84570 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^25d\ ^2{ m D}_{3/2}$	449 204	[11 759 200]	1				100	
8.84426 ^C	3/2 3/2		448 394 448 394	[11 753 320] [11 755 160]					109 109	
8.77513 ^C	1/2	•	357 476	[11 753 320]	Ì				109	
8.51833 ^C	$1s^2 2s \ ^2S_{1/2}$	1-2r- 2no								
8.51412 ^C	15 25 51/2	-/-	0	[11 739 390] [11 745 200	•				109 109	
	,	•		[11 110 200	J				103	
$2.2387^{C} \ 2.2343^{C}$	$1s^22p\ ^2P_{3/2}^{\circ}$			[45 116 000	•				109	
2.2343	1/2	•		[45 116 000]				109	
2.2137^{C}	$1s^2 2p \ ^2P_{3/2}^{o}$	$1s(^2S)2p^2(^3P)^{-4}P_{1/2}$	448 394	[45 621 000]				109	
2.2115 ^C	3/2		448 394	[45 666 000					109	
2.2097 ^C	3/2			[45 702 000	-				109	
2.2093 ^C 2.2071 ^C	1/2		~	[45 621 000	-				109	
2.2071	1/2			[45 666 000	J				109	
2.2121 ^C	$1s^2 2s {}^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o}) ^{4}P_{1/2}^{o}$	0	[45 206 000]				109	
2.2110^{C}	1/2			[45 228 000]				109	

Cr XXII - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper							
2.2027^{C}	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s(^2S)2p^2(^1D)^{-2}D_{3/2}$	448 394	[45 846 000]					109
2.2015^{C}	3/2	5/2	448 394	[45 871 000]		6.8 - 1	1.6+14	C	91, 109, 110, 126*
2.1984^{C}	1/2	3/2	357 476	[45 846 000]		6.6 - 1	2.3 + 14	С	91, 109, 110, 126*
$2.2020^{\rm C}$	$1s^2 2p ^2P_{3/2}^o$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	448 394	[45 862 000]					109
2.1976^{C}	1/2	1/2	357 476	[45 862 000]					109
2.1972^{C}	3/2	3/2	448 394	[45 960 000]					109
2.1929^{C}	1/2	3/2	357 476	[45 960 000]					109
$2.1979^{\rm C}$	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o})^{2}P_{1/2}^{o}$	0	[45 498 000]					109
$2.1955^{\rm C}$	1/2	3/2	0	[45 548 000]					91,109,110
2.1905^{C}	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o}) \ ^{2}P_{1/2}^{o}$	0	[45 652 000]					91,109,110,111
2.1896^{C}	1/2	3/2	0	[45 670 000]					109
2.1898^{C}	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^1S)^2S_{1/2}$	448 394	[46 113 000]					109
2.1856^{C}	1/2	1/2	357 476	[46 113 000]					109
2.1854	$1s^23p \ ^2P_{3/2}^{o}$	$1s2p3p^{-2}D_{5/2}$	[7 928 620]	53 680 000					111
2.1846	1/2	3/2	[7 901 680]	53 671 000					111
2.1846	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s2p3p\ ^{2}\mathrm{P}_{3/2}$	[7 928 620]	53 697 000					111
2.1846	$1s^23s$ $^2S_{1/2}$	$1s2p3s \ ^{2}P_{1/2}^{\circ}$	[7 802 590]	53 601 000					111
2.1846	1/2	3/2	[7 802 590]	53 601 000					111
2.1846	$1s^23d^{-2}D_{5/2}$	$1s2p3d\ ^{2}\mathrm{D_{5/2}^{o}}$	[7 974 800]	53 755 000					111
2.1834	3/2	5/2	[7 966 320]	53 755 000					111
2.1834	$1s^2 3d\ ^2 \mathrm{D}_{5/2}$	$1s2p3d\ ^{2}\mathrm{F}_{7/2}^{\circ}$	[7 974 800]	53 772 000					111
2.1834	$1s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s2p4p\ ^{2}\mathrm{D}_{5/2}$	[10 539 180]	56 334 000					111

Cr xxiii

Wave-	Classific	ration	Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper			, 9 <i>1</i>	71 (5)		recretences
7500 ^C	$1s4p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[56 695 100]	[56 708 400]				
5800 ^C	2	3	[56 695 100]	[56 712 400]				
1220 ^C	1	2	56 684 700	[56 708 400]				
1180 ^C	1	1	[56 684 700]	[56 708 600]				
3910 ^C	0	1	[56 683 000]	[56 708 600]				
7500 ^C	$1s5s$ $^3\mathrm{S}_1$	1s5p 3P1	[57 992 700]	[58 006 100]				
5300 ^C	1	2	[57 992 700]	[58 011 400]				
7400 ^C	$1s5s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[58 005 800]	[58 019 400]				
3820 ^C 2730 ^C	1s4s ³ S ₁	$1s4p\ ^{3}P_{1}^{o}$	[56 658 500] [56 658 500]	[56 684 700] [56 695 100]				
3760 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}P_{1}^{o}$	[56 684 100]	[56 710 700]				
1600 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s3p$ $^3P_1^{\circ}$	[53 760 100]	[53 822 410]				
1590 ^C	$1s3s$ 1 S $_{0}$	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[53 821 190]	[53 884 060]				
472.14 ^C	$1s2s\ ^{3}S_{1}$	$1s2p$ $^3P_0^{\circ}$	[45 384 110]	[45 595 910]	1.11 - 2	3.33+8	В	126*
443.95 ^C	1	1	[45 384 110]	[45 609 360]	3.36 - 2	3.77+8	B	126*
324.98 ^C	1	2	[45 384 110]	[45 691 820]	8.10 - 2	1.02+9	В	102, 126*
$466.37^{\rm C}$	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p$ $^{1}P_{1}^{o}$	[45 614 410]	[45 828 830]	3.27 - 2	3.34+8	В	126*
224.86 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p$ $^{1}\mathrm{P}_{1}^{\circ}$	[45 384 110]	[45 828 830]	4.41 - 3	1.94+8	В	126*
77.21 ^C	1s4p 1P1	$1s5s\ ^{1}S_{0}$	[56 710 700]	[58 005 800]	1.6 - 1	1.8+11	C	126*
77.07 ^C 76.45 ^C	$1s4p$ $^3\mathrm{P}_2^\mathrm{o}$	1s5s ³ S ₁	[56 695 100] [56 684 700]	[57 992 700] [57 992 700]	1.6 - 1	6.3+10	D	126*
74.89 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[56 684 100]	[58 019 400]	4.5 - 1	1.8+11	D	126*
74.21 ^C	1s4s ³ S ₁	$1s5p$ $^3\mathrm{P}_1^{\mathrm{o}}$	[56 658 500]	[58 006 100]	4.53 - 1	1.83+11	C	126*
35.714 ^C	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4s$ $^{1}S_{0}$	[53 884 060]	[56 684 100]	1.0 - 1	5.3+11	C	126*
35.664^{C}	$1s3d$ $^3\mathrm{D}_1$	$1s4p$ $^{3}P_{0}^{o}$	[53 879 040]	[56 683 000]				
35.642^{C}	1	1	[53 879 040]	[56 684 700]				
35.637^{C}	2	1	[53 878 640]	[56 684 700]				
35.626^{C}	3	2	[53 888 200]	[56 695 100]				
35.506 ^C	2	2	[53 878 640]	[56 695 100]				
35.569 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4s\ ^{3}S_{1}$	[53 847 040]	[56 658 500]				
$35.260^{\rm C}$	1	1	[53 822 410]	[56 658 500]	9.9 - 2	1.8+11	C-	126*
35.454 ^C	$1s3d$ $^{1}\mathrm{D}_{2}$	1s4p 1P1	[53 890 160]	[56 710 700]				
35.346 ^C	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[53 884 060]	[56 713 200]				
34.948 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4d$ $^3\mathrm{D}_2$	[53 847 040]	[56 708 400]				
34.900 ^C	2	3	ina a	[56 712 400]				
34.650 ^C	1	3 2		[56 708 400]				
34.648 ^C	1	1	[20 000]	[56 708 600]				
34.601 ^C	0	1	[53 818 510]	[56 708 600]				
34.608 ^C	$1s3s$ $^{1}S_{0}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[53 821 190]	[56 710 700]	4.05 - 1	7.5+11	С	126*
34.193^{C}	$1s3s$ 3S_1	1s4p 3P1	[53 760 100]	[56 684 700]	4.08 - 1	7.8+11	С	126*
34.072^{C}	1	2	[53 760 100]	[56 695 100]	4.00	1.0-11	C	120
24.262 ^C	1s3p ¹ P ₁ °	1s5s ¹ S ₀	•	[58 005 800]	2.3 - 2	2.6 + 11	C	126*
24.122 ^C 23.979 ^C	$1s3p \ ^{3}P_{2}^{o}$	1 <i>s</i> 5 <i>s</i> ³ S ₁	[53 847 040] [53 822 410]	[57 992 700] [57 992 700]	2.3 - 2	8.9+10	D	126*
$23.820^{\rm C}$	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[53 821 190]	[58 019 400]	1.04 - 1	4.08+11	C+	126*
23.552 ^C 23.522 ^C	$1s3s {}^{3}S_{1}$	$1s5p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	From the second	[58 006 100] [58 011 400]	1.0 - 1	4.2+11	С	126*
12.512 ^C	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$		[45 828 830]	•	4.5 - 2	1.9+12	C+	126*

Cr XXIII - Continued

Wave- length (Å)	Classifi Lower	ication Upper	Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
12.405 ^C	1s2p 1P1	$1s3d$ $^{1}\mathrm{D}_{2}$	[45 828 830]	[53 890 160]				
	3-0							
12.394 ^C 12.269 ^C	$1s2p\ ^{3}\mathrm{P}_{2}^{\mathrm{o}}$	1 <i>s</i> 3 <i>s</i> ³ S ₁	[45 691 820] [45 609 360]	[53 760 100] [53 760 100]	4.2 - 2	6.2+11	C-	126*
12.215^{C}	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$1s3d$ $^3\mathrm{D}_2$	[45 691 820]	[53 878 640]				
12.201 ^C	_	_	[45 691 820]	[53 888 200]				
12.093 ^C	2 1	3 2	[45 609 360]	[53 878 640]				
12.092 ^C	1	1	[45 609 360]	[53 879 040]				
12.073 ^C	0	1	[45 595 910]	[53 879 040]				
12.092 ^C	$1s2s\ ^{1}S_{0}$	1s3p ¹ P ₁ °	[45 614 410]	[53 884 060]	3.68 - 1	5.6+12	С	126*
11.851 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s3p$ $^3\mathrm{P}_1^{\mathrm{o}}$	[45 384 110]	[53 822 410]	3.69 - 1	5.8+12	C	126*
9.2121 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[45 828 830]	[56 684 100]	9.3 - 3	7.3+11	C	126*
9.1875 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[45 828 830]	[56 713 200]				
9.1185 ^C	1s2p ³ P ₂ °	1 4 30	[45 004 000]	[70 070 700]				
9.0505 ^C	182p P ₂	1s4s ³ S ₁	[45 691 820] [45 609 360]	[56 658 500] [56 658 500]	9.3 - 3	2.5 + 11	D	126*
9.0772 ^C	$1s2p$ $^3P_2^o$	$1s4d$ $^3\mathrm{D}_2$	[45 691 820]	[56 708 400]				
9.0739 ^C	132p 1 2 2	134a D ₂	[45 691 820]	[56 712 400]				
9.0098 ^C	1	2	[45 609 360]	[56 708 400]				
9.0096 ^C	1	1	[45 609 360]	[56 708 600]				
8.9987^{C}	0	1	[45 595 910]	[56 708 600]				
9.0120^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	1s4p 1P ₁	[45 614 410]	[56 710 700]	8.9 - 2	2.4+12	C+	126*
8.8491 ^C	1s2s ³ S ₁	$1s4p$ $^3P_1^{\circ}$	[45 384 110]	[56 694 700]	9.0 - 2	9.61.19	C.	196*
8.8410 ^C	1 1 1	1349 1 1	[45 384 110]	[56 684 700] [56 695 100]	9.0 - 2	2.6+12	C+	126*
8.2122^{C}	$1s2p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[45 828 830]	[58 005 800]	3.9 - 3	3.9+11	C	126*
8.1295 ^C 8.0754 ^C	$1s2p\ ^{3}P_{2}^{o}$	1s5s ³ S ₁	[45 691 820] [45 609 360]	[57 992 700] [57 992 700]	3.9 - 3	1.3+11	D	126*
8.0613 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[45 614 410]	[58 019 400]	3.7 - 2	1.3+12	C+	126*
$7.9227^{ m C} \ 7.9194^{ m C}$	$1s2s \ ^{3}S_{1}$	$1s5p \ ^{3}P_{1}^{\circ}$	[45 384 110] [45 384 110]	[58 006 100] [58 011 400]	3.6 - 2	1.3+12	C+	126*
$2.203414^{\rm C}$	$1s^2$ 1 S ₀	$1s2s$ $^3\mathrm{S}_1$	0	[45 384 110]	M1	9.37 + 7	В	91, 110, 126*
2.192532^{C} 2.188576^{C}	$1s^{2} {}^{1}S_{0}$	$1s2p$ $^3\mathrm{P}_1^{\circ}$	0 0	[45 609 360] [45 691 820]	5.05 2 M2	2.34+13 $3.45+9$	B B	91,110,126* 91,110,111,126*
$2.182033^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[45 828 830]	7.21 - 1	3.37 + 14	В	91, 110, 111, 113, 114, 115, 116, 126*
$2.1296^{\rm C}$	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2s^2$ ¹ S ₀	[45 828 830]	[92 786 000]	3.6 - 2	5.1+13	D	109, 126*
2.1197^{C}	$1s2p$ $^3\mathrm{P}_1^{\mathrm{o}}$	$2s^2$ ¹ S ₀	[45 609 360]	[92 786 000]	1.8 - 2	2.7+13	D	109,126*
2.1178^{C}	$1s2p^{-1}P_{1}^{o}$	$2p^{2-3}P_0$	[45 828 830]	[93 047 000]				109
2.1154^{C}	1	1	[45 828 830]	[93 100 000]				109
2.1135^{C}	1	2	[45 828 830]	[93 143 000]	2.0 - 1	5.9 + 13	D	109, 126*
2.1171^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3\mathrm{P}_1^{\circ}$	[45 614 410]	[92 848 000]				109
2.1093 ^C	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^2 \ ^3P_1$	[45 691 820]	[02 100 000]	2 4 1	1 77 1 1 4	C	100 192*
2.1093 2.1081 ^C	=		[45 691 820] [45 609 360]	[93 100 000]	3.4 - 1	1.7+14	C	109,126*
2.1081 2.1074 ^C	1	0	[45 691 820]	[93 047 000] [93 143 000]	2.5 - 1 $7.5 - 1$	3.8+14	C	109,126*
2.1074 2.1057 ^C	2	2	[45 609 360]	[93 100 000]	1.9 - 1	2.3+14 $9.6+13$	C D	109, 126* 109, 126*
2.1051 ^C	1 0	1 1	[45 595 910]	[93 100 000]	1.9 - 1 $2.8 - 1$	9.6+13 $1.4+14$	C	109,126 109,126*
2.1031 2.1038 ^C	0	1 2	[45 595 910] [45 609 360]	[93 143 000]	3.9 - 1	1.4 + 14 $1.2 + 14$	C	109, 126 109, 126*
			(== === 550)	[000]	*		_	,
2.1081 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^3\mathrm{P}_0^\circ$	[45 384 110]	[92 820 000]	1.3 - 1	2.0 + 14	C	109,126*
2.1069 ^C	1	1	[45 384 110]	[92 848 000]	3.9 - 1	2.0 + 14	C	109,126*
$2.1030^{\rm C}$	1	2	[45 384 110]	[92 935 000]	6.9 - 1	2.1 + 14	$^{\rm C}$	109, 126*
2.1078^{C}	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^2\ ^1\mathrm{D}_2$	[45 828 830]	[93 271 000]	1.1	3.3+14	C	109,126*

Cr XXIII - Continued

Wave- length (Å)	Classif Lower	ication Upper	Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
2.1017^{C} 2.0982^{C}	1s2p ³ P ₂ 1	$2p^{2} {}^{1}\mathrm{D}_{2}$	[45 691 820] [45 609 360]	[93 271 000] [93 271 000]	2.6 - 1	7.9+13	D	109, 126* 109
2.1014^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^{1}P_{1}^{o}$	[45 614 410]	[93 201 000]	4.0 - 1	2.0+14	C	109,126*
2.0960^{C}	$1s2p$ $^{1}\mathrm{P}_{1}^{o}$	$2p^2 {}^1S_0$	[45 828 830]	[93 539 000]	2.3 - 1	3.5+14	C	109,126*
2.0913 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^{1}P_{1}^{\circ}$	[45 384 110]	[93 201 000]				109
2.0864 ^C	$1s2p$ $^3P_1^{\circ}$	$2p^2$ 1S_0	[45 609 360]	[93 539 000]				109
1.85796 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^3P_1^{\circ}$	0	[53 822 410]	1.3 - 2	8.4+12	\mathbf{E}	126*
1.85584 ^C	$1s^{2} {}^{1}S_{0}$	$1s3p\ ^{1}P_{1}^{o}$	0	[53 884 060]	1.39 - 1	8.97+13	C+	126*
1.76414 ^C	$1s^{2}$ $^{1}S_{0}$	$1s4p$ $^3\mathrm{P}_1^{\circ}$	0	[56 684 700]	4.5 - 3	3.2+12	E	126*
1.76334 ^C	$1s^{2}$ $^{1}S_{0}$	$1s4p^{-1}P_{1}^{o}$	0	[56 710 700]	5.14 - 2	3.68+13	C+	113, 122, 126*
1.72396 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p$ $^3\mathrm{P}^{\mathrm{o}}_1$	0	[58 006 100]	2.2 - 3	1.6+12	E	126*
$1.72356^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[58 019 400]	2.48 - 2	1.86+13	C+	113,126*

 \mathbf{Cr} XXIV

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) In	nt. gf	A (s ⁻¹)	Acc.	References
2806 ^C	$3s$ $^2S_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[56 599 130]	[56 634 760]	4.06 - 2	8.60+6	A	125*
2728 ^C	$3p^{-2}P_{1/2}^{\circ}$	$3d$ $^2\mathrm{D}_{3/2}$	[56 598 060]	[56 634 700]	2.61 - 2	5.84+6	Α	125*
830.841 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p^2 P_{3/2}^{\circ}$	[47 723 240]	[47 843 600]	2.28 - 2	5.52+7	A	125*
32.5024 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$4f\ ^2{ m F}^{ m o}_{7/2}$	[56 646 760]	[59 723 460]	5.82	4.60+12	A	125*
32.4026^{C}	$3p\ ^{2}P_{3/2}^{\circ}$	$4d^2\mathrm{D}_{5/2}$	[56 634 760]	[59 720 930]	2.23	2.37+12	A	125*
32.0848^{C}	$3s\ ^{2}\mathrm{S}_{1/2}$	$4p^{-2}P_{3/2}^{\circ}$	[56 599 130]	[59 715 870]	6.56 - 1	1.06+12	Α	125*
22.2261^{C}	$3d$ $^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{\circ}$	[56 646 760]	[61 145 980]	8.96 - 1	1.51+12	Α	125*
22.1733 ^C	$3p\ ^{2}P_{3/2}^{\circ}$	$5d^2\mathrm{D}_{5/2}$	[56 634 760]	[61 144 680]	5.03 - 1	1.14+12	A	125*
22.0121 ^C	$3s\ ^{2}S_{1/2}$	$5p^{2}P_{3/2}^{\circ}$	[56 599 130]	[61 142 090]	1.63 - 1	5.61+11	A	125*
11.3596 ^C	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3d^2\mathrm{D}_{5/2}$	[47 843 600]	[56 646 760]	2.51	2.16+13	A	125*
11.2214 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[47 723 240]	[56 634 760]	5.89 - 1	7.80+12	A	125*
8.419401 ^C	$2p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$4d^2\mathrm{D}_{5/2}$	[47 843 600]	[59 720 930]	4.39 - 1	6.89+12	A	125*
8.338455 ^C	$2s\ ^2S_{1/2}$	$4p^{2}P_{3/2}^{o}$	[47 723 240]	[59 715 870]	1.39 - 1	3.32 + 12	Α	125*
7.518186^{C}	$2p$ $^2\mathrm{P}^{\circ}_{3/2}$	$5d$ $^2\mathrm{D}_{5/2}$	[47 843 600]	[61 144 680]	1.60 - 1	3.15+12	Α	125*
7.452203 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$5p^{2}P_{3/2}^{\circ}$	[47 723 240]	[61 142 090]	5.65 - 2	1.70+12	A	125*
$2.095567^{\rm C}$	$1s\ ^{2}{ m S}_{1/2}$	$2p^{-2}P_{1/2}^{\circ}$	0	[47 719 790]	2.79 - 1	2.12+14	A	125*
2.090144^{C}	1/2	3/2	0	[47 843 600]	5.60 - 1	2.14 + 14	A	125*
1.766845 ^C	$1s^{2}S_{1/2}$	$3p^{2}P_{1/2}^{o}$	0	[56 598 060]	5.31 - 2	5.68+13	A	122, 125*
1.765700 ^C	1/2	3/2	0	[56 634 760]	1.06 - 1	5.69+13	A	122, 125*
1.674597 ^C	1s ² S _{1/2}	$4p^{2}P_{3/2}^{\circ}$	0	[59 715 870]	3.90 - 2	2.32+13	A	125*
1.635535 ^C	$1s^{-2}S_{1/2}$	$5p^{-2}P_{3/2}^{o}$	0	[61 142 090]	1.87 - 2	1.17+13	A	125*

2.4.3. References for Comments and Tables for Cr Ions

- J. O. Ekberg, Phys. Scr. 7, 59 (1973).
- [2] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [3] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Nature 206, 390 (1965).
- [4] P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 314 (1937).
- [5] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [6] U. Feldman and B. S. Fraenkel, Astrophys. J. 145, 959 (1966).
- [7] R. D. Cowan, Astrophys. J. 147, 377 (1967).
- [8] B. C. Fawcett, J. Phys. B 3, 1732 (1970).
- [9] J. O. Ekberg, Phys. Scr. 8, 35 (1973).
- [10] P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935).
- [11] E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, Nature 204, 176 (1965).
- [12] U. Feldman, B. S. Fraenkel, and S. Hoory, Astrophys. J. 142, 719 (1965).
- [13] W. J. Wagner and L. L. House, Astrophys. J. 166, 683 (1971).
- [14] J. O. Ekberg, Phys. Scr. 13, 245 (1976).
- [15] S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577 (1977).
- [16] S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (1936).
- [17] R. Smitt, L. Å. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [18] K. P. Dere, Astrophys. J. 221, 1062 (1978).
- [19] B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262 (1966).
- [20] G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177 (1977).
- [21] B. Edlén, Z. Phys. 104, 407 (1937).
- [22] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [23] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [24] B. C. Fawcett, J. Phys. B 4, 1577 (1971).
- [25] J. H. Davé, U. Feldman, J. F. Seely, A. Wouters, S. Suckewer, E. Hinnov, and J. L. Schwob, J. Opt. Soc. Am. B 4, 635 (1987).
- [26] B. Edlén, Z. Phys. 104, 188 (1937).
- [27] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, Supplementary Publication No. SUP 70005 (1972).
- [28] J. T. Jefferies, F. Q. Orrall, and J. B. Zirker, Solar Phys. 16, 103 (1971).
- [29] G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898 (1977).
- [30] U. Feldman and G. A. Doschek, J. Opt. Soc. Am. 67, 726 (1977).
- [31] B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. 91, 973 (1967).
- [32] B. C. Fawcett, A. H. Gabriel, and P. A. H. Saunders, Proc. Phys. Soc. 90, 863 (1967).
- [33] L. A. Svensson, Solar Phys. 18, 232 (1971).
- [34] J. T. Jefferies, Mem. Soc. Roy. Sci. Liége. 17, 213 (1969).
- [35] F. Magnant-Crifo, Solar Phys. 31, 91 (1973).
- [36] E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B 5, 2173 (1988).
- [37] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [38] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [39] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [40] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [41] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [42] B. Edlén, Z. Phys. 103, 536 (1936).
- [43] B. C. Fawcett, R. D. Cowan, E. Y. Kononov, and R. W. Hayes, J. Phys. B 5, 1255 (1972).
- [44] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).

- [45] N. J. Peacock, M. F. Stamp, and J. D. Silver, Phys. Scr. T8, 10 (1984).
- [46] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, Phys. Lett. 88A, 165 (1982).
- [47] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).
- [48] A. Redfors, Phys. Scr. 38, 702 (1988).
- [49] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [50] K. G. Widing, G. D. Sandlin, and R. Cowan, Astrophys. J. 169, 405 (1971).
- [51] L. Cohen and W. E. Behring, J. Opt. Soc. Am. 66, 899 (1976).
- [52] M. C. Buchet-Poulizac, J. P. Buchet, and S. Martin, J. Physique 47, 407 (1986).
- [53] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [54] C. Jupén, L. Engström, R. Hutton, and E. Träbert, J. Phys. B 21, L347 (1988).
- [55] K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 (1980).
- [56] B. Edlén, Z. Phys. **100**, 621 (1936).
- [57] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [58] B. Edlén, Phys. Scr. 17, 565 (1978).
- [59] B. Edlén and F. Tyrén, Z. Phys. 101, 206 (1936).
- [60] F. Tyrén, Z. Phys. 111, 314 (1938).
- [61] M. Klapisch, A. Bar Shalom, J. L. Schwob, B. S. Fraenkel, C. Breton, C. de Michelis, M. Finkenthal, and M. Mattioli, Phys. Lett. 69A, 34 (1978).
- [62] D. L. McKenzie and P. B. Landecker, Astrophys. J. 254, 309 (1982).
- [63] M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747 (1971).
- [64] C. Jupén, U. Litzén, V. Kaufman, and J. Sugar, Phys. Rev. A 35, 116 (1987).
- [65] C. Jupén and U. Litzén, Phys. Scr. 30, 112 (1984).
- [66] C. Jupén and U. Litzén, Phys. Scr. 33, 509 (1986).
- [67] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, M. Druetta, S. Martin, and J. F. Wyart, J. Phys. B 20, 1709 (1987).
- [68] S. O. Kastner, Astrophys. J. 275, 922 (1983).
- [69] M. Finkenthal, P. Mandelbaum, A. Bar-Shalom, M. Klapisch, J. L. Schwob, C. Breton, C. De Michelis, and M. Mattioli, J. Phys. B 18, L331 (1985).
- [70] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [71] B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 186, 113 (1979).
- [72] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [73] E. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A 25, 2293 (1982).
- [74] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, J. Appl. Phys. 56, 2012 (1984).
- [75] B. C. Fawcett, J. Phys. B 4, 981 (1971).
- [76] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [77] C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, J. Opt. Soc. Am. 69, 1652 (1979).
- [78] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 10, 13 (1993).
- [79] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [80] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [81] N. Spector, A. Zigler, H. Zmora, and J. L. Schwob, J. Opt. Soc. Am. 70, 857 (1980).
- [82] K. T. Cheng, unpublished material (1981).
- [83] W. C. Martin, unpublished material (1982).
- [84] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).

- [85] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 63, 1463 (1973).
- [86] B. C. Fawcett and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 170, 185 (1975).
- [87] B. Denne and E. Hinnov, J. Opt. Soc. Am. B 1, 699 (1984).
- [88] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [89] E. Hinnov and S. Suckewer, Phys. Lett. 79A, 298 (1980).
- [90] B. Edlén, Phys. Scr. 31, 345 (1985).
- [91] TFR Group, J. Dubau, and M. Loulergue, J. Phys. B 15, 1007 (1981).
- [92] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 65, 463 (1975).
- [93] B. Edlén, Phys. Scr. 28, 483 (1983).
- [94] P. G. Burkhalter, G. Charatis, P. D. Rockett, and D. Newman, J. Opt. Soc. Am. B 1, 155 (1984).
- [95] K. G. Widing, Astrophys. J. 197, L33 (1975).
- [96] G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 (1976).
- [97] E. Hinnov, Astrophys. J. 230, L197 (1979).
- [98] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [99] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [100] G. E. Bromage, R. D. Cowan, B. C. Fawcett, and A. Ridgeley, J. Opt. Soc. Am. 68, 48 (1978).
- [101] K. G. Widing and J. D. Purcell, Astrophys. J. 204, L151 (1976).
- [102] J. P. Grandin, M. Huet, X. Husson, D. Lecler, D. Touvet, J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, and M. Druetta, J. Physique 45, 1423 (1984).
- [103] R. J. Knize, A. T. Ramsey, B. C. Stratton, and J. Timberlake, The Sixth Topical Conference on Atomic Processes in High Temperature Plasmas (Santa Fe, NM, USA, 1987).
- [104] E. Hinnov, the TFTR Operating Team, B. Denne, and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).
- [105] R. J. Knize, Phys. Rev. A 43, 1637 (1991).
- [106] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [107] S. Goldsmith, U. Feldman, L. Oren, and L. Cohen, Astrophys. J. 174, 209 (1972).
- [108] E. V. Aglitskii, V. A. Boiko, S. A. Pikuz, and A. Ya. Faenov, Sov. J. Quant. Electron. 4, 956 (1975).

- [109] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [110] V. A. Bryzgunov, S. Yu. Luk'yanov, M. T. Pakhomov, A. M. Potapov, and S. A. Chuvatin, Sov. Phys. JETP 55, 1095 (1982).
- [111] M. L. Apicella, R. Bartiromo, F. Bombarda, and R. Giannella, Phys. Lett. 98A, 174 (1983).
- [112] B. Edlén, Phys. Scr. 19, 255 (1979).
- [113] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [114] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).
- [115] S. Morita, J. Phys. Soc. Jpn. 52, 2673 (1983).
- [116] S. Morita and J. Fujita, Nucl. Instrum. Meth. B 9, 713 (1985).
- [117] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [118] K. T. Cheng, unpublished material (1996).
- [119] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [120] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [121] M. Bitter, S. von Goeler, S. Cohen, K. W. Hill, S. Sesnic, F. Tenney, J. Timberlake, U. I. Safronova, L. A. Vainshtein, J. Dubau, M. Loulergue, F. Bely-Dubau, and L. Steenman-Clark, Phys. Rev. A 29, 661 (1984).
- [122] V. Decaux, M. Bitter, H. Hsuan, S. von Goeler, K. W. Hill, R. A. Hulse, G. Taylor, H. Park, and C. P. Bhalla, Phys. Rev. A 43, 228 (1991).
- [123] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).
- [124] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [125] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U. S.) 4, Vol. I, U. S. Govt. Print. Office, Washington, D. C. (1966).
- [126] G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 3 (1988).
- [127] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. Sec. 79A, 629 (1975).
- [128] K. D. Lawson, N. J. Peacock, and M. F. Stamp, J. Phys. B 14, 1929 (1981).

2.5. Manganese

2.5.1. Brief Comments on Each Manganese Ion

Mn VI

Ca i isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 771 100 \pm 200 cm⁻¹ (95.60 \pm 0.02 eV)

The $3d^2 - 3d4p$ array in the range of 307 - 330 Å was analyzed by Cady [1] using a vacuum spark. He classified 30 lines including three blended and two tentatively classified.

King [2] classified 43 lines of the 3d4s-3d4p and 3d4p-3d4d arrays in the range of 800-1550 Å. He observed them with a vacuum sliding spark light source with an estimated uncertainty of ± 0.007 Å.

The spectrum from 140-220 Å was observed by Ryabtsev [3] with an uncertainty of ± 0.003 Å in a low-inductance vacuum spark. He identified 151 transitions from the 3dnf (n=4-8), 3d5p, and $3p^53d^3$ configurations to the ground configuration.

The value for the ionization energy was derived from the 3dnf $^{1}H_{5}^{o}$ series by Sugar and Corliss [4].

 \mathbf{Mn} VII

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 961 440 \pm 100 cm⁻¹ (119.204 \pm 0.010 eV)

Kruger and Weissberg [5] observed the 4p-ns (n=5,6), 3d-4p, and 3d-nf (n=4-9) doublets in the range of 111-468 Å. Gabriel et~al.~[6,7] identified the $3p^63d-3p^53d^2$ doublets in the range of 182-204 Å. Feldman and Fraenkel [8] observed 16 lines in the range of 133-144 Å, which were subsequently assigned to the $3p^63d-3p^53d4s$ inner-shell transitions by Cowan [9]. More extensive observations with vacuum spark discharges were carried out by Ramonas and Ryabtsev [10], whose results are quoted here. They identified 55 lines in the range of 114-255 Å as transitions from the levels of $3p^53d^2$, $3p^64p$, $3p^53d4s$, and $3p^6nf$ (n=4-8) configurations to the ground level, with uncertainties estimated to be ± 0.003 Å. The wavelength of the $3p^63d$ $^2D_{5/2}-3p^5(^2P^\circ)3d^2(^1G)$ $^2F_{7/2}^\circ$ line is 252.985 Å from the energy level difference, instead of 252.950 Å given by the authors.

A tentatively identified spin-forbidden ${}^2D_{5/2}$ – $({}^3P^\circ)$ ${}^4P^\circ_{3/2}$ line at 143.87 Å in Ref. [9] has been deleted,

because it was not observed in the stronger spectra of Ramonas and Ryabtsev. Furthermore, the 4p $^2\mathrm{P}^{\circ}_{3/2,1/2}-ns$ $^2\mathrm{S}_{1/2}$ (n=5,6) lines at 467.662 Å, 462.363 Å, 284.059 Å, and 282.095 Å in Ref. [5] have been omitted here, because the 4p $^2\mathrm{P}^{\circ}$ splitting is incompatible with that found by Ramonas and Ryabtsev. In addition, the wavelength of 112.260 Å for the 3d $^2\mathrm{D}_{5/2}-9f$ $^2\mathrm{F}^{\circ}_{7/2}$ transition is apparently a misprint and should be 112.060 Å.

The value for the ionization energy was derived from the $4p^5nf$ series by Ramonas and Ryabtsev [10].

Mn VIII

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy 1 569 000 \pm 3000 cm⁻¹ (194.5 \pm 0.4 eV)

The $3p^6 - 3p^54l$ transitions were observed by Kruger and Weissberg [11] and Kruger et al. [12] for l = s at 124.053 Å and 122.168 Å, and by Alexander et al. [13] for l = d at 97.411 Å and 96.332 Å. Smitt and Svensson [14] measured the $3p^6$ $^1S_0 - 3p^53d$ $^1P_1^{\circ}$ resonance line at 185.455 Å, previously identified by Alexander et al. [15] and Gabriel et al. [6,7], and added the ${}^{1}S_{0} - {}^{3}P_{1}^{\circ}$, ${}^{3}D_{1}^{\circ}$ spin-forbidden lines at 266.181 Å and 236.218 Å. They also identified 30 lines of the $3s^23p^53d - 3s3p^63d$ array in the range of 323 - 668 Å. Observations were made with vacuum sparks with an uncertainty estimated to be ± 0.01 Å. The wavelengths of 403.497 Å and 402.446 Å for the ${}^{1}D_{2}^{\circ} - {}^{3}D_{1,2}$ transitions are longer by 0.043 Å and 0.017 Å, respectively, than those calculated from level differences. For the blended lines at 415.348 Å, 410.374 Å, 340.234 Å, and 266.181 Å, the differences between the observed and calculated wavelengths are about 0.02 Å.

Wagner and House [16] classified 12 lines of the $3p^53d-3p^54f$ array in the range of 134-142 Å, measured with an uncertainty of ± 0.02 Å. The blended $^3P_2^{\circ}-^3D_2$ line at 135.48 Å deviates by 0.09 Å from the wavelength obtained from the energy level difference.

The value for the ionization energy was derived from the $3p^5nd$ levels by Sugar and Corliss [4].

Mn ix

Cl i isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ $^2 P_{3/2}^{\circ}$

Ionization energy 1 789 000 cm^{-1} (221.8 eV)

The $3s^23p^5$ $^2\mathrm{P}^\circ_{1/2,3/2}-3s3p^6$ $^2\mathrm{S}_{1/2}$ transitions were identified by Fawcett and Peacock [17]. Smitt et~al.~[18] measured the values 395.473 ± 0.008 Å and 376.778 ± 0.008 Å in vacuum sparks.

Gabriel et al. [6,7] identified the $3p^5 - 3p^4(^1\mathrm{D})3d$ array. The wavelengths were remeasured by Fawcett and Gabriel [19], who identified six new lines in the range of 184 - 204 Å using a vacuum spark. The designation of the parent term has been changed from $^1\mathrm{D}$ to $^3\mathrm{P}$ for the upper levels $3p^43d$ $^2\mathrm{P}$ and $^2\mathrm{D}$, as indicated by the calculated levels of Fe x by Bromage et al. [20].

The $3p^5$ 2 P° $-3p^44s$ 2 P doublet was first observed by Weissberg and Kruger [21] in the range of 111 - 114 Å. Edlén [22] reobserved the spectrum in the range of 105 - 114 Å with a vacuum spark and identified the 2 P° $-^2$ D, 2 S lines and the 2 P° $-^4$ P spin-forbidden transitions.

Fawcett et~al.~[23] observed the $3p^5-3p^44d$ transitions in the range of 87-91 Å, from which the $^2\mathrm{P}_{1/2}^{\circ}-(^3\mathrm{P})^2\mathrm{D}_{3/2}$ and $^2\mathrm{P}_{3/2}^{\circ}-(^1\mathrm{D})^2\mathrm{P}_{1/2}$ lines at 91.0 Å and 87.79 Å are adopted here. This array was reobserved by Fawcett et~al.~[24] with a reduced uncertainty of ± 0.01 Å in thetapinch spectra. They also identified six $3p^43d-3p^44f$ transitions in the range of 118-124 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

Mn x

S I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^4$ 3P_2

Ionization energy 2 003 000 cm^{-1} (248.3 eV)

Fawcett [26,27] identified the $3s^23p^4 - 3s3p^5$ array in the range of 333 - 398 Å. Improved measurements with a vacuum spark discharge were made by Smitt et~al. [18]. In addition to the lines observed by Fawcett, the $^1\mathrm{S}_0 - ^1\mathrm{P}_1^\circ$ line at 384.827 Å and the $^3\mathrm{P}_1 - ^3\mathrm{P}_0^\circ$ line at 379.368 Å were identified. Wavelengths are from Ref. [18] and have an uncertainty of ± 0.008 Å.

Gabriel et al. [7] and Fawcett and Gabriel [19] identified the $3p^4 - 3p^33d$ array with a vacuum spark. Their measurements were extended by Fawcett [27], who observed a theta-pinch spectrum with an estimated uncertainty of ± 0.05 Å in the range of 193–218 Å. He identified 13 lines.

Eleven lines of the $3p^4-3p^34s$ transition array in the range of 100-105 Å were identified by Edlén [28] in vacuum spark observations. It should be noted that the faint $3s^23p^4$ $^1S_0-3s^23p^3(^2P^\circ)4s$ $^1P_1^\circ$ line is at 104.310 Å, shorter by 0.015 Å than the wavelength calculated from the energy level difference.

After the earlier work Fawcett et~al.~[23,24] reobserved four lines of the $3p^4-3p^34d$ transition array at 82-84 Å, and identified nine new lines in the range of 107-109 Å as $3p^33d-3p^34f$ transitions. Most lines are doubly classified. Wavelengths of these transitions were measured in a theta-pinch plasma with an uncertainty of ± 0.01 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

Mn xi

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 2 307 000 cm^{-1} (286.0 eV)

Sandlin et al. [29] and Feldman and Doschek [30] identified the magnetic-dipole transition $3p^3$ $^4S_{3/2}^{\circ} - ^2P_{3/2}^{\circ}$ in the solar corona. The wavelength of 1359.59 Å is adopted from the latter article. Sandlin et al. also identified the $^4S_{3/2}^{\circ} - ^2P_{1/2}^{\circ}$ transition at 1450.49 Å.

Fawcett and Peacock [17] and Fawcett [26,27] identified the $3s^23p^3 - 3s3p^4$ transition array in the range of 306-394 Å. With new observations Smitt *et al.* [18] found 14 lines of this array, including six new ones, in a vacuum spark discharge. Their results, estimated to have an uncertainty of ± 0.008 Å, are given. The blended line at 363.510 Å deviates by 0.07 Å from the value calculated with the energy levels.

Gabriel et al. [6,7] observed the $3p^3$ $^2\mathrm{D}^{\circ}_{5/2}$ – $3p^2(^3\mathrm{P})3d$ $^2\mathrm{F}_{7/2}$ transition at 200.67 Å. In their article, the parent term was designated as $^1\mathrm{D}$, instead of $^3\mathrm{P}$ as given later by Fawcett [27]. Fawcett et al. [31] identified the $3p^3$ $^4\mathrm{S}^{\circ} - 3p^2(^3\mathrm{P})3d$ $^4\mathrm{P}$ resonance transitions in the range of 207 – 210 Å. With data from a thetapinch plasma, Fawcett [27] classified more completely the $3p^3 - 3p^23d$ array in the range of 200 - 236 Å. The estimated uncertainty of his wavelengths is ± 0.05 Å.

The $3p^23d - 3p^24f$ and $3p^3 - 3p^24s$ transitions in the ranges of 98 - 99 Å and 75 - 95 Å were identified by Fawcett *et al.* [24] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

Mn XII

Si I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ ³P₀

Ionization energy 2 536 000 cm^{-1} (314.4 eV)

Jefferies et al. [32] assigned the line at 3685.5 ± 0.4 Å measured by Jefferies [33] in the solar corona to the magnetic-dipole transition $3s^23p^2$ 3P_2 $^{-1}D_2$. Sandlin et al. [29] identified a coronal line at 1322.23 ± 0.04 Å as the 3P_1 $^{-1}S_0$ transition. The wavelength is from Sandlin and Tousey [34].

Fawcett [26,27] analyzed the $3s^23p^2-3s3p^3$ transition array in the range of 259-553 Å. Two additional $^3\mathrm{P}_{2,1}-^5\mathrm{S}_2^\circ$ spin-forbidden transitions at 552.84 ± 0.4 Å and 529.79 ± 0.5 Å were identified by Träbert *et al.* [35] in a beam-foil spectrum.

Fawcett [27] provided classifications of twelve $3p^2 - 3p3d$ transitions in the range of 210 - 238 Å observed in a

theta-pinch plasma discharge. The estimated uncertainty of the wavelengths is ± 0.05 Å.

Fawcett et al. [36] identified the 3p3d-3p4f, $3p^2-3p4s$ and $3p^2-3p4d$ transitions in the range of 70-90 Å. Wavelengths, with an estimated uncertainty of ± 0.015 Å, were observed by them in a laser-produced plasma. Kastner et al. [37] identified several lines of the $3p^2-3p4d$ array.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

Mn XIII

Al I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{-2} P_{1/2}^{\circ}$

Ionization energy 2 771 000 cm^{-1} (343.6 eV)

Jefferies et al. [32] identified the line at 6536.3 ± 0.4 Å, measured by Jefferies [33] in the solar corona, to the magnetic-dipole transition $3s^23p$ $^2\mathrm{P}^{\circ}_{1/2}-^2\mathrm{P}^{\circ}_{3/2}$.

Träbert et al. [35] observed the $3s^23p$ 2 P° $-3s3p^2$ 4 P spin-forbidden transitions in beam-foil spectra, and estimated their uncertainties as ranging from 0.3 Å to 0.5 Å. They adopted the $3s3p^2$ 4 P fine structure splitting derived experimentally by Litzén and Redfors [38].

Fawcett $et\ al.\ [31]$ and Fawcett and Peacock [17] identified the transitions from the $3s^23d\ ^2D$ and $3s3p^2\ ^2P$ configurations to the ground $3s^23p\ ^2P^\circ$ configuration. Subsequently Fawcett [26,27] identified the $3s3p^2\ ^4P-3p^3\ ^4S^\circ$, $3s^23p\ ^2P^\circ-3s3p^2\ ^2D,^2S$ and $3s3p^2\ ^4P_{5/2}-3s3p3d\ ^4D_{7/2}^\circ$ transitions. These early observations were revised and extended by Litzén and Redfors [38] and Redfors and Litzén [39], who observed laser-produced plasmas in the range of 205 – 425 Å. They reported 44 transitions between levels of the $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d configurations. Wavelengths were measured with an estimated uncertainty of ± 0.02 Å. Three $3s3p^2-3s3p(^3P^\circ)3d$ lines were reobserved by Levashov $et\ al.\ [40]$ at 227.73 Å for $^4P_{3/2}-^4P_{3/2}^\circ$, at 227.98 Å for $^4P_{3/2}-^4P_{1/2}^\circ$, and at 228.63 Å for $^4P_{1/2}-^4D_{1/2}^\circ$.

The transition arrays $3s3p3d-3p^23d$, $3s3d^2$ were newly identified by Churilov and Levashov [41] in a laser-produced plasma with an estimated uncertainty of ± 0.02 Å. They also determined new values for the energy levels of the n=3 configurations. We have adopted their results. It should be noted that the term designations of $3s3p(^3P^\circ)3d\ ^4P_{1/2,3/2}^\circ$ and $3s3p(^1P^\circ)3d\ ^2P_{3/2}^\circ$ have been interchanged with $3s3p(^3P^\circ)3d\ ^4D_{1/2,3/2}^\circ$ and $3s3p(^1P^\circ)3d\ ^2D_{3/2}^\circ$. These levels cross at this ion, as shown in the calculation of Redfors and Litzén [39]. The $3s^23p\ ^2P_{3/2}^\circ-3s3p^2\ ^2S_{1/2}$ and $^2D_{3/2}$ lines at 308.92 Å and 382.76 Å in Ref. [27] have been omitted, because they are not observed by Redfors and Litzén. We give calculated values for these lines.

The 3p 2 P° -4d 2 D doublet at \sim 67 Å was identified by Edlén [42]. Fawcett *et al.* [24] identified the 3d 2 D -4f 2 F° doublet and the 3s3p3d 4 F° -3s3p4f 4 G and $3s3p^2$ 4 P-3s3p4s 4 P° quartets in the range of 79-87 Å.

The value for the ionization energy was obtained by Lotz [25] by extrapolation.

Mn XIV

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{-1}S_0$

Ionization energy 3 250 000 \pm 2000 cm⁻¹ (403.0 \pm 0.2 eV)

Classifications of the n=3-3 transitions were made in a series of articles of Fawcett et~al.~[31,36], Fawcett and Peacock [17], and Fawcett [26,27] for the transitions between the levels of the $3s^2$, 3s3p, 3s3d, $3p^2$, and 3p3d configurations. Dere [43] reported the $3s^2$ $^1\mathrm{S} - 3s3p$ $^1\mathrm{P}^\circ$ line from solar flare observations. Litzén and Redfors [44] reobserved the spectra in the range of 212-582 Å in a laser-produced plasma and identified 45 lines, including 18 from the earlier works. Wavelengths were measured with an estimated uncertainty of ± 0.02 Å. Their results are adopted together with their energy levels. For the perturbed lines at 418.51 Å and 471.94 Å and the blended line at 257.24 Å, however, the differences between the observed wavelengths and those derived from energy level data are 0.03-0.04 Å.

The $3p3d-3d^2$ transitions were identified by Levashov and Churilov [45] and more completely by Redfors [46] in the range of 235-327 Å in laser-produced plasmas. Wavelengths of Redfors with an uncertainty of ± 0.02 Å are adopted together with his energy level values for the $3d^2$ configurations. The $^3D_1^{\circ}-^3F_2$ line at 277.11 ± 0.02 Å is from Ref. [45]. The designation of the lower term is given there as $^3P_1^{\circ}$, but is $^3D_1^{\circ}$ in the level scheme of Litzén and Redfors [44]. We adopt the latter.

Edlén [42] first identified the 3s3p-3s4s, 3s3p-3snd (n=4,5), and 3s3d-3s4f triplets in the range of 57-80 Å, together with the $3s^2$ ¹S -3s4p ¹P° resonance line at 59.325 Å. Singlet terms were identified by Fawcett et al. [24,36], specifically the 3s3d-3s4f transition at 84.09 ± 0.01 Å and the 3s3p-3s4d and $3p^2-3s4f$ transitions at 67.02 ± 0.015 Å and 72.45 ± 0.015 Å. Fawcett et al. [24] also provided 11 lines of the 3p3d-3p4f array in the range of 78-84 Å. Identifications of the 3s3d-3snf, (n=5,6), $3p^2-3p4s$, 3s3p-3sns (n=5-6), 3s3p-3snd (n=5,6), $3p^2-3p4d$, $3s^2-3snp$ (n=5,6), and 3s3p-3p4p transitions in the range of 38-76 Å are taken from Fawcett et al. [47].

The value for the ionization energy was derived by Sugar and Corliss [4] from the 3snp and 3snf series. The average is given. The value by Lotz [25] is 404.1 eV.

Mn xv

Na I isoelectronic sequence

Ground state $1s^22s^22p^63s^{-2}S_{1/2}$

Ionization energy 3 509 820 \pm 300 cm⁻¹ (435.166 \pm 0.030 eV)

Fawcett et al. [31] and Fawcett and Peacock [17] identified the five lines of the 3s-3p and 3p-3d transition arrays in the ranges of 360-385 Å and 261-282 Å, respectively, in a laser-produced plasma. The 3s-3p line was remeasured by Widing et al. [48] and Dere [43]. An isoelectronic comparison of the measured wavelengths with Dirac-Fock calculations was made by Reader et al. [49] for Ar^{7+} to Xe^{43+} , including those for the 3d-4f doublet, and least squares adjusted wavelengths were derived. The overall uncertainty estimate is ± 0.007 Å. We give these results, from which the energy levels for the $2p^63p$, $2p^63d$ and $2p^64f$ configurations were derived.

Edlén [50] analyzed the transition arrays 3s-4p, 3p-4s, 3p-nd (n=4,5), and 3d-nf (n=4,5) in vacuum spark discharges, from which the 3p-4s, 3p-4d and 3s-4p and 3d-5f lines at ~ 71 Å, ~ 61 Å, ~ 56 Å and ~ 53 Å are quoted. The uncertainty of their wavelengths was estimated to be ± 0.01 Å to ± 0.02 Å. The 3d-np (n=4,5) lines at ~ 87 Å and ~ 55 Å were identified by Fawcett et al. [24,36], respectively.

Identifications along Rydberg series have been taken from Fawcett et al. [47] for the 3d-nf (n=9-11), 3p-7s, 3p-nd (n=8-10) and 3s-np (n=9,10) transitions and from Cohen and Behring [51] for the 3s-np (n=5-8), 3p-ns (n=5,6), 3p-nd (n=5-8) and 3d-nf (n=6-8) transitions.

The 4f $^2\mathrm{F}^{\circ}$ – 5g $^2\mathrm{G}$ and 4d $^2\mathrm{D}$ – 5f $^2\mathrm{F}^{\circ}$ doublets at \sim 178 Å and \sim 163 Å were identified by Lawson and Peacock [52]. Observations were made in a laser-produced plasma with an uncertainty estimated at ± 0.03 Å. For the 4d-5f doublet, however, there appear discrepancies, ranging from 0.06-0.1 Å, between their results and those calculated from the energy level differences of Edlén. The measurements in Ref. [50] were adopted here to determine the 4d and 5f levels.

The value for the ionization energy was derived by Edlén [53] from core polarization theory applied to the nf series.

Mn xvi

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 9 152 000 \pm 5000 cm⁻¹ (1134.7 \pm 0.6 eV)

Tyrén [54] identified the transitions from the $2s^22p^53s$, 3d, 4d and $2s2p^63p$ levels to the ground level in the range of 13.4-18.9 Å with a vacuum spark discharge. Swartz et al. [55] added the identification of the $2p^6-2p^54s$, 5d, 6d transitions in the range of 11.8-14.1 Å.

Kastner [56] identified a coronal line at 1452.68 Å as the $2p^53s(\frac{3}{2},\frac{1}{2})^{\circ}_1 - (\frac{1}{2},\frac{1}{2})^{\circ}_0$ transition, but it is omitted because it is inconsistent with the levels derived by Jupén et al. [57].

The $2p^53s - 2p^53p$ and $2p^53p - 2p^53d$ arrays in the ranges of 347 - 439 Å and 288 - 302 Å, respectively, were observed with a laser-produced plasma and classified by Jupén and Litzén [58].

The uncertainty of the wavelengths is estimated to be ± 0.02 Å. The $2p^5(^2\mathrm{P}^{\circ}_{1/2})3s$ $(\frac{1}{2},\frac{1}{2})^{\circ}_{1}-2p^5(^2\mathrm{P}^{\circ}_{1/2})3p$ $^2[\frac{1}{2}]_{1}$ line at 377.414 Å is questionable, because it shows a deviation of 0.775 Å from the wavelength 376.639 Å derived from the energy levels.

The 3p-4d transitions were first identified by Kastner et al. [59] and also by Fawcett et al. [60], together with the 3d-4f transitions. More complete and improved measurements were carried out by Jupén et al. [57] with a laser-produced plasma. They found 40 lines of the 3p-4s and 3s-4p transitions, in the range of 51-67 Å, which are quoted here. The estimated wavelength uncertainties vary from ± 0.005 to ± 0.01 Å. We have adopted the energy levels of Jupén et al. for the $2s^22p^53l$ and $2s^22p^54l$ configurations. Predicted values for several unresolved levels are given in Ref. [57].

The value for the ionization energy was derived from the $2p^5nd$ ³D₁° series by Sugar and Corliss [4].

Mn XVII

SHIRAI ET AL.

F I isoelectronic sequence

Ground state $1s^22s^22p^{5-2}P_{3/2}^{\circ}$

Ionization energy 9 867 000 cm^{-1} (1223.4 eV)

The $2s^22p^5$ 2 P° $-2s^2p^6$ 2 S doublet was observed by Fawcett [61], Doschek *et al.* [62] and Lawson and Peacock [52] in laser-produced plasmas, and by the TFR group [63] in tokamak plasmas. Wavelength values of 109.35 Å and 100.00 Å with estimated uncertainties of ± 0.03 Å are taken from Ref. [52].

Feldman et al. [64] reported extensive observations in laser-produced plasmas of the transitions $2s2p^6 - 2s2p^53s$, $2p^5 - 2p^43s$ and $2p^5 - 2p^43d$ in the range of 15-18 Å with an estimated uncertainty of ± 0.01 Å. We give their classifications of these lines.

For the ionization energy we use a value calculated by Cheng [65] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [66].

Mn XVIII

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy $10 643 000 \text{ cm}^{-1} (1319.6 \text{ eV})$

The $2s^22p^4-2s2p^5$ array was observed by Fawcett [61], Doschek *et al.* [62] and Lawson and Peacock [52] in laser-produced plasmas, and by the TFR group [63] in tokamak plasmas. The measurements of Lawson and Peacock in the range of 84-140 Å are the most comprehensive and their wavelengths are adopted here. The uncertainty of the wavelengths is given as ± 0.03 Å. They also found the $2s2p^5$ $^1P_1^{\circ}-2p^6$ 1S_0 transition at 122.29 Å, identified first by Doschek *et al.* [67], and the $^3P_1^{\circ}-^1S_0$ transition at 91.90 Å.

The $2p^4-2p^33s$ array at approximately 16 Å was identified by Doschek *et al.* [68]. Wavelengths with estimated uncertainties of ± 0.01 Å were measured by them in laser-produced plasmas. The $^3P_{1,0}-^3S_1^\circ$ transitions are not resolved in this array. We give a calculated value for the $^3P_0-^3S_1^\circ$ line.

Swartz et al. [55] observed five lines at 15 Å in a low-inductance vacuum spark which were tentatively identified by Fawcett and Hayes [69] as $2p^4 - 2p^33d$ transitions.

For the ionization energy we use a value calculated by Cheng [65] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [66].

Mn xix

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 11 535 000 cm⁻¹ (1430.15 eV)

Observations of the $2s^22p^3-2s2p^4$ array were made by Doschek et~al.~[62], Feldman et~al.~[70] and Lawson and Peacock [52] in laser-produced plasmas, and by the TFR group [63] in tokamak plasmas. We adopt the wavelengths from the comprehensive measurements of Lawson and Peacock, who identified 20 lines in the range of 85-143 Å, including the spin-forbidden transitions from the $^2\mathrm{D}_{3/2}$, $^2\mathrm{S}_{1/2}$ and $^2\mathrm{P}_{3/2}$ terms to the ground $^4\mathrm{S}^\circ_{3/2}$. The uncertainty of the wavelengths is estimated to be ± 0.03 Å below 180 Å and ± 0.06 Å above.

Lawson and Peacock [52] also identified nine lines in the range of 88-148 Å of the $2s2p^4-2p^5$ array, including the $^2D-^2P^{\circ}$ doublet in the earlier work of Doschek et al. [67].

Fawcett and Hayes [69] tentatively identified the $2p^3$ $^4\mathrm{S}^{\circ}_{3/2} - 2p^2(^3\mathrm{P})3d$ $^4\mathrm{P}_{3/2,5/2}$ transitions as a blended line at 14.098 Å observed previously by Swartz *et al.* [55] in a low-inductance vacuum spark.

For the ionization energy we use a value calculated by Cheng [65] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [66].

Mn xx

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 12 413 000 cm^{-1} (1539.03 eV)

The $2s^22p^2-2s2p^3$ array was observed by Feldman et al. [70] in a laser-produced plasma, and by the TFR group [63] in a tokamak plasma. The tabulated wavelengths are taken from the more extensive observations with a laser-produced plasma by Lawson and Peacock [52], who gave identifications for 37 lines due to the $2s^22p^2-2s2p^3$ and $2s2p^3-2p^4$ transitions in the range of $89-192\,$ Å. The uncertainties of the wavelengths are estimated to be $\pm 0.03\,$ Å below 180 Å and $\pm 0.06\,$ Å above 180 Å. Smoothed wavelengths along isoelectronic sequence are given by Edlén [71]. They indicate that the $2s2p^3$ $^5S_2^\circ-2p^4$ 3P_2 transition at 90.76 Å is incorrectly identified. Therefore, we have estimated the position of the $^5S_2^\circ$ level from the smoothed wavelengths of $2s^22p^2$ $^3P-2s2p^3$ $^5S^\circ$ lines by Edlén.

A line at 13.46 Å, observed with a low-inductance vacuum spark by Swartz *et al.* [55], was tentatively identified as the $2p^2$ $^1D_2 - 2p3d$ $^1F_3^\circ$ transition by Fawcett and Hayes [69].

For the ionization energy we use a value calculated by Cheng [65] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [66].

Mn xxi

B I isoelectronic sequence

Ground state $1s^22s^22p$ $^2P_{1/2}^{\circ}$

Ionization energy 13 256 000 cm^{-1} (1643.50 eV)

The $2s^22p-2s2p^2$ array was identified by Doschek et al. [72] in a laser-produced plasma and by the TFR group [63] in a tokamak plasma. Extensive measurements for both this array and the $2s2p^2-2p^3$ array are from a laser-produced plasma by Lawson and Peacock [52], who classified 26 lines in the range of $108-259\,$ Å. Their results are adopted here. The uncertainties of the wavelengths are estimated to be $\pm 0.03\,$ Å below 180 Å and $\pm 0.06\,$ Å above 180 Å. The designation of the two levels $2s2p^2$ $^2P_{1/2}$ and $^2S_{1/2}$ has been interchanged according to Edlén [73] and as confirmed by the calculated percentage composition in Sugar and Corliss [4].

For the ionization energy we use a value calculated by Cheng [65] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [66].

Mn XXII

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 14 433 000 cm^{-1} (1789.4 eV)

The $2s^2$ $^1S_0 - 2s2p$ $^3P_1^{\circ}$ transition was observed in the solar corona by Sandlin *et al.* [74] and Dere [43]. The wavelength of Sandlin *et al.*, 277.80±0.03 Å, is given here. The $2s^2$ $^1S_0 - 2s2p$ $^1P_1^{\circ}$ resonance transition was observed by the TFR group [63] and Davé *et al.* [75] in tokamak plasmas and by Lawson and Peacock [52] in a laser-produced plasma. The wavelength of 141.10±0.02 Å measured by Davé *et al.* is quoted. Lawson and Peacock also identified $2s2p - 2p^2$ transitions, including the intercombination $^3P_2^{\circ} - ^1D_2$ transition, in the range of 145 - 240 Å. The uncertainties of the wavelengths are estimated to be ± 0.03 Å below 180 Å and ± 0.06 Å above 180 Å. We give these results.

Fawcett and Hayes [69] tentatively identified the four lines at approximately 12 Å observed by Swartz et al. [55] as 2s2p-2s3d and $2p^2-2p3d$ transitions. More extensive work for the n=2,3 transition arrays in the range of 11.7-13.2 Å were made by Boiko et al. [76,77] in laser-produced plasmas. Some of the lines are given as unresolved or blended lines. The uncertainty of the wavelengths is estimated as ± 0.003 Å. Differences up to ± 0.03 Å between the observed wavelengths and those calculated for the energy level differences occur. The designations of the two lines $2s^2$ $^1S_0 - 2s3p$ $^{1,3}P_1^{\circ}$ at 11.997 Å and 11.971 Å have been interchanged, in accordance with the calculation of Kim et al. [78]. This places the 2s3p $^3P^{\circ}$ below the $^1P^{\circ}$.

The value for the ionization energy was calculated by K. T. Cheng [65].

Mn XXIII

Li I isoelectronic sequence

Ground state $1s^22s^{-2}S_{1/2}$

Ionization energy 15 162 000 \pm 35 000 cm⁻¹ (1879.9 eV)

The 2s-2p resonance transitions were identified by Widing and Purcell [79], Sandlin $et\ al.$ [74] and Dere [43] from solar coronal observations and remeasured by Lawson and Peacock [52] with a laser-produced plasma. Kim $et\ al.$ [80] have smoothed the energies of these transitions for Li-like ions with respect to calculated values. We use their predicted values.

Observations of the n=2-3 doublets were made with a low-inductance vacuum spark by Goldsmith *et al.* [81]. Improved measurements in the extended range of 7.7—12.5 Å were carried out with a laser-produced plasma by Boiko *et al.* [77] who provided data for the 2p-3s, 2p-nd (n=3-5), and 2s-np (n=3-5) transitions. The uncertainties of the wavelengths are estimated to be ± 0.002 Å below 10 Å and ± 0.003 Å above 10 Å.

Vainshtein and Safronova [82] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. Their energy levels are adjusted to the $1s^22p^2P_{1/2,3/2}^{\circ}$ levels of Kim et al. by subtracting 130 cm⁻¹. They also calculated wavelengths of the $1s^22s - 1s2s2p$, $1s^22p - 1s2p^2$, and $1s^22p - 1s2s^2$ transitions. We use their results to derive these autoionizing levels.

The value for the ionization energy was derived by Edlén [83] from a polarization formula applied to the nd series.

Mn XXIV

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 65 660 100 \pm 2500 cm⁻¹ (8140.818 \pm 3 eV)

Cheng et al. [84] give calculated total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [85] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [86] we obtain the value for the ionization energy of the Helike ions. For the 1s3l states we use the level values from Drake [87].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [82] have been tabulated after increasing them by 1300 cm^{-1} to correspond with the values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

Vainshtein and Safronova also calculated wavelengths of the transitions 1s2s-2s2p, $1s2p-2s^2$, and $1s2p-2p^2$, which we have compiled without correction.

Mn xxv

H I isoelectronic sequence

Ground state 1s ${}^{2}S_{1/2}$

Ionization energy 69 137 430 \pm 20 cm⁻¹ (8571.952 \pm 0.002 eV)

No observations of this spectrum have been reported. We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [86] for the n=2 shell whose estimated uncertainty is ± 20 cm⁻¹. Their energy differences are in close agreement with those of Mohr [89]. The binding energies for the levels with n=3-5 have been calculated by Erickson [90]. We subtract these energies from the binding energy of the ground state obtained by Johnson and Soff to obtain predicted wavelengths.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for the hydrogen spectrum by Wiese $et\ al.$ [91]. The scaling was actually performed for the line strengths S, which for a hydrogen-like ion of nuclear charge Z are reduced

according to $S_{\rm Z} = Z^{-2}S_{\rm H}$, so that

$$S_{\text{Mn xxv}} = S_{\text{H}}(25)^{-2} = S_{\text{H}}/625.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [92]. For these conversions the accurate wavelengths listed in the Mn XXV table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-3 for Mn XXV, according to the work by Younger and Weiss [93], and have been neglected.

The value for the ionization energy is from Johnson and Soff [86].

2.5.2. Spectroscopic Data for Mn VI through Mn XXV

Mn vi

			Mn VI						
Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	Reference
548.430	$3p^6 3d4s \ ^1\mathrm{D}_2$	$3p^63d4p \ ^1D_2^{\circ}$	255 239.7	319 821.2	1000	8.0 – 1	4.5+8	D-	2°,92*
488.755	$3p^6 3d4s\ ^1{ m D}_2$	$3p^63d4p\ ^3{ m D}_2^{ m o}$	255 239.7	322 409.6	23				2
458.660	$3p^63d4s$ $^1\mathrm{D}_2$	$3p^6 3d4p \ ^3F_2^{\circ}$	255 239.7	323 796.1	30				2
408.312	$3p^63d4s$ $^3{\rm D}_3$	$3p^63d4p^{-3}D_2^{\circ}$	251 403.0	322 409.6	120	3.2 - 1	2.2+8	D-	2°,92*
405.156	2	1	250 527.0	321 693.5	55	2.7 - 1	3.0+8	D-	2°,92*
396.708	1	1	250 096.6	321 693.5	180	5.1 - 1	5.7 + 8	D-	2°,92*
391.218	3	3	251 403.0	323 282.5	750	1.6	8.0 + 8	D-	2°,92*
391.173	2	2	250 527.0	322 409.6	500	7.5 - 1	5.2 + 8	D-	2°,92*
356.852	$3p^6 3d4s\ ^3{ m D}_1$	$3p^63d4p\ ^3F_2^0$	250 096.6	323 796.1	600	1.1	8.3+8	D-	2°,92*
345.494	2	3	250 527.0	324 849.1	800	1.7	8.7+8	D-	2°,92*
333.874	3	4	251 403.0	326 372.6	1000	2.5	1.0+9	D-	2°,92*
285.102	$3p^6 3d4s\ ^1{ m D}_2$	$3p^63d4p^{-1}F_3^{\circ}$	255 239.7	333 054.5	700	1.9	1.1+9	D-	2°,92*
272.444	$3p^6 3d4s\ ^3{ m D}_3$	$3p^63d4p^3P_2^{\circ}$	251 402 0	220 002 0	E00	1.7	0.410	Б	
272.444 264.101	5p 3a48 D3	$sp sa4p P_2$	251 403.0 250 527.0	329 992.0 329 634.5	$\frac{500}{200}$	$1.1 \\ 5.5 - 1$	8.4+8 7.6+8	D- D-	2°,92* 2°,92*
258.413	2	1	250 527.0	329 992.0	100	3.3 - 1 $3.1 - 1$	2.6+8	D-	2°,92*
255.766	1	0	250 096.6	329 729.3	90	2.9 - 1	1.2+9	D-	2°,92* 2°,92*
236.230	$3p^6 3d4s^{-1} { m D_2}$	$3p^63d4p^{-1}P_1^{o}$	255 239.7	336 130.8	230	8.5 - 1	1.3+9	D-	2°,92*
041.121	$3p^63d4p^{-1}F_3^{\circ}$	$3p^63d4d^{-1}F_3$	333 054.5	429 104.8	20				2
039.690	$3p^63d4p^{-1}P_1^{\circ}$	$3p^63d4d^{-1}P_1$	336 130.8	432 313.3	18				2
	· -	-							-
985.951 984.111	$3p^63d4p$ $^3P_1^o$	$3p^63d4d\ ^3D_2$	329 634.5 329 992.0	431 059.4 431 606.6	15 40				$\frac{2}{2}$
939.329	$3p^63d4p\ ^3{ m P}_2^{\circ}$	$3p^63d4d\ ^3S_1$	200 002 0	496 451 0	1.9				0
936.183	3p 3a4p F ₂	3p 3a4a S ₁	329 992.0 329 634.5	436 451.0 436 451.0	13 7				$\frac{2}{2}$
933.785	$3p^63d4p\ ^3F_4^{\circ}$	$3p^63d4d\ ^3{ m G}_5$	326 372.6	433 463.6	90				2
932.476	3	3	324 849.1	432 090.5	5				2
927.614	3	4	324 849.1	432 652.6	60				2
923.400	2	3	323 796.1	432 090.5	55				2
921.600	$3p^{6}3d4p^{-1}P_{1}^{o}$	$3p^63d4d\ ^1\mathrm{D_2}$	336 130.8	444 637.1	10				2
915.050	$3p^6 3d4p^{-1} D_2^{\circ}$	$3p^63d4d\ ^1{ m F}_3$	319 821.2	429 104.8	45				2
878.257	$3p^6 3d4p\ ^3{ m F}_{4}^{ m o}$	$3p^63d4d^{3}F_{4}$	326 372.6	440 234.1	20				2
871.118	3	3	324 849.1	439 643.4	7				2
867.236	2	2	323 796.1	439 105.0	5				2
866.662	3	4	324 849.1	440 234.1	6				2
872.240	$3p^6 3d4p\ ^1{ m F}_3^o$	$3p^63d4d$ $^1\mathrm{G}_4$	333 054.5	447 701.8	50				2
965 060	2,624.300	0.6024.35	990 000 0	44# #00 =	_				
865.060 861.681	$3p^6 3d4p \ ^3P_2^{\circ}$	$3p^63d4d\ ^3P_1$	329 992.0 329 992.0	445 590.9	5 16				$\frac{2}{2}$
801.001	2	2	329 992.0	446 044.2	10				2
859.396	$3p^63d4p\ ^3{ m D}_3^o$	$3p^63d4d\ ^3{ m F}_3$	323 282.5	439 643.4	7				2
856.935	2	2	322 409.6	439 105.0	5				2
855.056	3	4	323 282.5	440 234.1	30				2
852.996	2	3	322 409.6	439 643.4	20				2
851.705	1	2	321 693.5	439 105.0	16				2
814.580	$3p^63d4p\ ^3{ m D}_3^o$	$3p^6 3d4d\ ^3{ m P}_2$	323 282.5	446 044.2	3				2
801.182	$3p^6 3d4p^{-1}D_2^o$	$3p^63d4d^{-1}D_2$	319 821.2	444 637.1	7				2
220 220	$3p^63d^2$ 3 P ₁	$3p^6 3d4p^{-3} D_1^{\circ}$	10 057	201 600 5	-	20.0	4010	100	10 00*
329.320 329.177	•	$sp^*sa4p^*D_1^*$	18 057	321 693.5 322 409.6	5 2	2.0 - 2 $7.5 - 3$		E E	1°,92* 1°,92*
329.043	2	2	18 628 17 782	322 409.6 321 693.5	5	7.5 - 3 $5.4 - 2$		D-	1°,92* 1°,92*
328.558	0 1	1 2	18 057	322 409.6		9.6 - 2		D-	1°,92*
328.232	2	3	18 628	323 282.5				$\tilde{\mathrm{D}}-$	1°,92*
328.431	$3p^63d^{2-1}\mathrm{D}_2$	$3p^63d4p^{-1}D_2^{\circ}$	15 336	319 821.2				D-	1°,92*
		_					•		, –
328.129	$3p^63d^2$ ¹ D ₂	$3p^63d4p\ ^3D_2^0$	15 336	322 409.6					1
327.131	2	3	15 336	323 282.5	1				1

J. Phys. Chem. Ref. Data, Monograph 8

Mn VI - Continued

Wave- ength (Å)	Classifica Lower	tion Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
327.131	$3p^63d^2 \ ^3P_1$	$3p^63d4p\ ^3{ m F}_2^{\circ}$	18 057	323 796.1	1				1
326.571	3 <i>p</i> 3 <i>u</i> 1 1 2	3 <i>p</i> 3 <i>a</i> 4 <i>p</i> 12	18 628	324 849.1	2				1
326.571	$3p^63d^2$ ¹ D ₂	$3p^6 3d4p\ ^3{ m F}_2^o$	15 336	323 796.1	2				1
325.146^{T}	$3p^63d^2$ ¹ G ₄	$3p^6 3d4p^{-1}F_3^o$	25 511	333 054.5	20	1.4	1.3+10	D-	1°,92*
321.541	$3p^63d^2\ ^3P_2$	$3p^6 3d4p \ ^3P_1^{\circ}$	18 628	329 634.5	9	1.3 - 1	2.7+9	D-	1°,92*
321.176	2	2	18 628	329 992.0	11	4.7 - 1	6.0 + 9	D-	1°,92*
320.979	1	1	18 057	329 634.5	9	9.9 - 2	2.2+9	D-	1°,92*
320.874 ^T	1	0	18 057	329 729.3	9	1.2 - 1	7.8+9	D-	1°,92*
320.681 320.598	0 1	1 2	17 782 18 057	329 634.5 329 992.0	9 9	1.0 - 1 $1.2 - 1$	2.2+9 $1.5+9$	D- D-	1°,92* 1°,92*
320.146	$3p^63d^2$ ¹ D ₂	$3p^6 3d4p\ ^3{ m P}_2^{ m o}$	15 336	329 992.0	6				1
314.979^{T}	$3p^63d^2$ ¹ D ₂	$3p^6 3d4p \ ^1F_3^o$	15 336	333 054.5	6				1
312.692	$3p^63d^2\ ^3P_2$	$3p^6 3d4p^{-1} P_1^o$	18 628	336 130.8	8				1
311.748	$3p^63d^{2-1}D_2$	$3p^6 3d4p^{-1} P_1^{\circ}$	15 336	336 130.8	10	2.5 - 1	5.7+9	D-	1°,92*
310.908	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4p\ ^3{\rm D_3^o}$	1 669	323 282.5	40				1
310.908	2	1	0	321 693.5	40				1
310.908	3	2	746	322 409.6	40		0.0.0	-	1
310.182 310.058	2 3	2 3	$\begin{matrix} 0 \\ 746 \end{matrix}$	322 409.6 323 282.5	9 10	2.0 - 1 $3.4 - 1$	$2.8+9 \\ 3.4+9$	D- D-	1°,92* 1°,92*
309.579	$3p^63d^2\ ^3{ m F}_3$	$3p^63d4p\ ^3{ m F}_2^{ m o}$	746	323 796.1	10	3.2 - 1	4.4+9	D-	1°,92*
309.440	3p 3a 13	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 669	324 849.1	12	5.2 - 1 $5.8 - 1$	5.7+9	D-	1°,92*
308.853	2	2	0	323 796.1	15	5.5 - 2		Ď	1°.92*
308.560	3	3	746	324 849.1	20	7.0 - 2		D-	1°.92*
307.999	4	4	1 669	326 372.6	20	4.7 - 1	3.7 + 9	D-	1°,92* 1°,92*
307.842 307.109	2 3	3 4	0 746	324 849.1 326 372.6	3 5	1.2 - 2 $3.2 - 2$		D-	1°,92* 1°,92*
211.870	$3p^63d^2$ 1 S ₀	$3p^6 3d 5p^{-1} P_1^{\circ}$	59 265	531 252	150				3
205.492	$3p^63d^2$ 1 D ₂	$3p^6 3d4f \ ^3F_2^0$	15 336	501 976	2				3
204.067	$3p^63d^2$ ¹ S ₀	$3p^5(^2P^\circ)3d^3(^2P)^{-1}P_1^\circ$	59 265	549 303	30				3
203.198	$3p^63d^2$ 1S_0	$3p^5(^2P^o)3d^3(^4F) \ ^3D_1^o$	59 265	551 400	5				3
202.678	$3p^63d^2$ ¹ G ₄	$3p^63d4f\ ^1G_4^{\circ}$	25 511	518 905	60				3
201.949	$3p^63d^{2-1}G_4$	$3p^{6}3d4f$ $^{3}G_{3}^{\circ}$	25 511	520 698	20				3
201.457	4	5	25 511	521 892	5				3
199.768	$3p^63d^{2-1}G_4$	$3p^63d4f^{-1}H_5^{\circ}$	25 511	526 092	300				3
199.612	$3p^63d^2\ ^3F_4$	$3p^63d4f\ ^3{ m F}_3^{ m o}$	1 669	502 639	5				3
199.509	3	2	746	501 976	10				3
199.297	4	4	1 669	503 432	270				3
199.246 199.213	3	3	746	502 639 501 976	200 130				3
198.947	2 2	2 3	0	502 639	20				3 3
198.933	3	4	746	503 432	20				3
198.792	$3p^63d^2$ ¹ G ₄	$3p^63d5p^{-1}F_3^0$	25 511	528 532	70				3
197.856	$3p^63d^2\ ^3{ m P}_0$	$3p^63d5p\ ^3{ m D}^{ m o}_1$	17 782	523 203	10				3
197.635	2	3	18 628	524 608	150				3
197.423	$3p^63d^2 \ ^3P_1$	$3p^6 3d5p^{-3}F_2^{\circ}$	18 057	524 590	10				3
197.070	$3p^63d^2$ 3P_2	$3p^5(^2P^\circ)3d^3(^2G)^{-1}F_3^\circ$	18 628	526 055	60				3
196.809	$3p^63d^2$ ¹ D ₂	$3p^6 3d5p^{-1}D_2^{\circ}$	15 336	523 443	150				3
196.531	$3p^63d^2$ ¹ D ₂	$3p^5(^2P^\circ)3d^3(^2D)^{-1}D_2^\circ$	15 336	524 162	300				3
196.111	$3p^63d^2$ 3P_2	$3p^63d5p^{-1}F_3^0$	18 628	528 532	40				3
195.802	$3p^63d^{2-1}D_2$	$3p^5(^2P^\circ)3d^3(^2G)^{-1}F_3^\circ$	15 336	526 055	300				3

Mn vi - Continued

Wave- length (Å)	Classific Lower	cation . Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
194.857	$3p^63d^2$ ¹ D ₂	$3p^6 3d5p^{-1}F_3^{\circ}$	15 336	528 532	200				3
193.706	$3p^63d^{2-1}S_0$	$3p^5(^2P^\circ)3d^3(b^2D)^{-1}P_1^\circ$	59 265	575 512	60				3
192.675	$3p^63d^2$ 3 F ₄	$3p^63d4f\ ^3G_3^{\circ}$	1 669	520 698	10				2
192.441	3p 3u 14	op 3447 G ₃	1 669	521 305	80				3 3
192.327	3	3	746	520 698	50				3
192.225	4	5	1 669	521 892	450				3
192.101	3	4	746	521 305	500				3
192.050	2	3	0	520 698	350				3
191.227	$3p^63d^2$ 3 F ₄	$3p^6 3d5p \ ^3D_3^{\circ}$	1 669	524 608	200				3
191.130	2	1	0	523 203	70				3
191.059 190.890	3 3	2 3	746 746	524 146 524 608	120 30				3 3
191.091	$3p^63d^2$ 3 F ₄	$3p^63d5p\ ^3{ m F}_3^{\circ}$	1 669	524 985	200				3
190.753	3	3	746	524 985	250				3
190.700	4	4	1 669	526 054	350				3
190.625	2	2	0	524 590	150				3 3
190.480	2	3	Ö	524 985	10				3
190.365	3	4	746	526 054	20				3
190.565	$3p^63d^{2-1}G_4$	$3p^5(^2P^\circ)3d^3(^4F)$ $^3D_3^\circ$	25 511	550 258	15				3
189.837	$3p^63d^2\ ^3{ m F}_3$	$3p^5(^2P^\circ)3d^3(^4F)^{-3}F_2^\circ$	746	527 514	30				3
189.569	2	2	0	527 514	100				3 3
189.460	4	3	1 669	529 488	70				3
189.129	3	3	746	529 488	400				3
189.078	4	4	1 669	530 550	500				3 3
188.862	2	3	0	529 488	60				3
188.748	3	4	746	530 550	90				3
188.438	$3p^63d^2$ 3P_2	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	18 628	549 303	10				3
188.233	1	1	18 057	549 303	15				3
188.137	0	1	17 782	549 303	50				3
188.160	$3p^63d^{2-1}G_4$	$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{H})^{-1}\mathrm{G}_{4}^{\circ}$	25 511	556 973	450				3
188.097	$3p^63d^2\ ^3{ m P}_2$	$3p^5(^2P^\circ)3d^3(^4F) \ ^3D_3^\circ$	18 628	550 258	250				3
187.955	2	2	18 628	550 654	80				3
187.756	1	2	18 057	550 654	130				3
187.695	2	1	18 628	551 400	10				3 3 3
187.495	1	1	18 057	551 400	30				3
187.398	0	1	17 782	551 400	40				3
187.278	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	15 336	549 303	90				3
186.942	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^3(^4F) ^3D_3^o$	15 336	550 258	10				3
186.805	2	2	15 336	550 654	5				3
186.545	2	1	15 336	551 400	40				3
184.001	$3p^63d^2$ 1 G ₄	$3p^5(^2P^\circ)3d^3(^2F)^{-1}F_3^\circ$	25 511	568 974	350				3
		•							
182.286	$3p^6 3d^2 \ ^3$ F ₄	$3p^5(^2P^{\circ})3d^3(^4F) \ ^3D_3^{\circ}$	1 669	550 258	250				3
181.980	3	3	746	550 258	70				3
181.849 181.602	3	2	746	550 654	130				3
181.357	2 2	2	0 0	550 654 551 400	80 160				3 3
182.048	$3p^63d^2\ ^3{ m F}_2$	$3p^5(^2P^\circ)3d^3(^2P)^{-1}P_1^o$	0	549 303	90				3
181.897	$3p^63d^2\ ^3{ m P_2}$	$3p^5(^2P^\circ)3d^3(^4P)$ $^3S_1^\circ$	18 628	568 390	120				3
181.708	5p 5u 12	ο _P (1)ου (1) 3 ₁	18 057	568 390	80				3 3
181.617	0	1	17 782	568 390	50				3
180.817	$3p^63d^{2-1}D_2$	$3p^5(^2P^\circ)3d^3(^4P)^{-3}S_1^\circ$	15 336	568 390	15				3
180.626		$3p^5(^2P^\circ)3d^3(^2F)$ $^1F_3^\circ$	15 336	568 974	60				3
180.474	$3p^63d^2$ 1S_0	$3p^6 3d5f^{-1}P_1^o$	59 265	613 361	40				3
179.572		$3p^{5}(^{2}P^{\circ})3d^{3}(b^{2}D)^{-1}P_{1}^{\circ}$	18 628						
		_		575 512	10				3
178.515		$3p^{5}(^{2}P^{\circ})3d^{3}(b^{2}D) {}^{1}P_{1}^{\circ}$	15 336	575 512	110				3
171.633	$3p^63d^{2-1}G_4$	$3p^63d5f^{-1}G_4^{\circ}$	25 511	608 125	120				3

Mn VI - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
171.348	$3p^63d^2$ 1G ₄	$3p^63d5f\ ^3F_4^{\circ}$	25 511	609 095	70				3
170.990	$3p^63d^2$ 1G_4	$3p^63d5f\ ^3{ m G_4^o}$	25 511	610 314	1				3
170.910	4	5	25 511	610 595	1				3
170.303	$3p^63d^2$ ¹ G ₄	$3p^63d5f^{-1}H_5^{\circ}$	25 511	612 678	220				3
169.551	$3p^63d^2\ ^3\mathrm{P}_2$	$3p^63d5f~^3{ m F}_3^{ m o}$	18 628	608 407	1				3
168.888	$3p^63d^2\ ^3\mathrm{P}_2$	$3p^63d5f^{-1}F_3^o$	18 628	610 723	20				3
168.740	$3p^63d^2$ 3 P ₁	$3p^6 3d5f \ ^3D_1^{o}$	18 057	610 678	5				3
168.691	2	3	18 628	611 405	160				3
168.664	0	1	17 782	610 678	40				3
168.549	1	2	18 057	611 340	70				3
168.515	$3p^63d^2$ 3P_2	$3p^63d5f$ $^3P_2^0$	18 628	612 044	15				3
168.353	1	2	18 057	612 044	15				3
168.321	1	1	18 057	612 161	10				3
168.282	$3p^63d^{2-1}D_2$	$3p^63d5f~^3G_3^{\circ}$	15 336	609 568	15				3
168.147	$3p^63d^{2-1}D_2$	$3p^6 3d5f^{-1} D_2^{\circ}$	15 336	610 051	70				3
167.957	$3p^63d^{2-1}D_2$	$3p^63d5f^{-1}F_3^0$	15 336	610 723	70				3
167.765	$3p^63d^{2-1}D_2$	$3p^63d5f$ $^3D_3^{\circ}$	15 336	611 405	20				3
166.115	$3p^6 3d^2 {}^1S_0$	$3p^63d6f$ ¹ P ₁ °	59 265	661 258	10				3
100.110		-	33 203	001 200	10				5
164.892	$3p^63d^2\ ^3F_4$	$3p^{6}3d5f^{1}G_{4}^{o}$	1 669	608 125	20				3
164.639	3	4	746	608 125	60				3
104 015	$3p^63d^2\ ^3{ m F_4}$	$3p^63d5f$ $^3F_3^o$	1 000	000 407					
164.815 164.629		3p-3a5f-F3	1 669 1 669	608 407 609 095	1 85				3
164.566	4 3	4	746	608 407	60				3 3
164.421	2	3 2	0	608 193	55				3
164.378	3	4	746	609 095	10				3
164.365	2	3	0	608 407	25				3
	$3p^63d^2$ 3 F ₄	0.60 17.63 00							_
164.300		$3p^63d5f\ ^3{ m G_4^o}$	1 669	610 314	30				3
164.249 164.224	3	3	$746 \\ 1669$	609 568 610 595	20 180				3 3
164.051	4 3	5 4	746	610 314	180				3
164.051	2	3	0	609 568	180				3 3
	6 22								
164.188	$3p^63d^2$ 3 F ₄	$3p^6 3d5f^{-1}F_3^0$	1 669	610 723	2				3
163.939 163.740	3	3	746	610 723	5				3
103.740	2	3	0	610 723	5				3
163.663	$3p^63d^2$ 3 F ₄	$3p^63d5f^{-1}H_5^o$	1 669	612 678	1				3
163.557	$3p^63d^2\ ^3{ m F_2}$	$3p^63d5f\ ^3{\rm D}^o_3$	0	611 405	1				3
158.139	$3p^63d^{2-1}G_4$	$3p^63d6f\ ^1{ m G_4^o}$	25 511	657 867	6				3
157.908	$3p^63d^{2-1}G_4$	$3p^6 3d6f \ ^3F_4^{o}$	25 511	658 777	2				3
157.301	$3p^63d^2$ ¹ G ₄	$3p^63d6f^{-1}H_5^0$	25 511	661 233	60				3
155.017		_							
155.914 155.813	$3p^6 3d^2 {}^3P_2$	$3p^6 3d6f \ ^3D_3^{\circ}$	18 628	660 007	25				3
155.789	1	1	18 057 18 057	659 849 659 951	$\begin{array}{c} 5 \\ 20 \end{array}$				3
155.747	1	2	17 782	659 849	10				3 3
155.317	$3p^63d^{2-1}\mathrm{D_2}$	$3p^63d6f^{-1}D_2^{\circ}$	15 336	659 181	2				3
155.119	$3p^63d^2$ ¹ D ₂	$3p^6 3d6f^{-3}D_3^{o}$	15 336	660 007	12				
	$3p^6 3d^2$ $^{1}\mathrm{D}_2$	-							3
154.994		$3p^6 3d6f ^1F_3^{\circ}$	15 336	660 522	2				3
152.182	$3p^63d^2$ 3F_4	$3p^6 3d6f \ ^3F_4^{\circ}$	1 669	658 777	10				3
159 //02		3	746	658 238	5				3
152.093 152.046	3 2	2	0	657 696	8				3

Mn VI - Continued

Wave-	Classification		Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		·					
151.949	$3p^63d^2$ 3 F ₄	$3p^63d6f\ ^3G_4^{\circ}$	1 669	659 783	20				3
151.899	4	5	1 669	660 000	45				3
151.769	2	3	0	658 896	20				3
151.736	3	4	746	659 783	35				3
151.617	$3p^63d^2\ ^3{ m F_4}$	$3p^63d6f^{-1}{ m H_5^o}$	1 669	661 233	1				3
150.324	$3p^63d^{2-1}G_4$	$3p^6 3d7f^{-1}{ m H_5^o}$	25 511	690 741	8				3
148.998	$3p^63d^2\ ^3\mathrm{P}_2$	$3p^6 3d7f ^3 D_3^0$	18 628	689 778	4				3
148.909	. 2	1	17 782	689 333	2				3
148.846	1	2	18 057	689 892	2				3
148.476	$3p^6 3d^{2-1} D_2$	$3p^6 3d7f \ ^1{ m D}^{ m o}_2$	15 336	688 844	1				3
148.273	$3p^63d^2$ ¹ D ₂	$3p^6 3d7f\ ^3{ m D}_3^{ m o}$	15 336	689 778	1				3
146.118	$3p^63d^{2-1}G_4$	$3p^63d8f^{-1}{ m H_5^o}$	25 511	709 890	2				3
145.452	$3p^63d^2$ 3 F ₄	$3p^63d7f\ ^3F_4^0$	1 669	689 181	2				3
145.414	3	3	746	688 438	2 2 2 2				3
145.304	2	2	0	688 212	2				3
145.257	3	4	746	689 181	2				3
145.280	$3p^63d^2$ 3 F ₄	$3p^63d7f\ ^3G_5^{\circ}$	1 669	689 995	16				3
145.169	2	3	0	688 846	4				3
145.117	3	4	746	689 844	8				3
141.277	$3p^63d^2$ 3 F ₄	$3p^63d8f~^3G_5^{\circ}$	1 669	709 500	10				3
141.193	2	3	0	708 250	1				3
141.119	3	4	746	709 370	$\overline{2}$				3

Mn VII

Wave-		ication	Energy L	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
254.517	$3p^63d^2D_{5/2}$	$3p^5(^2P^\circ)3d^2(^1G)^2F^\circ_{5/2}$	1 338	394 238	15				10
253.654	3/2	5/2	0	394 238	400				10
252.985	5/2	7/2	1 338	396 618	750				10
252.760	$3p^63d^{2}D_{3/2}$	$3p^64p^2P_{1/2}^{\circ}$	0	395 633	400				5,10°
250.969	5/2	3/2	1 338	399 795	1000				5,10°
250.127	3/2	3/2	0	399 795	50				5,10°
0.4# 4#0	$3p^63d\ ^2{ m D}_{3/2}$	o 5/2pg)o (2/1p) 2pg		101.005				_	
247.473 245.739	·	$3p^5(^2P^\circ)3d^2(^1D)^2P_{1/2}^\circ$	1 229	404 085 408 273	250 300	6.8 - 2 $1.3 - 1$	3.8+9 $3.4+9$	D- D-	10°,92* 10°,92*
245.739 244.935	5/2 3/2	3/2 3/2	1 338 0	408 273	100	1.3 - 1 $1.4 - 2$	3.4+9 $3.8+8$	E E	10°,92*
	•	·						_	
244.766	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^1D)\ ^2F^o_{7/2}$	1 338	409 891	500	2.2 - 1	3.1 + 9	D-	10°,92*
239.381	5/2	5/2	1 338	419 081	25 300	1.1 - 2 $1.6 - 1$	2.2+8	E	10°,92*
238.617	3/2	5/2	0	419 081	300	1.0 – 1	3.2 + 9	D-	10°,92*
204.675	$3p^63d^{-2}D_{5/2}$	$3p^{5}(^{2}P^{o})3d^{2}(^{3}F)^{2}F_{5/2}^{o}$	1 338	489 916	50	2.2 - 1	5.9 + 9	\mathbf{E}	10°,92*
204.117	3/2	5/2	0	489 916	400	3.1	8.3 + 10	D-	7,10°,92*
202.840	5/2	7/2	1 338	494 337	600	4.5	9.1 + 10	D-	7,10°,92*
184.538	$3p^63d\ ^2\mathrm{D}_{3/2}$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}P)^{2}P_{1/2}^{\circ}$	0	541 894	200	2.1	2.1 + 11	D-	10°,92*
184.161	5/2	3/2	1 338	544 342	300	3.8	1.9 + 11	D-	10°,92*
183.708	3/2	3/2	0	544 342	100	4.4 - 1	2.1+10	E	10°,92*
183.141	$3p^63d^{-2}D_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)^2D_{5/2}^\circ$	1 338	547 367	500	8.4	9.7:11	D-	e 7 100 000
182.945		•	1 338	547 367 547 949	100	6.0 - 1	2.7+11 $3.0+10$	E E	6, 7, 10°, 92* 6, 7, 10°, 92*
182.692	5/2 3/2	3/2 5/2	0	547 367	200	6.0 - 1	2.0+10	E	6,7,10°,92
182.499	3/2	3/2	0	547 949	300	5.2	2.7 + 11	D-	6,7,10°,92
169 690	$3p^6 3d^{-2}D_{5/2}$	2.644.259	1 000	010 00 7	100				× 100
162.689 162.656	·	$3p^64f\ ^2\mathrm{F}^{\mathrm{o}}_{5/2}$	1 338 1 338	616 007 616 132	100 300				5,10° 5,10°
162.336	5/2 3/2	7/2 5/2	1 338	616 132	300 250				5, 10° 5, 10°
	· ·	·							
142.615	$3p^6 3d^{-2} D_{3/2}$	$3p^53d(^3P^{\circ})4s\ ^2P^{\circ}_{1/2}$	0	701 189	30	1.2 - 1	2.0+10	D	8,9,10°,92*
142.028 141.757	5/2 3/2	3/2 3/2	1 338 0	705 425 705 425	50 25	2.0 - 1 $3.4 - 2$	1.7+10 $2.8+9$	D E	8,9,10°,92* 8,9,10°,92*
	•		· ·	.00 120	20	0.1 2	2.0 , 0		0,0,10 ,02
141.044	$3p^6 3d^2 D_{5/2}$	$3p^53d(^3F^{\circ})4s\ ^4F^{\circ}_{7/2}$	1 338	710 337	20				8,9,10°
140.323 139.862	3/2	5/2	0	712 642	15				8,9,10°
139.602	3/2	3/2	0	714 990	1				10
139.595	$3p^63d^{-2}D_{5/2}$	$3p^53d(^3F^\circ)4s\ ^2F^\circ_{7/2}$	1 338	717 696	85	6.0 - 1	2.6+10	D	8,9,10°,92
138.697	5/2	5/2	1 338	722 331	3	3.1 - 2	1.8 + 9	\mathbf{E}	8,9,10°,92
138.441	3/2	5/2	0	722 331	70	5.6 - 1	3.3 + 10	D	8,9,10°,92
136.177	$3p^63d\ ^2{ m D}_{5/2}$	$3p^53d(^3D^{\circ})4s^{-4}D^{\circ}_{7/2}$	1 338	735 676	35				8,9,10°
135.900	5/2	5/2	1 338	737 173	15				8, 9, 10°
135.532	3/2	3/2	0	737 833	8				10
135.394	3/2	1/2	0	738 585	3				10
135.609	$3p^63d^{2}D_{5/2}$	$3p^65f^{-2}F_{5/2}^{o}$	1 338	738 765	10				5,10°
135.475	5/2	7/2	1 338	739 482	120				5, 10°
135.362	3/2	5/2	0	738 765	100				5,10°
135.148	$3p^63d^{\ 2}{ m D}_{3/2}$	32534/15014.250	Λ	720 020	75				10
134.190	$\frac{3p}{3a} \frac{3a}{D_{3/2}}$	$3p^53d(^1F^{\circ})4s \ ^2F^{\circ}_{5/2}$	0 1 338	739 930 746 550	75 25	2.5 - 1	1.2+10	D	10 8,9,10°,92
		•	1 300	, 10 000	20	2.0 - 1	1.2710	L)	0, 5, 10 , 92
134.972	$3p^63d^{\ 2}D_{3/2}$	$3p^53d(^1D^{\circ})4s\ ^2D^{\circ}_{3/2}$	0	740 894	15				10
134.628	5/2	5/2	1 338	744 126	30				10
133.875	$3p^63d\ ^2{ m D}_{5/2}$	$3p^53d(^3D^{\circ})4s\ ^2D^{\circ}_{3/2}$	1 338	748 302	5	6.6 - 2	5.9+9	E	8 6 100 00
133.655	5/2	5/2 5/2		749 532	60	4.3 - 1		D.	8, 9, 10°, 92 8, 9, 10°, 92
133.636	3/2	3/2	_	748 302	35	2.7 - 1		D	8,9,10°,92
133.417	3/2	5/2		749 532	2				8,9,10°
123.993	$3p^63d^{\ 2}\mathrm{D}_{5/2}$	$3p^66f~^2\mathrm{F}^{\circ}_{7/2}$	1 338	807 835	50				5 100
123.790	3p 3a D _{5/2} 3/2	5p of F _{7/2} 5/2		807 835 807 820	30				5,10° 5,10°
				00.020	30				0, 10
117.978	$3p^63d\ ^2{ m D}_{5/2}$	$3p^67f$ $^2\mathrm{F}^{\mathrm{o}}_{7/2}$	1 338	848 954	15				5,10°
117.793	3/2	5/2		848 947	10				5,10°
	$3p^63d\ ^2{ m D}_{5/2}$	$3p^68f\ ^2\mathrm{F}^{\circ}_{7/2}$	1 338		2				5,10°
114.380	30 30 11-10			875 620					

Mn VII - Continued

Wave-	Classific		Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
112.060	$3p^63d^{-2}D_{5/2}$	$3p^69f^{-2}F_{7}^{\circ}$	1 338	893 730	1				5
111.889	3/2	5,	2 0	893 730					5

Mn viii

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
668.288	$3s^23p^53d$ $^1P_1^o$	$3s3p^63d^{-1}D_2$	539 214	688 850					14
415.348	$3s^23p^53d$ $^1F_3^{\circ}$	$3s3p^63d\ ^3{ m D}_2$	427 531	668 308	4bl				14
413.582	ŭ	3	427 531	669 326	5				14
411.473	$3s^23p^53d\ ^3{ m D}_2^{ m o}$	$3s3p^63d\ ^3{ m D}_1$	424 641	667 677					14
410.374 409.270	2	2	424 641 423 337	668 308 667 677	6bl 5				14 14
408.685	1 2	3	424 641	669 326	5				14
408.206	1	2	423 337	668 308					14
400.075	3	3	419 374	669 326	8				14
403.497	$3s^23p^53d^{-1}D_2^{o}$	$3s3p^{6}3d^{3}D_{1}$	419 817	667 677	2				14
402.446 400.781	2	2	419 817 419 817	668 308 669 326	5 3				14 14
400.761	2	3	419 011	009 320	J				14
382.666	$3s^23p^53d\ ^1{ m F}_3^o$	$3s3p^63d^{-1}D_2$	427 531	688 850	9				14
378.482	$3s^23p^53d\ ^3\mathrm{D_2^o}$	$3s3p^63d\ ^1{ m D_2}$	424 641	688 850	5				14
371.090	3	2	419 374	688 850	6				14
371.695	$3s^23p^53d$ $^1\mathrm{D}^{\circ}_{2}$	$3s3p^{6}3d^{-1}D_{2}$	419 817	688 850	8				14
371.586	$3s^23p^53d\ ^3{ m F}_2^{ m o}$	$3s3p^63d\ ^3{ m D}_1$	398 564	667 677	9				14
370.722	2	2	398 564	668 308	5				14
365.779 364.427	3 3	2 3	394 921 394 921	668 308 669 326	10 5				14 14
360.373	4	3	391 836	669 326	11				14
347.602	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s3p^63d^{-3}D_1$	379 993	667 677	2				14
346.842	38 3p 3a F ₂	383p 34 D ₁	379 993	668 308	8				14
345.617	2	3	379 993	669 326	11				14
342.501	1	1	375 710	667 677	7				14
341.770 340.114	1 0	2	375 710 373 658	668 308 667 677	10 8				14 14
344.493 340.234	$3s^23p^53d$ $^3F_2^{\circ}$	$3s3p^63d\ ^1{ m D_2}$	398 564 394 921	688 850 688 850	3 bl				14 14
323.782	$3s^23p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3s3p^63d^{-1}{ m D_2}$	379 993	688 850	1				14
266.181	$3p^{6-1}S_0$	$3p^53d\ ^3P_1^{\rm o}$	0	375 710	5bl				14
236.218	$3p^{6-1}S_0$	$3p^53d\ ^3{ m D}^{ m o}_1$	0	423 337	15				14
185.455	$3p^{6-1}S_0$	$3p^53d^{-1}P_1^{o}$	0	539 214	20	2.87	1.85+11	C	6,7,14°,15,92*
141.76	$3p^53d$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3p^54f^{-1}G_4$	419 374	1 124 800	10				16
141.29	$3p^{5}3d^{-1}F_{3}^{\circ}$	$3p^54f\ ^3{ m F_4}$	427 531	1 135 300	7				16
140.73	$3p^5 3d\ ^3D_2^{\circ}$	$3p^54f\ ^3{ m F}_3$	424 641	1 135 200	5				16
139.93	$3p^53d^{-1}D_2^{o}$	$3p^54f\ ^1{ m F}_3$	419 817	1 134 500	5				16
137.92	$3p^53d\ ^3{ m F_2^o}$	$3p^54f\ ^3{ m G}_3$	398 564	1 123 600	6				16
137.82	3	4	394 921	1 120 500	7				16
137.50	4	5	391 836	1 119 100	10				16
135.48^{T}	$3p^{5}3d\ ^{3}P_{2}^{\circ}$	$3p^54f\ ^3{ m D}_2$	379 993	1 117 600	bl				16
135.15	2	3	379 993	1 119 900	bl				16
135.06 134.79	1	1	375 710	1 116 100	3				16
134.69	1 0	2	375 710 373 658	1 117 600 1 116 100	$\frac{4}{2}$				16 16
124.055	$3p^{6-1}S_0$	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}[\frac{3}{2}]_{1}^{\circ}$		806 100	10	1.4 - 1	2.0+10	D	11,12°,92*
122.168	$3p^{6-1}S_0$	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}[\frac{1}{2}]_{1}^{\circ}$		818 500	15	2.7 - 1	4.0+10	D	11,12°,92*
97.411	$3p^{6-1}S_0$	$3p^{5}(^{2}P_{3/2}^{\circ})4d^{2}[\frac{3}{2}]_{1}^{\circ}$		1 026 600	7			_	13
		·							
96.332	$3p^{6} {}^{1}S_{0}$	$3p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d^{2}[\frac{3}{2}]_{1}^{\circ}$	0	1 038 100	6				13

 $\mathbf{M}\mathbf{n}$ ix

Wave- length (Å)	Classific Lower	ation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
968.5 ^C	$3s^23p^5$ ² P° _{3/2}	$3s^23p^5$ $^2P_{1/2}^{\circ}$	0	12 546		M1	3.55+1	В	92*
395.473	$3s^23p^5$ 2 P $_{1/2}^{\circ}$	$3s3p^6 {}^2S_{1/2}$	12 546	265 408	8	6.8 - 2	1.5+9	C-	17, 18°, 21, 26, 92
376.778	3/2	1/2	0	265 408	10	1.42 - 1	3.33+9	C-	17,18°,21,26,92
204.43	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$3s^23p^4(^1D)3d\ ^2S_{1/2}$	12 546	501 710		4.94 - 1	3.95+10	C-	19°,92*
199.32	3/2	1/2	0	501 710		1.3	1.1+11	C-	19°,92*
196.38	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2P_{3/2}$	12 546	521 840					19
194.61	1/2	1/2	$12\ 546$	526 380					19
191.60	3/2	3/2	0	521 840					6,7,19°
189.98	3/2	1/2	0	526 380					19
189.16	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2D_{3/2}$	12 546	541 160		3.40	1.59 + 11	\mathbf{C}	6,7,19°,92*
188.48	3/2	5/2	0	530 560		5.32	1.66 + 11	C	6,7,19°,92*
184.80	3/2	3/2	0	541 160		1.2 - 1	6.1 + 9	D	19°,92*
$123.85^{\mathbf{L}}$	$3s^23p^4(^1D)3d\ ^2F_{7/2}$	$3s^23p^4(^1D)4f\ ^2G_{9/2}^{\circ}$							24
121.633 ^L	$3s^23p^4(^3P)3d^4F_{7/2}$	$3s^23p^4(^3P)4f^4G_{9/2}^{\circ}$							24
121.351 ^L	9/2	11/2							24
$121.12^{\rm L}$	5/2	7/2							24
121.442^{L}	$3s^23p^4(^1{ m D})3d\ ^2{ m G}_{9/2}$	$3s^23p^4(^1\mathrm{D})4f^{-2}\mathrm{H}^{\mathrm{o}}_{11/2}$							24
118.510 ^L	$3s^23p^4(^3\mathrm{P})3d\ ^4\mathrm{D}_{7/2}$	$3s^23p^4(^3P)4f\ ^4F^o_{9/2}$							24
114.472	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^23p^4(^3P)4s^4P_{5/2}$	0	873 580					22
113.627	3/2	3/2	0	880 070	3				22
114.023	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s^23p^4(^3P)4s^2P_{3/2}$	12 546	889 560					21, 22°
113.080	1/2 1/2	1/2		896 860	2				21, 22°
112.415	3/2	3/2		889 560	5				21, 22°
111.500	3/2	1/2		896 860	2				21,22°
111.262	$3s^23p^5$ 2 P $_{1/2}^{\circ}$	$3s^23p^4(^1D)4s^2D_{3/2}$	12 546	911 310	4				22
109.783	3/2	5/2	_	910 890	5				22
105.256	$3s^23p^5$ ² P° _{3/2}	$3s^23p^4(^1S)4s^2S_{1/2}$		950 060					22
	•	•							2.2
91.06	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s^23p^4(^3P)4d\ ^2D_{3/2}$	$12\ 546$	1 110 700	8				23
90.134	3/2	5/2		1 109 500	9				$23^{\triangle}, 24^{\circ}$
90.034	3/2	3/2		1 110 700	8				23 [△] , 24°
90.599	$3s^23p^5 {}^2P_{1/2}^{o}$	$3s^23p^4(^3P)4d\ ^2P_{3/2}$	$12\ 546$	1 116 300					24
89.914	$3s^23p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^23p^4(^3P)4d\ ^4F_{5/2}$	0	1 112 200	4				$23^{\Delta}, 24^{\circ}$
89.783	$3s^23p^5$ $^2P_{3/2}^{\circ}$	$3s^23p^4(^3P)4d\ ^2F_{5/2}$	0	1 113 800	4				23 [△] , 24°
89.448	$3s^23p^5$ $^2P_{1/2}^o$	$3s^23p^4(^1D)4d\ ^2S_{1/2}$	12 546	1 130 700					24
88.423	3/2	1/2	_	1 130 700	6				23 [△] , 24°
00 000	$3s^23p^5$ ² P ^o _{1/2}	•		1 107 000					
88.923		$3s^23p^4(^1D)4d^2P_{3/2}$		1 137 000	4				$23^{\triangle}, 24^{\circ}$ $23^{\triangle}, 24^{\circ}$
88.773 87.958	1/2	1/2	_	1 139 000	4				
87.79	3/2 3/2	3/2 1/2		1 137 000 1 139 000	$\frac{6}{2}$				23 [△] , 24° 23
88.258	$3s^23p^5$ 2 P $^{\circ}_{1/2}$	$3s^23p^4(^1{ m D})4d\ ^2{ m D}_{3/2}$		1 145 700	5				23 ^Δ , 24°
87.552	3/2	5/2	_	1 142 200	8				23 [△] , 24°
87.27	3/2	3/2	, 0	1 145 700	3				23 [△] , 24°

Mn x

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
9978.3 ^C	$3s^23p^4$ 3 P ₂	$3s^23p^4$ 3P_1	0	10 019		M1	2.18+1	C+	92*
2956.0 ^C	$3s^23p^4$ 3P_2	$3s^23p^{4-1}D_2$	0	33 820		M1	5.3+1	D-	92*
1574.2 ^C	$3s^23p^4$ 3 P ₁	$3s^23p^{4}$ ¹ S ₀	10 019	73 545		M1	5.8+2	E	92*
398.322 388.988 386.316 383.036 379.368 371.905	$3s^23p^4$ $^3\mathrm{P}_1$ 0 1 2 2 1 2 2	$3s3p^5$ $^3P_2^o$ 1 1 2 0 1 1	10 019 11 797 10 019 0 10 019	261 072 268 874 268 874 261 072 273 615 268 874	bl	1.7 – 1	1.5+9	E	18°, 26, 27 18°, 26, 27 18°, 26, 27 18°, 26, 27, 92* 18 18°, 26, 27
384.827	$3s^23p^{4-1}S_0$	$3s3p^{5-1}P_1^{\circ}$	73 545	333 402					18
333.798	$3s^23p^{4-1}D_2$	$3s3p^{5-1}P_1^{o}$	33 820	333 402		3.3 - 1	6.6+9	D	18°, 26, 27, 92*
218.11 217.88	$3s^23p^4$ $^{1}D_{2}$ 2	$3s^23p^3(^2D^{\circ})3d\ ^3P_1^{\circ}$	33 820 33 820	492 320 492 770					27 27
207.15 203.12 202.93	$3s^23p^4\ ^3\mathrm{P}_1$	$3s^23p^3(^2D^{\circ})3d\ ^3P_2^{\circ}$	10 019 0 0	492 770 492 320 492 770		3.1	1.0+11	Е	19,27° 27 19,27°,92*
199.08	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^{\circ})3d^{-1}D_2^{\circ}$	33 820	536 130		3.4	1.2+11	D	19,27°,92*
198.42	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2D^o)3d\ ^1P_1^o$	73 545	577 530		2.4	1.4+11	D	27°,92*
195.85 195.03 194.37 194.30 192.08	$3s^23p^4$ $^3\mathrm{P}_1$ 0 1 2 2	$3s^23p^3(^4S^\circ)3d^{-3}D_2^\circ$ 1 1 3 2	10 019 11 797 10 019 0	520 620 524 520 524 520 514 670 520 620					7, 27° 7, 27° 27 7, 27° 27
193.43	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{\rm D^o})3d\ ^1{ m F}_3^{ m o}$	33 820	550 800		6.0	1.5+11	D	7,27°,92*
108.97 ^L 108.93 ^L	$3s^23p^3(^2\mathrm{P^o})3d~^3\mathrm{F}_3^o$	$3s^23p^3(^2P^o)4f\ ^3G_4$			bl bl				24 24
108.97^{L} 108.93^{L}	$3s^23p^3(^2\mathrm{D^{\circ}})3d\ ^3\mathrm{G}^{\circ}_5$	$3s^23p^3(^2D^{\circ})4f\ ^3H_6$			bl bl				24 24
107.472^{L} 107.39^{L} 107.34^{L} 107.34^{L}	$3s^23p^3(^4S^\circ)3d^{-5}D_4^\circ$ 3 2 1	$3s^23p^3(^4{ m S}^{\circ})4f\ ^5{ m F}_5$			bl bl bl				24 24 24 24
107.36 ^L	$3s^23p^3(^2D^\circ)3d\ ^3F_4^\circ$	$3s^23p^3(^2D^o)4f ^3G_5$			ы				24
104.806 104.608 103.521	$3s^23p^4$ 3 P $_0$ 1 2	$3s^23p^3(^4S^\circ)4s \ ^3S_1^\circ$	10 019	965 970 965 970 965 970					28 28 28
104.310	$3s^23p^{4-1}S_0$	$3s^23p^3(^2P^{\circ})4s^{-1}P_1^{\circ}$	73 545	1 032 090					28
103.269	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})4s^{-1}\mathrm{D^o_2}$	33 820	1 002 160					28
102.030 101.854 101.808 100.787 100.585	$3s^23p^4$ 3P_0 1 1 2 2 2	$3s^23p^3(^2\mathrm{D^o})4s\ ^3\mathrm{D^o_1}$	10 019 10 019 0	991 860 991 860 992 220 992 220 994 180					28 28 28 28 28
100.173	$3s^23p^{4-1}D_2$	$3s^23p^3(^2P^o)4s^{-1}P_1^o$	33 820	1 032 090					28
84.292 83.518	$3s^23p^4$ 3P_1	$3s^23p^3(^4S^\circ)4d^{-3}D_2^\circ$	_	1 196 370 1 197 350					23 [△] , 24° 23 [△] , 24°
83.068	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^o)4d^{-1}D_2^o$	33 820	1 237 650					23 [△] ,24°
82.828	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^{\circ})4d^{-1}F_{\circ}^{\circ}$	33 820	1 241 140					23 [△] ,24°

Mn xı

Wave-		Classifica		Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower		Upper							···
3381.9 ^C	$3s^23p^3$	² D _{3/2}	$3s^23p^3$ ² P° _{1/2}	39 384	68 945		M1	4.5+1	C	92*
240.6 ^C		5/2	3/2	42 702	73 552		M1	4.8 + 1	C	92*
925.9 ^C		3/2	3/2	39 384	73 552		Mı	1.1+2	C	92*
538.3 ^C	$3s^23p^3$	⁴ S _{3/2}	$3s^23p^3$ ² D $_{3/2}^{\circ}$	0	39 384		M1	2.4+1	D	92*
450.49	$3s^23p^3$	4S _{3/2}	$3s^23p^3$ ² P $_{1/2}^{\circ}$	0	68 945		M1	1.0+2	D	29°,92*
359.59		3/2	3/2	0	73 552		M1	2.0+2	D	29,30°,92*
414.972 ^C	$3s^23p^3$	² P _{3/2}	$3s3p^{4} {}^{2}D_{3/2}$	73 552	314 532		9.6 - 4	9.2+6	E	92*
412.662^{C}	_	3/2	5/2	73 552	315 881		7.2 - 2	4.8+8	D	92*
407.188 ^C		1/2	3/2	68 945	314 532		2.8 - 2	2.8+8	D	92*
393.743	$3s^23p^3$	4S° 40	$3s3p^4 \ ^4P_{5/2}$	0	253 974		1.9 - 1	1.4+9	D	17, 18°, 26, 27, 92
382.142		3/2	3/2	0	261 683		1.3 - 1	1.5+9	D	18°, 26, 27, 92*
377.154		3/2	1/2	0	265 144		6.8 - 2	1.5+9	D	18°, 27, 92*
367.877	$3s^23p^3$	² D ² (2	$3s3p^4$ $^2D_{3/2}$	42 702	314 532		5.0 - 3	6.2+7	E	18°,92*
366.060	•	5/2 5/2	5/2	42 702	315 881		3.0 - 1	2.5+9	D	18°, 26, 27, 92*
363.510		3/2	3/2	39 384	314 532	bl	2.3 - 1	3.0+9	Ď	18°, 26, 92*
361.668 ^C		3/2	5/2	39 384	315 881		3.4 - 3	2.9 + 7	E	92*
347.404	$3s^23p^3$	² P _{3/2}	$3s3p^4 {}^{2}P_{3/2}$	73 552	361 400					18
341.929	•	1/2	3/2	68 945	361 400					18
336.995		1/2	1/2	68 945	365 689					18
327.288	$3s^23p^3$	² P ₂ ,	$3s3p^{4}$ $^{2}S_{1/2}$	73 552	379 093					18
322.427	op	1/2	1/2	68 945	379 093					18
313.777	$3s^23p^3$		$3s3p^{4-2}P_{3/2}$	42 702	361 400					100 00 07
310.547	38 3p		•	42 702 39 384	361 400 361 400					18°, 26, 27 18°, 27
306.458		3/2 3/2	3/2 1/2	39 384 39 384	365 689					18°,27 18°,27
235.55	$3s^23p^3$		$3s^23p^2(^3P)3d^{2}P_{3/2}$	42 702	467 940					
233.55	os op	D _{5/2} 3/2	38-3p-(-P)3a-P _{3/2}	42 702 39 384	467 240 476 980					27 27
	0.20.3	•	•				0 -		_	
230.17^{C} 228.42^{C}	$3s^23p^3$		$3s^23p^2(^3P)3d\ ^4P_{5/2}$	42 702	477 170		3.8 - 2	8.0+8	E	92*
228.42 ^C 225.40 ^C		3/2	5/2	39 384 39 384	477 170 483 040		1.2 - 2 $1.2 - 2$	2.6+8 $7.9+8$	E E	92* 92*
	_	3/2	1/2		400 040		1.2 - 2	1.5+0	ь	94
226.42 ^C	$3s^23p^3$	${}^{2}P_{3/2}^{o}$	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{3/2}$	7 3 552	515 210		6.8 - 3	2.2 + 8	\mathbf{E}	92*
226.31 ^C		3/2	5/2	73 552	515 430		3.0 - 1	6.4 + 9	D	92*
224.08 ^C		1/2	3/2	68 945	515 210		1.8 - 1	5.9 + 9	D	92*
216.60	$3s^23p^3$	² P _{1/2}	$3s^23p^2(^1{\rm D})3d\ ^2{\rm P}_{1/2}$	68 945	530 620					27
215.86		3/2	3/2	73 552	536 800		1.4	4.8 + 10	\mathbf{E}	27°,92*
213.75		1/2	3/2	68 945	536 800		4.0 - 1	1.5+10	E	27°,92*
211.64 ^C	$3s^23p^3$	² D _{5/2}	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{3/2}$	42 702	515 210		2.5 - 1	9.1 + 9	Ð	92*
211.54		5/2	5/2	42 702	515 430		1.9	4.6 + 10	D	27°,92*
210.16 210.06 ^C		3/2	3/2	39 384	515 210		1.4	5.5+10	D	27°,92*
210.00		3/2	5/2	39 384	515 430		6.8 - 2	1.7+9	D	92*
209.57	$3s^23p^3$	4S _{3/2}	$3s^23p^2(^3P)3d\ ^4P_{5/2}$	0	477 170		3.0	7.7 + 10	D	27°,31,92*
208.02		3/2	3/2	0	480 720		2.0	7.9 + 10	D	27°, 31, 92*
207.02		3/2	1/2	0	483 040		1.1	8.3+10	D	27°,92*
204.98	$3s^23p^3$	${}^{2}\mathrm{P}^{\circ}_{3/2}$	$3s^23p^2(^3P)3d\ ^2D_{5/2}$	73 552	561 400					27
204.29		3/2	3/2	73 552	563 060					27
202.38		1/2	3/2		563 060					27
202.39^{C}	$3s^23p^3$	² D _{5/2}	$3s^23p^2(^1D)3d^2P_{3/2}$	42 702	536 800		2.4 - 2	9.8+8	E	92*
$201.04^{\rm C}$	-	3/2	3/2	39 384	536 800		2.6 - 2	1.1+9	E	92*
200.67	$3s^23p^3$	$^{2}\mathrm{D}_{5/2}^{\circ}$	$3s^23p^2(^3P)3d^2F_{7/2}$	42 702	541 030		4.7	9.7+10	E	6,7,27°,92*
194.01 ^C	$3s^23p^3$		$3s^23p^2(^1\mathrm{D})3d^{-2}\mathrm{D}_{5/2}$		515 430		4.8 - 3	1.4+8	E	92*
oo arcL		-	a.2a.2/1m) / 4 2***							
99.356 ^L 99.02 ^L	$3s^23p^2(^1D)3d$	•	$3s^23p^2(^1D)4f^{-2}H^o_{11/2}$							24
99.02		7/2	9/2			bl				24
$99.02^{\rm L}$	$3s^23p^2(^1D)3d$	² F _{7/2}	$3s^23p^2(^3P)4f^2G_{9/2}^{\circ}$			bl				24
		•	9/2							

Mn xI - Continued

Wave-	Classific	cation	Energy Le	evels (cm ⁻¹)	Int.	 $A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				 		
98.064 ^L	$3s^23p^2(^3P)3d^4F_{9/2}$	$3s^23p^2(^3P)4f\ ^4G^o_{11/2}$						24
$98.023^{\rm L}$	7/2	9/2						24
95.390	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^1\mathrm{D})4s\ ^2\mathrm{D}_{3/2}$	73 552	1 121 880				24
94.327	$3s^23p^3$ 2 D $_{5/2}^{\circ}$	$3s^23p^2(^3{\rm P})4s\ ^2{\rm P}_{3/2}$	42 702	1 102 840				24
92.75	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^1{ m D})4s\ ^2{ m D}_{5/2}$	42 702	1 120 870	bl			24
92.75	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^4P_{1/2}$	0	. 1 078 200	bl			24
92.240	3/2	3/2	0	1 084 130				24
91.646	3/2	5/2	0	1 091 160				24
78.056	$3s^23p^3 {}^2P_{1/2}^{\circ}$	$3s^23p^2(^3{\rm P})4d\ ^2{\rm D}_{3/2}$	68 945	1 350 080				24
77.556	$3s^23p^3$ $^2P_{3/2}^{\circ}$	$3s^23p^2(^1{ m D})4d\ ^2{ m D}_{5/2}$	73 552	1 362 940				24
77.402	$3s^23p^{3}$ ² D _{3/2}	$3s^23p^2(^3P)4d^2F_{5/2}$	39 384	1 331 340				24
77.270	5/2	7/2	42 702	1 336 860				24
76.858	$3s^23p^3$ 2 P $^{\circ}_{3/2}$	$3s^23p^2(^1{ m D})4d\ ^2{ m S}_{1/2}$	73 552	1 374 650				24
76.763	$3s^23p^3$ $^2D_{5/2}^o$	$3s^23p^2(^3P)4d\ ^4D_{7/2}$	42 702	1 345 410				24
76.380	$3s^23p^3$ 2 $D_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})4d\ ^2\mathrm{D}_{5/2}$	39 384	1 348 630				24
75.879	$3s^23p^{3-2}D_{5/2}^{o}$	$3s^23p^2(^1D)4d^2F_{7/2}$	42 702	1 360 590				24
75.819	5/2	5/2		1 361 630				24
75.477	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4d^4P_{5/2}$	0	1 324 910				24
75.059	3/2	3/2		1 332 280				24
75.227	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})4d~^4\mathrm{F}_{5/2}$	0	1 329 310				24

Mn XII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹) Int	t. <i>gf</i>	$A (s^{-1})$	Acc.	References
3685.5 2861 ^C	$3s^23p^2$ 3P_2	$3s^23p^2$ ¹ D ₂	15 010 7 200	42 140 42 140	M1 M1	4.4+1 3.5+1	E E	32°, 33, 92*, 95 92*
674 ^C 535 ^C	$3s3p^3$ 3 D $_3^{\circ}$	$3s3p^3 \ ^3P_2^{\circ}$	266 610 264 550	303 990 303 990	M1 M1	5.4+1 4.3+1	E E	92* 92*
322.23	$3s^23p^2$ 3 P ₁	$3s^23p^{2-1}S_0$	7 200	82 830	M1	6.2+2	E	29,34°,92*
552.84 529.79	$3s^23p^2$ 3P_2	$3s3p^3$ ${}^5\mathrm{S}^{\mathrm{o}}_2$	15 010 7 200	195 900 195 900				35 35
485.58 ^C	$3s3p^3$ 3 D $_3^{\circ}$	$3s^23p3d\ ^3\mathrm{D}_3^{\mathrm{o}}$	266 610	472 550	M1	5.0+1	E	92*
445.49 ^C	$3s^23p^{2-1}D_2$	$3s3p^3 \ ^3D_3^{o}$	42 140	266 610	1.1 - 2	5.2+7	E	92*
400.74 ^C 397.46 388.58 386.27	$3s^23p^2\ ^3\mathrm{P}_2$ 2 1 0	$3s3p^3$ 3 3 3 3 3 3 3	15 010 15 010 7 200 0	264 550 266 610 264 550 258 890	7.5 - 3 $1.9 - 1$ $1.4 - 1$	6.3+7 1.1+9 1.2+9	D- D	92* 26,27°,92* 27°,92* 27
346.40 ^C 346.04 337.29 336.94 ^C 329.28	$3s^23p^2\ ^3\mathrm{P}_2$ 2 1 1 0	$3s3p^3$ 3 3 $^{\circ}$	15 010 15 010 7 200 7 200 0	303 690 303 990 303 690 303 990 303 690	4.7 - 2 $2.4 - 1$ $7.8 - 2$ $3.6 - 2$ $5.4 - 2$	8.6+8 2.7+9 1.5+9 4.2+8 1.1+9	D- D D D	92* 27°,92* 27°,92* 92* 27°,92*
342.67	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}D_2^{\circ}$	42 140	333 970				27
275.78	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}P_1^{\circ}$	42 140	404 750				27
269.82 264.26 259.33	$3s^23p^2\ ^3\mathrm{P}_2$ 1 0	$3s3p^3$ $^3S_1^{\circ}$	15 010 7 200 0	385 630 385 630 385 630				26, 27° 27 27
237.78	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m D}_2^{ m o}$	42 140	462 700				27
232.34 ^C	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3{\rm D_3^o}$	42 140	472 550	8.5 - 2	1.5+9	E	92*
228.61 224.62 217.39	$3s^23p^2$ ³ P ₂ 1 0	$3s^23p3d\ ^3\mathrm{P}_2^{\mathrm{o}}$ 2	15 010 7 200 0	452 420 452 420 460 000				27 27 27
223.56	$3s^23p^{2-1}S_0$	$3s^23p3d\ ^1P_1^{o}$	82 830	530 140	1.2	5.2+10	D	27°,92*
219.54	$3s^23p^2$ 3 P ₁	$3s^23p3d\ ^1{ m D}_2^{ m o}$	7 200	462 700				27
218.70 218.56 216.12 215.03 212.81	$3s^23p^2\ ^3 ext{P}_2 \ ^2 \ ^1 \ ^0$	$3s^23p3d\ ^3\mathrm{D_2^o}$ 3 1 2 2 1	15 010 15 010 7 200 7 200 0	472 260 472 550 469 900 472 260 469 900	3.0	6.1+10	D	27 27°,31,92* 27 27 27
210.43	$3s^23p^2$ ¹ D ₂	$3s^23p3d^{-1}F_3^{\circ}$	42 140	517 360	3.0	6.4+10	С	27°,31,92*
199.06 ^C	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^1{ m F}_3^{ m o}$	15 010	517 360	8.5 - 2	2.1+9	E	92*
90.701 ^L 90.373 ^L	$3s^23p3d\ ^3{ m F}_3^{\circ}$	$3s^23p4f \ ^3{ m G_4}$						24,36°,47 24,36°,47
86.71 85.72 85.19	$3s^23p^2\ ^3\mathrm{P}_2$ 2 1	$3s^23p4s$ $^3P_1^o$ 2	15 010 15 010 7 200	1 168 300 1 181 300 1 181 300				36°, 47 36°, 47 36°, 47
71.69	$3s^23p^{2-1}D_2$	$3s^23p4d\ ^1{ m F}_3^{ m o}$	42 140	1 437 000				36, 37°, 47
71.32 71.04 70.72	$3s^23p^2\ ^3P_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$3s^23p4d\ ^3\mathrm{D_3^o}$	15 010 7 200 0	1 417 100 1 414 900 1 414 000	ы			36,37°,47 37 37
70.89	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3F_3^{\circ}$	15 010	1 425 600				37

Mn XIII

Wave- ength (Å)	Lower	Classification	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
5536.3	$3s^23p$	² P _{1/2} °	$3s^23p \ ^2P_{3/2}^{o}$	0	15 295		M1	3.21+1	C+	32°, 33, 92*
559.431 ^C	$3s3p^2$	$^{2}P_{3/2}$	$3p^{3} {}^{4}S_{3/2}^{\circ}$	367 425	546 178		8.7 - 3	4.6+7	E	92*
517.56	$3s^23p$	2 _D 0	$3s3p^2 \ ^4P_{1/2}$	15 295	208 451					35
501.20	38 3p		•	15 295	214 546					35 35
482.55		3/2	3/2	15 295	222 463					35
179.27		3/2 1/2	5/2 1/2	0	208 451					35
438.189 ^C	$3s3p^2$	${}^{2}P_{3/2}$	$3p^3 {}^{2}P_{1/2}^{\circ}$	367 425	595 637		3.7 - 2	6.4+8	E	92*
434.081 ^C		3/2	3/2	367 425	597 797		2.6 - 1	2.3 + 9	D	92*
125.038		1/2	1/2	360 387	595 637		1.6 - 1	2.9+9	D	39°,92*
397.622 ^C	$3s^23d$	$^{2}D_{5/2}$	$3s3p(^{3}P^{\circ})3d\ ^{2}F_{5/2}^{\circ}$	442 220	693 715		4.0 - 2	2.8 + 8	\mathbf{E}	92*
395.273 ^C		3/2	5/2	440 725	693 715		1.9 - 1	1.4 + 9	\mathbf{E}	92*
379.393 ^C		5/2	7/2	442 220	705 799		3.4 - 1	2.0+9	\mathbf{E}	92*
389.657 ^C	$3s3p^2$	$^{2}S_{1/2}$	$3p^3 {}^{2}P_{1/2}^{o}$	339 001	595 637		9.4 - 3	2.0+8	\mathbf{E}	92*
386.405 ^C		1/2	3/2	339 001	597 797		1.5 - 1	1.7+9	D	92*
387.585	$3s3p^2$	$^{2}D_{3/2}$	$3p^{3} {}^{2}D_{3/2}^{\circ}$	276 497	534 492					39
385.827		5/2	5/2	278 099	537 263		3.6 - 1	2.7 + 9	\mathbf{E}	39°,92*
383.486 ^C		3/2	5/2	276 497	537 263		3.5 - 2	2.6+8	E	92*
382.845 ^C	$3s^23p$	$^{2}P_{3/2}^{o}$	$3s3p^2 \ ^2D_{3/2}$	15 295	276 497		7.6 - 3	8.6 + 7	E	27,92*
380.501		3/2	5/2		278 099		2.2 - 1	1.7 + 9	D	26, 27, 39°, 92
361.659		1/2	3/2	0	276 497		1.5 - 1	1.9+9	D	26, 27, 39°, 92°
374.69	$3s3p(^{1}P^{\circ})3d$	${}^{2}F_{7/2}^{\circ}$	$3p^2(^3P)3d^2F_{7/2}$	760 881	1 027 744					41
370.808 ^C	$3s3p^2$	$^2\mathrm{D}_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	276 497	546 178		6.0 - 3	7.2 + 7	E	92*
346.84	$3s3p(^3P^{\circ})3d$	4P _{5/2}	$3p^2(^3P)3d^4D_{7/2}$	642 337	930 637					41
331.43	$3s3p(^{3}P^{\circ})3d$	4F _{9/2}	$3p^2(^3P)3d^4F_{9/2}$	611 495	913 218					41
330.43 ^L		5/2	5/2							41
300.11 ^L		7/2	7/2							41
$322.690^{\rm C}$	$3s^{2}3d$	$^{2}D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}P^{\circ}_{3/2}$	442 220	752 115		1.8 - 2	3.0+8	E	92*
321.141 ^C			•		752 115		2.4 - 2	4.0+8	E	92*
		3/2	3/2		102 110		2.4 - 2	4.070	Ľ	92
319.76	$3s3p(^3P^{\circ})3d$	$l^{2}F_{7/2}^{o}$	$3p^2(^1S)3d^{-2}D_{5/2}$	705 799	1 018 534					41
313.801	$3s^{2}3d$	$^{2}D_{5/2}$	3s3p(1P°)3d 2F° _{7/2}	442 220	760 881		2.7	2.4+10	E	39°,92*
311.312 ^C		5/2	5/2	440.000	763 441		8.2 - 2	1.0+9	\mathbf{E}	92*
309.857		3/2	5/2	440 725	763 441		2.0	2.4+10	Ē	39°,92*
313.34	$3s3p(^3P^{\circ})3d$	l 4F _{9/2}	$3p^2(^3P)3d^4D_{7/2}$	611 495	930 637					41
313.337	$3s3p^2$	$^{2}D_{3/2}$	$3p^3 {}^{2}P_{1/2}^{o}$	276 497	595 637	bl	3.4 - 1	1.2+10	D	39°,92*
312.802		5/2	3/2		597 797		5.3 - 1	9.0 + 9	D	39°,92*
311.236 ^C		3/2	3/2	276 497	597 797		6.8 - 2	1.2+9	D	92*
310.68	$3s3p(^{3}P^{\circ})3a$	t 2F2/2	$3p^2(^3P)3d^2F_{7/2}$	705 799	1 027 744	bl				41
303.17	- \	5/2	5/2		1 023 639	bl				41
308.922 ^C	3.222	$^{2}P_{3/2}^{o}$	$3s3p^2$ $^2S_{1/2}$	15 295	330 001		4.8 - 2	1010	7	97 00*
294.985	55 SF	1/2	$383p^{-1}S_{1/2}$ 1/2		339 001 339 001		4.8 - 2 $3.8 - 1$	1.6+9 $1.4+10$	D D	27,92* 27,39°,92*
308.895	2 ∘2 ∞ ²	^{2 4} P _{5/2}	$3p^3 \ ^4S_{3/2}^{\circ}$		5/6 170		Q A 1	1 5 1 10	n	
301.525	JSJP				546 178		8.4 - 1	1.5+10	D	26, 27, 38°, 92
296.073		3/2 1/2	3/2 3/2	000 451	546 178 546 178		6.0 - 1 $3.0 - 1$	$1.1+10 \\ 5.7+9$	D D	38°,92* 38°,92*
293.581	$3s^23d$	$l^{2}D_{5/2}$	3s3p(1P°)3d 2D°		782 845					39
290.539	55 00		•	440.000	786 405		1.4	1.9+10	E	39°,92*
289.285 ^C		5/2 3/2	5/2 5/2		786 405 786 405		3.2 - 2	$\frac{1.9+10}{4.2+8}$	E	92*
			•							
000.000	0.2-	, 20	0.0 (100) - 12							_
293.268 290.114	$3s^23a$	d ² D _{3/2} 3/2	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	440 725	781 703 785 391		7.3 - 1	2.8+10	D	39°,92* 39

Mn XIII - Continued

Wave- length (Å)	Classifica Lower	tion Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
289.774	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2 {}^2P_{1/2}$	15 295	360 387		4.8 - 1	1.9+10	D	17 27 309 00*
283.984		•							17, 27, 39°, 92*
	3/2	3/2	15 295	367 425		1.49	3.08+10	C-	17, 26, 27, 39°, 92°
277.469	1/2	1/2	0	360 387		3.2 - 1	1.4+10	D	17, 26, 27, 39°, 92°
272.154	1/2	3/2	0	367 425		3.00 - 1	6.8+9	C-	17, 26, 27, 39°, 92°
283.24	$3s3p(^{1}P^{\circ})3d^{2}F_{5/2}^{\circ}$	$3s3d^2$ 2 G _{7/2}	763 441	1 116 498					41
281.07	7/2	9/2	760 881	1 116 664					41
279.90	$3s3p(^{3}P^{\circ})3d^{2}D_{3/2}^{\circ}$	$3p^2(^3P)3d^2F_{5/2}$	666 369	1 023 639					41
277.09	•				LI				41
211.09	5/2	7/2	666 826	1 027 744	ы				41
274.546 ^C	$3s3p^2 {}^2\mathrm{D}_{5/2}$	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	278 099	642 337		4.6 - 2	6.8+8	E	92*
267.66	$3s3p(^{1}P^{\circ})3d^{2}D_{5/2}^{\circ}$	$3s3d^2 {}^2F_{7/2}$	786 405	1 160 013					41
265.83	3/2	5/2	782 845	1 159 025					41
266.583 ^C	$3s3p^2 {}^2\mathrm{D}_{5/2}$	3s3p(3P°)3d 4D°/2	278 099	653 217		2.0 - 2	2.3+8	E	92*
000 400C	•	.,-							
266.429 ^C	$3s3p^2$ 4 P _{5/2}	$3p^{3} {}^{2}P_{3/2}^{o}$	222 463	597 797		6.6 - 3	1.6 + 8	E	92*
260.926 ^C	3/2	3/2	214 546	597 797		1.3 - 2	3.3 + 8	\mathbf{E}	92*
256.841 ^C	1/2	3/2	208 451	597 797		5.6 - 3	1.5 + 8	\mathbf{E}	92*
259.950 ^C	$3s3p^2 {}^2P_{3/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	367 425	752 115		4.0 - 1	1.1+10	D	92*
255.279 ^C		· ·	360 387	752 115		2.4 - 2	5.9+8	D	92*
200.210	1/2	3/2	000 001	102 110		2.4 - 2	0.070	ט	34
257.234	$3s3p^2$ $^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}D_{5/2}^{\circ}$	278 099	666 826	bl				39
256.497	3/2	3/2	276 497	666 369					39
252.515 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(¹ P°)3d ² F ^o _{5/2}	367 425	763 441		1.2 - 2	2.1+8	Е	92*
242.066	$3s3p^2$ 2 S _{1/2}	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	339 001	752 115		1.3	3.6+10	D	39°,92*
241.384 ^C	$3s3p^2 {}^2P_{3/2}$	$3s3p(^{1}P^{o})3d^{2}P_{1/2}^{o}$	367 425	781 703		1.38 - 1	7.91 + 9	C-	92*
239.255	3/2	3/2	367 425	785 391				_	39
237.369	1/2	1/2	360 387	781 703		1.1 - 1	6.4 + 9	D	39°,92*
240.607^{C}	$3s3p^2$ 2 D _{5/2}	3s3p(3P°)3d 2F°	278 099	693 715		1.1 - 1	2.2+9	E	92*
239.680		•	276 497	693 715		6.4 - 1	1.3+10	E	39°,92*
233.767	3/2 5/2	5/2 7/2		705 799		9.6 - 1	1.6+10	E	39°,92*
238.675	$3s3p^2$ 2 P _{3/2}	$3s3p(^{1}P^{\circ})3d\ ^{2}D_{5/2}^{\circ}$	367 425	786 405		2.9	5.5 + 10	\mathbf{E}	39°,92*
236.723	1/2	3/2	360 387	782 845					39
238.167 ^C	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{3}P^{o})3d^{-4}P^{o}_{5/2}$	222 463	642 337		1.7 - 1	3.4+9	E	92*
233.767		•	014 -40	642 337		1.1	2.3+10	E	39°,92*
227.98	3/2	5/2		653 189		4.0 - 1	2.6+10	Ď	39,40°,92*
227.73	3/2	1/2	244 - 42	653 697		4.0 - 1	2.0+10	D	39, 40°, 92 39, 40°
224.851 ^C	3/2 1/2	3/2 1/2	208 451	653 189		8.2 - 3	5.4+8	E	92*
	•							~	
235.054	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^23d\ ^2{ m D_{3/2}}$		440 725		2.4 - 1	7.4 + 9	D	27,39°,92*
234.235	3/2	5/2		442 220		1.8	3.7 + 10	D	27, 31, 39°, 92*
226.905	1/2	3/2		440 725	٠	1.0	3.3+10	D	27, 31, 39°, 92*
232.158	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{3}P^{o})3d^{4}D_{7/2}^{o}$	222 463	653 217	•	2.45	3.78 + 10	C-	27,39°,92*
231.868	5/2	5/2	000 400	653 739		1.2	2.5 + 10	D	39°,92*
229.355	1/2	3/2	000 454	644 449				_	39
228.63	1/2	1/2	000 4=4	645 856		6.0 - 1	3.9 + 10	D	39,40°,92*
227.704	3/2	5/2		653 739		5.2 - 1	1.2+10	Ď	39°, 92*
225.886^{C}	$3s3p^2$ $^2S_{1/2}$	$3s3p(^{1}P^{\circ})3d\ ^{2}P_{1/2}^{\circ}$	339 001	781 703	3	2.6 - 1	1.8+10	D	92*
207.130	$3s3p^2$ ² D _{5/2}	$3s3p(^{1}P^{o})3d^{2}F_{7/2}^{o}$	278 099	760 881		1.4	2.6+10	Ē	39°,92*
206.040 ^C	5/2	5/2	070 000	763 441		5.5 - 2	1.5+9	\mathbf{E}	92*
205.350	3/2	5/2		763 441		9.2 - 1	2.4+10	Ē	39°,92*
206.895 ^C	$3s3p^2 {}^4 ext{P}_{5/2}$	3s3p(³ P°)3d ² F _{7/2}	222 463	705 799	•	1.5 - 2	3.0+8	E	92*
197.939 ^C	$3s3p^2\ ^2\mathrm{D}_{3/2}$	$3s3p(^{1}P^{\circ})3d\ ^{2}P_{1/2}^{\circ}$	276 497	781 703	3	1.9 - 3	1.7+8	E	92*
185.729 ^C	$3s3p^2 \ ^4P_{5/2}$	$3s3p(^{1}\mathrm{P}^{\circ})3d\ ^{2}\mathrm{F}_{7/2}^{\circ}$	222 463	760 881	l	9.6 - 3	2.3 + 8	Е	92*
$183.937^{\rm C}$	$3s3p^2 {}^4P_{1/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	208 451	752 115	5	4.6 - 3	2.2+8	E	92*

Mn XIII - Continued

Wave-	Classificati	on	Energy Lev	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper						
87.40	$3s^23d\ ^2{ m D}_{5/2}$	$3s^24f ^2F_{7/2}^{\circ}$	442 220	1 586 400				24
87.30	3/2	5/2	440 725	1 586 200				24
$83.52^{\mathbf{L}}$	$3s3p(^{3}P^{\circ})3d^{-4}F^{\circ}_{7/2}$	3s3p4f 4G _{9/2}						24
83.41 ^L	5/2	7/2						24
83.23	9/2	11/2	611 495	1 813 000				24
79.16	$3s3p^2 {}^4P_{5/2}$	$3s3p4s\ ^4P_{5/2}^{\circ}$	222 463	1 485 730				24
67.215	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s^24d ^2D_{5/2}$	15 295	1 503 060				42
66.574	1/2	3/2		1 502 090				42

Mn xiv

Wave- length (Å)	Lower	Classif	ication Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
582.12	3 <i>s</i> 3 <i>d</i>	$^{1}\mathrm{D}_{2}$	3p3d ¹ D ₂ °	711 986	883 772	3	1.7 – 1	6.7+8	D-	44°,92*
18.05	3s3p		$3p^{2-1}D_2$	328 042	521 074	6	2.9 - 1	1.4+9	E	26, 36, 44°, 47, 92*
71.94	3s3p	•	$3p^2 \ ^3P_2$	328 042	539 919	3	*.0	1.110	-	44
		_		020 012	000 010	J				44
30.61	3s3d	$^3\mathrm{D}_2$	$3p3d$ $^3F_2^{\circ}$	634 185	866 417	1	1.1 - 1	7.9 + 8	D	44°,92*
129.13		1	2	633 381	866 417	4	4.2 - 1	3.0+9	D-	26, 44°, 92*
118.51 116.35		3	3	635 446 634 185	874 367	4	1.55 - 1	8.4+8	C	44°,92*
02.96		2 3	3 4	635 446	874 367 883 609	5 7	7.0 - 1 1.15	3.8+9 $5.3+9$	C- C	26,44°,92* 26,44°,92*
58.31	3s3d	$^{1}\mathrm{D}_{2}$	$3p3d$ $^1\mathrm{F}^o_3$	711 986	991 071	7	2.2	1.6+10	D-	44°,92*
54.29	3s3d	3Do	$3p3d$ $^3P_2^{\circ}$	635 446	917 698	5				44
339.10	0004	1	1	633 381	928 282	3				44
352.73	3s3d	$^3\mathrm{D}_2$	$3p3d$ 3 D $_1^{\circ}$	634 185	917 685	5				44
342.58	3000	3	3 3	635 446	927 351	8	8.4 - 1	6.8+9	C-	26,44°,92*
39.60		2	2	634 185	928 654	6		5.5 5	~ ·	44
49.67	3s3p	¹ P ₁ °	$3p^{2} {}^{1}S_{0}$	328 042	614 024	7	3.3 - 1	1.8+10	С	26,44°,92*
		=								
349.44 335.98	3s3p		$3p^{2-1}D_2$	234 905 223 438	521 074	6	1.4 - 1	1.6+9	E	44°,92*
		1	2	443 438	521 074	5	7.2 - 2	8.6+8	E	44°,92*
343.84	3s3d	_	$3p3d$ $^{1}P_{1}^{o}$	711 986	1 002 823	4	6.0 - 1	1.1+10	$\mathbf{D}-$	44°,92*
43.43	3s3p	$^3P_2^{\circ}$	$3p^2 \ ^3P_1$	234 905	526 089	7	3.5 - 1	6.7+9	\mathbf{C}	17, 27, 44°, 92*
39.25		ĩ	0	223 438	518 209	5	2.9 - 1	1.7 + 10	C-	17, 27, 44°, 92*
30.41		1	1	223 438	526 089	6	2.2 - 1	4.5+9	Č	17, 27, 44°, 92*
27.85		2	2	234 905	539 919	8	9.0 - 1	1.1+10	D-	17, 27, 44°, 92*
25.22 15.98		0 1	1 2	$218 604 \\ 223 438$	526 089 539 919	7 6	3.0 - 1 $2.9 - 1$	$6.3+9 \\ 3.9+9$	C D-	17, 27, 44°, 92* 17, 27, 44°, 92*
27.288	3p3d		$3d^{2-1}\mathrm{D}_{2}$	1 002 823		Ü	2.0 " I	0.013	J-	
	_	•	_		1 308 364					46
11.639	3p3d	-	$3d^2$ ¹ G ₄	991 071	1 311 955	5				45,46°
304.84		¹ S ₀	$3s3p$ $^{1}P_{1}^{o}$	0	328 042	10	8.63 - 1	2.06+10	C+	17, 27, 31, 43, 44°, 9
289.56		$^{1}D_{2}$	$3p3d$ 3 F $_2^{\circ}$	521 074	866 417	2				44
285.492 276.131	3p3d	³ P ₁ °	$3d^2 \ ^3F_2$	$\frac{928}{917} \frac{282}{698}$	1 278 547 1 279 838	$\frac{2}{3}$				46 45,46°
284.752	3p3d	3D°	$3d^{2} {}^{3}F_{3}$	928 654	1 279 838	3				45 400
282.444	opsu	3	3 <i>u</i> 1·3	927 351	1 281 415	5				45,46° 45,46°
277.11		1	2	917 685	1 278 547	3				45
275.71	2-2	$^{1}\mathrm{D}_{2}$	2,211,00	E01 074	000 750					
			$3p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	521 074	883 772	5				44
264.71	$3p^2$	3P_2	$3p3d$ $^3P_2^{\circ}$	539 919	917 698	4				44
255.36 248.87		1	2	526 089	917 698	5				44
248.63		1	0	526 089 526 089	927 907 928 282	3 3				44 44
260.45	3s3p	¹ P ₁ ^o	$3s3d$ $^{1}\mathrm{D}_{2}$	328 042	711 986	7	1.9	3.8+10	D-	26, 36, 44°, 47, 92*
258.10	22	$^{3}P_{2}$	$3p3d$ $^3D_3^{\circ}$	E20 010	007.051	c				
257.24	$\mathfrak{s}p$	P ₂	$3p3a \cdot D_3$	539 919 539 919	927 351 928 654	6 7bl				44 44
250.33		0	1	518 209	917 685	3				44
248.41		1	2	526 089	928 654	3				44
257.24	$3p^{2}$	² ¹ S ₀	$3p3d$ $^{1}P_{1}^{o}$	614 024	1 002 823	7bl				44
251.361	3p3c	1 3F4	$3d^{2} {}^{3}F_{4}$	883 609	1 281 415	6				45,46°
246.633	Spot	3	3	874 367	1 279 838	3				45, 46°
242.646		2	2	866 417	1 278 547	1				46
250.45	3,03,	³ P ₂ °	$3s3d$ $^3\mathrm{D}_2$	234 905	624 105	9	2.4 1	5 1 1 0	C	440 09*
249.66	585]) F ₂		234 905 234 905	634 185 635 446	3 7	2.4 - 1 1.34	5.1+9 $2.05+10$	C- C-	44°,92* 31,44°,92*
243.93		1	3	223 438	633 381	3	$\frac{1.34}{2.4-1}$	9.1+9	C-	31,44°,92 31,44°,92*
243.46		1	2	223 438	634 185	6	7.2 - 1	1.6+10	C-	31,44°,92*
241.10		0	1	218 604	633 381	6	3.3 - 1	1.3+10	$\tilde{\mathbf{C}}-$	31,44°,92*
										•
246.14	~ 5	1 D ₂	$3p3d\ ^{3}D_{3}^{\circ}$	521 074	927 351	3				44

J. Phys. Chem. Ref. Data, Monograph 8

 $Mn\ xiv\ -\ Continued$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Classificati Lower	ion Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
212.77	235.520	$3p3d\ ^{1}{ m D}_{2}^{\circ}$	$3d^{2} {}^{1}\mathrm{D}_{2}$	883 772	1 308 364	4				46
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	221.65	$3p^2$ 3 P $_2$	$3p3d$ $^{1}\mathrm{F_{3}^{o}}$	539 919	991 071	2				44
83.76	212.77	$3p^2$ 1 D ₂	$3p3d$ 1 $\mathrm{F}_{3}^{\mathrm{o}}$	521 074	991 071	4				44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	84.09	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	711 986	1 901 300					24
81.05	83.78	$3p3d$ 1 F_{3}^{o}	$3p4f$ $^{1}\mathrm{G}_{4}$	991 071	2 184 700					24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79.761	2	3	634 185	1 887 900	2				42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79.10	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3p4f$ $^3\mathrm{F}_3$	883 772	2 148 000					24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78.42	2	3	866 417	2 141 600					24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.94	$3p^2 \ ^3P_2$	$3p4s$ $^3P_2^{\circ}$	539 919	1 856 700					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.327	1	1	223 438	1 568 900					42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.02	$3s3p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$3s4d$ $^{1}\mathrm{D}_{2}$	328 042	1 820 100					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.46	$3p^2$ ¹ D ₂	$3p4d$ $^3F_3^{\circ}$	521 074	2 096 900					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.45	$3p^2$ ¹ D ₂	$3p4d$ $^{1}\mathrm{F}_{3}^{\circ}$	521 074	2 097 100					47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63.23	$3p^2$ 3 P $_2$	$3p4d$ $^3P_2^{\circ}$	539 919	2 121 400					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.109 62.713 62.694	2 1 1	3 1 2	234 905 223 438 223 438	1 819 500 1 818 000 1 818 500					42 42 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.325	$3s^2$ ¹ S ₀	3s4p 1P1	0	1 685 600		3.55 - 1	2.24+11	C	42°,92*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.97^{T}	$3s3p$ $^3P_2^{\circ}$	$3p4p$ $^3\mathrm{D}_3$	234 905	1 959 900					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.71	$3s3p$ $^3\mathrm{P}_2^o$	$3p4p$ 3S_1	234 905	1 967 700					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.224	$3s3d$ $^3\mathrm{D}_3$	$3s5f$ $^3\mathrm{F_4^o}$	635 446	2 383 000					42°, 47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.03	$3s3p$ $^3P_2^{\circ}$	$3s5s$ $^3\mathrm{S}_1$	234 905	2 233 700					47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.63	$3s3d$ $^3\mathrm{D}_3$	$3s6f$ $^3F_4^{\circ}$	635 446	2 650 400					47
47.67 1 2 223 438 2 321 200 bl 47 47.38 0 1 218 604 2 329 200 47	49.42	$3s3p^{-1}P_1^{\circ}$	$3s5d$ $^{1}\mathrm{D}_{2}$	328 042	2 351 500					47
9.74	47.67	1	2	223 438	2 321 200	bl				47
43.74 $3s^2$ S ₀ $3s5p$ P ₁ 0 2 286 200 1.12 - 1 1.3+11 C 47°, 92*	43.74	$3s^2 {}^1\mathrm{S}_0$	$3s5p^{-1}\mathrm{P_{1}^{o}}$	0	2 286 200		1.12 - 1	1.3+11	C	47°,92*

Mn XIV - Continued

Wave- length (Å)	Classifica Lower	ution Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
43.00	3s3p ³ P ₂ °	$3s6s\ ^{3}{ m S}_{1}$	234 905	2 560 500					· 47
41.72	$3s3p\ ^{3}P_{2}^{\circ}$	$3s6d$ $^3\mathrm{D}_3$	234 905	2 631 800					47
41.51	1	2	223 438	2 632 500					47
38.54	$3s^{2} {}^{1}S_{0}$	$3s6p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	2 594 700					47

 $\mathbf{Mn}\ xv$

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int. gf	A (s ⁻¹)	Acc.	References
971.8 ^C	$2p^64s\ ^2{ m S}_{1/2}$	$2p^64p\ ^2P_{1/2}^{\circ}$	1 667 500	1 770 400	3.8 - 1	1.3+9	С	92*
912.4 ^C	1/2	3/2	1 667 500	1 777 100	7.6 - 1	1.5+9	\mathbf{C}	92*
771.0 ^C	$2p^64p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^64d\ ^2{ m D}_{3/2}$	1 777 100	1 906 800	1.8 - 1	4.9+8	С	92*
765.1 ^C	3/2	5/2	1 777 100	1 907 800	1.6	3.0+9	C	92*
733.1 ^C	1/2	3/2	1 770 400	1 906 800	9.2 - 1	2.9 + 9	C	92*
384.743 ^S	$2p^63s\ ^2{ m S}_{1/2}$	$2p^63p^2P_{1/2}^{\circ}$	0	259 914	2.60 - 1	5.87+9	В	17, 43, 48, 49°, 92*
360.987 ^S	1/2	3/2	0	277 018	5.62 - 1	7.19+9	В	17,31,49°,92*
360.4 ^C	$2p^65d\ ^2{ m D}_{3/2}$	$2p^66p^{-2}P_{1/2}^{\circ}$	2 491 100	2 768 600	4.8 - 1	1.3+10	C	92*
359.1 ^C	5/2	2P 0P 1 1/2 3/2	2 491 700	2 770 200	9.00 - 1	1.16+10	C	92*
358.3 ^C	3/2	3/2	2 491 100	2 770 200	1.0 - 1	1.3+9	D	92*
349.3 ^C	$2p^65f~^2F^{\circ}_{5/2}$	$2p^66d\ ^2{ m D}_{3/2}$	2 519 000	2 805 300	2.7 - 1	3.7+9	С	92*
349.2 ^C	7/2	5/2	2 519 300	2 805 700	3.8 - 1	3.5+9	C	92*
348.8 ^C	5/2	5/2	2 519 000	2 805 700	1.9 - 2	1.7+8	D	92*
318.6 ^C	$2p^65p~^2\mathrm{P}^{\circ}_{3/2}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	2 428 100	2 742 000	6.4 - 1	2.0+10	C	92*
315.1 ^C	2p 3p 1 3/2 1/2	1/2	2 424 600	2 742 000	3.2 - 1	1.1+10	C	92*
303.2 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^66f \ ^2F_{5/2}^{\circ}$	2 491 700	2 821 500	1.8 - 1	2.2+9	D	92*
303.2° 302.9°	,		2 491 700	2 821 500	$\frac{1.8-1}{3.7}$	2.2+9 $3.4+10$	C	92* 92*
302.7 ^C	5/2 3/2	7/2 5/2	2 491 100	2 821 500	2.6	3.4+10 $3.2+10$	C	92*
282.184 ^S	$2p^63p^{-2}P_{3/2}^{o}$	$2p^6 3d^{-2}D_{3/2}$	277 018	631 398	1.17 - 1	2.46+9	В	17,31,49°,92*
280.411 ^S	3/2	5/2	277 018	633 637	1.07	1.51+10	В	17,31,49°,92*
269.189 ^S	1/2	3/2	259 914	631 398	6.20 - 1	1.43+10	В	17,31,49°,92*
265.1 ^C	$2p^65p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	2 428 100	2 805 300	9.6 - 2	2.3+9	D	92*
264.8^{C}	3/2	5/2	2 428 100	2 805 700	8.4 - 1	1.3+10	C	92*
262.7 ^C	1/2	3/2	2 424 600	2 805 300	4.78 - 1	1.15+10	C	92*
254.2 ^C	$2p^65s$ $^2S_{1/2}$	$2p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	2 375 200	2 768 600	1.6 - 1	8.5+9	C	92*
253.2 ^C	1/2	3/2	$2\ 375\ 200$	2 770 200	3.30 - 1	8.6+9	C	92*
210.6^{C}	$2p^65f~^2\mathrm{F}^{\circ}_{7/2}$	$2p^67d\ ^2\mathrm{D}_{5/2}$	2 519 300	2 994 200	6.8 - 2	1.7+9	D	92*
210.6 ^C	5/2	3/2	2 519 000	2 993 900	4.7 - 2	1.8+9	D	92*
210.4 ^C	5/2	5/2	2 519 000	2 994 200	3.5 - 3	8.7+7	\mathbf{E}	92*
207.7 ^C	$2p^65d^{-2}D_{5/2}$	$2p^67p^{-2}P_{3/2}^{\circ}$	2 491 700	2 973 100	1.55 - 1	6.0+9	C	92*
207.5 ^C	3/2	1/2	2 491 100	2 973 100	8.8 - 2	6.7+9	C	92*
207.5 ^C	3/2	3/2	2 491 100	2 973 100	1.8 - 2	6.8+8	D	92*
195.3 ^C	$2p^65d^{\ 2}{ m D}_{5/2}$	$2p^67f^{\ 2}F_{5/2}^{\circ}$	2 491 700	3 003 800	5.0 - 2	1.5+9	D	92*
195.2 ^C	5/2	7/2	2 491 700	3 004 100	1.0	2.2 + 10	C	92*
195.0 ^C	3/2	5/2	2 491 100	3 003 800	6.96 - 1	2.04+10	\mathbf{C}	92*
193.1 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	1 906 800	2 424 600	3.2 - 1	2.8+10	C	92*
192.2 ^C	5/2	3/2	1 907 800	2 428 100	5.5 - 1	2.5 + 10	C	92*
191.8 ^C	3/2	3/2	1 906 800	2 428 100	6.0 - 2	2.8 + 9	D	92*
191 ^C	$2p^65p^{-2}\mathrm{P}^{\circ}_{3/2}$	$2p^67s\ ^2{ m S}_{1/2}$	2 428 100	2 953 000	1.2 - 1	1.1+10	C	92*
189 ^C	1/2	1/2	2 424 600	2 953 000	6.16 - 2	5.7 + 9	C	92*
188.9 ^C	$2p^64f$ $^2\mathrm{F}^{\mathrm{o}}_{5/2}$	$2p^65d\ ^2{ m D}_{3/2}$	1 961 600	2 491 100	1.1 - 1	5.1+9	С	92*
188.8 ^C	7/2	5/2	1 962 000	2 491 700	1.6 - 1	4.9+9	Ċ	92*
188.6 ^C	5/2	5/2	1 961 600	2 491 700	7.8 - 3	2.5+8	D	92*
178.69	$2p^64f^{-2}{ m F}^{ m o}_{7/2}$	$2p^65g^{-2}G_{9/2}$	1 962 000	2 521 630	ы			52
178.61	5/2	7/2	1 961 600	2 521 480	bl			52
176.7 ^C	$2p^65p\ ^2{ m P}^{\circ}_{3/2}$	$2p^67d\ ^2\mathrm{D}_{3/2}$	2 428 100	2 993 900	3.3 - 2	1.7+9	D	92*
176.6 ^C	3/2	5/2	2 428 100	2 994 200	2.9 - 1	1.0+10	C	92*
175.7 ^C	1/2	3/2	2 424 600	2 993 900	1.7 - 1	9.1+9	C	92*
C	$2p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^65s$ $^2S_{1/2}$	1 777 100	2 375 200	4.40 - 1	5.20+10	C	92*
167.2^{C}	27 40 F ~ / ~							

Mn xv - Continued

Wave- length (Å)	Classification Lower	on Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
163.7 ^C	$2p^65d\ ^2{ m D}_{5/2}$	$2p^68p~^2\mathrm{P}^{\circ}_{3/2}$	2 491 700	3 102 700		F 0 0	2.610		00*
163.5 ^C	•	•				5.8 - 2	3.6+9	D	92*
63.5 ^C	3/2	1/2	2 491 100	3 102 700		3.2 - 2	3.9+9	D	92*
03.3	3/2	3/2	2 491 100	3 102 700		6.4 - 3	4.1+8	E	92*
63.63	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f\ ^2{ m F}^{\circ}_{7/2}$	1 907 800	2 519 300	ы	4.1	1.3 + 11	C	52°,92*
63.6 ^C	5/2	5/2	1 907 800	2 519 000		2.0 - 1	8.5+9	D	92*
63.41	3/2	5/2	1 906 800	2 519 000		3.0	1.2+11	C	52°,92*
.58.38 ^C	$2p^63s \ ^2S_{1/2}$	$2p^6 3d^2 D_{3/2}$	0	631 398		E2	6.1 + 5	C	92*
57.82 ^C	1/2	5/2	0	633 637		E2	6.2 + 5	C	92*
46 ^C	$2p^65p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^6 8d\ ^2{ m D}_{3/2}$	2 428 100	3 114 000		1.6 - 2	1.3+9	D	92*
45 ^C	3/2	5/2	2 428 100	3 115 600		1.5 - 1	7.7+9	C	92*
45 ^C	1/2	3/2	2 424 600	3 114 000		8.24 - 2	6.5+9	C	92*
40.1 ^C	$2p^64p\ ^2\mathrm{P_{3/2}^o}$	$2p^65d\ ^2{ m D}_{3/2}$	1 777 100	2 491 100		1.0 1	8.7+9	D	92*
39.9 ^C		•	1 777 100						
38.8 ^C	3/2 1/2	5/2 3/2	1 777 100	2 491 700 2 491 100		9.2 - 1 $5.0 - 1$	5.2+10 $4.4+10$	C C	92* 92*
32.1 ^C			1 005 500					~	
	$2p^64s\ ^2{ m S}_{1/2}$	$2p^65p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	1 667 500	2 424 600		1.5 - 1	2.9+10	C	92*
31.5 ^C	1/2	3/2	1 667 500	2 428 100		3.08 - 1	2.96 + 10	С	92*
.16.0 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^{6}6p^{-2}P_{3/2}^{o}$	1 907 800	2 770 200		9.6 - 2	1.2+10	C	92*
.16.0 ^C	3/2	1/2	1 906 800	2 768 600		5.2 - 2	1.3 + 10	\mathbf{C}	92*
.15.8 ^C	3/2	3/2	1 906 800	2 770 200		1.0 - 2	1.3 + 9	D	92*
.09.4 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^66f ^2F_{7/2}^{\circ}$	1 907 800	2 821 800		1.0	7.2+10	C	92*
09.4 ^C	5/2	5/2	1 907 800	2 821 500		5.0 - 2	4.6+9	D	92*
09.3 ^C	3/2	5/2	1 906 800	2 821 500		7.2 - 1	6.7+10	C	92*
.03.6 ^C	$2p^{6}4p^{-2}P_{3/2}^{\circ}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 777 100	2 742 000		8.64 - 2	2.68+10	C	92*
102.9 ^C		•	1 770 400	2 742 000		4.34 - 2	1.37+10	C	92*
	1/2	1/2							
97.257 ^C	$2p^64p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	1 777 100	2 805 300		3.4 - 2	6.1 + 9	D	92*
97.220 ^C	3/2	5/2	1 777 100	2 805 700		3.1 - 1	3.7 + 10	C	92*
96.628 ^C	1/2	3/2	1 770 400	2 805 300		1.8 - 1	3.2+10	С	92*
96.880 ^C	$2p^64f\ ^2{ m F}^{\circ}_{7/2}$	$2p^67d\ ^2{ m D}_{5/2}$	1 962 000	2 994 200		9.6 - 3	1.2+9	D	92*
96.871 ^C	5/2	3/2	1 961 600	2 993 900		6.6 - 3	1.2 + 9	D	92*
96.843 ^C	5/2	5/2	1 961 600	2 994 200	1	4.7 - 4	5.6 + 7	E	92*
93.870 ^C	$2p^64d^{-2}D_{5/2}$	$2p^67p~^2\mathrm{P}^{\circ}_{3/2}$	1 907 800	2 973 100	ı	3.5 - 2	6.7+9	D	92*
$93.782^{\rm C}$	3/2	1/2	1 906 800	2 973 100		2.0 - 2	7.4+9	D	92*
$93.782^{\rm C}$	3/2	3/2	1 906 800	2 973 100		3.9 - 3	7.4+8	E	92*
91.241 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^{6}7f^{2}F_{5/2}^{\circ}$	1 907 800	3 003 800	u.	2.1 - 2	2.8+9	D	92*
91.216 ^C			1 907 800	3 003 800		2.1 - 2 $4.3 - 1$	$\frac{2.8+9}{4.3+10}$	C	92 92*
91.158 ^C	5/2 3/2	7/2 5/2	1 907 800	3 004 100		4.3 - 1 $2.9 - 1$	$\frac{4.3+10}{3.9+10}$	C	92* 92*
90.818 ^C		•							
90.818° 90.686°	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^66p\ ^2 ext{P}_{1/2}^{\circ}$	1 667 500	2 768 600		5.0 - 2	2.0+10	C	92*
90.086°	1/2	3/2	1 667 500	2 770 200	,	9.8 - 2	2.0+10	C	92*
87.80	$2p^63d\ ^2{ m D}_{3/2}$	$2p^64p^2 P_{1/2}^{\circ}$	631 398	1 770 400)	1.38 - 1	6.0+10	C	24°,92*
87.47	5/2	3/2	633 637	1 777 100		2.5 - 1	5.4 + 10	\mathbf{C}	24°,92*
87.283 ^C	3/2	3/2	631 398	1 777 100)	2.8 - 2	6.1 + 9	D	92*
86.78 ^C	$2p^{6}4f^{-2}F_{5/2}^{\circ}$	$2p^68d\ ^2\mathrm{D}_{3/2}$	1 961 600	3 114 000)	3.1 - 3	6.8+8	E	92*
86.69 ^C	7/2	5/2	1 962 000	3 115 600		4.6 - 3	6.7+8	E	92*
86.66 ^C	5/2	5/2	1 961 600	3 115 600		2.2 - 4	3.3+7	Ē	92*
85.04 ^C	$2p^64p\ ^2{ m P}^{\circ}_{3/2}$	$2p^67s\ ^2\mathrm{S}_{1/2}$	1 777 100	0.050.000	`	22 0	1 5 1 10	D	00*
84.56 ^C			1 777 100 1 770 400	2 953 000 2 953 000		3.3 - 2 $1.7 - 2$	1.5+10 $7.9+9$	D D	92* 92*
	1/2	1/2		2 303 000		1.1 - 2	1.070	ט	3 2
83.689 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2{ m P}^{\circ}_{3/2}$	1 907 800	3 102 700		1.7 - 2	4.1+9	D	92*
83.619 ^C	3/2	1/2	1 906 800	3 102 700		1.0 - 2	4.7+9	D	92*
83.619 ^C	3/2	3/2	1 906 800	3 102 700)	1.9 - 3	4.6+8	E	92*
82.183 ^C	$2p^64p\ ^2{ m P}^{ m o}_{3/2}$	$2p^67d\ ^2{ m D}_{3/2}$	1 777 100	2 993 900)	1.7 - 2	4.1 + 9	D	92*
	-, -	, -							
82.163 ^C 81.733 ^C	3/2	5/2	1 777 100	2 994 200)	1.5 - 1	2.5 + 10	C	92*

Mn xv - Continued

75.303° 75.280° 75.174° 74.80° 74.71° 74.43° 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766° 55.72 55.658°	$2p^6 3d\ ^2\mathrm{D}_{5/2}$ $5/2$ $3/2$ $2p^6 4p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ $1/2$ $2p^6 3p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ $1/2$ $2p^6 3p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ $3/2$ $1/2$ $2p^6 3s\ ^2\mathrm{S}_{1/2}$ $1/2$ $2p^6 3d\ ^2\mathrm{D}_{3/2}$ $5/2$	$2p^{6}4f$ $^{2}F_{5/2}^{\circ}$ $^{7/2}$ $^{5/2}$ $2p^{6}8d$ $^{2}D_{3/2}$ $^{5/2}$ $^{3/2}$ $^{2}p^{6}4s$ $^{2}S_{1/2}$ $^{1/2}$ $^{2}p^{6}4d$ $^{2}D_{3/2}$ $^{5/2}$ $^{3/2}$ $^{2}p^{6}4p$ $^{2}P_{1/2}^{\circ}$ $^{3/2}$	633 637 633 637 631 398 1 777 100 1 777 100 1 770 400 277 018 259 914 277 018 259 914 0	1 961 600 1 962 000 1 961 600 3 114 000 3 115 600 3 114 000 1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 777 400 1 777 100	2.6 - 1 5.2 3.7 $9.2 - 3$ $8.56 - 2$ $4.78 - 2$ $1.2 - 1$ 1.06 $5.96 - 1$	5.2+10 7.7+11 7.3+11 2.8+9 1.71+10 1.44+10 5.3+10 3.13+11 2.69+11	D C C C	92* 49°,50,92* 49°,50,92* 92* 92* 92* 50°,51 ^Δ 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
75.280 ^S 75.174 ^S 74.80 ^C 74.71 ^C 74.43 ^C 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766 ^C 55.72	$^{5/2}_{3/2}$ $^{2}p^{6}4p^{2}P^{o}_{3/2}$ $^{3/2}_{1/2}$ $^{2}p^{6}3p^{2}P^{o}_{3/2}$ $^{1/2}$ $^{2}p^{6}3p^{2}P^{o}_{3/2}$ $^{3/2}$ $^{1/2}$ $^{2}p^{6}3s^{2}S_{1/2}$ $^{1/2}$ $^{2}p^{6}3d^{2}D_{3/2}$	$7/2$ $5/2$ $2p^6 8d\ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4s\ ^2S_{1/2}$ $1/2$ $2p^6 4d\ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4p\ ^2P_{1/2}^{\circ}$ $3/2$	633 637 631 398 1 777 100 1 777 100 1 770 400 277 018 259 914 277 018 259 914 0	1 962 000 1 961 600 3 114 000 3 115 600 3 114 000 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	5.2 3.7 $9.2 - 3$ $8.56 - 2$ $4.78 - 2$ $1.2 - 1$ 1.06 $5.96 - 1$	7.7+11 7.3+11 2.8+9 1.71+10 1.44+10 5.3+10 3.13+11	C C D C C D C C	49°,50,92* 49°,50,92* 92* 92* 92* 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
75.174 ^S 74.80 ^C 74.71 ^C 74.43 ^C 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766 ^C 55.72	$3/2$ $2p^6 4p \ ^2P^o_{3/2}$ $3/2$ $1/2$ $2p^6 3p \ ^2P^o_{3/2}$ $1/2$ $2p^6 3p \ ^2P^o_{3/2}$ $3/2$ $1/2$ $2p^6 3s \ ^2S_{1/2}$ $1/2$ $2p^6 3d \ ^2D_{3/2}$	$5/2$ $2p^6 8d\ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4s\ ^2S_{1/2}$ $1/2$ $2p^6 4d\ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4p\ ^2P_{1/2}^{\circ}$ $3/2$	631 398 1 777 100 1 777 100 1 770 400 277 018 259 914 277 018 277 018 279 914 0	1 961 600 3 114 000 3 115 600 3 114 000 1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	3.7 $9.2 - 3$ $8.56 - 2$ $4.78 - 2$ $1.2 - 1$ 1.06 $5.96 - 1$	7.3+11 2.8+9 1.71+10 1.44+10 5.3+10 3.13+11	C D C C	49°,50,92* 92* 92* 92* 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
74.80°C 74.71°C 74.43°C 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766°C 55.72	$2p^6 4p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ 3/2 1/2 $2p^6 3p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ 1/2 $2p^6 3p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ 3/2 1/2 $2p^6 3s ^2\mathrm{S}_{1/2}$ 1/2 $2p^6 3d ^2\mathrm{D}_{3/2}$	$2p^6 8d\ ^2\mathrm{D}_{3/2}$ $5/2$ $3/2$ $2p^6 4s\ ^2\mathrm{S}_{1/2}$ $1/2$ $2p^6 4d\ ^2\mathrm{D}_{3/2}$ $5/2$ $3/2$ $2p^6 4p\ ^2\mathrm{P}_{1/2}^{\circ}$ $3/2$	1 777 100 1 777 100 1 770 400 277 018 259 914 277 018 277 018 259 914	3 114 000 3 115 600 3 114 000 1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	9.2 - 3 $8.56 - 2$ $4.78 - 2$ $1.2 - 1$ 1.06 $5.96 - 1$	2.8+9 1.71+10 1.44+10 5.3+10 3.13+11	C C D	92* 92* 92* 92* 50°,51 ^{\(\Delta\)} 50°,51 ^{\(\Delta\)} ,92* 50°,51 ^{\(\Delta\)} ,92*
74.71° 74.43° 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766° 55.72	$^{3/2}_{1/2}$ $^{1/2}$ $^{2}p^{6}3p^{2}P^{\circ}_{3/2}$ $^{1/2}$ $^{2}p^{6}3p^{2}P^{\circ}_{3/2}$ $^{3/2}$ $^{1/2}$ $^{2}p^{6}3s^{2}S_{1/2}$ $^{1/2}$ $^{2}p^{6}3d^{2}D_{3/2}$	$5/2$ $3/2$ $2p^6 4s\ ^2S_{1/2}$ $1/2$ $2p^6 4d\ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4p\ ^2P_{1/2}^{\circ}$ $3/2$	1 777 100 1 770 400 277 018 259 914 277 018 277 018 277 018 259 914	3 115 600 3 114 000 1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	8.56 - 2 $4.78 - 2$ $1.2 - 1$ 1.06 $5.96 - 1$	1.71+10 1.44+10 5.3+10 3.13+11	C C D	92* 92* 50°,51 ^Δ 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
74.43° 71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766° 55.72	$^{1/2}$ $^{2}p^{6}3p^{2}P^{\circ}_{3/2}$ $^{1/2}$ $^{2}p^{6}3p^{2}P^{\circ}_{3/2}$ $^{3/2}$ $^{1/2}$ $^{2}p^{6}3s^{2}S_{1/2}$ $^{1/2}$ $^{2}p^{6}3d^{2}D_{3/2}$	$3/2$ $2p^6 4s \ ^2S_{1/2}$ $1/2$ $2p^6 4d \ ^2D_{3/2}$ $5/2$ $3/2$ $2p^6 4p \ ^2P_{1/2}^{\circ}$ $3/2$	1 770 400 277 018 259 914 277 018 277 018 259 914 0	3 114 000 1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	4.78 - 2 $1.2 - 1$ 1.06 $5.96 - 1$	1.44+10 5.3+10 3.13+11	C D C	92* 50°,51 ^Δ 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
71.927 71.038 61.361 61.319 60.720 56.484 56.270 55.766 ^C 55.72	$2p^6 3p\ ^2{ m P}^{\circ}_{3/2}$ $1/2$ $2p^6 3p\ ^2{ m P}^{\circ}_{3/2}$ $3/2$ $1/2$ $2p^6 3s\ ^2{ m S}_{1/2}$ $1/2$ $2p^6 3d\ ^2{ m D}_{3/2}$	$2p^{6}4s^{2}S_{1/2}$ $1/2$ $2p^{6}4d^{2}D_{3/2}$ $5/2$ $3/2$ $2p^{6}4p^{2}P_{1/2}^{\circ}$ $3/2$	277 018 259 914 277 018 277 018 259 914	1 667 500 1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	1.2 - 1 1.06 $5.96 - 1$	5.3+10 3.13+11	D C	50°,51 ^Δ 50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
71.038 61.361 61.319 60.720 56.484 56.270 55.766 ^C 55.72	$^{1/2}$ $^{2}p^{6}_{3p}^{2}P^{o}_{3/2}^{3/2}$ $^{1/2}$ $^{2}p^{6}_{3s}^{2}S_{1/2}^{1/2}$ $^{2}p^{6}_{3s}^{2}D_{3/2}$	$^{1/2}$ $^{2}p^{6}4d^{2}D_{3/2}$ $^{5/2}$ $^{3/2}$ $^{2}p^{6}4p^{2}P_{1/2}^{\circ}$ $^{3/2}$	259 914 277 018 277 018 259 914	1 667 500 1 906 800 1 907 800 1 906 800 1 770 400	1.06 $5.96 - 1$	3.13+11	C	50°,51 ^Δ 50°,51 ^Δ ,92* 50°,51 ^Δ ,92*
61.361 61.319 60.720 56.484 56.270 55.766 ^C 55.72	$2p^6 3p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$ 3/2 1/2 2 $p^6 3s\ ^2\mathrm{S}_{1/2}$ 1/2 2 $p^6 3d\ ^2\mathrm{D}_{3/2}$	$2p^64d~^2\mathrm{D}_{3/2}$ $5/2$ $3/2$ $2p^64p~^2\mathrm{P}_{1/2}^{\circ}$ $3/2$	277 018 277 018 259 914	1 906 800 1 907 800 1 906 800 1 770 400	1.06 $5.96 - 1$	3.13+11	C	50°,51 ^{\(\Delta\)} ,92* 50°,51 ^{\(\Delta\)} ,92*
61.319 60.720 56.484 56.270 55.766 ^C 55.72	$^{3/2}_{1/2}$ $^{1/2}$ $^{2}p^{6}3s~^{2}S_{1/2}$ $^{1/2}$ $^{2}p^{6}3d~^{2}D_{3/2}$	$^{5/2}$ $^{3/2}$ $^{2}p^{6}4p~^{2}P^{\circ}_{1/2}$ $^{3/2}$	277 018 259 914 0	1 907 800 1 906 800 1 770 400	1.06 $5.96 - 1$	3.13+11	C	50°, 51 ^Δ , 92*
60.720 56.484 56.270 55.766 ^C 55.72	$2p^63s~^2\mathrm{S}_{1/2}$ $1/2$ $2p^63d~^2\mathrm{D}_{3/2}$	$3/2$ $2p^64p \ ^2P_{1/2}^{\circ}$ $3/2$	259 914 0	1 906 800 1 770 400	5.96 - 1			
56.484 56.270 55.766 ^C 55.72	$2p^6 3s\ ^2 \mathrm{S}_{1/2}$ $^{1/2}$ $2p^6 3d\ ^2 \mathrm{D}_{3/2}$	$2p^{6}4p^{2}P_{1/2}^{\circ}$	0	1 770 400		2.69+11	С	$50^{\circ}, 51^{\triangle}, 92^{*}$
56.270 55.766 ^C 55.72	$2p^6 3d\ ^2\mathrm{D}_{3/2}$	3/2			1 44 4			- , ,
55.766 ^C 55.72	$2p^6 3d\ ^2\mathrm{D}_{3/2}$	3/2	0	1 777 100	1.44 - 1	1.51 + 11	C+	47,50°,51 [△] ,92
55.72					2.70 - 1	1.42 + 11	C+	$47,50^{\circ},51^{\Delta},92$
55.72		$2p^65p^2P_{1/2}^{\circ}$	631 398	2 424 600	2.2 - 2	2.3+10	D	92*
	5/2	•	633 637	2 428 100	3.9 - 2	2.1+10	D	36°, 47, 51 ^Δ , 92°
	3/2	3/2 3/2	631 398	2 428 100	3.9 - 2 $4.4 - 3$	2.1+10 $2.3+9$	E	92*
	$2p^6 3d\ ^2 \mathrm{D}_{5/2}$		600 607	2 510 000	4.0	1.0.10	D	92*
53.040 ^C		$2p^65f \ ^2F_{5/2}^{\circ}$	633 637	2 519 000	4.9 - 2 $9.72 - 1$	1.9+10	D C	92 47,50°,51 [△] ,92
53.032 52.977	5/2 3/2	7/2 5/2	633 637 631 398	2 519 300 2 519 000	9.72 - 1 $6.84 - 1$	2.89+11 $2.7+11$	C	47,50°,51⁻,92 50°,51△,92*
	•	•					~	
47.666	$2p^63p\ ^2{ m P}^{\circ}_{3/2}$	$2p^65s$ 2 S _{1/2}	277 018 259 914	2 375 200 2 375 200	5.2 - 2 $2.52 - 2$	7.4+10 $3.77+10$	C C	47,51°,92* 47,51°,92*
47.270	1/2	1/2	239 914	2 3/3 200	2.52 - 2	3.11+10	C	47,51 ,92
46.804 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^{6}6p^{2}P_{3/2}^{o}$	633 637	2 770 200	1.4 - 2	1.1 + 10	D	92*
46.790 ^C	3/2	1/2	631 398	2 768 600	7.6 - 3	1.2 + 10	D	92*
46.755 ^C	3/2	3/2	631 398	2 770 200	1.6 - 3	1.2+9	\mathbf{E}	92*
45.707 ^C	$2p^6 3d^2 D_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{\circ}$	633 637	2 821 500	1.8 - 2	9.5+9	D	92*
45.700	5/2	7/2	633 637	2 821 800	3.6 - 1	1.4 + 11	C	47,51°,92*
45.659	3/2	5/2	631 398	2 821 500	2.5 - 1	1.3 + 11	С	47,51°,92*
45.165 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65d^{2}D_{3/2}$	277 018	2 491 100	3.8 - 2	3.1 + 10	D	92*
45.154	3/2	5/2	277 018	2 491 700	3.4 - 1	1.9 + 11	C	47,50,51°,92*
44.820	1/2	3/2	259 914	2 491 100	1.9 - 1	1.6 + 11	C	47,51°,92*
42.745 ^C	$2p^63d^{-2}D_{5/2}$	$2p^67p^2P_{3/2}^{\circ}$	633 637	2 973 100	7.2 - 3	6.5+9	D	92*
42.704^{C}	3/2	1/2	631 398	2 973 100	4.0 - 3	7.4+9	D	92*
42.704^{C}	3/2	3/2	631 398	2 973 100	8.0 - 4	7.2+8	E	92*
42.191 ^C	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^{6}7f^{2}F_{5/2}^{o}$	633 637	3 003 800	8.4 - 3	5.4+9	D	92*
42.185	5/2	-P · J - 5/2	633 637	3 004 100	1.77 - 1	8.3+10	C	47,51°,92*
42.152	3/2	5/2	631 398	3 003 800	1.24 - 1	7.8+10	č	51°,92*
41.243	$2p^63s\ ^2{ m S}_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	0	2 424 600	4.4 - 2	8.7+10	С	47,51°,92*
41.185	1/2	3/2	ō	2 428 100	8.8 - 2	8.7+10	Č	47,51°,92*
							_	
40.572	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66s\ ^2{ m S}_{1/2}$	277 018	2 742 000	2.0 - 2	3.9+10	D	47,51°,92*
40.285	1/2	1/2	259 914	2 742 000	9.8 - 3	2.0+10	D	47,51°,92*
40.501 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^68p\ ^2\mathrm{P_{3/2}^o}$	633 637	3 102 700	4.0 - 3	4.0+9	E	92*
40.465 ^C	3/2	1/2	631 398	3 102 700	2.2 - 3	4.6 + 9	E	92*
40.465 ^C	3/2	3/2	631 398	3 102 700	4.4 - 4	4.5 + 8	E	92*
40.151	$2p^63d\ ^2{ m D}_{5/2}$	$2p^68f\ ^2F^{\circ}_{7/2}$	633 637	3 124 200				47,51°
39.553 ^C	$2p^63p^{-2}\mathrm{P}^{\circ}_{3/2}$	$2p^66d\ ^2{ m D}_{3/2}$	277 018	2 805 300	1.8 - 2	1.9+10	D	92*
39.547		•	277 018	2 805 700	1.5 - 2 $1.56 - 1$		C	47,51°,92*
39.287	3/2 1/2	5/2 3/2	259 914	2 805 300	8.74 - 2		Ċ	47,51°,92*
38.89	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^69f\ ^2\mathrm{F}^{\circ}_{7/2}$	633 637	3 205 000	bl			47
38.02	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^610f\ ^2\mathrm{F}^{\circ}_{7/2}$	633 637	3 264 000				47
37.42	$2p^6 3d^{-2}$ D _{5/2}	$2p^611f^2F_{7/2}^{\circ}$	633 637	3 306 000	bl			47

Mn xv - Continued

Wave-	Classificat	ion	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper		·					
37.4	$2p^63p^2P_{3/2}^{\circ}$	$2p^67s\ ^2{ m S}_{1/2}$	277 018	2 953 000	ьl	9.6 - 3	2.3+10	D	47°,92*
37.12	1/2	1/2	259 914	2 953 000		5.0 - 3	1.2+10	D	47°,92*
36.807 ^C	$2p^63p$ $^2P^{\circ}_{3/2}$	$2p^67d^2D_{3/2}$	277 018	2 993 900		1.0 - 2	1.2+10	D	92*
36.803	3/2	5/2	277 018	2 994 200		8.60 - 2	7.0 + 10	C	47,51°,92*
36.577	1/2	3/2	259 914	2 993 900		4.8 - 2	6.0+10	C	47,51°,92*
36.119	$2p^63s^2S_{1/2}$	$2p^66p^{-2}P_{1/2}^{o}$	0	2 768 600	bl	2.0 - 2	5.2+10	C	51°,92*
36.099	1/2	3/2	0	2 770 200		4.0 - 2	5.2 + 10	C	47,51°,92*
35.25 ^C	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^68d\ ^2\mathrm{D}_{3/2}$	277 018	3 114 000		6.0 - 3	7.9+9	D	92*
35.229	3/2	5/2	277 018	3 115 600		5.2 - 2	4.7 + 10	C	47,51°,92*
35.04	1/2	3/2	259 914	3 114 000		2.94 - 2	4.0+10	C	47°,92*
34.22	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^69d\ ^2\mathrm{D}_{5/2}$	277 018	3 199 000					47
34.02	1/2	3/2	259 914	3 199 000					47
33.635	$2p^63s^2S_{1/2}$	$2p^67p^{-2}P_{1/2}^{o}$	0	2 973 100					51
33.635	1/2	3/2	0	2 973 100					47,51°
33.55	$2p^63p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^610d\ ^2\mathrm{D}_{5/2}$	277 018	3 258 000					47
32.230	$2p^63s \ ^2S_{1/2}$	$2p^68p^{-2}P_{1/2}^{\circ}$	0	3 102 700					51
32.230	1/2	3/2	0	3 102 700					47,51°
31.37	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^69p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	3 188 000					47
30.81	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^610p^2P_{3/2}^{\circ}$	0	3 246 000					47

 \mathbf{Mn} XVI

Wave-	Classific	ation	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
697.088 ^C	$2s^22p^5(^2\mathbf{P_{1/2}^{\circ}})3s\ (\frac{1}{2},\frac{1}{2})_0^{\circ}$	$2s^22p^5(^2\mathrm{P}^o_{3/2})3p^{\ 2}[\tfrac{1}{2}]_1$	5 351 520	5 494 974		3.3 - 3	1.5+7	E	92*
438.577	$2s^22p^5(^2\mathbf{P}^o_{3/2})3s(\frac{3}{2},\frac{1}{2})^o_2$	$2s^22p^5(^2\mathbf{P_{3/2}^o})3p^2[\frac{1}{2}]_1$	5 266 964	5 494 974	2	2.5 - 1	2.9+9	D	58°,92*
413.382 376.202	$2s^22p^5(^2\mathrm{P}^o_{3/2})3s(\frac{3}{2},\frac{1}{2})^o_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_2$	5 281 200 5 266 964	5 523 101 5 532 778	3 4	7.5 - 1	5.1+9	D	58 58°,92*
396.402 373.525	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3s(\frac{1}{2},\frac{1}{2})^{\circ}_{0}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p^{-2}[\frac{3}{2}]_1$	5 351 520 5 360 800	5 603 789 5 628 520	4bl 2				58 58
377.414 363.918	$2s^22p^5(^2\mathbf{P}^o_{1/2})3s\;(\frac{1}{2},\frac{1}{2})^o_1$	$2s^22p^5(^2\mathbf{P}^{\circ}_{1/2})3p^{-2}[\frac{1}{2}]_1$	5 360 800 5 351 520	5 626 306 5 626 306	$_1^2$				58 58
365.169 347.12	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3p^{-2}[\frac{3}{2}]_2$	5 281 200 5 266 964	5 555 050 5 555 050	2 1				58 58
302.509 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^2[\frac{3}{2}]_2^o$	5 532 778	5 863 347		2.7 - 2	3.9+8	E	92*
301.513 288.003	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{7}{2}]^{\circ}_4$	5 532 778 5 523 101	5 864 439 5 870 337	5bl 2	1.0	8.5+9	D	58°,92* 58
298.648	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathbf{P}^{\circ}_{1/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_2$	5 626 306	5 961 148	1				58
297.698 293.270	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\mathrm{o}}_{3}$	5 555 050 5 542 158	5 890 952 5 883 137	3bl 3bl				58 58
297.698	$2s^22p^5(^2P_{1/2}^{\circ})3p^2[\frac{3}{2}]_2$	$2s^22p^5(^2{\rm P}^{\rm o}_{1/2})3d\ ^2[\tfrac{5}{2}]^{\rm o}_3$	5 628 520	5 964 431	3bl				58
286.998 ^C 281.472 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{1}{2}]^{\circ}_0$	5 494 974 5 494 974	5 843 409 5 850 249		1.1 - 1 $2.7 - 1$	8.9+9 7.4+9	D D	92* 92*
271.464 ^C	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_2$	5 494 974	5 863 347		2.5 - 1	4.5+9	\mathbf{E}	92*
69.124 66.503	$2s^22p^5(^2P_{1/2}^{\circ})3d^{-2}[\frac{3}{2}]_1^{\circ}$	$2s^22p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_2$	6 018 300 5 961 148	7 465 000 7 464 838	5 30				57 57°,60
68.662 65.927	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{5}{2}]_2$	5 923 500 5 863 347	7 379 900 7 380 185	7 30bl				57 57°,60
67.314	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^2[\frac{5}{2}]_3^o$	$2s^22p^5(^2\mathbf{P_{3/2}^o})4f^{\ 2}[\frac{9}{2}]_4$	5 890 952	7 376 520	2				57
67.149	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^2[\frac{5}{2}]_3^o$	$2s^22p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	5 890 952	7 380 185	3				57
67.099 66.773	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{\ 2}[\frac{5}{2}]^{\circ}_{3}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	5 890 952 5 883 137	7 381 282 7 380 720	60 50				57°,60 57°,60
66.706	$2s^22p^5(^2P_{1/2}^{\circ})3d^{-2}[\frac{5}{2}]_3^{\circ}$	$2s^22p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_4$	5 964 431	7 463 551	60				57°,60
66.393 66.129	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3d^{-2}[\frac{7}{2}]^{\circ}_{3}$	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	5 870 337 5 864 439	7 376 520 7 376 639	40 50				57°,60 57°,60
66.209 65.927	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3d^{-2}[\frac{7}{2}]^{\mathrm{o}}_3$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	5 870 337 5 864 439	7 380 720 7 381 282	3 30bl				57 57°,60
66.036	$2s^22p^5(^2\mathbf{P_{3/2}^o})3d^2[\frac{3}{2}]_2^o$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$	5 863 347	7 377 669	4				57°,60
65.508 65.470 65.216	$2s^{2}2p^{5}(^{2}P_{3/2}^{\circ})3d^{2}[\frac{1}{2}]_{1}^{\circ}$ 1 0	$2s^2 2p^5 (^2P_{3/2}^{\circ}) 4f^{\ 2} [\frac{3}{2}]_1$	5 850 249 5 850 249 5 843 409	7 376 779 7 377 669 7 376 779	4 8 6				57 57 57
65.153	$2s^22p^5(^2P^{\circ}_{3/2})3p^{\ 2}[\frac{3}{2}]_2$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4s~(\frac{3}{2},\frac{1}{2})^{\circ}_2$	5 555 050	7 089 864	2				57
64.224	•	$2s^22p^5(^2P^{\circ}_{3/2})4s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	5 532 778	7 089 864	5				57
56.700 55.472	$2s^22p^5(^2P_{3/2}^{\circ})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2P^{\circ}_{3/2})4d^{-2}[\frac{3}{2}]^{\circ}_{2}$	5 555 050 5 542 158	7 318 722 7 344 868					57 57
56.432 56.110	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3p^{-2}[\frac{3}{2}]_2$	$2s^22p^5(^2P^o_{3/2})4d^2[\frac{5}{2}]^o_3$	5 555 050 5 542 158	7 327 149 7 324 359					57 57°,59
56.207	$2s^22p^5(^2P_{1/2}^{\circ})3p^2[\frac{1}{2}]_1$	$2s^22p^5(^2P_{1/2}^{\circ})4d^{\ 2}[\frac{3}{2}]_2^{\circ}$	5 626 306	7 405 446	5bl				57°,59

Mn XVI - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
56.207 55.560	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3p^{-2} [\frac{3}{2}]_2$	$2s^2 2p^5 (^2P_{1/2}^{\circ})4d^{\ 2}[\frac{5}{2}]_3^{\circ}$	5 628 520 5 603 789	7 407 660 7 403 649	5bl 5				57°,59 57°,59,60
56.032 55.962 55.659	$2s^22p^5(^2P_{3/2}^{\circ})3p^2[\frac{5}{2}]_3$	$2s^22p^5(^2P^{\circ}_{3/2})4d^{-2}[\frac{7}{2}]^{\circ}_{4}$	5 532 778 5 532 778 5 523 101	7 317 468 7 319 729 7 319 729	15 1 10				57°,59 57 57°,60
55.728 55.517	$2s^22p^5(^2P^{\circ}_{3/2})3p^{-2}[\frac{5}{2}]_3$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{5}{2}]^{\circ}_{3}$	5 532 778 5 523 101	7 327 149 7 324 359	2 1				57 57°,60
55.09 54.988	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3p^{\ 2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d^{\ 2}[\frac{1}{2}]^{\circ}_{0}$	5 494 974 5 494 974	7 310 174 7 313 554	1 1				57 57
54.832	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3p^{-2}[\frac{1}{2}]_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{3}{2}]^{\circ}_2$	5 494 974	7 318 722	2				57
52.344 51.847	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4p^{\ 2}[rac{5}{2}]_2$	5 281 200 5 266 964	7 191 600 7 195 714	1 3				57 57
52.147	$2s^22p^5(^2\mathbf{P}^o_{3/2})3s(\frac{3}{2},\frac{1}{2})^o_2$	$2s^22p^5(^2\mathbf{P_{3/2}^o})4p^2[\frac{1}{2}]_1$	5 266 964	7 184 624	2bl				57
52.147	$2s^22p^5(^2\mathbf{P}^o_{3/2})3s(\frac{3}{2},\frac{1}{2})^o_1$	$2s^22p^5(^2P^o_{3/2})4p^{-2}[\frac{3}{2}]_1$	5 281 200	7 198 860	2Ы				57
51.999	$2s^22p^5(^2\mathbf{P}^{\circ}_{1/2})3s(\frac{1}{2},\frac{1}{2})^{\circ}_1$	$2s^22p^5(^2P^{\circ}_{1/2})4p^{-2}[\frac{3}{2}]_2$	5 360 800	7 283 910	2				57
18.935	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_1$	0	5 281 200		1.2 - 1	7.3+11	C-	54°,92*
18.654	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	5 360 800		1.1 – 1	7.2+11	C-	54°,92*
17.095	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P^{\circ}_{3/2})3d^2[\frac{1}{2}]^{\circ}_1$	0	5 850 249		1.1 - 2	8.3+10	Е	54°,92*
16.882	$2s^22p^6$ 1 S ₀	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d^{\ 2}[\frac{3}{2}]^{\circ}_{1}$	0	5 923 500		5.3 - 1	4.1+12	D	54°,92*
16.616	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})3d^2[\frac{3}{2}]_1^{\circ}$	0 -	6 018 300		2.48	2.00+13	C-	54°,92*
15.312	$2s^22p^{6-1}S_0$	$2s2p^63p\ ^3{ m P}_1^{ m o}$	0	6 530 800					54
15.238	$2s^22p^6$ 1 S ₀	$2s2p^63p^{-1}P_1^o$	0	6 562 500					54
14.098	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})4s\ (\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	7 092 000	3				55
13.61	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ ^2[\frac{3}{2}]^{\circ}_{1}$	0	7 344 868					54
13.46	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{o})4d^{\ 2}[\frac{3}{2}]_{1}^{o}$	0	7 429 000					54
12.510	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{3/2}^{\circ})5d^2[\frac{3}{2}]_1^{\circ}$	0	7 994 000	5				55
12.373	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})5d^2[\frac{3}{2}]_1^{\circ}$	0	8 084 000	2				55
11.971	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}^{\mathrm{o}}_{3/2})6d\ ^2[\frac{3}{2}]^{\mathrm{o}}_{1}$	0	8 354 000	1				55
11.853	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})6d^2[\frac{3}{2}]_1^{\circ}$	0	8 439 000	2				55

 \mathbf{Mn} xvII

Upper 2s ² 2p ⁵ ² P _{1/2} °							
$2s^22p^5$ $^2P_{1/2}^{o}$							
	0	85 500		M1	1.12+4	C+	92*
$2s2p^6 \ ^2S_{1/2}$	85 500	1 000 000	10	1.12 - 1	3.14+10	C+	52°, 61, 62, 63, 92*
1/2	0	1 000 000	10	2.49 - 1	8.31+10	C+	52°, 61, 62, 63, 92*
$2s^22p^4(^3P)3s^4P_{3/2}$	85 500	5 644 800					64
5/2	0	5 619 900	3	1.8 - 2	6.3 + 10	\mathbf{E}	64°,92*
3/2	0	5 644 800	5				31,64°,94
$2s^22p^4(^3P)3s^2P_{3/2}$	85 500	5 701 100					64
1/2	85 500	5 725 800	2	1.2 - 1	1.3 + 12	D	64°,92*
3/2	0	5 701 100	5				31,64°
1/2	0	5 725 800	3	1.1 - 1	1.2 + 12	D	64°,92*
$2s^22p^4(^1D)3s^2D_{3/2}$	85 500	5 783 500	5	2.0 - 1	1.1+12	D	64°,92*
5/2	0	5 780 000	5	2.5 - 1	9.4 + 11	D	$31,64^{\circ},92^{*},94$
$2s^22p^4(^1S)3s^2S_{1/2}$	85 500	5 922 900	2	7.4 - 2	8.4+11	D	64°,92*
1/2	0	5 922 900	20bl	2.3 - 2	2.7 + 11	\mathbf{E}	64°,92*
$2s^22p^4(^3P)3d^4P_{3/2}$	85 500	6 228 900	2				64
1/2	0	6 215 000	5				64
3/2	0	6 228 900	5				64
5/2	0	6 255 100	1				64
$2s^22p^4(^3{ m P})3d\ ^4{ m F}_{5/2}$	0	6 234 000	6				64
$2s^22p^4(^3P)3d^2D_{3/2}$	0	6 266 400	1				64
5/2	0	6 300 800	7				$31,55,64^{\circ},94$
$2s^22p^4(^1D)3d^2S_{1/2}$	85 500	6 356 600	1	1.8 - 1	2.3+12	D	64°,92*
1/2	0	6 356 600	5	9.6 - 1	1.3+13	D	64°,92*
$2s^22p^4(^3\mathrm{P})3d\ ^2\mathrm{F}_{5/2}$	0	6 279 000	2				64
$2s^22p^4(^1D)3d^2P_{3/2}$	85 500	6 379 200	2	3.8 - 1	2.5+12	E	64°,92*
3/2		6 379 200		2.4	1.6+13	E	92*
$2s^22p^4(^1\mathrm{D})3d^{-2}\mathrm{D}_{3/2}$	85 500	6 404 200	6	1.9	1.3+13	Е	64°,92*
· ·	_		-		2.0 10	2	31,64°,94
	_	6 404 200	3	4.8 - 1	3.3 + 12	E	64°,92*
2s ² 2p ⁴ (¹ S)3d ² D ₂ /2	85 500	6 508 100	5	1.7	1.1+13	р	55,64°,92*,94
•	_						55,64°,92*,94
	_		•				92*
	$^{5/2}_{3/2}$ 3/2 $^{2}2p^{4}(^{1}S)3d\ ^{2}D_{3/2}$ 5/2	5/2 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Mn xviii

Wave- length (Å)	Classif Lower	fication Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2720 ^C	$2s2p^{5-3}P_{1}^{\circ}$	$2s2p^5 \ ^3P_0^o$	919 450	956 200		M1	2.61+3	С	92*
1895 ^C	2	1	866 690	919 450		M1	3.22+3	Ċ	92*
1359 ^C	$2s^22p^4$ 3P_2	$2s^22p^4$ 3 P ₁	0	73 590		M1	8.17+3	C+	92*
1298 ^C	$2s^22p^4$ ³ P ₁	$2s^22p^{4-1}D_2$	73 590	150 610		M1	5.4+2	D	92*
663.97^{C}	2	2	0	150 610		M1	1.1+4	D	92*
457.81 ^C	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^{4}$ ¹ S ₀	73 590	292 020		M1	9.8+4	E	92*
428.14 ^C	$2s2p^5$ $^3\mathrm{P}^{\mathrm{o}}_0$	$2s2p^{5-1}P_1^{\circ}$	956 200	1 189 770		M1	5.2 + 3	D-	92*
369.93 ^C 309.52 ^C	1	1	919 450	1 189 770		M1	5.9+3	D-	92*
309.52	2	1	866 690	1 189 770		M1	1.7 + 4	D-	92*
159.38 ^C	$2s^22p^{4-1}S_0$	$2s2p^5$ $^3\mathrm{P}^\mathrm{o}_1$	292 020	919 450		7.4 - 3	6.5+8	E	92*
139.65	$2s^22p^{4-1}D_2$	$2s2p^5$ $^3 ext{P}_2^\circ$	150 610	866 690	3	2.7 - 2	1.8+9	E	52°,92*
126.09	$2s^22p^4$ 3P_1	$2s2p^5$ $^3P_2^{\circ}$	73 590	866 690	8	1.17 - 1	9.8+9	C	52°, 62, 63, 92*
118.22	1	ī	73 590	919 450	6	7.38 - 2	1.17 + 10	C	52°, 62, 63, 92*
117.25	0	1	66 560	919 450	7	9.1 - 2	1.5+10	C	52°, 62, 63, 92*
115.38	2	2	0	866 690	11	3.5 - 1	3.6+10	C	52°, 61, 62, 63, 92*
113.30 108.76	1	0	73 590 0	956 200 919 450	8 8	1.06 - 1 $1.47 - 1$	5.50+10 $2.77+10$	C	52°, 62, 63, 92* 52°, 61, 62, 63, 92*
	2	1			o			C	
122.29	2s2p ⁵ ¹ P ₁ °	$2p^{6-1}S_0$	1 189 770	2 007 500	7	3.36 - 1	1.5+11	С	52°, 67, 92*
111.39	$2s^22p^{4-1}S_0$	$2s2p^5$ $^1\mathrm{P}^\mathrm{o}_1$	292 020	1 189 770	5	5.6 - 2	1.0+10	С	52°,62,92*
96.23	$2s^22p^{4-1}D_2$	$2s2p^{5}$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	150 610	1 189 770	10bl	5.85 - 1	1.4+11	C	52°, 61, 62, 63, 92*
91.90	$2s2p^{5-3}$ P ₁ °	$2p^{6-1}S_0$	919 450	2 007 500	2	1.0 - 2	8.3+9	E	52°,92*
89.59	$2s^22p^4$ ³ P ₁	$2s2p^{5-1}P_{1}^{o}$	73 590	1 189 770	1	2.5 - 3	6.9+8	\mathbf{E}	52°,92*
89.03	0	1	66 560	1 189 770	1	4.4 - 3	1.2 + 9	\mathbf{E}	52°,92*
84.05	2	1	0	1 189 770	6	3.4 - 2	1.1+10	E	52°,92*
16.724	$2s^22p^4$ ³ P ₁	$2s^22p^3(^4S^o)3s \ ^3S_1^o$	73 590	6 052 900	1	7.8 - 2	6.2 + 11	C-	68°,92*
$16.705^{ m C}$	0	1	66 560	6 052 900		5.2 - 2	4.1 + 11	C-	92*
16.521	2	1	0	6 052 900	4	2.6 - 1	1.7 + 12	C-	68°,92*
16.663^{C}	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^o)3s^3D_2^o$	150 610	6 152 100		2.2 - 2	1.1+11	\mathbf{E}	92*
16.589 ^C	25 2p 22 2	3	150 610	6 178 600		2.2 - 2	7.6+10	E	92*
16.577	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	292 020	6 324 500	3	1.4 1	1.1+12	D	68°,92*
		,							
16.540	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	150 610	6 196 600	5	3.9 - 1	1.9+12	D	68°,92*
16.451	$2s^22p^{4-3}P_1$	$2s^22p^3(^2D^o)3s^3D_2^o$	73 590	6 152 100	4	4.5 - 2	2.2 + 11	D	68°,92*
16.444 ^C	1	1	73 590	6 154 800		1.1 - 1	9.4 + 11	D	92*
16.425	0	1	66 560	6 154 800	3	2.2 - 2	1.8 + 11	D	68°,92*
16.255	2	2	0	6 152 100	5	1.6 - 1	8.1 + 11	D	68°,92*
16.185	2	3	0	6 178 600	6bl	2.6 - 1	9.5 + 11	C	68°,92*
16.332^{C}	$2s^22p^{4-3}P_1$	$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	73 590	6 196 600		4.5 - 2	2.3 + 11	E	92*
16.138 ^C	23 29 11	23 2p (D)33 D ₂	0	6 196 600		$\frac{4.3}{2.3} - \frac{2}{2}$	1.2+11	E	92*
16.197 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^o)3s^{-1}P_1^o$	150 610	6 324 500		1.1 - 1	9.7+11	D	92*
15.403^{T} 15.238^{T}	$2s^22p^4\ ^3{ m P}_1$	$2s^22p^3(^4S^\circ)3d^{-3}D_2^\circ$	73 590 0	6 565 800? 6 562 500?		1.3	5.6+12	D	55,69° 55,69°,92*
14.877 ^T	$2s^22p^4$ ³ P ₂	$2s^22p^3(^2D^\circ)3d^3D_3^\circ$	0	6 721 800?	7	3.8	1.6+13	D	55,69°,92*
14.752^{T}	$2s^22p^4$ ³ P ₂	$2s^22p^3(^2P^o)3d^{-3}P_2^o$	0	6 778 700?	4				55,69°
14.698^{T}									
14.698	$2s^22p^4$ ³ P ₂	$2s^22p^3(^2P^o)3d^3D_3^o$	0	6 803 600?	2				55,69°

 \mathbf{Mn} XIX

Wave- length (Å)	Lower	Classification	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
8739 ^C	2s2p4 2	D _{3/2}	$2s2p^{4} {}^{2}\mathrm{D}_{5/2}$	981 160 .	992 600		M1	1.6+1	D	92*
5021 ^C 1764 ^C	$2s2p^{4-4}$	P _{3/2} 5/2	$2s2p^4 \ ^4P_{1/2} \ _{3/2}$	765 760 709 070	785 670 765 760		M1 M1	3.39+2 4.36+3	C C	92* 92*
3259 ^C	$2s^22p^{3-2}$	$D_{3/2}^o$	$2s^22p^3$ $^2D_{5/2}^o$	131 770	162 450		M1	2.36+2	C	92*
2268 ^C 797.77 ^C	$2s2p^{4-2}$	S _{1/2}	$2s2p^4 \ ^2\mathrm{P}_{3/2}$	1 126 740 1 126 740	1 170 820 1 252 090		M1 M1	1.4+2 $1.2+4$	D D	92* 92*
2015 ^C	$2s^22p^3$ 2	$P_{1/2}^{\circ}$	$2s^22p^3$ 2 P $^{\circ}_{3/2}$	242 110	291 730		M1	8.0+2	C	92*
1230 ^C	$2s2p^{4-2}$	-,-	$2s2p^4 \ ^2P_{1/2}$	1 170 820	1 252 090		M1	7.2+3	C	92*
1111 ^C	$2p^{5-2}$		$2p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	1 844 360	1 934 390		M1	1.31+4	С	92*
906.29 ^C	$2s^22p^{3-2}$	$D_{3/2}^{o}$	$2s^22p^3$ 2 P $_{1/2}^{o}$	131 770	242 110		M1	4.5 + 3	D	92*
773.51 ^C		5/2	3/2	162 450	291 730		M1	8.2 + 3	D	92*
625.16 ^C		3/2	3/2	131 770	291 730		M1	2.7+4	D	92*
758.90°	$2s^22p^3$	⁴ S _{3/2}	$2s^22p^3$ 2 D $_{3/2}^{\circ}$	0	131 770		M1	1.0+4	D	92*
615.57 ^C		3/2	5/2	0	162 450		M1	6.6+2	D	92*
561.10 ^C	$2s2p^{4-2}$	$D_{5/2}$	$2s2p^{4}$ $^{2}P_{3/2}$	992 600	1 170 820		M1	3.3 + 3	D-	92*
527.26° 369.10°		3/2	3/2	981 160	1 170 820		M1	7.8+3	D	92*
511.54 ^C	$2s2p^4$	3/2	$^{1/2}$ $2s2p^4$ $^2\mathrm{D}_{3/2}$	981 160	1 252 090		M1 M1	1.3+4	D-	92* 92*
464.25 ^C	282p		•	785 670 765 760	981 160 981 160		M1	1.5+3 $7.4+3$	D-	92*
440.84 ^C		3/2 3/2	3/2 5/2	765 760	992 600		M1	1.2+3	D-	92*
352.70 ^C		5/2	5/2	709 070	992 600		M1	1.8+4	D	92*
413.04 ^C	$2s^22p^3$	4S2/2	$2s^22p^3$ ² P $_{1/2}^{\circ}$	0	242 110		M1	2.1 + 4	D	92*
342.78 ^C		3/2	3/2	0	291 730		M1	2.2+4	D	92*
277.02 ^C	$2s2p^4$	•	$2s2p^4$ 2 S _{1/2}	765 760	1 126 740		M1	7.0+4	D	92*
239.61^{C}	$2s^22p^3$	$^{2}P_{3/2}^{o}$	$2s2p^{4-4}P_{5/2}$	291 730	709 070		1.3 - 3	2.6 + 7	\mathbf{E}	92*
210.96 ^C		3/2	3/2	291 730	765 760		3.9 - 3	1.5 + 8	\mathbf{E}	92*
183.97 ^C	4	1/2	1/2	242 110	785 670		1.6 - 3	1.6+8	E	92*
216.57 ^C	$2s2p^4$	⁴ P _{5/2}	$2s2p^4 \ ^2P_{3/2}$	709 070	1 170 820		M1	1.1 + 4	D-	92*
205.62 ^C	- 2 - 3 -	3/2	1/2	765 760	1 252 090		Mi	1.7+4	D-	92*
182.94 ^C	$2s^22p^3$	$^{2}D_{5/2}^{0}$	$2s2p^{4-4}P_{5/2}$	162 450	709 070		5.8 - 3	1.9 + 8	E	92*
173.22 ^C 157.73 ^C		3/2	5/2	131 770	709 070		1.1 - 2	4.1+8	E	92*
157.73° 152.93 ^C		3/2 3/2	3/2 1/2	131 770 131 770	765 760 785 670		1.2 - 3 $1.5 - 3$	7.8+7 $2.1+8$	E E	92* 92*
168.84 ^C	$2s2p^4$	² P. /2	$2p^{5-2}P_{3/2}^{\circ}$	1 252 090	1 844 360		3.30 - 2	1.93+9	С	92*
148.48	•	3/2	3/2	1 170 820	1 844 360		3.9 - 1	3.0+10	Ċ	52°,92*
146.57		1/2	1/2	1 252 090	1 934 390		2.0 - 1	3.0+10	C	52°,92*
130.97	9. 9.	3/2	1/2	1 170 820	1 934 390		1.62 - 1	3.14+10	С	52°,92*
145.05 ^C	$2s^22p^3$	${}^{2}P_{3/2}^{o}$	$2s2p^4\ ^2\mathrm{D}_{3/2}$	291 730	981 160		8.4 - 3	6.7 + 8	D	92*
142.68 135.33		3/2 1/2	5/2 3/2	291 730 242 110	992 600 981 160		1.04 - 1 $3.22 - 2$	5.7+9 $2.93+9$	C C	52°,62,92* 52°,92*
141.03	$2s^22p^3$	4S2 (2	$2s2p^{4} {}^{4}P_{5/2}$	0	709 070	bl	2.2 - 1	1.3+10	C	52°, 62, 63, 92*
130.59	F	3/2	3/2	0	765 760		1.70 - 1	1.66+10	C	52°,62,63,92*
127.28		3/2	1/2	0	785 670	bl	9.04 - 2	1.86+10	C	52°, 62, 63, 92*
139.36	$2s2p^4$	$^{2}S_{1/2}$	$2p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	1 126 740	1 844 360		9.40 - 2	8.1 + 9	C	52°,92*
123.82 ^C	_	1/2	1/2	1 126 740	1 934 390		6.8 - 3	1.5+9	D	92*
122.14 ^C	$2s^22p^3$	² D _{5/2}	$2s2p^{4}$ 2 D _{3/2}	162 450	981 160		1.3 - 3	1.5 + 8	\mathbf{E}	92*
120.46		5/2	5/2	162 450	992 600	bl	3.9 - 1	3.0+10	C	52°, 62, 63, 92°
117.74 116.17 ^C		3/2 3/2	3/2 5/2	131 770 131 770	981 160 992 600		3.2 - 1 $7.6 - 5$	3.8+10 $6.3+6$	C E	52°, 62, 63, 92' 92*
119.76	$2s^22p^3$	² P° (n	$2s2p^{4}$ 2 S _{1/2}	291 730	1 126 740		1.8 - 2	4.1+9	D	52°,92*
	~ ~ ~ P	- 3/2	P1/2	201 100	1 1 2 0 1 1 0			*** 7 0	_	· , · .

Mn XIX - Continued

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
117.41	$2s2p^{4-2}D_{5/2}$	$2p^5 \ ^2\mathrm{P_{3/2}^o}$	992 600	1 844 360		3.4 - 1	4.1+10	С	52°,67,92*
115.84	3/2	3/2	981 160	1 844 360		1.19 - 1	1.48 + 10	C	52°, 67, 92*
104.90	3/2	1/2	981 160	1 934 390		1.46 - 1	4.44 + 10	C	52°, 67, 92*
113.75	$2s^22p^3$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s2p^{4-2}P_{3/2}$	291 730	1 170 820		7.12 - 2	9.2+9	С	52°, 62, 92*
107.68	1/2	3/2	242 110	1 170 820		5.56 - 2	8.0+9	C	52°,62,92*
104.13	3/2	1/2	291 730	1 252 090	bl	2.8 - 1	8.7+10	č	52°, 62, 92*
99.01	1/2	1/2	242 110	1 252 090		1.4 - 2	4.7+9	D	52°, 62, 92*
101.92	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^4\ ^2\mathrm{D}_{3/2}$	0	981 160		6.8 - 3	1.1+9	E	52°,92*
100.50	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s2p^{4}$ 2 S _{1/2}	131 770	1 126 740		1.2 - 1	4.0+10	E	52°,70,92*
99.17	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s2p^{4} {}^{2}P_{3/2}$	162 450	1 170 820		5.6 - 1	9.5+10	C	52°, 62, 63, 92*
96.24	3/2	3/2	131 770	1 170 820	bl	8.48 - 2	1.53 + 10	C	52°, 62, 63, 92*
89.26	3/2	1/2	131 770	1 252 090		7.12 - 2	2.98 + 10	C	52°, 62, 92*
94.456 ^C	$2s2p^{4}$ 4 $P_{1/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$	785 670	1 844 360		2.0 - 3	3.7+8	E	92*
92.71	3/2	3/2	765 760	1 844 360		5.6 - 3	1.1+9	E	52°,92*
88.08	5/2	3/2	709 070	1 844 360		1.1 - 2	2.3+9	$\widetilde{\mathbf{E}}$	52°,92*
87.053 ^C	1/2	1/2	785 670	1 934 390		1.7 - 3	7.4+8	E	92*
85.570 ^C	3/2	1/2	765 760	1 934 390		4.0 - 4	1.8+8	E	92*
88.75	$2s^22p^3$ $^4S^{o}_{3/2}$	$2s2p^4$ 2 S _{1/2}	0	1 126 740		3.2 - 3	1.4+9	E	52°,92*
85.41	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^4 \ ^2\mathrm{P}_{3/2}$	0	1 170 820		1.5 - 2	3.4+9	Е	52°,92*
14.098^{T}	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^2(^3P)3d^4P_{3/2}$	0	7 093 200?	bl				55,69°
$14.098^{\mathbf{T}}$	3/2	5/2	0	7 093 200?	bl				55,69°

Mn xx

Wave- ength (Å)	Lower	Classification	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
7308 ^C	$2s2p^3$	³ P ₁ °	$2s2p^3 \ ^3P_2^{\circ}$	856 900	870 580		M1	3.4+1	D	92*
1942 ^C	$2s2p^3$	$^3D_2^o$	$2s2p^3$ 3 D $^{\alpha}_3$	722 710	742 940		M1	1.2+2	D	92*
.559 ^C	$2s^22p^2$	³ P ₁	$2s^22p^2$ 3P_2	59 580	98 650		M1	6.4+2	C+	92*
678 ^C		0	1	0	59 580		M1	3.46+3	C+	92*
340 ^C	$2n^4$	³ P ₁	$2p^{4-1}\mathrm{D}_2$	1 623 650	1 698 290		M1	4.7+2	D	92*
655.78 ^C	~ <i>p</i>	2	20 2	1 545 800	1 698 290		M1	1.1+4	D	92*
285 ^C	$2p^4$	$^{3}P_{2}$	$2p^4$ 3 P $_1$	1 545 800	1 623 650		M1	9.7+3	\mathbf{C}	92*
880.20 ^C	$2s^22p^2$	3 _D .	$2s^22p^{2-1}D_2$	98 650	212 260		M1	9.5+3	D	92*
654.96 ^C	25 2p	1	23 2p D ₂	59 580	212 260		M1	9.6+3	D	92*
785.85 ^C	$2s2p^3$	3D0	$2s2p^3$ 3 P $_0^{\circ}$	723 090	850 340		M1	1.2+4	D	92*
783.45 ^C	2329	3	2329 10	742 940	870 580		M1	8.1+3	D	92*
747.33 ^C		1	1	723 090	856 900		M1	1.3+4	D	92*
678.01 ^C		1	1 2	723 090	870 580		M1	1.7+3	D-	92*
676.27 ^C		2	2 2	722 710	870 580		M1	7.5+3	D	92*
679.99 ^C	$2s2p^3$	³ S ₁ °	$2s2p^{3-1}P_1^{o}$	1 025 510	1 172 570		M1	2.1+4	D	92*
645.45 ^C	$2s2p^3$	•	-							
645.45°	$2s2p^3$		$2s2p^3 \ ^3S_1^{o}$	870 580	1 025 510		M1	1.2+3	D-	92*
593.08 ^C 570.87 ^C		1	1	856 900 850 340	1 025 510 1 025 510		M1 M1	1.1+3 $2.7+3$	D- D-	92* 92*
	_	0	1							
560.85 ^C	$2s2p^3$	_	$2s2p^{3-1}D_{2}^{o}$	870 580	1 048 880		M1	1.0+4	D	92*
520.89 ^C		1	2	856 900	1 048 880		M1	5.0+3	D	92*
365.63 ^C	$2s^22p^2$		$2s^22p^2$ ¹ S ₀	59 580	333 080		M1	9.4+4	D	92*
357.59 ^C	$2s2p^3$	^{3 5} S ₂ °	$2s2p^{3-3}D_2^{o}$	[443 060]	722 710		M1	9.5 + 3	E	92*
357.10 ^C	•	2	1	[443 060]	723 090		M1	3.7+3	E	92*
345.63 ^C	$2p^4$	¹³ P ₁	$2p^{4}$ 1 S ₀	1 623 650	1 912 980		M1	1.4+5	D	92*
331.14 ^C	$2s2p^3$	³ P ₂	$2s2p^{3-1}P_{1}^{o}$	870 580	1 172 570		M1	8.7+3	D-	92*
316.79 ^C		1	1	856 900	1 172 570		M1	5.7 + 3	D-	92*
330.67 ^C	$2s2p^3$	3 Do	$2s2p^{3-3}S_1^{\circ}$	723 090	1 025 510		M1	2719	E	92*
330.67 ⁻ 330.25 ^C	2s2p	$\frac{1}{2}$	$2s2p^{-1}S_1$	723 090 722 710	1 025 510		M1 M1	3.7+3 $1.0+4$	E E	92* 92*
	-		-		•					
306.59 ^C	$2s2p^3$	$^{3}D_{2}^{\circ}$	$2s2p^{3}$ $^{1}\mathrm{D_{2}^{o}}$	722 710	1 048 880		M1	8.6+3	D-	92*
290.36 ^P	$2s^22p^2$	² ³ P ₂	$2s2p^{3}$ ${}^{5}S_{2}^{o}$	98 650	[443 060]		1.6 - 3	2.5 + 7	Е	71°,92*
260.77 ^P	- - 	1	2027 02	59 580	[443 060]		1.2 - 3	2.4+7	E	71°,92*
007 09C		³ ¹ P ₁ °	. 43-	1 150 550					_	
267.93 ^C 221.69 ^C	2s2p			1 172 570 1 172 570	1 545 800 1 623 650		5.4 - 3	1.0+8	E	92*
	•	1	1				1.3 - 2	6.0+8	E	92*
256.40 ^C	$2s^22p$	·	$2s2p^3$ $^3D_1^o$	333 080	723 090		1.3 - 3	4.4+7	E	92*
$241.64^{\rm C}$	2s2p	^{3 5} S ₂ °	$2s2p^{3-3}P_{1}^{\circ}$	[443 060]	856 900		M1	2.8+4	D-	92*
233.91 ^C	•	2	2	[443 060]	870 580		M1	5.0+4	D	92*
222.48 ^C	9 e9 n	³ D ₁ °	$2s2p^{3-1}P_1^{\circ}$	723 090	1 172 570		M1	1.1.1.4	D	92*
222.48 222.29 ^C	232p	2	2 <i>s</i> 2 <i>p</i>	723 090	1 172 570		M1 M1	1.1+4 $3.8+4$	D- D-	92* 92*
201.24 ^C	~ ~ '	3 100	. 4 3-	1 0 10 5						
201.24° 173.98°	2 <i>s</i> 2 <i>p</i>	$^{3} ^{1}\mathrm{D}_{2}^{\mathrm{o}}$	$2p^4$ 3 P $_2$	1 048 880	1 545 800		2.3 - 2	7.4+8	E	92*
		2	1	1 048 880	1 623 650		3.1 - 3	2.3+8	\mathbf{E}	92*
195.91 ^C	$2s^22p^2$	2 1 D $_{2}$	$2s2p^{3-3}D_2^{o}$	212 260	722 710		1.0 - 3	3.6+7	\mathbf{E}	92*
195.76 ^C	•	2	1	212 260	723 090		2.8 - 3	1.6+8	Ē	92*
188.44 ^C		2	3	212 260	742 940		3.0 - 2	8.2+8	E	92*
192.20	2s2n	^{3 3} S ₁ °	$2p^{4} {}^{3}P_{2}$	1 025 510	1 545 800		1.8 - 1	6.5+9	C	52°,92*
167.19	2029	1	2p 12	1 025 510	1 623 650	bl	1.6 - 1	1.3+10	č	52°,92*
167.12		1	0	1 025 510	1 623 890	bl	6.99 - 2	1.67+10		52°,92*
190.91 ^C	$2s^22p$	$0^{2} {}^{1}S_{0}$	$2s2p^{3-3}P_{1}^{o}$	333 080	856 900		2.2 - 3	1.3+8	E	92*
	·	³ ¹ P ₁ °	-	1 172 570			-			52°,92*
190.23					1 698 290		1.24 - 1	4.56 + 9	$^{\rm C}$	

Mn xx - Continued

Wave- ength (Å)	Classificati Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
160.14 ^C	$2s^22p^2$ ³ P ₂	2s2p ³ ³ D ₁ °	98 650	723 090		4.8 - 4	4.2+7	Ė	92*
155.21	2	•	98 650	742 940		1.58 - 1	6.2+9	č	52°, 63, 92*
150.80		3	59 580	722 710		1.6 - 1			52°, 63, 92*
150.50 150.71	1	2			1. 1		9.2+9	C	52 , 63, 92
	1	1	59 580	723 090	bl	9.6 - 3	9.4+8	D	52°,92*
138.30	0	1	0	723 090		9.1 - 2	1.1+10	C	52°,63,92*
155.13 ^C	$2s^22p^{2-1}D_2$	$2s2p^3 \ ^3P_1^{o}$	212 260	856 900		3.2 - 3	3.0+8	E	92*
151.90 ^C	2	2	212 260	870 580		3.9 - 3	2.3+8	${f E}$	92*
153.98	$2s2p^3~^1\mathrm{D}_2^\mathrm{o}$	$2p^{4-1}\mathrm{D}_2$	1 048 880	1 698 290		5.95 - 1	3.35+10	C	52°,92*
148.10	$2s2p^3$ 3 P $_2^{\circ}$	$2p^{4-3}\mathrm{P}_{2}$	870 580	1 545 800		5.90 - 2	3.59+9	С	52°,92*
145.16			856 900	1 545 800		5.60 - 2			52 ,92
132.79	1	2			L.1		3.55+9	C	52°,92*
130.42 ^C	2	1	870 580	1 623 650	ы	1.25 - 1	1.58+10	C	52°,92*
	1	1	856 900	1 623 650		2.0 - 4	2.6 + 7	\mathbf{E}	92*
130.38	1	0	856 900	1 623 890		4.86 - 2	1.91 + 10	$^{\rm C}$	52°,92*
129.31	0	1	850 340	1 623 650		3.48 - 2	4.63 + 9	$^{\rm C}$	52°,92*
144.42 ^C	$2s^22p^{2-1}S_0$	$2s2p^3$ 3 S $_1^{\circ}$	333 080	1 025 510		5.1 - 3	5.4+8	E	92*
35.06	$2s2p^{3-1}P_1^{o}$	$2p^{4}$ 1 S ₀	1 172 570	1 912 980		2.1 - 1	7.8+10	C	52°,92*
. n o.C	$2s^22p^2$ ³ P ₂								
131.88 ^C	$2s^{-}2p^{2}$ ${}^{\circ}P_{2}$	$2s2p^3$ 3 P $_1^{o}$	98 650	856 900		2.7 - 2	3.4 + 9	D	92*
129.55	2	2	98 650	870 580		2.41 - 1	1.92 + 10	$^{\rm C}$	52°, 63, 70, 92
126.46	1	0	59 580	850 340		5.25 - 2	2.19 + 10	C	52°,92*
125.42	1	1	59 580	856 900	bl	1.02 - 1	1.44 + 10	\mathbf{C}	52°,92*
23.30	1	2	59 580	870 580	bl	6.0 - 3	5.3 + 8	D	52°,92*
16.70	0	1	0	856 900		2.55 - 2	4.16 + 9	C	52°,92*
24.56	$2s2p^3$ 3 $\mathrm{D_3^o}$	$2p^{4-3}P_2$	742 940	1 545 800		3.46 - 1	2.98+10	C	52°,92*
21.55	r - 3 1		723 090	1 545 800	ы	3.30 - 2	2.98+9	č	52°,92*
21.49	2	2	722 710	1 545 800	bl	1.47 - 1	1.33+10	č	52°, 92*
11.04		2	723 090	1 623 650	bl	8.07 - 2		Č	52°,92*
11.01	1	1	723 090				1.46+10		
111.00	1 2	0	723 090 722 710	1 623 890 1 623 650	bl bl	6.45 - 2 $1.20 - 1$	3.49+10 $2.17+10$	C C	52°,92* 52°,92*
22.96 ^C	$2s^22p^{2-1}D_2$	$2s2p^3$ ${}^3S_1^{\circ}$	212 260	1 025 510		1.1 - 3	1.6+8	E	92*
190.09	$2s2p^3$ 3 P $_2^{\circ}$	$2p^{4-1}\mathrm{D_2}$	050 500					_	0*
120.82	$2s2p$ P_2	$2p^{-1}D_2$	870 580	1 698 290		1.7 - 2	1.6 + 9	E	52°,92*
118.85 ^C	1	2	856 900	1 698 290		1.0 - 2	9.6 + 8	\mathbf{E}	92*
19.54	$2s^22p^{2-1}D_2$	$2s2p^{3-1}D_2^{o}$	212 260	1 048 880		4.9 - 1	4.6+10	\mathbf{C}	52°,63,70,9
119.12	$2s^22p^2$ ¹ S ₀	$2s2p^{3-1}P_1^{\alpha}$	333 080	1 172 570		1.08 - 1	1.69+10	C	52°,92*
112.68 ^C	$2s2p^3$ $^3\mathrm{S}^\mathrm{o}_1$	$2p^{4-1}S_0$	1 025 510	1 912 980		9.9 - 3	5.2+9	E	92*
	$2s^22p^2$ ³ P ₂								
07.89	$2s^22p^2$ P_2	$2s2p^3$ ${}^3S_1^{o}$	98 650	1 025 510		3.1 - 1	5.9 + 10	$^{\rm C}$	52°, 63, 70, 9
103.53	1	1	59 580	1 025 510		1.23 - 1	2.55+10	$^{\rm C}$	52°, 63, 70, 9
97.51	0	1	0	1 025 510		4.03 - 2	9.4 + 9	C	52°, 70, 92*
05.24	$2s^22p^2$ 3 P $_2$	$2s2p^{3-1}\mathrm{D}_2^{\mathrm{o}}$	98 650	1 048 880		6.0 - 2	7.2+9	E	52°,92*
101.08 ^C	23 2p 1 2 1	252p D ₂	59 580	1 048 880		0.0 - 2 $2.5 - 3$	7.2+9 3.3+8	E	52 , 92 92*
104.67	$2s2p^3$ 3 D_3°	$2p^{4-1}\mathrm{D}_2$	749 040	1 600 000		20.0	40.0	***	F09 60*
104.67			742 940	1 698 290		3.9 - 2	4.8+9	E	52°, 92*
102.50	2	2	722 710	1 698 290		5.0 - 3	6.3+8	E	92*
.04.13	$2s^22p^{2-1}D_2$	$2s2p^{3-1}$ P $_1^{o}$	212 260	1 172 570	bl	3.2 - 1	6.6+10	C	52°, 63, 70, 9
94.690 ^C	$2s2p^3$ 3 P $_1^{\circ}$	$2p^{4}$ 1 S ₀	856 900	1 912 980		4.5 - 3	3.3+9	E	92*
93.117 ^C	$2s^22p^2$ ³ P ₂	$2s2p^{3-1}P_{1}^{o}$	98 650	1 172 570		55 4	1 4 1 9	D	92*
89.85	28 2p 1 2	282p F ₁	59 580	1 172 570		5.5 - 4 $1.6 - 2$	1.4+8 $4.4+9$	E E	92° 52°, 92*
00 00cC	2 5	4.9	_						
90.683 ^C	$2s2p^3$ $^5\mathrm{S}^{\mathrm{o}}_2$	$2p^{4} {}^{3}P_{2}$	[443 060]	. 1 545 800		6.5 - 3	1.1 + 9	\mathbf{E}	92*
84.703^{C}	2	1	[443 060]	1 623 650		7.5 - 4	2.3+8	\mathbf{E}	92*
13.46 ^T	$2s^22p^{2-1}D_2$	$2s^22p3d\ ^1{ m F}_3^{ m o}$							
			212 260	7 642 000?					55,69°

Mn xxi

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
7228.7 ^C	$2s2p^2$ 2 S _{1/2}	2s2p ² ² P _{3/2}	910 880	924 710	-	M1	1.03+1	C-	92*
6004.3 ^C	$2s2p^2\ ^2{ m D}_{3/2}$	$2s2p^2$ $^2D_{5/2}$	687 540	704 190		M1	4.73+1	C	92*
4134.5 ^C	$2p^3 \ ^2\mathrm{D}^{\circ}_{3/2}$	$2p^3 \ ^2D_{5/2}^{\circ}$	1 310 890	1 335 070	ı	M1	1.3+2	C	92*
2236.4 ^C	$2p^3 \ ^2P_{1/2}^{\circ}$	$2p^3 \ ^2P_{3/2}^{\circ}$	1 472 710	1 517 410		M1	6.7+2	C	92*
2205.8 ^C 2188.0 ^C	$2s2p^2$ ⁴ P _{1/2}	$2s2p^2 {}^4P_{3/2}$	379 660 424 980	424 980 470 670		M1 M1	2.03+3 $1.5+3$	C C	92* 92*
1006.4 ^C	$3/2$ $2s^2 2p \ ^2P_{1/2}^{o}$	$2s^2 2p ^2P_{3/2}^{\circ}$	0	99 360		M1	8.8+3	В	92*
952.8 ^C	$2s2p^{2-2}P_{1/2}$	$2s2p^2 {}^2S_{1/2}$	805 930	910 880		M1	1.1+4	C-	92*
841.9 ^C	$2s2p^{2-2}P_{1/2}$	$2s2p^2 {}^2P_{3/2}$	805 930	924 710		M1	8.0+3	C	92*
618.0 ^C	$2p^{3} {}^{2}\mathrm{D}_{3/2}^{\circ}$	$2p^{3} {}^{2}P_{1/2}^{o}$	1 310 890	1 472 710)	M1	8.6+3	D	92*
548.4 ^C	5/2	3/2	1 335 070	1 517 410	1	M1	1.3+4	D	92*
484.2 ^C	3/2	3/2	1 310 890	1 517 410)	M1	3.7+4	D	92*
395.69 ^C	$2s2p^2\ ^2{ m P}_{3/2}$	$2p^3 \ ^4S_{3/2}^{o}$	924 710	1 177 430)	2.4 - 3	2.5+7	E	92*
356.76 ^C	$2s^22p\ ^2{ m P}^{ m o}_{3/2}$	$2s2p^2 {}^4P_{1/2}$	99 360	379 660		4.8 - 4	1.3 + 7	E	92*
269.32 ^C	3/2	5/2	99 360	470 670		3.2 - 3	4.8 + 7	\mathbf{E}	92*
263.39 ^C	1/2	1/2	0	379 660)	1.3 - 3	6.1+7	\mathbf{E}	92*
$258.95^{\mathbf{T}}$	$2s2p^2 {}^2P_{3/2}$	$2p^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$	924 710	1 310 890	bl (1.9 - 3	4.7+7	E	52°,92*
243.69	3/2	5/2	924 710	1 335 070		1.70 - 1	3.17 + 9	\mathbf{C}	52°,92*
198.04	1/2	3/2	805 930	1 310 890) bl				52
204.13 ^C	$2s2p^2\ ^2\mathrm{D}_{3/2}$	$2p^3 \ ^4S_{3/2}^{\circ}$	687 540	1 177 430)	1.9 - 3	7.7+7	E	92*
182.48	$2s2p^2 {}^2P_{3/2}$	$2p^3 \ ^2P_{1/2}^{\circ}$	924 710	1 472 710)	2.3 - 2	2.3 + 9	D	52°,92*
168.72	3/2	3/2	924 710	1 517 410		3.0 - 1	1.8 + 10	\mathbf{C}	52°,92*
140.55	1/2	3/2	805 930	1 517 410)				52
177.99	$2s2p^2$ 2 S _{1/2}	$2p^3 \ ^2P_{1/2}^{\circ}$	910 880	1 472 710)				52
164.87	1/2	3/2	910 880	1 517 410	ы				52
170.02^{C}	$2s^22p^{-2}P_{3/2}^{o}$	$2s2p^2$ 2 D _{3/2}	99 360	687 540)	1.2 - 3	7.2+7	E	92*
165.34	3/2	5/2	99 360	704 190		1.41 - 1	5.7+9	Ĉ	52°, 63, 92*
145.45	1/2	3/2	0	687 540)	1.2 - 1	9.6 + 9	\mathbf{C}	52°, 63, 92*
164.83	$2s2p^2$ $^2D_{5/2}$	$2p^{3} {}^{2}\mathrm{D}^{\circ}_{3/2}$	704 190	1 310 890) ы	7.38 - 2	4.53+9	С	52°,92*
160.42	3/2	3/2	687 540	1 310 890		1.13 - 1	7.3+9	Č	52°,92*
158.51	5/2	5/2	704 190	1 335 070		2.72 - 1	1.2 + 10	C	52°,92*
154.43	3/2	5/2	687 540	1 335 070)	6.24 - 2	2.91 + 9	С	52°, 92*
141.49	$2s2p^2$ ⁴ P _{5/2}	$2p^{3} {}^{4}S_{3/2}^{\circ}$	470 670	1 177 430) bl	2.23 - 1	1.85+10	C	52°,92*
132.90	3/2	3/2	424 980	1 177 430		1.52 - 1	1.44+10	\mathbf{C}	52°,92*
125.35	1/2	3/2	379 660	1 177 430) bl	8.72 - 2	9.3 + 9	$^{\mathrm{C}}$	52°,92*
127.36	$2s2p^2$ 2 $D_{3/2}$	$2p^3 \ ^2P_{1/2}^{\circ}$	687 540	1 472 710	о ы	1.30 - 1	2.67+10	C	52°,92*
122.97	5/2	3/2	704 190	1 517 410		1.21 - 1	1.34+10	Č	52°,92*
120.50	3/2	3/2	687 540	1 517 410	о ы	4.12 - 2	4.73 + 9	\mathbf{C}	52°, 92*
124.08	$2s^22p\ ^2P_{1/2}^{o}$	$2s2p^2 {}^2P_{1/2}$	0	805 930	0				52°,63
121.16	3/2	3/2	99 360	924 710		3.6 - 1	4.1+10	C	52°,63,72,92*
108.14	1/2	3/2	0	924 710	0	4.18 - 2		C	52°,72,92*
123.23	$2s^22p\ ^2{ m P}_{3/2}^{ m o}$	$2s2p^2$ 2 S _{1/2}	99 360	910 886	0 Ы				52
109.78	1/2	1/2	0	910 880					52 52
110 00C	•							_	
119.02 ^C	$2s2p^{2-4}P_{5/2}$	$2p^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$	150 050	1 310 890		9.6 - 4	1.1+8	E	92*
115.69^{T} 112.88^{C}	5/2	5/2	101000	1 335 070 1 310 890		1.7 - 2 $1.2 - 2$	1.4+9 $1.5+9$	E E	52°,92* 92*
	3/2	3/2		1 310 89	U	1.2 - 2	1.0+9	r.	92
95.535 ^C	$2s2p^2$ $^4P_{5/2}$	$2p^{3-2}P_{3/2}^{o}$	470 670	1 517 41	0	7.2 - 4	1.3+8	E	92*
91.539 ^C	3/2	3/2	424 980	1 517 41		1.2 - 3	2.5 + 8	\mathbf{E}	92*
91.487^{C}	1/2	1/2	379 660	1 472 71	0	4.6 - 4	1.8+8	\mathbf{E}	92*

 $\mathbf{M}\mathbf{n}$ xxii

Wave- ength (Å)	Classificatio Lower	n Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3755.5 ^C	$1s^2 2s2p \ ^3P_0^{\circ}$	1s ² 2s2p ³ P ₁ °	333 350	359 970	-	M1	3.33+2	C+	92*
293.2 ^C	10 2027 10	2	359 970	437 300		M1	6.11 + 3	C+	92*
487.4 ^C	$1s^22p^2$ ³ P ₁	$1s^22p^2$ ³ P ₂	967 950	1 008 140		M1	7.0+2	С	92*
736.4 ^C	0	18 29 12	910 360	967 950		M1	3.26+3	C	92*
850.92 ^C	$1s^22p^2$ 3P_2	$1s^22p^{2-1}D_2$	1 000 140	1 105 000		14.		~	***
634.08 ^C	$1s^{-}2p^{-}$ P_2	$1s^{-}2p^{2}$ D_{2}	1 008 140 967 950	1 125 660 1 125 660		M1 M1	1.08+4 $1.1+4$	$^{\mathrm{C}}_{\mathrm{D}+}$	92* 92*
			00. 000				1.1 4	D	32
496.06 ^C 385.83 ^C	$1s^2 2s2p^{-1} P_1^{\circ}$	$1s^22p^2$ 3P_0	708 770	910 360		8.1 - 4	2.2+7	E	92*
385.83 ⁻ 334.03 ^C	1 1	1 2	708 770 708 770	967 950 1 008 140		3.9 - 4 $2.3 - 2$	5.8+6 2.8+8	E D	92* 92*
			100 110	1 000 110		2.0 2	2.0 1 0	2	32
368.36 ^C 286.70 ^C	$1s^2 2s 2p \ ^3 P_2^{o}$	$1s^2 2s2p \ ^1\mathrm{P_1^o}$	437 300	708 770		M1	8.6+3	D	92*
286.70 ⁻ 266.37 ^C	1	1	359 970 333 350	708 770 708 770		M1 M1	1.1+4 $1.8+4$	D- D	92* 92*
		_	000 000	100 110			1.0 4	D	<i>32</i>
277.80	$1s^22s^{2-1}S_0$	$1s^2 2s2p \ ^3P_1^o$	0	359 970		1.3 - 3	3.7+7	D	43,74°,92*
271.41 ^C	$1s^22p^2$ ³ P ₁	$1s^22p^{2-1}S_0$	967 950	1 336 400		M1	1.3+5	D	92*
239.87	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p^{2-1}D_2$	708 770	1 125 660		1.77 - 1	4.10+9	В	52°,92*
188.45	$1s^2 2s 2p$ 3 P $_2^{\circ}$	$1s^22p^2$ 3P_1	437 300	967 950		6.75 - 2	4.23+9	В	52°,92*
181.69	1	0	359 970	910 360		5.76 - 2	1.16+10	В	52°, 92*
175.18	2	2	437 300	1 008 140		1.72 - 1	7.5 + 9	В	52°,92*
164.48	1	1	359 970	967 950		4.59 - 2	3.77 + 9	В	52°,92*
157.58	0	1	333 350	967 950		6.56 - 2	5.87 + 9	В	52°, 92*
154.28	1	2	359 970	1 008 140		8.58 - 2	4.81+9	В	52°,92*
159.33	$1s^2 2s2p^{-1} P_1^o$	$1s^22p^{2-1}S_0$	708 770	1 336 400	bl	1.13 - 1	2.98+10	В	52°,92*
145.27	$1s^2 2s2p\ ^3\mathrm{P}_2^{\mathrm{o}}$	$1s^22p^{2-1}D_2$	437 300	1 125 660		5.90 - 2	3.73+9	C	52°,92*
130.60 ^C	1	2	359 970	1 125 660		4.2 - 3	3.3+8	D	92*
141.10	$1s^22s^{2-1}S_0$	$1s^2 2s2p \ ^1 P_1^{\circ}$	0	708 770	bl	1.59 - 1	1.78+10	В	52 [△] ,63,75°,92*
103.31 ^C	$1s^22s^2$ 1 S ₀	$1s^22p^2$ ³ P ₁	0	967 950		M1	7.8+3	Е	92*
99.193^{C}	0	2	0	1 008 140		E2	1.3 + 3	E	92*
13.58 ^C	$1s^22p^2$ 1 S ₀	$1s^22p3s$ $^1P_1^{o}$	1 336 400	8 702 000		5.6 - 2	6.8+11	D	92*
13.199	$1s^22p^{2-1}D_2$	$1s^22p3s$ $^1\mathrm{P}_1^{\circ}$	1 125 660	8 702 000		1.4 - 1	1.8+12	D	76,77°,92*
13.199	$1s^22p^2$ ³ P ₁	$1s^22p3s \ ^3P_0^0$		8 544 300					
		- 0	967 950			5.1 - 2	2.0+12	D	76,77°,92*
13.00 ^C	$1s^22p^2$ 1S_0	$1s^2 2p3d \ ^1P_1^o$	1 336 400	9 027 000		1.29	1.70+13	C-	92*
12.935	$1s^2 2s2p\ ^3{ m P}_2^{ m o}$	$1s^22s3s$ 3S_1	437 300	8 168 000		1.3 - 1	1.7+12	D	76,77°,92*
$rac{12.816}{12.76^{ m C}}$	1	1	359 970	8 168 000		8.1 - 2	1.1 + 12	D	76,77°,92*
	0	1	333 350	8 168 000		2.7 - 2	3.7+11	D	92*
12.816	$1s^2 2s2p^{-1} P_1^o$	$1s^22s3d$ 1 D ₂	708 770	8 512 000		1.8	1.5+13	C-	77°,92*
12.816	$1s^22p^{2-1}D_2$	$1s^2 2p3d$ 1 D $_2^{\circ}$	1 125 660	8 928 000		2.5 - 1	2.0 + 12	C-	$76,77^{\circ},92^{*}$
12.738	$1s^22p^{2-1}D_2$	$1s^2 2p3d\ ^3{ m P}_2^{ m o}$	1 125 660	8 976 000		6.5 - 1	5.4 + 12	C-	76,77°,92*
12.738	$1s^22p^2$ ³ P ₂	$1s^22p3d\ ^3{ m D}_2^{ m o}$	1 008 140	8 860 000		1.4 - 1	1.2+12	D	76, 77°, 92*
12.706	2	. 2	1 008 140	8 878 000		1.1 - 2	1.5+11	D	76,77°,92*
12.670	1	2	967 950	8 860 000		1.31	1.09+13	Č-	76,77°,92*
12.656	1	1	967 950	8 878 000		2.8 - 1	3.9 + 12	C-	76,77°,92*
12.580	2	3	1 008 140	8 957 000		3.3	2.0 + 13	C-	55, 69, 76, 77°, 92
12.553	0	1	910 360	8 878 000		1.29	1.82+13	C-	76,77°,92°
	$1s^22p^{2-1}D_2$	$1s^22p3d$ $^1P_1^0$	1 125 660	9 027 000		7.5 - 2	1.0+12	D	77°,92*
12.656									
12.656 12.656	$1s^22p^{2-1}D_2$	$1s^22p3d\ ^1{ m F}_3^{ m o}$	1 125 660	9 027 000	ı	5.10	3.03+13	C-	55,69,77°,92*
	$1s^22p^2$ $^1\mathrm{D}_2$ $1s^22p^2$ $^3\mathrm{P}_2$	$1s^22p3d\ ^1\mathrm{F_3^o}$ $1s^22p3d\ ^1\mathrm{D_2^o}$	1 125 660 1 008 140	9 027 000 8 928 000		5.10 $2.0 - 1$	3.03+13 1.7+12	C-	55, 69, 77°, 92* 92*

Mn XXII - Continued

Wave-	Classificati		Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							****
12.553	$1s^22p^2$ ³ P ₂	$1s^22p3d\ ^3\mathrm{P_1^o}$	1 008 140	8 975 000		3.7 - 1	5.2+12	C-	76,77°,92*
12.553	2	2	1 008 140	8 976 000		1.25	1.06 + 13	Č-	76,77°,92*
12.488	_ 1	0	967 950	8 975 600		3.3 - 1	1.4 + 13	C-	76,77°,92*
12.488	1	2	967 950	8 976 000		1.8 - 1	1.5 + 12	D	76,77°,92*
12.488	1	1	967 950	8 975 000		6.9 - 1	9.8 + 12	C-	76,77°,92*
12.40^{C}	0	1	910 360	8 975 000		3.3 - 3	4.8 + 10	D	92*
12.521 ^C	$1s^2 2s2p^{-1} P_1^{\circ}$	$1s^22p3p\ ^3{ m D}_1$	708 770	8 695 400		9.6 - 2	1.4+12	D	92*
12.507	$1s^22s2p$ $^3P_2^{\circ}$	$1s^2 2s3d\ ^3{\rm D}_1$	437 300	8 433 000		3.6 - 2	5.1+11	C-	76,77°,92*
12.488	2	3	437 300	8 445 000		3.0	1.8 + 13	C-	55, 69, 76, 77°, 92*
12.488	2	2	437 300	8 445 000		5.5 - 1	4.7 + 12	C-	76,77°,92*
12.39^{C}	1	1	359 970	8 433 000		5.4 - 1	7.8 + 12	C-	92*
12.368	1	2	359 970	8 445 000		1.6	1.4 + 13	C-	55, 69, 76, 77°, 92*
12.336	0	1	333 350	8 433 000		7.4 - 1	1.1 + 13	C-	76,77°,92*
12.447	$1s^22p^2$ ³ P ₂	$1s^22p3d\ ^1{ m F}_3^{ m o}$	1 008 140	9 027 000	bl				76,77°
12.427	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p3p^{-1}P_1$	708 770	8 756 000		1.2 - 1	1.7+12	D	76,77°,92*
12.271 ^C	$1s^2 2s2p^{-1} P_1^o$	$1s^2 2p3p$ 3 P ₂	708 770	8 858 000		1.8 - 1	1.6+12	D	92*
12.172	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p3p^{-1}D_2$	708 770	8 924 000	bl	6.6 - 1	5.9+12	С-	76,77°,92*
12.079	$1s^2 2s2p^{-1} P_1^o$	$1s^22s3s$ 1 S ₀	708 770	8 987 600		3.0 - 2	1.1+12	D	76,77°,92*
12.017^{C}	$1s^2 2s 2p$ 3 P $_2^{\circ}$	$1s^22p3p^3D_2$	437 300	8 759 100		2.1 - 2	1.9+11	D	92*
11.997	1	1	359 970	8 695 400		1.4 - 1	2.2 + 12	D	76,77°,92*
11.959 ^C	0	1	333 350	8 695 400		8.3 - 2	1.3 + 12	D	92*
11.906	2	3	437 300	8 836 400		7.0 - 1	4.7 + 12	$\overline{\mathbf{C}}$	76,77°,92*
11.906	1	2	359 970	8 759 100		4.8 - 1	4.5 + 12	C-	76,77°,92*
11.997	$1s^22s^{2-1}S_0$	$1s^2 2s3p \ ^3P_1^{\circ}$	0	8 335 000		2.8 - 1	4.3+12	C-	76,77°,92*
11.971	$1s^22s^2$ 1 S ₀	$1s^2 2s3p^{-1}P_1^{o}$	0	8 354 000		4.2 - 1	6.5+12	C-	76,77°,92*
11.906	$1s^2 2s2p$ $^3 P_1^o$	$1s^22p3p^{-1}$ P ₁	359 970	8 756 000					76,77°
11.876	0	1	333 350	8 756 000					76, 77°
11.876	$1s^2 2s2p\ ^3{ m P}_2^{ m o}$	$1s^22p3p\ ^3{ m S}_1$	437 300	8 857 600	ı				76,77°
11.876	$1s^2 2s2p\ ^3$ P ^o ₂	$1s^22p3p^3P_2$	437 300	8 858 000)	4.8 - 1	4.5+12	C-	77°,92*
11.876	1	0	359 970	8 780 300)	1.2 - 1	5.7 + 12	Ď	76,77°,92*
11.793	1	2	359 970	8 858 000		2.5 - 2	2.4 + 11	D	76,77°,92*
11.793	$1s^2 2s2p$ $^3 P_2^o$	$1s^22p3p^{-1}D_2$	437 300	8 924 000)				76,77°

 \mathbf{Mn} XXIII

Wave-	Clas	ssification	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				97	11 (0)		
920.802 ^C	$1s^2 2p \ ^2P_{1/2}^{\circ}$	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	374 654	483 255		M1	1.15+4	В	92*
266.913 ^S	$1s^2 2s ^2 S_{1/2}$	$1s^2 2p ^2P_{1/2}^{\circ}$	0	374 654		3.70 - 2	1.73+9	B+	43,52 ^{\triangle} ,74,79,80°,92
206.930 ^S	1/2	3/2	0	483 255	bl	9.66 - 2	3.76+9	B+	$43,52^{\triangle},74,79,80^{\circ},92$
75.382^{C}	$1s^24p\ ^2P_{3/2}^{o}$	$1s^25d\ ^2{ m D}_{3/2}$	[11 508 300]	[12 834 880]		2.3 - 1	6.8+10	D	92*
75.257 ^C	3/2	5/2	[11 508 300]	[12 837 080]		2.10	4.13 + 11	C+	92*
74.619 ^C	1/2	3/2	[11 494 740]	[12 834 880]		1.17	3.52 + 11	C+	92*
35.7699 ^C	$1s^23p\ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	[8 655 450]	[11 451 100]					
35.3629 ^C	1/2	1/2	[8 623 280]	[11 451 100]					
34.8495 ^C	$1s^23p$ $^2P_{3/2}^{o}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	[8 655 450]	[11 524 930]		2.4 - 1	3.2+11	C+	92*
34.7975 ^C	3/2	5/2	[8 655 450]	[11 529 220]		2.1	2.0+12	В	92*
34.4632 ^C	1/2	3/2	[8 623 280]	[11 524 930]		1.1	1.6 + 12	В	92*
33.6096 ^C	$1s^23s$ $^2S_{1/2}$	$1s^24p ^2P_{1/2}^{\circ}$	[8 519 400]	[11 494 740]		2.8 - 1	8.5+11	C	92*
33.4571 ^C	1/2	3/2	[8 519 400]	[11 508 300]		6.0 - 1	8.9+11	C	92*
24.1446 ^C	$1s^23p^2P_{3/2}^{\circ}$	$1s^25s$ $^2S_{1/2}$	[9 655 450]	[10 707 100]					
23.9585 ^C	18 3p F _{3/2} 1/2	18 58 S _{1/2}	[8 655 450] [8 623 280]	[12 797 160] [12 797 160]					
23.9267 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^25d\ ^2{ m D}_{3/2}$	[0.055.450]	[10.004.000]		F 0 0			0.0*
23.9267 23.9141 ^C		•	[8 655 450] [8 655 450]	[12 834 880] [12 837 080]		5.6 - 2 $4.96 - 1$	1.6+11 $9.67+11$	D C+	92* 92*
23.7439 ^C	3/2 1/2	5/2 3/2	[8 623 280]	[12 834 880]		2.76 - 1	8.15+11	C+	92*
12.4438 ^C	$1s^22p ^2P_{3/2}^{\circ}$	$1s^23s^2S_{1/2}$	400 055	[0 510 400]					
12.4438 12.2779 ^C	18 2p F _{3/2} 1/2	18 38 S _{1/2}	483 255 374 654	[8 519 400] [8 519 400]					77,81,82 77,81,82
12.1778 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^2 3d\ ^2 \mathrm{D}_{3/2}$						_	
12.1627 ^C			483 255 483 255	[8 694 940] [8 705 090]		2.7 - 1 2.44	3.1+12 $1.83+13$	B B	77, 82, 92*
12.0188 ^C	3/2 1/2	5/2 3/2	374 654	[8 694 940]		1.34	1.83+13 $1.54+13$	В	77, 81, 82, 92* 77, 82, 92*
11.5965 ^C	$1s^2 2s ^2 S_{1/2}$	$1s^23p^2P_{1/2}^{o}$		[0.000.000]				_	
11.5534 ^C			0	[8 623 280] [8 655 450]		2.56 - 1 $4.92 - 1$	6.34+12 $6.14+12$	B B	77, 82, 92*
	1/2	3/2	Ū	[8 000 400]		4.92 - 1	0.14+12	Б	77,82,92*
9.11756 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	483 255	[11 451 100]					
9.02817 ^C	1/2	1/2	374 654	[11 451 100]					
$9.05660^{\rm C}$	$1s^22p^2P_{3/2}^{\circ}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	483 255	[11 524 930]		4.8 - 2	9.7+11	C+	82,92*
9.05308 ^C	3/2	5/2	483 255	[11 529 220]		4.4 - 1	6.0 + 12	В	77,82,92*
8.96839 ^C	1/2	3/2	374 654	[11 524 930]		2.4 - 1	4.9 + 12	В	77, 82, 92*
$8.69963^{\rm C}$	$1s^2 2s ^2 S_{1/2}$	$1s^24p\ ^2\mathrm{P}_{1/2}^{\circ}$	0	[11 494 740]		6.6 - 2	2.9+12	C+	77,82,92*
8.68938^{C}	1/2	3/2	0	[11 508 300]		1.3 - 1	2.9 + 12	C+	77,82,92*
8.12090 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25s$ $^2S_{1/2}$	483 255	[12 797 160]					
8.04991^{C}	1/2	1/2	374 654	[12 797 160]					
8.09610 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	483 255	[12 834 880]		1.8 - 2	4.6+11	D	82,92*
8.09466 ^C	3/2	5/2	483 255	[12 837 080]		1.62 - 1			77,82,92*
8.02554 ^C	1/2	3/2	374 654	[12 834 880]		9.04 - 2	2.34 + 12	C+	77, 82, 92*
7.80066 ^C	$1s^2 2s ^2 S_{1/2}$	$1s^25p^2P_{1/2}^{\circ}$	0	[12 819 430]					77,82
7.79643^{C}	1/2	3/2	0	[12 826 380	•				77,82
2.0572 ^C	$1s^22p\ ^2{ m P}_{3/2}^{ m o}$	$1s2s^2$ 2 S _{1/2}	483 255	[49 092 000])				82
2.0527 ^C	1/2	1/2	374 654	[49 092 000]	•				82
2.0348 ^C	1s ² 2p ² P _{3/2}	$1s(^2S)2p^2(^3P)^{-4}P_{1/2}$		•	•				
2.0346 ^C		·	483 255 483 255	[49 627 000] [49 680 000]	•				82
2.0308 ^C	3/2 3/2	3/2 5/2	483 255	[49 724 000]					82 82
2.0304^{C}	1/2	1/2	374 654	[49 627 000]	•				82
2.0282^{C}	1/2	3/2	374 654	[49 680 000	•				82
2.0331^{C}	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{\circ}) ^{4}P_{1/2}^{\circ}$	0	[49 186 000	ì				82
2.0320^{C}	1/2	3/2	0	[49 213 000	•				82
2.0248 ^C	$1s^2 2p \ ^2P_{3/2}^{o}$	$1s(^2S)2p^2(^1D)^2D_{3/2}$	483 255	[49 871 000	1				82
	P 13/2	10(0)~P (D) D3/2	400 A00	Las our oon	J				04
2.0234^{C}	3/2	5/2	483 255	[49 903 000	1				82

Mn xxIII - Continued

Wave-	Cla	ssification	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		· · · · · · · · · · · · · · · · · · ·					
2.0243^{C}	$1s^22p^2P_{3/2}^{o}$	$1s(^{2}S)2p^{2}(^{3}P)^{2}P_{1/2}$	483 255	[49 883 000]				82
2.0199^{C}	1/2	1/2	374 654	[49 883 000]				82
2.0194^{C}	3/2	3/2	483 255	[50 001 000	ij				82
2.0151^{C}	1/2	3/2	374 654	[50 001 000)]				82
2.0205^{C}	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o})^{2}P_{1/2}^{o}$	0	[49 493 000)]				82
2.0180^{C}	1/2	3/2	0	[49 554 000)}				82
2.0136^{C}	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o})^{2}P_{1/2}^{o}$	0	[49 662 000)]				82
2.0127^{C}	1/2	3/2	0	[49 684 000)]				82
2.0131 ^C	$1s^22p^{-2}P_{3/2}^o$	$1s(^2S)2p^2(^1S)^{-2}S_{1/2}$	483 255	[50 157 000)}				82
2.0088^{C}	1/2	1/2	374 654	[50 157 000)]				82

Mn xxiv

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
7100 ^C 5400 ^C 3800 ^C	$1s4p\ ^{3}P_{2}^{\circ}$ 2	$1s4d\ ^{3}{ m D}_{2}$	[61 685 000] [61 685 000] [61 672 500]	[61 699 000] [61 703 400] [61 698 800]				
3770 ^C 3550 ^C	1 0	2	[61 672 500] [61 670 600]	[61 699 000] [61 698 800]				
7100 ^C 4900 ^C	$1s5s$ $^3\mathrm{S}_1$	$1s5p$ $^3P_1^{\circ}$	[63 097 900] [63 097 900]	[63 111 900] [63 118 300]	9.0 - 2	4.0+6	E	92*
6700 ^C	$1s5s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}P_{1}^{o}$	[63 111 600]	[63 126 600]	1.0 - 1	5.0+6	E	92*
3600 ^C 2480 ^C	$1s4s$ $^3\mathrm{S}_1$	1s4p ³ P ₁ °	[61 644 700] [61 644 700]	[61 672 500] [61 685 000]	7.2 - 2	1.2+7	E	92*
3400 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	1s4p ¹ P ₁	[61 671 800]	[61 701 200]	7.9 - 2	1.5+7	E	92*
1520 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s3p$ $^3\mathrm{P}_1^{\circ}$	[58 488 800]	[58 554 500]	5.1 - 2	4.9+7	E	92*
1440 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s3p^{-1}P_{1}^{o}$	[58 553 000]	[58 622 500]	5.7 - 2	6.1+7	D	92*
$^{449.3}^{ m C}_{421.1}^{ m C}$	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{3}P_{0}^{o}$	[49 370 240]	[49 592 800]	1.07 - 2	3.55+8	В	92*
296.83 ^C	1 1	1 2	[49 370 240] [49 370 240]	[49 607 700] [49 707 130]	3.21 - 2 $8.17 - 2$	4.02+8 $1.22+9$	B B	92 * 92 *
422.69 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p\ ^{1}\mathrm{P}_{1}^{o}$	[49 612 040]	[49 848 620]	3.28 - 2	4.09+8	В	92*
209.04 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^1\mathrm{P_1^o}$	[49 370 240]	[49 848 620]	5.13 - 3	2.60+8	В	92*
70.90 ^C	$1s4p$ $^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[61 701 200]	[63 111 600]	1.6 - 1	2.2 + 11	C	92*
70.78^{C} 70.16^{C}	$1s4p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s5s \ ^{3}S_{1}$	[61 685 000] [61 672 500]	[63 097 900] [63 097 900]	1.6 - 1	7.3+10	D	92*
68.74 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}\mathrm{P_{1}^{o}}$	[61 671 800]	[63 126 600]	4.5 - 1	2.1+11	D	92*
68.16 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s5p$ $^3\mathrm{P}_1^\mathrm{o}$	[61 644 700]	[63 111 900]	4.50 - 1	2.15 + 11	C	92*
32.794^{C}	$1s3p$ 1 P $_{1}^{\circ}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[58 622 500]	[61 671 800]	1.0 - 1	6.3+11	C	92*
$32.756^{\mathrm{C}} \ 32.735^{\mathrm{C}}$	$1s3d\ ^3\mathrm{D_1}$	$1s4p$ $^{3}P_{0}^{\circ}$	[58 617 700]	[61 670 600]				
32.735 ⁻ 32.730 ^C	1 2	1	[58 617 700] [58 617 200]	[61 672 500] [61 672 500]				
32.718 ^C	3	2	[58 628 600]	[61 685 000]				
32.597 ^C	2	2	[58 617 200]	[61 685 000]				
$32.674^{\mathrm{C}} \ 32.360^{\mathrm{C}}$	$1s3p \ ^{3}P_{2}^{\circ}$	$1s4s\ ^{3}\mathrm{S}_{1}$	[58 584 200] [58 554 500]	[61 644 700] [61 644 700]	1.0 - 1	2.1+11	C-	92*
32.568 ^C	$1s3d$ $^{1}\mathrm{D}_{2}$	$1s4p$ $^{1}P_{1}^{o}$	[58 630 700]	[61 701 200]	5.5 - 2	1.2+11	С	92*
32.444 ^C	1s3p ¹ P ₁ °	$1s4d$ $^{1}\mathrm{D}_{2}$	[58 622 500]	[61 704 700]	1.9	2.4+12	C	92*
32.105 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4d$ $^3\mathrm{D}_2$	[58 584 200]	[61 699 000]				
32.060 ^C	2	3	[58 584 200]	[61 703 400]				
31.804 ^C	1	1	[58 554 500]	[61 698 800]				
31.802 ^C	1	2	[58 554 500]	[61 699 000]				
31.760 ^C	0	1	[58 550 200]	[61 698 800]				
31.764 ^C	$1s3s$ $^{1}S_{0}$	$1s4p\ ^{1}P_{1}^{o}$	[58 553 000]	[61 701 200]	4.02 - 1	8.9+11	С	92*
31.410^{C} 31.287^{C}	$1s3s \ ^{3}S_{1}$	$1s4p \ ^{3}P_{1}^{o}$	[58 488 800] [58 488 800]	[61 672 500] [61 685 000]	4.05 - 1	9.1+11	С	92*
22.276^{C}	1s3p ¹ P ₁ °	$1s5s$ $^{1}\mathrm{S}_{0}$	[58 622 500]	[63 111 600]	2.3 - 2	3.1+11	C	92*
22.155^{C}	$1s3p\ ^{3}P_{2}^{o}$	$1s5s\ ^{3}S_{1}$	[58 584 200]	[63 007 000]				
22.155 22.010 ^C	183p P ₂	1555 51	[58 584 200] [58 554 500]	[63 097 900] [63 097 900]	2.2 - 2	1.0+11	D	92*
21.865 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s5p\ ^{1}\mathrm{P_{1}^{o}}$		[63 126 600]	1.04 - 1	4.84+11	C+	92*
21.631 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s5p$ $^3\mathrm{P}_1^{\mathrm{o}}$	[58 488 800]	[63 111 900]	1.0 - 1	4.8+11	C	92*
21.601 ^C	1	2		[63 118 300]	=:•	- 1	-	
11.488 ^C	$1s2p$ $^{1}P_{1}^{\circ}$	$1s3s$ $^{1}S_{0}$	[49 848 620]	[58 553 000]	4.2 - 2	2.1+12	C+	92*

Mn XXIV - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				···		
11.387 ^C	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s3s$ $^3\mathrm{S}_1$	[49 707 130]	[58 488 800]				
11.260^{C}	1	1	[49 607 700]	[58 488 800]	4.2 - 2	7.4 + 11	C-	92*
11.387 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[49 848 620]	[58 630 700]	2.1	2.2 + 13	C+	92*
11.223 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s3d$ $^3\mathrm{D}_2$	[49 707 130]	[58 617 200]				
11.209 ^C	2	3	[49 707 130]	[58 628 600]				
11.099 ^C 11.099 ^C	1	1	[49 607 700]	[58 617 700]				
11.080 ^C	1	2	[49 607 700] [49 592 800]	[58 617 200] [58 617 700]				
11.098 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	1s3p ¹ P ₁ °	[49 612 040]	[58 622 500]	3.66 - 1	6.61+12	C	92*
10.888 ^C	1s2s ³ S ₁	1s3p ³ P ₁ °	[49 370 240]	[58 554 500]	3.69 - 1	6.92+12	C	92*
8.4580^{C}	$1s2p$ $^{1}P_{1}^{o}$	$1s4s$ $^{1}S_{0}$	[49 848 620]	[61 671 800]	9.3 - 3	8.7+11	C	92*
8.4345^{C}	$1s2p$ $^{1}\mathrm{P}_{1}^{o}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[49 848 620]	[61 704 700]	3.6 - 1	6.8+12	C	92*
8.3769 ^C	$1s2p\ ^{3}P_{2}^{o}$	$1s4s$ $^{3}S_{1}$	[49 707 130]	[61 644 700]				
8.3077 ^C	1	1	[49 607 700]	[61 644 700]	9.3 - 3	3.0+11	D	92*
8.3390 ^C	$1s2p~^3\mathrm{P}_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[49 707 130]	[61 699 000]				
8.3359 ^C	1329 1 2	3	[49 707 130]	[61 703 400]				
8.2705 ^C	1	1	[49 607 700]	[61 698 800]				
8.2704 ^C	1	2	[49 607 700]	[61 699 000]				
8.2604 ^C	0	1	[49 592 800]	[61 698 800]				
8.2719^{C}	$1s2s$ $^{1}S_{0}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[49 612 040]	[61 701 200]	8.9 - 2	2.9+12	C+	92*
8.1286° 8.1203°	1s2s ³ S ₁	$1s4p\ ^{3}P_{1}^{o}$	[49 370 240] [49 370 240]	[61 672 500] [61 685 000]	9.0 - 2	3.0+12	C+	92*
7.5398 ^C	$1s2p$ $^{1}P_{1}^{o}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[49 848 620]	[63 111 600]	3.6 - 3	4.2+11	C	92*
7.4678 ^C 7.4128 ^C	$1s2p$ $^3\mathrm{P}_2^\circ$	$1s5s \ ^{3}S_{1}$	[49 707 130] [49 607 700]	[63 097 900] [63 097 900]	3.6 - 3	1.5+11	D	92*
7.3994 ^C	$1s2s$ $^{1}S_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\circ}$	[49 612 040]	[63 126 600]	3.6 - 2	1.5+12	C+	92*
7.2771 ^C 7.2738 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s5p\ ^3P_1^{\circ}$	[49 370 240] [49 370 240]	[63 111 900] [63 118 300]	3.6 - 2	1.5+12	C+	92*
$2.025512^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s2s$ $^3\mathrm{S}_1$	0	[49 370 240]	M1	1.42+8	В	92*
$2.015816^{\mathrm{C}} \\ 2.011784^{\mathrm{C}}$	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^{3}\mathrm{P}_{1}^{\circ}$	0 0	[49 607 700] [49 707 130]	$\begin{array}{c} 5.94-2 \\ M2 \end{array}$	3.25+13 $4.82+9$	B B	92* 92*
$2.006074^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^1\mathrm{P}_1^{\mathrm{o}}$	0	[49 848 620]	7.12 - 1	3.93+14	В	92*
1.9607^C	$1s2p^{-1}P_1^o$	$2s^{2}$ ¹ S ₀	[49 848 620]	[100 851 000]	3.3 - 2	5.7+13	D	82,92*
1.9515 ^C	$1s2p$ $^3\mathrm{P}^\mathrm{o}_1$	$2s^{2}$ ¹ S ₀	[49 607 700]	[100 851 000]	2.1 - 2	3.7+13	D	82,92*
1.9501 ^C	$1s2p^{-1}P_{1}^{o}$	$2p^2 \ ^3P_0$	[49 848 620]	[101 126 000]				82
1.9476 ^C	1	1	[49 848 620]	[101 192 000]	_			82
1.9458 ^C	1	2	[49 848 620]	[101 240 000]	2.3 - 1	8.1 + 13	D	82,92*
1.9491 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3\mathrm{P}^\mathrm{o}_1$	[49 612 040]	[100 917 000]				82
1.9423 ^C	$1s2p\ ^{3}P_{2}^{o}$	$2p^2 \ ^3P_1$	[49 707 130]	[101 192 000]	3.4 - 1	2.0 + 14	C	82,92*
1.9411 ^C	1	0	[49 607 700]	[101 126 000]	2.6 - 1	4.5 + 14	\mathbf{C}	82,92*
1.9405 ^C	2	2		[101 240 000]	7.5 - 1	2.6 + 14	C	82,92*
1.9386 ^C 1.9381 ^C	1	1		[101 192 000]	1.9 - 1	1.1+14	C	82,92*
1.9368 ^C	0	1 2	[49 592 800] [49 607 700]	[101 192 000] [101 240 000]	2.7 - 1 $4.2 - 1$	1.6+14 $1.5+14$	C C	82,92* 82,92*
1.9412 ^C	$1s2s$ $^{3}S_{1}$	$2s2p\ ^{3}\mathrm{P}_{0}^{o}$		[100 885 000]	1.4 - 1	2.4 + 14	C	82,92*
1.9400 ^C 1.9361 ^C	1 1	1 2		[100 917 000] [101 020 000]	3.9 - 1 $6.6 - 1$	2.3+14 $2.4+14$	C C	82,92* 82,92*
1.9404 ^C	1s2p 1P ₁ °		[49 848 620]	[101 384 000]	1.1	3.8+14	C	82,92*
	1	-r D2	[[]		J.J 11	~	-, oz

Mn xxiv - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
1.9351 ^C 1.9314 ^C	1s2p ³ P ₂	$2p^{2} {}^{1}\mathrm{D}_{2}$	[49 707 130] [49 607 700]	[101 384 000] [101 384 000]	3.1 – 1	1.1+14	С	82, 92* 82
1.9348 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^{1}P_{1}^{o}$	[49 612 040]	[101 297 000]	4.0 - 1	2.4+14	C	82,92*
1.9301 ^C	$1s2p^{-1}P_{1}^{o}$	$2p^2$ 1 S $_0$	[49 848 620]	[101 659 000]	2.3 - 1	4.2+14	C	82,92*
$1.9258^{\rm C}$	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^{1}P_{1}^{o}$	[49 370 240]	[101 297 000]				82
1.9212 ^C	$1s2p$ $^3\mathrm{P}^{\mathrm{o}}_1$	$2p^2\ ^1\mathrm{S}_0$	[49 607 700]	[101 659 000]				82
1.70781 ^C	$1s^{2}$ 1 S ₀	$1s3p$ $^3P_1^{\circ}$	0	[58 554 500]	1.5 - 2	1.1+13	E	92*
1.70583 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^{1}P_{1}^{o}$	0	[58 622 500]	1.39 - 1	1.06+14	C+	92*
1.62147 ^C	$1s^{2}$ $^{1}S_{0}$	$1s4p$ $^3\mathrm{P_1^o}$	0	[61 672 500]	5.1 - 3	4.3+12	\mathbf{E}	92*
1.62071 ^C	$1s^2$ 1 S ₀	1s4p ¹ P ₁ °	0	[61 701 200]	5.1 - 2	4.32+13	C+	92*
1.58449 ^C	$1s^{2}$ $^{1}S_{0}$	1s5p 3P ₁	0	[63 111 900]	2.5 - 3	2.2+12	E	92*
1.58412 ^C	$1s^{2} {}^{1}S_{0}$	$1s5p^{-1}P_{1}^{o}$	0	[63 126 600]	2.46 - 2	2.18+13	C+	92*

 $\mathbf{M}\mathbf{n}$ xxv

Wave- length (Å)	Classificat Lower	tion Upper	Energy Leve	els (cm ⁻¹) Int	. gf	A (s ⁻¹)	Acc.	References
2377 ^C	$3s^{2}S_{1/2}$	$3p\ ^{2}P_{3/2}^{\circ}$	[61 453 640]	[61 495 690]	4.42 - 2	1.30+7	A	91*
2314 ^C	$3p^{-2}P_{1/2}^{o}$	$3d~^2\mathrm{D}_{3/2}$	[61 452 400]	[61 495 610]	2.84 - 2	8.83+6	Α	91*
704.027 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p\ ^{2}P_{3/2}^{o}$	[51 813 490]	[51 955 530]	2.49 - 2	8.36+7	Α	91*
29.9508 ^C	$3d^2D_{5/2}$	$4f^{2}F_{7/2}^{o}$	[61 509 820]	[64 848 630]	5.82	5.41+12	A	91*
29.8511 ^C	$3p^{2}P_{3/2}^{o}$	$4d~^2\mathrm{D}_{5/2}$	[61 495 690]	[64 845 650]	2.24	2.79+12	Α	91*
29.5329 ^C	$3s\ ^{2}{ m S}_{1/2}$	$4p^{-2}P_{3/2}^{\circ}$	[61 453 640]	[64 839 690]	6.56 - 1	1.26+12	A	91*
20.4818 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$5f^2F_{7/2}^{\circ}$	[61 509 820]	[66 392 200]	8.96 - 1	1.78+12	A	91*
20.4291 ^C	$3p\ ^{2}P_{3/2}^{o}$	$5d^{2}D_{5/2}$	[61 495 690]	[66 390 670]	5.03 - 1	1.34+12	A	91*
20.2676 ^C	$3s^{-2}S_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	[61 453 640]	[66 387 620]	1.63 - 1	6.63+11	A	91*
10.4665 ^C	$2p\ ^{2}P_{3/2}^{\circ}$	$3d^2\mathrm{D}_{5/2}$	[51 955 530]	[61 509 820]	2.51	2.55+13	A	91*
10.3282 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{-2}P_{3/2}^{\circ}$	[51 813 490]	[61 495 690]	5.90 - 1	9.22+12	Α	91*
7.757880 ^C	$2p^{2}P_{3/2}^{o}$	$4d^2\mathrm{D}_{5/2}$	[51 955 530]	[64 845 650]	4.39 - 1	8.12+12	A	91*
7.676836 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$4p\ ^2{ m P}_{3/2}^{ m o}$	[51 813 490]	[64 839 690]	1.39 - 1	3.93+12	Α	91*
6.927539 ^C	$2p^{-2}P_{3/2}^{\circ}$	$5d^2\mathrm{D}_{5/2}$	[51 955 530]	[66 390 670]	1.60 - 1	3.71+12	A	91*
6.861473 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$5p^{-2}P_{3/2}^{o}$	[51 813 490]	[66 387 620]	5.66 - 2	2.00+12	Α	91*
1.930147 ^C	$1s\ ^{2}\mathrm{S}_{1/2}$	$2p^{-2}P_{1/2}^{\circ}$	0	[51 809 520]	2.80 - 1	2.50+14	A	91*
$1.924723^{\rm C}$	1/2	3/2	0	[51 955 530]	5.61 - 1	2.52 + 14	Α	91*
1.627276 ^C	$1s^{2}S_{1/2}$	$3p^{2}P_{1/2}^{o}$	0	[61 452 400]	5.32 - 2	6.70+13	Α	91*
1.626130 ^C	1/2	3/2	0	[61 495 690]	1.06 - 1		A	91*
1.542265 ^C	$1s^{2}S_{1/2}$	$4p^{2}P_{3/2}^{\circ}$	0	[64 839 690]	3.90 - 2		Α	91*
1.506305 ^C	$1s^{2}S_{1/2}$	5p ² P _{3/2}	0	[66 387 620]	1.87 - 2	1.38+13	A	91*

2.5.3. References for Comments and Tables for Mn Ions

- [1] W. M. Cady, Phys. Rev. 43, 322 (1933).
- [2] W. H. King, J. Phys. B 10, 3381 (1977).
- [3] A. N. Ryabtsev, Opt. Spectrosc. (USSR) 53, 13 (1982).
- [4] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [5] P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 314 (1937).
- [6] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Nature 206, 390 (1965).
- [7] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [8] U. Feldman and B. S. Fraenkel, Astrophys. J. 145, 959 (1966).
- [9] R. D. Cowan, Astrophys. J. 147, 377 (1967).
- [10] A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348 (1980).
- [11] P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935).
- [12] P. G. Kruger, S. G. Weissberg, and L. W. Phillips, Phys. Rev. 51, 1090 (1937).
- [13] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [14] R. Smitt and L. A. Svensson, Phys. Scr. 27, 364 (1983).
- [15] E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, Nature 204, 176 (1965).
- [16] W. J. Wagner and L. L. House, Astrophys. J. 166, 683 (1971).
- [17] B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. 91, 973 (1967).
- [18] R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [19] B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262 (1966).
- [20] G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177 (1977).
- [21] S. G. Weissberg and P. G. Kruger, Phys. Rev. 49, 872 (1936).
- [22] B. Edlén, Z. Phys. 104, 407 (1937).
- [23] B. C. Fawcett, N. J. Peacock, and R. D. Cowan, J. Phys. B 1, 295 (1968).
- [24] B. C. Fawcett, R. D. Cowan, E. Y. Kononov, and R. W. Hayes, J. Phys. B 5, 1255 (1972).
- [25] W. Lotz, J. Opt. Soc. Am. 57, 873 (1967).
- [26] B. C. Fawcett, J. Phys. B 3, 1732 (1970).
- [27] B. C. Fawcett, J. Phys. B 4, 1577 (1971).
- [28] B. Edlén, Z. Phys. 104, 188 (1937).
- [29] G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898 (1977).
- [30] U. Feldman and G. A. Doschek, J. Opt. Soc. Am. 67, 726 (1977).
- [31] B. C. Fawcett, A. H. Gabriel, and P. A. H. Saunders, Proc. Phys. Soc. 90, 863 (1967).
- [32] J. T. Jefferies, F. Q. Orrall, and J. B. Zirker, Solar Phys. 16, 103 (1971).
- [33] J. T. Jefferies, Mem. Soc. Roy. Sci. Liége. 17, 213 (1969).
- [34] G. D. Sandlin and R. Tousey, Astrophys. J. 227, L107 (1979).
- [35] E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B 5, 2173 (1988).
- [36] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [37] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [38] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [39] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [40] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [41] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [42] B. Edlén, Z. Phys. 103, 536 (1936).
- [43] K. P. Dere, Astrophys. J. 221, 1062 (1978).
- [44] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [45] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).

- [46] A. Redfors, Phys. Scr. 38, 702 (1988).
- [47] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B.5, 2143 (1972), Supplementary Publication No. SUP 70005 (1972).
- [48] K. G. Widing, G. D. Sandlin, and R. Cowan, Astrophys. J. 169, 405 (1971).
- [49] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [50] B. Edlén, Z. Phys. 100, 621 (1936).
- [51] L. Cohen and W. E. Behring, J. Opt. Soc. Am. 66, 899 (1976).
- [52] K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 (1980).
- [53] B. Edlén, Phys. Scr. 17, 565 (1978).
- [54] F. Tyrén, Z. Phys. 111, 314 (1938).
- [55] M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747 (1971).
- [56] S. O. Kastner, Astrophys. J. 275, 922 (1983).
- [57] C. Jupén, U. Litzén, V. Kaufman, and J. Sugar, Phys. Rev. A 35, 116 (1987).
- [58] C. Jupén and U. Litzén, Phys. Scr. 33, 509 (1986).
- [59] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [60] B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 186, 113 (1979).
- [61] B. C. Fawcett, J. Phys. B 4, 981 (1971).
- [62] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [63] TFR Group, Phys. Lett. 74A, 57 (1979).
- [64] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [65] K. T. Cheng, unpublished material (1981).
- [66] W. C. Martin, unpublished material (1982).
- [67] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).
- [68] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 63, 1463 (1973).
- [69] B. C. Fawcett and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 170, 185 (1975).
- [70] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [71] B. Edlén, Phys. Scr. 31, 345 (1985).
- [72] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 65, 463 (1975).
- [73] B. Edlén, Phys. Scr. 28, 483 (1983).
- [74] G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 (1976).
- [75] J. H. Davé, U. Feldman, J. F. Seely, A. Wouters, S. Suckewer, E. Hinnov, and J. L. Schwob, J. Opt. Soc. Am. B 4, 635 (1987).
- [76] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [77] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [78] Y.-K. Kim, W. C. Martin, and A. W. Weiss, J. Opt. Soc. Am. B 5, 2215 (1988).
- [79] K. G. Widing and J. D. Purcell, Astrophys. J. 204, L151 (1976).
- [80] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [81] S. Goldsmith, U. Feldman, L. Oren, and L. Cohen, Astrophys. J. 174, 209 (1972).
- [82] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [83] B. Edlén, Phys. Scr. 19, 255 (1979).
- [84] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [85] K. T. Cheng, private communication (1996).
- [86] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [87] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).

- [88] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [89] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).
- [90] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [91] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 4, Vol. I, U. S. Govt. Print. Office, Washington, D.C. (1966).
- [92] G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 3 (1988).
- [93] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. Sec. 79A, 629 (1975).
- [94] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [95] L. A. Svensson, Solar Phys. 18, 232 (1971).
- [96] L. A. Vainshtein and U. I. Safronova, Phys. Scr. 31, 519 (1985).

2.6. Iron

2.6.1. Brief Comments on Each Iron Ion

Fe VII

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 1 008 000 \pm 100 cm⁻¹ (124.98 \pm 0.01 eV)

Cady [1] classified 33 lines of the $3d^2-3d4p$ array. This was followed by Bowen's [2] observation of forbidden lines within the ground configuration. In an extensive analysis Ekberg [3] classified more than 400 lines in the range of 104-270 Å as transitions from 3d4p, 3dnf (n=4-10), $3p^53d^3$, and $3p^53d^24s$ configurations to the ground configuration with an estimated uncertainty of ± 0.003 Å and 20 lines of the 3d4s-3d4p transition array from 1010-1362 Å with an uncertainty of ± 0.005 Å. He also gave wavelength values for the forbidden transitions including the lines classified by Bowen. His results are adopted here.

The value for the ionization energy was derived by Ekberg [3] from the nf series.

Fe VIII

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 1 218 380 \pm 100 cm⁻¹ (151.061 \pm 0.012 eV)

The $3p^63d-3p^53d^2$ transition array in the wavelength region of 167-233 Å was first identified by Gabriel et al. [4] and Cowan and Peacock [5]. Improved wavelengths with an uncertainty of ± 0.003 Å were obtained by Ramonas and Ryabtsev [6] for this array.

Cowan [7] classified 17 solar lines in the range 112-121 Å, observed by Feldman and Fraenkel [8] as the $3p^63d-3p^53d4s$ array. Ramonas and Ryabtsev [6] identified 22 lines in this array. Their wavelengths, with an uncertainty of ± 0.003 Å, are adopted here. In addition, the lines at 120.31 Å and 114.05 Å for the $^2D_{5/2}-(^3P^\circ)$ $^4P^\circ_{3/2}$ and $^2D_{3/2}-(^3D^\circ)$ $^4D^\circ_{5/2}$ transitions are included from Cowan's identifications. Ramonas and Ryabtsev interchanged the designations for the levels 879 021 cm⁻¹ and 884 331 cm⁻¹.

Measurements of 4p-5s, 4p-6s, 3d-4p, and 3d-nf (n=4-7) transitions were published by Kruger and Weissberg [9]. The 4p-5s and 4p-6s line identifications were shown to be incorrect by Alexander $et\ al$. [10] who also remeasured the 3d-6f and 3d-7f transitions. The 3d-4f lines were observed in solar flares by Behring

et al. [11] and Malinovsky and Heroux [12]. The wavelengths for 3d - 4p and 3d - nf (n = 4 - 7) transitions are from Ramonas and Ryabtsev.

The value for the ionization energy was derived by Sugar and Corliss [13] from the nf series.

Fe IX

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^6$ 1S_0

Ionization energy 1 884 000 \pm 3000 cm⁻¹ (233.6 \pm 0.4 eV)

From solar observations Sandlin *et al.* [14] identified the following four lines as magnetic-dipole (M1) transitions within the $3p^53d$ configurations: ${}^3F_4^{\circ} - {}^1F_3^{\circ}$ at 2497.5 Å, ${}^3P_2^{\circ} - {}^3D_2^{\circ}$ at 2042.35±0.01 Å, ${}^3P_1^{\circ} - {}^3D_2^{\circ}$ at 1841.57±0.02 Å and ${}^3P_2^{\circ} - {}^1F_3^{\circ}$ at 1917.21±0.02 Å. These wavelengths are in good agreement with those measured by Feldman and Doschek [15].

Five coronal lines in the range 171-245 Å, observed by Behring et al. [11], were identified by Svensson et al. [16] as the $3p^6-3p^53d$ resonance transitions. With the known levels of $3p^53d$, they identified 10 coronal M1 lines. Edlén and Smitt [17] derived the energies of the $3p^53d$ levels from lines observed by Jefferies [18], Jefferies et al. [19] and Sandlin et al. [14], utilizing the improved solar wavelengths of the resonance transitions by Behring et al. [20]. Seven M1 lines above 3000 Å, having an uncertainty of ± 0.4 Å, are from Ref. [19] and an additional M1 line at 3000 Å is taken from Ref. [18].

Smitt and Svensson [21] assigned 19 lines in the range 311-605 Å to the $3s^23p^53d-3s3p^63d$ transitions. The uncertainty of their wavelengths is ± 0.01 Å.

The 3p-4s transitions were first identified by Kruger $et\ al.$ [22]. There are many solar observations of these lines including the work of Zirin [23] and Feldman $et\ al.$ [24]. The wavelength values of 103.566 Å and 105.208 Å are from Fawcett $et\ al.$ [25] and are quoted here

The $3p^6$ $^1\mathrm{S}_0 - 3p^54d$ $^3\mathrm{P}_1^\circ$ and $^1\mathrm{P}_1^\circ$ transitions were first identified by Alexander *et al.* [10], whose wavelength values were revised to 83.457 Å and 82.430 Å by Fawcett *et al.* [25]

Wagner and House [26] measured 12 lines in the range 111-117 Å with an uncertainty of ± 0.02 Å, which they assigned to the $3p^53d-3p^54f$ array. More accurate measurements of nine of these lines, with an uncertainty of ± 0.007 Å, were made with a laboratory plasma by Fawcett et al. [25], whose wavelengths are tabulated. Wavelengths for the other transitions, including an additional transition $3p^53d^{-1}F_3^{\circ} - 3p^5(^2P_{3/2}^{\circ})4f^{-[7/2]_4}$ at 118.27 Å, are taken from Swartz et al. [27].

Alexander *et al.* [10] identified two lines at 72.85 Å and 73.63 Å as $3p^6$ $^1S_0 - 3p^55s$ $(^1/_2, ^1/_2)^{\circ}_1$ and $3p^6$ $^1S_0 - 3p^55s$ $(^3/_2, ^1/_2)^{\circ}_1$ transitions.

The resonance line from the $3s3p^64p$ $^1P_1^{\circ}$ level at 72.891 ± 0.005 Å was identified by Kastner *et al.* [28].

The value for the ionization energy was derived by Sugar and Corliss from the $3p^5ns$ series [13].

Fe x

Cl I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 2 114 000 \pm 1000 cm⁻¹ (262.1 \pm 0.1 eV)

The M1 line arising from the $3s^23p^5$ $^2\mathrm{P}_{3/2}^{\circ} - ^2\mathrm{P}_{1/2}^{\circ}$ transition was reported by Grotrian [29]. We adopted his wavelength of 6374.51 Å. The analysis by Smitt [30] resulted in the identification of seven lines of the multiplet $3s^23p^4(^3\mathrm{P})3d$ $^4\mathrm{P} - 3s3p^5(^3\mathrm{P}^{\circ})3d$ $^4\mathrm{F}^{\circ}$ and nine lines of $3s^23p^4(^3\mathrm{P})3d$ $^4\mathrm{F} - 3s3p^5(^3\mathrm{P}^{\circ})3d$ $^4\mathrm{F}^{\circ}$ in the ranges 317-325 Å and 354-367 Å, respectively. From these $3p^43d$ term intervals, he identified 11 coronal lines as M1 transitions. Edlén and Smitt [17] improved the level values with the wavelengths of Jefferies et al. [19] and Magnant-Crifo [31] above 3000 Å and of Sandlin et al. [14] below 3000 Å.

The $3s^23p^5$ $^2\mathrm{P}^{\circ}_{1/2,3/2}-3s3p^6$ $^2\mathrm{S}_{1/2}$ transitions were identified by Fawcett [32] in a laboratory plasma and by Widing *et al.* [33] in the solar corona. More accurate wavelengths of 365.543 ± 0.008 Å and 345.723 ± 0.008 Å for these transitions were measured by Smitt *et al.* [34]

An analysis of the $3p^5 - 3p^43d$ array was made by Fawcett and Gabriel [35] and Smitt [30]. It was extended by Bromage *et al.* [36] who used wavelengths of solar coronal lines measured by Behring *et al.* [11,20].

The $3p^5 - 3p^44s$ transitions in the range 94 - 98 Å were identified by Edlén [37]. His measurements are quoted.

Wavelengths of the $3p^43d - 3p^44p$, $3p^5 - 3p^44d$ and $3p^43d - 3p^44f$ transitions were observed by Fawcett et al. [25] in the range of 75 - 145 Å in a laboratory plasma with an accuracy of ± 0.01 Å.

The value for the ionization energy was derived by Edlén [37] by extrapolation.

Fe XI

S I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{4-3}P_2$

Ionization energy 2 341 000 cm $^{-1}$ (290.3 eV)

Grotrian [29] identified a solar line at 7891 Å as the $3s^23p^4$ $^3P_2 - ^3P_1$ transition. Edlén [38] confirmed this identification and classified a line at 3986.9 Å in the solar corona as the $3s^23p^4$ $^3P_1-^1D_2$ transition. Wavelengths of 7891.8 Å and 3986.8 Å are taken from improved measurements with an accuracy of ± 0.4 Å by Jefferies *et al.* [19].

Sandlin *et al.* [14] identified two solar coronal lines at 1467.06 Å and 2648.71 Å with accuracies of ± 0.01 Å and ± 0.02 Å, respectively, as the $3p^23p^4$ 3P_1 $^{-1}S_0$ and 3P_2 $^{-1}D_2$ transitions.

The $3s^23p^4$ $^3\mathrm{P}-3s3p^5$ $^3\mathrm{P}^\circ$ triplet in the wavelength range 341-370 Å was identified in a laboratory plasma by Fawcett [32] and in the solar corona by Widing et al. [33]. Smitt et al. [34] carried out improved measurements of these lines with an uncertainty of ± 0.008 Å. They also identified a new line at 355.837 Å as the $3s^23p^4$ $^1\mathrm{S}_0-3s3p^5$ $^1\mathrm{P}_1^\circ$ transition and attributed a line at 308.544 Å observed by Behring et al. [20] to the $3s^23p^4$ $^1\mathrm{D}_2-3s3p^5$ $^1\mathrm{P}_1^\circ$ transition.

Classifications of the $3p^4 - 3p^33d$ transitions in the range 176 - 202 Å were provided by Gabriel $et\ al.$ [39], Fawcett and Gabriel [35], and Fawcett [32] from laboratory plasmas. A more comprehensive classification of this array, using solar wavelengths with an accuracy of ± 0.008 Å by Behring $et\ al.$ [11], was reported by Bromage $et\ al.$ [36]. They included newly identified lines in the spectrum analyzed earlier by Fawcett [32]. The $3p^3(^2D^\circ)3d$ level without a major eigenvector component is represented by the symbol $(N)_J$, the index N increasing with energy from the lowest level (N=1) for each J.

Edlén [40] identified 12 lines in the range 86 – 91 Å as $3p^4 - 3p^34s$ transitions. As later noted by Edlén [38], the classifications of the lines at 86.149 Å as $3p^4$ $^3P_2 - 3p^3(^2D^\circ)4s$ $^1D_2^\circ$ and 89.771 Å as $3p^4$ $^1D_2 - 3p^3(^2D^\circ)4s$ $^3D_3^\circ$ are incorrect.

Fawcett et al. [25] classified the $3p^33d-3p^34p$, $3p^33d-3p^34f$, and $3p^4-3p^34d$ transitions in the ranges 121-125 Å, 91-94 Å, and 72-73 Å, respectively. The uncertainty of the wavelengths is ± 0.01 Å.

The value for the ionization energy was derived by Lotz [41] by extrapolation.

Fe XII

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 2 668 000 cm^{-1} (330.8 eV)

Forbidden transitions between terms in the ground configuration were observed in the solar corona. The $^4\mathrm{S}^\circ-^2\mathrm{P}^\circ$ transitions were identified by Burton et~al. [42], Burton and Ridgeley [43], and Doschek et~al. [44]. Gabriel et~al. [45] identified the line at 2169.7 Å as the $^4\mathrm{S}^\circ_{3/2}-^2\mathrm{D}^\circ_{5/2}$ transition. More comprehensive observations were made by Sandlin et~al. [14], who identified five M1 transitions: $^2\mathrm{D}^\circ_{3/2}-^2\mathrm{P}^\circ_{3/2}$ at 2565.93 ± 0.06 Å, $^4\mathrm{S}^\circ_{3/2}-^2\mathrm{D}^\circ_{3/2}$ at 2405.68 ± 0.01 Å, $^4\mathrm{S}^\circ_{3/2}-^2\mathrm{D}^\circ_{5/2}$ at 2169.08 ± 0.02 Å, $^4\mathrm{S}^\circ_{3/2}-^2\mathrm{P}^\circ_{1/2}$ at 1349.40 ± 0.01 Å, and $^4\mathrm{S}^\circ_{3/2}-^2\mathrm{P}^\circ_{3/2}$ at 1242.00 ± 0.01 Å. For the $^2\mathrm{D}^\circ_{3/2}-^2\mathrm{P}^\circ_{1/2}$ transition, Svensson [46] assigned the line of 3072.0 Å measured by Jefferies et~al. [19].

The classification of the $3s^23p^3-3s3p^4$ transitions in the range 283-383 Å was given by Fawcett [47] from observations of a laser-produced plasma. Widing et~al. [33] classified the $^4\mathrm{S}^\circ-^4\mathrm{P}$ and the $^2\mathrm{D}^\circ_{5/2}-^4\mathrm{D}_{5/2}$ transitions observed in the solar corona. Fawcett [32] and Behring et~al. [20] obtained wavelengths with an uncertainty of ± 0.05 Å from a laboratory plasma, and with an uncertainty of ± 0.04 Å from the solar corona. Three wavelengths, 382.83 Å, 335.06 Å, and 283.64 Å, are from the former article and the others are from the latter. These wavelengths were employed by Bromage et~al. [48] to obtain the $3s3p^4$ levels. The $3s3p^4$ and $3p^23d$ levels without major eigenvector components are represented by the symbol (N)_J, the index N increasing with energy from the lowest level (N=1) for each J.

Fawcett [32] and Behring et al. [20] identified the $3p^3-3p^23d$ transitions in the range 186-220 Å. Bromage et al. [48] classified 17 lines.

Classifications of the $3p^3-3p^24s$, $3p^3-3p^24d$, $3p^33d-3p^34p$, and $3p^33d-3p^34f$ transitions were made by Fawcett *et al.* [25] with a laboratory plasma. Their wavelengths in the range 65-111 Å were measured with an uncertainty of ± 0.01 Å.

The value for the ionization energy was obtained by Lotz [41] by extrapolation.

Fe XIII

Si i isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ 3P_0

Ionization energy 2 912 000 cm^{-1} (361.0 eV)

Wavelengths tabulated as M1 transitions within the $3p^2$ configuration are from the solar coronal observations of Jefferies et~al.~[19] above 3000 Å and from Sandlin et~al.~[14] below 3000 Å. The $3p^2~^3\mathrm{P}-^3\mathrm{P}$ and $3p^2~^3\mathrm{P}_2-^1\mathrm{D}_2$ transitions were first identified by Edlén [38] and the $3p^2~^3\mathrm{P}_1-^1\mathrm{S}_0$ transition by Gabriel et~al.~[45].

The $3s^23p^2-3s3p^3$ and $3s^23p^2-3s^23p3d$ transition arrays were observed in a laboratory plasma by Fawcett [32], who extended the analysis by Fawcett $et\ al.$ [49] and Fawcett [47]. These lines were present in solar coronal observations made by Widing $et\ al.$ [33], Malinovsky and Heroux [12], and Behring $et\ al.$ [20]. The wavelength values with three decimal places in the 197-360 Å range are taken from Ref. [20], with the additional identifications by Bromage $et\ al.$ [48]. The line at 227.479 Å classified as $3p^2$ $^1D_2-3p3d$ $^3P_2^\circ$ was not included in this compilation because this wavelength is different by 0.68 Å from that calculated from the level values. Uncertainties in the wavelengths vary from ± 0.004 to ± 0.01 Å. Wavelengths given with two decimal places are from the earlier measurements.

Fawcett et al. [25] measured the $3p^2-3p4s$, $3p^2-3p4d$, 3p3d-3p4p, and 3p3d-3p4f transitions in the range 62-108 Å with an uncertainty of ± 0.01 Å. They showed

that the solar line classifications of the $3p^2$ $^3\mathrm{P} - 3p4s$ $^3\mathrm{P}^\circ$ transitions by Zirin [23], Widing and Sandlin [50] and Behring et al. [11] were incorrect. The $3p^2-3p4d$ and 3p3d-3p4f transitions were remeasured by Kastner et al. [51], from which the wavelengths of the 3p3d $^3\mathrm{D}_2^\circ - 3p4f$ $^3\mathrm{F}_3$ line at 82.010 Å, the 3p3d $^3\mathrm{P}_0^\circ - 3p4f$ $^3\mathrm{D}_1$ at 81.154 Å, the 3p3d $^1\mathrm{P}_1^\circ - 3p4f$ $^1\mathrm{D}_2$ at 85.461 Å, and the $3p^2-3p4d$ transitions are taken. It should be noted that the two lines at 82.010 Å and 81.154 Å were tentative identifications.

In a beam-foil spectrum, Träbert et al. [52] identified the intersystem lines $3s^23p^2$ $^3P_{1,2} - 3s3p^3$ $^5S_2^\circ$ at 487.20 ± 0.4 Å and 510.37 ± 0.3 Å. One of these, 487.08 ± 0.03 Å, appears in the solar coronal spectrum of Dere [53].

The value for the ionization energy was derived by Lotz [41] by extrapolation.

Fe XIV

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 3 163 000 cm^{-1} (392.2 eV)

Edlén [38] identified the solar coronal line at 5302.86 Å as the transition $3s^23p\ ^2P_{1/2}^{\circ} - ^2P_{3/2}^{\circ}$. This line was also observed by Jefferies *et al.* [19].

The wavelengths of $3s^23p - 3s3p^2$ transitions in the range 252 – 357 Å were measured in laser-produced plasmas by Fawcett and Peacock [54], and Fawcett [47,32]. The $3s^23p$ $^2P^{\circ} - 3s^23d$ 2D line was first identified by Gabriel et al. [39]. Solar coronal line identifications were reported for these transitions by Behring et al. [20] with an uncertainty of ± 0.005 Å. The fine structure splitting of the term $3s3p^2$ ⁴P was measured by Litzén and Redfors [55]. An extended analysis of the transitions among all terms in the configurations $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d (except ${}^4F^\circ$) was reported by Redfors and Litzén [56] with wavelength uncertainties of ± 0.02 Å from a laser-produced plasma. Levashov et al. [57] found two new lines at 212.145 Å and 212.345 Å of the $3s3p^2 {}^4P_{3/2} - 3s3p({}^3P^{\circ})3d {}^4P^{\circ}_{3/2,1/2}$ transitions. Additional n = 3 transitions were identified by Pinnington et al. [58] in a beam-foil measurement with an estimated wavelength uncertainty of ± 0.1 Å.

The transition arrays $3p^3$, $3s3p3d - 3p^23d$, $3s3d^2$ were reobserved by Churilov and Levashov [59] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å. They determined new values for the energy levels of the configurations with n=3. We have adopted their results except for the $3p^3$ $^2\mathrm{P}_{1/2}^{\circ}$ level of Ref. [56]. It should be noted that the term designations of $3s3p(^3\mathrm{P}^{\circ})3d$ $^4\mathrm{P}_{1/2,3/2}^{\circ}$ and $3s3p(^1\mathrm{P}^{\circ})3d$ $^2\mathrm{P}_{3/2}^{\circ}$ have been interchanged with $3s3p(^3\mathrm{P}^{\circ})3d$ $^4\mathrm{D}_{1/2,3/2}^{\circ}$ and $3s3p(^1\mathrm{P}^{\circ})3d$ $^2\mathrm{D}_{3/2}^{\circ}$, because of the level crossing at Mn, as shown in the calculation of Redfors and Litzén [56].

Classifications of the n=3-4 transitions were made in the range 58-92 Å by Edlén [60] for the 3p-4d doublet and by Fawcett *et al.* [25] for the 3d-4p, 3d-4f, and $3s3p^2-3s3p4s$ lines.

Spin-forbidden transitions $3s^23p$ ²P° $-3s3p^2$ ⁴P were observed by Träbert *et al.* [52] in a beam-foil spectrum. Three of these, at 444.25 ± 0.03 Å, 447.36 ± 0.03 Å, and 467.40 ± 0.03 Å, are taken from more accurate solar measurements of Dere [53].

The value for the ionization energy was derived by Lotz [41] by extrapolation.

Fe xv

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{1}S_0$

Ionization energy 3 686 000 cm^{-1} (457 eV)

The line at 7058.6 Å was identified as the M1 transition ${}^{3}P_{1}^{\circ} - {}^{3}P_{2}^{\circ}$ in the configuration 3s3p by Jefferies *et al.* [19].

Transitions among the configurations $3s^2$, 3s3p, 3s3d, $3p^2$, and 3p3d were identified in the region 198-537 Å in a laser-produced spectrum by Churilov et al. [61], whose wavelengths and energy levels are adopted in the present compilation. Wavelengths were measured with an uncertainty of ± 0.007 Å. Additional identifications completing the levels of 3p3d were reported by Litzén and Redfors [62]. Their wavelengths with an uncertainty of ± 0.02 Å and their level values were included. The previous measurements of the 3-3 transitions by Peacock et al. [63], Fawcett [47,32], Fawcett et al. [25], Cowan and Widing [64], and Dere [53] were revised and extended by the above work.

The $3p3d-3d^2$ transitions were first identified by Redfors [65] in the range 226.2-290.3 Å and reobserved by Levashov and Churilov [66] and Churilov *et al.* [67], who added four new lines. Wavelengths were given with an uncertainty of ± 0.02 Å. The $3d^2$ ³F and ¹G levels are taken from Ref. [65].

The wavelength of 417.258 ± 0.01 Å for the $3s^2$ $^1\mathrm{S}_0-3s3p$ $^3\mathrm{P}_1^\circ$ intercombination line is taken from Behring et al. [20]; the identification was made by Cowan and Widing [64]. This line was also observed in tokamak plasmas by Finkenthal et al. [68] and Peacock et al. [69].

Fawcett et al. [25] classified the line $3s3p^{-1}P_0^{\circ} - 3s4d^{-1}D_2$ at 59.404 Å, and the line $3s3d^{-1}D_2 - 3s4f^{-1}F_3^{\circ}$ at 71.029 Å. The latter transition was revised to 73.473 Å by Cowan and Widing [64]. They also suggested identifications of the transitions $3s3p^{-1}P_0^{\circ} - 3s4s^{-1}S_0$ at 69.66 Å and $3p^{2-1}D_2 - 3s4f^{-1}F_3^{\circ}$ at 63.96 Å.

Classification of the transition arrays 3p3d - 3p4f was reported by Fawcett *et al.* [25] and also by Kastner *et al.* [51]. The tabulated wavelengths are from the latter article except for the 3p3d $^3F^{\circ} - 3p4f$ 3G lines, which are from the former. It should be noted that the line 3p3d $^3F_3^{\circ} - 3p4f$ 3F_4 at 68.884 Å given as

questionable by Kastner et al. has been excluded because it is inconsistent with the 3F_4 level obtained from the line at 71.062 Å.

The wavelengths of triplet arrays 3s3p $^3P^{\circ} - 3s4s$ 3S and 3s3p $^3P^{\circ} - 3s5d$ 3D were measured in the ranges of ~ 65 Å and ~ 41 Å by Feldman *et al.* [70]. Their wavelengths are uncertain to ± 0.01 Å.

Edlén [60] identified the transitions $3s^2$ $^1S_0 - 3s4p$ $^1P_1^{\circ}$, 3s3p $^3P^{\circ} - 3s4d$ 3D , and 3s3d $^3D - 3snf$ $^3F^{\circ}(n = 4, 5)$ in the 50 - 70 Å range. The $3s^2$ $^1S_0 - 3s5p$ $^1P_1^{\circ}$, 3s3p $^3P_2^{\circ} - 3s5s$ 3S_1 , 3s3d $^3D_3 - 3s6f$ $^3F_4^{\circ}$, and 3s3d $^1D_2 - 3snf$ $^1F_3^{\circ}(n = 5, 6)$ transitions were subsequently identified by Fawcett et al. [71]

The $2p^63s3p - 2p^53s^23p$ transitions were tentatively identified by Burkhalter *et al.* [72] who measured the wavelengths in the ~17 Å range with an uncertainty of ± 0.01 Å.

The value for the ionization energy was derived by Sugar and Corliss [13] from the 3snf series.

Fe XVI

Na i isoelectronic sequence

Ground state $1s^22s^22p^63s^{-2}S_{1/2}$

Ionization energy 3 946 280 \pm 300 cm⁻¹ (489.276 eV)

The 3s-3p and 3p-3d lines in the region 250-360 Å were classified in a laboratory plasma by Peacock et al. [63]. Many measurements of these lines were reported in solar coronal and laboratory plasma observations, including those of Peacock et al. [69], Feldman et al. [70], and Behring et al. [20]. An isoelectronic comparison of the measured wavelengths, including the 3d-4f doublet, with Dirac-Fock calculations was made by Reader et al. [73] for Ar^{7+} to Xe^{43+} , and least squares adjusted wavelength values were derived from the differences between theory and experiment. The overall uncertainty estimate is \pm 0.007 Å. We give these results.

The 3s - 4p, 3p - 4s, 3p - nd, and 3d - nf (n = 4,5) transitions were identified by Edlén [74] in the range 39-67 Å. The n = 3-4 transitions including 3d-4p were reobserved by Fawcett *et al.* [25] with an uncertainty of ± 0.01 Å. Except for the 3d-4f transitions, their results are adopted here. Edlén's wavelengths are given for the n = 3-5 transitions.

The 4d ^2D-5f $^2F^\circ$ transitions were identified by Lawson and Peacock [75], who also assigned the lines at 156.80 Å and 156.88 Å to the 4f $^2F^\circ-5g$ 2G array.

Transitions between highly excited levels $(5 \le n \le 9)$ and the n=3 levels were observed by Fawcett *et al.* [71] and Feldman *et al.* [70] with uncertainties of ± 0.03 Å and ± 0.01 Å.

The lines due to the $2p^63l - 2p^53s3l$ transitions in the range 16 - 18 Å were observed with an uncertainty of ± 0.01 Å by Burkhalter *et al.* [72].

Jupén el al. [76] identified the line at 248.36 ± 0.05 Å in a beam-foil spectrum as the $2p^53s3p$ $^4\mathrm{D}_{7/2}$ – $2p^53s3d$ $^4\mathrm{F}_{9/2}$ transition.

The value for the ionization energy was derived by Edlén [77] from a polarization formula applied to the nf series.

Fe XVII

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 10 180 000 \pm 8000 cm⁻¹ (1262.2 \pm 1.0 eV)

Jupén [78] classified 19 lines in solar flare spectra in the region 204 - 410 Å observed by Dere [53] to transitions among the $2p^53s$, $2p^53p$, and $2p^53d$ configurations on the basis of isoelectronic extrapolations. Some of Jupén's identifications were revised by Feldman et al. [79] using their own observations. From these they identified a wide line at 1153.20 Å as the $2p^53s$ $^3P_1^{\circ} - ^3P_0^{\circ}$ magnetic-dipole (M1) transition. The uncertainty in the wavelength is estimated as ± 0.03 Å. A new study of this spectrum by Buchet et al. [80] using a beam-foil light source confirms most of the identifications of Jupén and the corrections suggested by Feldman et al. However, Buchet et al. identify a line at 296.3 Å as the $2p^53s \, ^3P_1^{\circ} - 2p^53p \, ^3P_0$ transition, whereas Feldman et al. identify it as the line at 295.98 Å. A second disagreement occurs for the transition $2p^53s$ $^3P_0^{\circ} - 2p^53p$ 1P_1 , for which Feldman et al. report 373.41 Å and Buchet et al. give 372.93 Å. For the present Fe XVII table we adopt the wavelengths given by Buchet et al. [80] supplemented by the lines 340.12 and 373.41 Å given by Feldman et al. [79]. These two lines are consistent with the M1 line at 1153.20 Å. For the line at 269.6 Å, classified both as the $2p^53p$ $^3D_2-2p^53d$ $^3F_3^\circ$ as well as the $2p^53p$ $^3S_1-2p^53d$ $^3P_0^\circ$ transitions, we adopted Dere's wavelengths, 269.41 and 269.88 Å, classified by Jupén.

The $2s^22p^53s - 2s2p^63s$ transitions were identified in a tokamak plasma by Finkenthal *et al.* [81]. Three lines due to the ${}^3P_{2,1,0}^{\circ} - {}^3S_1$ transitions at 89.77 Å, 90.77 Å, and 98.38 Å are excluded because they give a fine structure splitting of the ${}^3P^{\circ}$ term that is inconsistent with that in the present compilation.

The identification of $2p^53p - 2p^54d$ transitions was reported by Kastner *et al.* [82]. From a laser-produced plasma Fawcett *et al.* [83] identified the $2p^53p - 2p^54s$, $2p^53p - 2p^54d$, $2p^53d - 2p^54f$, and $2p^53d - 2p^55f$ lines in the range of 41 - 60 Å. Level designations of 3p and 4d are given in jK and LS coupling schemes in Ref. [82].

Wavelengths below 18 Å corresponding to transitions from the levels $2p^53s$, 4s, $2s2p^64s$, $2s2p^63p$, 4p, and $2p^53d$, 4d, 5d, 6d to the ground level were measured in

a laser-produced plasma by Gordon et al. [84] with an uncertainty of ± 0.005 Å. These include the lines measured previously by Tyrén [85] and Hutcheon et al. [86]. From Ref. [86], we selected only the $2p^6 - 2p^5(^2P_{3/2}^{\circ})3s$ $(^3/_2,^1/_2)_2^{\circ}$ transition at 17.097 Å, which was not given in Ref. [84]. Solar observations with an uncertainty of ± 0.003 Å were made by Hutcheon et al. [87], from which seven lines arising from the transitions from the $2p^55s$, 6s, 7s, $2s2p^65p$, and $2p^57d$, 8d levels to the ground level were taken.

The value for the ionization energy was derived by Hutcheon et al. [87] from the $2p^5ns$ series.

Fe XVIII

F i isoelectronic sequence

Ground state $1s^2 2s^2 2p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 10 944 900 cm^{-1} (1357.00 eV)

The $2s^22p^5$ $^2\mathrm{P}_{3/2}^{\circ} - ^2\mathrm{P}_{1/2}^{\circ}$ magnetic-dipole line was observed in solar coronal spectra by Doschek *et al.* [88] and Sandlin *et al.* [14] and also in tokamak discharges by Suckewer and Hinnov [89], Hinnov and Suckewer [90], Hinnov *et al.* [91], Finkenthal *et al.* [92], and Peacock *et al.* [69]. The most accurate wavelength, 974.86 ± 0.02 Å, is from the last article.

The lines at 93.923 ± 0.004 Å and 103.937 ± 0.004 Å of the $2s^22p^5$ $^2P-2s2p^6$ 2S doublet are given by Kovalev et al. [93]. Peacock et al. [69] obtained the wavelengths of 93.929 ± 0.003 Å and 103.941 ± 0.004 Å for these transitions, respectively. The arithmetic mean values are given in this compilation.

Phillips et al. [94] provided identifications of the $2s2p^6$ $^2S - 2s2p^5$ ($^3P^\circ$) 3s $^4P^\circ$ lines, including the $^2S_{1/2} - ^4P_{5/2}^\circ$ magnetic-quadrupole transition at 16.337 Å and the $2s2p^6$ $^2S_{1/2} - 2s2p^5$ ($^3P^\circ$) 3s $^2P_{3/2}^\circ$ transition at 16.165 Å, from solar coronal observations.

Following the classifications of $2p^5-2p^43s$ and $2p^5-2p^43d$ transitions by Fawcett et~al. [49], many measurements for these transitions have been reported. The tabulated wavelengths in the 10-16 Å range are from Gordon et~al. [84], who revised and extended the work of Feldman et~al. [95]. The uncertainties of the wavelengths are ± 0.005 Å in Ref. [84] and ± 0.01 Å in Ref. [95]. The $2p^5$ $^2P_{3/2}^{\circ}-2p^4(^3P)3d$ $^2D_{5/2}$ and $2p^5$ $^2P_{1/2}^{\circ}-2p^4(^1D)3d$ $^2D_{3/2}$ transitions at 14.373 Å and 14.361 Å are taken from Feldman et~al. [95]. Four additional lines from Ref. [95] are included in this compilation.

Gordon et al. [84] identified the $2s^22p^5 - 2s2p^53p$, $2p^44d$, and $2p^44s$ transition arrays in the range 11 - 14 Å. An additional line at 11.442 Å was identified as $2p^5 {}^2P_{3/2}^{\circ} - 2p^4({}^3P_1)4d$ $(1, {}^5/_2)_{3/2}$ by Boiko et al. [96].

The $2p^4(^3P)3d$ and $2s2p^5(^3P^\circ)3p$ levels without major eigenvector components are represented by the symbol $(N)_J$, the index N increasing with energy from the lowest level (N=1) for each J.

The wavelengths of $2p^5 - 2p^45d$ and $2p^46d$ transitions were measured by Burkhalter *et al.* [97].

The line $1s^22s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}-1s2s^22p^6$ $^2\mathrm{S}_{1/2}$ at 1.92164 Å is from the solar flare observations by Seely *et al.* [98], with an uncertainty of ± 0.02 mÅ.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Fe XIX

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 11 765 000 cm⁻¹ (1458.67 eV)

Three M1 lines within the ground configuration were observed in solar flares. The ${}^3P_2 - {}^3P_1$ line at 1118.1 Å was identified by Doschek *et al.* [88]. The other two M1 lines at 592.16 Å and 424.26 Å were classified as ${}^3P_2 - {}^1D_2$ and ${}^3P_1 - {}^1S_0$ transitions by Widing [101]. These lines, except for the ${}^3P_1 - {}^1S_0$ line, were also observed in tokamak discharges by Suckewer and Hinnov [89], Hinnov *et al.* [91], Finkenthal *et al.* [92], and Peacock *et al.* [69]. The wavelengths 1118.060±0.010 Å for ${}^3P_2 - {}^3P_1$ and 592.234±0.006 Å for ${}^3P_2 - {}^1D_2$ were obtained by Peacock *et al.* [69].

Comparing the predictions by Edlén [102] with the measurements of Doschek et al. [103] and Breton et al. [104] for the $2s^22p^4-2s2p^5$ and $2s2p^5-2p^6$ transitions in the range from 91-120 Å, Kononov [105] pointed out that there appeared to be wavelength deviations of up to 0.03 Å in the measurements, except those of Kovalev et al. [93]. Tabulated are the wavelengths from Kovalev et al., the uncertainty of which is ± 0.004 Å. Kovalev et al. and Lawson and Peacock [75] provided additional intercombination lines due to the $2s^22p^4$ $^3P_{0,1,2}-2s2p^5$ $^1P_1^\circ$, $2s^22p^4$ $^1D_2-2s2p^5$ $^3P_2^\circ$, and the $2s2p^5$ $^3P_1^\circ-2p^6$ 1S_0 transitions, respectively.

Fawcett et al. [106] and Fawcett and Hayes [107] proposed classifications of the $2p^4-2p^33d$ transitions, using the wavelengths measured by Cohen and Feldman [108], Swartz et al. [109], and Neupert et al. [110]. An analysis of the transition arrays $2p^4-2p^33s$, $2p^33d$, and $2p^34d$ was made by Gordon et al. [84]. Their observations, with a laser-produced plasma, were in the wavelength range of 10-15.2 Å. The tabulated wavelengths are from Ref. [84], but omitting the two transitions $2s^22p^4$ 1D_2 , $^3P_1-2s^22p^3(^2P^\circ)4d$ $^3D_2^\circ$ at 10.644 Å and 10.543 Å. The upper levels calculated with these lines are inconsistent. The uncertainty of the wavelengths is estimated to be ± 0.005 Å. Solar coronal observations of the first

two arrays were reported by Pye et al. [111], McKenzie et al. [112] and Phillips et al. [94]. The jj and LS percentage compositions are available from Gordon et al. [84].

The $2p^4 - 2p^35d$ and $2p^36d$ transitions were identified between 9 Å and 10 Å by Burkhalter *et al.* [97].

The inner-shell $1s^22s^22p^4 - 1s2s^22p^5$ transition at 1.91765 ± 0.00002 Å was identified in a solar flare spectrum by Seely *et al.* [98].

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Fe xx

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 12 687 800 cm^{-1} (1573.09 eV)

The $2s^22p^3$ $^2\mathrm{D}^{\circ}_{3/2}$ - $^2\mathrm{D}^{\circ}_{5/2}$ line at 2665.1 ± 0.3 Å was observed in a tokamak discharge by Suckewer and Hinnov [113,89] and subsequently by Hinnov et al. [91]. Another M1 transition, $2s^22p^3$ $^2\mathrm{D}^{\circ}_{3/2}$ - $^2\mathrm{P}^{\circ}_{3/2}$ at 541.35 ± 0.03 Å, was identified in a solar flare by Widing [101]. This line was also observed in a tokamak plasma by Finkenthal et al. [92]. The wavelengths of 309.26 Å and 567.76 Å measured by Sandlin et al. [114] and Widing [101], respectively, were assigned to the M1 transitions $2s^22p^3$ $^4\mathrm{S}^{\circ}_{3/2}$ - $^2\mathrm{P}^{\circ}_{3/2}$, $^2\mathrm{D}^{\circ}_{5/2}$ by Lawson et al. [115]. Edlén [116] confirmed these assignments on the basis of an accurate prediction of the energy intervals along the nitrogen sequence. The wavelength value of 679.24 Å, corresponding to the $2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$ - $^2\mathrm{P}^{\circ}_{3/2}$ magnetic dipole transition, is from differencing the M1 lines 309.26 Å and 567.76 Å.

Lines of the $2s^22p^3 - 2s2p^4$ array in the 90 - 133 Å range were identified by Doschek et al. [103] and also by Feldman et al. [117] utilizing laser-produced plasmas. Kononov et al. [118] identified the $2s2p^4 - 2p^5$ array, in the wavelength range 98 - 141 Å, from a laserproduced plasma. An extensive analysis of these arrays in the range 80 - 141 Å with an uncertainty of ±0.03 Å was made by Lawson and Peacock [75], who proposed 20 line identifications for the $2s^22p^3 - 2s2p^4$ array and 10 for the $2s2p^4 - 2p^5$ array including intercombination lines. Wavelengths, with an uncertainty of ± 0.004 Å, are taken from Kovalev et al. [93]. The $2s^22p^3$ $^4\mathrm{S}^\circ_{3/2} - 2s2p^4$ $^4\mathrm{P}_{5/2}$ transition at 132.850±0.06 Å is from Peacock et al. [69]. The ${}^4\mathrm{S}^{\circ}_{3/2} - {}^4\mathrm{P}_{1/2,3/2}$ transitions at 118.697 ± 0.005 Å and 121.858 ± 0.005 Å were reobserved by Sugar and Rowan [119]. The $2p^5$ $^2\mathrm{P}^{\circ}_{1/2,3/2}$ levels have been reduced by 210 cm⁻¹ in order to make them consistent with measured wavelengths.

Measurements in the range of 8-14 Å with an uncertainty of ± 0.005 Å were made by Bromage *et al.* [120] with a laser-produced plasma. They identified the $2p^3 - 2p^23d$, $2p^24d$, and $2p^25d$ transitions.

The transitions between the ground configuration and $1s2s^22p^4$ were identified in a laboratory plasma by Lie and Elton [121] and in solar flare observations by Feldman *et al.* [122] and Seely *et al.* [98]. The two lines $^4\mathrm{S}^\circ_{3/2} - ^4\mathrm{P}_{3/2,5/2}$ at 1.90568 Å and 1.90845 Å are from Ref. [98] with an uncertainty estimate of 0.1 mÅ and the others are from Ref. [122] with an uncertainty estimate of 0.5 mÅ.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Fe XXI

C 1 isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy $13 623 800 \text{ cm}^{-1} (1689.14 \text{ eV})$

The M1 transition within the ground configuration, ${}^3P_0 - {}^3P_1$, was first identified at 1354.1 ± 0.1 Å in solar flares by Doschek *et al.* [88]. Sandlin *et al.* [14] measured a more accurate wavelength of 1354.08 ± 0.05 Å for this transition. Three additional M1 lines due to the ${}^3P_1 - {}^3P_2$, ${}^3P_{1,2} - {}^1D_2$ transitions in the ground configuration were observed at 2298.0 Å, 786.1 Å, and 585.8 Å with an uncertainty estimate of ± 0.3 Å by Hinnov *et al.* [91]. The ${}^3P_0 - {}^3P_1$ and ${}^3P_1 - {}^1D_2$ lines were also found in a tokamak plasma spectrum by Finkenthal *et al.* [92].

The $2s^22p^2$ $^3P_{2,1} - 2s2p^3$ $^5S_2^{\circ}$ lines at 270.52 and 242.07 Å were identified in solar coronal spectra by Dere [53]. The wavelength accuracy is ± 0.03 Å. The other $2s^22p^2 - 2s2p^3$ and $2s2p^3 - 2p^4$ transitions, including intercombination transitions, were classified by Lawson and Peacock [75] in an analysis of a laser-produced spectrum in the range 84 - 182 Å. The uncertainty of the wavelengths is ± 0.03 Å. The earlier works of Kastner et al. [123], Feldman et al. [117], and Kononov et al. [118] were revised and extended. In recent observations by Sugar and Rowan [119] using tokamak discharges, 17 lines of the $2s^22p^2 - 2s2p^3$ array were remeasured with an estimated uncertainty of ± 0.005 Å. The spin-forbidden $^{1}D_{2} - ^{3}D_{3}^{\circ}$ transition of this array at 178.904 Å was observed for the first time. We have adopted their results. We have reduced the $2p^4$ 1D_2 level by 200 cm $^{-1}$ so as to fit with the observed wavelengths. It should be noted that the $2s2p^3$ $^3D_2^{\circ} - 2p^4$ 1D_2 line at 144.79 Å has been omitted because this line does not fit with the level scheme of Ref. [119] and because its line intensity is indicated to be spurious by Lawson and Peacock.

Fawcett et al. [106] identified a solar flare line at 12.38 Å classified by Neupert et al. [110] as the $2p^2$ 3 P₂ –

2p3d $^3\mathrm{D}_3^\circ$ transition. Bromage and Fawcett [124] revised the earlier tentative identifications of the $2p^2-2p3d$ array by Fawcett and Hayes [107] using lines observed by Boiko et~al. in 1976 with a laser-produced plasma. The wavelengths were published by Boiko et~al. [96]. We have tabulated the six lines identified in Ref. [124] and the line at 12.38 Å. The other classifications in Ref. [96] are tentative. The uncertainty of the wavelengths is ± 0.003 Å. The $2p^2$ $^3\mathrm{P}_{0,1}-2p3d$ $^3\mathrm{D}_1^\circ$ transitions were identified in solar flares by McKenzie et~al. [112] and Phillips et~al. [94], at the wavelengths 12.285 ± 0.002 Å and 12.398 ± 0.002 Å.

Classifications of the $2p^2-2p4d$, 2p5d transitions were reported by Bromage et~al. [120], who analyzed the laser-produced plasma spectrum of Boiko et~al. in the range 8.5-9.6 Å. The wavelength uncertainty is ± 0.002 Å. Fawcett et~al. [125] identified three lines at 9.632 Å, 9.476 Å, and 8.573 Å in a solar flare as transitions from the 2p4s $^3\mathrm{P}_1^\circ$, 2p4d $^3\mathrm{D}_1^\circ$ and 2p5d $^3\mathrm{D}_1^\circ$ levels to the ground level. In addition, they provided more accurate wavelengths for the $2p^2$ $^3\mathrm{P}_2-2p4d$ $^3\mathrm{F}_3^\circ$ transition and $2p^2$ $^3\mathrm{P}-2p4d$ $^3\mathrm{D}^\circ$ lines.

The wavelengths due to the $1s^22s^22p^2 - 1s2s^22p^3$ innershell transitions are from solar flare observations by Feldman *et al.* [122] and Seely *et al.* [98] with estimated wavelength uncertainties of ± 0.5 mÅ and ± 0.15 mÅ, respectively.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Fe XXII

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy 14 508 400 cm^{-1} (1798.81 eV)

The M1 transition $2s^22p$ $^2\mathrm{P}_{1/2}^\circ - ^2\mathrm{P}_{3/2}^\circ$ was first identified in solar flares by Noyes [126] at 845.4±0.2 Å using a prediction of 844 Å by Kastner [127]. This line was also reobserved by Doschek *et al.* [88] in solar flares and subsequently in tokamak discharges by Suckewer and Hinnov [89], Hinnov and Suckewer [90], Hinnov *et al.* [91], and Finkenthal *et al.* [92]. The wavelength value of 845.55±0.1 Å is from Ref. [90].

Sandlin et al. [114] tentatively assigned four intercombination lines to the $2s^22p^{-2}P^{\circ}-2s2p^{2}$ ⁴P array observed in the solar corona.

Wavelengths in the range 100-174 Å observed in a laser-produced plasma were assigned to the $2s^22p-2s2p^2$ and $2s2p^2-2p^3$ transitions by Lawson and Peacock [75]. The uncertainty of the wavelengths is estimated to be ± 0.03 Å. The earlier classifications by Fawcett and Cowan [128], Doschek et al. [129], and Kononov et al. [118] were revised and extended. An accurate measurement with a wavelength uncertainty of

 ± 0.005 Å was made by Sugar and Rowan [119] for seven lines of the $2s^22p$ $^2\mathrm{P}^{\circ}-2s2p^2$ $^2\mathrm{S},$ $^2\mathrm{P},$ and $^2\mathrm{D}$ arrays. Their results are adopted. We have reduced the $2p^3$ $^2\mathrm{D}^{\circ}$ levels by 310 cm⁻¹ so as to get a better fit with the observed wavelengths of Ref. [75].

The transition arrays $2s^22p - 2s^23d$, $2s^22p - 2s2p3p$, $2s2p^2 - 2s2p3d$, $2s^22p - 2s^24d$, and $2s2p^2 - 2s2p4d$ were identified by Bromage et al. [130], utilizing lines in the range of 8.9 - 12.1 Å observed by Boiko et al. [96] in a laser-produced plasma. The uncertainty of the wavelengths is ± 0.003 Å. We adopted their identifications, except for the $2s^22p - 2s^24d$ array. To this array and also the $2s^22p - 2s2p4p$ and $2s^22p - 2s^25d$ transitions, Fawcett et al. [125] assigned wavelengths of solar flare lines with an uncertainty of ± 0.3 mÅ. A very weak line at 11.935 ± 0.002 Å in a solar flare spectrum was identified as the $2s^22p$ $^2P_{3/2}^{\circ} - 2s^23d$ $^2D_{3/2}$ transition by Phillips et al. [94].

et al. [94]. The $2s^22p$ $^2P^{\circ} - 2s^24s$ 2S lines at 9.06 ± 0.03 Å and 9.14 ± 0.03 Å were observed in an exploded wire experiment by Burkhalter et al. [97].

Wavelengths at ~ 1.88 Å due to the inner shell transitions $1s^22s^22p-1s2s^22p^2$ are taken from the solar flare measurements by Feldman et~al.~[122] and Seely et~al.~[98]. The wavelength uncertainties are ± 0.5 mÅ for the $^2\mathrm{P}^{\circ}_{1/2}-^2\mathrm{P}_{1/2},\,^2\mathrm{P}^{\circ}_{3/2}-^2\mathrm{P}_{1/2,3/2},\,$ and $^2\mathrm{P}^{\circ}_{3/2}-^2\mathrm{S}_{1/2}$ transitions, and ± 0.10 mÅ for the $^2\mathrm{P}^{\circ}_{1/2}-^2\mathrm{D}_{3/2}$ and $^2\mathrm{P}^{\circ}_{3/2}-^2\mathrm{D}_{5/2}$ transitions.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Fe XXIII

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 15 797 000 \pm 30000 cm⁻¹ (1958.6 \pm 3.7 eV)

The M1 transition 2s2p $^3P_1^{\circ} - ^3P_2^{\circ}$ was observed in a tokamak discharge by Hinnov *et al.* [91] and Finkenthal *et al.* [92]. The wavelength 1079.3 ± 0.3 Å was given in Ref. [91].

Two solar flare lines at 132.83 Å and 263.76 Å were identified as the $2s^2$ $^1\mathrm{S}_0-2s2p$ $^1\mathrm{P}_1^\circ$ and $^3\mathrm{P}_1^\circ$ transitions by Kastner et al. [123] and Widing [131], respectively. In Ref. [131], both of the lines were measured with an uncertainty of ± 0.03 Å. These lines were also observed by Sandlin et al. [114], Hinnov [132], and Lawson and Peacock [75]. An accurate measurement with a wavelength uncertainty of ± 0.005 Å was reported by Sugar and Rowan [119]. Their wavelengths of 263.765 Å and 132.906 Å are quoted. The 2s3p $^1\mathrm{P}_1^\circ$ level, therefore, has been reduced by 400 cm^{-1} .

Wavelengths in the range 136-222 Å, measured in a laser-produced plasma, were assigned to the $2s2p-2p^2$ array by Lawson and Peacock [75]. The uncertainty of the wavelengths is ± 0.03 Å. Edlén [133] has confirmed their identifications for the 2s2p $^1P_1^{\circ}$ and $^3P_2^{\circ}-2p^2$ 1D_2 lines at 221.33 ± 0.06 Å and 136.53 ± 0.03 Å.

A comprehensive analysis was made by Bromage et al. [130] of the transition arrays $2s^2-2snp$, 2s2p-2snd, 2s2p-2pnp, and $2p^2-2pnd$ (n=3-5). They used wavelengths of Boiko et al. [96] with an uncertainty of ± 0.003 Å in the range of 7.4-11.9 Å, which are tabulated with additions and substitutions stated below. The 2p3d and 2p4d levels without major eigenvector components are represented by the symbol (N)_J, the index N increasing with energy from the lowest level (N=1) for each J.

The arrays with n=3, including many weak lines, were previously identified by Boiko *et al.* [96]. The wavelengths of $2p^2-2p3s$ and 2s2p-2s3s transitions are from Ref. [96].

The 2s2p $^3P_1^{\circ} - 2p4p$ 3D_2 line at 8.289 ± 0.006 Å was given by Fawcett *et al.* [134]. A solar flare spectrum was measured with an uncertainty of ±0.0003 Å by Fawcett *et al.* [125], from which six wavelengths are taken for the $2s^2-2s4p$, 2s2p-2s4d, and 2s2p-2s4s transition arrays, including the $2s^2$ $^1S_0-2s4p$ $^3P_1^{\circ}$ intercombination line at 8.317 Å.

The $1s^22s^2-1s2s^22p$ and $1s^22s2p-1s2s2p^2$ transitions at ~ 1.8 Å were identified by Seely *et al.* [98] and Kononov *et al.* [135] in a vacuum spark discharge spectrum. Their wavelength uncertainties are ± 0.3 mÅ.

Sugar and Corliss [13] derived the value for the ionization energy from 2snp and 2snd series.

Fe XXIV

Li I isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 16 500 000 \pm 4000 cm⁻¹ (2045.7 \pm 0.5 eV)

The 2s $^2S - 2p$ $^2P^\circ$ doublet was identified in solar flare spectra by Widing and Purcell [136] and Sandlin et al. [114]. These transitions were also observed in tokamak discharges by Hinnov [132], Hinnov et al. [137], and Knize [138]. These lines at 192.028 ± 0.005 Å and 255.113 ± 0.005 Å are from new measurements by Reader et al. [139]

The 2s-np (n=3-5), 2p-3s, and 2p-nd (n=3-6) transitions were identified by Neupert et al. [110] and also by Fawcett et al. [106] for n=3. These identifications were extended by Boiko et al. [96] to np (n=3-5,7), ns (n=3,4), and nd (n=3-6) with wavelengths in the range 6.5-11.5 Å. They measured the wavelengths with an estimated uncertainty of ± 0.003 Å. Three arrays 2p-4s, and 2p-4d and 2s-4p were remeasured by

Seely and Feldman [140] and Fawcett et~al. [125] in solar flares with uncertainties of ± 0.0007 Å and ± 0.0003 Å, respectively. New measurements were reported by Reader et~al. [139] for these transitions. They also identified the n=3-4 transitions in a laser-produced plasma for the first time. We adopt their revised values of the energy levels based on the new measurements, and their remeasured wavelengths. For the $2p^{-2}\mathrm{P}_{3/2}^{\circ}-4d^{-2}\mathrm{D}_{3/2}$ line, the wavelength calculated from the known levels is used.

The inner shell transitions $1s^22s - 1s2s2p$ and $1s^22p - 1s2p^2$ were identified by Grineva et al. [141], Feldman et al. [122], Seely and Feldman [142], and Seely et al. [98] in solar flares. They were also observed by Kononov et al. [135] with a vacuum spark discharge, and by Bitter et al. [143] with a tokamak discharge. The two transitions $1s^22p^2P - 1s2s^2^2S$ near 1.9 Å are from Ref. [98]. Wavelengths are taken from Refs. [142] and [98]. The uncertainty of the wavelengths is estimated to be between ± 0.4 mÅ and ± 0.04 mÅ. For the missing $1s^22s - 1s2s2p$ and the $1s^22p - 1s2p^2$ transitions, calculated wavelengths are taken from Vainshtein and Safronova [144].

The $1s^23s-1s2p3s$, $1s^23p-1s2p3p$, and $1s^23d-1s2p3d$ transitions in the region of 1.85 Å were provided in Refs. [135] and [142]. The 1s-3p transitions at 1.5960 Å, 1.5926 Å, 1.588 Å were identified in a vacuum spark discharge by Klapisch *et al.* [145]. Since they are identified as a blend of many transitions, we could not give classifications for them and therefore do not include these lines.

The value for the ionization energy was derived by Edlén [146] from a polarization formula applied to the nd series.

Fe xxv

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 71 204 370 \pm 2600 cm⁻¹ (8828.220 \pm 0.3 eV)

The $1s^2$ $^1\mathrm{S}_0 - 1s2p$ $^1\mathrm{P}_1^\circ$, $^3\mathrm{P}_2^\circ$, $^3\mathrm{P}_1^\circ$, and $1s^2$ $^1\mathrm{S}_0 - 1s2s$ $^3\mathrm{S}_1$ lines were observed at 1.85048 Å, 1.85555 Å, 1.85960 Å, and 1.86830 Å, respectively, in a tokamak discharge by Beiersdorfer et al. [147]. The first wavelength cited above is calculated from the level energy of Vainshtein and Safronova [148] with an uncertainty of ± 0.00004 Å and the remaining are normalized to it. Measured wavelengths for the $1s^2$ $^1\mathrm{S}_0 - 1s2p$ $^1\mathrm{P}_1^\circ$ transition were obtained by Aglitsky et al. [149] and Beiersdorfer et al. [150] to be 1.85030 ± 0.00010 Å and 1.85031 ± 0.000030 Å, respectively.

The $1s^2$ $^1\mathrm{S}_0 - 1s3p$ $^1\mathrm{P}_1^\circ$ and $^3\mathrm{P}_1^\circ$ transitions were identified by Klapisch *et al.* [145] at 1.5738 and 1.5755 Å in a spark discharge. No uncertainty is assigned in this paper. The $1s^2$ $^1\mathrm{S}_0 - 1snp$ $^{1,3}\mathrm{P}_1^\circ$ lines were measured

by Indelicato et al. [151] at 1.57312 ± 0.000039 Å and 1.57496 ± 0.000040 Å for n=3 and 1.49456 ± 0.000036 Å and 1.49526 ± 0.000036 Å for n=4. For the n=5 singlet Beiersdorfer et al. [150] obtained the wavelength 1.46081 ± 0.000035 Å. The earlier measurements of these lines by Morita and Fujita [152] and Aglitskii and Panin [153], including transitions from the 6p levels, are less accurate.

The 1s2s-2s2p and $1s2p-2p^2$ transitions near 1.79 Å were identified by Turechek and Kunze [154] in a spark discharge and by Decaux *et al.* [155] in a tokamak discharge. We give the predicted wavelengths of Vainshtein and Safronova [144] for transitions from the n=2 doubly-excited states.

The 1s2s $^3\mathrm{S}_1 - 1s2p$ $^3\mathrm{P}_2^\circ$ line at 271.02 ± 0.09 Å was observed by Buchet et al. [156] in a beam foil experiment. It deviates from Drake's [157] theoretical value by twice its uncertainty.

The multiplet 1s2p 3 P° -1s3d 3 D and the transitions 1s2p 1 P° -1snd 1 D₂(n=3,4) were classified by Burkhalter *et al.* [97] as being lines at 10.19 Å, 10.33 Å, 10.41 Å, and 7.75 Å in an exploding wire spectrum.

Cheng et al. [158] give calculated total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [159] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [160] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [161].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [144] have been tabulated after increasing them by $1400 \,\mathrm{cm^{-1}}$ to correspond with the values of lower n by Drake [161]. All wavelengths have been derived from differences of the adopted energy levels.

The 1s2s-2s2p and $1s2p-2p^2$ transitions were first identified by Turechek and Kunze [154] with five lines near 1.79 Å. We have adopted the calculated wavelengths of Vainshtein and Safronova [144] without correction for transitions from the n=2 doubly excited states.

Fe XXVI

H I isoelectronic sequence

Ground state 1s ${}^{2}S_{1/2}$

Ionization energy 74 829 600 \pm 20 cm⁻¹ (9277.69 \pm 0.002 eV)

The 1s $^2\mathrm{S}_{1/2} - 2p$ $^2\mathrm{P}_{1/2,3/2}^{\circ}$ transitions were observed by Turechek and Kunze [154], Morita and Fujita [152], Beiersdorfer *et al.* [147], and Decaux *et al.* [155]. We have tabulated the wavelengths from the theoretical level energies calculated by Johnson and Soff [160] for the n=2 shell with an uncertainty of ± 20 cm⁻¹. They are in close agreement with those by Mohr [162]. All levels

with n=3-5 were calculated by Erickson [163]. Erickson's values for the binding energies were corrected to the ground state binding energy given by Johnson and Soff to obtain the predicted wavelengths.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for hydrogen spectra by Wiese et al. [164]. The scaling was actually performed for the line strengths S, which for a hydrogen-like ion of nuclear charge Z are reduced according to $S_Z = Z^{-2}S_H$, so that

$$S_{\text{Fe XXVI}} = S_{\text{H}}(26)^{-2} = S_{\text{H}}/676.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [165]. For these conversions the very accurate wavelengths listed in the first column of the Fe XXVI table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-5% for Fe XXVI, according to the work by Younger and Weiss [166], and have been neglected.

The value for the ionization energy is from Johnson and Soff [160].

2.6.2. Spectroscopic Data for Fe VII through Fe XXVI

Fe VII

Wave- ength (Å)	Lower	Classification	Upper	Energy Leve	ls (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
332.381	$3p^63d4s$	$^{1}\mathrm{D}_{2}$	$3p^63d4p^{-1}D_2^{\circ}$	350 332.6	425 386.1	6	6.5 - 1	4.9+8	D-	3°,165*
263.844	$3p^{6}3d4s$	$^{3}D_{3}$	$3p^63d4p^{-1}D_2^{\circ}$	346 262.2	425 386.1	2				3
244.442	· P	2	2	345 028.7	425 386.1	_				3
239.690	$3p^{6}3d4s$	$^{3}D_{1}$	$3p^63d4p\ ^3D_1^{\circ}$	344 463.3	425 128.6	5	4.2 - 1	6.2+8	D-	3°,165*
226.653		3	2	346 262.2	427 784.7	5	3.1 - 1	2.7 + 8	D-	3°,165*
208.375		2	2	345 028.7	427 784.7	4	6.5 - 1	5.8 + 8	D-	3°,165*
180.823 163.879		3 2	3	346 262.2 345 028.7	430 948.6 430 948.6	4 5	$1.5 \\ 3.0 - 2$	$1.0+9 \\ 2.1+7$	D- D-	3°,165* 3°,165*
173.915	$3p^63d4s$	$^3\mathrm{D}_2$	$3p^63d4p\ ^3F_2^{\circ}$	345 028.7	430 213.4	1	1.8 - 3	1.7+6	E	3°,165*
166.183	-	1	2	344 463.3	430 213.4	8	9.9 - 1	9.8 + 8	D-	3°.165*
154.992		2	3	345 028.7	431 609.5	4	1.6	1.1 + 9	D-	3°,165* 3°,165*
141.435		3	4	346 262.2	433 871.2	10	2.2	1.2+9	D-	3°,165*
117.580	$3p^63d4s$	$^{1}D_{2}$	$3p^6 3d4p^{-1} F_3^{\circ}$	350 332.6	439 811.6	6	1.6	1.2+9	D-	3°,165*
095.343	$3p^63d4s$		$3p^6 3d4p\ ^3{ m P}_2^{\circ}$	346 262.2	437 558.0	6	9.1 - 1	9.9+8	D-	3°,165*
087.861		2	1	345 028.7	436 952.2	2	4.8 - 1	9.0+8	D-	3°,165*
080.736		2	2	345 028.7	437 558.0		2.7 - 1	3.1 + 8	D-	3°,165*
080.637		1	0	344 463.3	437 001.3	2	2.6 - 1	1.5+9	D-	3°,165*
073.953	$3p^{6}3d4s$	$^{1}D_{2}$	$3p^6 3d4p \ ^1P_1^0$	350 332.6	443 447.0	4	7.5 - 1	1.5 + 9	D-	3°,165*
016.072	$3p^6 3d 4s$	3D_2	$3p^6 3d4p^{-1}P_1^0$	345 028.7	443 447.0					3
010.260		1	1	344 463.3	443 447.0	1				3
270.363	$3p^{6}3d^{2}$	² 1S ₀	$3p^6 3d4p \ ^3P_1^0$	67 078.3	436 952.2					3
265.697	$3p^63d^2$	² ¹ S ₀	$3p^6 3d4p \ ^1P_1^0$	67 078.3	443 447.0	8	1.3 - 1	4.1 + 9	D-	3°,165*
248.743	$3p^{6}3d^{2}$	$^{1}\mathrm{G}_{4}$	$3p^6 3d4p \ ^3D_3^{\circ}$	28 927.3	430 948.6	2				3
247.458	$3p^{6}3d^{2}$	³ P ₂	$3p^63d4p^{-1}D_2^0$	21 278.6	425 386.1	7				3
246.943	op ou	1	2	20 430.1	425 386.1					3
247.098	$3p^6 3d^2$	³ P ₁	$3p^63d4p\ ^3D_1^{\circ}$	20 430.1	425 128.6	3	1.8 - 2	6.5+8	D-	3°,165*
246.859		G	1	20 040.3	425 128.6		5.1 - 2	1.9 + 9	D-	3°,165*
246.000		2	2	21 278.6	427 784.7		8.5 - 3	1.9+8	E	3°,165*
245.488 244.098		1 2	2	$20\ 430.1$ $21\ 278.6$	427 784.7 430 948.6		1.1 - 1 $1.0 - 1$	$2.3+9 \\ 1.6+9$	D- D-	3°,165* 3°,165*
245.153	$3p^{6}3d^{2}$	$^{-1}D_2$	$3p^63d4p^{-1}D_2^{\circ}$	17 475.5	425 386.1	12	3.2 - 1	7.0+9	D-	3°,165*
	$3p^63d^2$	-	$3p^63d4p\ ^3F_2^{\circ}$							•
244.541 244.030	3p 3a		_	21 278.6 $20 430.1$	430 213.4 430 213.4		1.1 - 4	2.4+6	E E	3°,165* 3°,165*
243.705		1 2	3	21 278.6	430 213.4		8.4 - 3 $3.5 - 2$	1.9+8 5.6+8	Б-	3°,165*
243.379	$3p^63d^2$	$^{1}G_{4}$	$3p^63d4p^{-1}F_3^{\circ}$	28 927.3	439 811.6	13	1.4	2.1+10	D-	3°,165*
0.40.004	$3p^{6}3d^{2}$: 15	o 60 tr 3-20	17	100 000	_				_
242.284 241.467	3p°3a	2 2	$3p^6 3d4p \ ^3F_2^{\circ}$	17 475.5 17 475.5	430 213.4 431 609.5					3 3
241.853	$3p^63d^2$	² ¹ D ₂	$3p^63d4p^{-3}{\rm D}_3^{\rm o}$	17 475.5	430 948.6	3				3
240.572	$3p^63d^5$		$3p^63d4p\ ^3P_1^{\circ}$	21 278.6	436 952.2		11 '	4.0.1.0	D	
240.223	Sp Su	2	3p 3d4p F ₁	21 278.6	436 952.2		1.1 - 1 $4.4 - 1$		D- D-	3°,165* 3°,165*
240.083		1	1	20 430.1	436 952.2		9.0 - 2		D-	3°,165*
240.053		1	0	20 430.1	437 001.3		1.1 - 1	1.3 + 10	$\overline{\mathrm{D}}-$	3°,165*
239.860		0	1	20 040.3	436 952.2		8.9 - 2		D-	3°,165*
239.734		1	2	20 430.1	437 558.0	7	1.1 - 1	2.5 + 9	D-	3°,165*
238.929	$3p^{6}3d^{5}$	² ³ P ₂	$3p^6 3d4p^{-1}F_3^{\circ}$	21 278.6	439 811.€	3				3
238.393	$3p^63d^2$	2 1 D ₂	$3p^{6}3d4p^{3}P_{1}^{9}$	17 475.5	436 952.2	2 4				3
238.048		2	2	17 475.5	437 558.0					3
236.872	$3n^63d^5$	^{2 3} P ₂	$3n^6 3d4n^{-1}P^0$	21 278 6	443 447 () 5				3
236.180	op ou	0	1	20 040.3	443 447.0					3
236.778	$3p^{6}3d^{5}$	2 $^{1}\mathrm{D}_{2}$	3p ⁶ 3d4p ¹ F°	17 475.5	439 811.6	5 5	4.0 - 2	6.8+8	D-	3°,165*
238.393 238.048 236.872 236.180	$3p^63d^5$ $3p^63d^6$	² ¹ D ₂ ² ² ³ P ₂ ⁰	$3p^{6}3d4p^{-4}F_{3}^{2}$ $3p^{6}3d4p^{-3}P_{1}^{0}$ 2 $3p^{6}3d4p^{-1}P_{1}^{0}$ 1 $3p^{6}3d4p^{-1}F_{3}^{0}$	17 475.5 17 475.5 21 278.6 20 040.3	436 952.2 437 558.0 443 447.0	2 4 3 3 0 5 0 2	4.0 - 2	e 6.8+8	D-	

Fe VII - Continued

Wave- length (Å)	Lower	Classification	Upper	Energy Levels	(cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
235.662	$3p^63d^2$	3 _F ,	$3p^63d4p^{-1}D_2^{\circ}$	1 051.5	425 386.1	9				2
235.081	Sp Sa	r 3 2	$3p 3a4p D_2$	0.0	425 386.1	3				3 3
235.221	$3p^63d^2$	$^{3}F_{2}$	$3p^63d4p\ ^3D_1^{\circ}$	0.0	425 128.6	6	4.3 - 1	1.7+10	D-	3°,165*
234.337	•	3	2	1 051.5	427 784.7	11	4.7 - 1	1.1 + 10	D-	3°,165*
233.762 233.308		2	2	0.0	427 784.7	6	1.4 - 1	3.4+9	D-	3°,165*
232.613		4 3	3	2 331.5 1 051.5	430 948.6 430 948.6	10 2	5.8 - 1 $2.6 - 1$	1.0+10 $4.5+9$	D- D-	3°,165* 3°,165*
232.047		2	3	0.0	430 948.6	5	1.5 - 2	2.6+8	D-	3°,165*
234.757	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^6 3d4p^{-1} { m P}_1^{ m o}$	17 475.5	443 447.0	8	2.2 - 1	8.6+9	D-	3°,165*
233.015	$3p^63d^2$	³ F ₃	$3p^63d4p\ ^3F_2^{\circ}$	1 051.5	430 213.4	15	1.9 - 1	4.6+9	D-	3°,165*
232.946	-	4		2 331.5	431 609.5	5	3.8 - 1	6.7+9	Ď-	3°,165*
232.442		2	2	0.0	430 213.4	11	8.5 - 2	2.1 + 9	D-	3°,165*
232.256 231.728		3	3	1 051.5	431 609.5	9	1.2 - 1	2.1+9	D-	3°,165*
231.693		4	4	2 331.5 0.0	433 871.2 431 609.5	13 1	4.4 - 1 $1.6 - 2$	6.0+9 $2.8+8$	D- D-	3°,165* 3°,165*
231.044		2 3	3 4	1 051.5	433 871.2	7	2.9 - 2	4.1+8	D-	3°,165*
229.828	$3p^63d^2$	$^{1}\mathrm{G}_{4}$	$3p^5(^2P^\circ)3d^3(^2G)^{-1}H_5^\circ$	28 927.3	464 034	6				3
228.584	$3p^63d^2$	3F4	$3p^63d4p^{-1}F_3^0$	2 331.5	439 811.6	1				3
227.918		3	3	1 051.5	439 811.6	•				3
225.505	$3p^6 3d^2$	_	$3p^6 3d4p^{-1}P_1^{\circ}$	0.0	443 447.0	1				3
225.411	$3p^63d^2$		$3p^{5}(^{2}P^{\circ})3d^{3}(^{2}F) \ ^{3}G_{5}^{\circ}$	28 927.3	472 559	8				3
216.591	$3p^6 3d^2$		$3p^5(^2P^\circ)3d^3(^2G)^{-1}H_5^\circ$	2 331.5	464 034	8				3
213.893	$3p^63d^2$		$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{3}(^{2}\mathrm{F})\ ^{1}\mathrm{G}_{4}^{\circ}$	28 927.3	496 454	3				3
212.664	$3p^6 3d^2$	³ F ₄	$3p^5(^2P^{\circ})3d^3(^2F)$ $^3G_5^{\circ}$	2 331.5	472 559	10				3
212.509		4	4	2 331.5	472 903	4				3
208.167 207.712		3 2	3	$1\ 051.5 \\ 0.0$	481 435 481 435	6 11				3 3
207.831 206.096	$3p^63d^2$	¹ G ₄	$3p^5(^2P^\circ)3d^3(^2H) \ ^3G_3^\circ$	28 927.3 28 927.3	510 086 514 133	3				3 3
204.578	$3p^{6}3d^{2}$	3P_2	$3p^5(^2P^\circ)3d^3(^2H)$ $^3G_3^\circ$	21 278.6	510 086					3
202.378	$3p^63d^2$	3 _{F4}	$3p^5(^2P^o)3d^3(^2F)^{-1}G_4^o$	2 331.5	496 454	3				3
196.917	$3p^{6}3d^{2}$	3 _F .	$3p^5(^2P^\circ)3d^3(^2H)$ $^3G_4^\circ$	2 331.5	510 158	5				3
196.423	op ou	3	4	1 051.5	510 158	7				3
196.046		2	3	0.0	510 086	8				3
195.391		4	5	2 331.5	514 133	12				3
193.421	$3p^6 3d^2$	³ P ₂	$3p^5(^2P^\circ)3d^3(a^2D)^{-1}D_2^\circ$	21 278.6	538 290	1				3
192.006	$3p^63d^2$	$^{1}D_{2}$	$3p^5(^2P^\circ)3d^3(a^2D)^{-1}D_2^\circ$	17 475.5	538 290	8				3
189.756	$3p^63d^2$	³ P ₂	$3p^5(^2P^o)3d^3(^2F)$ $^3D_2^o$	21 278.6	548 274	3				3
189.573	$3p^63d^2$	$^{1}G_{4}$	$3p^5(^2P^o)3d^3(^2G)^{-1}F_3^o$	28 927.3	556 422					3
188.396 187.235	$3p^6 3d^2$	$^1\mathrm{D}_2$	$3p^5(^2P^\circ)3d^3(^2F)\ ^3D_2^\circ$	17 475.5 17 475.5	548 274 551 568	8				3 3
188.125	$3p^63d^2$	² ¹ S ₀	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	67 078.3	598 638	4				3
187.990 187.692	$3p^6 3d^2$	² ³ P ₂	$3p^5(^2P^o)3d^3(^2F) \ ^1D_2^o$	21 278.6 20 430.1	553 220 553 220	4				3 3
186.657	$3p^{6}3d^{2}$	$^{1}\mathrm{D_{2}}$	$3p^5(^2P^\circ)3d^3(^2F)^{-1}D_2^\circ$	17 475.5	553 220	8				3
185.547	$3p^63d^2$		$3p^{5}(^{2}P^{\circ})3d^{3}(^{2}G)^{-1}F_{3}^{\circ}$	17 475.5	556 422	9				3
185.176	$3p^63d^2$		$3p^{5}(^{2}P^{o})3d^{3}(^{4}P)$ $^{3}P_{1}^{o}$	21 278.6	561 303	3				3
184.886	<i>0,</i> 3 <i>u</i>	1	1	20 430.1	561 303	4				3
184.752		0	1	20 040.3	561 303	5				3
183.825		2	2	21 278.6	565 275	9				3
183.539		1	2	20 430.1	565 275	6				3
184.114	$3p^{6}3d^{2}$	² ³ P ₂	$3p^5(^2P^\circ)3d^3(^4F)^3F_2^\circ$	21 278.6	564 425	3				3
	5F 34	- •	- (-) - (-) - 2	#.0.0	JJ1 140	J				J

Fe VII - Continued

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
182.740	$3p^63d^2$ 3 F ₃	$3p^5(^2P^\circ)3d^3(^2F)$ $^3D_2^\circ$	1 051.5	548 274	4				3
182.071 181.646	4	3	2 331.5 1 051.5	551 568 551 568	5 3				3 3
181.040	3	3	1 031.3	331 300					
182.221	$3p^6 3d^{2-1} D_2$	$3p^5(^2P^\circ)3d^3(^4F) \ ^3F_3^\circ$	17 475.5	566 256	2				3
181.104	$3p^63d^2$ 3 F ₃	$3p^5(^2P^\circ)3d^3(^2F)^{-1}D_2^\circ$	1 051.5	553 220	3				3
180.760	2	2	0.0	553 220	2				3
180.477	$3p^63d^2$ 3 F ₄	$3p^5(^2P^\circ)3d^3(^2G)^{-1}F_3^\circ$	2 331.5	556 422	3				3
180.059 179.720	3 2	3 3	1 051.5 0.0	556 422 556 422	5 1				3 3
179.656	$3p^63d^2$ ¹ S ₀	$3p^5(^2P^\circ)3d^3(^4P) \ ^3S_1^\circ$	67 078.3	623 699	1				3
177.555	$3p^63d^{2-1}S_0$	$3p^5(^2P^o)3d^3(b^2D)^{-1}P_1^o$	67 078.3	630 283	5				3
177.503	$3p^63d^2\ ^3{ m F}_3$	$3p^5(^2P^o)3d^3(^4F)^3F_2^o$	1 051.5	564 425	5				3
177.329	4	3	2 331.5	566 256 564 425	7	0.5	1.5.11	D-	3 3°,165*
177.172 176.928	2	2 3	0.0 1 051.5	566 256	9 10	$\frac{3.5}{7.7}$	$1.5+11 \\ 2.4+11$	D-	3°,165*
176.744	3 4	3	2 331.5	568 118	10	1.1+1	2.7+11	Ď-	3°,165*
176.599	2	3	0.0	566 256	5	(-	2., ,	_	3
176.345	3	4	1 051.5	568 118	6				3
177.235	$3p^63d^2$ 3 F ₃	$3p^5(^2P^\circ)3d^3(^4P) \ ^3P_2^\circ$	1 051.5	565 275	2				3
176.904	2	2	0.0	565 275	4				3
174.069	$3p^63d^{2-1}G_4$	$3p^5(^2P^o)3d^3(^4F) \ ^3D_3^o$	28 927.3	603 419	1				3
173.441	$3p^63d^{2-1}G_4$	$3p^5(^2P^o)3d^3(^2H)^{-1}G_4^o$	28 927.3	605 489	9	1.4+1	3.6+11	D-	3°,165*
173.203	$3p^63d^2$ 3P_2	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	21 278.6	598 638	3				3
172.948	1	1	20 430.1	598 638					3
172.831	0	1	20 040.3	598 638	1				3
172.069	$3p^63d^2$ ¹ D ₂	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	17 475.5	598 638	6				3
171.779	$3p^63d^2$ 3P_2	$3p^5(^2P^o)3d^3(^4F) \ ^3D_3^o$	21 278.6	603 419	6				3
171.680	2	2	21 278.6	603 757	4				3
171.529 171.432	2	1	21 278.6 20 430.1	604 270 603 757	4 5				3 3
171.279	1 1	2	20 430.1	604 270	3				3
171.166	o	1	20 040.3	604 270	4				3
170.664	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^3(^4F) \ ^3D_3^o$	17 475.5	603 419	3				3
170.565	2	2	17 475.5	603 757	1				3
170.417	2	1	17 475.5	604 270	3				3
167.047	$3p^63d^2\ ^3{ m F_2}$	$3p^5(^2P^o)3d^3(^2P)^{-1}P_1^o$	0.0	598 638	4				3
166.365	$3p^63d^2\ ^3{ m F}_4$	$3p^5(^2P^\circ)3d^3(^4F)^{-3}D_3^\circ$	2 331.5	603 419	9	8.6	2.9+11	D-	3°,165*
166.010	3	3	1 051.5	603 419	4				3
165.919	3	2	1 051.5	603 757	8	5.7	2.8 + 11	D-	3°,165*
165.724	2	3	0.0	603 419					3
165.630 165.490	2 2	2	0.0 0.0	603 757 604 270	5 8				3 3
165 006	$3p^63d^2\ ^3\mathrm{P}_2$		01 070 0	con con	-				
165.996 165.764		$3p^5(^2P^o)3d^3(^4P)$ $^3S_1^o$	$21 278.6 \\ 20 430.1$	623 699 623 699	5 5				3 3
165.658	1 0	1	20 040.3	623 699	4				3
165.444	$3p^63d^2\ ^3{ m F}_3$	$3p^5(^2P^\circ)3d^3(^2H)^{-1}G_4^\circ$	1 051.5	605 489					3
165.087	$3p^63d^2$ 1 S ₀	$3p^6 3d4f ^1P_1^{\circ}$	67 078.3	672 820	6	8.5 -	1 6.9+10	D-	3°,165*
164.955	$3p^63d^2$ ¹ D ₂	$3p^5(^2P^\circ)3d^3(^4P)$ $^3S_1^\circ$	17 475.5	623 699	3				3
164.203	$3p^63d^2$ 3P_2	$3p^5(^2P^\circ)3d^3(b^2D)^{-1}P_1^o$	21 278.6	630 283	3				2
163.974	ορ σα 1 2 1	ορ (1 /ου (υ D) P ₁	20 430.1	630 283	1				3 3
163.183	$3p^63d^2$ 1D_2	$3p^{5}(^{2}\mathrm{P^{o}})3d^{3}(b^{2}\mathrm{D})\ ^{1}\mathrm{P}_{1}^{o}$	17 475.5	630 283	7				3
158.481	$3p^63d^2$ 1 G ₄	$3p^63d4f\ ^1{ m G}_4^{ m o}$	28 927.3	659 917	7	7.7 –	1 2.3+10	D-	3°,165*

Fe VII - Continued

Wave- length (Å)	Lower	Classifica	tion Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
157.689	$3p^63d^2$	¹ G ₄	$3p^63d4f\ ^3{\rm G_3^\circ}$	28 927.3	663 097	8				3
157.112	$3p^63d^2$	¹ G ₄	$3p^6 3d4f \ ^1{ m F}_3^{ m o}$	28 927.3	665 417	2	4.7 - 2	1.8+9	D-	3°,165*
156.808	$3p^{6}3d^{2}$	$^{1}\mathrm{G_{4}}$	$3p^6 3d4f \ ^3D_3^{\circ}$	28 927.3	666 651	1				3
155.994	$3p^63d^2$	$^{1}\mathrm{G}_{4}$	$3p^63d4f^{-1}H_5^0$	28 927.3	669 978	7	7.2	1.8+11	D-	3°,165*
155.632	$3p^{6}3d^{2}$	$^{1}\mathrm{D}_{2}$	$3p^6 3d4f \ ^3F_2^{\circ}$	17 475.5	660 015					3
155.549		2	3	17 475.5	660 358					3
155.619 155.414	$3p^63d^2$	³ P ₂	$3p^63d4f \ ^1D_2^o$	21 278.6 20 430.1	663 871 663 871					3 3
155.247	$3p^{6}3d^{2}$	3P_2	$3p^63d4f\ ^1{ m F}_3^o$	21 278.6	665 417	2				3
155.150	$3p^63d^2$	$^{3}P_{2}$	$3p^6 3d4f \ ^3D_1^{\circ}$	21 278.6	665 832		2.1 - 5	1.9+6	E	3°,165*
155.124		2	2	21 278.6	665 923		1.5 - 2	8.2 + 8	D-	3°,165*
154.949 154.941		2	3	21 278.6	666 651	6	2.7	1.0+11	D-	3°,165*
154.921		1	1	20 430.1 20 430.1	665 832 $665 923$	4	2.6 - 1	2.4+10	D- D-	3°,165* 3°,165*
154.848		1 0	2	20 430.1	665 832	5 3	$1.7 \\ 8.3 - 1$	9.7+10 $7.7+10$	D-	3°,165*
154.888	$3p^{6}3d^{2}$		$3p^63d4f\ ^3G_3^{\circ}$	17 475.5	663 097	1	5.0	,20	-	3
154.705	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^63d4f^{-1}D_2^{\circ}$	17 475.5	663 871	6				3
	. 62	2_	_							
154.650	$3p^{6}3d^{2}$		$3p^6 3d4f\ ^3{ m P}_2^{ m o}$	21 278.6	667 899	6	1.6	8.8+10	D-	3°,165*
154.565		2	1	21 278.6	668 253	3	3.8 - 1	3.5+10	D-	3°,165*
154.447 154.363		1	2	20 430.1	667 899	2	2.6 - 3	1.5+8	E	3°,165*
154.307		1	1	20 430.1 20 430.1	668 253 668 489	$\frac{3}{2}$	4.5 - 1 $3.3 - 1$	4.2+10 $8.9+10$	D- D-	3°,165*
154.271		1 0	0	20 430.1	668 253	1	3.3 - 1 8.7 - 2	8.9+10 $8.1+9$	D-	3°,165* 3°,165*
154.335	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^63d4f\ ^1{ m F}_3^{ m o}$	17 475.5	665 417	7	2.9	1.2+11	D-	3°,165*
154.216	$3p^{6}3d^{2}$	1 D-	$3p^63d4f\ ^3D_2^{\circ}$	17 475 5	665 923					
154.042	sp sa	2	$3p 3a4j D_2$	17 475.5 17 475.5	666 651	3				3 3
153.747 153.663	$3p^63d^2$	$^{1}\mathrm{D_{2}}_{2}$	$3p^6 3d4f \ ^3\mathrm{P}^{\mathrm{o}}_2$	17 475.5 17 475.5	667 899 668 253					3 3
152.072	$3p^63d^2$	3F_4	$3p^6 3d4f\ ^1{ m G}_4^{ m o}$	2 331.5	659 917	4				3
151.971	$3p^63d^2$	³ F ₄	$3p^63d4f\ ^3F_3^0$	2 331.5	660 358	1	6.9 - 2	2.9+9	D-	3°,165*
151.782		4	4	2 331.5	661 169	7	7.4 - 1	2.4 + 10	D-	3°, 165*
151.754		3	2	1 051.5	660 015	1	8.4 - 2		D-	3°,165*
151.675		3	3	1 051.5	660 358	6	9.1 1	3.9 + 10	D-	3°,165*
151.512		2	2	0.0	660 015	5	9.0 - 1	5.3 + 10	D-	3°,165*
151.488 151.432		3 2	4	$1\ 051.5 \\ 0.0$	661 169 660 358	3 4	5.0 - 1	2.2+10	D-	3 3°,165*
101.432		_	3	0.0	000 338	4	5.0 - 1	2.2710	D-	3 ,103
151.145	$3p^63d^2$	³ F ₄	$3p^6 3d4f \ ^3G_4^{\circ}$	2 331.5	663 950	4	6.5 - 1		D-	3°,165*
151.046		3	3	1 051.5	663 097	2	5.4 - 1		D-	3°,165*
151.023		4	5	2 331.5	664 482	8	6.0	1.6+11	$\tilde{\mathbf{D}}$ –	3°,165*
150.852 150.807		3 2	4 3	$1\ 051.5 \\ 0.0$	663 950 663 097	6 6	$\frac{4.1}{3.1}$	1.3+11 $1.3+11$	D-	3°,165* 3°,165*
					300 001	U	0.1	1.0 711	5-	
150.530	$3p^63d^2$		$3p^6 3d4f \ ^3D_3^{o}$	2 331.5	666 651	3	1.6 - 1	•	D-	3°,165*
150.403 150.186		3 2	2	$1\ 051.5 \\ 0.0$	665 923 665 832	1 1	1.3 - 1 $7.5 - 2$		D- D-	3°,165* 3°,165*
						-		, .	_	- ,
$150.521 \\ 150.282$	$3p^63d^2$	³ F ₃	$3p^63d4f\ ^1{ m F}_3^{ m o}$	1 051.5 0.0	665 417 665 417	$\frac{3}{2}$				3 3
138.841	$3p^{6}3d^{2}$	¹ G ₄ 3;	$p^{5}(^{2}\mathrm{P}^{\circ})3d^{2}(^{3}\mathrm{F})4s(^{2}\mathrm{F})^{-3}\mathrm{D}_{3}^{\circ}$	28 927.3	749 166					3
138.191	$3p^6 3d^2$		$3p^63d5f^{-1}P_1^{\circ}$	67 078.3	790 708	5				3
137.907	$3p^{6}3d^{2}$		$p^{5}(^{2}\mathrm{P^{o}})3d^{2}(^{3}\mathrm{F})4s(^{2}\mathrm{F})\ ^{3}\mathrm{D}_{1}^{o}$	20 430.1	745 556	1				3
137.833	٠, ٥٠	0	. (=) = (-) = (-) D1	20 040.3	745 556	2				3
137.802		2	2	21 278.6	746 965	1				3
137.640		1	2	20 430.1	746 965	4				3
137.384		2	3	21 278.6	749 166	6				3
136.671	$3p^{6}3d^{2}$	$^{1}D_{2}$ 3	$p^{5}(^{2}\mathrm{P}^{\circ})3d^{2}(^{3}\mathrm{F})4s(^{2}\mathrm{F})^{-3}\mathrm{D}_{3}^{\circ}$	17 475.5	749 166	2				3

Fe vii - Continued

14.440	Wave- ength (Å)	Class Lower	ification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
14.605	135.488 134.940	$3p^63d^2$ 1 G ₄				2				
33.3899	134.128	$3p^63d^2$ 3 F ₂	$3p^5(^2P^\circ)3d^2(^3F)4s(^2F) \ ^3D_1^\circ$	0.0						
13.374	34.063									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.874									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.670	3	3	1 051.5	749 166	3				3
13.2744	33.842	$3p^63d^2$ 3P_2	$3p^5(^2P^\circ)3d^2(^3P)4s(^2P)^{-3}P_2^\circ$		768 425	6				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.691		=							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.123									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.055	0		20 040.3	771 612	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.792	1	0	20 430.1	773 488	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	133.424	$3p^63d^{2-1}G_4$	-	28 927.3	778 420					3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.165	•		17 475.5	768 425	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.667	-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.a4.a9a			20 921.3	103 119	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.407	<u>-</u>	-	28 927.3	784 174	8				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.355	•	_	28 927.3	784 477	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.120	-		28 927.3	785 809	4				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.782 131.713	=				2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.531	$3p^63d^2$ ¹ G ₄	$3p^6 3d5f^{-1}F_3^{\circ}$	28 927.3	789 215	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.318	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^2(^1D)4s(^2D)^{-1}D_2^o$	17 475.5	779 009	7				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.193	$3p^63d^2$ ¹ G ₄	$3p^6 3d5f^{-1}H_5^{\circ}$	28 927.3	791 168	10				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.838	•	$3p^6 3d5f \ ^3{ m F}_2^{\circ}$	20 430.1	784 733	1				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.779	$3p^63d^2$ 3 F ₄	$3p^5(^2P^\circ)3d^2(^3F)4s(^2F) \ ^3G_5^\circ$							3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.050									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.872	2		0.0	769 991	7				3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130.623 130.481					2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.608									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.419	$3n^63d^2$ 3 Pa	$3n^6 3d5f^{-3}D^{\circ}$	21 278 6	788 030	9				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.374		3	21 278.6	788 303	6				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.277 130.221									3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.336									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.257 130.226		sp sasf P							3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.112		2	20 430.1	788 995	3				3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130.017									3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.996		_	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_			8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.789 129.777		$3p^{\circ}3d5f^{-3}D_{1}^{\circ}$			9				
	129.730		2 3							
$3v^63d^{2-1}D_2$ $3v^63d5f^{-1}P_1^{\circ}$ 17 475.5 790 708 6	129.579	$3p^63d^2$ ¹ D ₂	$3p^63d5f$ $^1F_3^{\circ}$	17 475.5	789 215	6				3
op owej + 1 +10.0 100 100 0	129.330	$3p^63d^{2-1}D_2$	$3p^63d5f^{-1}P_1^o$	17 475.5	790 708	6				3

Fe VII - Continued

Wave- ength (Å)	Class Lower	ification Upper	Energy Leve	els (cm ⁻¹)	Int.	gf A (s	-1) Acc.	References
129.278	$3p^63d^2$ ¹ G ₄	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}F)4s(^{2}F)^{-1}G_{4}^{\circ}$	28 927.3	802 462	1			3
128.852	$3p^63d^2$ 3 F ₄	$3p^5(^2P^\circ)3d^2(^1G)4s(^2G)$ $^3F_3^\circ$	2 331.5	778 420	2			3
128.659	4	4	2 331.5	779 575	4			3
128.638	3	3	1 051.5	778 420	4			3
128.449	3	4	1 051.5	779 575	1			3
128.753	$3p^63d^2$ ¹ D ₂	$3p^5(^2P^\circ)3d^2(^3F)4s(^4F) \ ^3G_3^\circ$	17 475.5	794 149	6			3
128.682	$3p^63d^2$ ¹ G ₄	$3p^5(^2P^o)3d^2(^1G)4s(^2G)^{-1}H_5^o$	28 927.3	806 033	7			3
128.538	$3p^63d^2\ ^3F_3$	$3p^5(^2P^\circ)3d^2(^1D)4s(^2D)^{-1}D_2^\circ$	1 051.5	779 009				3
128.368	2	2	0.0	779 009	3			3
128.417	$3p^63d^{2-1}G_4$	$3p^5(^2P^o)3d^2(^1D)4s(^2D)^{-1}F_3^o$	28 927.3	807 627				3
128.240	$3p^63d^{2-1}D_2$	$3p^5(^2P^\circ)3d^2(^1D)4s(^2D) \ ^3F_3^\circ$	17 475.5	797 257	2			3
128.147	$3p^63d^2$ 3 F ₄	$3p^5(^2P^\circ)3d^2(^3F)4s(^2F)^3F_4^\circ$	2 331.5	782 690	8			3
127.867		3p (1)3a (1)4s(1) 14	1 051.5	782 090 783 119	6			ა 3
127.694	3 2	3	0.0	783 119	6			3
127.852	$3p^63d^2$ 3 F ₄	$3p^63d5f^{-3}H_4^{\circ}$	0 991 5	784 477	1			
127.645	3p 3a F4	3p 3a5f H ₄	2 331.5 1 051.5	784 477 784 477	1 6			3 3
127.763	$3p^63d^2$ 3F_4	$3p^63d5f$ $^3F_3^{\circ}$	2 331.5	785 012	1			3
127.636	-	3p 3a3j F ₃	2 331.5	785 809	9			ა 3
127.604	4 3	2	1 051.5	784 733	2			3
127.559	3	3	1 051.5	785 012	8			3
127.429	3	4	1 051.5	785 809	6			3
127.388	2	3	0.0	785 012	7			3
127.324	$3p^63d^2$ 3 F ₄	$3p^6 3d5f \ ^3G_4^{\circ}$	2 331.5	787 737	6			3
127.278	3	3	1 051.5	786 732	2			3
127.258	4	5	2 331.5	788 146	9			3
127.118	3	4	1 051.5	787 737	8			3
127.230	$3p^63d^2\ ^3F_4$	$3p^63d5f\ ^3{ m D}_3^{ m o}$	2 331.5	788 303	2			3
127.069	3	<i>op sao, D</i> ₃	1 051.5	788 030	1			3
127.026	3	3	1 051.5	788 303	5			3
126.913	2	1	0.0	787 945	2			3
126.898	2	2	0.0	788 030				3
126.855	2	3	0.0	788 303	4			3
127.169	$3p^63d^2\ ^3\mathrm{P}_2$	$3p^5(^2P^o)3d^2(^1D)4s(^2D)^{-1}F_3^o$	21 278.6	807 627	1			3
126.875	$3p^63d^2$ 3 F ₃	$3p^63d5f^{-1}F_3^{0}$	1 051.5	789 215				3
126.705	2	3	0.0	789 215	1			3
126.768	$3p^63d^2$ 3 F ₄	$3p^6 3d5f^{-1}H_5^{\circ}$	2 331.5	791 168	1			3
126.743	$3p^63d^2$ 3 F ₂	$3p^6 3d5f~^3P_2^o$	0.0	788 995				3
126.559	$3p^63d^{2-1}D_2$	$3p^5(^2P^\circ)3d^2(^1D)4s(^2D)^{-1}F_3^\circ$	17 475.5	807 627	5			3
126.453	$3p^63d^2$ 3P_2	$3p^5(^2P^o)3d^2(^3P)4s(^2P)^{-3}D_3^o$	21 278.6	812 086	4			3
126.166	2	2	21 278.6	813 877	2			3
126.032	1	2	20 430.1	813 877	4			3
125.640	2	1	21 278.6	817 195				3
125.508 125.447	1 0	1	20 430.1 20 040.3	817 195 817 195	2 3			3 3
				521 200	ŭ			
126.088	$3p^63d^2$ 3 F ₃	$3p^{5}(^{2}P^{o})3d^{2}(^{3}F)4s(^{4}F) \ ^{3}G_{3}^{o}$	1 051.5	794 149	_			3 3
125.922	2	3	0.0	794 149	2			3
$125.524 \\ 125.266$	3 4	4 5	$1 051.5 \\ 2 331.5$	797 712 800 633	5 5			3 3
125.846 125.565	$3p^63d^{2-1}D_2$	$3p^5(^2P^\circ)3d^2(^3P)4s(^2P) \ ^3D_3^\circ$	17 475.5 17 475.5	812 086 813 877	1			3 3
	_	_						
125.798	$3p^63d^2$ 3 F ₄	$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}D)4s(^{2}D) \ ^{3}F_{3}^{\circ}$	2 331.5	797 257	1			3
125.596	3	3	$1\ 051.5 \\ 0.0$	797 257 797 257	1 3			3 3
195 /191			0.0	191 257				-3
125.431	2	3	0.0	101 201	•			Ü
125.431 124.979	$3p^63d^2$ 3F_4	$3p^5(^2P^\circ)3d^2(^3F)4s(^2F)^{-1}G_4^\circ$	2 331.5	802 462	2			3

Fe VII - Continued

Wave- ength (Å)	Class Lower	sification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
124.648	$3p^63d^2$ 3P_1	$3p^5(^2P^\circ)3d^2(^3P)4s(^4P) \ ^3D_1^\circ$	20 430.1	822 689	1	<u>-</u>			3
124.586	0	op (1)ou (1) 10(1) E ₁	20 040.3	822 689	î				3
124.547	2	2	21 278.6	824 184	$\tilde{2}$				3
124.415	1	2	20 430.1	824 184	2				3
124.030	2	3	21 278.6	827 533	4				3
124.425	$3p^63d^2\ ^3F_4$	$3p^5(^2P^o)3d^2(^1G)4s(^2G)^{-1}H_5^o$	2 331.5	806 033	1				3
124.384	$3p^63d^2$ ¹ G ₄	$3p^5(^2P^o)3d^2(^1G)4s(^2G)^3G_5^o$	28 927.3	832 889	2				3
124.250	$3p^63d^2$ 3 P ₂	$3p^{5}(^{2}P^{o})3d^{2}(^{3}P)4s(^{4}P) \ ^{3}S_{1}^{o}$	21 278.6	826 106	1				3
124.120	1 sp ou 12	0) (1) (1) (1) (1)	20 430.1	826 106	î				3
124.058	0	1	20 040.3	826 106					3
	6 0 3	5 (0 -) 0 (1 · · · · 0 - · 1 -							
123.822	$3p^63d^2 \ ^3F_2$	$3p^5(^2P^{\circ})3d^2(^1D)4s(^2D)^{-1}F_3^{\circ}$	0.0	807 627					3
123.709	$3p^63d^2$ 3P_2	$3p^5(^2P^\circ)3d^2(^3P)4s(^2P)^{-1}D_2^\circ$	21 278.6	829 626	1				3
123.667	$3p^63d^{2-1}D_2$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}P)4s(^{4}P)^{-3}S_{1}^{\circ}$	17 475.5	826 106					3
123.496	$3p^63d^2$ 3 F ₄	$3p^5(^2P^\circ)3d^2(^3P)4s(^2P)^{-3}D_3^\circ$	2 331.5	812 086	2				3
123.496	="	=	2 331.5 1 051.5	812 086	2				3
122.370	3 2	2	0.0	817 195	1				3
									-
123.130	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^2(^3P)4s(^2P)^{-1}D_2^o$	17 475.5	829 626	2				3
100 500	$3p^63d^2$ 3P_2	$3p^5(^2P^\circ)3d^2(^3P)4s(^2P)^{-3}S_1^\circ$	01.080.0	00= 4=0	•				
122.520 122.392		· · · · · · · · · · · · · · · · · · ·	21 278.6 20 430.1	837 472 837 472	$\frac{2}{1}$				3
122.392	1 0	1 1	20 430.1	837 472	1				3 3
121.952	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^2(^3P)4s(^2P)^{-3}S_1^o$	17 475.5	837 472					3
121.555	$3p^63d^2$ 3F_2	$3p^{5}(^{2}P^{\circ})3d^{2}(^{3}P)4s(^{4}P)^{3}D_{1}^{\circ}$	0.0	822 689					3
121.490	3p 3a 12	$3p (1)3a (1)43(1) D_1$	1 051.5	824 184	1				3
121.331	2	2	0.0	824 184	•				3
121.183	4	3	2 331.5	827 533	1				3
121.408	$3p^63d^{2-1}G_4$	$3p^63d6f~^3H_4^{\circ}$	28 927.3	852 601	1				3
121.304	$3p^63d^{2-1}G_4$	$3p^63d6f\ ^1{ m G_4^o}$	28 927.3	853 307	3				3
121.090	$3p^63d^2$ ¹ G ₄	$3p^63d6f\ ^3{ m F_4^o}$	28 927.3	854 767	3				3
120.915	$3p^63d^{2-1}G_4$	$3p^63d6f\ ^3G_4^{\circ}$	28 927.3	855 969					3
120.872	5p 5u G4	5p 3407 G ₄	28 927.3	856 260	1				3
120.789	$3p^63d^{2-1}G_4$	$3p^63d6f^{-1}F_3^{\circ}$			_				
120.789	$3p^{6}3d^{2}$ G_{4} G_{4}	$3p^{6}3d6f^{-1}H_{5}^{\circ}$	28 927.3 28 927.3	856 797	7				3
120.030	3p 3a G4	3p 3a0j H ₅	26 921.3	857 881	,				3
120.401	$3p^63d^2$ 3F_4	$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{2}(^{1}\mathrm{G})4s(^{2}\mathrm{G})\ ^{3}\mathrm{G}_{5}^{\circ}$	2 331.5	832 889	3				3
120.214	3	4	1 051.5	832 893	2				3
120.181	3	3	1 051.5	833 128	1				3
120.030	2	3	0.0	833 128	1				3
120.131	$3p^63d^2\ ^3P_2$	$3p^6 3d6f \ ^3F_3^{o}$	21 278.6	853 697	1				3
119.978	$3p^63d^2\ ^3P_2$	$3p^63d6f\ ^3{ m G}_3^{ m o}$	21 278.6	854 760					3
119.896	$3p^63d^2$ 3 P ₂	$3p^63d6f\ ^3{ m D}^{ m o}_1$	21 278.6	855 346					3
119.813	2	2	21 278.6	855 903	1				3
119.785	2	3	$21\ 278.6$	856 109	3				3
119.715	0	1	20 040.3	855 346	3				3
119.692	1	2	20 430.1	855 903	1				3
119.846	$3p^63d^2\ ^3P_1$	$3p^6 3d6f\ ^1{ m D}_2^{lpha}$	20 430.1	854 838	3				3
119.686	$3p^63d^2$ 3P_2	$3p^63d6f\ ^3{ m P}_2^{ m o}$	21 278.6	856 811	5				3
119.561	υρ υα 12 1	5p 5a01 F ₂	20 430.1	856 811	J				3
119.541	1	1	20 430.1	856 975	1				3
119.524	1	0	20 430.1	857 082	1				3
119.482	0	1	20 040.3	856 975					3
110 000	0 6 - 2 1 -	0 60 .00 2-0	45	A=A :=	_				
119.623 119.587	$3p^63d^2$ ¹ D ₂	$3p^63d6f\ ^3F_2^{\circ}$	17 475.5	853 433 852 607	1				3
113.301	2	3	17 475.5	853 697					3
119.435	$3p^63d^{2-1}D_2$	$3p^63d6f~^3G_3^{\circ}$	17 475.5	854 760	2				3
	op ca D ₂	op 040, 03	2. 110.0	334 100	~				Ū

Fe VII - Continued

Wave- ength (Å)	Lower	Classificati	on Upper	Energy Leve	ls (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
119.422	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^63d6f^{-1}D_2^{\circ}$	17 475.5	854 83	8 2				3
119.273 119.240	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^6 3d6f \ ^3\mathrm{D}^{\circ}_{2}$	17 475.5 17 475.5	855 90 856 10					3 3
119.144	$3p^63d^2$	$^{1}\mathrm{D}_{2}$	$3p^63d6f\ ^1{ m F}_3^{ m o}$	17 475.5	856 79	7 3	;			3
117.610 117.432	$3p^63d^2$	³ F ₄	$3p^6 3d6f \ ^3H_4^0$	2 331.5 1 051.5	852 60 852 60					3 3
117.512 117.335	$3p^63d^2$	³ F ₄	$3p^63d6f\ ^1{ m G_4^o}$	2 331.5 1 051.5	853 30 853 30					3
117.459 117.310	$3p^63d^2$	-	$3p^63d6f\ ^3{ m F}_3^{\circ}$	2 331.5 2 331.5	853 69 854 76		,			3
117.281		4 3	4 3	1 051.5	853 69					3 3
117.174		2	2	0.0	853 43	3 2	2			3
117.135		3	4	1 051.5	854 76	7 3	3			3
117.144	$3p^63d^2$	³ F ₄	$3p^63d6f~^3G_4^{\circ}$	2 331.5	855 96	9 2	2			3
117.104		4	5	2 331.5	856 26					3
116.993 116.970		2 3	3 4	$0.0 \\ 1 051.5$	854 76 855 96		<u> </u>			3 3
117.034 116.715	$3p^63d^2$		$3p^6 3d6f {}^1F_3^{\circ}$	2 331.5 0.0	856 79 856 79	7				3 3
	. 62	_								
116.951 116.836	$3p^6 3d^2$		$3p^63d6f\ ^3{ m D}_3^{ m o}$	1 051.5	856 10		i			3
116.809		2	2 3	0.0 0.0	855 90 856 10		3			3 3
116.882	$3p^63d^2$		$3p^6 3d6f^{-1}H_5^{\circ}$	2 331.5	857 88					3
116.853	$3p^63d^2$	* 3F3	$3p^6 3d6f\ ^3{ m P}_2^{ m o}$	1 051.5	856 81	1				3
	-									
115.472 115.281	$3p^63d^2$	*G4 4	$3p^6 3d7f \ ^3F_3^0$	28 927.3 28 927.3	894 94 896 38		l l			3 3
115.164	$3p^63d^2$	$^{1}G_{4}$	$3p^6 3d7f \ ^3{ m G}_5^{\circ}$	28 927.3	897 25	64				3
115.033	$3p^63d^2$	$^{1}\mathrm{G}_{4}$	$3p^63d7f^{-1}{ m H_5^o}$	28 927.3	898 24	13	1			3
114.490	$3p^6 3d^2$	$^{13}P_2$	$3p^6 3d7f \ ^3F_2^{\circ}$	21 278.6	894 71	.8				3
114.356	$3p^63d^2$		$3p^6 3d7f\ ^3{ m G}_3^{\circ}$	21 278.6	895 74	14	1			3
113.964	$3p^6 3d^2$		$3p^6 3d7f \ ^3F_3^{\circ}$	17 475.5	894 94	14	3			3
113.861	$3p^6 3d^2$	=	$3p^6 3d7f \ ^3G_3^0$	17 475.5	895 74	14	2			3
112.030	$3p^63d^2$	^{2 3} F ₄	$3p^63d7f\ ^3{ m F}_3^{ m o}$	2 331.5	894 94		1			3
111.849 111.691		4	4	2 331.5 1 051.5	896 38 896 38		2			3 3
111.001	_	3	4	1 001.0	090 36					J
112.012	$3p^{6}3d^{2}$	1 G ₄	$3p^63d8f\ ^3{ m F}_3^{ m o}$	28 927.3	921 69		1			3
111.812		4	4	28 927.3	923 28	32				3
111.767	$3p^{6}3d^{2}$	^{2 3} F ₃	$3p^6 3d7f \ ^3G_3^o$	1 051.5	895 74	14	1			3
111.742		4	5	2 331.5	897 25	54	4			3
111.638 111.604		2	3	0.0	895 74		$\frac{2}{3}$			3
*******		3	4	1 051.5	897 07		J			3
111.663	$3p^63d^2$	¹ G ₄	$3p^63d8f^{-1}H_5^0$	28 927.3	924 4	79				3
110.593	$3p^63d^2$		$3p^63d8f\ ^3{ m F}_3^{ m o}$	17 475.5	921 69	94				3
110.205 110.103	$3p^63d^2$	$^{2} {}^{3}P_{2} = 3p^{5}$	$^{5}(^{2}\mathrm{P}^{\circ})3d^{2}(^{3}\mathrm{P})4s(^{4}\mathrm{P})~^{3}\mathrm{P}_{2}^{\circ}$	21 278.6 20 430.1	928 68 928 68					3 3
109.742	$3p^63d^2$		$^{5}(^{2}P^{\circ})3d^{2}(^{3}P)4s(^{4}P) ^{3}P_{2}^{\circ}$	17 475.5	928 6	84				3
109.463	$3p^63d^2$	² ¹ G ₄	$3p^63d9f^{-1}H_5^{\circ}$	28 927.3	942 4	77	1			3
108.620	$3p^{6}3d$	^{2 3} F ₃	$3p^63d8f \ ^3F_3^o$	1 051.5	921 6	94	1			3
108.584	5F 00	- 3 4	5p 5d5, 13	2 331.5	923 2		2			3
108.495		2	3	0.0	921 6					3

Fe vii - Continued

Wave- length (Å)	Classificat Lower	ion Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
108.533	$3p^63d^2$ 3 F ₄	$3p^63d8f~^3G_4^{\circ}$	2 331.5	923 716	1				3
108.519	4	5	2 331.5	923 838	3				3
108.381	3	4	1 051.5	923 716	2				3
107.947	$3p^63d^2$ 1G ₄	$3p^63d10f^{-1}{ m H_5^o}$	28 927.3	955 307					3
106.418	$3p^63d^2$ 3 F ₄	$3p^63d9f~^3G_5^0$	2 331.5	942 022					3
106.285	3	4	1 051.5	941 918					3
104.972	$3p^63d^2$ 3 F ₄	$3p^63d10f\ ^3G_5^{\circ}$	2 331.5	954 966					3
104.838	3	4	1 051.5	954 904					3

Fe VIII

Wave- length (Å)	Lower	Classification Upper	Energy	Levels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
232.876	$3p^63d^2D_{5/2}$	$3p^{5}(^{2}P^{\circ})3d^{2}(^{1}G) ^{2}F_{5/2}^{\circ}$	1 836	431 250	20				6
231.884	3/2	5/2	0	431 250	200				6
231.097	5/2	7/2	1 836	434 555	260				6
224.305	$3p^6 3d\ ^2 \mathrm{D}_{5/2}$	$3p^5(^2P^o)3d^2(^1D) \ ^2F^o_{7/2}$	1 836	447 658	500	2.0 - 1	3.4+9	D-	6°,165*
218.564	5/2	5/2	1 836	459 367	60	1.1 - 2	2.5 + 8	\mathbf{E}	6°,165*
217.691	3/2	5/2	0	459 367	300	1.5 - 1	3.6 + 9	D	6°,165*
197.362	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1S) ^2P^\circ_{3/2}$	1 836	508 518	230	3.4 - 2	1.4+9	D-	6°,165*
196.650	3/2	3/2	0	508 518	40	3.9 - 3	1.7+8	E	6°,165*
192.004	3/2	1/2	0	520 822?	200	1.7 - 2	1.7+9	D-	6°,165*
195.972	$3p^6 3d\ ^2{ m D}_{3/2}$	$3p^64p^{-2}P_{1/2}^{\circ}$	0	510 277	400				6°,9
194.662	5/2	3/2	1 836	515 550	500				6°,9
193.967	3/2	3/2	0	515 550	100				6°,9
187.237	$3p^6 3d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^3F)\ ^2F^o_{5/2}$	1 836	535 909	300	2.1 - 1		\mathbf{E}	5,6°,11,165*
186.601 185.213	3/2	5/2	1 926	535 909	600	2.9	9.4+10	D-	4, 5, 6°, 11, 39, 165*, 200
100.210	5/2	7/2	1 836	541 755	700	4.3	1.0+11	D-	4, 5, 6°, 11, 39, 165*, 200
168.929	$3p^6 3d\ ^2 \mathrm{D}_{3/2}$	$3p^5(^2P^\circ)3d^2(^3P)\ ^2P_{1/2}^\circ$	0	591 964	250	1.8	2.1 + 11	D-	6°,165*
168.545 168.024	5/2	3/2	1 836 0	$595\ 152$ $595\ 152$	$\frac{450}{100}$	$3.4 \\ 3.8 - 1$	2.0+11 $2.2+10$	D- E	6°,165*,178 6°,165*
100.024	3/2	3/2	U	393 132	100	3.6 - 1	2.2+10	E	0,103
168.172	$3p^6 3d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^3F)\ ^2D^o_{5/2}$	1 836	596 463	500	7.8	3.1 + 11	D-	$4, 5, 6^{\circ}, 11, 12, 39, 165^{*}, 178$
168.002	5/2	3/2	1 836	597 065	150	5.6 - 1		E	4,5,6°,39,165*
167.656 167.486	3/2 3/2	5/2 3/2	0	596 463 597 065	200 400	5.6 - 1 5.2	2.2+10 $3.0+11$	E D-	4,5,6°,39,165* 4,5,6°,11,12,39,165*,178
		•							
131.255	$3p^63d\ ^2{ m D}_{5/2}$	$3p^{6}4f^{2}F_{5/2}^{\circ}$	1 836	763 703	80				6
131.240 130.941	5/2 3/2	7/2 5/2		763 799 763 703	200 150				6°, 9, 11, 12 6°, 9, 11, 12
		•						_	
119.380 118.907	$3p^6 3d ^2 D_{3/2}$	$3p^5 3d(^3P^o)4s \ ^2P^o_{1/2}$		837 661 842 829	15 25	1.4 - 1 $2.5 - 1$		D D	6°, 7, 8, 165* 6°, 7, 8, 165*
118.648	5/2 3/2	3/2 3/2		842 829	3	3.8 - 2		E	6°, 7, 8, 165*
119 200	$3p^63d\ ^2{ m D}_{5/2}$	$3p^53d(^3F^\circ)4s\ ^4F^\circ_{7/2}$	1 026	947 145					09 7 0
118.300 117.661	3/2	5p 3a(r)48 r _{7/2}	^	847 145 849 899	8 8				6°,7,8 6°,7,8
117.254	3/2	3/2		852 849?	1				6
117.197	$3p^6 3d^2 D_{5/2}$	$3p^53d(^3F^o)4s\ ^2F^o_{7/2}$	1 836	855 100	60	6.0 - 1	3.8+10	D	6°,7,8,165*
116.442	5/ 34 D 5/2	5p 5a(1)43 1 _{7/2} 5/2		860 615	1	3.2 - 2		E	6°, 7, 8, 165*
116.196	3/2	5/2		860 615	35	5.6 - 1		D	6°,7,8,165*
114.564	$3p^63d^2D_{5/2}$	$3p^53d(^3{ m D}^{ m o})4s~^4{ m D}^{ m o}_{7/2}$	1 836	874 711	4				6°,7,8
114.295	5/ 5d D5/2	·		876 765	5				6°,7,8
114.05	3/2	5/2	_	876 765	_				7,8°
113.963	3/2	3/2	0		2				6
113.861	3/2	1/2		878 264?	1				6
113.763	$3p^6 3d\ ^2{ m D}_{3/2}$	$3p^53d(^1{ m F}^{ m o})4s\ ^2{ m F}^{ m o}_{5/2}$	0	879 021	7				6
112.932	5/2	7/2	1 836	887 325	25	3.2 - 1	2.1+10	D	6°, 7, 8, 165*
113.463	$3p^63d^{2}D_{3/2}$	$3p^53d(^1D^o)4s \ ^2D^o_{3/2}$. 0	881 345	5				6
113.315	5/2	-7-			10				6
113.081	3/2			884 331	1				6
112.704	$3p^63d^2D_{5/2}$	$3p^5 3d(^3D^\circ) 4s^{-2}D_{3/2}^\circ$	1 836	889 113	2				6°,7,8
112.486	5/2	•			20	4.9 - 1	4.3+10	D	6°,7,8,165*
112.472	3/2	3/2	. 0		15	2.7 - 1		D	6°,7,8,165*
112.252	3/2			890 845	1				6°,7,8
108.077	$3p^6 3d\ ^2 \mathrm{D}_{5/2}$	$3p^65f^{-2}F^{o}_{7/2}$	1 836	927 102	30				6°,9
107.868	3/2			927 059	25				6°,9
98.548	$3p^63d\ ^2{ m D}_{5/2}$	$3p^66f^2F_{7/2}^{\circ}$, 1836	1 016 570	10				6°, 9, 10
98.371	3/2				8				6°,9,10
93.616 93.469	$3p^6 3d\ ^2D_{5/2}$	• • • • • • • • • • • • • • • • • • • •	_		5				6°, 9, 10
33.409	3/2	5/2	2 0	1 069 873	4				6°, 9, 10

Fe IX

length (Å)	Lower	Classification Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4585.3	$3s^23p^53d$ ³ F	$3s^23p^53d\ ^3\mathrm{D}_3^{\circ}$	433 818.8	455 612.2		M1			17,19°
3800.8	•	3 3	429 310.9	455 612.2		M1			17, 19°
3471.6		2 2	433 818.8	462 616.6		M1			17, 19°
355.1	•	4 3	425 809.8	455 612.2		M1			17, 19°
8000.	;	3 2	429 310.9	462 616.6		M1			17, 18°
1359.4 3642.7	$3s^23p^53d^{-3}F$	$3s^23p^53d \ ^{1}\mathrm{D}^{\mathrm{o}}_{2}$	433 818.8 429 310.9	456 752.7 456 752.7		M1 M1			17, 19° 17, 19°
3124.0 2497.5	$3s^23p^53d^3F$	$3s^23p^53d$ $^1F_3^0$	433 818.8 425 809.8	465 828.4 465 828.4		M1 M1			17, 19° 14°, 15
2042.35 841.57	$3s^23p^53d^{-3}P$	$3s^23p^53d$ $^3D_2^{\circ}$	413 669.2 408 315.1	462 616.6 462 616.6		M1 M1			14°, 15 14°, 15, 194
1917.21	$3s^23p^53d^{-3}P$	$3s^23p^53d$ ¹ F ₃	413 669.2	465 828.4		M1			14°, 15, 193, 194
604.880	$3s^23p^53d^{-1}$ P	$3s3p^63d^{-1}$ D ₂	584 546	749 871					21
380.079	$3s^23p^53d^{-1}F$	$3s3p^63d^{-3}D_3$	465 828.4	728 935	2				21
378.629	$3s^23p^53d^{-3}D$	$3s3p^63d^{-3}D_1$	462 616.6	726 734					21
377.443		2 2	462 616.6	727 560	2				21
375.773 374.605		1	460 616 460 616	726 734 727 560	2				21 21
369.260	$3s^23p^53d^{-1}$ D	$3s3p^63d^3D_2$	456 752.7	727 560	1				21
352.072	$3s^23p^53d^{-1}F$		465 828.4	749 871	4				21
		-			•				
348.124 339.838	$3s^23p^53d^{-3}D$	$^{\circ}_{2}$ $3s3p^{6}3d$ $^{1}D_{2}$ 2	462 616.6 455 612.2	749 871 749 871	$\frac{1}{2}$				21 21
341.390	$3s^23p^53d^{-3}F$	$3s3p^63d^{-3}D_1$	433 818.8	726 734	4				21
335.294		3 2	429 310.9	727 560	5				21
329.890		4 3	425 809.8	728 935	6				21
341.150	$3s^23p^53d^{-1}D$	$^{\circ}_{2}$ 3s3p ⁶ 3d 1 D ₂	456 752.7	749 871	4				21
319.426	$3s^23p^53d^{-3}P$	$3s3p^63d^{-3}D_1$	413 669.2	726 734					21
318.586		2 2	413 669.2	727 560	2				21
317.194		2 3	413 669.2	728 935	5				21
313.234 311.563		1 2 0 1	408 315.1 405 772	727 560 $726 734$	$\frac{4}{2}$				21 21
311.303		0 1	403 /12	120 134	2				21
244.911 241.739	$3s^23p^6$ ¹ S	$3s^23p^53d$ $^3P_1^{\circ}$ 2	0 0	408 315.1 413 669.2	20 30	2.4 - 4	8.9+6	Е	$16, 17, 20^{\circ}, 21^{\triangle}, 165^{*}$ $16, 17, 20^{\circ}, 21^{\triangle}$
218.935	$3s^23p^{6-1}S$	$3s^23p^53d^{-1}D_2^{\circ}$	0	456 752.7	5				16,17,20°,21 [△]
217.100	$3s^23p^{6-1}S$	$3s^2 3p^5 3d \ ^3D_1^0$	0	460 616	10	4.3 ~ 3	2.0+8	E	11, 16, 17, 20°, 21 ^{\triangle} , 165
171.073	$3s^23p^{6-1}S$	$3s^23p^53d^{-1}P_1^o$	0	584 546	120	2.65	2.01+11	C+	4,5,11,12,16,17,20°, 21 ^{\triangleq} ,24,39,165*,178, 184
118.27	$3s^23p^53d^{-1}$ F	$3s^2 3p^5 (^2 P_{3/2}^o) 4f^2 [\frac{7}{2}]_4$	465 828.4	1 311 750	2				27
116.803	$3s^23p^53d^{-3}\Gamma$	$3s^2 3p^5 (^2 P_{3/2}^{\circ}) 4f^2 [\frac{7}{2}]_4$	455 612.2	1 311 750	9	2.9	1.6+11	E	$25^{\circ}, 26, 27^{\triangle}, 165^{*}$
116.408	$3s^23p^53d^{-1}$ F	$3s^2 3p^5 (^2 P_{1/2}^{\circ}) 4f^{-2} [\frac{7}{2}]_4$	465 828.4	1 324 800	6				26, 27°
115.996	$3s^23p^53d^{-3}\Gamma$	$3s^23p^5(^2P_{1/2}^{\circ})4f^{-2}[\frac{7}{2}]_3$	462 616.6	1 324 720	7				$25°, 26, 27^{\triangle}$
115.353	$3s^23p^53d^{-1}\Gamma$	$9_2^{\circ} \qquad 3s^2 3p^5 (^2 P_{1/2}^{\circ}) 4f^{-2} [\frac{5}{2}]_3$	456 752.7	1 323 660	7				$25^{\circ}, 26, 27^{\triangle}$
114.111	$3s^23p^53d$ ³ F	$S_2^{\circ} = 3s^2 3p^5 (^2 P_{3/2}^{\circ}) 4f^{-2} [\frac{7}{2}]_3$	433 818.8	1 310 160	7	1.9	1.4+11	E	$25^{\circ}, 26, 27^{\triangle}, 165^{*}$
114.024 113.793	$3s^23p^53d$ ³ F	$F_3^{\circ} = 3s^2 3p^5 (^2 P_{3/2}^{\circ}) 4f^{-2} [\frac{9}{2}]_4$	429 310.9 425 809.8	1 306 320 1 304 600	8 10	2.8 4.3	1.6+11 2.0+11	E E	$25^{\circ}, 26, 27^{\triangle}, 165^{*}$ $25^{\circ}, 26, 27^{\triangle}, 165^{*}$
112.375	$3s^23p^53d^{-3}$ F	$P_2^{\circ} = 3s^2 3p^5 (^2 P_{3/2}^{\circ}) 4f^{-2} [\frac{3}{2}]_2$	412 860 0	1 200 040	E				26.27°
	os op sa "t	2 38 3p (F _{3/2})4J -[2]2		1 302 840	5				26, 27°
		,	408 315 1	1 3110 020					26 27°
112.017 111.791		1 1	408 315.1 408 315.1	1 300 920 1 302 840	4 5	1.2	1.2+11	E	$26,27^{\circ}$ $25^{\circ},26,27^{\triangle},165^{*}$

Fe IX - Continued

Wave- length (Å)	C Lower	lassification Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
112.096	$3s^23p^53d\ ^3{ m P}_2^{ m o}$	$3s^23p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	413 669.2	1 305 760	8	2.1	1.6+11	E	25°, 26, 27 ^{\triangle} , 165*
105.208	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathrm{P}^{\circ}_{3/2})4s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	950 500	30	1.6 – 1	3.2+10	D	11 ^Δ ,12,22,23,24,25°,50, 165*,183
103.566	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P^{\circ}_{1/2})4s(\frac{1}{2},\frac{1}{2})^{\circ}_{1}$	0	965 570	35	2.5 - 1	5.2+10	D	11 ^{\(\Delta\)} , 12, 22, 23, 24, 25°, 50, 165*, 183
83.457	$3s^23p^6$ ¹ S ₀	$3s^23p^54d\ ^3{ m P}_1^{ m o}$	0	1 198 220	15	3.1 - 1	9.9+10	D	10,11 ^{\(\Delta\)} ,12,25°,27,165*, 184
82.430	$3s^23p^6$ ¹ S ₀	$3s^23p^54d$ ¹ P ₁ ^o	0	1 213 150	20	1.7 - 1	5.6+10	D	10,11 ^{\(\Delta\)} ,12,25°,27,165*, 184
73.63	$3s^23p^{6-1}S_0$	$3s^23p^5(^2\mathbf{P}^{\circ}_{3/2})5s\ (\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	1 358 140	2				10°,27
72.891	$3s^23p^{6-1}S_0$	$3s3p^64p^{-1}P_1^0$	0	1 371 910					28
72.85	$3s^23p^{6-1}S_0$	$3s^23p^5(^2P_{1/2}^{\circ})5s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	1 372 670	1				10

Fe x

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
6374.51	$3p^5 {}^2P^{\circ}_{3/2}$	$3p^{5-2}P_{1/2}^{\circ}$	0.0	15 683.1		M1	6.94+1	C	18, 19, 29°, 31, 195*
5539.1 4311.8	$3p^4(^3P)3d\ ^4F_{7/2}$ 9/2	$3p^4(^3\mathrm{P})3d\ ^2\mathrm{F}_{7/2}$	422 795 417 653	440 840 440 840		M1 M1			17, 19°, 30, 31 17, 19°, 30, 31
3577.1 3533.6	$3p^4(^3P)3d\ ^4F_{7/2}$	$3p^4(^1{ m D})3d\ ^2{ m G}_{9/2}$ 7/2	422 795 422 795	450 751 451 084		M1 M1	6.2 1.4+1	E E	17, 19°, 30, 31, 165* 17, 19°, 30, 31, 165*
3020.1	$^{9/2}$ $3p^4(^3\mathrm{P})3d^4\mathrm{D}_{7/2}$	$^{9/2}$ $3p^4(^3\mathrm{P})3d^4\mathrm{F}_{9/2}$	417 653	450 751		M1	5.5+1	E	17°, 30, 165*
3454.2	$3p^{4}(^{3}P)3d^{4}D_{7/2}$	$3p^{4}(^{3}P)3d^{2}F_{7/2}$	388 709	417 653		M1	1.2+1	E	17, 19°, 30, 31, 165*
1918.25	•	•	388 709	440 840		M1		-	14°, 17, 30
1611.70 1603.21	$3p^4(^3P)3d\ ^4D_{7/2}$	$3p^4(^1D)3d\ ^2G_{9/2}$ 7/2	388 709 388 709	450 751 451 084		M1 M1	$^{4.0}_{2.0+1}$	E E	14°,17,30,165* 14°,17,30,165*
1582.56 1463.49	$3p^4(^3P)3d^4F_{7/2}$ 9/2	$3p^4(^1D)3d\ ^2F_{7/2}$	422 795 417 653	485 983 485 983		M1 M1	7.0+1	E	14°,17,30 14°,17,30,165*
366.667	$3s^23p^4(^3P)3d^4F_{5/2}$	$3s3p^5(^3P^o)3d\ ^4F^o_{7/2}$	426 763	699 492	1				30
365.144	7/2	9/2	422 795	696 661					30
364.589	3/2	5/2	428 298	702 585	0				30
362.547 361.409	5/2	5/2	426 763 422 795	702 585 699 492	$\frac{2}{1}$				30 30
360.833	7/2	7/2	428 298	705 430	1				30
358.867	3/2 5/2	3/2 3/2	426 763	705 430	•				30
358.414	9/2	9/2	417 653	696 661	4				30
354.824	9/2	7/2	417 653	699 492					30
365.543	$3s^23p^5$ 2 P $_{1/2}^{o}$	$3s3p^6 {}^2S_{1/2}$	15 683.1	289 249	1	6.8 - 2	1.7+9	\mathbf{E}	$20^{\triangle}, 32, 33, 34^{\circ}, 165^{*}$
345.723	3/2	1/2	0.0	289 249	10	1.40 - 1	3.9 + 9	E	$20^{\Delta}, 32, 33, 34^{\circ}, 47, 165^{*}$
324.726	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s3p^{5}(^{3}P^{\circ})3d\ ^{4}F_{9/2}^{\circ}$	388 709	696 661	5				30
321.766	7/2	7/2	388 709	699 492	5				30
321.766	5/2	7/2	388 709	699 492	5				30
319.936 318.599	3/2	5/2	390 050	702 585	2				30
318.599	5/2	5/2	388 709 391 555	702 585 705 430	3 3				30 30
317.043	1/2 3/2	3/2 3/2	390 050	705 430	3				30
257.262	$3p^5 \ ^2P^{\circ}_{3/2}$	$3p^4(^3P)3d^4D_{5/2}$	0.0	388 709	45				20°, 30, 36
256.38	3/2	3/2	0.0	390 050	10				20°, 30, 36, 178
242.36 ^C	$3p^{5-2}P_{1/2}^{\circ}$	$3p^4(^3P)3d^4F_{3/2}$	15 683.1	428 298		4.4 - 4	1.2+7	E	165*
234.356	3/2	5/2	0.0	426 763	15	1.1 - 3	2.2+7	E	20°, 30, 36, 165*
240.243	$3p^5 \ ^2P_{1/2}^{\circ}$	$3p^4(^1{ m D})3d\ ^2{ m P}_{3/2}$	15 683.1	431 928					36
238.72	$3p^5 \ ^2P_{1/2}^{\circ}$	$3p^4(^1\mathrm{D})3d\ ^2\mathrm{D}_{3/2}$	15 683.1	434 614					36
230.089	3/2	3/2	0.0	434 614					36°,178
238.60^{C}	$3p^{5-2}P_{1/2}^{o}$	$3p^4(^3P)3d^4P_{1/2}$	15 683.1	434 800		8.8 - 4	5.1 + 7	E	165*
229.99	3/2	1/2	0.0	434 800		3.3 - 3	2.1+8	\mathbf{E}	36°,165*
226.31	3/2	5/2	0.0	441 853					36
220.882	$3p^{5} {}^{2}\mathrm{P}^{\mathrm{o}}_{3/2}$	$3p^4(^3P)3d\ ^2F_{5/2}$	0.0	452 730?		3.9 - 4	8.8+6	E	36°,165*
209.776	$3p^{5-2}P_{3/2}^{\circ}$	$3p^4(^1D)3d\ ^2F_{5/2}$	0.0	476 699?		4.4 - 3	1.1+8	E	36°,165*
201.556	$3p^{5-2}P_{1/2}^{o}$	$3p^4(^1S)3d^2D_{3/2}$	15 683.1	511 800		1.7 - 2	6.8+8	${f E}$	36°,165*
195.399	3/2	3/2	0.0	511 800		4.0 - 3	1.8+8	E	36°,165*
190.044	$3p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$3p^4(^1D)3d\ ^2S_{1/2}$	15 683.1	541 879	50	4.52 - 1	4.18+10	C-	11°, 12, 20, 35, 36, 165*,
184.542	3/2	1/2	0.0	541 879	60	1.2	1.2+11	C-	178 11°, 12, 20, 35, 36, 165*, 178
182.310	$3p^5 {}^2P^{\circ}_{1/2}$	$3p^4(^3P)3d^{2}P_{3/2}$	15 683.1	564 198	30				5,11°,12,20,35,36,184
180.407	1/2	1/2		569 985	90				5,11°,35,36,178,184
177.243	3/2	3/2		564 198	80				5,11°,12,20,35,36,39,
	-,-	5, <u>-</u>							184
175.474	3/2	1/2	0.0	569 985	30				5,11°,12,35,36, 184

Fe x - Continued

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
175.266	$3p^5 {}^2P_{1/2}^{\circ}$	$3p^4(^3P)3d^2D_{3/2}$	15 683.1	586 244	50	3.18	1.72+11	С	5, 11°, 12, 35, 36, 39, 165* 178,184,192
174.534	3/2	5/2	0.0	572 954	90	4.96	1.8+11	C	5,11°,12,35,36,39,165* 178,184,192
170.58	3/2	3/2	0.0	586 244	10	9.6 - 2	5.4+9	D	5,11 ^{\(\Delta\)} ,35°,36,165*, 184,192
144.328	$3p^4(^1D)3d\ ^2F_{7/2}$	$3p^4(^1\mathrm{D})4p\ ^2\mathrm{D}^{\mathrm{o}}_{5/2}$	485 983	1 178 850		2.6 - 1	1.4+10	D	25°,165*
140.678	$3p^4(^1D)3d^2G_{7/2}$	$3p^4(^1D)4p^2F_{5/2}^o$	451 084	1 161 930		3.0 - 1	1.7 + 10	\mathbf{E}	25°,165*
139.868	9/2	7/2	450 751	1 165 710		5.2 - 1	2.2 + 10	D	25°,165*
140.296	$3p^4(^3P)3d\ ^4F_{9/2}$	$3p^4(^3P)4p^4D_{7/2}^{\circ}$	417 653	1 130 430		5.2 - 1	2.2+10	D	25°,165*
137.027	$3p^4(^3P)3d^4D_{7/2}$	$3p^4(^3P)4p^4P_{5/2}^{\circ}$	388 709	1 118 490		2.4 - 1	1.4+10	D	25°,165*
104 629	$3p^4(^1D)3d^2F_{7/2}$	$3p^4(^1D)4f ^2G_{9/2}^{\circ}$	405 000	1 441 000		0.4	0.1.1.		0=0 -0=#
104.638		-,-	485 983	1 441 660		3.4	2.1+11	D	25°,165*
104.248	5/2	7/2	476 699?	1 435 950		1.9	1.4+11	D	25°,165*
103.724	$3p^4(^3P)3d^2F_{5/2}$	$3p^4(^3P)4f^2G_{7/2}^o$	452 730?	1 416 800		2.2	1.7+11	E	25°,165*
103.164	7/2	9/2	440 840	1 408 650			,		25
**************************************	- 4(1a) - 12m	. 4/1-0 2-0							
103.319 ^L	$3p^4(^1S)3d\ ^2D_{5/2}$	$3p^4(^1S)4f ^2F_{7/2}^{\circ}$	F11 000			3.3	2.6+11	D	25°,165*
102.829	3/2	5/2	511 800	1 484 290		2.0	2.1 + 11	D	25°,165*
102.348	$3p^4(^3P)3d^4F_{7/2}$	$3p^4(^3P)4f^4G_{9/2}^{\circ}$	422 795	1 399 850					25
102.095	9/2	11/2	417 653	1 397 130		5.5	2.9 + 11	D	25°,165*
101.846	3/2	5/2	428 298	1 410 170		1.6	1.7+11	Ē	25°,165*
101.733	5/2	7/2	426 763	1 409 730		2.3	1.8+11	D	25°,165*
102.192	$3p^4(^1D)3d^2G_{9/2}$	$3p^4(^1D)4f^{-2}H^o_{11/2}$	450 751	1 429 300		5.5	2.9+11	D	25°,165*
101.435	$3p^4(^3P)3d\ ^4F_{7/2}$	$3p^4(^3P)4f ^2G_{9/2}^{\circ}$	422 795	1 408 650					25
100.026	$3p^4(^3P)3d\ ^4D_{7/2}$	$3p^4(^3P)4f\ ^4F^{\circ}_{9/2}$	388 709	1 388 450		3.9	2.6+11	D	25°,165*
97.838	$3p^5 \ ^2P_{3/2}^{\circ}$	$3p^4(^3P)4s^4P_{5/2}$	0.0	1 022 100	20				11 ^{\triangle} , 12, 37°, 50, 184
97.122		•				0.0 1	25110	Б	
91.122	3/2	3/2	0.0	1 029 630	25	2.0 - 1	3.5+10	D	11 ^{\(\Delta\)} , 12, 37°, 50, 165*, 184
97.591	$3p^{5} {}^{2}P_{1/2}^{\circ}$	$3p^4(^3P)4s^2P_{3/2}$	15 683.1	1 040 350		4.0 - 2	7.0+9	E	23, 37°, 50, 165*, 184
96.788	1/2	1/2	15 683.1	1 048 890	2	2.2 - 1	7.8+10	D	23,37°,50,165*,184
96.122	3/2	3/2	0.0	1 040 350	30	4.8 - 1	8.7+10	Ď	$11^{\Delta}, 12, 37^{\circ}, 50, 165^{*},$
	-,-	٠, ٠					,		178,184
95.338	3/2	1/2	0.0	1 048 890	1	1.6 - 1	5.9+10	D	37°, 50, 165*, 184
95.374	$3p^5 {}^2P^o_{1/2}$	$3p^4(^1D)4s\ ^2D_{3/2}$	15 683.1	1 064 190	15	3.0 - 1	5.5+10	D	11 ^Δ , 12, 23, 37°, 50, 165*, 184
94.012	3/2	5/2	0.0	1 063 690	35	3.7 - 1	4.7+10	D	11 ^Δ , 12, 23, 37°, 50, 165*, 184
78.769	$3p^{5-2}\mathrm{P}_{1/2}^{\circ}$	$3p^4(^3P)4d^2D_{3/2}$	15 683.1	1 285 180	4	1.5 - 1	4.0+10	\mathbf{E}	25°, 165*, 184 ^Δ
77.865	3/2	5/2	0.0	1 284 270	8	8.8 - 1	1.6+11	D	25°,165*,184 ^Δ
77.812	3/2	5/2 3/2	0.0	1 285 180	J	2.9 - 1	8.0+10	E	25°,165*
78.151	$3p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	3p ⁴ (³ P)4d ² P _{3/2}	15 683.1	1 295 260		1.6 - 1	4.4+10	D	25°,165*
77.728	$3p^{5-2}\mathrm{P}_{3/2}^{\circ}$	$3p^4(^3P)4d^4F_{5/2}$	0.0	1 286 540		1.5 – 1	2.8+10	D	25°,165*
77.627	$3p^{5-2}P_{3/2}^{\circ}$	$3p^4(^3P)4d^2F_{5/2}$	0.0	1 288 210		2.6 - 1	4.8+10	D	25°,165*
		-,-					• =		,
76.822	$3p^{5-2}P_{1/2}^{\circ}$	$3p^4(^1D)4d^2P_{1/2}$	15 683.1	1 317 390		3.2 - 1	1.8 + 11	D	25°,165*
76.006	3/2	3/2	0.0	1 315 690		4.4 - 1	1.3 + 11	D	25°,165*
76.495	$3p^{5-2}P_{1/2}^{\circ}$	$3p^4(^1D)4d^2D_{3/2}$	15 683.1	1 222 060		10 1	1 4 : 11	Б	050 105*
75.685		·	0.0	1 322 960 1 321 270		4.8 - 1	1.4+11	D	25°,165*
10.000	3/2	5/2	0.0	1 341 410		4.0 - 1	7.8 + 10	D	25°,165*

Fe xı

Wave- length (Å)	Classific Lower	cation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
7891.8	$3p^4 \ ^3P_2$	$3p^4 \ ^3P_1$	0.0	12 667.9		M1	4.37+1	С	19°, 29, 38, 195*
3986.8 2648.71	$3p^4 \ ^3P_1$	$3p^{4} {}^{1}D_{2}$	12 667.9 0.0	37 743.6 37 743.6		M1 M1	9.44 9.23+1	C C	19°, 38, 195* 14°, 195*
1467.06	$3p^{4} \ ^{3}P_{1}$	$3p^{4}$ 1 S ₀	12 667.9	80 814.7		M1	9.90 + 2	\mathbf{C}	14°, 42, 43, 44, 46, 193, 194, 195*
406.811 ^C	$3s^23p^{4-1}D_2$	$3s3p^5 \ ^3P_2^{\circ}$	37 743.6	283 558		5.0 - 3	4.0+7	E	165*
369.154 358.621 356.519 352.661 349.046	$3s^23p^4$ 3P_1 0 1 2 1	$3s3p^5$ $^3P_2^\circ$ 1 1 2 0	12 667.9 14 312 12 667.9 0.0 12 667.9	283 558 293 158 293 158 283 558 299 163	2 2 1 6 2	5.4 - 2 $4.1 - 2$ $3.0 - 2$ $1.6 - 1$ $4.2 - 2$	5.3+8 7.1+8 5.2+8 1.7+9 2.3+9	C C C C	20, 32, 34°, 165* 32, 33, 34°, 165* 20, 32, 33, 34°, 165* 20, 32, 33, 34°, 47, 165* 32, 33, 34°, 165*
341.113	2	1	0.0	293 158	3	6.0 - 2	1.1+9	č	20, 32, 33, 34°, 165*
355.837	$3s^23p^{4-1}S_0$	$3s3p^{5-1}P_1^o$	80 814.7	361 842		9.4 - 3	1.7+8	D	34°,165*
308.544	$3s^23p^{4-1}D_2$	$3s3p^{5-1}P_1^{\circ}$	37 743.6	361 842		3.2 - 1	7.5+9	\mathbf{C}	20°, 33, 165*, 178
276.364 ^C	$3s^23p^4$ 3P_2	$3s3p^{5}$ $^{1}P_{1}^{o}$	0.0	361 842		7.0 - 3	2.0 + 8	E	165*
201.737	$3p^{4} {}^{1}D_{2}$	$3p^3(^2D^{\circ})3d\ ^3S_1^{\circ}$	37 743.6	533 450		1.2	6.3 + 10	E	36°, 165*
201.575	$3p^4 \ ^3P_2$	$3p^3(^2P^o)3d\ ^3P_2^o$	0.0	496 090		1.1 - 1	3.6 + 9	D	36°,165*,178
198.549	$3p^{4-1}D_2$	$3p^3(^2D^{\circ})3d\ ^3P_1^{\circ}$	37 743.6	541 390					32,36°
192.819 189.735	$3p^{4} ^{3}P_{1}$	$3p^3(^2D^\circ)3d\ ^3P_2^\circ$	12 667.9	531 290	50	6.0 - 1	2.2+10	D	11°, 12, 20, 32, 35, 36, 165*, 178,184
189.129 189.017 188.219	0 1 1 2	1 1 0 2	14 312 12 667.9 12 667.9 0.0	541 390 541 390 541 720 531 290	70	7.5 - 1 3.0	1.4+11 1.1+11	D D	36 36°,178 36°,165* 11°,12,20,32,35,36,165*, 178,184
192.641 192.020 187.446	$3p^4 \ ^3P_0$ 1 2	$3p^3(^2D^\circ)3d\ ^3S_1^0$	14 312 12 667.9 0.0	533 450 533 450 533 450					36 36°,178 36
189.940	$3p^{4} \ ^{3}P_{2}$	$3p^3(^2D^\circ)3d(5)_1^o$	0.0	526 480					36
184.800	$3p^{4-1}D_2$	$3p^3(^2D^{\circ})3d^{-1}D_2^{\circ}$	37 743.6	578 860	30	3.2	1.2 + 11	D	11°, 12, 35, 36, 165*, 184
184.41	$3p^{4-1}S_0$	$3p^3(^2P^{\circ})3d^{-1}P_1^{\circ}$	80 814.7	623 080		2.19	1.43+11	\mathbf{C}	32,36°,165*
182.173 181.140 180.600 180.407 178.060	$3p^4 \ ^3P_1$ 0 1 2 2	$3p^3(^4S^\circ)3d\ ^3D_2^\circ$ 1 1 2	12 667.9 14 312 12 667.9 0.0 0.0	561 610 566 380 566 380 554 300 561 610	60 40 30 90 40				4,11°,12,20,36,39,178,184 4,11°,12,36,39,178,184 11°,12,32,36 4,11°,12,36,39,178,184 4,11°,12,20,36,39,178,184
179.762	$3p^{4-1}D_2$	$3p^3(^2D^{\circ})3d^{-1}F_3^{\circ}$	37 743.6	594 030	40	5.65	1.67+11	C	11°, 12, 36, 39, 165*, 178
176.620	$3p^{4} {}^{3}P_{1}$	$3p^3(^2D^{\circ})3d^{-1}D_2^{\circ}$	12 667.9	578 860	٠	2.0 - 1	8.6+9	D	36°,165*
$124.725^{\rm L}$	$3p^3(^2D^\circ)3d^{-1}G_4^\circ$	$3p^3(^2\mathrm{D^o})4p^{-1}\mathrm{F}_3$				3.6 - 1	2.2+10	D	25°, 165*
123.822^{L} 123.49^{L} 123.49^{L}	$3p^3(^2D^\circ)3d\ ^3G_3^\circ$ 5	$3p^3(^2D^o)4p\ ^3F_2$ 4 3				2.5 - 1 $5.5 - 1$ $2.7 - 1$	2.2+10 2.7+10 1.7+10	E D E	25°,165* 25°,165* 25°,165*
$123.572^{\rm L}$	$3p^3(^2P^\circ)3d\ ^3F_3^\circ$	$3p^3(^2P^o)4p^3D_2$				4.1 - 1	3.6+10	E	25°,165*
$\frac{121.747^{L}}{121.419^{L}}$	$3p^3(^4S^\circ)3d^{5}D_3^\circ$	$3p^3(^4S^\circ)4p^5P_2$				2.3 - 1 $4.5 - 1$	2.1+10 2.9+10	D D	25°, 165* 25°, 165*
93.433 ^L	$3p^3(^2\mathrm{D^o})3d\ ^1\mathrm{G_4^o}$	$3p^3(^2D^{\circ})4f^{-1}H_5$				4.6	3.2+11	D	25°,165*
93.018 ^L	$3p^3(^2P^o)3d\ ^3F_2^o$	$3p^3(^2P^{\circ})4f^{-3}G_3$							25
92.9^{L} 92.8^{L}	$3p^3(^2D^\circ)3d\ ^3D_3^\circ$	$3p^3(^2P^\circ)4f\ ^3F_4$							25 25
92.87 ^L 92.87 ^L 92.81 ^L	$3p^3(^2D^\circ)3d\ ^3G_5^\circ$	$3p^3(^2D^\circ)4f^{-3}H_6$				6.6 4.0	3.9+11 3.4+11	D D	25°,165° 25°,165° 25

Fe XI - Continued

Wave-	Classifi	cation	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
91.733 ^L	3p ³ (⁴ S°)3d ⁵ D ₄ °	$3p^3(^4S^\circ)4f^{-5}F_5$				5.7	4.1+11	D	25°,165*
$91.63^{ m L}$	1	2				1.4	2.3 + 11	D	25°,165*
$91.63^{\mathbf{L}}$	3	4				3.9	3.4 + 11	D	25°,165*
91.63 ^L	2	3				2.5	2.8 + 11	D	25°,165*
$91.63^{\mathbf{L}}$	$3p^3(^2D^{\circ})3d\ ^3F_4^{\circ}$	$3p^3(^2D^\circ)4f^{\ 3}G_5$							25
91.472^{L}	3	4				2.9	2.5 + 11	D	25°, 165*
91.394^{L}	2	3				2.3	2.6+11	D	25°, 165*
90.345	$3p^{4} {}^{3}P_{0}$	3p ³ (⁴ S°)4s ³ S ₁ °	14 312	1 121 230		8 2	2.+10	E	40°, 50, 165*
90.205	1	1	12 667.9	1 121 230	1	2.0 - 1	5.5+10	$\bar{\mathbf{D}}$	40°, 50, 165*, 178
89.185	2	1	0.0	1 121 230	25	4.6 - 1	1.3+11	D	11 ^{\triangle} , 40°, 50, 165*
89.8614 ^C	$3p^{4-1}S_0$	$3p^3(^2P^{\circ})4s^{-1}P_1^{\circ}$	80 814.7	1 193 640		2.5 - 1	6.9+10	D	165*
89.104	$3p^{4-1}D_2$	$3p^3(^2{\rm D^o})4s^{-1}{\rm D_2^o}$	37 743.6	1 160 030	20	8.0 - 1	1.3+11	D	11 ^Δ , 12, 40°, 165*
88.167	$3p^{4} {}^{3}P_{0}$	$3p^3(^2D^{\circ})4s \ ^3D_1^{\circ}$	14 312	1 148 590		6 2	2.+10	Е	40°.165*
88.029	1	1	12 667.9	1 148 590		1.4 - 1	4.0 + 10	D	12, 23, 40°, 50, 165*
87.995	1	2	12 667.9	1 149 100		1.3 - 1	2.2 + 10	D	12, 23, 40°, 165*
87.025	2	2	0.0	1 149 100	25	2.0 - 1	3.5 + 10	D	$11^{\Delta}, 12, 40^{\circ}, 50, 165^{*}$
86.772	2	3	0.0	1 152 450	30	4.3 - 1	5.4+10	D	$11^{\Delta}, 12, 23, 40^{\circ}, 50, 165^{*}$
86.513	$3p^{4-1}D_2$	$3p^3(^2P^\circ)4s^{-1}P_1^\circ$	37 743.6	1 193 640	1	2.8 - 1	8.3+10	D	40°,165*
72.635	$3p^{4} \ ^{3}P_{2}$	$3p^3(^4S^\circ)4d\ ^3D_3^\circ$	0.0	1 376 750		9.0 - 1	1.6+11	D	25°,165*
72.310	$3p^{4-1}D_2$	$3p^3(^2\mathrm{D^o})4d^{-1}\mathrm{D_2^o}$	37 743.6	1 420 680		6.0 - 1	1.5+11	D	25°,165*
72.166	$3p^{4-1}D_2$	$3p^3(^2D^\circ)4d^{-1}F_3^\circ$	37 743.6	1 423 440		1.6	2.9+11	D	25°,165*

Fe XII

Wave- length (Å)	Lower	Classific	ation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
3072.0	$3s^23p^3$	² D _{3/2}	$3s^23p^3 \ ^2P_{1/2}^{\circ}$	41 566	74 109		M1	7.21+1	С	19°, 46, 195*
2565.93	_	3/2	3/2	41 566	80 515		Mı	2.00+2	$^{\rm C}$	14°, 195*
2405.68	$3s^23p^3$	³ ⁴ S _{3/2}	$3s^23p^{3-2}D_{3/2}^{\circ}$	0	41 566		M1	4.81+1	C	14°,195*
2169.08	•	3/2	5/2		46 075		M1	1.84	\mathbf{C}	14°, 45, 195*
1349.40	$3s^23p^3$	3 4S _{3/2}	$3s^23p^3$ ² P $_{1/2}^{\circ}$	0	74 109		MI	1.73+2	C	14°, 42, 43, 44, 45, 195*
1242.00		3/2	3/2		80 515		M1	3.17+2	C	14°, 42, 43, 44, 45, 195*
385.35 ^C	$3s^23n^3$	² P _{3/2}	$3s3p^{4-2}D_{3/2}$	80 515	340 020		1.6 - 3	1.9+7	E	165*
382.83	00 Op	3/2 3/2	5/2		341 703		7.6 - 2	5.8+8	Ď	32°, 48, 165*
376.07 ^C		1/2	3/2	74 109	340 020		2.6 - 2	3.0+8	D	165*
364.468	$3s^23p^3$	3 4S _{3/2}	$3s3p^4 \ ^4P_{5/2}$	0	274 373	35	1.9 - 1	1.6+9	D	20°, 32, 33, 48, 165*
352.107		3/2	3/2		284 005	20	1.3 - 1	1.7+9 $1.8+9$	D D	20°, 32, 33, 48, 165*
346.852		3/2	1/2		288 307	10	6.4 - 2	1.0+9	D	20°, 32, 33, 48, 165*
340.20 ^C	$3s^23p^3$	$^{2}D_{5/2}^{o}$	$3s3p^4 {}^2D_{3/2}$	40.000	340 020	_	3.4 - 3	4.9+7	E	165*
338.263 335.06		5/2	5/2	44 -00	341 703 340 020	8	2.9 - 1 $2.4 - 1$	2.9+9 $3.5+9$	D D	20°, 33, 47, 48, 165* 32°, 47, 165*
333.18 ^C		3/2 3/2	3/2 5/2		340 020		2.4 - 1 $2.3 - 3$		E	165*
	0 20 3	•	•		000 500					200 20 40 47
291.010 283.64	3s-3p	⁵ ² D° _{5/2}	$3s3p^4 {}^{2}P_{3/2}$		389 706 394 120	10				20°, 32, 48, 178 32°, 48, 178
	. 2. 3									, ,
230.79		^{3 2} P _{3/2}	$3s3p^4 (3)_{1/2}$	80 515	513 850					48
229.24 ^C	$3s^23p^3$	^{3 2} P _{3/2}	$3s^23p^2(^3P)3d\ ^4P_{3/2}$	80 515	516 740		5.2 - 3	1.7+8	E	165*
224.39 ^C		1/2	1/2	74 109	519 770		3.6 - 3	2.3 + 8	\mathbf{E}	165*
219.438	$3s^23p^3$	$^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{5/2}$	$3s^23p^23d (3)_{3/2}$	46 075	501 800	10				20°, 32, 48
217.271		3/2	3/2	41 566	501 800					20°,48
218.562	$3s^23p^3$	$^{3} {}^{2}P_{3/2}^{\circ}$	$3s^23p^2(^1S)3d\ ^2D_{5/2}$	80 515	538 040					48
214.39^{C}	$3s^23p^3$	$^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{5/2}$	$3s^23p^2(^3P)3d^4P_{5/2}$	46 075	512 510		4.6 - 2	1.1+9	E	165*
$212.47^{\rm C}$		5/2	3/2	46 075	516 740		6.6 - 3	2.5 + 8	${f E}$	165*
212.34 ^C		3/2	5/2		512 510		1.7 - 2		\mathbf{E}	165*
209.12 ^C		3/2	1/2	41 566	519 770		2.3 - 2	1.8+9	E	165*
211.738		$^{3} {}^{2}D_{3/2}^{\circ}$	$3s3p^4 (3)_{1/2}$	41 566	513 850					20°, 32, 48
211.19 ^C	$3s^23p^3$	³ ² P° _{3/2}	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{3/2}$		554 030		9.6 - 3		\mathbf{E}	165*
210.932 208.410		3/2	5/2		554 610 554 030		2.7 - 1 $1.7 - 1$	6.8+9 $6.7+9$	D D	48°,165*
200.410		1/2	3/2		554 USO		1.7 1	0.7+9	D	48°,165*
208.318	$3s^23p^3$	3 $^{2}D_{5/2}^{\circ}$	$3s^23p^2(^1S)3d^2D_{3/2}$		526 120					48
206.368 203.272		3/2	3/2	40 000	526 120 538 040					48
201.493		5/2 3/2	5/2 5/2		538 040					48 48
204.743	3 s 2 3 n	^{3 2} P _{3/2}	$3s^23p^2(^1\mathrm{D})3d^{-2}\mathrm{P}_{1/2}$	80 515	568 940					48
202.090	00 Op	1/2 1/2	1/2	74 100	568 940					32,48°
201.121		3/2	3/2	00	577 740	15	1.2	5.1 + 10	D	20°, 32, 48, 165*
198.555		1/2	3/2		577 740	7	3.8 - 1	1.6 + 10	D	20°, 32, 48, 165*, 178
200.356		$^{3} {}^{2}P_{3/2}^{\circ}$	$3s^23p^2(^1D)3d^2S_{1/2}$	80 515	579 630					48
196.923	$3s^23p^3$	3 $^{2}D_{5/2}^{\circ}$	$3s^23p^2(^1\mathrm{D})3d^{-2}\mathrm{D}_{3/2}$	46 075	554 030		2.5 - 1	1.1+10	D	48°,165*
196.640		5/2	5/2		554 610	6	1.7	4.9+10	D	20°, 32, 48, 165*
195.119 194.920		3/2 3/2	3/2 5/2		554 030 554 610	90	$1.4 \\ 5.6 - 2$	6.1+10 1.7+9	D D	20°,48,165* 48°,165*
	. 2.		•	-						•
195.119	3s*3p	3 4 S $_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{5/2}$	2 0	512 510	90	3.0	8.6+10	D	11, 12, 20°, 32, 48, 49, 165*, 178
193.509		3/2	3/2	2 0	516 740	60	2.0	9.1 + 10	D	11, 12, 20°, 32, 48, 49, 165*,
192.394		3/2	1/:	2 0	519 770	25	1.0	9.0+10	D	178 11, 12, 20°, 32, 48, 49, 165*
	2-20	o ^{3 4} S _{3/2}								
194.61	38-31	D 53/2	$3s3p^4 (3)_{1/3}$	2 0	513 850					48

Fe XII - Continued

$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
1904.50	Wave- length (Å)			Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
100 0	190.459	3/2	3/2	80 515	605 480	50				48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190.06			0	526 120					48
186.1 187.2 188.4 188.		$3s^23p^3$ $^2D_{3/2}^{\circ}$	$3s^23p^2(^1\mathrm{D})3d^{\ 2}\mathrm{P}_{1/2}$	41 566	568 940					48
186.860										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^3P)3d^2F_{5/2}$	46 075	576 740					48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5/2	·			15	4.4	1.0+11	D	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	•				* 0 0	1.77.1.0	r	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-,-	-,-				5.2 - 3	1.7+8	E	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	-,	46 075	603 930					·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	٠, -							·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109.712^{L}	$3s^23p^2(^3\mathrm{P})3d\ ^4\mathrm{D}_{5/2}$	$3s^23p^2(^3P)4p^2D_{3/2}^{\circ}$							25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109.5 0 9 ^L	$3s^23p^2(^1\mathrm{D})3d^2\mathrm{F}_{7/2}$	$3s^23p^2(^3P)4p^2D_{5/2}^{\circ}$							25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109.015 ^L	$3s^23p^2(^3\mathrm{P})3d^{-4}\mathrm{D}_{7/2}$	$3s^23p^2(^3P)4p^4P_{5/2}^{\circ}$							25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3s^23p^2(^3\mathrm{P})3d\ ^4\mathrm{F}_{5/2}$	$3s^23p^2(^3P)4p^4D_{3/2}^{\circ}$				2.3 - 1	3.2+10	D	25°,165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85.669	•	•		1 705 300					25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•							·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3s^23p^2(^3\mathrm{P})3d^{\ 2}\mathrm{F}_{7/2}$	$3s^23p^2(^3P)4f$ $^2G_{9/2}^{\circ}$	581 180						25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	84.85 ^L	•	•				2.0	2.3+11	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84.768 ^L	7/2	9/2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3s^23p^2(^3P)3d\ ^4F_{9/2}$	$3s^23p^2(^3P)4f ^4G_{11/2}^{\circ}$				6.7	5.2 + 11	D	25°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5/2	•				3.4		D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7/2	9/2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82.226	$3s^23p^3$ 2 $D_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^{-2}P_{1/2}$	41 566	1 257 730		3.8 - 1	1.9+11	D	25°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5/2		44 -00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•							•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80.5	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)4s^4P_{1/2}$. 0	1 242 000		1.4 - 1	7.2+10	D	12,25°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3/2	3/2	2 0						12,25°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68.382	· · · · · · · · · · · · · · · · · · ·	•		1 536 480		4.8 - 1	1.7+11	D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.972	,		80 515	1 551 640					25
67.291 $3s^2 3p^3 {}^2 D_{5/2}^{\circ} = 3s^2 3p^2 ({}^3P) 4d {}^4 D_{7/2} = 46 075 - 1 532 160$ 25		$3s^23p^3$ ² D $_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})4d\ ^2\mathrm{F}_{5/2}$				5.6 - 1	1.4+11	D	·
	67.291	$3s^23p^3$ 2 D $_{5/2}^{\circ}$	$3s^23p^2(^3P)4d^{-4}D_{7/2}$	46 075	1 532 160					25

Fe XII - Continued

Wave-	Classifi	cation	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
67.164	$3s^23p^3$ $^2P_{3/2}^{o}$	$3s^23p^2(^1D)4d\ ^2S_{1/2}$	80 515	1 569 410	1.5 - 1	1.1+11	D	25°,165*
66.960	$3s^23p^3$ 2 D $_{3/2}^{\circ}$	$3s^23p^2(^3P)4d\ ^2D_{5/2}$	41 566	1 534 990	6.4 - 1	1.6+11	D	25°,165*
66.526	$3s^23p^3$ 2 D $_{5/2}^{o}$	$3s^23p^2(^1{ m D})4d\ ^2{ m F}_{7/2}$	46 075	1 549 250	9.0 - 1	1.7+11	D	25°,165*
66.43	5/2	5/2	46 075	1 551 400				25
66.297	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})4d\ ^4\mathrm{P}_{5/2}$	0	1 508 360				25
65.905	3/2	3/2	^	1 517 340	5.2 - 1	2.0+11	D	25°,165*
66.225	$3s^23p^3$ 2 $D_{3/2}^{\circ}$	$3s^23p^2(^1{ m D})4d\ ^2{ m D}_{5/2}$	41 566	1 551 640				25
66.047	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3{ m P})4d\ ^4{ m F}_{5/2}$	0	1 514 070				25
65.805	$3s^23p^3$ 2 D $_{5/2}^{\circ}$	$3s^23p^2(^1D)4d^{2}P_{3/2}$	46 075	1 565 720	1.3 - 1	5.1+10	D	25°,165*

Fe XIII

Wave-	Classifica		Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper					<u>_</u>	,	
10797.9 10746.8	$3s^23p^2$ 3P_1 0	$3s^23p^2$ 3P_2	9 302.5 0.0	18 561.0 9 302.5		M1 M1	9.87 1.40+1	C C	19°, 38, 195* 19°, 38, 195*
3388.5 2578.77	$3s^23p^2$ 3P_2	$3s^23p^2$ 1D_2	18 561.0 9 302.5	48 068 48 068		M1 M1	5.75+1 4.57+1	C C	19°, 32, 38, 195* 14°, 195*
1216.43	$3s^23p^2\ ^3P_1$	$3s^23p^2$ ¹ S ₀	9 302.5	91 508		M1	1.01+3	C	14°, 32, 44, 45, 193, 195*
510.12 487.08	$3s^23p^2$ 3 P ₂	$3s3p^3 \ ^5S_2^{\circ}$	18 561.0 9 302.5	214 608 214 608					52°, 208 52, 53°, 208
419.92 ^C	$3s^23p^{2-1}S_0$	$3s3p^3$ 3 P $_1^{\circ}$	91 508	329 647		1.7 - 3	2.1+7	E	165*
$412.98^{\rm C}$	$3s^23p^{2-1}D_2$	$3s3p^3 \ ^3D_3^{\circ}$	48 068	290 210		1.4 - 2	7.8+7	E	165*
372.240 ^C 372.03 ^C 368.12 359.837 359.63 348.184	$3s^23p^2$ 3P_2 2 2 1 1 0	$3s3p^3$ $^3D_1^o$ 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3	18 561.0 18 561.0 18 561.0 9 302.5 9 302.5 0.0	287 205 287 360 290 210 287 205 287 360 287 205	4 20	7.5 - 4 $5.0 - 3$ $1.8 - 1$ $2.0 - 2$ $1.4 - 1$ $6.9 - 2$	1.2+7 5.0+7 1.3+9 3.3+8 1.5+9 1.3+9	E D- D D- D E	165* 165* 32°, 33, 165* 20°, 33, 165* 32°, 33, 165* 20°, 33, 165*
321.455 ^C 320.800 312.164 311.552 303.355 ^C	$3s^23p^2$ 3P_2 2 1 1 0	$3s3p^3$ 3 3 3 2 2 2 2 2 2 2 2	18 561.0 18 561.0 9 302.5 9 302.5 0.0	329 647 330 279 329 647 330 279 329 647	7 8 2	4.2 - 2 $2.5 - 1$ $8.1 - 2$ $3.0 - 2$ $5.1 - 2$	8.9+8 3.2+9 1.8+9 4.2+8 1.2+9	D- D D D	165* 20°, 32, 165* 20°, 48, 165* 20°, 165* 165*
318.21	$3s^23p^2$ 1D_2	$3s3p^3$ $^1\mathrm{D}^\mathrm{o}_2$	48 068	362 330					32
256.42	$3s^23p^2$ ¹ D ₂	$3s3p^{3} {}^{1}P_{1}^{o}$	48 068	438 050					47°,178
251.953 246.208 240.713	$3s^23p^2$ 3 P ₂	$3s3p^3 \ ^3S_1^0 \ ^1 \ _1$	18 561.0 9 302.5 0.0	415 462 415 462 415 462	40 · 20 20				12, 20°, 33, 47, 178 12, 20°, 33, 47 12, 20°, 33, 47, 178
233.234	$3s^23p^2\ ^3{\rm P}_1$	$3s3p^{3}$ ¹ P ₁	9 302.5	438 050					20°,48
221.822	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m D}^{ m o}_2$	48 068	498 870	15				20°, 32, 48
216.88 216.88	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3\mathrm{D_3^o}$	48 068 48 068	509 176 509 250		1.1 – 1	2.2+9	E	33°,165* 33
213.770 209.916 209.617 202.424 202.044	$3s^23p^2$ 3 P $_2$ 2 1 1 0	$3s^23p3d\ ^3P_2^{\circ}$ 1 2 0 1	18 561.0 18 561.0 9 302.5 9 302.5 0.0	486 358 494 942 486 358 503 340 494 942	7 15 6 7 65	2.9 - 1	4.6+10	D	20°, 32 20°, 32 20°, 48, 165* 20°, 32
208.679	$3s^23p^2$ ¹ S ₀	$3s^23p3d\ ^1{ m P}_1^{ m o}$	91 508	570 690		1.1	5.6+10	D	20°, 32, 48, 165*
204.942 203.826 203.793 201.121 200.021 197.434	$3s^23p^2$ 3P_2 2 2 1 1 0	$3s^23p3d$ $^3D_1^o$ 3 2 1 2 1	18 561.0 18 561.0 18 561.0 9 302.5 9 302.5 0.0	506 502 509 176 509 250 506 502 509 250 506 502	5 20 8 16 5 2	2.9	6.5+10	D	12, 20°, 33 11, 12, 20°, 33, 48, 49, 165*, 184 12, 20°, 32, 33 12, 20°, 32, 33 12, 20°, 32, 33 12, 20°, 33, 33
204.263	$3s^23p^2$ 3 P ₁ •	$3s^23p3d\ ^1{ m D}_2^{ m o}$	9 302.5	498 870					20°, 32, 48
196.525	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	48 068	556 870	4	2.8	6.8+10	C	11,12,20°,32,48,49,165*,184
191.24	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1\mathrm{P_1^o}$	48 068	570 690					32
185.77 ^C	$3s^23p^2\ ^3P_2$	$3s^23p3d\ ^1{ m F}_3^{\circ}$	18 561.0	556 870		1.1 – 1	3.0+9	E	165*
175.23 ^C	$3s^23p^2 \ ^3P_0$	$3s^23p3d\ ^1P_1^{\circ}$	0.0	570 690		6.1 - 3	4.4+8	D	165*
107.384	$3s^23p3d\ ^1F_3^{\circ}$	$3s^23p4p$ $^1\mathrm{D}_2$	556 870	1 488 110		1.5	1.8+11	D	25°,165*
$98.826^{L} \\ 98.523^{L} \\ 98.128^{L}$	$3s^23p3d\ ^3F_2^{\circ}$ 3 4	$3s^23p4p\ ^3{ m D}_1$ 2 3				1.7 - 1 $2.8 - 1$ $4.1 - 1$	3.8+10	E D D	25°,165° 25°,165° 25°,165°
98.387	$3s^23p3d^{-1}D_2^{\circ}$	$3s^23p4p\ ^1P_1$	498 870	1 515 260					25

Fe XIII - Continued

Wave-	Classifica	ition	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
85.461	$3s^23p3d\ ^1{ m P}_1^{ m o}$	$3s^23p4f^{-1}D_2$	570 690	1 740 800					51
84.275	$3s^23p3d\ ^1F_3^{\circ}$	$3s^23p4f$ $^1{ m G_4}$	556 870	1 743 460		5.3	5.5+11	D	25°, 51, 165*
82.010 81.161	$3s^23p3d\ ^3D_2^{\circ}$	$3s^23p4f$ 3F_3	509 250 509 176	1 728 600? 1 741 290					51 25
81.154	$3s^23p3d\ ^3P_0^{\circ}$	$3s^23p4f\ ^3{\rm D}_1$	503 340	1 735 600?					51
78.77^{L} 78.56^{L} 78.462^{L}	$3s^23p3d\ ^3F_3^{\circ}$ 2 4	$3s^23p4f \ ^3\mathrm{G}_4$ 3 5				6.4	6.3+11	D	25°,51 25 25°,51,165*
76.117	$3s^23p^{2-1}D_2$	$3s^23p4s^{-1}P_1^{\alpha}$	48 068	1 361 830		5.5 - 1	2.1+11	D	25°,165*
75.892 74.845 74.327	$3s^23p^2$ 3 P ₂ 2	$3s^23p4s$ $^3P_1^{\circ}$ 2	18 561.0 18 561.0 9 302.5	1 336 220 1 354 680 1 354 680		2.0 - 1 $4.4 - 1$ $1.7 - 1$	7.7+10 1.0+11 4.1+10	D D D	12,25°,165* 12,25°,165* 25°,165*
64.139	$3s^23p^2$ ¹ S ₀	$3s^23p4d\ ^1\mathrm{P}_1^{\mathrm{o}}$	91 508	1 650 620		3.9 - 1	2.1+11	D	51°,165*
63.188	$3s^23p^{2-1}D_2$	$3s^23p4d$ $^1\mathrm{F}_3^\circ$	48 068	1 630 650		1.7	3.9+11	D	25,51°,165*
62.963 62.699 62.353	$3s^23p^2 \ ^3P_2$	$3s^23p4d\ ^3{ m D}_3^{ m o}$	18 561.0 9 302.5 0.0	1 606 800 1 604 220 1 603 770		6.9 - 1 $3.5 - 1$	2.3+11 2.0+11	E D	25,51° 25,51°,165* 51°,165*
62.46	$3s^23p^2$ 3 P ₂	$3s^23p4d\ ^3{ m F}_3^{ m o}$	18 561.0	1 619 600		4.9 - 1	1.2+11	D	51°,165*
62.10	$3s^23p^2$ 3P_1	$3s^23p4d\ ^3P_0^o$	9 302.5	1 620 000		9.3 - 2	1.6+11	D	51°, 165*

 $\mathbf{Fe} \ xiv$

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
5302.86	$3s^23p\ ^2P_{1/2}^{\circ}$	$3s^23p\ ^2P_{3/2}^{\circ}$	0.0	18 852.5	M1	6.02+1	С	19,38°,195*
544.304 ^C	$3s3p^2\ ^2\mathrm{P}_{3/2}$	$3p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{5/2}$	396 512	580 233				58
519.508 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	396 512	589 002	1.0 - 2	6.5+7	E	165*
484.60	$3s^23p\ ^2P_{3/2}^{o}$	$3s3p^2 {}^4P_{1/2}$	18 852.5	225 114				52°, 208
467.40	3/2	3/2	18 852.5	232 789				52,53°,208
447.36	3/2	5/2	18 852.5	242 387	4.4 - 3	2.5 + 7	\mathbf{E}	52,53°,165*,208
444.25	1/2	1/2	0.0	225 114				52,53°,208
406.838 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^3 {}^2P_{1/2}^{\circ}$	396 512	642 310	3.5 - 2	7.1 + 8	\mathbf{E}	165*
401.773 ^C	3/2	3/2	396 512	645 409	2.6 - 1	2.7 + 9	D	58,165*
394.011 ^C	1/2	1/2	388 510	642 310	1.5 - 1	3.3+9	D	58,165*
370.696 ^C	$3s^23d^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}F_{5/2}^{\circ}$	475 202	744 965	4.3 - 2	3.4+8	Е	165*
367.996 ^C	3/2	5/2	473 223	744 965	1.7 - 1	1.4+9	E	165*
351.356^{C}	5/2	7/2	475 202	759 814	3.2 - 1	2.2+9	E	58, 165*
360.827	$3s3p^2 \ ^2D_{3/2}$	$3p^{3} {}^{2}D_{3/2}^{\circ}$	299 242	576 383				56°,58
358.681		- , -	301 469	580 233	3.5 - 1	3.0+9	E	56°,58,165*
355.883 ^C	5/2 3/2	5/2 5/2	299 242	580 233	3.5 - 1 $3.5 - 2$	3.0+9 $3.1+8$	E	58, 165*
C								
360.208 ^C	$3s3p^2$ 2 S _{1/2}	$3p^3 {}^{2}P_{1/2}^{\circ}$	364 693	642 310	5.0 - 3	1.3 + 8	É	165*
356.232 ^C	1/2	3/2	364 693	645 409	1.4 - 1	1.9 + 9	D	58, 165*
359.342	3s3p(3Po)3d 4Do	$3p^2(^3P)3d^4F_{5/2}$	692 662	970 948				59
356.505	7/2	9/2	703 393	983 894				59
356.60	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s3p^2 {}^2D_{3/2}$	18 852.5	299 242	5.6 - 3	7.5+7	E	32°, 33, 165*
353.829		•	18 852.5	301 469	3.0 - 3 $2.2 - 1$	1.9+9	D	20, 32, 33, 47, 56°, 165*
334.171	3/2 1/2	5/2 3/2	0.0	299 242	1.5 - 1	2.3+9	D	20, 32, 33, 56°, 165*, 178
348.547	3s3p(³ P°)3d ⁴ P° _{5/2}	$3p^2(^3P)3d\ ^4F_{7/2}$	690 304	977 283				59
345.113 ^C	$3s3p^2 \ ^2D_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	299 242	589 002	8.0 - 3	1.1+8	E	165*
308.998	3s3p(³ P°)3d ⁴ F° _{9/2}	$3p^2(^3P)3d^4F_{9/2}$	660 263	983 894				59
307.73	5/2	5/2	645 988	970 948				59
307.403	7/2	7/2	651 946	977 283				59
303.573	$3s3p(^3P^{\circ})3d^4D^{\circ}_{7/2}$	$3p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	703 393	1 032 802				59
301.286 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	475 202	807 113	2.2 - 2	4.1+8	100	101*
299.500 ^C	3/2	3/2	473 202	807 113	3.0 - 2	4.1+8 5.7+8	E E	165* 165*
295.993 ^C	$3s3p^2 {}^4P_{5/2}$							
295.993	-,-	$3p^3 {}^2D_{5/2}^{\circ}$	242 387	580 233	6.6 - 3	8.5+7	E	165*
293.321	$3s3p(^{3}P^{\circ})3d^{4}D_{5/2}^{\circ}$	$3p^2(^3P)3d^4P_{3/2}$	704 114	1 045 029				59
285.698	1/2	1/2	694 168	1 044 188				59
283.795	3/2	3/2	692 662	1 045 029				59
292.036	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{1}P^{o})3d^{2}F_{7/2}^{o}$	475 202	817 593	2.5	2.4 + 10	\mathbf{E}	56°, 58, 165*
$289.520^{\rm C}$	5/2	5/2	475 202	820 601	7.2 - 2	9.5 + 8	E	165*
287.859	3/2	5/2	473 223	820 601	1.9	2.5+10	\mathbf{E}	56°, 58, 165*
291.652	$3s3p(^{3}P^{o})3d\ ^{4}F_{9/2}^{o}$	$3p^2(^3P)3d\ ^4D_{7/2}$	660 263	1 003 137				59
285.877	5/2	3/2	645 988	995 789				59
285.477	5/2	5/2	645 988	996 279				59
291.492	$3s3p^2 {}^2D_{3/2}$	$3p^3 {}^2P_{1/2}^{\circ}$	299 242	642 310	3.2 - 1	1.3+10	D	56°,165*
290.747	5/2	3/2	301 469	645 409	4.9 - 1	9.7+9	D	56°, 58, 165*
288.878 ^C	3/2	3/2	299 242	645 409	6.4 - 2	1.3+9	D	165*
289.977	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	$3p^2(^3P)3d\ ^2D_{5/2}$	807 113	1 151 968				59
289.697	$3s3p(^{3}P^{\circ})3d^{2}F^{\circ}_{7/2}$	$3p^2(^3P)3d^2F_{7/2}$	759 814	1 105 002				59
281.635	5/2	5 <i>p</i> (1)3 <i>a</i> 1 7/2 5/2	744 965	1 099 985				59 59
289.123	$3s^23p\ ^2P_{3/2}^o$	$3s3p^2 {}^2S_{1/2}$	18 852.5	364 693	3.0 - 2	1.2 + 9	\mathbf{E}	12, 20, 32, 33, 56°, 165*, 17

Fe XIV - Continued

Wave-	Classifi	cation	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	6, 20	\ /			(-)		
288.512	$3s3p^2 {}^4P_{5/2}$	$3p^3 \ ^4S^{\circ}_{3/2}$	242 387	589 002	R	4 - 1	1.6+10	D	47,55°,56,165*
280.739	3/2	3/2	232 789	589 002		6 - 1	1.0+10 $1.2+10$	D	47,55°,56,165*
274.797	1/2	3/2	225 114	589 002		8 – 1	6.2+9	D	55°, 56, 165*
284.627	$3s3p(^{3}P^{\circ})3d\ ^{2}F_{5/2}^{\circ}$	$3p^2(^1{ m S})3d\ ^2{ m D}_{5/2}$	744 965	1 096 302					59
282.230	3s3p(³ P°)3d ⁴ P _{5/2}	$3p^2(^3P)3d^4P_{5/2}$	690 304	1 044 631					59
273.538	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	475 202	840 775	6.	0 - 1	1.4+10	E	56°, 58, 165*
272.1	3/2	3/2	473 223	840 775	3.	6 - 1	8.0+9	\mathbf{E}	58°,165*
270.765	5/2	5/2	475 202	844 477	1.		2.0+10	\mathbf{E}	56°, 58, 165*
269.357 ^C	3/2	5/2	473 223	844 477	2.	2 - 2	3.5 + 8	E	165*
273.000	$3s^23d\ ^2{ m D}_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	473 223	839 492	6.	8 – 1	3.1+10	D	56°, 58, 165*
271.404 ^C	5/2	3/2	475 202	843 656		2 - 1	1.6+10	D	165*
269.926	3/2	3/2	473 223	843 656		0 - 1	1.4+10	D	56°, 58, 165*
270.511	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s3p^2 {}^2P_{1/2}$	18 852.5	388 510	4.	8 – 1	2.1+10	D	11, 12, 20, 47, 54, 56°, 165*
264.785	3/2	3/2	18 852.5	396 512	1.	42	3.38+10	C-	178,192 11,12,20,54,56°,165*,
257.377	1/2	1/2	0.0	388 510	2.	8 - 1	1.4+10	D	178,192 11,12,20,54,56°,165*,
252.188	1/2	3/2	0.0	396 512	2.	90 - 1	7.6+9	C-	178,192 11,12,20,54,56°,165*,
							, .		178,192
263.70	$3s3p(^{1}P^{o})3d\ ^{2}F_{5/2}^{o}$	$3s3d^2 {}^2G_{7/2}$		1 199 820					59
261.450	7/2	9/2	817 593	1 200 075					59
261.274	$3s3p(^3P^{\circ})3d^{2}D_{3/2}^{\circ}$	$3p^2(^3P)3d^2F_{5/2}$	717 195	1 099 985					59
258.227	5/2	7/2	717 861	1 105 002					59
257.178 ^C	$3s3p^2 {}^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d\ ^{4}P_{5/2}^{\circ}$	301 469	690 304	5.	.3 – 2	8.9+8	E	165*
249.627	$3s3p(^{1}P^{o})3d^{2}D_{5/2}^{o}$	$3s3d^2$ 2 F $_{7/2}$	844 477	1 245 075					59
248.117	3/2	5/2	840 775	1 243 811					59
C	·								
248.803 ^C		$3s3p(^{3}P^{\circ})3d^{4}D^{\circ}_{7/2}$	301 469	703 393	2.	.5 - 2	3.3+8	E	165*
248.125 ^C	$3s3p^2 {}^4P_{5/2}$	$3p^{3} {}^{2}P_{3/2}^{\circ}$	242 387	645 409	7.	-2 - 3	2.0 + 8	\mathbf{E}	165*
242.354 ^C	3/2	3/2	232 789	645 409		-6 - 2	4.6+8	\mathbf{E}	165*
237.928 ^C	1/2	3/2	225 114	645 409	6.	-8 - 3	2.0 + 8	E	165*
$243.545^{\rm C}$	$3s3n^2$ ² P _{2/2}	$3s3p(^{3}P^{\circ})3d^{2}P_{3/2}^{\circ}$	396 512	807 113	3	.8 – 1	1.1+10	D	58,165*
238.890 ^C	1/2	3/2	388 510	807 113		-3 - 1 -4 - 2	4.1+8	E	165*
		•	000 010	001 110	-	.4 2	4.1.10	ь	100
240.159	$3s3p^2 {}^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}D_{5/2}^{\circ}$	301 469	717 861					56°,58
239.231	3/2	3/2	299 242	717 195					56°,58
235.800 ^C	$3s3p^2\ ^2\mathrm{P}_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}F_{5/2}^{\circ}$	396 512	820 601	1	6 - 2	3.1+8	E	165*
229.341	$3s3p(^{3}P^{o})3d\ ^{4}P^{o}_{5/2}$	$3s3d^2 {}^4{ m F}_{7/2}$	690 304	1 126 336					59
226.040	$3s3p^2$ $^2S_{1/2}$	$3s3p(^{3}P^{\circ})3d\ ^{2}P_{3/2}^{\circ}$	364 693	807 113	1	.2	3.9+10	D	56°,58,165*
225.744 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2P°	396 512	839 492	1	.36 - 1	8.89+9	C-	58,165*
223.618	3/2	3/2	396 512	843 656		.2 - 1	3.0+10	D	56°,58,165*
221.738 ^C	1/2	1/2	388 510	839 492		.6 - 1	5.8+10	D	58, 165*
219.710^{C}	1/2	3/2	388 510	843 656					58
225.481 ^C	$3s3p^2$ $^2D_{5/2}$	3s3p(3P°)3d F°	301 469	744 005			0.010	г	105*
225.481	·	-, -	301 469 299 242	744 965		.2 - 1	2.6+9	E	165*
218.169	3/2 5/2	5/2 7/2	301 469	744 965 759 814		0 - 1 0 - 1	1.3+10 $1.6+10$	E E	56°, 58, 165* 56°, 58, 165*
225.327	$3p^{3} {}^{4}S_{3/2}^{\circ}$	$3p^2(^1D)3d^2D_{5/2}$	589 002	1 032 802		_	,	_	59
00° 00°C	•	,							
225.092 ^C 223.222		$3s3p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	396 512	840 775		.8 - 2	2.3+9	E	165*
	3/2	5/2	396 512	844 477	2	.6	5.8 + 10	\mathbf{E}	56°,58,165*
$\frac{223.222}{221.124}$	1/2	3/2	388 510	840 775		.4	4.7+10	\mathbf{E}	56°, 58, 165*

Fe XIV - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
223.256 ^C	$3s3p^2 {}^4P_{5/2}$	3s3p(³ P°)3d ⁴ P° _{5/2}	242 387	690 304		1.4 – 1	3.0+9	E	165*
218.578	•	•	232 789	690 304		1.4 - 1 1.0	2.5+10	E	56°,165*
212.345	3/2 3/2	5/2 1/2	232 789	703 750		1.0	2.5-10	E	50 , 105 57
212.145	3/2	3/2	232 789	704 209					57
220.902 217.110	$3p^3 {}^2D^{\circ}_{5/2}$	$3p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	580 233 576 383	1 032 802 1 036 979					59 59
220.076	$3s^23p\ ^2P_{3/2}^{o}$	$3s^23d\ ^2{ m D}_{3/2}$	18 852.5	473 223		2.4 - 1	8.1+9	D	11,12,20,23,49,56°,165*
219.136	3/2	5/2	18 852.5	475 202		1.7	3.9+10	D	192 11, 12, 20, 39, 49, 56°, 58,
211.331	1/2	3/2	0.0	473 223		9.6 - 1	3.6+10	D	165*,192 11,12,20,23,39,49,56°, 165*,192
219.690	$3p^3 \ ^4S_{3/2}^{\circ}$	$3p^2(^3P)3d^4P_{1/2}$	589 002	1 044 188					59
219.474	3/2	5/2	589 002	1 044 631					59
219.289	3/2	3/2	589 002	1 045 029					59
216.928	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{3}P^{o})3d^{4}D_{7/2}^{o}$	242 387	703 393		2.28	4.04+10	C-	32,56°,165*
$216.742^{\rm C}$	3/2	1/2	232 789	694 168		6.4 - 3	4.5+8	\mathbf{E}	165*
216.576	5/2	5/2	242 387	704 114		1.1	2.7 + 10	D	56°,165*
213.906	1/2	3/2	225 114	692 662				_	56
213.176 212.154	1/2 3/2	1/2 5/2	$\begin{array}{c} 225 \ 114 \\ 232 \ 789 \end{array}$	694 168 704 114		5.6 - 1 $4.4 - 1$	$4.1+10 \\ 1.1+10$	D D	56°,165* 56°,165*
210.797	$3s3p(^{3}P^{\circ})3d\ ^{4}F_{7/2}^{\circ}$	$3s3d^2\ ^4{ m F}_{7/2}$	651 946	1 126 336					59
210.615 ^C	$3s3p^2$ 2 S _{1/2}	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	364 693	839 492		2.6 - 1	1.9+10	D	58,165*
$208.784^{\rm C}$	1/2	•	364 693	843 656		1.7 - 1	6.7+9	D	58, 165*
210.048 ^C	$3s3p^2\ ^2\mathrm{S}_{1/2}$	$3s3p(^{1}P^{o})3d\ ^{2}D_{3/2}^{o}$	364 693	840 775					58
193.752 ^C	$3s3p^2$ 2 D _{5/2}	$3s3p(^{1}P^{o})3d^{2}F_{7/2}^{o}$	301 469	817 593		1.2	2.7+10	E	58,165*
$192.629^{\rm C}$	5/2	5/2	301 469	820 601		4.7 - 2	1 4+9	\mathbf{E}	165*
191.806 ^C	3/2	5/2	299 242	820 601		8.4 - 1	2.6+10	E	58, 165*
193.264^{C}	$3s3p^2 {}^4P_{5/2}$	$3s3p(^3P^{\circ})3d\ ^2F^{\circ}_{7/2}$	242 387	759 814		1.9 - 2	4.2+8	E	165*
185.423 ^C	$3s3p^2$ ² D _{5/2}	3s3p(1P°)3d 2D°3/2	301 469	840 775		4.0 - 3	1.9+8	E	165*
184.661 ^C	3/2	3/2	299 242	840 775		1.8 - 3	8.8+7	E	165*
185.099 ^C	$3s3p^2$ 2 $D_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}P_{1/2}^{\circ}$	299 242	839 492		1.5 - 3	1.4+8	E	165*
184.438^{C}	5/2	3/2	301 469	843 656		5.6 - 3	2.7 + 8	E	165*
183.684 ^C	3/2	3/2	299 242	843 656		6.0 - 3	3.0+8	E	165*
173.851 ^C	$3s3p^2 {}^4\mathrm{P}_{5/2}$	$3s3p(^{1}P^{\alpha})3d^{2}F^{\alpha}_{7/2}$	242 387	817 593		1.2 - 2	3.3+8	E	165*
171.822 ^C	$3s3p^2 {}^4\mathrm{P}_{1/2}$	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	225 114	807 113		5.4 - 3	3.1+8	E	165*
91.273	$3s^23d^{-2}D_{3/2}$	$3s^24p\ ^2{ m P}_{1/2}^{ m o}$	473 223	1 568 840		1.4 - 1	5.6+10	D	25°,165*
91.009	5/2	35 4p 1 1/2 3/2	475 202	1 574 010		1.4 - 1 $2.5 - 1$	5.0+10 $5.1+10$	D	25°,165*
76.152	$3s^23d\ ^2{ m D}_{5/2}$	$3s^24f$ $^2F_{7/2}^{\circ}$	475 202	1 788 380		4.9	7.0+11	С	25°,165*
76.022	3/2	5/2	473 223	1 788 640		3.4	6.6+11	C	25°,165*
73.08	$3s3p(^{3}P^{\circ})3d^{4}F_{7/2}^{\circ}$	$3s3p(^{3}P^{\circ})4f^{-4}G_{9/2}$	651 946	2 020 000					25
72.95	5/2	7/2	645 988	2 017 000					25
72.80	9/2	11/2	660 263	2 034 000		8.4	8.8+11	D	25°,165*
71.377		$3s3p(^{1}P^{o})4s \ ^{2}P^{o}_{3/2}$	301 469	1 702 500					25
70.613	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^24s\ ^2{ m S}_{1/2}$	18 852.5	1 435 020		2.5 - 1	1.7+11	D	23, 25°, 50, 165*
69.66	1/2	1/2	0.0	1 435 020		1.3 - 1	8.9+10	D	23,25°,50,165*
70.251	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{3}P^{\circ})4s \ ^{4}P^{\circ}_{3/2}$	242 387	1 666 100		2.4 - 1	8.1 + 10	D	25°,165*
69.667	5/2	5/2	242 387	1 678 100		5.5 - 1	1.3+11	$\tilde{\mathbf{D}}$	25°,165*
69.386	1/2	3/2	225 114	1 666 100		2.2 - 1	7.6+10	D	25°, 165*
69.176	3/2	5/2	232 789	1 678 100		2.4 - 1	5.6 + 10	D	25°, 165*
	0 20 200	$3s^24d\ ^2D_{5/2}$	10 0 0 0				0.1.11	0	00 50 000 105* 101
59.579	$3s^23p\ ^2{ m P}_{3/2}^{ m o}$	38 4a D _{5/2}	18 852.5	1 697 290		1.0	3.1 + 11	$^{\rm C}$	23,50,60°,165*,184

Fe xv

Wave- ength (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
058.6	2p ⁶ 3s3p ³ P ₁ °	$2p^63s3p\ ^3P_2^{\circ}$	239 660	253 820		M1	3.74+1	С	19°, 195*
536.418	$2p^63s3d\ ^1\mathrm{D}_2$	$2p^63p3d\ ^1{ m D}_2^{ m o}$	762 093	948 513	330	1.6 - 1	7.4+8	a	61°,165*
493.552 ^C	$2p^63s3p^{-1}P_1^{\circ}$	$2p^63p^2$ 3P_0	351 911	554 524		2.3 - 3	6.4 + 7	E	165*
470.166 ^C	1	1	351 911	564 602	_	8.4 4	8.4+6	E	165*
134.98	1	2	351 911	581 803	2	6.6 - 2	4.7+8	E	62°,165*
481.493	$2p^63s3p\ ^1\mathrm{P_1^o}$	$2p^63p^2$ ¹ D ₂	351 911	559 600	260	2.7 - 1	1.6+9	E	47,61°,64,165*,182,186
417.258	$2p^63s^2$ ¹ S ₀	$2p^63s3p\ ^3P_1^{\circ}$	0	239 660		3.2 - 3	4.1+7	E	20°, 61, 64, 68, 69, 165*, 182, 192
405.145 ^C	$2p^63s3d\ ^3{ m D_3}$	$2p^63p3d\ ^3F_2^{\circ}$	681 416	928 241		1.4 - 3	1.1 + 7	E	165*
102.48	2	2	679 785	928 241	1	1.1 - 1	9.1 + 8	D	62°,165*
100.851	1	2	678 772	928 241	190	3.9 - 1	3.2+9	D	47,61°,165*
389.54 387.086	3	3	681 416 679 785	938 126 938 126	$\begin{array}{c} 1 \\ 280 \end{array}$	1.6 - 1 $6.5 - 1$	1.0+9 $4.1+9$	C C	62°, 165* 47, 61°, 165*
372.798	2	4	681 416	949 658	440	1.12	6.0+9	č	47,61°,165*
32.854	$2p^63s3d\ ^1{ m D}_2$	$2p^63p3d\ ^1F_3^0$	762 093	1 062 515	370	2.1	1.8+10	D	61°,165*
331.083	$2p^63s3d\ ^3D_3$	$2p^63p3d\ ^3P_2^{\circ}$	681 416	983 514	170				61
315.998 ^C	2	1	679 785	996 243		1.3 - 1	2.9 + 9	E	165*
315.341 ^C	1	0	678 772	995 889		1.6 - 1	1.1+10	C	165*
314.99	1	1	678 772	996 243	3	3.6 - 1	7.9 + 9	E	62°,165*
329.94	$2p^63s3d\ ^3{ m D_2}$	$2p^6 3p3d ^3 D_1^{\circ}$	679 785	982 868	4	3.3 - 1	6.6+9	Е	62°,165*
328.844 ^C	1	1	678 772	982 868	•	9.9 - 2	2.0+9	E	165*
319.047	3	3	681 416	994 852	180	8.4 - 1	7.7+9	Ĉ	61°, 165*
317.393 ^C	2	3	679 785	994 852		2.0 - 1	1.9 + 9	\mathbf{C}	165*
315.559	2	2	679 785	996 623	120				61
327.024 312.556	$2p^6 3s3p \ ^3P_2^{\circ}$	$2p^63p^{2-1}D_2$	253 820 239 660	559 600 559 600	200 70	1.6 - 1 $8.1 - 2$	2.0+9 1.1+9	E E	61°, 64, 165* 61°, 64, 165*
324.975	$2p^63s3p^{-1}P_1^0$	$2p^63p^2$ ¹ S ₀	351 911	659 627	180	3.09 - 1	1.97+10	C	61°,64,165*
321.771	$2p^63s3p\ ^3{ m P}_2^{ m o}$	$2p^63p^2$ 3P_1	253 820	564 602	310	3.3 - 1	7.1 + 9	C	54,61°,64,165*,178
317.597	1	0	239 660	554 524	220	2.7 - 1	1.77 + 10	C	32, 54, 61°, 165*
307.730	1	1	239 660	564 602	220	2.1 - 1	4.91 + 9	C	32,61°,64,165*
304.894 302.334	2	2	253 820 233 842	581 803 564 602	400 140	9.0 - 1 $2.85 - 1$	$1.3+10 \\ 6.9+9$	D C	32,54,61°,165* 32,61°,165*
292.275	0	1 2	239 660	581 803	220	2.9 - 1	4.5+9	ď	32,61°,165*
319.70	$2p^6 3s 3d^{-1} D_2$	$2p^63p3d\ ^1P_1^{\circ}$	762 093	1 074 887	4	6.0 - 1	1.3+10	D	62°,165*
305.940 ^C	2-62-2-100	$2p^63s3d\ ^3{ m D}_1$	951 011	670 770		11 0	0.6.7	Б	107*
305.940 304.995 ^C	$2p^63s3p^{-1}P_1^0$	2p 3\$3a D ₁	351 911 351 911	678 772 679 785		1.1 - 3 $2.1 - 3$	$2.6+7 \\ 3.0+7$	E E	165* 165*
						2.1	0.0 , .		
305.15	$2p^63p3d$ ¹ P ₁ °	$2p^6 3d^2 {}^1D_2$	1 074 887	1 402 592	1				67
290.239	$2p^63p3d\ ^1F_3^{\circ}$	$2p^63d^2$ 1G_4	1 062 515	1 407 058	4				65°, 66, 67
284.164	$2p^63s^2$ ¹ S ₀	$2p^63s3p^{-1}P_1^0$	0	351 911	1000	8.27 - 1	2.28+10	В	11, 12, 49, 61°, 63, 64, 68, 69, 165* 178,192
272.70	$2p^63p^2$ 3P_2	$2p^63p3d$ $^1\mathrm{D}^o_2$	581 803	948 513	1				62
271.27	$2p^63p^2$ ¹ D ₂	$2p^63p3d\ ^3{ m F}_2^{\circ}$	559 600	928 241	2				62
267.303 257.384	$2p^6 3p3d \ ^3P_1^{\circ}$	$2p^63d^2\ ^3{ m F}_2$	996 243 983 514	1 370 331 1 372 035	1				65 65°,66,67
266.377	$2p^63p3d\ ^3{ m D}^{ m o}_2$	$2p^63d^2$ 3 F ₃	996 623	1 372 035	2				65°, 66, 67
263.685 258.088	3	4 2	994 852 982 868	1 374 056 1 370 331	5				65°, 66, 67 65°, 66, 67
257.127	$2p^63p^2$ 1D_2	$2p^63p3d\ ^1{ m D}_2^{ m o}$	559 600	948 513	210	7.0 - 1	1.4+10	E	61°,165*
249.336 ^C	$2p^63p^2$ 3P_2	$2p^63p3d\ ^3D_1^{\circ}$	581 803	982 868		8.0 - 3	2.9+8	E	165*
242.100	2	3	581 803	994 852	200	1.4	2.3+10	$\vec{\mathbf{D}}$	61°,165*
241.066	2	2	581 803	996 623	100				61
_			564 602	982 868		1.1 - 1	4.3 + 9	E	165*
239.082 ^C 233.46	1 0	1	554 524	982 868	2	6.3 - 1	2.5+10	E	62°, 165*

Fe xv - Continued

		···							
Wave- length (Å)	Classific Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	9f	$A (s^{-1})$	Acc.	References
243.794	$2p^63s3p^{-1}P_1^{\circ}$	$2p^63s3d$ $^1\mathrm{D}_2$	351 911	762 093	390	1.9	4.2+10	D	61°, 63, 64, 165*, 186
243.235	$2p^63p3d~^3\mathrm{D_2^o}$	$2p^63d^2\ ^3{ m P}_2$	996 623	1 407 773	3				67
242.620	$2p^63p3d\ ^1\mathrm{P_1^o}$	$2p^63d^2$ ¹ S ₀	1 074 887	1 487 054	1				67
241.289^{C} 238.708	$2p^63p^2$ 3P_2	$2p^6 3p3d \ ^3P_1^{\circ}$	581 803 564 602	996 243 983 514	140	1.7 - 1	6.5 + 9	E	165* 61
231.87 231.68	1 1 1	0	564 602 564 602	995 889 996 243	2 2	1.7 - 1 $3.6 - 1$	2.1+10 1.5+10	E E	62°,165* 61,62°,165*
240.81	$2p^63p^2$ ¹ S ₀	$2p^6 3p3d\ ^1P_1^{\circ}$	659 627	1 074 887	3	6.4 - 1	2.4+10	C	62°,165*
238.114 ^C	$2p^63s3p\ ^3P_1^{\circ}$	$2p^63p^2$ ¹ S ₀	239 660	659 627		2.7 - 3	3.2+8	E	165*
235.638 230.463 226.220	$2p^63p3d\ ^3F_4^{\circ}$	$2p^6 3d^2 {}^3 \mathrm{F}_4$	949 658 938 126 928 241	1 374 056 1 372 035 1 370 331	4 1 1				65°, 66, 67 65°, 66, 67 65°, 67
235.32 ^C 234.782 233.865	$2p^6 3s 3p \ ^3 P_2^o$ 2	$2p^6 3s3d\ ^3{ m D}_1$	253 820 253 820 253 820	678 772 679 785 681 416	60 290	1.6 - 2 $2.27 - 1$ 1.3	6.2+8 5.5+9 2.2+10	D C C	165* 61°, 64, 165* 11, 12, 23, 49, 61°, 63, 64, 165*, 178,
227.734 227.206 224.754	1 1 0	1 2 1	239 660 239 660 233 842	678 772 679 785 678 772	140 220 90	2.3 - 1 $6.9 - 1$ $3.14 - 1$	9.8+9 1.8+10 1.38+10	C C C	192 49,61°,63,165* 11,49,61°,63,64,165*,178 11,49,61°,63,64,165*
229.744	$2p^63p^2$ 1D_2	$2p^63p3d\ ^3{ m D}_3^{ m o}$	559 600	994 852	60				61
220.22	$2p^63p3d\ ^1{ m D}_2^{\circ}$	$2p^63d^2~^1\mathrm{D}_2$	948 513	1 402 592	1				67
208.034	$2p^63p^2\ ^3{ m P}_2$	$2p^6 3p3d\ ^1{\rm F}^o_3$	581 803	1 062 515	60				61
198.867	$2p^63p^2$ 1D_2	$2p^63p3d\ ^1{ m F}_3^{ m o}$	559 600	1 062 515					61
196.74 ^C 191.41 ^C	$2p^63s3p$ $^3P_2^{\circ}$	$2p^63s3d\ ^1{ m D}_2$	253 820 239 660	762 093 762 093		4.7 - 4 $9.6 - 3$	1.6+7 3.5+8	E E	165* 165*
194.067 ^C	$2p^63p^{2-1}D_2$	$2p^63p3d\ ^1\mathrm{P_1^o}$	559 600	1 074 887		6.5 - 3	3.8+8	E	165*
73.473	$2p^63s3d\ ^1{ m D}_2$	$2p^63s4f\ ^1{ m F}_3^o$	762 093	2 123 150		3.5	6.2+11	C	12, 25, 64°, 165*
73.471	$2p^63p3d\ ^1P_1^{\circ}$	$2p^63p4f^{-1}D_2$	1 074 887	2 436 000					51
73.199	$2p^63p3d\ ^1{ m F}_3^{\circ}$	$2p^63p4f^{-1}G_4$	1 062 515	2 428 700		6.4	8.8+11	C-	51°,165*
71.267	$2p^63p3d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$2p^63p4f^{-1}F_3$	983 514	2 386 700					51
$71.062 \\ 71.062$	$2p^6 3p3d \ ^3\mathrm{D_3^o}$	$2p^6 3p4f \ ^3 \mathrm{F}_4$	994 852 982 868	2 402 100 2 390 100					25,51° 25,51°
70.601	$2p^63p3d\ ^3{ m D}_2^{ m o}$	$2p^63p4f$ $^3\mathrm{D}_3$	996 623	2 413 000					25,51°
70.519 70.224 70.224	$2p^6 3p3d\ ^3\mathrm{P_1^o}$	$2p^63p4f\ ^3\mathrm{D}_2$	996 243 995 889 996 243	2 414 300 2 420 100 2 420 100		9.2 - 1	4.13+11	C	25,51°, 25,51°,165° 25,51°
70.054 69.987 69.945	$2p^6 3s3d\ ^3{ m D}_3$	$2p^6 3s4f \ ^3 F_4^o \ _3$	681 416 679 785 678 772	2 108 880 2 108 620 2 108 520	4 3 2	5.8 4.1 2.7	8.8+11 $7.9+11$ $7.4+11$	C C- C	12, 25, 51, 60°, 64, 71, 165* 25, 51, 60°, 64, 165* 51, 60°, 64, 165*
69.66	$2p^63s3p^{-1}P_1^0$	$2p^63s4s^{-1}S_0$	351 911	1 787 000		1.4 - 1	1.9+11	C	64°,165*
69.534	$2p^63p3d^{-1}D_2^0$	$2p^63p4f^{-1}F_3$	948 513	2 386 700					25,51°
69.036 68.883 68.849	$2p^63p3d\ ^3F_3^0$	$2p^6 3p4f \ ^3 G_4$	938 126 928 241 949 658	2 386 700 2 380 160 2 402 100		7.2	9.2+11	С	25°,51 25°,51 25°,51,165*
66.238 65.612 65.370	$2p^63s3p\ ^3\mathrm{P}_2^\circ$	$2p^6 3s4s\ ^3 { m S}_1$	253 820 239 660 233 842	1 763 700 1 763 700 1 763 700	1 1	3.1 - 1 $1.9 - 1$ $6.2 - 2$	1.6+11 9.8+10 3.2+10	000	70°,165* 70°,71,165* 64,70°,71,165*
63.96	$2p^63p^2$ 1D ₂	$2p^63s4f$ $^1F_3^{\circ}$	559 600	2 123 150		7.0 - 1	1.6+11	E	64°, 165*, 186
59.404	$2p^63s3p^{-1}P_1^{o}$	$2p^63s4d$ $^1\mathrm{D}_2$	351 911	2 035 280		9.0 - 1	3.4+11	C-	25°, 64, 165*

Fe xv - Continued

Wave-	Classifi		Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
56.236	$2p^63s3p\ ^3P_2^{o}$	$2p^63s4d\ ^3\mathrm{D}_2$	253 820	2 032 020					60
56.200	2	3	253 820	2 033 180	3				60°,71
55.815	1	1	239 660	2 031 310					60
55.793	1	2	239 660	2 032 020	2				60°,71
55.635	0	1	233 842	2 031 310	1				60°,71
52.911	$2p^63s^2$ 1S_0	$2p^6 3s4p^{-1} P_1^o$	0	1 889 970	3	3.70 - 1	2.94 + 11	C	12,50,60°,64,71,165*
50.120	$2p^63s3d\ ^3{\rm D}_3$	$2p^63s5f\ ^3{ m F_4^o}$	681 416	2 676 600	1				60°,71
50.085	2	3	679 785	2 676 400					60
50.062	1	2	678 772	2 676 400					60
49.49	$2p^63s3d$ $^1\mathrm{D}_2$	$2p^63s5f\ ^1{ m F}_3^{ m o}$	762 093	2 782 700					71
43.65	$2p^63s3p\ ^3P_2^{o}$	$2p^63s5s \ ^3\mathrm{S}_1$	253 820	2 544 800					71
43.39	$2p^63s3d$ $^3\mathrm{D}_3$	$2p^6 3s6f\ ^3{ m F}_4^{ m o}$	681 416	2 986 100					71
42.93	$2p^63s3d$ $^1\mathrm{D}_2$	$2p^63s6f\ ^1{ m F}_3^o$	762 093	3 091 500					71
41.903	$2p^63s3p\ ^3P_2^{\circ}$	$2p^63s5d$ $^3\mathrm{D}_3$	253 820	2 640 300	4				70
41.663	1 step 1 2	2p 5550 23	239 660	2 639 900	3				70
41.559	0	1	233 842	2 640 100	1				70
38.95	$2p^63s^2$ 1 S ₀	$2p^63s5p^{-1}P_1^0$	0	2 567 000		1.15 - 1	1.69+11	\mathbf{C}	71°,165*
17.917	$2p^63s3p\ ^1P_1^{\circ}$	$2p^53s^23p^{-1}P_1$	351 911	5 933 200?	7				72
17.880	$2p^63s3p\ ^1{ m P_1^o}$	$2p^53s^23p^3P_2$	351 911	5 947 500?	11				72
17.620	$2p^63s3p\ ^3P_2^{o}$	$2p^53s^23p^{\ 3}{ m D}_3$	253 820	5 929 200?	19				72
17.593	$2p^63s3p^{-1}P_1^o$	$2p^53s^23p$ 3D_2	351 911	6 036 000?	19				72
17.555	2n63s3n 3Po	$2p^53s^23p\ ^3\mathrm{P}_2$	253 820	5 947 500?	7				72
17.300	-p 000p 12	-p 00 0p 12	253 820	6 034 200?	5				72

 \mathbf{Fe} XVI

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	References 165* 165* 165* 165* 165* 11, 20, 63, 69, 70* 73°, 165* 11, 20, 63, 69, 70* 73°, 165* 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165* 165* 11, 20, 63, 69, 70: 73°, 165* 11, 20, 63, 69, 70: 73°, 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165* 165* 11, 20, 63, 69, 70: 73°, 165* 11, 20, 63, 69, 70: 73°, 165* 165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165* 11, 20, 63, 69, 70: 73°, 165* 11, 20, 63, 69, 70: 73°, 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165* 11,20,63,69,70* 73°,165* 11,20,63,69,70* 73°,165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 11, 20, 63, 69, 70 73°, 165* 11, 20, 63, 69, 70 73°, 165* 165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11, 20, 63, 69, 70, 73°, 165* 11, 20, 63, 69, 70, 73°, 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73°,165* 11,20,63,69,70' 73°,165* 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73°,165* 165* 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 70 70 70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63, 70, 73°, 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,12,20,23,63, 70,73°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,12,20,49,63, 70,73°,165*
235.01 ^C 3/2 5/2 2 721 160 3 146 670 9.2 - 1 1.8+10 C	76
235.01 ^C 3/2 5/2 2 721 160 3 146 670 9.2 - 1 1.8+10 C	165*
000.1*C	165*
	165*
$2p^65f$ $^2\mathrm{F}^{\circ}_{7/2}$ $2p^67d$ $^2\mathrm{D}_{5/2}$ 2 818 900 3 360 800 $6.7-2$ $2.2+9$ D	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
3/2 5/3 5/2 5/2 5/2 2 818 600 3 360 800 3.3 - 2 1.1+9 E	165*
171.69 ^C $2p^65d$ $^2D_{5/2}$ $2p^67f$ $^2F_{7/2}$ 2 788 610 3 371 070 1.0 2.9+10 C 171.64 ^C 5/2 2 788 610 3 371 210 5.0 - 2 1.9+9 D	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165*
	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165*
168.01^{C} $5/2$ $3/2$ $2 125 960$ $2 721 160$ $5.2 - 1$ $3.1 + 10$ C 167.66^{C} $3/2$ $2 124 720$ $2 721 160$ $6.0 - 2$ $3.6 + 9$ D	165*
-/-	165*
$166.16^{\text{C}} \qquad 2p^65p^{\ 2}\text{P}^{\circ}_{3/2} \qquad \qquad 2p^67s^{\ 2}\text{S}_{1/2} 2\ 721\ 160 3\ 323\ 000 \qquad \qquad 1.2-1 \qquad 1.4+10 \text{C}$	165*
165.06^{C} $1/2$ $1/2$ $2.717.170$ $3.323.000$ $6.2-2$ $7.6+9$ C	165*
$2p^{6}4f ^{2}F^{o}_{5/2} \qquad \qquad 2p^{6}5d ^{2}D_{3/2} 2 184 960 2 788 050 \qquad \qquad 1.1 - 1 6.6 + 9 C$	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165* 165*
$7/2$ $5/2$ 2 183 410 2 183 610 1.3 - 1 0.2 + 3 C 165.66^{C} $5/2$ 2 184 960 2 788 610 7.8 - 3 3.1 + 8 D	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75°,198
1,2	75°,198
$156.41^{\rm C} \qquad 2p^65p^{\ 2}{\rm P}_{3/2}^{\rm o} \qquad \qquad 2p^67d^{\ 2}{\rm D}_{3/2} 2\ 721\ 160 3\ 360\ 500 \qquad \qquad 3.5-2 2.4+9 \qquad {\rm D}$	165*
156.34 ^C 3/2 5/2 2 721 160 3 360 800 3.1 - 1 1.4+10 C	165*
3/2 2 717 170 3 360 500 1.8 - 1 1.2+10 C	100
$2p^6 4p \ ^2P_{3/2}^{\circ}$ $2p^6 5s \ ^2S_{1/2}$ 1 985 650 2 662 000 4.24 - 1 6.50+10 C	165*
146.1^{C} $1/2$ 1	165*
·-	
$2p^65f$ $^2F_{7/2}^{\circ}$ $2p^68d$ $^2D_{5/2}$ 2 818 900 3 499 900 $2.2-2$ $1.2+9$ D	165* 165* 165*
147.02^{C} 5/2 3/2 2 818 600 3 498 800 1.7 + 2 1.3 + 9 D 146.97^{C} 5/2 2 818 600 3 499 000 1.2 - 3 6.1 + 7 E	165* 165* 165*
5/2 $5/2$ $5/2$ 2.818600 3.499000 $1.2-3$ $6.1+7$ E	165* 165* 165*

Fe XVI - Continued

Wave- length (Å)	Lower	Classification Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
144.4 ^C	$2p^64d^{2}D_{5/2}$	$2p^65f$ 2 F $^{\circ}_{5/2}$	2 125 960	2 818 600		2.0 - 1	1.1+10	D	165*
144.25	5/2	7/2	2 125 960	2 818 900	ы	4.0	1.6+11	c	75°,165*
144.06	3/2	5/2	2 124 720	2 818 600		3.0	1.6+11	Č	75°,165*
139.45 ^C	$2p^65d^{2}D_{5/2}$	$2p^68f~^2{ m F}^{\circ}_{5/2}$	2 788 610	3 505 700		2.2 - 2	1.2+9	D	165*
139.43 ^C	5/2	7/2	2 788 610	3 505 800		4.4 - 1	1.9+10	C	165*
139.34 ^C	3/2	5/2	2 788 050	3 505 700		3.0 - 1	1.7+10	č	165*
128.59 ^C	$2p^65p\ ^2{ m P}^{ m o}_{3/2}$	$2p^6 8d\ ^2{ m D}_{3/2}$	2 721 160	3 498 800		1.7 - 2	1.7 + 9	D	165*
128.56 ^C	3/2	5/2	2 721 160	3 499 000		1.5 - 1	1.0+10	C	165*
127.94 ^C	1/2	3/2	2 717 170	3 498 800		8.62 - 1	8.78+10	C	165*
124.63 ^C	$2p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^65d\ ^2{ m D}_{3/2}$	1 985 650	2 788 050		1.1 - 1	1.2+10	D	165*
124.54 ^C	3/2	5/2	1 985 650	2 788 610		9.6 - 1	7.0+10	C	165*
123.40 ^C	1/2	3/2	1 977 650	2 788 050		5.4 - 1	5.9+10	C	165*
6		, ,							
117.73 ^C	$2p^64s$ $^2S_{1/2}$	$2p^65p\ ^2\mathrm{P}^{\circ}_{1/2}$	1 867 740	2 717 170		1.6 - 1	3.9 + 10	C	165*
117.18 ^C	1/2	3/2	1 867 740	2 721 160		3.24 - 1	3.93 + 10	С	165*
101.87 ^C	$2p^64d^{-2}D_{3/2}$	$2p^66p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	2 124 720	3 106 400		5.2 - 2	1.6+10	C	165*
101.74 ^C	2p 4d D3/2 5/2	2p 0p 1 1/2 3/2	2 124 720	3 100 400		9.0 - 2	1.5+10	C	165*
101.61 ^C	3/2	3/2	2 124 720	3 108 900		1.0 - 2	1.6+9	Ď	165*
		•							
96.416 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{\circ}$	2 125 960	3 163 130		5.0 - 2	6.0 + 9	D	165*
96.411 ^C	5/2	7/2	2 125 960	3 163 190		1.0	9.3 + 10	C	165*
96.301 ^C	3/2	5/2	2 124 720	3 163 130		7.2 - 1	8.7 + 10	C	165*
91.714^{C}	$2p^64p^2P_{3/2}^{o}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	1 985 650	3 076 000		8.44 - 2	3.34+10	С	165*
91.046 ^C			1 977 650	3 076 000		4.24 - 2	1.70+10	C	165*
01.010	1/2	1/2	1 011 000	0 010 000		1.21	1.70 10	O	100
86.176^{C}	$2p^64p\ ^2{ m P}_{3/2}^{ m o}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	1 985 650	3 146 070		3.5 - 2	7.9 + 9	D	165*
86.131 ^C	3/2	5/2	1 985 650	3 146 670		3.2 - 1	4.8 + 10	C	165*
85.586 ^C	1/2	3/2	1 977 650	3 146 070		1.8 - 1	4.0+10	$^{\rm C}$	165*
85.078 ^C	$2p^64f$ $^2F_{7/2}^o$	$2p^67d\ ^2{ m D}_{5/2}$	2 185 410	3 360 800		8.8 - 3	1.4+9	D	165*
85.067 ^C	5/2		2 184 960	3 360 500		6.0 - 3	1.4+9	D	165*
85.046 ^C	5/2	•	2 184 960	3 360 800		4.3 - 4	6.6+7	E	165*
6									
80.732 ^C	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^{6}6p\ ^{2}\mathrm{P}_{1/2}^{\mathrm{o}}$	1 867 740	3 106 400		4.8 - 2	2.5 + 10	\mathbf{c}	165*
80.570 ^C	1/2	3/2	1 867 740	3 108 900		1.0 - 1	2.6 + 10	C	165*
80.314 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^67f\ ^2\mathrm{F}^{\mathrm{o}}_{7/2}$	2 125 960	3 371 070		4.1 - 1	5.4+10	С	165*
80.305 ^C	5/2	.,	2 125 960	3 371 210		2.2 - 2	3.7+9	D	165*
80.225^{C}	3/2		2 124 720	3 371 210		3.0 - 1	5.2+10	č	165*
		·							
76.796	$2p^63d\ ^2{ m D}_{3/2}$,-	675 501	1 977 650		1.36 - 1	7.72+10	В	25°,165*
76.502 76.327 ^C	5/2		678 406	1 985 650		2.35 - 1	6.70+10	В	25°,165*
	3/2	•	675 501	1 985 650		2.6 - 2	7.4+9	D	165*
$76.127^{\rm C}$	$2p^64f^{-2}F_{7/2}^{o}$	$2p^68d\ ^2\mathrm{D}_{5/2}$	2 185 410	3 499 000		4.4 - 3	8.4+8	E	165*
76.113 ^C	5/2		2 184 960	3 498 800		3.1 - 3	8.7+8	\mathbf{E}	165*
76.101 ^C	5/2		0 404 000	3 499 000		2.2 - 4	4.1 + 7	E	165*
74.775 ^C	9.064 200	$2p^67s\ ^2{ m S}_{1/2}$	1 005 050	0.000.000		0.0 -		_	***
74.775 74.330 ^C	$2p^{6}4p^{2}P_{3/2}^{\circ}$			3 323 000		3.2 - 2	1.9+10	D	165*
14.330	1/2	1/2	1 977 650	3 323 000		1.6 - 2	9.9 + 9	D	165*
72.735^{C}	$2p^64p^2P_{3/2}^{\circ}$	$2p^67d^{-2}D_{3/2}$	1 985 650	3 360 500		1.7 - 2	5.4+9	D	165*
72.719^{C}	3/2			3 360 800		1.6 - 1	3.2+10	C	165*
$72.314^{ m C}$	1/2			3 360 500		8.8 - 2	2.8+10	C	165*
72.477 ^C	$2p^64d\ ^2{ m D}_{5/2}$	0.604270	0.107.000	0 805 55-			0.4	_	
72.477° 72.472°	•	٠, ـ	0 40= 000	3 505 700		1.1 - 2	2.4+9	D	165*
72.472° 72.412°	5/2			3 505 800		2.2 - 1	3.5+10	C	165*
12.712	3/2	•	2 124 720	3 505 700		1.6 - 1	3.3 + 10	С	165*
66.377^{C}	$2p^6 3d^{-2}D_{5/2}$	$2p^64f^2F_{5/2}^{\circ}$	678 406	2 184 960)	2.65 - 1	6.69+10	В	165*
66.356 ^S	5/2		050 100	2 185 410		5.31	1.00+12	В	11,12,25,50,73°,
	-,-	-,-						_	74, 165*, 167
$66.249^{\rm S}$			675 501	2 184 960		3.71	9.39 + 11	В	11, 12, 25, 73°, 74,

Fe XVI - Continued

Wave-		Classification	Energy I au	als (cm -1)	Int of	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	Energy Lev	eis (cm -)	Int. gf	A (8 -)	Acc.	neierences
66.087 ^C	$2p^64p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^6 8d\ ^2\mathrm{D}_{3/2}$	1 985 650	3 498 800	9.6 - 3	3.7+9	D	165*
66.079 ^C	3/2	5/2	1 985 650	3 499 000	8.76 - 2	2.23 + 10	C	165*
65.740 ^C	1/2	3/2	1 977 650	3 498 800	4.90 - 2	1.89 + 10	C	165*
63.711	$2p^63p\ ^2\mathrm{P}^o_{3/2}$	$2p^64s\ ^2{ m S}_{1/2}$	298 143	1 867 740	2.65 - 1	2.18+11	В	11,12,25°,50,71, 74,165*
62.871	1/2	1/2	277 194	1 867 740	1.25 - 1	1.05+11	В	11, 12, 25°, 50, 71, 74, 165*
54.747	$2p^63p^2P_{3/2}^o$	$2p^64d\ ^2{ m D}_{3/2}$	298 143	2 124 720	1.25 - 1	6.97+10	В	25°,74,165*
54.710	3/2	5/2	298 143	2 125 960	1.12	4.16 + 11	В	25°, 50, 74, 165*
54.127	1/2	3/2	277 194	2 124 720	6.00 - 1	3.41 + 11	В	12,25°,50,74,165*
50.565	$2p^63s \ ^2S_{1/2}$	$2p^64p\ ^2{ m P}_{1/2}^{ m o}$	0	1 977 650	1.51 - 1	1.98+11	В	25°,71,74,165*, 184
50.359	1/2	3/2	0	1 985 650	2.82 - 1	1.86+11	В	25°, 71, 74, 165*, 178,184
48.980 ^C	$2p^63d^{2}D_{3/2}$	$2p^65p\ ^2\mathrm{P_{1/2}^o}$	675 501	2 717 170	2.0 - 2	2.8+10	D	165*
48.97	5/2	3/2	678 406	2 721 160	3.7 - 2	2.6 + 10	D	71°,165*
48.884 ^C	3/2	3/2	675 501	2 721 160	4.0 - 3	2.9 + 9	E	165*
46.725 ^C	$2p^63d^2D_{5/2}$	$2p^65f$ $^2\mathrm{F}^{\circ}_{5/2}$	678 406	2 818 600	4.9 - 2	2.5+10	D	165*
46.718	5/2	7/2	678 406	2 818 900	9.66 - 1	3.70 + 11	C	71,74°,165*
46.661	3/2	5/2	675 501	2 818 600	6.76 - 1	3.46 + 11	C	71,74°,165*
42.30	$2p^63p^2P_{3/2}^{\circ}$	$2p^65s\ ^2{ m S}_{1/2}$	298 143	2 662 000	4.8 - 2	9.2+10	С	71°,165*
41.91	1/2	1/2	004	2 662 000	2.48 - 2	4.72+10	C	71°,165*
41.17	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^{6}6p~^{2}\mathrm{P}^{\circ}_{3/2}$	678 406	3 108 900	1.4 - 2	1.4+10	D	71°,165*
41.137 ^C	3/2		255 501	3 106 400	7.2 - 3	1.5+10	D	165*
41.095 ^C	3/2			3 108 900	1.6 - 3	1.5+9	E	165*
40.246 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^{6}6f$ $^{2}\mathrm{F}_{5/2}^{\mathrm{o}}$	678 406	3 163 130	1.8 - 2	1.2+10	D	165*
40.245	2p 5u D5/2 5/2	· · · · · · · · · · · · · · · · · · ·	070 400	3 163 190	3.5 - 1	1.8+11	C	70°, 71, 165*
40.199	3/2		055 501	3 163 130	2.5 - 1	1.7+11	Č	70°,165*
40.162^{C}	$2p^63p^2P_{3/2}^{\circ}$	$2p^65d\ ^2{ m D}_{3/2}$	298 143	2 788 050	3.9 - 2	4.1+10	D	165*
40.153	3/2		000 110	2 788 610	3.6 - 1	2.5+11	Ċ	71,74°,165*
39.827	1/2		077 104	2 788 050	2.0 - 1	2.1 + 11	C	71,74°,165*
37.138	$2p^6 3d\ ^2\mathrm{D}_{5/2}$	$2p^67f~^2\mathrm{F}^{\circ}_{7/2}$	678 406	3 371 070	1.76 - 1	1.07+11	\mathbf{C}	70°,71,165*
37.136^{C}	5/2		678 406	3 371 210	9.0 - 3	7.3 + 9	D	165*
37.096	3/2	•	675 501	3 371 210	1.24 - 1	1.00+11	С	70°,165*
36.803	$2p^63s \ ^2\mathrm{S}_{1/2}$	$2p^65p\ ^2\mathrm{P_{1/2}^o}$	0	2 717 170	4.8 - 2	1.2 + 11	D	70°,165*
36.749	1/2		^	2 721 160	9.0 - 2	1.1+11	C	70°,71,165*
36.01	$2p^63p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^66s\ ^2\mathrm{S}_{1/2}$	298 143	3 076 000	2.0 - 2	5.0+10	D	71°,165*
35.71	1/2		055 101		9.4 - 3	2.4+10	D	71°,165*
35.370^{C}	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^68f~^2F_{5/2}^{\circ}$	678 406	3 505 700	5.0 - 3	4.5+9	Е	165*
35.368	5/2		070 400	3 505 800			c	70°, 71, 165*
35.333	3/2	The state of the s		3 505 700	7.2 - 2	6.4+10	C	70°,165*
35.113 ^C	$2p^63p^{-2}P_{3/2}^{o}$	$2p^66d\ ^2{ m D}_{3/2}$	298 143	3 146 070	1.8 - 2	2.5+10	D	165*
35.106	3/2		000 140	3 146 670				70°,71,165*
34.857	1/2	The state of the s		3 146 070	8.98 - 2	1.23+11	\mathbf{C}	70°, 71, 165*
34.21	$2p^6 3d\ ^2\mathrm{D}_{5/2}$.,-	678 406	3 600 000				71
33.04	$2p^63p$ $^2P_{3/3}^{\circ}$	$2p^67s\ ^2\mathrm{S}_{1/2}$	298 143	3 323 000	1.0 - 2	3.1 + 10	D	71°,165*
32.84	1/2			3 323 000	5.0 - 3	1.5+10	D	71°,165*
32.655 ^C	$2p^63p^2P_{3/2}^{\circ}$	$2p^67d^2D_{3/2}$	298 143	3 360 500	9.2 - 3	1.5+10	D	165*
32.652	3/2		000 110	3 360 800		9.1+10	Ċ	70°,71,165*
32.433	1/2		055 101			7.7+10	C	70°,71,165*
32.192	$2p^63s^2S_{1/2}$	$2p^66p^2P_{1/2}^{\circ}$. 0	3 106 400	2.0 - 2	6.7+10	С	70°,165*
32.166	1/:		Δ.			6.8+10	Ċ	70°,71,165*
31.244 ^C	$2p^63p^{-2}P_{3/3}^{o}$	·		3 498 800	6.0 - 3	1.0+10	D	165*
31.242	$2p$ $3p$ $r_{3/3}$		000 140			6.1+10	C	70°,71,165*
31.041	1/:	•	055 104			5.2 + 10	č	70°,71,165*
	-,	-,-						

Fe xvI - Continued

Wave- length (Å)	Lower	Classification Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
30.33	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^69d\ ^2\mathrm{D}_{5/2}$	298 143	3 595 000					71
30.10	1/2	3/2	277 194	3 599 000					71
29.93	$2p^63s\ ^2{ m S}_{1/2}$	$2p^67p~^2\mathrm{P}^{\circ}_{3/2}$	0	3 341 000					71
28.67	$2p^63s\ ^2{ m S}_{1/2}$	$2p^68p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	3 488 000					71
27.88	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^69p\ ^2\mathrm{P}^{\circ}_{3/2}$	0	3 587 000					71
17.593	$2p^63p^{-2}P_{3/2}^{o}$	$2p^5(^2P_{3/2}^{\circ})3s3p(^3P_1^{\circ}) (\frac{3}{2},1)_{5/2}$	298 143	5 982 000	19				72
17.467	1/2	1/2	277 194	6 001 000	13				72
17.498	$2p^63p^2P_{3/2}^{o}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s3p(^{3}\mathrm{P}_{2}^{\circ})(\frac{3}{2},2)_{5/2}$	298 143	6 013 000	40				72
17.498	3/2	3/2	298 143	6 013 000	40				72
17.413	3/2	1/2	298 143	6 042 000	14				72
17.498	$2p^63d\ ^2{ m D}_{5/2}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s3d(^{3}\mathrm{D}_{3}) \ (\frac{3}{2},3)_{5/2}^{\circ}$	678 406	6 393 000	40				72
17.413	5/2	7/2	678 406	6 422 000	14				72
17.366	5/2	3/2	678 406	6 436 000	16				72
17.449	$2p^63d\ ^2{ m D}_{3/2}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s3d(^{3}\mathrm{D}_{1})(\frac{3}{2},1)_{5/2}^{\circ}$	675 501	6 406 000	16				72
17.413	3/2	3/2	675 501	6 419 000	14				72
17.399	$2p^63d^2D_{3/2}$	$2p^5(^2\mathrm{P}^{\circ}_{3/2})3s3d(^3\mathrm{D}_2) \ (\frac{3}{2},2)^{\circ}_{1/2}$	675 501	6 423 000	18				72
17.399	3/2	5/2	675 501	6 425 000	18				72
17.399	5/2	5/2	678 406	6 425 000	18				72
17.337	$2p^6 3d^2 D_{5/2}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s3d(^{1}\mathrm{D}_{2}) \ (\frac{3}{2},2)_{7/2}^{\circ}$	678 406	6 445 000	8				72
17.285	5/2	5/2	678 406	6 464 000	3				72
17.249	3/2	3/2	675 501	6 473 000	10				72
17.323	$2p^63s \ ^2S_{1/2}$	$2p^{5}(^{2}P^{o})3s^{2} {}^{2}P^{o}_{3/2}$	0	5 773 000	2				72°,188
17.025	1/2	1/2	0	5 873 000	9				72°,188
17.249	$2p^63p^{-2}P_{3/2}^{o}$	$2p^{5}(^{2}P_{1/2}^{\circ})3s3p(^{3}P_{2}^{\circ})(\frac{1}{2},2)_{3/2}$	298 143	6 096 000	10				72
17.249	$2p^63p^{-2}P_{1/2}^{o}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s3p(^{3}\mathrm{P}_{0}^{\circ})(\frac{1}{2},0)_{1/2}$	277 194	6 075 000	10				72
17.206	$2p^63p^{-2}P_{1/2}^{\circ}$	$2p^5(^2P_{1/2}^{\circ})3s3p(^3P_1^{\circ})(\frac{1}{2},1)_{3/2}$	277 194	6 089 000	17				72
17.206	$2p^63p^{-2}P_{2/2}^{\circ}$	$2p^{5}(^{2}P_{3/2}^{\circ})3s3p(^{1}P_{1}^{\circ})(\frac{3}{2},1)_{5/2}$	298 143	6 110 000	17				72
17.206	1/2	1/2	277 194	6 089 000	17				72
17.161	3/2	3/2	298 143	6 129 000	16				72
17.087	1/2	3/2	277 194	6 129 000	15				72
17.161	$2p^63d^{2}D_{3/2}$	$2p^{5}(^{2}P_{1/2}^{o})3s3d(^{3}D_{3})(\frac{1}{2},3)_{5/2}^{o}$	675 501	6 502 000	16				72
17.124	5/2	7/2	678 406	6 517 000	25				72
17.161	2n63d 2Days	$2p^5(^2\mathrm{P}_{1/2}^{\mathrm{o}})3s3d(^3\mathrm{D}_1) \ (\frac{1}{2},1)_{3/2}^{\mathrm{o}}$	675 501	6 502 000	16				72
16.952	$2p \ 3a \ D_{3/2}$ 3/2	$2p \left(\frac{1}{1/2} \right) 383u \left(\frac{D_1}{2}, \frac{1}{2}, \frac{1}{3/2} \right)$	675 501	6 574 000	2				72 72
		•							
17.124		$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s3d(^{3}\mathrm{D}_{2})\ (\frac{1}{2},2)_{5/2}^{\circ}$	675 501	6 516 000	25				72
17.124 17.087	5/2	5/2	678 406	6 516 000	25				72
11.001	5/2	3/2	678 406	6 530 000	15				72
17.025	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^5(^2P_{1/2}^{\circ})3s3d(^1D_2)(\frac{1}{2},2)_{5/2}^{\circ}$	678 406	6 556 000	9				72
16.993	3/2	5/2	675 501	6 556 000	7				72
16.890	3/2	3/2	675 501	6 595 000	13				72
16.890	$2p^63p^{-2}P_{3/2}^{o}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s3p(^{1}\mathrm{P}_{1}^{\circ})(\frac{1}{2},1)_{3/2}$	298 143	6 217 000					72
16.839	1/2	3/2	277 194	6 217 000	7				72
16.696	1/2	1/2	277 194	6 267 000					72

 \mathbf{Fe} XVII

Wave-	Classifi	cation	Energy Lev	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
length (Å)	Lower	Upper	Zircigy Dev		1116.	9)	A (0)	Act.	Tererences
1153.20	$2s^22p^5(^2\mathbf{P_{3/2}^{\circ}})3s\ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})3s\ (\frac{1}{2},\frac{1}{2})_0^{\circ}$	5 864 770	5 951 210		M1			79°
703.04 ^C	$2s^22p^5(^2P_{1/2}^{\circ})3s\ (\frac{1}{2},\frac{1}{2})_0^{\circ}$	$2s^22p^53p$ $^3{ m S}_1$	5 951 210	6 093 450		2.5 - 3	1.1+7	E	165*
437.30 409.91	$2s^22p^5(^2\mathrm{P}^o_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^o_1$	$2s^22p^53p^{-3}S_1$	5 864 770 5 849 490	6 093 450 6 093 450	2 10	2.5 - 1	3.3+9	D	80°, 174 53, 78, 79, 80°, 165*, 174
414.30 351.69 347.96	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3s\;(\frac{1}{2},\frac{1}{2})^{\circ}_{1}$	$2s^22p^53p\ ^3\mathrm{P}_0$	5 960 870 5 960 870 5 960 870	6 202 250 6 245 210 6 248 260	8 35				80 79,80°,174 53,78,79,80°,
340.12	0	1	5 951 210	6 245 210					174 79°
389.25	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^53p^3D_2$	5 864 770	6 121 690	20				53,78,79,80°,
367.37	2	2	5 849 490	6 121 690	25				174 53, 78, 79, 80°,
358.32	1	1	5 864 770	6 143 850	20				174 53,78,79,80°, 174
350.58	2	3	5 849 490	6 134 730	100	8.0 - 1	6.4+9	D	78,79,80°,81, 114,165*,174
$387.36 \\ 373.41$	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^53p^{-1}$ P ₁	5 960 870 5 951 210	6 219 030 6 219 030	10 25				79,80°,174 79°,174
370.989 ^C	$2s^22p^53p^{-3}$ P ₀	$2s^22p^53d\ ^3\mathrm{P_1^o}$	6 202 250	6 471 800		9.9 - 3	1.6+8	\mathbf{E}	165*
340.47	$2s^22p^5(^2\mathbf{P}^{\mathrm{o}}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	$2s^22p^53p^{-1}D_2$	5 864 770	6 158 470	45				53, 78, 79, 80°,
323.65	2	2	5 849 490	6 158 470	35				174 53,78,79,80°, 174
304.93	$2s^22p^53p^{-1}D_2$	$2s^22p^53d\ ^3\mathrm{P}_2^{\circ}$	6 158 470	6 486 400	30				79,80°,174
296.3	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_1$	$2s^22p^53p^{-3}P_0$	5 864 770	6 202 250					53,78,79,80°, 174
288.94	$2s^22p^53p^{-3}P_2$	$2s^22p^53d\ ^1{ m D}_2^{ m o}$	6 248 260	6 594 360					80
285.755^{C} 281.11	$2s^22p^53p^{-3}P_0$	$2s^22p^53d$ $^3\mathrm{D_1^o}$	6 202 250 6 245 210	6 552 200 6 600 950	25	1.7 - 1	4.6+9	D	165* 53,78,79,80°,
280.20	2	3	6 248 260	6 605 150					174 53,78,79,80°, 174
284.357 ^C	$2s^22p^53p^{-3}$ D ₃	$2s^22p^53d\ ^3\mathrm{P_2^o}$	6 134 730	6 486 400		2.8 - 2	4.6+8	E	165*
284.01	$2s^22p^53p^{-3}\mathrm{D}_3$	$2s^22p^53d\ ^3{ m F}_4^{ m o}$	6 134 730	6 486 8 30	100	1.2	1.1+10	D	53,78,79,80°, 81,165*,174
$279.1 \\ 275.6 \\ 269.41$	3 1 2	3 2 3	6 134 730 6 143 850 6 121 690	6 493 030 6 506 700 6 493 030	25				80 79,80°,174 53°,78,79,80,
259.6	2	2	6 121 690	6 506 700					174 80
280.20	$2s^22p^53p^{-1}D_2$	$2s^22p^53d\ ^1{ m F}_3^{ m o}$	6 158 470	6 515 350	85				53, 78, 79, 80°, 174
269.88	$2s^22p^53p^{-3}S_1$	$2s^22p^53d\ ^3\mathrm{P}^{\mathrm{o}}_0$	6 093 450	6 463 980		1.2 – 1	1.1+10	D	53°,78,79,80, 165*
264.306 ^C 254.48	1	1 2	6 093 450 6 093 450	6 471 800 6 486 400		3.0 - 1 $2.6 - 1$	$9.6+9 \\ 5.4+9$	D E	165* 53,78,79,80°, 165*,174
266.43	$2s^22p^53p^{-1}$ P ₁	$2s^22p^53d\ ^1{ m D}_2^{ m o}$	6 219 030	6 594 360	25				53,78,79,80°, 174
254.75	$2s^2 2p^5 (^2P_{1/2}^{\circ})3s (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^53p^{-1}S_0$	5 960 870	6 353 410	25				53,78,79,80°, 174
204.6	$2s^22p^5(^2P^{\circ}_{3/2})3s(\frac{3}{2},\frac{1}{2})^{\circ}_1$	$2s^22p^53p^{-1}S_0$	5 864 770	6 353 410	2				53,78,79,80°, 174
95.29	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s2p^63s$ $^1\mathrm{S}_0$	5 960 870	7 010 000	ı	5.7 - 2	4.2+10	D	81°,123,165*

Fe XVII - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
90.461 ^C	$2s^22p^53p^{-3}S_1$	$2s2p^{6}3p^{-3}P_{1}^{\circ}$	6 093 450	7 198 900		5.1 - 2	1.4+10	E	165*
87.30	$2s^22p^5(^2P_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s2p^{6}3s^{-1}S_{0}$	5 864 770	7 010 000		7.8 - 2	6.7+10	D	81°,123,165*
59.59	$2s^22p^53d$ ¹ F ₃ °	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f^{-2}[\frac{7}{2}]_4$	6 515 350	8 193 000					83
59.26 58.91	$2s^22p^53d\ ^3{ m F}_3^o$	$2s^22p^5(^2\mathbf{P_{1/2}^o})4f^{\ 2}[\frac{7}{2}]_4$	6 493 030 6 506 700	8 180 000 8 204 000					83 83
59.26	$2s^22p^53d\ ^3{ m D}_2^{\circ}$	$2s^22p^5(^2P^o_{3/2})4f^{-2}[\frac{7}{2}]_3$	6 600 950	8 289 000					83
58.98	$2s^22p^53d^{-1}D_2^{\circ}$	$2s^22p^5(^2P_{1/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_3$	6 594 360	8 289 000					83
58.98	$2s^22p^53d^{-1}\mathrm{F}_3^{\mathrm{o}}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	6 515 350	8 210 000					83
58.76	$2s^22p^53d\ ^3\mathrm{P}_2^{\circ}$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{-2}[\frac{3}{2}]_2$	6 486 400	8 188 000					83
58.76	$2s^22p^53d^{-3}F_4^{\alpha}$	$2s^22p^5(^2P_{3/2}^{\circ})4f^{-2}[\frac{9}{2}]_5$	6 486 830	8 188 000		7.0	1.2+12	D	83°,165*
58.62	$2s^22p^53d\ ^3\mathrm{P}_2^{lpha}$	$2s^22p^5(^2P^{\circ}_{3/2})4f^{-2}[\frac{5}{2}]_3$	6 486 400	8 192 000					83
58.62	$2s^22p^53d\ ^3F_4^{\circ}$	$2s^{2}2p^{5}(^{2}P_{3/2}^{\circ})4f^{2}[\frac{7}{2}]_{4}$	6 486 830	8 193 000					83
57.32	•	$2s^{2}2p^{5}(^{2}P_{3/2}^{\circ})4s(\frac{3}{2},\frac{1}{2})_{2}^{\circ}$	6 134 730	7 879 000		4.2 - 1	1.7+11	D	83°,165*
56.005 ^C		$2s^{2}2p^{5}(^{2}P_{3/2}^{o})4s(\frac{3}{2},\frac{1}{2})_{2}^{o}$	6 093 450						
55.54 ^C	$2s^{2}p^{5}3p^{-5}1$ $2s^{2}2p^{5}3p^{-1}S_{0}$	•		7 879 000		1.6 – 1	6.7+10	D	165*
55.54° 52.75 ^C	$2s^{2}2p^{5}3p^{-1}S_{0}$ $2s^{2}2p^{5}3p^{-1}S_{0}$	$2s^22p^54d~^3{ m D}_1^o$ $2s^22p^54d~^1{ m P}_1^o$	6 353 410 6 353 410	8 154 000		1.1 - 1	7.9+10	E	165*
51.24 ^C	$2s^2 2p^5 3p^{-3}0$ $2s^2 2p^5 3p^{-3}P_0$	$2s^2 2p^4 a^3 \Gamma_1$ $2s^2 2p^5 4d^3 \Gamma_1^6$	6 202 250	8 249 000 8 154 000		3.3 - 1 $2.8 - 1$	2.7+11 2.4+11	D D	165* 165*
50.262	$2s^22p^53p^{-3}D_3$	$2s^{2}2p^{5}4d^{3}F_{4}^{2}$	6 134 730	8 123 600		2.0	6.0+11	D	82°, 83, 165*
49.880	$2s^22p^53p^{-3}D_2$	$2s^22p^54d\ ^3\mathrm{D_3^o}$	6 121 690	8 125 800			0.0 (22		82°,83
49.787	$2s^22p^53p^{-3}$ D ₁	$2s^22p^54d^{-1}\mathrm{D_2^o}$	6 143 850	8 151 700					82°,83
49.44 ^C	$2s^22p^53p^{-3}S_1$	$2s^22p^54d~^3P_1^o$	6 093 450	8 116 000		4.5 - 1	4.0+11	D	165*
48.876 ^C	$2s2p^63s^{-1}S_0$	$2s2p^{6}4p^{3}P_{1}^{o}$	7 010 000	9 056 000		4.3 - 2	4.0+10	\mathbf{E}	165*
48.497 ^C	$2s2p^63s^{-1}S_0$	$2s2p^{6}4p^{-1}\mathrm{P_{1}^{o}}$	7 010 000	9 072 000		2.6 - 1	2.4+11	D	165*
41.37	$2s^22p^53d\ ^3{ m F}_4^{\circ}$	$2s^22p^5(^2\mathbf{P}^o_{3/2})5f^{-2}[\frac{9}{2}]_5$	6 486 830	8 903 000		1.4	4.8+11	D	83°,165*
17.097	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	0	5 849 490		M2	2.0+5	D+	86°,165*,196,
17.054	0	1	0	5 864 770		1.22 – 1	9.33+11	C+	199,201,203,20 84°,85,86,110 120,165*,177, 196,199,201, 203,204
16.777	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	5 960 870		1.05 - 1	8.29+11	C+	84°, 85, 86, 110 120, 165*, 177 196,199,201, 203,204
15.450	$2s^22p^{6-1}S_0$	$2s^22p^53d\ ^3 ext{P}_1^{\circ}$	0	6 471 800		9.7 - 3	9.0+10	Е	84°, 85, 86, 96 110, 120, 165* 177,199,201, 203,204
15.262	$2s^22p^{6-1}S_0$	$2s^22p^53d\ ^3{ m D}_1^{lpha}$	0	6 552 200		6.3 – 1	6.0+12	D	84°, 85, 86, 96 110, 120, 165* 177,196,199, 203,204
15.015	$2s^22p^{6-1}S_0$	$2s^22p^53d^{-1}\mathrm{P}_1^{\mathrm{o}}$	0	6 660 000		2.31	2.28+13	C+	84°, 85, 86, 96 110, 120, 165* 177,196,199, 203,204

Fe XVII - Continued

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
13.891	$2s^22p^6$ ¹ S ₀	$2s2p^{6}3p^{-3}\mathrm{P}_{1}^{\circ}$	0	7 198 900		3.0 - 2	3.4+11	Е	84°, 85, 86, 96, 109, 120, 165*, 177,199,203, 204
13.823	$2s^22p^{6-1}S_0$	$2s2p^63p^{-1}$ P ₁ °	0	7 234 300		2.8 - 1	3.3+12	D	84°, 85, 86, 96, 109, 110, 120, 165*, 177, 199, 203,204
12.681		$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 4s (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	0	7 885 800		2.5 - 2	3.5+11	D	84°, 86, 96, 109, 110, 120, 165*, 204
12.526	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})4s\ (\frac{1}{2},\frac{1}{2})^{\circ}_{1}$	0	7 983 000		2.1 - 2	3.0+11	D	84°, 86, 96, 109, 110, 120, 165*, 177,204
12.322	$2s^22p^{6-1}S_0$	$2s^22p^54d$ ³ P ₁ °	0	8 116 000		3.6 - 3	5.3+10	Е	84°, 96, 109, 110, 120, 165*, 177,204
12.264	$2s^22p^6$ ¹ S ₀	$2s^22p^54d\ ^3{ m D}^{ m o}_1$	0	8 154 000		4.0 - 1	5.9+12	D	84°, 85, 86, 96, 110, 120, 165*, 177,204
12.123	$2s^22p^6$ ¹ S ₀	$2s^22p^54d\ ^1\mathrm{P_1^o}$	0	8 249 000		5.3 - 1	8.0+12	D	84°, 85, 86, 96, 110, 120, 165*, 177,204
11.420	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{3/2}^{\circ})5s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	0	8 757 000	3				87
11.287	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})5s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	0	8 860 000	2				84°,87 [△] ,120,
11.253	$2s^22p^6$ 1 S ₀	$2s^22p^55d\ ^3{ m D}^{ m o}_1$	0	8 887 000	7				84°, 87 [△] , 96, 109,110,120, 203,206
11.133	$2s^22p^{6-1}S_0$	$2s^22p^55d$ ¹ P ₁ °	0	8 982 000	8				$84^{\circ}, 87^{\triangle}, 96, 109,110,120, 177,204,206$
11.043	$2s^22p^{6-1}S_0$	$2s2p^64p$ $^3\mathrm{P}_1^{\circ}$	0	9 056 000		1.6 - 2	2.9+11	E	84°, 86, 120, 165*, 206
11.023	$2s^22p^{6-1}S_0$	$2s2p^{6}4p^{-1}P_{1}^{o}$	0	9 072 000		1.1 - 1	2.1 + 12	D	84°,86,165*
10.851	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathbf{P_{3/2}^o})6s\ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	0	9 216 000	1				87
10.770	$2s^22p^6$ ¹ S ₀	$2s^22p^5(^2P^{\circ}_{3/2})6d^{-2}[\frac{3}{2}]^{\circ}_{1}$	0	9 285 000	6				84°,87 [△] ,96, 109,110,120,204
10.658		$2s^2 2p^5 (^2P_{1/2}^{\circ}) 6d^2 [\frac{3}{2}]_1^{\circ}$	0	9 383 000	3				84°, 87 [△] , 96, 109,110,120,204
10.550	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})7s\ (\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	9 479 000	2				87
10.500	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{3/2}^{\circ})7d^2[\frac{3}{2}]_1^{\circ}$	0	9 524 000	3				87°,96
10.386	$2s^22p^6$ ¹ S ₀	$2s^22p^5(^2P_{1/2}^{\circ})7d^{\ 2}[\frac{3}{2}]_1^{\circ}$	0	9 628 000	1				87°,96
10.320	$2s^22p^6$ ¹ S ₀	$2s^22p^5(^2P^{\circ}_{3/2})8d^2[\frac{3}{2}]^{\circ}_1$	0	9 690 000	2				87
10.221	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{1/2}^{\circ})8d^2[\frac{3}{2}]_1^{\circ}$	0	9 784 000) 1				87
10.123	$2s^22p^{6-1}S_0$	$2s2p^{6}5p^{-1}P_{1}^{o}$	0	9 878 000	2				87
10.123	$2s^22p^{6-1}S_0$	$2s2p^{6}5p^{-3}P_{1}^{o}$	0	9 878 000) 2				87

Fe xviii

Wave- length (Å)	Lower	Classification Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
974.86	$1s^2 2s^2 2p^5 \ ^2 P_{3/2}^o$	$1s^2 2s^2 2p^5 \ ^2P_{1/2}^{\circ}$	0	102 579		M1	1.93+4	C	14,69°,88,89,90, 91,92,195*
103.939	$1s^2 2s^2 2p^5$ ² P _{1/2}	$1s^2 2s 2p^6$ 2 S _{1/2}	102 579	1 064 702	10	1.07 - 1	3.31+10	C+	12,69,75 ^{\(\Delta\)} ,93°, 103,104,123,165*, 169,178,189
93.926	3/2	1/2	0	1 064 702	10	2.42 - 1	9.13+10	C+	$12,69,75^{\triangle},93^{\circ},$ $103,104,123,165^{*},$ $169,178,189$
16.337	$1s^2 2s 2p^6$ 2 S _{1/2}	$1s^2 2s 2p^5 (^3P^o) 3s^4 P^o_{5/2}$	1 064 702	7 185 800		M2			94
$16.305 \\ 16.234$	1/2	3/2	1 064 702 1 064 702	7 197 800 7 224 600	65 55				94 94
16.272	$1s^2 2s^2 2p^5$ ² P _{1/2}	•	102 579	6 248 100	7				84°, 94, 95, 96, 108, 112, 120 [△] , 201,
16.026	1/2	1/2	102 579	6 342 600	45	1.2 - 1	1.5+12	D	205 $84^{\circ}, 94, 95, 96, 108,$ $120^{\triangle}, 165^{*}$
16.005	3/2	3/2	0	6 248 100	70				49,84°,94,95,108,
15.766	3/2	1/2	0	6 342 600	35	1.0 - 1	1.4+12	D	$109, 112, 120^{\triangle}, 176$ $84^{\circ}, 94, 95, 96, 108,$ $112, 120^{\triangle}, 165^{*}, 171,$ 172, 201, 205
16.165	$1s^2 2s 2p^6$ 2 S _{1/2}	$1s^2 2s 2p^5 (^3P^{\circ}) 3s^2 P_{3/2}^{\circ}$	1 064 702	7 250 900	150				94°, 96, 108, 176, 201
16.109	$1s^2 2s^2 2p^5$ ² P _{1/2}	$1s^2 2s^2 2p^4 (^3P)3s^4 P_{1/2}$	102 579	6 310 200					94, 95°, 96, 108, 112, 201,205
16.087 16.072	1/2 3/2		102 579 0	6 317 900 6 222 000	20	2.1 - 2	9.1+10	Е	95°, 205 84°, 94, 95, 96, 108, 109, 110, 112, 120 ^Δ , 165*, 176, 201, 204, 205
15.847 ^C 15.828	3/: 3/:		0	6 310 200 6 317 900		1.5 - 2	2.0+11	E	165^* $49,84^\circ,94,95,96,$ $108,109,110,112,$ $120^\Delta,176,201,205$
15.870	$1s^2 2s^2 2p^5$ ² P° _{1/2}	$1s^2 2s^2 2p^4 (^1D)3s^2 D_{3/2}$	102 579	6 403 800	60	2.0 - 1	1.3+12	D	84°,94,95,96,108, 109,112,120 ^{\Delta} ,165*,
15.625	3/:	5/2	0	6 400 000	70	2.5 - 1	1.1+12	D	171,172,201,205 49,84°,94,95,96, 108,109,110,112, 120 ^Δ ,165*,171,172, 176,201
15.450	$1s^2 2s^2 2p^5$ ² P° _{1/s}	$1s^2 2s^2 2p^4 (^1S)3s^2 S_{1/2}$	102 579	6 575 100	30	7.8 - 2	1.1+12	D	84°, 94, 95, 96, 108, 109, 112, 120 ^{\triangle} , 165*,
15.209 ^C	3/	2 1/2	0	6 575 100		1.9 - 2	2.8+11	E	201 165*
14.772	$1s^22s^22p^{5-2}P_{1/}^{\circ}$	$1s^2 2s^2 2p^4 (^3P) 3d^4 P_{3/2}$	102 579	6 872 400					94,95°,96,108,
14.581	3/	2 1/2	0	6 858 200	60				112,172,205 $84^{\circ}, 94, 95, 96, 108,$ $109, 120^{\triangle}, 171,$
14.551	3/	2 3/2	0	6 872 400	60				172,205 $84^{\circ}, 94, 95, 96, 108,$ $112, 120^{\triangle}, 205$
14.67 ^C 14.453	$1s^2 2s^2 2p^5 \ ^2\mathbf{P}_{1/3}^{\circ}$		102 579 0	6 919 000 6 919 000					96,108 84°,94,109, 120 [△] ,176
14.610	$1s^2 2s^2 2p^5$ ² P ^o _{1/}	$1s^2 2s^2 2p^4 (^3P) 3d^2 P_{3/2}$	102 579	6 947 300	35				84°, 94, 120 [△] , 171, 172,176
14.534	$1s^2 2s^2 2p^5$ ² P _{3/}	$1s^2 2s^2 2p^4 (^3P) 3d (1)_{5/2}$	0	6 880 400	70				84°, 95, 96, 108, 109, 120 ^{\Delta} , 205
14.486	$1s^2 2s^2 2p^5$ ² P° _{3/}	$_{2}$ $1s^{2}2s^{2}2p^{4}(^{3}\mathrm{P})3d^{-4}\mathrm{D}_{1/2}$	0	6 903 200) 40				84°,120 ^Δ

Fe XVIII - Continued

Wave- length (Å)	Cl Lower	assification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
14.469	$1s^2 2s^2 2p^5$ ² P° _{1/2}	$1s^2 2s^2 2p^4 (^1D) 3d ^2S_{1/2}$	102 579	7 014 300	35	1.7 – 1	2.7+12	D	84°, 94, 95, 96, 108, 112, 120 ^{\triangle} , 165*, 171,
14.256	3/2	1/2	0	7 014 300	30	9.6 - 1	1.6+13	D	172,176,204,205 $84^{\circ},94,95,96,108,$ $109,120^{\triangle},165^{*},$ 171,172,205
14.418	$1s^2 2s^2 2p^5$ 2 P $^{\circ}_{1/2}$	$1s^2 2s^2 2p^4 (^1D)3d^2P_{3/2}$	102 579	7 038 400	70	4.0 - 1	3.2+12	E	84°, 94, 95, 96, 108, 109, 112, 120 ^Δ , 165*, 171,172,205
14.344	1/2	1/2	102 579	7 074 200	50				84°, 94, 120 ^Δ , 171,
14.203	3/2	3/2	0	7 038 400		2.4	1.9+13	Е	84°, 109, 165*, 171, 172,176,204
14.373	$1s^2 2s^2 2p^5$ ² P° _{3/2}	$1s^2 2s^2 2p^4 (^3P) 3d\ ^2D_{5/2}$	0	6 957 500	70				$49,84,94,95^{\circ},96,$ $108,109,112,120^{\triangle},$ $171,172,176,204$
14.361	$1s^2 2s^2 2p^5$ ² P° _{1/2}	$1s^2 2s^2 2p^4 (^1D)3d^2D_{3/2}$	102 579	7 066 100	60	1.8	1.5+13	E	$84, 94, 95^{\circ}, 96, 108, \\ 120^{\triangle}, 165^{*}, 171, \\ 172,205$
14.203	3/2	5/2	0	7 040 800	60				$49,84^{\circ},94,95,96,$ $109,112,120^{\triangle},$ $170,172,176,205$
14.152	3/2	3/2	0	7 066 100	60	5.2 - 1	4.3+12	E	84°, 94, 95, 96, 108, 109, 120 ^Δ , 165*, 171,172,205
14.121	$1s^2 2s^2 2p^5$ ² $P_{1/2}^{\circ}$	$1s^2 2s^2 2p^4 (^1S)3d^{-2}D_{3/2}$	102 579	7 184 300	75	1.8	1.5+13	D	84°, 94, 95, 96, 108, 109, 112, 120 [△] , 165* 171,172,176,205
13.954	3/2	5/2	0	7 166 400	55	2.0 - 1	1.1+12	D	94,95°,96,108,109, 110,112,120 ^{\triangle} ,165* 172,176,205
13.919 ^C	3/2	3/2	0	7 184 300		1.1 - 2	9.6+10	E	165*
13.464 13.319	$1s^2 2s^2 2p^5$ 2 P $_{1/2}^{\circ}$ $_{3/2}^{\circ}$	$1s^2 2s 2p^5 (^3P^{\circ}) 3p \ ^4P_{3/2}$	102 579 0	7 529 900 7 508 100	60 50				84°, 120 ^Δ 84°, 112, 120 ^Δ
13.397	$1s^2 2s^2 2p^5$ 2 P $^{\circ}_{3/2}$	$1s^2 2s 2p^5 (^3 P^{\circ}) 3p (1)_{3/2}$	0	7 464 400	55				84°,120 [△]
13.397 13.374	$1s^2 2s^2 2p^5$ 2 P $_{1/2}^{\circ}$ $_{3/2}^{\circ}$	$1s^2 2s 2p^5 (^3P^{\circ}) 3p^{-2}D_{3/2}$	102 579 0	7 567 000 7 477 200	55 50				84°,120 [△] 84°,94,112,120 [△]
13.355 13.319	$1s^2 2s^2 2p^5$ $^2 P^o_{3/2}$	$1s^2 2s 2p^5 (^3 P^{\circ}) 3p^2 P_{3/2}$	0 0	7 487 800 7 508 100	50 50				84°,120 [△] 84°,112,120 [△]
13.355 13.159	$1s^2 2s^2 2p^5$ ² P° _{1/2} _{3/2}	$1s^2 2s 2p^5 (^3 P^{\circ}) 3p^{-2} S_{1/2}$	102 579 0	7 599 400 7 599 400	50				84°,120 ^Δ 84°,94,112,120
13.049 12.847	$1s^2 2s^2 2p^5 \ ^2 P_{1/2}^{\circ}$	$1s^2 2s2p^5 (^1{ m P^o}) 3p\ ^2{ m D}_{3/2}$	102 579 0	7 763 400 7 783 900					84°, 94, 112, 120 84°, 120
13.015 13.001	$1s^2 2s^2 2p^5 \ ^2 \mathrm{P_{1/2}^o}_{1/2}$	$1s^2 2s2p^5(^1\mathrm{P}^{\mathrm{o}})3p^{\ 2}\mathrm{P}_{1/2}$	102 579 102 579	7 786 000 7 794 400					84°, 94, 112, 120 84°, 112, 120
11.865	$1s^2 2s^2 2p^5$ 2 P $^{o}_{3/2}$	$1s^2 2s^2 2p^4 (^3P_2) 4s (2, \frac{1}{2})_{3/2}$	0	8 428 200	20				84°,94,120 [△]
11.778 11.640	$1s^2 2s^2 2p^5$ ² P $_{1/2}^{\circ}$	$1s^2 2s^2 2p^4 (^1D_2) 4s (2, \frac{1}{2})_{3/2}$	102 579 0	8 593 000 8 591 100					$84^{\circ}, 94, 120^{\triangle}$ $84^{\circ}, 120^{\triangle}, 206$
11.741		$1s^{2}2s^{2}2p^{4}(^{3}P_{1})4s(1,\frac{1}{2})_{3/2}$	0	8 517 200					84°,120°,200
11.551	$1s^2 2s^2 2p^5$ ² P° _{1/2}	$1s^2 2s^2 2p^4 (^3P_1)4d (1, \frac{5}{2})_{3/2}$	102 579	8 759 900	50				84°, 94, 96, 109, 120 ^Δ
$\frac{11.442}{11.420}$	3/2 3/2	3/2 5/2		8 759 900 8 756 600					96°,108,109 84°,94
11.526	$1s^2 2s^2 2p^5$ ² P $_{3/2}^{\circ}$	$1s^2 2s^2 2p^4 {3 P_2} 4d (2, \frac{5}{2})_{5/2}$	0	8 676 000	50				84°, 94, 96, 109, 112
11.526	3/2	3/2	0	8 676 000	50				$120^{\triangle}, 173$ $84^{\circ}, 94, 112, 120^{\triangle}$

Fe XVIII - Continued

Wave- length (Å)	C Lower	lassification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
11.458	$1s^2 2s^2 2p^5$ 2 $P_{3/2}^o$	$1s^2 2s^2 2p^4 (^3P_0)4d \ (0, \frac{3}{2})_{3/2}$	0	8 727 500	30				84°, 94, 120 [△]
11.458	$1s^22s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$1s^2 2s^2 2p^4 (^3P_0) 4d (0, \frac{5}{2})_{5/2}$	0	8 727 500	30				84°,94,120 [△]
11.440 11.326	$1s^2 2s^2 2p^5$ 2 P $_{1/2}^{\circ}$ 3/2	$1s^2 2s^2 2p^4 (^1D_2) 4d (2, \frac{3}{2})_{3/2}$ 1/2	102 579 0	8 843 900 8 829 200	50 55				84°, 94, 112, 120 ^Δ 84°, 94, 112, 120 ^Δ , 206
11.326	3/2	5/2	0	8 829 200	55				84°, 94, 112, 120 [△] , 206
11.440	$1s^2 2s^2 2p^5$ 2 P $_{1/2}^{\circ}$	$1s^2 2s^2 2p^4 (^1D_2) 4d (2, \frac{5}{2})_{1/2}$	102 579	8 843 900	50				84°, 94, 112, 120 ^Δ ,
11.326	3/2	5/2	0	8 829 200	55				173 84°, 94, 96, 109, 120^{\triangle}
11.326	3/2	3/2	0	8 829 200	55				$84^{\circ}, 94, 112, 120^{\triangle}, 173,206$
11.253	$1s^2 2s^2 2p^5 \ ^2\mathbf{P_{1/2}^o}$	$1s^2 2s^2 2p^4 ({}^1S_0) 4d (0, \frac{3}{2})_{3/2}$	102 579	8 989 200	45				$84^{\circ}, 94, 112, 120^{\triangle}, 173,206$
10.51	$1s^2 2s^2 2p^5$ 2 P $^o_{3/2}$	$1s^2 2s^2 2p^4 (^3P)5d^2D_{5/2}$	0	9 510 000					97
10.48	$1s^2 2s^2 2p^5$ 2 P $_{1/2}^o$	$1s^2 2s^2 2p^4 (^3P)5d^2P_{3/2}$	102 579	9 640 000					97
10.44	$1s^22s^22p^5$ $^2P^o_{1/2}$	$1s^2 2s^2 2p^4 (^1D)5d\ ^2D_{3/2}$	102 579	9 680 000					97
10.44 10.33	$1s^2 2s^2 2p^5 \ ^2 P^o_{1/2} $ 3/2	$1s^2 2s^2 2p^4 (^1D) 5d^2 P_{1/2}$ 3/2	102 579 0	9 680 000 9 680 000					97 97
10.41	$1s^2 2s^2 2p^5$ 2 P $_{3/2}^o$	$1s^2 2s^2 2p^4 (^3P) 5d^2 F_{5/2}$	0	9 610 000					97
10.33	$1s^2 2s^2 2p^5$ 2 P $^{\circ}_{3/2}$	$1s^2 2s^2 2p^4 (^1D)5d\ ^2F_{5/2}$	0	9 680 000					97
10.03	$1s^2 2s^2 2p^5 \ ^2\mathbf{P}^o_{3/2}$	$1s^22s^22p^4(^3\mathrm{P})6d\ ^2\mathrm{D}_{5/2}$	0	9 970 000					97
9.98	$1s^2 2s^2 2p^5$ ² P ^o _{1/2}	$1s^22s^22p^4(^1{\rm D})6d\ ^2{\rm D}_{3/2}$	102 579	10 120 000					97
9.98	$1s^2 2s^2 2p^5$ ² P $_{1/2}^{o}$	$1s^22s^22p^4(^1\mathrm{D})6d\ ^2\mathrm{P}_{1/2}$	102 579	10 120 000					97
1.92164	$1s^22s^22p^5$ 2 P $^{o}_{3/2}$	$1s2s^22p^6$ $^2S_{1/2}$	0	52 039 000					98°,190

Fe XIX

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,69°,88,89,90, 91,92,195* 69°,91,92,101,19 101°,195* 165* 75°,165* 75°,165* 75°,93°,103,104, 123,128,165*,178 189,197 75°,93°,103,104, 123,128,165*,178 189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101°, 195* 165* 75°, 165* 75°, 93°, 103, 104, 123, 128, 165*, 178, 189, 197 75°, 93°, 103, 104, 123, 128, 165*, 178, 189, 197 75°, 93°, 103, 104, 123, 128, 165*, 178, 128, 165*, 178, 189, 197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75°,165* 75°,165* 75°,33°,103,104,123,128,165*,178,189,197 75°,93°,103,104,123,128,165*,178,189,197 75°,93°,103,123,128,165*,178,123,128,165*,178,189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$75^{\circ}, 165^{\star}$ $75^{\triangle}, 93^{\circ}, 103, 104, 123, 128, 165^{\star}, 178$ $189, 197$ $75^{\triangle}, 93^{\circ}, 103, 104, 123, 128, 165^{\star}, 178$ $189, 197$ $75^{\triangle}, 93^{\circ}, 103, 128, 165^{\star}, 178$ $123, 128, 165^{\star}, 178$ $189, 197$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 ^Δ , 93°, 103, 104, 123, 128, 165°, 178 189,197 75 ^Δ , 93°, 103, 104, 123, 128, 165°, 178 189,197 75 ^Δ , 93°, 103, 123, 128, 165°, 178 189,197
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	123, 128, 165*, 178 189,197 75 ^Δ , 93°, 103, 104, 123, 128, 165*, 178 189,197 75 ^Δ , 93°, 103, 123, 128, 165*, 178 189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$75^{\triangle}, 93^{\circ}, 103, 104, 123, 128, 165^{*}, 178, 189, 197, 75^{\triangle}, 93^{\circ}, 103, 123, 128, 165^{*}, 178, 189, 197, 199, 199, 199, 199, 199, 199, 19$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 ^Δ , 93°, 103, 123, 128, 165*, 178 189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69,75 ^{\(\Delta\)} ,93°,103, 104,123,128,165* 178,189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 [△] ,93°,103,123,165*,178,189,197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69,75 ^{\(\Delta\)} ,93°,103, 104,123,128,165* 178,189,197
91.012 $1s^2 2s^2 2p^4$ $^{1}D_2$ $1s^2 2s^2 p^5$ $^{1}P_1^o$ 168 852 1 267 600 9 $5.55 - 1$ $1.49 + 11$ C 86.999 $1s^2 2s 2p^5$ $^{3}P_1^o$ $1s^2 2p^6$ $^{1}S_0$ 984 740 2 134 180 1 $1.4 - 2$ $1.2 + 10$ E 84.874 $1s^2 2s^2 2p^4$ $^{3}P_1$ $1s^2 2s^2 p^5$ $^{1}P_1^o$ 89 441 1 267 600 1 $3.0 - 3$ $9.3 + 8$ E 83.870 0 1 75 250 1 267 600 1 $5.0 - 3$ $1.6 + 9$ E 78.888 2 1 0 1 267 600 4 $3.6 - 2$ $1.3 + 10$ E 15.172 $1s^2 2s^2 2p^4$ $^{3}P_1$ $1s^2 2s^2 2p^3 (^{4}S^o)3s$ $^{3}S_1^o$ 89 441 6 680 000 25 $6.9 - 2$ $6.7 + 11$ $C - 15.138$ 0 1 75 250 6 680 000 5 $5.3 - 2$ $5.1 + 11$ $C - 14.966$ 2 1 0 6 680 000 35 $2.6 - 1$ $2.5 + 12$ $C - 15.111$ $1s^2 2s^2 2p^4$ $^{1}D_2$ $1s^2 2s^2 2p^3 (^{2}D^o)3s$ $^{3}D_2^o$ 168 852 6 787 000 10 $2.3 - 2$ $1.3 + 11$ E 15.150 $1 - 3$ $1 -$	75 [△] ,93°,165*,18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 ^{\(\Delta\)} , 93°, 103, 123 165*, 178, 189, 197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 ^{\(\Delta\)} , 93°, 103, 104 123, 165*, 178, 189 197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 [△] ,93°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 ^{\(\Delta\)} , 93°, 165*, 19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 ^{\triangle,} 93°, 165*, 19 75 ^{\triangle,} 93°, 165*, 19 198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84°, 94, 96, 108, 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112, 120 ^{\(\Delta\)} , 165* 84°, 96, 109, 110,
15.04 ^C 2 3 168 852 6 818 000 2.5 - 2 1.1+11 E	120 ^{\(\Delta\)} , 165* 84°, 94, 96, 108, 10 112, 120 ^{\(\Delta\)} , 165*
$15.015 1s^2 2s^2 2n^4 1S_0 1s^2 2s^2 2n^3 (^2 P^{\circ}) 3s^{-1} P^{\circ} 325 140 6.085 0.00 1.00 1.4 1.1.4 1.1.2 1.00 1.$	84°,120 [△] ,165* 165*
10 10 10 10 10 10 1.4-12 D	84°,120 [△] ,165*
$14.995 \qquad 1s^2 2s^2 2p^{4-1} D_2 \qquad \qquad 1s^2 2s^2 2p^3 (^2 D^{\circ}) 3s^{-1} D_2^{\circ} \qquad 168.852 \qquad 6.834.000 \qquad 55 \qquad 3.7-1 \qquad 2.2+12 \qquad D$	84°,120 [△] ,165*
$14.929 \qquad 1s^2 2s^2 2p^4 \ ^3 \mathrm{P}_1 \qquad \qquad 1s^2 2s^2 2p^3 (^2 \mathrm{D}^{\mathrm{o}}) 3s \ ^3 \mathrm{D}_1^{\mathrm{o}} \qquad 89 \ 441 \qquad 6 \ 788 \ 000 \qquad 30 \qquad 1.2 - 1 \qquad 1.2 + 12 \qquad \mathrm{D}$	84°,94,112,120 ^Δ
14.929 1 2 89 441 6 787 000 30 4.2 - 2 2.5+11 D	165* 84°, 94, 112, 120△
14.735 2 0 6 787 000 40 1.6 - 1 9.8 + 11 D	64* 84°, 94, 112, 120△
14.668 2 3 0 6 818 000 55 2.6 - 1 1.1+12 C	165* 84°,94,112,120△ 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84°,120 [△] ,165* 165*
$14.806 \qquad 1s^2 2s^2 2p^{4-1} D_2 \qquad \qquad 1s^2 2s^2 2p^3 (^2 P^{\circ}) 3s^{-3} P_1^{\circ} \qquad 168.852 \qquad 6.923 \ 0.00 \qquad 20 \qquad 5.5-2 \qquad 5.6+11 \qquad E$	84°, 96, 109, 120 ^Δ
14.70 ^C 2 2 168 852 6 970 000 1.1 - 1 6.8+11 E	165*

Fe XIX - Continued

117		Classif action	P	-1- (- :-1)	Y 1		$A (s^{-1})$		Defense
Wave- length (Å)	Lower	Classification Upper	Energy Lev	els (cm 1)	Int.	gf	A (s 1)	Acc.	References
14.67 ^C	$1s^22s^22p^{4-1}D_2$	$1s^22s^22p^3(^2\mathrm{P^o})3s^{-1}\mathrm{P_1^o}$	168 852	6 985 000		1.1 – 1	1.1+12	D	165*
14.668	$1s^22s^22p^{4-3}P_1$	$1s^22s^22p^3(^2P^o)3s\ ^3P^o_0$	89 441	6 907 000	55	3.6 - 2	1.1+12	C	84°,120 [△] ,165*
$14.60^{ m C} \ 14.534$	0	1 2	75 250 89 441	6 923 000 6 970 000	70	7.3 - 2 $1.1 - 1$	7.5+11 $6.8+11$	D D	165* 84°,120 [△] ,165*
	. 2- 2- 4 1-	_			,,				
13.84 ^C	$1s^2 2s^2 2p^{4-1} D_2$	$1s^2 2s^2 2p^3 (^2 D^{\circ}) 3d \ ^3 D_3^{\circ}$	168 852	7 396 000		7.5 - 2	3.7+11	E	165*
13.795	$1s^2 2s^2 2p^4$ ³ P ₂	$1s^22s^22p^3(^4S^{\circ}_{3/2})3d(\frac{3}{2},\frac{5}{2})^{\circ}_3$	0	7 249 000	55	1.4	7.0+12	D	$84^{\circ}, 94, 111, 112, \\ 120^{\triangle}, 165^{*}$
13.735		$1s^2 2s^2 2p^3 (^2 P_{3/2}^{\circ}) 3d (\frac{3}{2}, \frac{5}{2})_1^{\circ}$	325 140	7 606 000	45	2.2	2.6+13	D	84°,120 [△] ,165*
13.735 13.700	$1s^2 2s^2 2p^{4} \ ^1D_2$	$1s^2 2s^2 2p^3 (^2 P_{1/2}^{\circ}) 3d (\frac{1}{2}, \frac{5}{2})_3^{\circ}$	168 852 168 852	7 450 000 7 468 000	45 45	4.7 - 1	2.4+12	E	84°,120 [△] ,165* 84°,111,120 [△]
13.735	$1s^22s^22p^{4-3}P_1$	$1s^22s^22p^3(^2\mathrm{D}^{\circ}_{3/2})3d(\frac{3}{2},\frac{5}{2})^{\circ}_2$	89 441	7 370 000	45				84°,94,111,120 [△]
13.735	$1s^22s^22p^{4-1}D_2$	$1s^22s^22p^3(^2\mathbf{D_{5/2}^{\circ}})3d(\frac{5}{2},\frac{5}{2})_3^{\circ}$	168 852	7 449 000	45	2.0	1.0+13	D	84°,120 ^{\(\Delta\)} ,165*
13.520	$1s^2 2s^2 2p^4$ ³ P ₂	$1s^2 2s^2 2p^3 (^2 D^o) 3d \ ^3 D_3^o$	0	7 396 000	75	3.8	2.0+13	D	$84^{\circ}, 94, 112, 120^{\triangle}, 165^{*}$
13.520		$1s^22s^22p^3(^2\mathbf{P_{3/2}^o})3d(\frac{3}{2},\frac{3}{2})_3^{\circ}$	168 852	7 565 000	75				84°,120 [△]
13.504		$1s^2 2s^2 2p^3 (^2 D_{5/2}^{\circ}) 3d (\frac{5}{2}, \frac{3}{2})_2^{\circ}$	0	7 405 000	55				$84^{\circ}, 94, 111, 120^{\triangle}$
13.464 13.397	$1s^2 2s^2 2p^{4-3} P_1$	$1s^22s^22p^3(^2P_{3/2}^{\circ})3d(\frac{3}{2},\frac{3}{2})_1^{\circ}$	89 441 89 441	7 567 000 7 554 000	60 55				84°,111,120 ^Δ 84°,94,111,120 ^Δ
13.424	$1s^22s^22p^4$ 3P_2	$1s^22s^22p^3(^2\mathrm{D^o})3d\ ^1\mathrm{F_3^o}$	0	7 449 000	50	9.0 - 1	4.8+12	\mathbf{E}	$84^{\circ}, 94, 120^{\triangle}, 165^{*}$
10.933	$1s^2 2s^2 2p^{4-3} P_1$	$1s^2 2s^2 2p^3 ({}^4S^{\circ}_{3/2}) 4d (\frac{3}{2}, \frac{5}{2})^{\circ}_2$	89 441	9 242 000	25				84°, 94, 120 ^{\triangle} , 173, 176,206
10.907 10.813	0 2·	1 3	75 250 0	9 244 000 9 248 000	55				84°, 173, 175 84°, 94, 112, 120△, 206
10.813	2	2	0	9 242 000	55				84°,120 [△]
10.813 10.813	$1s^2 2s^2 2p^{4-1} D_2$	$1s^22s^22p^3(^2\mathrm{D}^{\circ}_{5/2})4d(\frac{5}{2},\frac{5}{2})^{\circ}_{2}$	168 852 168 852	9 417 000 9 417 000	55 55				$84^{\circ}, 120^{\triangle}, 206$ $84^{\circ}, 120^{\triangle}, 206$
10.813	$1s^2 2s^2 2p^{4-1} S_0$	$1s^22s^22p^3(^2\mathrm{P}^{\circ}_{3/2})4d(\frac{3}{2},\frac{5}{2})^{\circ}_{1}$	325 140	9 573 000	55				84°,120 [△] ,173,175, 206
10.770	$1s^2 2s^2 2p^{4-3} P_1$	$1s^2 2s^2 2p^3 (^2 D_{3/2}^{\circ}) 4d (\frac{3}{2}, \frac{5}{2})_2^{\circ}$	89 441	9 374 000	35				84°, 94, 120 ^{\triangle} , 173, 175,206
10.736	$1s^2 2s^2 2p^{4-1} D_2$	$1s^2 2s^2 2p^3 (^2 P_{1/2}^{\circ}) 4d (\frac{1}{2}, \frac{5}{2})_3^{\circ}$	168 852	9 483 000	20				84°, 120 [△] , 173, 175,206
10.685	$1s^2 2s^2 2p^4$ ³ P ₂	$1s^22s^22p^3(^2\mathrm{D}^o_{3/2})4d(\frac{3}{2},\frac{3}{2})^o_3$	0	9 359 000	25				84°, 94, 120 ^{\triangle} , 173, 175,206
10.658	$1s^22s^22p^4$ ³ P ₂	$1s^2 2s^2 2p^3 (^2 D_{5/2}^{\circ}) 4d \left(\frac{5}{2}, \frac{3}{2}\right)_3^{\circ}$	0	9 383 000	35				84°,94,120 [△]
10.644	2	, 2	0	9 395 000	35				84°, 94, 120 ^Δ
10.635	2	1	0	9 403 000	40				$84^{\circ}, 94, 120^{\triangle}, 173, 175,206$
10.658	$1s^2 2s^2 2p^{4-1} D_2$	$1s^2 2s^2 2p^3 (^2 P_{3/2}^{\circ}) 4d (\frac{3}{2}, \frac{3}{2})_3^{\circ}$	168 852	9 552 000	35				84°,120 ^{\triangle} ,173,175
10.635	$1s^2 2s^2 2p^4$ ³ P ₁	$1s^22s^22p^3(^2\mathrm{P}^{\circ}_{1/2})4d~(\frac{1}{2},\frac{5}{2})^{\circ}_2$	89 441	9 492 000	40				84°,120 [△]
10.617	$1s^2 2s^2 2p^4$ ³ P ₀	$1s^2 2s^2 2p^3 (^2 P_{1/2}^{\circ}) 4d (\frac{1}{2}, \frac{3}{2})_1^{\circ}$	75 250	9 494 000	25				$84^{\circ}, 94, 120^{\triangle}, 173,175$
10.564	$1s^2 2s^2 2p^4$ ³ P ₁	$1s^22s^22p^3(^2P_{3/2}^{o})4d(\frac{3}{2},\frac{3}{2})_1^{o}$	89 441	9 556 000	35				$84^{\circ}, 94, 120^{\triangle}, 173, 175,206$
9.82	$1s^2 2s^2 2p^{4-1} S_0$	- ' '	325 140	10 510 000					97
9.81	$1s^2 2s^2 2p^4$ ³ P ₂	$1s^2 2s^2 2p^3 (^4S^{\circ}) 5d ^3D_3^{\circ}$	0	10 190 000					97

Fe XIX - Continued

Wave- length (Å)	Classification Lower Upper		ου · · · ,			$gf A (s^{-1})$			References	
9.81	$1s^2 2s^2 2p^{4-1} D_2$	$1s^2 2s^2 2p^3 (^2 D^{\circ}) 5d^{-1} F_3^{\circ}$	168 852	10 390 000					97	
9.81	$1s^22s^22p^{4-1}D_2$	$1s^2 2s^2 2p^3 (^2 D^{\circ}) 5d^{-1} D_2^{\circ}$	168 852	10 360 000					97	
9.78 9.68 9.68	$1s^2 2s^2 2p^4$ ³ P ₁ 2 2	$1s^2 2s^2 2p^3 (^2 D^{\circ}) 5d \ ^3 D_2^{\circ}$	89 441 0 0	10 330 000 10 330 000 10 330 000					97 97 97	
9.68	$1s^2 2s^2 2p^{4-1} D_2$	$1s^22s^22p^3(^2\mathrm{P}^{\circ})5d\ ^1\mathrm{F}_3^{\circ}$	168 852	10 500 000					97	
9.64 9.52	$1s^2 2s^2 2p^4$ ³ P ₀	$1s^2 2s^2 2p^3 (^2 P^{\circ}) 5d \ ^3 D_1^{\circ}$	75 250 0	10 450 000 10 500 000					97 97	
9.61	$1s^2 2s^2 2p^{4}$ ³ P ₁	$1s^22s^22p^3(^2\mathrm{P}^{\mathrm{o}})5d\ ^3\mathrm{P}_1^{\mathrm{o}}$	89 441	10 500 000					97	
9.44	$1s^22s^22p^4$ ³ P ₁	$1s^22s^22p^3(^4S^{\circ})6d^{5}D_2^{\circ}$	89 441	10 680 000					97	
9.36	$1s^22s^22p^4$ ³ P ₀	$1s^22s^22p^3(^2\mathrm{P^o})6d\ ^3\mathrm{D_1^o}$	75 250	10 760 000					97	
9.34	$1s^22s^22p^4$ ³ P ₂	$1s^2 2s^2 2p^3 (^4S^{\circ}) 6d ^3D_3^{\circ}$	0	10 710 000					97	
9.21	$1s^22s^22p^{4-1}D_2$	$1s^22s^22p^3(^2D^\circ)6d\ ^1F_3^o$	168 852	11 030 000					97	
1.91765	$1s^2 2s^2 2p^{4}$ ³ P ₂	$1s2s^22p^5$ $^3P_2^{\circ}$	0	52 147 200					98°,121	

Fe xx

Wave- length (Å)	Lower	Classification Upper	Energy Leve	ls (cm ⁻¹) I	nt. gf	A (s ⁻¹)	Acc.	References
2665.1	1s ² 2s ² 2p ³ ² D ₃ °	$1s^2 2s^2 2p^3 {}^2 D_{5/2}^{\circ}$	138 620	176 130	M1	2.91+4	С	89, 91, 113°, 195*
679.24 ^P	$1s^22s^22p^{3-2}D_5^{o}$	$1s^2 2s^2 2p^{3-2} P_{3/2}^{\circ}$	176 130	323 340	M1	1.27+4	С	115°,195*
541.35		/2 10 23 2p 1 3/2 /2 3/2	400 000	323 340	M1	4.49+4	C	92,101°,195*
567.76	$1s^2 2s^2 2p^3$ ⁴ S ₃ °	$1s^2 2s^2 2p^3$ ² D _{5/2}	. 0	176 130	M1	1.27+3	C	101°, 115, 116, 195*
309.26	$1s^2 2s^2 2p^3$ ⁴ S ₃ °	$1s^2 2s^2 2p^3 {}^2 P_{3/2}^{\circ}$. 0	323 340	M1	2.91+4	C	114°, 115, 116, 195*
232.89^{C}	$1s^2 2s^2 2p^3$ ² P ₃ °	$1s^2 2s 2p^{4-4} P_{5/2}$	323 340	752 730	1.3 - 3	2.7 + 7	E	165*
201.09 ^C		/2 3/2	000.040	820 630	4.4 - 3	1.8+8	\mathbf{E}	165*
171.76 ^C		/2 1/2		842 480	2.2 - 3	2.5 + 8	${f E}$	165*
	. 2- 2- 3 2-0	200445						
173.43 ^C	$1s^2 2s^2 2p^3$ ² D ₅	$1s^2 2s 2p^4 {}^4P_{5/2}$		752 730	7.2 - 3	2.7+8	E	165*
162.84 ^C		/2 5/2		752 730	1.5 - 2	6.4+8	E	165*
155.16 ^C 146.63 ^C		/2 3/2	****	820 630	6.6 - 4	4.6+7	E	165*
146.63° 142.07°		/2 3/2	100 000	820 630	1.7 - 3	1.3+8	E E	165*
142.07	3	/2 1/3		842 480	2.0 - 3	3.4 + 8	ь	165*
162.79^{C}	$1s^2 2s 2p^{4-2} P_1$	$1s^2 2p^5 \ ^2P_{3/2}^{\circ}$, 1 340 040	1 954 310	2.84 - 2	1.79+9	C	165*
140.44		/2 3/3	1 0 40 400	1 954 310	3.7 - 1	3.1+10	C	75°,118,165*
138.49		/2 1/3		2 061 990	1.9 - 1	3.2 + 10	C	75°, 118, 165*
122.00		/2 1/:	1 0 10 100	2 061 990	1.65 - 1	3.7 + 10	C	75°,118,165*
- 00 04C	. 20 20 3 200	$1s^2 2s 2p^{4-2} D_{3/2}$	000 040	1 040 850	2.0	0.010	Б	* 0 5 *
139.04 ^C	$1s^2 2s^2 2p^3$ ² P ₃		000.040	1 042 570	8.0 - 3	6.9+8	D	165*
136.052	3	5/2	2 323 340	1 058 360	1.0 - 1	6.0+9	C	75 [△] ,93°,118,165*, 187
127.86		/2 3/3	260 270	1 042 570	2.92 - 2	2.98 + 9	C	75°, 165*
132.850	$1s^2 2s^2 2p^3$ 4 S ₃	$1s^2 2s 2p^4 {}^4 P_{5/2}$	2 0	752 730	2.1 - 1	1.3+10	С	$69^{\circ}, 75^{\triangle}, 103, 104, 118, \\ 124, 128, 165^{*}, 178, \\ 187$
121.858	3	3/2	2 0	820 630	1.65 - 1	1.86+10	C	75 [△] , 103, 104, 118, 119°, 123, 128, 165*,
118.697	5	1/2	2 0	842 480	8.84 - 2	2.09+10	С	178,187 75 ⁴ ,103,104,118, 119°,123,128,165*, 178
121 70	$1s^2 2s 2p^{4-2} S_1$	$1s^2 2p^5 \ ^2 P_{3/}^{\circ}$	1 105 060	1.054.010	0.20 0	0.010	0	mr9 110 10r*
131.70 115.38 ^C				1 954 310	9.38 - 2	9.0+9	C	75°, 118, 165*
115.38		1/2	2 1 195 260	2 061 990	9.2 - 3	2.3+9	D	165*
115.41^{C}	$1s^22s^22p^{3-2}$ D	$1s^2 2s 2p^{4/2} D_{3/2}$	2 176 130	1 042 570	3.4 - 4	4.3+7	E	165*
113.349		5/2 5/	150 100	1 058 360	3.8 - 1	3.3+10	C	75 [△] , 93°, 103, 104, 118,
220.0	•	5/2	2 175 100	2 000 000	0.0 1	0.0 (10	Ü	123, 165*, 178, 187
110.626	:	3/2	2 138 620	1 042 570	3.1 - 1	4.3 + 10	C	75,93°,103,104,118,
108.73 ^C	:	3/2 5/	2 138 620	1 058 360	2.8 - 4	2.7+7	E	123, 165*, 178, 187 165*
11470	. 20 20 3 200	$1s^2 2s 2p^{4/2} S_{1/2}$	000 010				-	 0
114.72	$1s^2 2s^2 2p^3$ ² P	$\frac{1s^2 2s 2p^4}{s} = \frac{2s}{s}$		1 195 260	1.2 - 2	3.0+9	D	75°, 123, 165*
106.955	:	1/2	2 260 270	1 195 260	1.3 - 1	3.7+10	C	75 [^] , 93°, 117, 118, 123, 165*
111.586	$1s^2 2s 2p^{4-2}$ D	$1s^2 2p^5 \ ^2P_{3/}^{\circ}$	2 1 058 360	1 954 310	3.2 - 1	4.3+10	C	75 ^{\(\Delta\)} , 93°, 118, 165*,
109.657		3/2 3/	2 1 042 570	1 954 310	1.27 - 1	1.76+10	С	181 75,93°,118,165*,181
98.075		3/2 1/		2 061 990	1.33 - 1		C	75 ^{\(\triangle\)} , 93°, 118, 165*, 181
108.803	$1s^2 2s^2 2p^3$ ² P	$1s^2 2s 2p^{4-2} P_{3/2}$	323 340	1 242 430	6.68 - 2	9.40+9	C	75 [^] , 93°, 103, 118, 123, 165 ⁺
101.816		1/2 3/	260 270	1 242 430	5.68 - 2	9.1+9	C	75 [^] , 93°, 103, 104, 118, 123, 165*
98.358		3/2	323 340	1 340 040	2.8 - 1	9.6+10	C	$75^{\triangle}, 93^{\circ}, 103, 104, 118, 123, 165^{*}, 178$
92.63		1/2	260 270	1 340 040	1.1 - 2	4.4+9	D	75°,123,165*
95.95	$1s^2 2s^2 2p^3$ 4S	$1s^2 2s 2p^{4-2} D_{3}$	2 0	1 042 570	1.0 - 2	1.9+9	E	75°, 165*, 178
94.638	$1s^22s^22p^{3-2}$ D	$1s^2 2s 2p^{4-2} S_1$	138 620	1 195 260	1.2 - 1	4.5+10	D	75 [^] , 93°, 117, 118, 165*, 178

Fe xx - Continued

Wave-		ssification	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper							
93.782	$1s^2 2s^2 2p^3$ ² D° _{5/2}	$1s^2 2s 2p^{4}$ ² P _{3/2}	176 130	1 242 430		5.3 - 1	1.0+11	С	$75^{\triangle}, 93^{\circ}, 103, 104, 118, 123, 165^{*}, 187$
90.595	3/2	3/2	138 620	1 242 430		7.24 - 2	1.47+10	C	75 ^{\triangleq} , 93°, 103, 118, 165*, 178
83.235	3/2	1/2	138 620	1 340 040		6.04 - 2	2.91+10	С	75 ⁴ , 93°, 103, 118, 165*, 178, 187
89.94^{C}	$1s^2 2s 2p^4 {}^4P_{1/2}$	$1s^22p^5$ 2 P $^{\circ}_{3/2}$	842 480	1 954 310		2.6 - 3	5.4+8	Е	165*
88.24	3/2	3/2	820 630	1 954 310		7.6 - 3	1.6+9	E	75°, 165*
83.23	5/2	3/2	752 730	1 954 310		1.3 - 2	3.0 + 9	\mathbf{E}	75°,165*
82.00 ^C	1/2	1/2	842 480	2 061 990		1.9 - 3	9.6+8	\mathbf{E}	165*
80.59	3/2	1/2	820 630	2 061 990		5.2 - 4	2.7+8	\mathbf{E}	75°,165*
83.69	$1s^2 2s^2 2p^3 {}^4S^{\circ}_{3/2}$	$1s^2 2s 2p^4$ 2 S _{1/2}	0	1 195 260		4.0 - 3	1.9+9	E	75°,165*
80.51	$1s^2 2s^2 2p^3$ ⁴ S _{3/2}	$1s^2 2s 2p^{4} {}^{2}P_{3/2}$. 0	1 242 430		1.8 - 2	4.6+9	E	75°, 165*, 178
13.298^{C}	$1s^2 2s^2 2p^3$ ² P $_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P) 3d^2 D_{5/2}$	323 340	7 843 000		2.6 - 2	1.6+11	E	107, 109, 110, 165*
$13.27^{\mathbf{C}}$	3/2	3/2	323 340	7 859 000		1.3 - 1	1.2 + 12	D	165*
13.159	1/2	3/2	260 270	7 859 000		9.2 - 1	8.9 + 12	D	120°, 165*
13.176 ^C	$1s^22s^22p^3$ ² P $_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^1D)3d^{-2}D_{5/2}$	323 340	7 913 000					107,109
13.17^{C}	3/2	3/2	323 340	7 919 000		4.4 - 2	4.2 + 11	D	165*
13.06^{C}	1/2	3/2	260 270	7 919 000		3.0 - 1	3.0+12	D	165*
13.11 ^C	$1s^2 2s^2 2p^3$ ² D ^o _{5/2}	$1s^22s^22p^2(^3{\rm P})3d\ ^4{\rm P}_{3/2}$	176 130	7 802 000		8.4 - 2	8.1+11	\mathbf{E}	165*
13.082	$1s^22s^22p^3$ $^2\mathrm{P}^{\circ}_{3/2}$	$1s^22s^22p^2(^1\mathrm{D})3d\ ^2\mathrm{F}_{5/2}$	323 340	7 983 000					106, 108, 120°
13.082	$1s^22s^22p^3$ ² P° _{3/2}	$1s^2 2s^2 2p^2$ (¹ D)3d ² P _{3/2}	323 340	7 967 000		1.4	1.4+13	D	106, 108, 120°, 165*
12.98^{C}	1/2	3/2	260 270	7 967 000		1.7 - 1	1.7+12	D	165*
13.082	$1s^2 2s^2 2p^3$ ² D $_{5/2}^{\circ}$	$1s^22s^22p^2(^3P)3d^2F_{7/2}$	176 130	7 820 000	,				106,107,108,109,110, 120°
13.049	$1s^22s^22p^3$ ² D° _{5/2}	$1s^22s^22p^2(^3P)3d^{-2}D_{5/2}$	176 130	7 843 000	1	7.8 - 1	5.1+12	D	107, 109, 120°, 165*
13.02^{C}	5/2	3/2	176 130	7 859 000		1.1 - 1	1.1+12	D	165*
12.978	3/2	5/2	138 620	7 843 000		2.5	1.6+13	Ď	112,120°,165*
12.946	$1s^22s^22p^3$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^22s^22p^2(^1{ m S})3d\ ^2{ m D}_{5/2}$	323 340	8 047 000	1	2.2	1.4+13	D	120°,165*
12.924	$1s^22s^22p^3$ ² D _{5/2}	$1s^2 2s^2 2p^2 (^1D) 3d^2D_{5/2}$	176 130	7 913 000)	1.4	9.6 + 12	E	110,120°,165*
$12.92^{\rm C}$	5/2	3/2	176 130	7 919 000		2.7 - 1	2.7 + 12	D	165*
12.857	3/2	3/2	138 620	7 919 000		1.1	1.1+13	Ď	120°,165*
12.847	3/2	5/2	138 620	7 913 000)	1.7	1.1+13	${f E}$	112,120°,165*
12.888	$1s^2 2s^2 2p^3$ ² D ^o _{5/2}	$1s^22s^22p^2(^1{\rm D})3d\ ^2{\rm F}_{7/2}$	176 130	7 935 000)				106,107,108,109,110,
12.763	3/2	5/2	138 620	7 983 000)				120°, 185 107, 109, 110, 112, 120°
12.84 ^C	$1s^22s^22p^3$ ² D _{5/2}	$1s^2 2s^2 2p^2 (^1D) 3d^2 P_{3/2}$	176 130	7 967 000)	1.6 - 1	1.6+12	D	165*
12.77 ^C	3/2	3/2	138 620	7 967 000		3.2 - 2	3.3+11	E	165*
12.818	$1s^2 2s^2 2p^3$ $^4S_{3/2}^{\circ}$	$1s^22s^22p^2(^3{\rm P})3d\ ^4{\rm P}_{3/2}$	0	7 802 000)	2.0	2.1+13	D	94,106,108,110,112,
12.818	3/2	5/2	0	7 802 000)				120°, 165*, 185 94,106,108,110,112, 120°, 185
12.75^{C}	$1s^22s^22p^3$ $^4S_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P) 3d^2 D_{5/2}$	0	7 843 000)	1.7 - 1	1.1+12	E	165*
12.72 ^C	3/2	3/2	0	7 859 000		2.0 - 2	2.1+11	E	165*
10 =- C	•	•	_						
12.71 ^C	$1s^2 2s^2 2p^3$ ² D _{5/2}		176 130	8 047 000		1.5 - 1	1.0+12	D	165*
12.64 ^C	3/2	•	138 620	8 047 000)	6.0 - 3	4.2+10	\mathbf{E}	165*
12.63^{C}	·	$1s^2 2s^2 2p^2 (^1D)3d^2D_{3/2}$	0	7 919 000)	1.2 - 2	1.3+11	E	165*
12.55 ^C	·	$1s^2 2s^2 2p^2 (^1D) 3d\ ^2P_{3/2}$	0	7 967 000)	1.1 - 2	1.2+11	E	165*
10.222	$1s^2 2s^2 2p^3$ ² P $_{1/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P) 4d\ ^2D_{3/2}$	260 270	10 043 000)				120
10.177	$1s^2 2s^2 2p^3$ ² P $_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^1\mathrm{D}) 4d\ ^2\mathrm{P}_{3/2}$	323 340	10 149 000	o				120

Fe xx - Continued

Wave- length (Å)	Clas Lower	sification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
10.177 10.159	$1s^2 2s^2 2p^3$ ² D° _{3/2} 5/2	$1s^2 2s^2 2p^2 (^3\mathrm{P}) 4d\ ^2\mathrm{F}_{5/2}$ 7/2 $1s^2 2s^2 2p^2 (^1\mathrm{D}) 4d\ ^2\mathrm{F}_{5/2}$	138 620 176 130	9 964 000 10 019 000					120 120
10.177	$1s^22s^22p^3$ ² P $_{3/2}^{\circ}$	$1s^22s^22p^2(^1{\rm D})4d\ ^2{\rm F}_{5/2}$	323 340	10 149 000					120
10.159 10.121	$1s^2 2s^2 2p^3$ 2 $D_{5/2}^{\circ}$ $_{3/2}$	$1s^2 2s^2 2p^2 (^3\mathrm{P}) 4d\ ^2\mathrm{D}_{5/2}$	176 130 138 620	10 019 000 10 019 000					120 120
10.121 9.991 9.991	$1s^2 2s^2 2p^3$ $^4S^{\circ}_{3/2}$ $^{3/2}$ $^{3/2}$	$1s^2 2s^2 2p^2 (^3 P) 4d^{-4} P_{5/2}$ 3/2 1/2	0 0 0	9 880 000 10 009 000 10 009 000					120 120 120
10.058	$1s^22s^22p^3$ $^4S_{3/2}^{o}$	$1s^2 2s^2 2p^2 (^3P) 4d^4 F_{5/2}$	0	9 942 000					120
10.034 10.008	$1s^2 2s^2 2p^3$ 2 $D_{5/2}^{\circ}$ $_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^1\mathrm{D}) 4d\ ^2\mathrm{D}_{5/2}$ 3/2	176 130 138 620	10 142 000 10 130 000					120 120
10.034 9.991	$1s^2 2s^2 2p^3 \ ^2 \mathrm{P}^{\circ}_{3/2}$	$1s^2 2s^2 2p^2 (^1S) 4d^2 D_{5/2}$	323 340 260 270	10 289 000 10 269 000					120 120
10.034	$1s^22s^22p^3$ ² D $_{5/2}^{\circ}$	$1s^22s^22p^2(^1\mathrm{D})4d\ ^2\mathrm{G}_{7/2}$	176 130	10 142 000					120
10.008	$1s^2 2s^2 2p^3$ $^4S_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P) 4d^4D_{5/2}$	0	9 992 000					120
9.220	$1s^2 2s^2 2p^3$ ² P° _{3/2}	$1s^2 2s^2 2p^2 (^1D) 5d^2 P_{3/2}$	323 340	11 169 000					96
9.220	$1s^2 2s^2 2p^3$ ² P° _{3/2}	$1s^22s^22p^2(^1{ m D})5d\ ^2{ m F}_{5/2}$	323 340	11 169 000					96
9.208 9.199	$1s^2 2s^2 2p^3$ 2 $D_{3/2}^{\circ}$ $_{5/2}$	$1s^2 2s^2 2p^2 (^3 P) 5d^2 F_{5/2}$	138 620 176 130	10 998 000 11 047 000					96 96
9.208	$1s^22s^22p^3$ ² D $_{5/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P)5d^2D_{5/2}$	176 130	11 036 000					96
9.163	$1s^2 2s^2 2p^3$ $^4S_{3/2}^{\circ}$	$1s^22s^22p^2(^3{\rm P})5d\ ^4{\rm P}_{5/2}$	0	10 913 000					96
9.110	$1s^22s^22p^3$ ² D _{5/2}	$1s^22s^22p^2(^1\mathrm{D})5d\ ^2\mathrm{G}_{7/2}$	176 130	11 153 000					96
9.110 9.073	$1s^2 2s^2 2p^3$ 2 $D_{5/2}^{\circ}$ $_{3/2}$	$1s^2 2s^2 2p^2 (^1D) 5d^2D_{5/2}$	176 130 138 620	11 153 000 11 160 000					96 96
9.110	$1s^2 2s^2 2p^3$ $^4S_{3/2}^{\circ}$	$1s^22s^22p^2(^3{\rm P})5d\ ^4{\rm F}_{5/2}$	0	10 977 000	ı				96
9.065	$1s^22s^22p^3$ $^4S_{3/2}^{\circ}$	$1s^2 2s^2 2p^2 (^3P) 5d ^4D_{5/2}$	0	11 031 000	1				96
1.90845 1.90568 1.9051	$1s^2 2s^2 2p^3 \ ^4S_{3/2}^{\circ}$ 3/2 3/2	$1s2s^22p^4$ $^4\mathrm{P}_{5/2}$ $^{3/2}$ $^{1/2}$	0 0 0	52 398 500 52 474 700 52 491 000	1				98 98°, 121, 122 122
1.9075 1.9075		$1s2s^22p^4$ $^2\mathrm{D}_{5/2}$		52 601 000 52 563 000					122 122
1.9051	$1s^22s^22p^3\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s2s^22p^{4}$ 2 S _{1/2}	323 340	52 814 000)				122
1.9051	$1s^2 2s^2 2p^{3-2} D_{5/2}^{\circ}$	$1s2s^22p^{4-2}P_{3/2}$	176 130	52 667 000)				122

Fe XXI

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
2298.0 1354.08	$1s^22s^22p^2$ ³ P ₁	$1s^2 2s^2 2p^2$ ³ P ₂	73 851 0	117 354 73 851	M1 M1	8.46+2 6.49+3	C C	90, 91°, 195* 14°, 88, 92, 195*
786.1 585.8	$1s^22s^22p^2$ 3P_2	$1s^22s^22p^{2-1}D_2$	117 354 73 851	244 561 244 561	M1 M1	1.51+4 1.59+4	C C	91°,195° 91°,92,101,195°
270.52 242.07	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s2p^3$ ${}^5\mathrm{S}^{\circ}_2$	117 354 73 851	486 950 486 950	1.9 - 3 $1.6 - 3$	3.5+7 3.6+7	E E	53°,165* 53°,165*
$259.6^{ m C} \\ 208.6^{ m C}$	$1s^2 2s 2p^3$ 1 P $_1^o$	$1s^22p^4$ 3 P ₂	1 261 140 1 261 140	1 646 300 1 740 500	5.7 - 3 $1.4 - 2$	1.1+8 7.4+8	E E	165* 165*
247.09 ^C	$1s^2 2s^2 2p^2$ ¹ S ₀	$1s^2 2s 2p^3$ $^3 D_1^0$	371 980	776 690	1.5 - 3	5.5+7	E	165*
192.66^{C} 163.06^{C}	$1s^2 2s 2p^{3-1} D_2^{\circ}$	$1s^22p^4$ 3 P ₂	1 127 240 1 127 240	1 646 300 1 740 500	2.4 - 2 $4.3 - 3$	8.5+8 3.6+8	E E	165* 165*
187.92 ^C	$1s^22s^22p^{2-1}D_2$	$1s^2 2s 2p^3$ 3 D_1°	244 561	776 690	3.2 - 3	2.0+8	E	165*
187.70 ^C 178.898	2 2	2 3	$\begin{array}{c} 244 \ 561 \\ 244 \ 561 \end{array}$	777 340 803 540	1.0 - 3 $3.5 - 2$	3.8+7 $1.0+9$	E E	165* 119°,165*
181.57	$1s^2 2s 2p^3$ 3 S ₁ °	$1s^22p^4$ ³ P ₂	1 095 670	1 646 300	1.7 - 1	6.8+9	C	75°,165*
156.21 155.06	1 1	0	1 095 670 1 095 670	1 735 700 1 740 500	7.05 - 2 $1.6 - 1$	1.93+10 $1.4+10$	C	75°,165* 75°,165*
180.85 ^C	$1s^22s^22p^{2-1}S_0$	$1s^2 2s 2p^3$ 3 P $_1^{\circ}$	371 980	924 920	2.4 - 3	1.6+8	E	165*
179.87 ^C	$1s^2 2s 2p^{3-1} P_1^o$	$1s^22p^{4}$ ¹ D ₂	1 261 140	1 817 100	1.20 - 1	5.0+9	C	165*
151.67 ^C	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s 2p^3$ $^3 D_1^{\circ}$	117 354	776 690	7.5 - 4	7.3+7	E	165*
151.51 145.732	2	2	117 354	777 340	2.2 - 4	1.3+7	E	118°, 165*
142.278	2	3	117 354 73 851	803 540 776 690	1.48 - 1 $7.2 - 3$	6.6+9	C D	75 ^{\(\Delta\)} , 118, 119°, 165*, 178
142.278	1	1	73 851	777 340	1.2 - 3 $1.5 - 1$	7.9+8	C	$75^{\triangle}, 119^{\circ}, 165^{*}$ $75^{\triangle}, 118, 119^{\circ}, 123, 165^{*}, 178$
128.755	1 0	2	0	776 690	9.3 - 2	1.0+10 $1.2+10$	C	75^{\triangle} , 118, 119°, 165*, 178
146.98^{C}	$1s^22s^22p^{2-1}D_2$	$1s^22s2p^3$ $^3P_1^o$	244 561	924 920	3.0 - 3	3.0+8	E	165*
143.29 ^C	13 23 2p D ₂	18 2829 11	244 561	942 430	3.8 - 3	2.4+8	E	165*
144.96 ^C	$1s^2 2s 2p^{3-1} D_2^o$	$1s^22p^{4-1}D_2$	1 127 240	1 817 100	5.60 - 1	3.56+10	C	75, 118, 165*
142.05	$1s^2 2s 2p^3$ $^3 P_2^o$	$1s^22p^4$ 3P_2	942 430	1 646 300	5.55 - 2	3.67+9	С	75°,165*
138.61	1	2	924 920	1 646 300	5.52 - 2	3.83+9	č	75°, 165*
125.29	2	1	942 430	1 740 500	1.25 - 1	1.77 + 10	C	75°, 165*
123.33	1	0	924 920	1 735 700	4.65 - 2	2.04 + 10	C	75°,165*
122.61 ^C	1	1	924 920	1 740 500	1.0 - 3	1.5+8	E	165*
121.36	0	1	916 330	1 740 500	3.41 - 2	5.1+9	C	75°,165*
138.18 ^C	$1s^2 2s^2 2p^2$ ¹ S ₀	$1s^2 2s2p^3$ $^3S_1^0$	371 980	1 095 670	5.9 - 3	6.9+8	E	165*
127.04	$1s^2 2s 2p^{3-1} P_1^o$	$1s^22p^{4-1}S_0$	1 261 140	2 048 200	2.0 - 1	8.4+10	C	75°,118,165*
$\frac{123.834}{121.201}$	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s 2p^3$ 3 P_1^o	117 354 117 354	924 920 942 430	2.2 - 2 $2.40 - 1$	3.2+9 2.17+10	D D	$75^{\triangle}, 119^{\circ}, 123, 165^{*}$ $75^{\triangle}, 117, 118, 119^{\circ}, 123, 165^{*},$
118.697	1	0	73 851	916 330	5.10 - 2	2.41+10	C	178 75 ^Δ , 118, 119°, 165*,
117.501	1	1	73 851	924 920	1.06 - 1	1.71+10	С	178 75^{\triangle} , 118 , 119° , 123 , 165^{*} , 178
115.15	1	2	73 851	942 430	3.6 - 3	3.6+8	Ď	75°,118,165*
108.114	o	1	0	924 920	2.25 - 2	4.28+9	С	75^{\triangle} , 118, 119°, 165*, 178
118.71	$1s^2 2s 2p^3$ 3 D_3^o	$1s^22p^{4-3}P_2$	803 540	1 646 300	3.27 - 1	3.09+10	C	75°,165*
115.08	2	2	777 340	1 646 300	1.46 - 1	1.47 + 10	Ç	75°,165*
115.01	1	2	776 690	1 646 300	3.75 - 2	3.78+9	C	75°, 165*
104.29 103.83	1	0	776 690 777 340	1 735 700 1 740 500	6.09 - 2	3.73+10 $2.27+10$	C	75°, 165*
103.77	2 1	1 1	776 690	1 740 500	1.10 - 1 $7.56 - 2$	1.56+10	Ċ	75°,165* 75°,165*
117.49 ^C	$1s^2 2s^2 2p^{2-1} D_2$	$1s^2 2s2p^3$ $^3S_1^0$	244 561	1 095 670	1.9 - 3	3.0+8	E	165*
114.30	$1s^2 2s 2p^3$ 3 P $_2^{\circ}$	$1s^22p^{4-1}D_2$	942 430	1 817 100	2.5 - 2	2.5+9	E	75°, 165*
112.1 ^C	1	2	924 920	1 817 100	1.2 - 2	1.3+9	E	165*
113.297	$1s^2 2s^2 2p^{2-1} D_2$	$1s^2 2s 2p^{3-1} D_2^{o}$	244 561	1 127 240	4.6 - 1	4.8 + 10	C	75 [^] , 117, 118, 119°, 165*, 178

Fe XXI - Continued

Wave- ength (Å)	Classifi Lower	cation Upper	Energy Leve	els (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
112.466	$1s^22s^22p^2$ ¹ S ₀	$1s^2 2s 2p^{3-1} P_1^0$	371 980	1 261 140	1.04 - 1	1.83+10	C	75 [△] ,118,119°,165*,178
104.98^{C}	$1s^2 2s 2p^3$ $^3S_1^0$	$1s^22p^{4}$ 1 S ₀	1 095 670	2 048 200	9.6 - 3	5.8 + 9	E	165*
102.216	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s 2p^3$ 3 S ₁ °	117 354	1 095 670	3.0 - 1	6.4+10	C	75 ^{\triangle,} 117, 118, 119°, 123, 165*, 178
97.863	1	1	73 851	1 095 670	1.14 - 1	2.64+10	\mathbf{C}	75 ^Δ , 117, 118, 119°, 123, 165*, 178
91.269	0	1	0	1 095 670	3.70 - 2	9.9 + 9	C	$75^{\Delta}, 117, 118, 119^{\circ}, 165^{*}, 178$
99.017 94.932 ^C	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s2p^3$ $^1\mathrm{D}_2^{\mathrm{o}}$	117 354 73 851	1 127 240 1 127 240	6.5 - 2 $2.9 - 3$	8.8+9 4.2+8	E E	75 ^Δ ,119°,165*,178 165*
98.69 96.176 ^C	$1s^2 2s 2p^3$ 3 3 2	$1s^22p^{4-1}D_2$	803 540 777 340	1 817 100 1 817 100	4.3 - 2 $5.0 - 3$	5.9+9 7.2+8	E E	75°,165* 165*
98.369	$1s^22s^22p^{2-1}D_2$	$1s^2 2s 2p^{3-1} P_1^o$	244 561	1 261 140	3.1 - 1	7.1+10	\mathbf{C}	$75^{\Delta}, 117, 118, 119^{\circ}, 165^{\star}, 178$
89.025^{C}	$1s^2 2s2p^3$ 3 P ₁ °	$1s^22p^{4}$ 1S_0	924 920	2 048 200	5.4 - 3	4.5+9	\mathbf{E}	165*
87.429 ^C 84.26	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s2p^{3} \ ^1P_1^0$	117 354 73 851	1 261 140 1 261 140	8.0 - 4 $1.7 - 2$	2.3+8 5.3+9	E E	165* 75°,165*
86.26 79.773 ^C	$1s^2 2s 2p^3$ ${}^5S_2^o$	$1s^22p^4$ 3 P ₂	486 950 486 950	1 646 300 1 740 500	8.0 - 3 $8.0 - 4$	1.4+9 $2.8+8$	E E	75°,165* 165*
12.873 ^C	$1s^22s^22p^2$ ¹ S ₀	$1s^2 2s^2 2p3d\ ^3{ m D}_1^{ m o}$	371 980	8 140 000	8.8 - 3	1.2+11	\mathbf{E}	165*
12.728 ^C	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p3d\ ^3\mathrm{F_3^o}$	244 561	8 101 400	4.0 - 2	2.4+11	E	165*
12.623	$1s^2 2s^2 2p^2$ ¹ S ₀	$1s^22s^22p3d\ ^1\mathrm{P_{1}^{o}}$	371 980	8 293 900	5.1 - 1	7.2 + 12	E	96°,124,165*
12.578 ^C	$1s^22s^22p^{2-1}D_2$	$1s^2 2s^2 2p3d\ ^3{ m D}_3^{ m o}$	244 561	8 195 000	2.1 - 1	1.3+12	\mathbf{E}	165*
12.525	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^22s^22p3d\ ^3{ m F}_3^o$	117 354	8 101 400	9.5 - 1	5.8+12	Е	96°, 124, 165*
12.465 ^C 12.398 12.38	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s^2 2p3d\ ^3\mathrm{D_1^o}$	117 354 73 851 117 354	8 140 000 8 140 000 8 195 000	1.5 - 2 $2.5 - 1$ 3.4	2.1+11 3.6+12 2.1+13	E D D	165* 94°, 112, 165* 106°, 165*
$12.325 \\ 12.285$	1 0	2 1	73 851 0	8 187 400 8 140 000	1.4	2.1 + 13	D	96°,124 94°,106,110,112,165*
12.462	$1s^22s^22p^2$ ³ P ₁	$1s^22s^22p3d\ ^1{\rm D}_2^{\rm o}$	73 851	8 098 000				96°,124
12.423^{C}	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p3d\ ^1\mathrm{P_1^o}$	244 561	8 293 900	4.8 - 2	6.9 + 11	E	165*
12.393	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p3d\ ^1\mathrm{F_3^o}$	244 561	8 313 600	5.0	3.1+13	D	96°, 106, 107, 109, 124, 165*
12.325	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s^2 2p3d$ $^3 P_2^{o}$	117 354	8 230 900				96°, 106, 107, 109, 110, 124
12.230 ^C	$1s^22s^22p^2$ ³ P ₂	$1s^22s^22p3d$ $^1P_1^o$	117 354	8 293 900	4.3 - 2	6.4+11	E	165*
12.165 ^C 12.057 ^C	1 0	1	73 851 0	8 293 900 8 293 900	1.2 - 1 $8.3 - 2$	1.8+12 $1.3+12$	E E	165* 165*
12.201 ^C	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^22s^22p3d$ $^1F_3^o$	117 354	8 313 600	3.5 - 1	2.2+12	E	165*
$9.822^{\rm C}$	$1s^2 2s^2 2p^{2-1}S_0$	$1s^2 2s^2 2p4d$ $^3\mathrm{D_1^o}$	371 980	10 553 000	9.4 - 3	2.2+11	E	165*
$9.744^{\rm C} \\ 9.632$	$1s^22s^22p^2\ ^3\mathrm{P}_2\\$	$1s^2 2s^2 2p4s$ $^3P_1^{\circ}$	117 354 0	10 380 000 10 380 000	1.0 - 2 $4.9 - 3$	2.3+11 1.2+11	E E	165* 125°, 165*
9.705^{C}	$1s^2 2s^2 2p^{2-1} D_2$	$1s^22s^22p4d\ ^3\mathrm{F_3^o}$	244 561	10 548 000	4.0 - 2	4.0+11	E	165*
9.694^{C}	$1s^22s^22p^2$ ¹ S ₀	$1s^22s^22p4d\ ^3\mathrm{P_1^o}$	371 980	10 688 000	2.1 – 3	5.0+10	E	165*
9.597^{C}	$1s^22s^22p^2$ ¹ D ₂	$1s^22s^22p4d\ ^3\mathrm{D_3^o}$	244 561	10 664 000	1.7 - 2	1.7+11	E	165*
9.587^{C}	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p4d\ ^1\mathrm{D_2^o}$	244 561	10 675 000	7.0 - 2	1.0+12	D	165*
9.587	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^22s^22p4d\ ^3{ m F}_3^{ m o}$	117 354	10 548 000	3.1 - 1	3.2 + 12	E	96,120,125°,165*
9.581	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p4d\ ^1\mathrm{F_3^o}$	244 561	10 681 000	8.5 - 1	8.9+12	D	96°,120,165*
9.575 ^C	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p4d$ $^3\mathrm{P}_1^{\mathrm{o}}$	244 561	10 688 000	1.6 - 2	3.9+11	E	165*

Fe xxI - Continued

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	rels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
9.548 9.542 9.482 9.476	$1s^2 2s^2 2p^2$ ³ P ₁ 1 2 0	$1s^2 2s^2 2p4d\ ^3 D_2^{\circ}$ 1 3 1	73 851 73 851 117 354 0	10 547 000 10 553 000 10 664 000 10 553 000	3.3 - 2 $4.7 - 1$ $2.1 - 1$	8.1+11 4.9+12 5.2+12	D D D	125 125°, 165* 96, 120, 125°, 165* 96, 120, 125°, 165*
$9.518 \\ 9.460^{\rm C} \\ 9.421$	$1s^22s^22p^2$ ³ P ₁	$1s^2 2s^2 2p4d\ ^3 P_2^o$	73 851 117 354 73 851	10 580 000 10 688 000 10 688 000	6.0 - 2 $1.3 - 1$	1.5+12 3.3+12	D	96°,120 165* 96°,120,165*
9.472 ^C 9.433	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^22s^22p4d\ ^1\mathrm{D_2^o}$	117 354 73 851	10 675 000 10 675 000	4.1 - 2 $1.1 - 1$	6.1+11 1.7+12	E E	165* 96°, 120, 165*
8.855 ^C	$1s^22s^22p^2$ ¹ S ₀	$1s^22s^22p5d\ ^3\mathrm{D_1^\circ}$	371 980	11 665 000	5.5 - 3	1.6+11	E	165*
8.646 ^C	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p5d\ ^1\mathrm{D_2^o}$	244 561	11 810 000	2.5 - 2	4.4+11	\mathbf{E}	165*
8.646 ^C	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p5d\ ^3\mathrm{P}_1^{\mathrm{o}}$	244 561	11 810 000	5.5 - 3	1.6+11	E	165*
8.643	$1s^22s^22p^{2-1}D_2$	$1s^22s^22p5d\ ^1\mathrm{F}^{\mathrm{o}}_{3}$	244 561	11 814 000	3.1 - 1	3.9+12	D	96°,120,165*
8.627 ^C 8.573 8.558	$1s^22s^22p^2$ ³ P ₁ 0 2	$1s^2 2s^2 2p5d$ $^3\mathrm{D_1^o}$	73 851 0 117 354	11 665 000 11 665 000 11 802 000	1.1 - 2 $7.0 - 2$ $1.5 - 1$	3.2+11 $2.1+12$ $2.0+12$	E D D	165* 125°,165* 96°,120,165*
8.552^{C} 8.521	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s^2 2p5d$ $^1\mathrm{D}_2^{\circ}$	117 354 73 851	11 810 000 11 810 000	1.6 - 2 $3.3 - 2$	$2.8+11 \\ 6.1+11$	E E	165* 96°, 120, 165*
8.552 ^C 8.521	$1s^2 2s^2 2p^2$ ³ P ₂	$1s^2 2s^2 2p5d\ ^3\mathrm{P}_1^{\circ}$	117 354 73 851	11 810 000 11 810 000	2.2 - 2 $4.8 - 2$	6.5+11 $1.5+12$	E D	165* 96°, 120, 165*
1.89692 1.8966 1.89474	$1s^22s^22p^2$ ³ P ₁ 2 0	$1s2s^{2}2p^{3}$ 3 D_{2}° 3 $_{1}^{\circ}$	73 851 117 354 0	52 790 000 52 843 000 52 777 700				98°, 122 122 98
1.8942	$1s^2 2s^2 2p^{2-1} D_2$	$1s2s^22p^3$ $^3P_2^0$	244 561	53 037 000				122
1.8942	$1s^2 2s^2 2p^2$ ³ P ₁	$1s2s^22p^3$ $^3S_1^o$	73 851	52 870 000				122
1.89359	$1s^2 2s^2 2p^2$ ³ P ₂	$1s2s^22p^{3-1}\mathrm{D}_2^{\mathrm{o}}$	117 354	52 927 100				98°,122
1.8916	$1s^22s^22p^{2-1}D_2$	$1s2s^22p^{3-1}P_1^0$	244 561	53 104 000				122

Fe XXII

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Class Lower	sification Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	845.55	$1s^2 2s^2 2p \ ^2 P_{1/2}^o$	$1s^2 2s^2 2p \ ^2 P_{3/2}^{\circ}$	0	118 266		M1	1.48+4	С	88,89,90°,91,92,126,195*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	379.68 ^C	$1s^2 2s 2p^2$ P _{3/2}	$1s^22p^3$ $^4S_{0,42}^{\circ}$	992 320	1 255 700		2.7 - 3	3.1 ± 7	E	114.165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360.56 ^C	$1s^2 2s 2p^2$ 2 S _{1/2}	$1s^22p^3$ $^4S_{3/2}^{\circ}$	978 350	1 255 700		9.6 - 4	1.2+7	E	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	349.3	$1s^2 2s^2 2n$ ² P°	$1s^2 2s 2n^2$ ⁴ P _{1/2}	118 266	404 550		5.2 - 4	1.4+7	E	114° 165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	247.19	·		0			1.6 - 3			114°,165*,178
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217.30			0	460 190					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	247.65 ^C	$1s^2 2s 2p^2$ ² P _{3/2}	$1s^22p^3$ 2 D $^{o}_{3/2}$	992 320	1 396 110		1.6 - 3	4.4+7	E	165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	230.28 ^C	•		992 320	1 426 570		1.61 - 1	3.38 + 9	C	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184.35 ^C	•		853 650	1 396 110		1.3 - 1	6.6 + 9	C	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	239.37 ^C	$1s^2 2s 2p^2$ 2 S _{1/2}	$1s^22p^3$ $^2\mathrm{D}^{\circ}_{3/2}$	978 350	1 396 110		2.92 - 2	8.5+8	C	165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	192.53 ^C	$1s^2 2s 2p^2$ ² D _{3/2}	$1s^22p^3$ $^4S_{3/2}^{\circ}$	736 310	1 255 700		3.0 - 3	1.3+8	E	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.21	$1s^2 2s 2p^2$ P _{2/2}	$1s^22n^3$ ² P°	992 320	1 569 630	1	2.0 - 2	2,2+9	D	75°.165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	139.64	•	•			1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.17			853 650	1 627 720	1	3.74 - 2	3.74 + 9	C	75°, 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	169.08	$1s^2 2s 2n^2$ 2S _{1/2}	$1s^22n^3$ 2P°	978 350	1 569 630	1	10~1	1 2+10	С	75° 165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•								· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	161 74	•	1 c ² 2 c2 c ² 2D	110 066	726 210		60 4	2017	177	759 100 105*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•			-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.019	3/2	5/2	118 200	759 210	4	1.36 1	6.2+9	C	178
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135.812	1/2	3/2	0	736 310	6	1.2 - 1	1.1+10	С	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	157.03	$1s^2 2s 2p^2$ ² D _{5/2}	$1s^22r^{3/2}D_{o}^{o}$	759 210	1 396 110	4hl	7.44 - 2	5.0+9	C	75° 118 165*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•				-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	149.87		-					•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144.85			736 310	1 426 570	6bl	6.68 - 2	3.54+9	C	75°, 118, 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	136.01	$1s^2 2s^2 2p^2 P_{2}^{o}$	$1s^2 2s 2p^2$ ² P _{1/2}	118 266	853 650	. 3bl	6.4 - 5	1.2+7	E	75° 165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	,					•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114 419		•	119 000	000 000	0	0 5 1	4.5.110	0	165*,178
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3/2	3/2	118 200	992 320	8	3.5 - 1	4.5+10	C	129, 165*, 178
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100.773	1/2	3/2	0	992 320	4	3.78 - 2	6.20+9	С	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	134.65	$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^22n^3$ $^4S_{o}^{o}$	513 260	1 255 700	6	2 14 - 1	1 96+10	C	75° 118 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				400 400						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.03	$1s^2 2s 2p^2$ ² D _{3/2}	1s ² 2p ³ ² P°	736 310	1 569 630	8b1	1.28 - 1	2 96+10	C	75° 165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				#F0 040						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.21			=00000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116.264	$1s^2 2s^2 2p^2 P_{3/2}^{\circ}$	$1s^22s2p^2$ $^2S_{1/2}$	118 266	978 350	6	1.43 - 1	3.53+10	C	75 ^Δ 118 119° 165*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102.216									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								2	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^22p^3$ ² D _{3/2}	513 260	1 396 110		1.7 - 3	2.2+8	${f E}$	165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5/2			1 426 570	361	2.1 - 2	1.9 + 9	\mathbf{E}	75°,165*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3/2	3/2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3/2	5/2						\mathbf{E}	165*
85.831 ^C 1/2 1/2 404 550 1 569 630 5.0 - 4 2.3 + 8 E 165* 85.651 ^C 3/2 460 190 1 627 720 1.3 - 3 2.9 + 8 E 165*	100.85		·		1 396 110		2.0 - 4	3.3+7	E	165*
85.831 ^C 1/2 1/2 404 550 1 569 630 5.0 - 4 2.3 + 8 E 165* 85.651 ^C 3/2 460 190 1 627 720 1.3 - 3 2.9 + 8 E 165*		$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^22p^3$ 2 P $_{3/2}^{o}$	513 260	1 627 720		7.2 - 4	1.5+8	E	165*
85.651 ^C 3/2 3/2 460 190 1 627 720 1.3 - 3 2.9+8 E 165*		1/2		404	1 569 630		5.0 - 4	2.3 + 8	E	165*
$12.325 1s^2 2s^2 p^2 {}^2 P_{1/2} 1s^2 2s^2 p (^3 P^\circ) 3d {}^2 P_{1/2}^\circ 853 \ 650 8 \ 967 \ 000 7.0 - 1 1.5 + 13 D 96^\circ, 130, 165^*$	85.651 ^C				1 627 720		1.3 - 3	2.9 + 8	E	165*
	12.325	$1s^2 2s 2p^2$ ² P _{1/2}	$1s^2 2s2p(^3P^{\circ})3d\ ^2P^{\circ}_{1/2}$	853 650	8 967 000	,	7.0 - 1	1.5+13	D	96°,130,165*

Fe XXII - Continued

Wave- length (Å)	Clas Lower	sification Upper	Energy Le	vels (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
12.193	$1s^2 2s 2p^2$ 2 S _{1/2}	1s ² 2s2p(³ P°)3d ² P _{3/2} °	978 350	9 180 000	6.4 - 1	7.2+12	D	96°, 130, 165*
12.193	$1s^2 2s 2p^2$ ² D _{3/2}	1s ² 2s2p(³ P°)3d ² D _{5/2}	736 310	8 938 000	1.3	9.9+12	D	96°, 130, 165*
12.095	1 s ² 2 s2n ² 2Dr (c	1s ² 2s2p(³ P°)3d ² F _{5/2} °	759 210	9 030 000	1.0	7.8+12	D	060 100 120 165*
12.053		-,-						96°, 108, 130, 165*
12.045	3/2	5/2	736 310 759 210	9 030 000	8.0 - 1	6.1+12	D	96°, 107, 108, 109, 130, 165*
12.040	5/2	7/2	139 210	9 062 000	4.3	2.4+13	D	96°, 107, 109, 130, 165*
12.077	$1s^2 2s 2p^2$ 2 $P_{1/2}$	$1s^2 2s2p(^1P^{\circ})3d^2D_{3/2}^{\circ}$	853 650	9 134 000	8.8 - 1	1.0 + 13	D	96°, 130, 165*
12.077	3/2	5/2	992 320	9 272 000	3.1	2.4 + 13	D	96°, 107, 109, 130, 165*
12.027	$1s^2 2s 2p^2$ 2 $P_{1/2}$	$1s^2 2s2p(^1P^{\circ})3d\ ^2P^{\circ}_{3/2}$	853 650	9 168 000	6.0 - 1	6.9+12	D	96°,130,165*
11.976	$1s^2 2s 2p^2 {}^4P_{5/2}$	1s ² 2s2p(³ P°)3d ⁴ F° _{7/2}	513 260	8 864 000	1.0	5.9+12	D	96°,130,165*,206
11.935	$1s^2 2s^2 2p ^2 P_{3/2}^{o}$	$1s^22s^23d\ ^2\mathrm{D}_{3/2}$	110.000	0 400 000		00.40		0.0 00 100 100 100
11.935 11.921	•	,	118 266	8 498 000	2.6 - 1	3.0+12	D	94°, 96, 108, 110, 165*
11.921	3/2	5/2	118 266	8 507 000	2.4	1.8 + 13	D	96°, 97, 106, 108, 109, 112, 130, 165*, 206
11.767	1/2	3/2	0	8 498 000	1.3	1.6+13	D	94,96°,97,106,108,109,
	ŕ	·						110, 112, 130, 165*, 206
11.886	$1s^2 2s 2p^2$ ⁴ P _{3/2}	$1s^2 2s2p(^3P^\circ)3d^4P^\circ_{5/2}$	460 190	8 874 000	1.7	1.3 + 13	D	96°, 130, 165*
11.823	5/2	3/2	513 260	8 972 000	6.6 - 1	7.9 + 12	D	96°,130,165*,206
11.748	3/2	1/2		8 973 000	7.6 - 1	1.8 + 13	D	96°, 130, 165*
11.748	3/2	3/2	460 190	8 972 000	1.0	1.2 + 13	D	96°,130,165*
11.837	$1s^2 2s 2p^2$ ⁴ P _{5/2}	$1s^2 2s 2p(^3P^{\circ})3d^{-4}D_{7/2}^{\circ}$	513 260	8 962 000	3.9	2.3+13	D	060 107 100 120 165* 206
11.837	•	•		8 973 000	2.1	1.7+13	D	96°, 107, 109, 130, 165*, 206 96°, 130, 165*, 206
11.797	5/2 1/2	5/2 3/2	101	8 882 000	1.4	1.7+13	D	96°, 130, 165*
11.789	1/2	1/2		8 888 000	1.1	2.6+13	Ď	96°, 130, 165*, 206
11.748	3/2	5/2		8 973 000	6.0 - 1	4.8+12	D	96°, 130, 165*
11.700	1 20 0 2 20	- 20 0 (lpmo+2pm					_	
11.789		$1s^2 2s2p(^1P^{\circ})3d\ ^2F^{\circ}_{7/2}$		9 242 000	1.9	1.2+13	D	96°, 107, 109, 130, 165*, 206
11.748	3/2	5/2	736 310	9 249 000	2.0	1.6 + 13	D	96°,130,165*
11.669 11.650	$1s^2 2s^2 2p \ ^2 P_{3/2}^{\circ}$	$1s^2 2s 2p 3p^{-2} \mathrm{P}_{3/2}$	118 266 0	8 688 000 8 584 000				96°, 107, 109, 130, 206 96°, 107, 109, 130
11 450	$1s^2 2s^2 2p$ 2 $P_{3/2}^{\circ}$	$1s^2 2s2p3p$ $^2 \mathrm{D}_{5/2}$	110 000	0.045.000				000 100 100 110 100 000
11.459 11.442	18 28 2p P _{3/2} 1/2	1s 2s2p3p D _{5/2} 3/2		8 845 000 8 740 000				96°, 107, 109, 112, 130, 206 96°, 107, 109, 112, 130
9.241	1 c ² 2 c2n ² 2D.	1.22.220(3P°)//d 2F°	736 310	11 558 000	3.9 - 1	5.1+12	D	96°, 130, 165*
8.977	13 232p D3/2	$1s^2 2s2p(^3P^{\circ})4d\ ^2F^{\circ}_{5/2}$	759 210	11 900 000	3.9 - 1 $2.4 - 1$	2.5+12	D	96°,130,165*
				11 000 000	2 2	2.0 , 12	D	33 , 133, 133
9.215		$1s^2 2s2p(^3P^{\circ})4d^{\ 2}D_{5/2}^{\circ}$		11 611 000	2.1 - 1	2.7+12	D	96°, 130, 165*
9.183	$1s^2 2s 2p^2$ 2 $D_{5/2}$	$1s^2 2s2p(^1P^{\circ})4d^{-2}F^{\circ}_{7/2}$	759 210	11 649 000	8.4 - 1	8.3 + 12	D	96°,130,165*
8.960	3/2	5/2		11 897 000	2.7 - 1	3.8 + 12	D	96°, 130, 165*
9.163	$1s^2 2s 2p^2$ 2 $P_{3/2}$	1s ² 2s2p(¹ P°)4d ² D _{5/2} °	992 320	11 906 000	5.2 - 1	6.9+12	D	96°, 130, 165*
		•				•		,
9.14	$1s^2 2s^2 2p {}^2 P_{3/2}^{\circ}$	$1s^2 2s^2 4s$ 2 S _{1/2}		11 050 000	1.4 - 2	5.5 + 11	\mathbf{E}	97°, 109, 165*, 206
9.06	1/2	1/2	0	11 050 000	4.6 - 3	1.9 + 11	\mathbf{E}	97°, 109, 165*, 206
9.073	1s ² 2s ² 2n ² P°	$1s^22s^24d\ ^2{ m D}_{5/2}$	118 266	11 140 000	4.0 - 1	5.5+12	D	97,125°,130,165*,206
9.073	-, -	10 20 40 105/2		11 140 000	4.0 - 1 $4.8 - 2$	9.8+12	D	97, 125°, 130, 165°, 206 125°, 165*
8.976	3/2 1/2	3/2 3/2		11 140 000	$\frac{4.8 - 2}{2.2 - 1}$	4.6+12	D	97,110,125°,130,165*,206
9.065		$1s^2 2s2p(^3P^{\circ})4d^4F^{\circ}_{5/2}$		11 492 000	2.6 - 1	3.5+12	D	96°, 130, 165*
9.006	•	$1s^2 2s2p(^3P^{\circ})4d^{-4}D^{\circ}_{7/2}$		11 618 000		5.7+12		96°,130,165*
9.006	13 232p 15/2 5/2	18 282P(1)4a D _{7/2} 5/2		11 618 000	5.6 - 1 $3.9 - 1$	5.7+12 $5.3+12$	D D	96°, 130, 165*
8.992	1/2	3/2		11 526 000	2.4 - 1	4.9+12	Ď	96°,130,165*
8.722	•	$1s^2 2s 2p(^3 P^{\circ}) 4p^{-2} P_{1/2}$	•					125
8.715	-,-	$1s^2 2s 2p(^3 P^{\circ}) 4p^{-2} D_{3/2}$						125
8.091	•	$1s^2 2s^2 5d \ ^2 \mathrm{D}_{3/2}$						125
	•							•
1.8867	$1s^2 2s^2 2p \ ^2 P_{3/2}^{o}$	$1s2s^22p^2$ 2 P _{1/2}						122
1.8824	3/2	3/2		53 242 000				122
1.8824	1/2	1/2	2 0	53 122 000				122

Fe XXII - Continued

Wave-	Classifie	cation	Energy Le	evels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
1.88534	$1s^2 2s^2 2p ^2 P_{3/2}^{\circ}$	$1s2s^22p^2$ ² D _{5/2}	118 266	53 166 000				98°, 122
1.88259	1/2	3/2	_	53 124 000				98°,122
1.8794	$1s^2 2s^2 2p$ 2 $P_{3/2}^o$	$1s2s^22p^2$ $^2\mathrm{S}_{1/2}$	118 266	53 327 000				122

Fe xxiii

Wave-	Classif	ication	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		eis (ein)	1110.	91	71 (8)	Acc.	references
1079.3	$1s^2 2s2p$ $^3P_1^o$	$1s^2 2s2p^{-3}P_2^{\circ}$	379 125	471 780		M1	9.98+3	C+	91°, 92, 165*
602.4 ^C	$1s^2 2s3p \ ^1 P_1^o$	$1s^22s3d\ ^1\mathrm{D}_2$	9 107 000	9 273 000		1.4 - 1	5.1+8	E	165*
490.9^{C}	$1s^2 2s2p^{-1}P_1^{o}$	$1s^22p^2$ ³ P ₀	752 410	956 100		8.4 - 4	2.3 + 7	E	165*
363.91 ^C	1	1	752 410	1 027 200		4.5 - 4	7.5 + 6	\mathbf{E}	165*
313.19 ^C	1	2	752 410	1 071 700		2.7 - 2	3.7 + 8	D	165*
263.765	$1s^22s^2$ 1 S ₀	$1s^2 2s2p$ $^3P_1^{\circ}$	0	379 125		1.5 - 3	4.8+7	D	114,119°,131,132,178,191*
221.33	$1s^2 2s2p \ ^1P_1^{o}$	$1s^22p^{2-1}D_2$	752 410	1 204 200	5bl	1.69 - 1	4.61+9	В	75°, 165*
180.10	$1s^2 2s 2p \ ^3P_2^{\circ}$	$1s^22p^2$ 3P_1	471 780	1 027 200	1	6.50 - 2	4.46 + 9	В	75°,165*
173.31 166.74	1	0	379 125	956 100	2bl	5.55 - 2	1.23+10	В	75°, 165*
154.27	2 1	2	471780 379125	1 071 700 1 027 200	$\frac{4}{2}$	1.58 - 1 $4.47 - 2$	7.58+9 $4.18+9$	B B	75°,165* 75°,165*
147.24	0	1	348 180	1 027 200	3	6.43 - 2	6.59 + 9	В	75°,165*
144.36	1	2	379 125	1 071 700	4	8.49 - 2	5.43 + 9	В	75°, 165*
149.22	$1s^2 2s2p$ $^1 P_1^o$	$1s^22p^2$ 1S_0	752 410	1 422 600	3	1.09 - 1	3.27+10	В	75°,165*
136.53	$1s^2 2s2p$ 3 P $_2^{\circ}$	$1s^22p^{2-1}D_2$	471 780	1 204 200	4	6.75 - 2	4.83+9	C	75°,165*
121.20 ^C	1	2	379 125	1 204 200		4.8 - 3	4.4+8	D	165*
132.906	$1s^2 2s^2$ ¹ S ₀	$1s^2 2s2p \ ^1P_1^{\circ}$	0	752 410	10bl	1.55 - 1	1.95+10	В	75 ^Δ , 119°, 123, 128, 131, 132, 165 [*] , 178
36.09 ^C	$1s^2 2s3d \ ^1{\rm D}_2$	$1s^2 2s4p^{-1}P_1^o$	9 273 000	12 044 000		7.5 - 2	1.3+11	D	190*
33.43 ^C	$1s^2 2s3p$ 1 P $_1^{\circ}$	$1s^22s4d$ $^1\mathrm{D}_2$	9 107 000	12 098 000		1.7	2.0 + 12	C	190*
13.01 ^C	$1s^22p^{2-1}S_0$	$1s^2 2s3p \ ^1P_1^o$	1 422 600	9 107 000		1.1 - 2	1.4+11	D	165*
12.65^{C}	$1s^22p^2$ 1 D ₂	$1s^2 2s3p \ ^1P_1^o$	1 204 200	9 107 000		1.2 - 2	1.7+11	D	165*
12.427	$1s^22p^{2-1}S_0$	$1s^22p3s$ $^1P_1^o$	1 422 600	9 470 000		5.5 - 2	7.9+11	D	96°, 108, 165*, 170
12.095	$1s^22p^2$ 1D_2	$1s^22p3s$ 1 P $_1^{\circ}$	1 204 200	9 470 000		1.4 - 1	2.1 + 12	D	96°, 165*, 170
12.095	$1s^2 2p^2$ ³ P ₁	$1s^2 2p3s \ ^3P_0^{o}$	1 027 200	9 295 000		5.1 - 2	2.3+12	D	96°, 165*, 170
11.898	$1s^2 2p^2$ 1S_0	$1s^2 2p3d \ ^1P_1^o$	1 422 600	9 828 000		1.29	2.03+13	C	96°, 130, 165*, 170, 206
11.870 11.748 11.702 C	$1s^2 2s 2p \ ^3 P_2^{\circ}$	$1s^2 2s3s \ ^3 \mathrm{S}_1$	471 780 379 125 348 180	8 894 000 8 894 000 8 894 000		1.3 - 1 $7.8 - 2$ $2.7 - 2$	2.1+12 $1.3+12$ $4.4+11$	D D D	96°, 165*, 170 96°, 165*, 170 165*
11.86 ^C	$1s^22p^{2-1}D_2$	$1s^22p3d\ ^1{ m D}^{lpha}_2$	1 204 200	9 638 000		2.4 - 1	2.3+12	D	165*
11.737	$1s^2 2s2p \ ^1P_1^{\circ}$	$1s^22s3d$ $^1\mathrm{D}_2$	752 410	9 273 000		1.8	1.8+13	C-	94, 96°, 107, 108, 109, 130, 134, 165*, 170
11.70 ^C	$1s^22p^{2-1}D_2$	$1s^22p3d\ ^3{ m P}_2^{\circ}$	1 204 200	9 753 000		7.5 - 1	7.3+12	D	165*
11.692	$1s^22p^2$ 3P_2	$1s^22p3d\ ^3{ m F}_3^{\circ}$	1 071 700	9 625 000		1.1	7.7+12	C	96°, 130, 134, 165*, 170, 206
11.68 ^C	$1s^22p^2$ ³ P ₂	$1s^22p3d\ ^3D_1^{\circ}$	1 071 700	9 637 000		1.3 - 2	2.1+11	D	165*
11.614	10 - 1 2	10 2000 21	1 027 200	9 637 000		$\frac{1.3}{2.7} - \frac{2}{1}$	4.4+12	Č-	96°,165*,170
11.525	2	3	1 071 700	9 749 000		3.2	2.3 + 13	C-	96°, 107, 109, 130, 134,
11.519	0	1	956 100	9 637 000		1.29	2.16+13	C-	165*,170,206 96°,97,108,109,130,134, 165*,170,206
11.67 ^C 11.614	$1s^22p^2$ ³ P ₂	$1s^22p3d\ ^1\mathrm{D_2^o}$	1 071 700 1 027 200	9 638 000 9 638 000		2.4 - 1	2.3+12	D	165*
11.514	$1 1s^2 2p^{2-1} D_2$	$1s^2 2p3d$ 1 F $_3^{\circ}$	1 204 200	9 830 000		1.0 5.05	1.0+13 3.58+13	D C-	96°, 130, 134, 165*, 170, 206 96°, 97, 107, 108, 109, 130,
									134, 165*, 170, 206
11.594	$1s^2 2p^{2-1} D_2$	$1s^22p3d$ $^1P_1^o$	1 204 200	9 828 000		7.5 - 2	1.2+12	D	96°, 108, 165*, 170
11.519 11.459	$1s^22p^2$ 3 P ₂	$1s^2 2p3d$ 3 P $_2^o$	1 071 700 1 027 200	9 753 000 9 753 000		$1.15 \\ 1.9 - 1$	1.16+13 1.9+12	D D	96°, 97, 130, 134, 165*, 170 96°, 134, 165*, 170
11.493	$1s^22p^2$ ³ P ₁	$1s^22p3d (5)_2^{\circ}$	1 027 200	9 728 000					96°, 108, 109, 130, 134, 170, 205

Fe XXIII - Continued

								···	
Wave- length (Å)	Clas Lower	sification Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
11.49 ^C	$1s^2 2s2p \ ^1{ m P}_1^{ m o}$	$1s^22p3p\ ^3{ m D}_1$	752 410	9 455 000		8.7 - 2	1.5+12	D	165*
11.46^{C}	$1s^2 2s2p \ ^3P_2^{\circ}$	$1s^2 2s 3d^{3} D_1$	471 780	9 199 000		3.6 - 2	6.1 + 11	D	165*
11.45^{C}	2	2	471 780	9 209 000		5.5 - 1	5.6 + 12	C-	165*
11.442	2	3	471 780	9 212 000		3.0	2.2+13	C-	96°, 106, 108, 110, 130, 134, 165*, 170
11.34 ^C	1	1	379 125	9 199 000		5.4 - 1	9.3 + 12	C-	165*
11.325	1	2	379 125	9 209 000		1.7	1.7 + 13	C-	96°, 107, 109, 130, 134, 165*,
	•	-							169,206
11.298	0	1	348 180	9 199 000		7.4 - 1	1.3+13	C-	96°, 97, 130, 134, 165*, 170, 206
11.398 ^C	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p3p^{-1}P_1$	752 410	9 526 000		9.9 - 2	1.7+12	D	165*
11.25 ^C	$1s^2 2s2p \ ^1P_1^o$	$1s^22p3p$ $^3\mathrm{P}_2$	752 410	9 644 000		2.0 - 1	2.1+12	D	165*
11.166	$1s^2 2s 2p^{-1} P_1^o$	$1s^22p3p^{-1}D_2$	752 410	9 709 000		6.3 - 1	6.7+12	C-	96°, 130, 165*, 170, 206
11.05 ^C	1s ² 2s2p ³ P ₂ °	$1s^22p3p\ ^3D_2$	471 780	9 524 000		1.7 - 2	1.9+11	D	165*
11.018 ^C	1	1	379 125	9 455 000		1.5 - 1	2.7 + 12	D	165*
10.981 ^C		1	348 180	9 455 000		8.4 - 2	1.5+12	D	165*, 206
10.935	0	2	379 125	9 524 000		4.8 - 1	5.4 + 12	Č-	96°, 130, 134, 165*, 170, 206
10.927	1		471 780	9 624 000		7.5 - 1	6.0+12	C-	96°, 107, 109, 130, 134, 165*,
10.921	2	3	471 700	9 024 000		7.5 – 1	0.0+12	0-	170,206
11.018	$1s^2 2s^2$ ¹ S ₀	$1s^2 2s3p \ ^3P_1^{\circ}$	0	9 076 000		2.7 - 1	4.9+12	C-	96°, 112, 130, 134, 165*, 170
10.980	$1s^22s^2$ 1 S ₀	1s ² 2s3p ¹ P ₁ °	0	9 107 000		4.3 - 1	7.9+12	C-	94, 96°, 106, 108, 110, 112, 130, 134, 165*, 170, 206
10.002	$1s^2 2s2p \ ^3P_2^{o}$	$1s^2 2p3p^3 P_2$	471 780	0.644.000		47 3	E 2 10	C-	000 100 104 105* 100 000
10.903 10.79 ^C	18 282p P ₂	1s 2psp F ₂	379 125	9 644 000 9 644 000		4.7 - 1 $1.9 - 2$	5.3+12 $2.2+11$	D	96°, 130, 134, 165*, 170, 206 165*
8.906	$1s^2 2s2p \ ^1P_1^o$	$1s^2 2s4s$ $^1 S_0$	752 410	11 981 000		1.1 - 2	9.3+11	D	125°,165*
8.815	$1s^2 2s2p \ ^1P_1^0$	$1s^22s4d$ $^1\mathrm{D}_2$	752 410	12 098 000		3.6 - 1	6.2+12	C-	96 ^{\(\Delta\)} , 97, 125°, 130, 134, 165*
8.763	$1s^2 2p^2 {}^3P_2$	$1s^22p4d$ $^3F_3^{\circ}$	1 071 700	12 484 000		3.7 - 1	4.6+12	D	96°,130,134,191*
8.752	$1s^22p^{2-1}D_2$	$1s^22p4d$ $^1F_3^{\circ}$	1 204 200	12 631 000		9.5 - 1	1.2+13	D	96°, 130, 134, 191*
8.731	$1s^22p^2$ ³ P ₁	$1s^22p4d (2)_2^{\circ}$	1 027 200	12 480 000					96°, 130, 134
$8.672 \\ 8.672$	$1s^22p^2$ 3P_0	$1s^22p4d\ ^3{ m D}^{ m o}_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	956 100 1 071 700	12 488 000 12 603 000		2.3 - 1 $4.8 - 1$	6.8+12 $6.1+12$	D D	96°,130,191* 96°,130,134,191*
8.664 8.630	$1s^22p^2$ 3 P ₂	$1s^2 2p4d \ ^3P_2^{\circ}$	1 071 700 1 027 200	12 614 000 12 615 000		1.5 - 1	4.4+12	D	96°,130 96°,130,165*
0.030	1	1	1 021 200	12 013 000		1.0 - 1	4.4712	ט	90 ,130,103
8.643	$1s^22p^2$ ³ P ₁	$1s^22p4d\ ^1{ m D}_2^{ m o}$	1 027 200	12 597 000					96°, 97, 130, 134
8.618 ^C	$1s^2 2s2p$ ³ P ₂	$1s^2 2s4d ^3 D_2$	471 780	12 075 000		1.1 - 1	1.0.110	D	165*
8.616		-					1.9+12		
8.010	2	3	471 780	12 081 000		6.0 - 1	7.7+12	C-	96 ^{\(\Delta\)} , 97, 125°, 130, 134, 165*
8.551 ^C	1	1	379 125	12 073 000		1.1 - 1	3.2 + 12	D	165*
$8.550 \\ 8.529$	1 0	2	379 125 348 180	12 075 000 12 073 000		3.3 - 1 $1.4 - 1$	6.0+12 $4.3+12$	C- D	96 [^] , 97, 125 [°] , 130, 134, 165 [*] 96 [°] , 97, 130, 134, 165 [*]
8.554 ^C	$1s^2 2s2p^{-1} P_1^o$	$1s^2 2p4p$ $^3 \mathrm{D}_2$	752 410	12 443 000		2.6 - 2	4.7+11	D	165*
8.317	$1s^22s^2$ 1 S ₀	$1s^2 2s4p$ $^3 P_1^0$	0	12 024 000		3.9 - 2	1.3+12	D	125°, 134, 165*
8.305	$1s^22s^{2-1}S_0$	$1s^2 2s4p^{-1}P_1^0$	0	12 044 000		1.5 - 1	4.8+12	D	$96^{\Delta}, 97, 112, 122, 125^{\circ}, 130, \\ 134, 140, 165^{*}, 180$
8.289 8.273	$1s^2 2s2p \ ^3{ m P}_1^{ m o} \ _2$	$1s^22p4p \ ^3\mathrm{D_2}$	379 125 471 780	12 443 000 12 560 000		1.3 - 1 $2.1 - 1$	2.6+12 $2.9+12$	D C-	134°, 165* 96°, 130, 134, 165*
7.883	$1s^2 2s2p$ $^1P_1^0$	$1s^2 2s5d$ $^1\mathrm{D}_2$	752 410	13 438 000		1.3 - 1	2.8+12	D	96°, 130, 191*
7.854	$1s^22p^2$ 3 P ₂	$1s^22p5d\ ^3{ m F}_3^{ m o}$	1 071 700	13 804 000		1.5 - 1	2.3+12	D	96°, 130, 191*
7.849	$1s^22p^{2-1}D_2$	$1s^22p5d\ ^1{ m F}_3^{ m o}$		13 945 000	ı	3.2 - 1	4.9+12	D	96°, 130, 191*
7.826 7.778	$1s^2 2p^2$ 3 P ₁	$1s^22p5d$ $^3\mathrm{D}_2^{\mathrm{o}}$ 3		13 805 000 13 929 000		1.2 - 1 $1.6 - 1$	2.6+12 2.5+12	D	96°,130,191* 96°,130,191*

Fe XXIII - Continued

Wave-		ssification	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
7.755	$1s^22p^2$ 3 P ₁	$1s^22p5d\ ^1{ m D}_2^{ m o}$	1 027 200	13 922 000					96°,130
7.733	$1s^2 2s2p \ ^3P_2^o$	$1s^2 2s5d\ ^3{ m D}_3$	471 780	13 404 000		1.9 - 1	3.0+12	D	96°, 130, 191*
7.680	0	1	348 180	13 369 000		4.7 - 2	1.8 + 12	D	96°, 130, 191*
7.680	1	2	379 125	13 400 000		1.1 - 1	2.5 + 12	D	96°,130,191*
7.472	$1s^22s^2$ 1 S ₀	$1s^2 2s5p \ ^1{ m P}_1^{ m o}$	0	13 383 000		6.3 - 2	2.5+12	D	96°,130,191*
7.445	$1s^2 2s2p$ $^3 P_2^o$	$1s^2 2p5p^{-3} \mathrm{D}_3$	471 780	13 904 000		9.0 - 2	1.5+12	D	96°,130,191*
1.88706	$1s^22s2p\ ^3\mathrm{P}_2^{\mathrm{o}}$	$1s(^{2}S)2s2p^{2}(^{4}P)^{5}P_{3}$	471 780	53 464 000					98
1.87973	$1s^22s^2$ 1 S ₀	$1s2s^22p$ $^3P_1^0$	0	53 199 100					98
1.87814	$1s^2 2s2p$ 1 P $_1^o$	$1s(^2S)2s2p^2(^2D)^{-1}D_2$	752 410	53 996 600					98°,135
1.87568	$1s^2 2s 2p$ 3 P $_2^{\circ}$	$1s(^2S)2s2p^2(^2D)$ 3D_3	471 780	53 786 000					98°, 142
1.8752	2	1	471 780	53 800 000					135
1.87363	1	2	379 125	53 751 000					98°,142
1.87242	1	1	379 125	53 800 000					98°,142
1.8752	$1s^2 2s2p$ $^3\mathrm{P}_1^{\mathrm{o}}$	$1s(^{2}S)2s2p^{2}(^{4}P)^{3}P_{0}$	379 125	53 707 000					135
1.8714	$1s^2 2s2p^{-1} P_1^o$	$1s(^2S)2s2p^2(^2P)^{-1}P_1$	752 410	54 182 000					135
1.8708	$1s^2 2s2p$ 3 P $_2^{\circ}$	$1s(^{2}S)2s2p^{2}(^{2}S)^{3}S_{1}$	471 780	53 925 000					135
1.87051	$1s^22s^2$ 1S_0	$1s2s^22p^{-1}P_1^o$	0	53 464 000					98°, 122, 141, 142
1.8692	$1s^2 2s 2p^{-1} P_1^{\circ}$	$1s(^2S)2s2p^2(^2S)$ 1S_0	752 410	54 252 000					135
1.8588	$1s^2 2s2p$ 3 P $_1^{o}$	$1s(^{2}S)2s2p^{2}(^{2}P)^{-1}P_{1}$	379 125	54 182 000					135

Fe xxiv

Wave-	Cl	assification	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper							
776.554 ^C	$1s^22p\ ^2P_{1/2}^{o}$	$1s^22p\ ^2{ m P}_{3/2}^o$	391 983	520 757		M1	1.91+4	В	165*
255.113	$1s^2 2s ^2 \mathrm{S}_{1/2}$	$1s^22p\ ^2\mathrm{P}^o_{1/2}$	0	391 983		3.54 - 2	1.81+9	B+	114,132,136,137,138, 139°,165*,209
92.028	1/2	3/2	0	520 757		9.56 - 2	4.32+9	B+	114,132,136,137,138, 139°,165*,209
69.657 ^C	$1s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2{ m D}_{3/2}$	12 524 900	13 960 500		2.3 - 1	8.0+10	D	165*
69.425 ^C	3/2	5/2	12 524 900	13 965 300		2.09	4.83+11	C+	165*
68.890 ^C	1/2	3/2	12 508 900	13 960 500		1.18	4.19+11	C+	165*
45.245 ^C	$1s^24p\ ^2\mathrm{P}_{3/2}^{\mathrm{o}}$	$1s^26d\ ^2\mathrm{D}_{3/2}$	12 524 900	14 735 100		5.6 - 2	4.6 + 10	D	165*
45.155 ^C	3/2	5/2	12 524 900	14 739 500		5.08 - 1	2.76+11	C+	165*
44.920 ^C	1/2	3/2	12 508 900	14 735 100		2.84 - 1	2.37 + 11	C+	165*
37.262^{C}	$1s^24p\ ^2P_{3/2}^{\circ}$	$1s^27d\ ^2{ m D}_{5/2}$	12 524 900	15 208 600		2.22 - 1	1.77+11	C+	165*
37.249 ^C	3/2	3/2	12 524 900	15 209 500		2.4 - 2	2.9 + 10	D	165*
37.029 ^C	1/2	3/2	12 508 900	15 209 500		1.24 - 1	1.51+11	C+	165*
32.816^{C}	$1s^23p^2P_{3/2}^{o}$	$1s^24s$ $^2S_{1/2}$	9 417 100	12 464 400					
$32.402^{\rm C}$	1/2	1/2	9 378 200	12 464 400					
32.478	$1s^2 3d^2 D_{5/2}$	$1s^24f$ $^2F_{7/2}^{\circ}$	9 472 600	12 551 600					139
32.377	3/2	5/2	9 459 000	12 547 600					139
32.00	$1s^23p^2P_{3/2}^{\circ}$	$1s^24d^2D_{3/2}$	9 417 100	12 539 200		2.4 - 1	3.9+11	C+	139°,165*
31.968	3/2	5/2	9 417 100	12 545 200		2.2	2.4+12	В	139°,165*
31.637	1/2	3/2	9 378 200	12 539 200		1.3	2.1 + 12	В	139°,165*
30.895	$1s^23s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^o$	9 272 500	12 508 900		3.0 - 1	1.0+12	С	139°,165*
30.743	1/2	3/2	9 272 500	12 524 900		6.0 - 1	1.1+12	Ċ	139°,165*
22.181 ^C	$1s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^25s$ $^2S_{1/2}$	9 417 100	[13 925 450]	1				
21.991 ^C	13 3p F 3/2 1/2	13 03 51/2	9 378 200	[13 925 450]	•				
C		•		-	•			_	
22.010 ^C	$1s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	9 417 100	13 960 500		5.6 - 2	1.9+11	D	165*
21.987 ^C 21.823 ^C	3/2	5/2	9 417 100 9 378 200	13 965 300 13 960 500		4.96 - 1 $2.78 - 1$	1.14+12 $9.73+11$	C+ C+	165* 165*
	1/2	3/2	3 318 200	13 300 000		2.10 - 1	5.15-11	ОŦ	100
18.804 ^C	$1s^23p\ ^2P_{3/2}^{\circ}$	$1s^26d\ ^2\mathrm{D}_{3/2}$	9 417 100	14 735 100		2.3 - 2	1.1+11	D	165*
18.789 ^C 18.668 ^C	3/2	5/2	9 417 100 9 378 200	14 739 500 14 735 100		2.00 - 1 $1.12 - 1$	6.30+11 $5.32+11$	C+ C+	165* 165*
	1/2	3/2	9 378 200	14 733 100		1.12 - 1	3.32+11	0+	103
17.267 ^C	$1s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^27d\ ^2\mathrm{D}_{5/2}$	9 417 100	15 208 600		1.04 - 1	3.84 + 11	C+	165*
17.264 ^C	3/2	3/2	9 417 100	15 209 500		1.2 - 2	6.4 + 10	D	165*
17.149 ^C	1/2	3/2	9 378 200	15 209 500		5.80 - 2	3.31 + 11	C+	165*
11.426	$1s^2 2p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^23s\ ^2\mathrm{S}_{1/2}$	520 757	9 272 500		7.04 - 2	1.80+12	C	96,112,134,139°,165*
11.261	1/2	1/2	391 983	9 272 500		3.0 - 2	7.9 + 11	D	96,112,134,139°,165*
11.187	$1s^22p ^2P_{3/2}^{\circ}$	$1s^23d^2D_{3/2}$	520 757	9 459 000		2.7 - 1	3.6+12	В	96,134,139°,165*,206
11.171	3/2	5/2	520 757	9 472 600		2.44	2.18+13	В	94,96,97,106,110,112,
11.030	1/2	3/2	391 983	9 459 000	ı	1.34	1.84+13	В	134,139°,165*,206 96,97,106,110,112,134, 139°,165*,206
10.663	$1s^2 2s \ ^2 S_{1/2}$	$1s^23p^{-2}P_{1/2}^{\circ}$	0	9 378 200		2.56 - 1	7 51 1 10	D.	
10.003	13 23 51/2	13 5p 1 1/2	U	9 370 200		2.30 - 1	7.51+12	B+	96,97,106,110,112,134, 139°,165*,206
10.619	1/2	3/2	0	9 417 100	1	4.92 - 1	7.28+12	B+	96,97,106,110,112,134, 139°,165*,206
8.3757	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^24s$ $^2S_{1/2}$	520 757	12 464 400	1	1.4 - 2	6.9+11	D	96, 134, 139°, 140, 165*,
8.2854	1/2	1/2	391 983	12 464 400)	7.4 – 3	3.6+11	D	179 96,97,139°,140,165*, 179
8.3205 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s^24d\ ^2{ m D}_{3/2}$	E90 7E7	19 590 000	`	100 0	1 10 : 10		195 165*
8.3205	1s-2p P _{3/2} 3/2	18-4d -D _{3/2} 5/2		12 539 200 12 545 200		4.88 - 2 $4.40 - 1$			125, 165* 96,97,110,112,122,125, 134, 139°, 140, 165*,
		3/2	391 983	12 539 200		2.48 - 1	6.10+12	C+	179 96, 97, 125, 134, 139°,
8.232	1/2								

Fe XXIV - Continued

Wave- length (Å)	Cl Lower	lassification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
7.996	$1s^2 2s \ ^2 S_{1/2}$	$1s^24p\ ^2{ m P}_{1/2}^{\circ}$	0	12 508 900		6.6 - 2	3.4+12	C+	96,110,125,134,139°, 165*
7.986	1/2	3/2	0	12 524 900		1.31 - 1	3.43+12	C+	96, 97, 110, 125, 134, 139°, 165*
7.4601 ^C 7.3891 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^25s$ $^2S_{1/2}$	520 757 391 983	[13 925 450] [13 925 450]					144 144
7.438	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s^25d\ ^2{ m D}_{3/2}$	520 757	13 960 500		1.8 - 2	5.4+11	D	96,139°,165*
7.438	3/2	5/2	520 757	13 965 300		1.62 - 1	3.26 + 12	C	96,97,110,139°,165*
7.370	1/2	3/2	391 983	13 960 500		9.2 - 2	2.8 + 12	С	96, 97, 110, 139°, 165*
7.169 7.169	$1s^2 2s \ ^2S_{1/2}$	$1s^25p \ ^2\mathrm{P}^{\circ}_{1/2} \ _{3/2}$	0 0	13 943 400 13 951 600					96,139° 96,139°
7.033	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^26d\ ^2{ m D}_{3/2}$	520 757	14 735 100		8.8 - 3	2.9+11	D	139°,165*
7.033	3/2	5/2	520 757	14 739 500		7.92 - 2	1.78 + 12	C+	96,139°,165*
6.972	1/2	3/2	391 983	14 735 100		4.44 - 2	1.52 + 12	C+	96,110,139°,165*
6.808	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^27d\ ^2\mathrm{D}_{5/2}$	520 757	15 208 600		4.52 - 2	1.08+12	C+	96,139°,165*
6.808	3/2	3/2	520 757	15 209 500		4.8 - 3	1.8+11	D	96,139°,165*
6.74877 ^C	1/2	3/2	391 983	15 209 500		2.54 - 2	9.28 + 11	C+	165*
6.787	$1s^22s$ $^2S_{1/2}$	$1s^26p\ ^2\mathrm{P}^{\circ}_{1/2}$	0	14 730 900					96,139°
6.787	1/2	3/2	0	14 735 600					96,139°
1.89692	$1s^2 2p ^2P_{3/2}^{\circ}$	$1s2s^2$ 2 S _{1/2}	520 757	53 235 800		1.0 - 2	9.8+12	D+	98°,165*
1.89244	1/2	1/2	391 983	53 235 800		1.0 - 2	9.7 + 12	D+	98°,165*
1.8767 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-4}P_{1/2}$	520 757	[53 805 000]		2.6 - 4	2.5+11	E	135, 144, 165*
1.8743 ^C	3/2 3/2	$13(5)2p(1)1_{1/2}$ $3/2$	520 757	[53 872 000]		1.8 - 2	8.3+12	D	135, 144, 165*
$1.8727^{\rm C}$	3/2	5/2	520 757	[53 918 000]		1.0 - 1	3.2+13	D	135, 144, 165*
1.8722^{C}	1/2	1/2	391 983	[53 805 000]		2.2 - 2	2.0 + 13	D	135, 144, 165*
1.8699 ^C	1/2	3/2	391 983	[53 872 000]		2.0 - 4	1.0+11	E	135, 144, 165*
1.87466	$1s^2 2s ^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o}) \ ^{4}P_{1/2}^{o}$	0	53 343 000		4.4 - 3	4.2+12	D+	142°,165*
1.8738^{C}	1/2	3/2	0	[53 367 000]		3.2 - 2	1.5+13	D+	135, 144, 165*
1.86776 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^1D)^{-2}D_{3/2}$	520 757	54 060 800		7.2 - 2	3.5+13	D	195 144 165*
1.86598	13 2p F _{3/2} 3/2	$18(3)2p(D) D_{3/2}$ $5/2$	520 757	54 111 900		6.68 - 1	3.3+13 $2.14+14$	C	135, 144, 165* 98°, 122, 135, 141, 142,
	3,2	3/2							143,165*
1.86328	1/2	3/2	391 983	54 060 800		6.58 - 1	3.16+14	С	98°, 122, 135, 142, 143, 165*
1.8672^{C}	$1s^2 2p ^2 P_{3/2}^o$	$1s(^2S)2p^2(^3P)^2P_{1/2}$	520 757	[54 076 000]		1.70 - 1	1.63 + 14	C	135, 144, 165*
1.8628^{C}	1/2	1/2	391 983	[54 076 000]		5.70 - 1	5.47 + 14	C	144,165*
1.86224 1.85779 ^C	3/2	3/2	520 757 391 983	54 219 500 54 219 500		1.30 $2.4 - 2$	6.24+14 $1.2+13$	C D	98°, 135, 142, 143, 165* 141, 144, 165*
	1/2	3/2						D	
1.86345	$1s^2 2s ^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{\circ})^{2}P_{1/2}^{\circ}$	0	53 663 900		1.99 - 1	1.91 + 14	С	122, 135, 141, 142°, 143, 165*
1.86108	1/2	3/2	0	53 732 200		9.2 - 3	4.4+12	D	98°, 122, 135, 141, 142, 143, 165*
1.8580	$1s^2 3d\ ^2 \mathrm{D}_{3/2}$	$1s2p(^{3}P^{\circ})3d(^{2}D)^{-4}D_{3/2}^{\circ}$	9 459 000	63 281 000					135
1.85704	$1s^2 2s \ ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o})^{2}P_{1/2}^{o}$	0	53 849 100		3.16 - 1	3.06+14	С	98°, 122, 135, 141, 142, 143, 165*
1.8563^{C}	1/2	3/2	0	[53 871 000]	9.94 - 1	4.82 + 14	C	135, 144, 165*
1.85691	$1s^22p^2P_{a/2}^{\circ}$	$1s(^2S)2p^2(^1S) \ ^2S_{1/2}$	520 757	54 373 600		2.56 - 1	2.43+14	С	135,142°,165*
$1.85248^{\rm C}$	1/2	1/2	391 983	54 373 600		1.0 - 2	1.0+13	D	135, 141, 144, 165*
1.85592	$1s^2 3d\ ^2 \mathrm{D}_{5/2}$	$1s2p3d\ ^{2}\mathrm{F}_{7/2}^{\mathrm{o}}$	9 472 600	63 350 600					135,142°
1.8540	$1s^23s\ ^2\mathrm{S}_{1/2}$	$1s2p3s\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	9 272 500	63 209 000					135
1.85349	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s2p3p^{-2}D_{5/2}$	9 417 100	63 368 100					125 1490 160
1.85273	18 SP F 3/2 1/2	$182p3p D_{5/2}$ $3/2$	9 378 200	63 352 000					135,142°,168 142
	•								
1.8464 1.8453	$1s^2 3p ^2P_{3/2}^{\circ}$	$1s2p3p^{-2}S_{1/2}$	9 417 100 9 378 200	63 572 000					135
1.0400	1/2	1/2	J 310 200	63 572 000					135

Fe xxv

Wave- length (Å)	Classifica Lower	tion Upper	Energy Leve	els (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
5900 ^C	1s4p 3P2	$1s4d$ $^3\mathrm{D}_2$	[66 890 900]	[66 905 400]				
950 ^C	2	3	[66 890 900]	[66 911 100]				
390 ^C	1	2	[66 875 900]	[66 905 400]				
350 ^C	1	1	[66 875 900]	[66 905 700]				
140 ^C	0	1	[66 873 900]	[66 905 700]				
800 ^C	$1s5s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}P_{1}^{o}$	[68 423 800]	[68 438 600]	8.7 - 2	4.2+6	E	165*
440 ^C		1309 1 1	[68 423 800]	[68 446 300]	0.1 – 2	4.270	1.5	103
1440	1	2	[00 423 000]	[00 440 500]				
3000 ^C	$1s5s\ ^{1}\mathrm{S}_{0}$	$1s5p^{-1}P_{1}^{o}$	[68 438 100]	[68 454 800]	9.9 - 2	6.1 + 6	E	165*
		_						
3450 ^C	$1s4s\ ^{3}S_{1}$	$1s4p\ ^{3}P_{1}^{o}$	[66 846 900]	[66 875 900]	6.9 - 2	1.3 + 7	\mathbf{E}	165*
270 ^C	1	2	[66 846 900]	[66 890 900]				
	1.	1 -						
8070 ^C	$1s4s {}^{1}S_{0}$	$1s4p\ ^{1}P_{1}^{o}$	[66 875 000]	[66 907 600]	7.8 - 2	1.9 + 7	D	165*
4F0C	$1s3s$ $^3\mathrm{S}_1$	1.0 300	[00 401 500]	[40 400 500]	4.0		_	10**
450 ^C	1838 51	$1s3p\ ^{3}P_{1}^{o}$	[63 421 700]	[63 490 700]	4.8 - 2	5.1 + 7	С	165*
300 ^C	$1s3s^{-1}S_0$	$1s3p^{-1}P_{1}^{o}$	[63 489 000]	[63 565 800]	5.6 - 2	7.4+7	C	165*
000	1999 00	130p 1 1	[20 403 000]	[00 000 00]	0.0 - 2	1.2 F1	0	100
428.23 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{3}P_{0}^{o}$	[53 527 760]	[53 761 280]	1.04 - 2	3.82+8	В	165*
400.30 ^C	1	1020 1 0	[53 527 760]	[53 777 570]		4.31+8	В	165*
271.12 ^C	1	2	[53 527 760]	[53 896 600]		1.47+9	В	156, 165*
						•		,
382.76 ^C	$1s2s\ ^{1}\mathrm{S}_{0}$	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[53 781 230]	[54 042 490]	3.29 - 2	4.96 + 8	В	165*
· C	3~						_	
194.28 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p^{-1}P_{1}^{o}$	[53 527 760]	[54 042 490]	5.91 - 3	3.46 + 8	В	165*
65.34 ^C	$1s4p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s5s^{-1}S_{0}$	[66 907 600]	[60 400 100]	1.77	0.6111	ъ	1.05*
05.34	$184p$ P_1	1858 50	נספ אטר פטטן	[68 438 100]	1.7 - 1	2.6 + 11	В	165*
65.24 ^C	$1s4p$ $^3P_2^{\circ}$	$1s5s$ $^3\mathrm{S}_1$	[66 890 900]	[68 423 800]				
64.60 ^C	134 <i>p</i> 1 ₂	1808 51	[66 875 900]	[68 423 800]		8.5 + 10	В	165*
	1	1	(000]	[55 125 550]	2.0 1	5.5 10		
63.30^{C}	$1s4s^{-1}S_0$	$1s5p^{-1}P_{1}^{o}$	[66 875 000]	[68 454 800]	4.46 - 1	2.48 + 11	В	165*
		-	•	•				
62.83 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s5p$ $^3P_1^{\alpha}$	[66 846 900]	[68 438 600]	$4.50 \sim 1$	2.53 + 11	В	165*
00 04 0C	. o 1po	10	[00 *0-1				_	
30.219^{C}	$1s3p\ ^{1}P_{1}^{\circ}$	$1s4s$ $^{1}S_{0}$	[63 565 800]	[66 875 000]	1.0 - 1	7.4 + 11	В	165*
30.188 ^C	$1s3d$ $^3\mathrm{D}_1$	$1s4p\ ^{3}P_{0}^{o}$	[62 561 200]	[66 979 000]				
30.170 ^C		=	[63 561 300] [63 561 300]	[66 873 900] [66 875 900]				
30.164 ^C	1 2	1	[63 560 700]	[66 875 900]				
30.150 ^C	3	1 2	[63 574 200]	[66 890 900]				
30.028 ^C	2	2	[63 560 700]	[66 890 900]				
			[55 555 155]	[00 000 000])			
30.115^{C}	$1s3p\ ^{3}P_{2}^{o}$	$1s4s$ $^3\mathrm{S}_1$	[63 526 300]	[66 846 900]				
29.796^{C}	1	1	[63 490 700]	[66 846 900]		2.5 + 11	В	165*
	•		•		•			
30.020^{C}	$1s3d$ $^{1}\mathrm{D}_{2}$	$1s4p^{-1}P_1^o$	[63 576 500]	[66 907 600]	5.5 - 2	1.4+11	C	165*
00 004C	v a 150	1-	[00 505 555]	for	1 -		-	
29.884^{C}	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[63 565 800]	[66 912 100]	1.9	2.8 + 12	C	165*
29.594 ^C	1s3p 3P2	$1s4d$ $^3\mathrm{D}_2$	[63 526 300]	[66 905 400]	1			
29.544 ^C	-	-	[63 526 300]	[66 911 100	•			
29.285 ^C	2 1	3 2	[63 490 700]	[66 905 400]				
29.283^{C}	1	1	[63 490 700]	[66 905 700]				
29.243 ^C	0	1	[63 486 100]	[66 905 700	•			
		1	[55 250 100]	[00 000 100]	ı			
29.252^{C}	$1s3s^{-1}S_0$	1s4p 1P1	[63 489 000]	[66 907 600]	4.00 - 1	1.04+12	В	165*
~	=	•			-			_
28.950 ^C	$1s3s {}^{3}S_{1}$	$1s4p\ ^{3}P_{1}^{o}$	[63 421 700]	[66 875 900]		1.07 + 12	В	165*
28.825 ^C	1	2	[63 421 700]	[66 890 900]]			
00 to 4C	. a lma	1.	[00 === ::::	.	-	_		
20.524^{C}	$1s3p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[63 565 800]	[68 438 100]	[2.3-2]	3.7 + 11	C	165*
20.419 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s5s\ ^{3}S_{1}$	[69 the anni	[60 400 000	1			
20.419 C			[63 526 300]	[68 423 800		10.11	C	10**
20.211	1	1	[63 490 700]	[68 423 800	[] 2.2 – 2	1.2+11	C	165*
20.138 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	1s5p 1P1	[63 489 000]	[68 454 800	1.03 - 1	5.65+11	В	165*
	2500 00	1000 1 1	[00 100 000]	100 202 000	1.03 1	0.00711	ı,	100
19.933^{C}	$1s3s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}P_{1}^{o}$	[63 421 700]	[68 438 600	1.0 - 1	5.7+11	В	165*
19.902^{C}	1	2		[68 446 300	•	• "		
~			•	•	•			
10.586^{C}	$1s2p\ ^1\mathrm{P}_1^{\circ}$	$1s3s$ ${}^{1}S_{0}$	[54 042 490]	[63 489 000	4.2 - 2	2.5 + 12	В	165*
	=		=					

Fe xxv - Continued

Wo	C1:6 · · ·		E 1	ala (a1)	T_4	4 (1)	<u> </u>	D. C
Wave- length (Å)	Classificati Lower	on Upper	Energy Lev	eis (cm *)	Int. gf	$A (s^{-1})$	Acc.	References
10.499 ^C	1s2p ³ P ₂ °	1s3s ³ S ₁	[53 896 600]	[63 421 700]				
10.369 ^C	1	1	[53 777 570]	[63 421 700]	4.2 - 2	8.7+11	В	165*
10.489 ^C	$1s2p$ 1 P $_{1}^{o}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[54 042 490]	[63 576 500]	2.1	2.5+13	C+	97,165*
10.348 ^C	$1s2p$ $^3\mathrm{P}^{\circ}_2$	$1s3d$ $^3\mathrm{D}_2$	[53 896 600]	[63 560 700]		•		
10.333 ^C	2	3	[53 896 600]	[63 574 200]				
10.222 ^C	1	2	[53 777 570]	[63 560 700]				
10.221 ^C 10.204 ^C	1 0	1	[53 777 570] [53 761 280]	[63 561 300] [63 561 300]				
10.220 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	1s3p ¹ P ₁ °	[53 781 230]	[63 565 800]	3.64 - 1	7.75+12	В	165*
10.037 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s3p^{-3}P_{1}^{o}$	[53 527 760]	[63 490 700]	3.66 - 1	8.08+12	В	165*
7. 7 927 ^C	$1s2p\ ^{1}\mathrm{P}_{1}^{\circ}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[54 042 490]	[66 875 000]	9.3 - 3	1.0+12	C	165*
7.7702 ^C	$1s2p$ $^{1}P_{1}^{\circ}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[54 042 490]	[66 912 100]	3.6 - 1	8.0+12	C	97,165*
7.7218 ^C	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s4s$ $^3\mathrm{S}_1$	[53 896 600]	[66 846 900]				
7.6515 ^C	1	1	[53 777 570]	[66 846 900]	9.3 - 3	3.5+11	C	165*
7.6871 ^C	$1s2p$ $^3\mathrm{P}_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[53 896 600]	[66 905 400]				
7.6837 ^C	2	3	[53 896 600]	[66 911 100]				
7.6174 ^C	1	2	[53 777 570]	[66 905 400]				
7.6172 ^C	1	1	[53 777 570]	[66 905 700]				
7.6078 ^C	0	1	[53 761 280]	[66 905 700]				
7.6183^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}P_{1}^{o}$	[53 781 230]	[66 907 600]	8.8 - 2	3.4+12	В	165*
7.4917 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s4p\ ^{3}P_{1}^{o}$	[53 527 760]	[66 875 900]	9.0 - 2	3.6 + 12	В	165*
7.4833 ^C	1	2	[53 527 760]	[66 890 900]				
6.9466 ^C	$1s2p\ ^1\mathrm{P}^{\circ}_1$	$1s5s$ $^{1}\mathrm{S}_{0}$	[54 042 490]	[68 438 100]	3.6 - 3	5.0+11	C	165*
6.8836 ^C	$1s2p^{-3}P_{2}^{o}$	$1s5s$ $^3\mathrm{S}_1$	[53 896 600]	[68 423 800]				
6.8277 ^C	1	1	[53 777 570]	[68 423 800]	3.6 - 3	1.7+11	С	165*
6.8150 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s5p^{-1}P_1^o$	[53 781 230]	[68 454 800]	3.6 - 2	1.7+12	В	165*
6.7065 ^C 6.7031 ^C	$1s2s {}^{3}S_{1}$	$1s5p {}^{3}P_{1}^{\circ}$	[53 527 760] [53 527 760]	[68 438 600] [68 446 300]	3.6 - 2	1.8+12	В	165*
			[00 021 100]	[00 440 000]				
1.868190 ^C	$1s^2$ 1 S ₀	$1s2s$ 3S_1	0	[53 527 760]	M1	2.12+8	В	98,122,141,142,147, 154,165*,202,207
1.859511 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p$ $^3\mathrm{P}^\mathrm{o}_1$	0	[53 777 570]	6.87 - 2	4.42+13	В	98,121,122,135,141, 142,147,153,154,
1.855405 ^C	o	2	0	[53 896 600]	M2	6.64+9	В	165*, 202, 207 98,122,141,142, 147, 154, 165*, 207
1.850396 ^C	$1s^2$ $^1\mathrm{S}_0$	$1s2p$ $^{1}\mathrm{P}_{1}^{\circ}$	0	[54 042 490]	7.03 – 1	4.57+14	В	98,121,122,135, 141,142,147,149, 150,152,153,154, 165*,202,207
1.8110 ^C	1s2p ¹ P ₁ °	$2s^2$ ¹ S ₀	[54 042 490]	[109 258 000]	2.9 - 2	5.9+13	D	144, 165*
1.8025 ^C	$1s2p\ ^3\mathrm{P}_1^\circ$	$2s^2$ ¹ S ₀	[53 777 570]	[109 258 000]	2.0 - 2	4.1+13	D	144, 165*
1.8015 ^C	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^{2-3}P_0$	[54 042 490]	[109 551 000]				144
1.7989 ^C	1	1	[54 042 490]	[109 631 000]	1.4 - 2	1.0+13	D	144, 165*
1.7972 ^C	1	2	[54 042 490]	[109 683 000]	2.1 - 1	8.8 + 13	D	144, 165*
1.8002 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3\mathrm{P}_1^{\circ}$	[53 781 230]	[109 329 000]	1.3 - 2	8.6+12	D	144, 165*
1.7942 ^C	$1s2p\ ^3\mathrm{P}_2^{\mathrm{o}}$	$2p^2 \ ^3P_1$	[53 896 600]	[109 631 000]	3.2 - 1	2.22+14	С	144, 165*
1.7930 ^C	1	0	[53 777 570]	[109 551 000]	2.4 - 1	4.92+14	C	144, 165*
1.7925 ^C	2	2	[53 896 600]	[109 683 000]	6.75 - 1	2.81+14	C	144, 165*
1.7904 ^C	1	1	[53 777 570]	[109 631 000]	1.8 - 1	1.23+14	Ċ	144, 165*
1.7899 ^C	0	1	[53 761 280]	[109 631 000]		1.78+14	Č	144, 165*
1.7888 ^C	1	2	[53 777 570]	[109 683 000]	3.90 - 1	1.63+14	C	144, 165*
	1	2	[20 111 010]	[100 000 000]	3.30 - 1	1.05-14	O	144, 100

Fe xxv - Continued

Wave-	Classific	ation	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
1.7933 ^C	$1s2s\ ^{3}\mathrm{S}_{1}$	$2s2p$ $^3P_0^{\circ}$	[53 527 760]	[109 291 000]	1.	29 – 1	2.67+14	C	144, 165*
$1.7921^{\rm C}$	1	1	[53 527 760]	[109 329 000]	3.	75 - 1	2.59 + 14	C	144, 165*
1.7881 ^C	1	2	[53 527 760]	[109 453 000]	6.	42 - 1	2.68 + 14	C	144, 155, 165*
1.7920^{C}	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^{2-1}\mathrm{D}_2$	[54 042 490]	[109 846 000]	9.	87 — 1	4.10+14	C	144, 155, 165*
1.7873^{C}	$1s2p\ ^3\mathrm{P}_2^{\mathrm{o}}$	$2p^{2-1}D_2$	[53 896 600]	[109 846 000]	2.	9 1	1.19+14	C	144,165*
1.7836 ^C	1	2	[53 777 570]	[109 846 000]			•		144
1.7871 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	2s2p 1P°	[53 781 230]	[109 737 000]	3.	69 – 1	2.57+14	C	144, 155, 165*
1.7830^{C}	$1s2p^{-1}\mathrm{P_1^o}$	$2p^{2}$ 1 S ₀	[54 042 490]	[110 126 000]	2.	2 – 1	4.69+14	C	144,165*
$1.7791^{\rm C}$	$1s2s\ ^3\mathrm{S}_1$	$2s2p^{-1}\mathrm{P}_{1}^{o}$	[53 527 760]	[109 737 000]	1.	2 - 2	8.7+12	D	144, 165*
1.7747^{C}	$1s2p\ ^3\mathrm{P}_1^{\mathrm{o}}$	$2p^2$ 1 S $_0$	[53 777 570]	[110 126 000]					144
1.57503 ^C	$1s^{2} {}^{1}S_{0}$	$1s3p$ $^3\mathrm{P}_1^{\mathrm{o}}$	0	[63 490 700]	1.	7 – 2	1.5+13	E	145, 151, 153, 165*
1.57317 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^{1}P_{1}^{o}$	0	[63 565 800]	1.	38 – 1	1.24+14	В	145,151,152,153, 165*,202
1.49531 ^C	$1s^{2}$ $^{1}S_{0}$	1s4p ³ P ₁ °	0	[66 875 900]	6.	0 – 3	6.0+12	${f E}$	151, 153, 165*
1.49460 ^C	$1s^{2}$ 1 S ₀	$1s4p$ $^{1}P_{1}^{\circ}$	0	[66 907 600]	5.	07 – 2	5.05+13	В	151, 152, 153, 165*, 202
1.46116 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p$ $^3\mathrm{P}^\mathrm{o}_1$	0	[68 438 600]	3.	0 - 3	3.1+12	E	153, 165*
$1.46082^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s5p^{-1}\mathrm{P_1^o}$	0	[68 454 800]	2.	44 – 2	2.54+13	В	150, 152, 153, 165*

Fe xxvi

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
2027 ^C	3s ² S _{1/2}	3p ² P _{3/2}	[66 513 060]	[66 562 370]		4.80 - 2	1.94+7	A	164*
1975.1 ^C	$3p^{-2}P_{1/2}^{o}$	$3d^2\mathrm{D}_{3/2}$	[66 511 640]	[66 562 270]		3.08 - 2	1.31+7	A	164*
600.42^{C}	$2s$ $^2\mathrm{S}_{1/2}$	$2p^{-2}P_{3/2}^{a}$	[56 075 900]	[56 242 450]		2.70 - 2	1.25+8	A	164*
27.6879 ^C	$3d^{2}D_{5/2}$	$4f^{2}F_{7/2}^{o}$	[66 578 900]	[70 190 590]		5.82	6.33+12	A	164*
27.5883^{C}	$3p^{2}P_{3/2}^{\circ}$	$4d~^2\mathrm{D}_{5/2}$	[66 562 370]	[70 187 100]		2.24	3.27+12	A	164*
27.2698 ^C	$3s$ $^2S_{1/2}$	$4p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	[66 513 060]	[70 180 120]		6.58 - 1	1.47+12	A	164*
18.9349 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{\circ}$	[66 578 900]	[71 860 150]		8.96 - 1	2.08+12	A	164*
18.8822 ^C	$3p\ ^{2}P_{3/2}^{\circ}$	$5d^2\mathrm{D}_{5/2}$	[66 562 370]	[71 858 360]		5.04 - 1	1.57+12	A	164*
18.7205 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$5p^{2}P_{3/2}^{o}$	[66 513 060]	[71 854 790]		1.63 - 1	7.77+11	A	164*
9.674501 ^C	$2p\ ^{2}P_{3/2}^{\circ}$	$3d^2\mathrm{D}_{5/2}$	[56 242 450]	[66 578 900]		2.51	2.98+13	A	164*
9.536097 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[56 075 900]	[66 562 370]		5.90 - 1	1.08+13	A	164*
$7.171209^{\rm C}$	$2p\ ^2{ m P}^{ m o}_{3/2}$	$4d^2\mathrm{D}_{5/2}$	[56 242 450]	[70 187 100]		4.40 - 1	9.50+12	A	164*
7.090077^{C}	$2s\ ^2\mathrm{S}_{1/2}$	$4p\ ^{2}P_{3/2}^{o}$	[56 075 900]	[70 180 120]		1.39 - 1	4.61+12	A	164*
6.403725 ^C	$2p\ ^{2}P_{3/2}^{\circ}$	$5d^2\mathrm{D}_{5/2}$	[56 242 450]	[71 858 360]		1.60 - 1	4.34+12	A	164*
6.337581 ^C	$2s~^2\mathrm{S}_{1/2}$	$5p\ ^{2}\mathrm{P_{3/2}^{o}}$	[56 075 900]	[71 854 790]		5.66 - 2	2.35+12	A	164*
1.783442 ^C	$1s^{2}S_{1/2}$	$2p^{2}P_{1/2}^{\circ}$	0	[56 071 350]		2.80 - 1	2.93+14	Α	149, 152, 154, 155, 164*
1.778016 ^C	1/2	3/2	0	[56 242 450]		5.62 - 1	2.96 + 14	A	149, 152, 154, 155, 164*
1.503496 ^C	$1s^{2}S_{1/2}$	$3p^{-2}P_{1/2}^{o}$	0	[66 511 640]		5.32 - 2	7.83+13	Α	164*
1.502350^{C}	1/2	3/2	0	[66 562 370]		1.06 - 1	7.86+13	A	164*
$1.424905^{\rm C}$	$1s$ $^2\mathrm{S}_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	0	[70 180 120]		3.90 - 2	3.20+13	Α	164*
1.391696 ^C	$1s$ $^2S_{1/2}$	$5p^{2}P_{3/2}^{o}$	0	[71 854 790]		1.87 - 2	1.61+13	A	164*

2.6.3. References for Comments and Tables for Fe Ions

- [1] W. M. Cady, Phys. Rev. 43, 322 (1933).
- [2] I. S. Bowen, Astrophys. J. 132, 1 (1960).
- [3] J. O. Ekberg, Phys. Scr. 23, 7 (1981).
- [4] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Nature 209, 390 (1965).
- [5] R. D. Cowan and N. J. Peacock, Astrophys. J. 142, 390 (1965).
- [6] A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348 (1980).
- [7] R. D. Cowan, Astrophys. J. 147, 377 (1967).
- [8] U. Feldman and B. S. Fraenkel, Astrophys. J. 145, 959 (1966).
- [9] P. G. Kruger and S. G. Weissberg, Phys. Rev. 52, 314 (1937).
- [10] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [11] W. E. Behring, L. Cohen, and U. Feldman, Astrophys. J. 175, 493 (1972).
- [12] M. Malinovsky and L. Heroux, Astrophys. J. 181, 1009 (1973).
- [13] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [14] G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898 (1977).
- [15] U. Feldman and G. A. Doschek, J. Opt. Soc. Am. 67, 726 (1977).
- [16] L. A. Svensson, J. O. Ekberg, and B. Edlén, Solar Phys. 34, 173 (1974).
- [17] B. Edlén and R. Smitt, Solar Phys. 57, 329 (1978).
- [18] J. T. Jefferies, Mem. Soc. Roy. Sci. Liege 17, 213 (1969).
- [19] J. T. Jefferies, F. Q. Orrall, and J. B. Zirker, Solar Phys. 16, 103 (1971).
- [20] W. E. Behring, L. Cohen, U. Feldman, and G. A. Doschek, Astrophys. J. 203, 521 (1976).
- [21] R. Smitt and L. A. Svensson, Phys. Scr. 27, 364 (1983).
- [22] P. G. Kruger, S. G. Weissberg, and L. W. Phillips, Phys. Rev. 51, 1090 (1937).
- [23] H. Zirin, Astrophys. J. 140, 1332 (1964).
- [24] U. Feldman, B. S. Fraenkel, and S. Hoory, Astrophys. J. 142, 719 (1965).
- [25] B. C. Fawcett, R. D. Cowan, E. Y. Kononov, and R. W. Hayes, J. Phys. B 5, 1255 (1972).
- [26] W. J. Wagner and L. L. House, Astrophys. J. 166, 683 (1971).
- [27] M. Swartz, S. O. Kastner, L. Goldsmith, and W. M. Neupert, J. Opt. Soc. Am. 66, 240 (1976).
- [28] S. O. Kastner, A. M. Crooker, W. E. Behring, and L. Cohen, Phys. Rev. A 16, 577 (1977).
- [29] W. Grotrian, Naturwiss. 27, 214 (1939).
- [30] R. Smitt, Solar Phys. 51, 113 (1977).
- [31] F. Magnant-Crifo, Solar Phys. 31, 91 (1973).
- [32] B. C. Fawcett, J. Phys. B 4, 1577 (1971).
- [33] K. G. Widing, G. D. Sandlin, and R. D. Cowan, Astrophys. J. 169, 405 (1971).
- [34] R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [35] B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 88, 262 (1966).
- [36] G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Phys. Scr. 15, 177 (1977).
- [37] B. Edlén, Z. Phys. 104, 407 (1937).
- [38] B. Edlén, Z. Astrophys. 22, 30 (1942).
- [39] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [40] B. Edlén, Z. Phys. 104, 188 (1937).
- [41] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [42] W. M. Burton, A. Ridgeley, and R. Wilson, Mon. Not. Roy. Astron. Soc. 135, 207 (1967).
- [43] W. M. Burton and A. Ridgeley, Solar Phys. 14, 3 (1970).

- [44] G. A. Doschek, U. Feldman, M. E. VanHoosier, and J. D. F. Bartoe, Astrophys. J. Suppl. 31, 417 (1976).
- [45] A. H. Gabriel, W. R. S. Garton, L. Goldberg, T. J. L. Jones,
 C. Jordan, F. J. Morgan, R. W. Nicholls, W. J. Parkinson,
 H. J. B. Paxton, E. M. Reeves, C. B. Shenton, R. J. Speer,
 and R. Wilson, Astrophys. J. 169, 595 (1971).
- [46] L. A. Svensson, Solar Phys. 18, 232 (1971).
- [47] B. C. Fawcett, J. Phys. B 3, 1732 (1970).
- [48] G. E. Bromage, R. D. Cowan, and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 183, 19 (1978).
- [49] B. C. Fawcett, A. H. Gabriel, and P. A. H. Saunders, Proc. Phys. Soc. 90, 863 (1967).
- [50] K. G. Widing and G. D. Sandlin, Astrophys. J. 152, 545 (1968).
- [51] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [52] E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B 5, 2173 (1988).
- [53] K. P. Dere, Astrophys. J. **221**, 1062 (1978).
- [54] B. C. Fawcett and N. J. Peacock, Proc. Phys. Soc. 91, 973 (1967).
- [55] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [56] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [57] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [58] E. H. Pinnington, W. Ansbacher, A. Tauheed, E. Träbert, P. H. Heckmann, G. Möller, and J. H. Blanke, Z. Phys. D 17, 5 (1990).
- [59] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [60] B. Edlén, Z. Phys. 103, 536 (1936).
- [61] S. S. Churilov, E. Ya. Kononov, A. N. Ryabtsev, and Yu. F. Zayikin, Phys. Scr. 32, 501 (1985).
- [62] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [63] N. J. Peacock, R. D. Cowan, and G. A. Sawyer, Proc. 7th Int. Conf. on Ionization Phenomena in Gases, Belgrade 1965 (1967).
- [64] R. D. Cowan and K. G. Widing, Astrophys. J. 180, 285 (1973).
- [65] A. Redfors, Phys. Scr. 38, 702 (1988).
- [66] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).
- [67] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [68] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, Phys. Lett. 88A, 165 (1982).
- [69] N. J. Peacock, M. F. Stamp, and J. D. Silver, Phys. Scr. T8, 10 (1984).
- [70] U. Feldman, L. Katz, W. Behring, and L. Cohen, J. Opt. Soc. Am. 61, 91 (1971).
- [71] B. C. Fawcett, A. H. Gabriel, F. E. Irons, N. J. Peacock, and P. A. H. Saunders, Proc. Phys. Soc. 88, 1051 (1966).
- [72] P. G. Burkhalter, L. Cohen, R. D. Cowan, and U. Feldman, J. Opt. Soc. Am. 69, 1133 (1979).
- [73] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [74] B. Edlén, Z. Phys. 100, 621 (1936).
- [75] K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 (1980).
- [76] C. Jupén, L. Engström, R. Hutton, and E. Träbert, J. Phys. B 21, L347 (1988).
- [77] B. Edlén, Phys. Scr. 17, 565 (1978).
- [78] C. Jupén, Mon. Not. Roy. Astron. Soc. 208, short communication 1 (1984).
- [79] U. Feldman, G. A. Doschek, and J. F. Seely, Mon. Not. Roy. Astron. Soc. 212, 41 (1985).
- [80] J. P. Buchet, M. C. Buchet-Polizac, A. Denis, J. Desesquelles, M. Druetta, S. Martin, and J. F. Wyart, J. Phys. B 20, 1709 (1987).
- [81] M. Finkenthal, P. Mandelbaum, A. Bar-Shalom, M. Klapisch, J. L. Schwob, C. Breton, C. De Michelis, and M. Mattioli, J. Phys. B 18, L331 (1985).

- [82] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [83] B. C. Fawcett, G. E. Bromage, and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 186, 113 (1979).
- [84] H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985 (1980).
- [85] F. Tyrén, Z. Phys. 111, 314 (1938).
- [86] R. J. Hutcheon, J. P. Pye, and K. D. Evans, Mon. Not. Roy. Astron. Soc. 175, 489 (1976).
- [87] R. J. Hutcheon, J. P. Pye, and K. D. Evans, Astron. Astrophys. 51, 451 (1976).
- [88] G. A. Doschek, U. Feldman, K. P. Dere, G. D. Sandlin, M. E. VanHoosier, G. E. Brueckner, J. D. Purcell, and R. Tousey, Astrophys. J. 196, L83 (1975).
- [89] S. Suckewer and E. Hinnov, Phys. Rev. A 20, 578 (1979).
- [90] E. Hinnov and S. Suckewer, Phys. Lett. 79A, 298 (1980).
- [91] E. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A 25, 2293 (1982).
- [92] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, J. Appl. Phys. 56, 2012 (1984).
- [93] V. I. Kovalev, E. Ya. Kononov, and S. S. Churilov, Autoionizing Effects in Atoms and Ions, Dept. of Phys. and Astron., Sci. Committee on Spectrosc., Acad. Nauk Moscow, USSR, p. 210 (1983).
- [94] K. J. Phillips, J. W. Leibacher, C. J. Wolfson, J. H. Parkinson, B. C. Fawcett, B. J. Kent, H. E. Mason, L. W. Acton, J. L. Culhane, and A. H. Gabriel, Astrophys. J. 256, 774 (1982).
- [95] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [96] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [97] P. G. Burkhalter, C. M. Dozier, E. Stallings, and R. D. Cowan, J. Appl. Phys. 49, 1092 (1978).
- [98] J. F. Seely, U. Feldman, and U. I. Safronova, Astrophys. J. 304, 838 (1986).
- [99] K. T. Cheng, unpublished material (1981).
- [100] W. C. Martin, unpublished material (1982).
- [101] K. G. Widing, Astrophys. J. 222, 735 (1978).
- [102] B. Edlén, Phys. Scr. 22, 593 (1981).
- [103] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [104] C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, J. Opt. Soc. Am. 69, 1652 (1979).
- [105] E. Ya. Kononov, Phys. Scr. 27, 117 (1983).
- [106] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, Astrophys. J. 187, 377 (1974).
- [107] B. C. Fawcett and R. W. Hayes, Mon. Not. Roy. Astron. Soc. 170, 185 (1975).
- [108] L. Cohen and U. Feldman, Astrophys. J. 160, L105 (1970).
- [109] M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747 (1971).
- [110] W. M. Neupert, M. Swartz, and S. O. Kastner, Solar Phys. 31, 171 (1973).
- [111] J. P. Pye, K. D. Evans, and R. J. Hutcheon, Mon. Not. Roy. Astron. Soc. 178, 611 (1977).
- [112] D. L. McKenzie, P. B. Landecker, R. M. Broussard, H. R. Rugge, R. M. Young, U. Feldman, and G. A. Doschek, Astrophys. J. 241, 409 (1980).
- [113] S. Suckewer and E. Hinnov, Phys. Rev. Lett. 41, 756 (1978).
- [114] G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 (1976).
- [115] K. D. Lawson, N. J. Peacock, and M. F. Stamp, J. Phys. B 14, 1929 (1981).
- [116] B. Edlén, Phys. Scr. 26, 71 (1982).
- [117] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [118] E. Ya. Kononov, K. N. Koshelev, L. I. Podobedova, S. V. Chekalin, and S. S. Churilov, J. Phys. B 9, 565 (1976).
- [119] J. Sugar and W. L. Rowan, J. Opt. Soc. Am. 12, 1403 (1995).

- [120] G. E. Bromage, R. D. Cowan, B. C. Fawcett, H. Gordon, M. G. Hobby, N. J. Peacock, and A. Ridgeley, The laserproduced spectrum of Fe XVII to Fe XXI below 18 Å, UKAEA Report CLM-R170 (1977).
- [121] T. N. Lie and R. C. Elton, Phys. Rev. A 3, 865 (1971).
- [122] U. Feldman, G. A. Doschek, and R. W. Kreplin, Astrophys. J. 238, 365 (1980).
- [123] S. O. Kastner, W. M. Neupert, and M. Swartz, Astrophys. J. 191, 261 (1974).
- [124] G. E. Bromage and B. C. Fawcett, Mon. Not. Roy. Astron. Soc. 178, 605 (1977).
- [125] B. C. Fawcett, C. Jordan, J. R. Lemen, and K. J. H. Phillips, Mon. Not. Roy. Astron. Soc. 225, 1013 (1987).
- [126] R. W. Noyes, High Energy Phenomena on the Sun, edited by R. Ramaty and R. G. Stone, NASA SP-342 (1973), p. 231.
- [127] S. O. Kastner, J. Opt. Soc. Am. 61, 335 (1971).
- [128] B. C. Fawcett and R. D. Cowan, Mon. Not. Roy. Astron. Soc. 171, 1 (1975).
- [129] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 65, 463 (1975).
- [130] G. E. Bromage, R. D. Cowan, B. C. Fawcett, and A. Ridgeley, J. Opt. Soc. Am. 68, 48 (1978).
- [131] K. G. Widing, Astrophys. J. 197, L33 (1975).
- [132] E. Hinnov, Astrophys. J. 230, L197 (1979).
- [133] B. Edlén, Phys. Scr. 32, 86 (1985).
- [134] B. C. Fawcett, A. Ridgeley, and T. P. Hughes, Mon. Not. Roy. Astron. Soc. 188, 365 (1979).
- [135] E. Ya. Kononov, K. N. Koshelev, and Yu. V. Sidel'nikov, Sov. J. Plasma Phys. 3, 375 (1977).
- [136] K. G. Widing and J. D. Purcell, Astrophys. J. 204, L151 (1976).
- [137] E. Hinnov, the TFTR Operating Team, B. Denne, and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).
- [138] R. J. Knize, Phys. Rev. A 43, 1637 (1991).
- [139] J. Reader, J. Sugar, N. Acquista, and R. Bahr, J. Opt. Soc. Am. B 11, 1930 (1994).
- [140] J. F. Seely and U. Feldman, Phys. Scr. 33, 110 (1986).
- [141] Yu. I. Grineva, V. I. Karev, V. V. Korneev, V. V. Krutov, S. L. Mandelstam, L. A. Vainstein, B. N. Vasilyev, and I. A. Zhitnik, Solar Phys. 29, 441 (1973).
- [142] J. F. Seely and U. Feldman, J. Phys. B 18, L797 (1985).
- [143] M. Bitter, K. W. Hill, N. Sauthoff, P. C. Efthimion, E. Meservey, W. Roney, S. von Goeler, R. Horton, M. Goldman, and W. Stodiek, Phys. Rev. Lett. 43, 129 (1979).
- [144] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [145] M. Klapisch, J. L. Schwob, B. S. Fraenkel, and J. Oreg, J. Opt. Soc. Am. 67, 148 (1977).
- [146] B. Edlén, Phys. Scr. 19, 255 (1979).
- [147] P. Beiersdorfer, M. Bitter, S. von Goeler, S. Cohen, K. W. Hill, J. Timberlake, R. S. Walling, M. H. Chen, P. L. Hagelstein, and J. H. Scofield, Phys. Rev. A 34, 1297 (1986).
- [148] L. A. Vainshtein and U. I. Safronova, Phys. Scr. 31, 519 (1985).
- [149] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).
- [150] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [151] P. Indelicato, O. Gorceix, M. Tavernier, J. P. Briand, J. P. Desclaux, R. Marrus, and M. Prior, Z. Phys. D 2, 149 (1986).
- [152] S. Morita and J. Fujita, J. Phys. Soc. Jpn. 52, 1957 (1983).
- [153] E. V. Aglitskii and A. M. Panin, Opt. Spectrosc. 58, 453 (1985).
- [154] J. J. Turechek and H. J. Kunze, Z. Phys. A 273, 111 (1975).
- [155] V. Decaux, M. Bitter, H. Hsuan, S. von Goeler, K. W. Hill, R. A. Hulse, G. Taylor, H. Park, and C. P. Bhalla, Phys. Rev. A 43, 228 (1991).
- [156] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desequelles, M. Druetta, J. P. Grandin, and X. Husson, Phys. Rev. A 23, 3354 (1981).

- [157] G. W. Drake, Can. J. Phys. 66, 586 (1988).
- [158] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [159] K. T. Cheng, Private communication (1996).
- [160] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [161] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [162] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).
- [163] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [164] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser. 4, Vol. I (1966).
- [165] J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 4. (1988).
- [166] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. 79A, 629 (1975).
- [167] N. Acquista and J. Reader, J. Opt. Soc. Am. B 1, 649 (1984).
- [168] M. Bitter, S. von Goeler, K. W. Hill, R. Horton, D. Johnson, W. Roney, N. Sauthoff, E. Silver, and W. Stodiek, Phys. Rev. Lett. 47, 921 (1981).
- [169] V. A. Boiko, Yu. P. Voinov, V. A. Gribkov, and G. V. Sklizkov, Opt. Spectrosc. 29, 545 (1970).
- [170] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [171] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Opt. Spectrosc. 44, 498 (1978).
- [172] V. A. Boiko, S. A. Pikuz, A. S. Safronova, A. Ya. Faenov, P. O. Bogdanovich, G. V. Merkelis, Z. B. Rudzikas, and S. D. Sadziuviene, J. Phys. B 12, 1927 (1979).
- [173] G. E. Bromage, B. C. Fawcett, and R. D. Cowan, Mon. Not. Roy. Astron. Soc. 178, 599 (1977).
- [174] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desequelles, M. Druetta, S. Martin, J. P. Grandin, X. Husson, and I. Lesteven, Phys. Scr. 31, 364 (1985).
- [175] L. F. Chase, W. C. Jordan, J. D. Perez, and R. R. Johnston, Phys. Rev. A 13, 1497 (1976).
- [176] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [177] J. P. Connerade, N. J. Peacock, and R. J. Speer, Solar Phys. 14, 159 (1970).
- [178] J. H. Dave, U. Feldman, J. F. Seely, A. Wouters, S. Suckewer, E. Hinnov, and J. L. Schwob, J. Opt. Soc. Am. B 4, 635 (1987)
- [179] G. A. Doschek, Space Sci. Rev. 13, 765 (1972).
- [180] G. A. Doschek, J. F. Meekins, and R. D. Cowan, Astrophys. J. 177, 261 (1972).
- [181] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).

- [182] A. K. Dupree, M. C. E. Huber, R. W. Noyes, W. H. Parkinson, E. M. Reeves, and G. L. Withbroe, Astrophys. J. 182, 321 (1973).
- [183] B. C. Fawcett, A. H. Gabriel, and C. Jordan, Astrophys. J. 152, L119 (1968).
- [184] B. C. Fawcett, N. J. Peacock, and R. D. Cowan, J. Phys. B 1, 295 (1968).
- [185] B. C. Fawcett, J. Phys. B 4, 981 (1971).
- [186] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [187] B. C. Fawcett, M. Galanti, and N. J. Peacock, J. Phys. B 7, 1149 (1974).
- [188] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [189] U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and L. Cohen, Astrophys. J. 183, L43 (1973).
- [190] B. S. Fraenkel and J. L. Schwob, Phys. Lett. 40A, 83 (1972).
- [191] J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, J. Phys. Chem. Ref. Data 10, 305 (1981).
- [192] C. Jordan, Mon. Not. Roy. Astron. Soc. 132, 515 (1966).
- [193] C. Jordan, Solar Phys. 21, 381 (1971).
- [194] C. Jordan, Space Sci. Rev. 13, 595 (1972).
- [195] V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986).
- [196] M. Klapisch, A. Bar Shalom, J. L. Schwob, B. S. Fraenkel, C. Breton, C. de Michelis, M. Finkenthal, and M. Mattioli, Phys. Lett. 69A, 34 (1978).
- [197] E. Ya. Kononov, A. N. Ryabtsev, U. I. Safronova, and S. S. Churilov, J. Phys. B 9, L477 (1976).
- [198] E. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, Sov. J. Quantum Electron. 7, 111 (1977).
- [199] M. Loulergue and H. Nussbaumer, Astron. Astrophys. 24, 209 (1973).
- [200] J. E. Manson, Solar Phys. 27, 107 (1972).
- [201] D. L. McKenzie and P. B. Landecker, Astrophys. J. 254, 309 (1982).
- [202] W. M. Neupert, Solar Phys. 18, 474 (1971).
- [203] J. H. Parkinson, Astron. Astrophys. 24, 215 (1973).
- [204] J. H. Parkinson, Solar Phys. 42, 183 (1975).
- [205] H. R. Rugge and A. B. C. Walker, Jr., Astrophys. J. 219, 1068 (1978).
- [206] N. Spector, A. Zigler, H. Zmora, and J. L. Schwob, J. Opt. Soc. Am. 70, 857 (1980).
- [207] S. Suckewer, Phys. Scr. 23, 72 (1981).
- [208] E. Träbert, R. Hutton, and I. Martinson, Z. Phys. D 5, 125 (1987).
- [209] K. G. Widing, Nucl. Instrum. Meth. 110, 361 (1973).

2.7. Cobalt

2.7.1. Brief Comments on Each Cobalt Ion

Co VIII

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 1 273 000 \pm 5000 cm⁻¹ (157.8 \pm 0.6 eV)

Alexander et al. [1] classified 19 lines of the $3d^2-3d4f$ array in the range of 122.2-125.6 Å. An extension of the analysis was carried out by Fawcett et al. [2] who classified 135 lines belonging to the $3p^63d^2-3p^53d^3$ and $3d^2-3d4p$, 4f, 5f arrays in the range of 102.0-192.7 Å. We have adopted their wavelengths. The uncertainties of the wavelengths are ± 0.007 to ± 0.015 Å for the former two arrays in the range 153.0-192.7 Å and ± 0.004 Å for the latter two arrays in the range of 102.0-134.0 Å.

The value for the ionization energy was derived by Sugar and Corliss [3] from the nf series.

Co ix

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 1 501 300 \pm 2000 cm⁻¹ (186.13 \pm 0.20 eV)

Alexander et al. [4] classified the 3d $^2D - nf$ $^2F^{\circ}$ doublets for n = 4 - 10 in the range of 70.9 - 108.7 Å.

The $3p^63d-3p^53d^2$ array was observed by Gabriel et al. [5] and by Goldsmith [6] who also identified the $3d^2D-4p^2P^\circ$ doublet in the range of 159-160 Å. A further extension with improved measurements was made by Ramonas and Ryabtsev [7], who classified 18 lines in the range of 152.7-213.6 Å, including new lines due to $3p^63d^2D-3p^53d^2(^1D)^2F^\circ$ and $(^1G)^2F^\circ$, and revised the wavelength of the $3d^2D_{3/2}-4p^2P^\circ_{1/2}$ transition. The uncertainty of their wavelengths is ± 0.003 Å.

Hoory et al. [8] measured the spectral lines in the wavelength range of 95.8-101.5 Å with an uncertainty of ± 0.005 Å and identified them as $3p^63d-3p^53d4s$ transitions.

The value for the ionization energy was derived by Alexander $et\ al.$ [4] from their observations of the nf series.

Co x

Ar I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^6$ $^{1}S_0$

Ionization energy 2 221 000 \pm 3000 cm⁻¹ (275.4 \pm 0.4 eV)

Alexander et~al.~[4] classified transitions from the $3p^54s~^{3,1}{\rm P}_1^{\circ}$ and $3p^54d~^{3,1}{\rm P}_1^{\circ}$ levels to the ground level at $\sim\!90$ Å and $\sim\!72$ Å.

The $3p^6$ $^1\mathrm{S}_0 - 3p^53d$ $^1\mathrm{P}_1^\circ$ line measured by Gabriel et al. [5] was found to be 158.873 ± 0.005 Å by Goldsmith [6] and 158.88 ± 0.03 Å by Fawcett and Hayes [9]. The wavelength of Ref. [6] is given here.

The $3p^53d - 3p^54f$ transitions were classified by Fawcett et al. [10], including 11 lines in the range of 94.4 - 98.3 Å. Remeasured wavelengths with uncertainties of ± 0.01 Å in the extended range of 94.4 - 111.6 Å were reported by Swartz et al. [11]. They also classified the lines at 63.017 Å and 62.332 Å as transitions from the $3p^55s$ $^{3,1}P_1^{\circ}$ levels to the ground level.

An isoelectronic comparison of measured wavelengths of the $3p^6$ $^1\mathrm{S}_0-3p^53d$ $^3\mathrm{D}_1$ spin-forbidden transition with relativistic Hartree-Fock calculations was carried out by Sugar *et al.* [12] for Fe⁸⁺ through Mo²⁴⁺. They obtained a fitted wavelength value of 200.893 \pm 0.005 Å for Co.

The value for the ionization energy was derived from ns terms by Sugar and Corliss [3].

Co XI

Cl'I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^5$ ${}^2P_{3/2}^{\circ}$

Ionization energy 2 460 000 cm^{-1} (305 eV)

The solar coronal line at 5188.5 Å was identified by Price [13] as the magnetic-dipole ${}^2\mathrm{P}_{3/2}^{\circ} - {}^2\mathrm{P}_{1/2}^{\circ}$ transition in the configuration $3s^23p^5$. This wavelength value is, however, inconsistent with the present level scheme. We give the wavelength of 5168 Å calculated from energy levels.

The classification of $3p^5-3p^44s$ lines in the wavelength range of 81.5-84.1 Å was carried out by Edlén [14]. An additional $3p^5$ $^2\mathrm{P}_{3/2}^{\circ}-3p^44s$ $^4\mathrm{P}_{5/2}$ line at 84.67 ± 0.015 Å was measured by Fawcett et al. [10] using a laser-produced plasma source. They also classified the $3p^5-3p^44d$ and $3p^43d-3p^44f$ transitions in the ranges of 66.1-68.0 Å and 84.7-87.3 Å.

Wavelengths of the $3p^5-3p^43d$ transitions in the range of 158.2-177.6 Å were reported by Gabriel *et al.* [5], Goldsmith [6], and Fawcett and Hayes [9]. The wavelengths with uncertainties of ± 0.005 Å are taken from Ref. [6].

Fawcett and Hayes [9] and Fawcett and Hatter [15] classified the lines at 318.85 \pm 0.03 Å and 339.81 \pm 0.03 Å, respectively, as transitions from the $3s3p^6$ $^2\mathrm{S}_{1/2}$ level to the ground $3s^23p^5$ $^2\mathrm{P}^{\circ}_{3/2,1/2}$ levels.

The value for the ionization energy was determined by Lotz [16] by extrapolation.

Co XII

S 1 isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^4$ 3P_2

Ionization energy 2 710 000 cm^{-1} (336 eV)

Wavelengths for magnetic-dipole transitions within the ground configuration $3s^23p^4$, except for the $^3P_1 - ^1D_2$ transition at 3801.2 Å were identified by Price [13] in the solar corona, and have been calculated from energy levels of Smitt *et al.* [17].

Fawcett and Hayes [9] measured wavelengths of 10 lines due to the $3p^4 - 3p^33d$ transitions in the range of 165.8 - 180.5 Å. The wavelength uncertainty is ± 0.03 Å. In Ref. [9], a revised classification for the line at 168.34 Å observed by Gabriel et al. [5] was given. Improved measurements of the transitions $3s^23p^4$ $^3P - 3s3p^5$ $^3P^\circ$ and $^1D_2 - ^1P_1^\circ$ previously classified by Fawcett and Hayes [9] in the wavelength range of 286.6 - 344.0 Å were carried out by Fawcett and Hatter [15], whose wavelengths with uncertainties of ± 0.02 Å are given here.

Fawcett et al. [10] measured the $3p^4 - 3p^34d$ and $3p^33d - 3p^34f$ arrays in the ranges of ~ 63 Å and ~ 80 Å, respectively, with an uncertainty of ± 0.015 Å.

The value for the ionization energy was derived by extrapolation by Lotz [16].

Co XIII

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ $^4S_{3/2}^{\circ}$

Ionization energy $3.057.000 \text{ cm}^{-1}$ (379 eV)

Wavelengths for magnetic-dipole transitions within the ground configuration $3s^23p^3$ have been obtained from level values predicted by Smitt $et\ al.$ [17]. No observations of lines connecting the quartet and the doublet systems have been reported.

Fawcett and Hayes [9] analyzed the $3s^23p^3 - 3s3p^4$ and $3s^23p^23d$ arrays in the wavelength ranges of 263.4 - 338.8 Å and 174.8 - 188.9 Å. Improved measurements of the former array with a wavelength uncertainty of ± 0.02 Å were carried out by Fawcett and Hatter [15], who found 2 additional new lines: $^4S_{3/2}^{\circ} - ^4P_{1/2}$ at 320.40 Å and $^2D_{3/2}^{\circ} - ^2D_{3/2}$ at 310.67 Å. Note that the line at 205.38 Å in Ref. [9] has been omitted, because it does not fit with the level scheme of Smitt et~al.

Fawcett et al. [10] identified five lines at about 74 Å as $3p^23d - 3p^24f$ transitions. Their wavelength uncertainty is ± 0.015 Å.

The $3p^3 - 3p^24d$ transitions below 72.7 Å are given by Fawcett *et al.* [18].

The value for the ionization energy was derived by extrapolation by Lotz [16].

Co XIV

Si I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ ³P₀

Ionization energy 3 315 000 cm^{-1} (411 eV)

Wavelengths of magnetic-dipole transitions within the $3s^23p^2$ ground configuration have been predicted by Sugar *et al.* [19]. The $3s^23p^2$ levels are derived from them

Fawcett and Hayes [9] analyzed the $3s^23p^2-3s3p^3$ and $3s^23p^2-3s^23p3d$ arrays in the wavelength ranges of 224.1-342.3 Å and 184.4-207.9 Å. Their wavelength uncertainty is ± 0.03 Å. Improved wavelengths with uncertainties of ± 0.02 Å were reported by Fawcett and Hatter [15] for the former array. The $3s3p^3$ $^3S_1^\circ$ level is derived from the $3s^23p^2$ $^3P_{2,0}-3s3p^3$ $^3S_1^\circ$ transitions at 236.11 Å and 224.13 Å. The wavelength uncertainty of the $3s^23p^2$ $^3P_1-3s3p^3$ $^3S_1^\circ$ transition at 230.34 Å is questionable, because this line is inconsistent by about $200 \, \mathrm{cm}^{-1}$ with the lower $3s^23p^2$ 3P_1 level by about 0.1 Å.

Fawcett et al. [10] observed the $3p^2 - 3p4d$, $3p^2 - 3p4s$, and 3p3d - 3p4f lines in the range of 55.7 - 69.1 Å. Their wavelength uncertainty is ± 0.01 Å. Kastner et al. [20] reobserved these lines in the extended range of 55.1 - 74.4 Å. They give tentative classifications for the $3s3p^3 - 3s^23p4f$ transitions.

The value for the ionization energy was derived by Lotz [16] by extrapolation.

Co xv

Al I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{-2} P_{1/2}^{\circ}$

Ionization energy 3 580 000 cm^{-1} (444 eV)

The magnetic-dipole line $3s^23p$ $^2\mathrm{P}_{1/2}^{\circ}-3s^23p$ $^2\mathrm{P}_{3/2}^{\circ}$ at 4350.6 Å was identified by Price [13] in the solar coronal spectrum.

Lines at 52.583 Å and 53.173 Å were classified by Edlén [21] as the $3s^23p$ $^2\mathrm{P}^{\circ}_{1/2,3/2} - 3s^24d$ $^2\mathrm{D}_{3/2,5/2}$ doublet.

The array $3s^23p-3s3p^2$ was observed by Fawcett and Hayes [9] and more accurately by Fawcett and Hatter [15]. Fawcett and Hayes also provided identifications of the $3s^23p-3s^23d$ doublet and the $3s3p^2$ $^4\mathrm{P}_{5/2}-3p^3$

 $^4\mathrm{S}^\circ_{3/2}$ transition. The $3s3p^2$ $^4\mathrm{P}_{1/2,3/2,5/2} - 3p^3$ $^4\mathrm{S}^\circ_{3/2}$ quartet was given by Litzén and Redfors [22]. Observations in the range of 197.5-337.5 Å were made by Redfors and Litzén [23] with a laser-produced plasma source. They identified all the transitions between terms of the configurations $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d (except $^4\mathrm{F}$). Their wavelength uncertainties are ± 0.02 Å. Levashov et al. [24] remeasured the $3s3p^2$ $^2\mathrm{D}_{3/2}-3p^3$ $^3\mathrm{P}^\circ_{1/2}$ line and obtained 337.467 Å instead of 337.422 Å in Ref. [22]. They also classified a new line at 198.459 Å and identified the $3s3p^2$ $^4\mathrm{P}_{3/2}-3s3p(^3\mathrm{P}^\circ)3d$ $^4\mathrm{P}^\circ_{3/2,1/2}$ transitions. However this classification has been omitted, because the recalculated wavelength is different from their observed one by about 1 Å.

The transition arrays $3p^3$, $3s3p3d - 3p^23d$, $3s3d^2$ were newly identified by Churilov and Levashov [25] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å. They also redetermined energy levels of all the configurations with n=3. We have adopted their results. The wavelength of 220.041 Å is apparently a misprint and should be 222.041 Å. It should be noted that the designations of $3s3p(^3P^\circ)3d\ ^4P_{1/2,3/2}^\circ$ and $3s3p(^3P^\circ)3d\ ^4P_{3/2}^\circ$ levels have been interchanged with $3s3p(^3P^\circ)3d\ ^4D_{1/2,3/2}^\circ$ and $3s3p(^1P^\circ)3d\ ^2D_{3/2}^\circ$. These levels cross at the Mn ion, as shown in the calculation of Redfors and Litzén.

Fawcett et al. [10] classified the $3s^23d - 3s^24f$, and 3s3p3d - 3s3p4f arrays in the ranges of ~ 67 Å and ~ 64 Å, respectively, with wavelength uncertainties of ± 0.01 Å.

The value for the ionization energy was determined by Lotz [16] by extrapolation.

Co XVI

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{-1}S_0$

Ionization energy 4 129 200 \pm 500 cm⁻¹ (511.96 \pm 0.06 eV)

The magnetic dipole transition 3s3p $^3P_1^\circ - 3s3p$ $^3P_2^\circ$ at 5774 Å was classified by Price [13] in the solar coronal spectrum. But this classification is questionable and omitted because its wavelength value is estimated to be 5761 Å from the level values of Churilov *et al.* [26] adopted here.

Edlén [21] found the $3s^2$ $^1\mathrm{S}_0 - 3s4p$ $^1\mathrm{P}_1^\circ$ resonance line at 47.483 Å and also the triplets 3s3p $^3\mathrm{P}^\circ - 3s4d$ $^3\mathrm{D}$ and 3s3d $^3\mathrm{D} - 3s4f$ $^3\mathrm{F}^\circ$ in the ranges of ~ 50 Å and ~ 62 Å. Identifications of the singlets 3s3p $^1\mathrm{P}_1^\circ - 3s4d$ $^1\mathrm{D}_2$ at 53.043 ± 0.01 Å and 3s3d $^1\mathrm{D}_2 - 3s4f$ $^1\mathrm{F}_3^\circ$ at 64.773 ± 0.01 Å were made by Fawcett et al. [10]. They also identified a blended line at 56.83 Å as the $3p^2$ $^1\mathrm{D}_2 - 3s4f$ $^1\mathrm{F}_3^\circ$ transition. The 3p3d - 3p4f transitions were classified by Fawcett et al. [10] and more completely by Kastner et al. [20]. We have adopted the results of Kast-

ner et al., although three blended lines have multiple classifications.

Feldman *et al.* [27] classified spectral lines of the 3s3p ³P° -3s5d ³D array at \sim 37 Å, measured with wavelength uncertainties of ± 0.02 Å.

The rest of the n = 3 - 4.5 transitions below 59.625 Å are due to the identifications of Fawcett *et al.* [18].

The inner shell $2p^63s^2$ $^1S_0 - 2p^53s^23d$ $^1P_0^{\circ}$ transition at 14.080 Å was observed by Swartz *et al.* [28].

Transitions among the configurations $3s^2$, 3s3p, $3p^2$, 3s3d and 3p3d in the wavelength range of 186.4-496.6 Å produced in a laser-generated plasma were observed and analyzed by Churilov et al. [26] including intersystem lines. They measured wavelengths with uncertainties of ± 0.007 Å. Some revisions for the $3s3p-3p^2$, $3p^2-3p3d$, and 3s3d-3p3d arrays were made by Litzén and Redfors [29] who used a similar light source. Their wavelengths have uncertainties of ± 0.02 Å. We have taken wavelengths and energy levels from both articles. The previous analyses of the n=3 complex by Fawcett and Hayes [9], Fawcett et al. [10], and Fawcett and Hatter [15] were extended in the above work.

The magnetic dipole line 3s3p $^3P_1^{\circ} - 3s3p$ $^3P_2^{\circ}$ at 5774 Å was classified by Price [13] in the solar coronal spectrum. But this classification is questionable and omitted because its wavelength value is estimated to be 5761 Å from the level values of Churilov *et al.* [26] adopted here.

The $3p3d-3d^2$ array was identified by Redfors [30], Levashov and Churilov [31], and Churilov et~al. [32] using laser-produced plasmas. In Ref. [32], 15 lines are provided in the wavelength range of 211.5 – 285.8 Å. Wavelengths given to the third or to the second decimal place have uncertainties of ± 0.01 Å and ± 0.02 Å, respectively. The lower level 3p3d $^3P_1^{\circ}$ of the lines at 221.8 Å and 241.157 Å should be actually $^3D_1^{\circ}$, according to the level scheme of Litzén and Redfors [29]. The classifications of the 3p3d $^3P_2^{\circ}$, $^3D_2^{\circ} - 3d^2$ 3P_2 lines at 220.446 Å and 228.276 Å disagree with the level scheme of Churilov et~al. [26]. We have reduced the value of the $3d^2$ 3P_2 level by 200 cm⁻¹ to accommodate these lines.

The value for the ionization energy was derived by Sugar and Corliss [3] from the 3snd series.

Co XVII

Na I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 S_{1/2}$

Ionization energy 4 408 500 \pm 500cm⁻¹ (546.58 \pm 0.06 eV)

Edlén [33] identified the 3s-4p, 3p-4s and 4d, and 3d-4f and 5f doublets in the wavelength range of 41.4-59.0 Å. Feldman et al. [27] extended the doublet series to 3s-np (n=5,6), 3p-nd (n=5-8), and 3d-nf (n=5-7). They reported the wavelengths in the range 27.9-41.4 Å measured with uncertainties of

 ± 0.01 Å. This work includes the previous results of Feldman *et al.* [34]. The 3p-5s and 3d-8f transitions at 37.768 Å and

31.38 Å, respectively, are from Fawcett et al. [18].

Feldman and Cohen [35] observed the lines at 15.828 ± 0.01 Å $(J={}^1/_2-{}^3/_2)$ and 15.551 ± 0.01 Å $(J={}^1/_2-{}^1/_2)$ belonging to the autoionization resonance transition $2p^63s$ ${}^2S-2p^53s^2$ ${}^2P^\circ$.

Widing et al. [36] classified a solar coronal line at 312.54 ± 0.05 Å as the 3s $^2\mathrm{S}_{1/2}-3p$ $^2\mathrm{P}_{3/2}^{\circ}$ transition. The 3s $^2\mathrm{S}_{1/2}-3p$ $^2\mathrm{P}_{1/2}^{\circ}$ line was observed at 339.51±0.03 Å in a solar flare spectrum by Sandlin et al. [37]. These were also observed in laboratory spectra by Fawcett and Hayes [9], Fawcett et al. [10], and Fawcett and Hatter [15]. Wavelengths of 312.54±0.03 Å (J=1/2-3/2) and 339.50±0.03 Å (J=1/2-1/2) were obtained with a laser-produced plasma in Ref. [15]. Fawcett et al. [10] also observed the 3p $^2\mathrm{P}^{\circ}-3d$ $^2\mathrm{D}$ doublet in the range of 234 – 250 Å with an uncertainty of ±0.02 Å.

The wavelengths of the 3s-3p and 3p-3d transitions agree with semiempirical predictions by Edlén [38] within experimental uncertainties. An isoelectronic comparison of measured wavelengths of these transitions as well as 3d-4f with Dirac-Fock calculations was carried out by Reader et al. [39] for Ar^{7+} through Xe^{43+} . They obtained fitted wavelengths with an uncertainty of ± 0.007 Å. We give their results.

Lawson and Peacock [40] identified the doublets 4d-5f and 4f-5g at ~ 128 Å and ~ 139 Å. Their wavelengths have uncertainties of ± 0.03 Å.

The value for the ionization energy was derived by Edlén [38] from core polarization theory applied to the nf series.

Co XVIII

Ne I isoelectronic sequence

Ground state $1s^22s^22p^{6-1}S_0$

Ionization energy 11 269 000 \pm 4000 cm⁻¹ (1397.2 \pm 0.5 eV)

Resonance lines were first measured by Tyrén [41], who identified those from the n=3 levels, including $2s2p^63p^{-3,1}P_1^\circ$, in the range of 12.6-15.5 Å. Subsequently, Feldman and Cohen [42] observed two lines from the $2s^22p^54d^{-3}D_1^\circ$, $^1P_1^\circ$ levels to the ground state at ~ 11 Å. Swartz et al. [28] extended the identifications to transitions from the upper levels $2p^54s^{-3,1}P_1^\circ$ and $2p^5nd^{-3}D_1^\circ$, $^1P_1^\circ$ (n=5,6). New and improved observations with laser-produced plasmas were reported by Boiko et al. [43], Gordon et al. [44], and Chang et al. [45]. Tabulated wavelengths with uncertainties of ± 0.005 Å have been taken from Gordon et al. Additional wavelengths below 9.5 Å are given by Boiko et al. for $2p^57d^{-3}D_1^\circ$ and $^1P_1^\circ$, and $2p^58d^{-3}D_1^\circ$, and by Chang et al. for $2p^58d^{-1}P_1^\circ$ and $2p^59d^{-3}D_1^\circ$ and $^1P_1^\circ$. Chang et al. also

identified three additional lines at 11.155 Å, 10.025 Å, and 9.748 Å as transitions from the $^3P_1^{\circ}$ levels of the $2p^54d$, $2s2p^64p$, and $2p^56d$ configurations to the ground level. It should be noted that the classification of $2p^6$ $^1S_0 - 2p^55d$ $^{1,3}P_1^{\circ}$ transitions at 10.234 Å and 10.368 Å by Spector *et al.* [46] does not agree with the results quoted here.

Observations of the $2p^53p - 2p^54d$ transitions were made by Kastner *et al.* [47] in the range of 44.8 - 45.7 Å.

The value for the ionization energy was derived by Sugar and Corliss [3] from the $2s^22p^5nd$ $^1P_1^{\circ}$ series for n=3-6.

Co XIX

F I isoelectronic sequence

Ground state $1s^22s^22p^5$ ²P $_{3/2}^{\circ}$

Ionization energy 12 077 600 cm^{-1} (1497.43 eV)

Spectral lines for the $2p^5 - 2p^43s$ and $2p^5 - 2p^43d$ arrays were observed and classified by Cohen et al. [48] and by Swartz et al. [28]. Revisions and additions to these earlier works were made by Feldman et al. [49] and Boiko et al. [50,51]. Gordon et al. [44] remeasured these arrays as well as $2s^22p^5 - 2s2p^53p$, $2p^5 - 2p^44d$, and $2p^5 - 2p^44s$ transitions. These lines in the range of 10.2 - 14.8 Å have uncertainties of ± 0.005 Å. Three additional lines at 13.246 Å, 13.157 Å, and 12.876 Å are from Ref. [51]. The classifications $2p^5$ ${}^2P_{3/2}^{\circ} - 2p^4({}^3P)4d$ ${}^2F_{5/2}$ at 10.471 Å and $2p^5$ ${}^2P_{1/2}^{\circ} - 2p^4({}^3P)4d$ ${}^2D_{3/2}$ at 10.633 Å by Spector et al. [46] do not correspond with the results quoted here. In recent work of Chang et al. [45], 19 new lines belonging to the above arrays were proposed. However, there appear discrepancies of more than ± 0.01 Å between their wavelengths and recalculated ones from the levels quoted here. Furthermore, the $2p^5$ ²P° splitting derived from their data shows a large range of values, some far from the average. We have therfore omitted their results.

Doschek *et al.* [52] identified the $2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2,1/2}$ – $2s2p^6$ $^2\mathrm{S}_{1/2}$ transitions at 88.35 ± 0.02 Å and 99.02 ± 0.02 Å in a laser produced plasma. They were also observed by Lawson and Peacock [40] with a similar light source.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co xx

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 12 942 100 cm^{-1} (1604.62 eV)

Doschek et al. [52] classified eight lines of the $2s^22p^4 - 2s2p^5$ array in the range of 86 - 106 Å. The line at 109.14 Å was identified by Doschek et al. [55] as the $2s2p^5$ $^1P_1^{\circ} - 2p^6$ 1S_0 transition. New measurements and additional classifications of the n = 2 - 2 transitions in the extended range of 74 - 145 Å were made by Lawson and Peacock [40], who gave their wavelength uncertainty as ± 0.03 Å. The results of Ref. [40] have been tabulated here.

The $2p^4-2p^33s$, $2p^33d$, and $2p^34d$ arrays were identified by Gordon et~al.~[44] in the wavelength ranges of 13.2-13.8~Å, 12.2-12.6~Å, and 9.6-9.9~Å. The uncertainty of the wavelengths is $\pm 0.005~\text{Å}$. Some blended lines having multiple classifications are included. These transitions were also observed by Chang et~al.~[45], who identified six additional lines, including the $2s^22p^{4-1}D_2-2s2p^43d~^1F_3$ forbidden transition. The line at 12.423~Å, classified as arising from the $2p^3(^2P^\circ)3d~^3P_2^\circ$ level, disagrees with the levels derived by Gordon et~al. and has been omitted.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co xxi

N I isoelectronic sequence

Ground state $1s^22s^22p^3 \ ^4S_{3/2}^{\circ}$

Ionization energy 13 895 500 cm^{-1} (1722.82 eV)

Doschek et al. [52] observed nine lines in the range of 85.4-125.2 Å, which they assigned to the $2s^22p^3-2s2p^4$ array. Doschek et al. [55] identified the $2s2p^4$ $^2\mathrm{D}_{5/2}-2p^5$ $^2\mathrm{P}_{3/2}^{\circ}$ transition at 106.23 ± 0.015 Å. Additional identifications in these arrays were made by Lawson and Peacock [40], who measured wavelengths of 30 lines in the extended range of 75.8-130.1 Å. Their wavelengths, obtained from a laser-produced plasma, have uncertainties of ±0.03 Å.

Chang et al. [45] identified five lines in the range of 11.5-12.3 Å as $2p^3-2p^23d$ transitions. Their identifications, however, have been omitted, because they do not give consistent values for the upper levels.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co XXII

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 14 892 400 cm^{-1} (1846.42 eV)

The $2s^22p^2 - 2s2p^3$ array was first identified by Feldman *et al.* [56]. It was more completely observed by Lawson and Peacock [40] with a laser-produced plasma. Wavelengths of 18 lines of this array and 20 lines of the $2s2p^3 - 2p^4$ array were measured in the range of 78.9 - 170.1 Å with uncertainties of ± 0.03 Å. Smoothed values for these wavelengths along the isoelectronic sequence are given by Edlén [57]. They indicate that the value for $2s2p^3$ ⁵S₂° is wrong.

Chang et al. [45] reported the identifications of $2p^2 - 2p3s$ and $2p^2 - 2p3d$ transitions in the range of 11.4 – 12.3 Å. However, we have not adopted them because the levels derived from their data are not consistent.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co XXIII

B I isoelectronic sequence

Ground state $1s^2 2s^2 2p$ $^2P_{1/2}^{\circ}$

Ionization energy 15 818 800 cm^{-1} (1961.28 eV)

New measurements and classifications of the $2s^22p-2s2p^2$ array, improving those of Doschek et~al.~[55] were given by Lawson and Peacock [40] who assigned seven lines in the wavelength range of 93.9-147.1~Å to this array. They also identified 17 lines due to the $2s2p^2-2p^3$ array in the range of 103.8-171.5~Å. The spin-forbidden $^4P_{5/2}-^2D_{5/2}^\circ$ transition at 103.80~Å is given as tentative. Edlén [58] assigned the wavelength of 103.718~Å to this transition. Tabulated wavelengths were measured with uncertainties of $\pm 0.03~\text{Å}$. Smoothed values for these wavelengths along the isoelectronic sequence are given in Ref. [58]. The designations of the two levels $2s2p^2~^2P_{1/2}$, $^2S_{1/2}$ were interchanged by Edlén.

The $2s2p^2 - 2s2p(^3P^\circ)3d$ transitions were first provided by Spector *et al.* [46] and more extensively by Chang *et al.* [45] with 19 spectral lines in the range of 10.7 - 11.2 Å, including the $2s2p^2 - 2s2p(^1P^\circ)3d$ transitions. However, their identifications of the $2s2p^2$ $^4P_{5/2,3/2} - 2s2p(^3P^\circ)3d$ $^4D_{5/2}^\circ$ lines at 10.901 Å and 10.899 Å are questionable, because the $2s2p^2$ 4P term splitting is inconsistent with that of Lawson and Peacock. Therefore we have tabulated all of their wavelengths as tentative. The uncertainty of the wavelengths is ± 0.005 Å.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co XXIV

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 17 101 000 cm^{-1} (2120.25 eV)

Lawson and Peacock [40] classified the $2s2p-2p^2$ array in the range of 128.2-204.1 Å in addition to the $2s^2$ $^1S_0-2s2p$ $^1P_1^{\circ}$ resonance line at 125.15 Å. The uncertainty of the wavelengths is ± 0.03 Å for lines shorter than 180 Å and ± 0.06 Å for longer wavelengths. Smoothed values along the isoelectronic sequence are provided for these wavelengths by Edlén [59,60].

Transition arrays for n=2 to 3 in the wavelength range of 9.9-11.5 Å were reported by Boiko et~al.~[43,61] with a measurement uncertainty of ± 0.003 Å. Many of the lines are given as unresolved blended lines. A reobservation of these arrays was made by Chang et~al.~[45], who identified five lines with an uncertainty of ± 0.005 Å. They also claim to resolve blended lines identified by Boiko et~al., however, we have not adopted these wavelengths. It should be noted that the classifications of seven lines of the 2s2p-2p3p, $2p^2-2p3d$, and 2s2p-2s3s arrays by Spector et~al.~[46] do not fit with the results quoted here.

For the ionization energy we use a value calculated by Cheng [53] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [54].

Co XXV

Li I isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 17 897 000 \pm 5000 cm⁻¹ (2219.0 \pm 0.6 eV)

Spectral lines of the doublets 2s $^2S - 3p$ $^2P^{\circ}$, 2p $^2P^{\circ} - 3d$ 2D , and 2p $^2P^{\circ} - 3s$ 2S were identified by Chang et al. [45] with a wavelength uncertainty of ± 0.005 Å. The earlier work of Spector et al. [46] provided the 2s $^2S_{1/2} - 3p$ $^2P^{\circ}_{1/2}$ and 2p $^2P^{\circ}_{1/2,3/2} - 3d$ $^2D_{3/2,5/2}$ transitions.

For the 2s-2p transitions, we have tabulated smoothed values of 178.221 Å and 244.233 Å of Kim *et al.* [62]. Vainshtein and Safronova [63] calculated energy levels of the configurations $1s^2nl$ with n=2-5, and l=s,p, and d. We use their energy levels adjusted to the $1s^22p^2P_{1/2,3/2}^{\circ}$ levels of Kim *et al.* by adding 200 cm⁻¹. They also calculated wavelengths of the $1s^22s-1s2s2p$, $1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing levels.

The value for the ionization energy was derived by Edlén [64] from a polarization formula.

Co xxvi

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 76 979 300 \pm 3500 cm⁻¹ (9544.221 \pm 0.43 eV)

The best measurements of the $1s^2$ $^1S_0 - 1s2p$ $^1P_1^{\circ}$ line are 1.7122±0.0006 Å by Morita [65] and Morita and Fujita [66] and 1.71110±0.00015 Å by Aglitsky *et al.* [67].

Cheng et al. [68] give calculated total energies for the ground state and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [69] for all elements from Ti through Cu and Kr for n=1 and 2 configurations. With these data and the binding energy of the H-like ions [70] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [71].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [63] have been tabulated after increasing them by 1500 cm^{-1} to correspond with corrected values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

Vainshtein and Safronova also calculated wavelengths of the transitions 1s2s-2s2p, $1s2p-2s^2$, and $1s2p-2p^2$, which we have compiled without correction.

Co XXVII

H I isoelectronic sequence

Ground state $1s^{-2}S_{1/2}$

Ionization energy 80 753 210 cm^{-1} (10 012.13 eV)

Since no observations have been reported, we give wavelengths calculated from the theoretical level energies by Johnson and Soff [70] for the n=2 shell. They are in close agreement with the calculations by Mohr [73]. All levels with n=3-5 were calculated by Erickson [74]. For the ns and np (n=3-5) levels, Erickson's values for the binding energies were subtracted from the ground state binding energy given by Johnson and Soff [70] to obtain the predicted wavelengths.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for the hydrogen spectrum by Wiese *et al.* [75]. The scaling was actually

performed for the line strengths S, which for a hydrogenlike ion of nuclear charge Z are reduced according to $S_Z = Z^{-2}S_H$, so that

$$S_{Co\ XXVII} = S_H(27)^{-2} = S_H/729.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in

Ref. [76]. For these conversions the accurate wavelengths listed in the Co XXVII table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-5% for Co XXVII, according to the work by Younger and Weiss [77], and have been neglected.

The value for the ionization energy is from Johnson and Soff [70].

2.7.2. Spectroscopic Data for Co VIII through Co XXVII

 \mathbf{Co} VIII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
192.619	$3p^63d^2$ 1 G ₄	$3p^63d4p$ $^3F_4^\circ$	32 360	551 524	2.2 - 3	4.4+7	E	2°,76*
192.332	$3p^63d^2$ 3P_1	$3p^63d4p^{-3}D_1^{o}$	22 839	542 701	3.3 - 2	2.0+9	D	2°,76*
191.757	1	2	22 839	544 314	1.7 - 1	6.2+9	Ď	2°,76*
191.645	2	3	24 055	545 834	2.1 - 1	5.4 + 9	D	2°,76*
191.262	$3p^63d^2$ ¹ D ₂	$3p^63d4p\ ^1{ m D}_2^{ m o}$	19 624	542 430	4.2 - 1	1.5+10	D	2°,76*
190.574	$3p^63d^2\ ^3\mathrm{P}_2$	$3p^6 3d4p\ ^3{ m F}_3^{\circ}$	24 055	548 799	2.7 - 2	7.1+8	Е	2°,76*
190.574	$3p^63d^2$ ¹ D ₂	$3p^6 3d4p\ ^3{ m D}_2^{\circ}$	19 624	544 314	1.0 - 1	3.7+9	\mathbf{E}	2°,76*
190.342	$3p^63d^{2-1}G_4$	$3p^6 3d4p\ ^1{ m F}_3^{ m o}$	32 360	557 736	1.8	4.7+10	D	2°,76*
189.472	$3p^63d^2$ $^1{ m D}_2$	$3p^63d4p$ $^3\mathrm{F}_2^\circ$	19 624	547 400	2.0 - 1	7.4+9	E	2°,76*
189.040	$3p^63d^2$ ¹ G ₄	$3p^5(^2P^\circ)3d^3(^2H)$ $^3G_5^\circ$	32 360	561 346	1.1 - 1	1.9+9	\mathbf{E}	2°,76*
188.674	$3p^63d^2$ 3P_2	$3p^6 3d4p\ ^3P_1^{\circ}$	24 055	554 082	1.6 - 1	9.9+9	D	2°,76*
188.345	2	-r -r -1 2	24 055	554 998	7.0 - 1	2.6+10	Ď	2°.76*
188.241	1	1	22 839	554 082	1.6 - 1	9.9 + 9	D	2°,76*
188.165	1	0	22 839	554 287	1.9 - 1	3.6 + 10	D	2°.76*
188.054	0	1	22 304	554 082	1.6 - 1	1.0+10	D	2°,76*
187.909	1	2	22 839	554 998	1.1 - 1	4.1+9	D	2°,76*
187.375	$3p^63d^2\ ^3{ m P}_2$	$3p^63d4p\ ^1{ m F}_3^{ m o}$	24 055	557 736	2.4 - 2	6.5+8	E	2°,76*
187.092	$3p^63d^{2-1}D_2$	$3p^63d4p\ ^3P_1^{\circ}$	19 624	554 082	8.0 - 2	5.2 + 9	E	2°,76*
185.835	$3p^63d^{2-1}D_2$	$3p^63d4p\ ^1{ m F}_3^{ m o}$	19 624	557 736	3.3 - 2	8.9+8	D	2°,76*
185.461	$3p^63d^2$ 3P_2	$3p^6 3d4p^{-1}P_1^{\circ}$	24 055	563 271	8.5 - 2	5.5 + 9	E	2°,76*
185.041 184.861	1 0	1	$\frac{22}{22} \frac{839}{304}$	563 271 563 271	3.0 - 3 $1.5 - 2$	2.0+8 $9.8+8$	E E	2°,76* 2°,76*
184.850	$3p^63d^2\ ^3{ m F}_3$	$3p^63d4p^{-1}D_2^{o}$	1 430	542 430	9.8 - 2	3.9+9	E	2°,76*
184.356	2	2	0	542 430	2.5 - 1	9.9 + 9	Ē	2°,76*
184.265	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4p\ ^3{ m D}_3^{\circ}$	3 144	545 834	1.3	3.5+10	D	2°,76*
184.265	2	1	0	542 701	7.0 - 1	4.7 + 10	D	2°,76*
184.203 183.686	3 3	2 3	1 430 1 430	544 314 545 834	9.1 - 1 $2.8 - 1$	$3.5+10 \\ 8.0+9$	D D	2°,76* 2°,76*
183.939	$3p^63d^{2-1}D_2$	$3p^63d4p^{-1}P_1^{\circ}$	19 624	563 271	3.1 – 1	2.0+10	D	2°,76*
183.266	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4p\ ^3F_3^{\circ}$	3 144	548 799	2.6 - 1	7.3 + 9	D	2°,76*
183.167	3	2	1 430	547 400	9.1 - 2		D	2°,76*
182.686	3	3	1 430	548 799	2.7 - 1	7.7+9	D	2°,76*
182.686 182.355	2	2	0 3 144	547 400 551 524	2.1 - 1	8.4+9	D	2°,76*
181.786	4 3	4	1 430	551 524	7.4 - 1 $2.9 - 2$		D D	2°,76* 2°,76*
180.422	$3p^63d^2\ ^3{ m F}_3$	$3p^5(^2P^\circ)3d^3(^2H)$ $^3G_3^\circ$		FFF 000	4 0	10.0	Б.	
179.949			1 430 0	555 699 555 699	4.5 - 2 1.6	1.3+9 $4.8+10$	D D	2°,76* 2°,76*
179.731	2 3	3	1 400	557 817	3.4	7.8+10	D	2°,76*
179.147	4	4 5		561 346	4.6	8.6+10	D	2°,76*
179.068	$3p^63d^2$ ¹ G ₄	$3p^5(^2P^\circ)3d^3(^2H)^{-1}H_5^\circ$	32 360	590 805	3.5	6.6+10	D	2°,76*
173.742	$3p^63d^2\ ^3P_2$	$3p^5(^2P^o)3d^3(^2F)$ $^3D_2^o$	24 055	599 641	2.0 - 1	8.8+9	D	2°,76*
173.561	0	$p \in P$	00.004	598 440	6.8 - 1		D	2°,76*
173.373	1	2	00.000	599 641	1.3	5.6+10	Ď	2°,76*
172.776	2	3		602 844	1.3	3.9+10	D	2°,76*
172.767	$3p^63d^{2-1}{ m D}_2$	$3p^5(^2P^\circ)3d^3(^2F)$ $^3D_1^\circ$	19 624	598 440	5.5 - 3	4.1+8	E	2°,76*
172.402	3p 3a D ₂	3p (F)3a (F) D ₁	10 40 4	598 440	3.5 - 3 8.5 - 1		E E	2°,76*
171.460	2	3		602 844	$\frac{3.5-1}{2.1}$	6.6+10	Ē	2°,76*
171.522	$3p^63d^2\ ^3P_1$	$3p^5(^2P^o)3d^3(^2F)^{-1}D_2^o$	22 839	605 841	3.3 - 1	1.5+10	E	2°,76*
171.107	$3p^63d^2\ ^3P_2$	$3p^5(^2P^o)3d^3(^2G)^{-1}F_3^o$	24 055	608 501	1.9	6.1+10	E	2°,76*
170.589	$3p^63d^{2-1}\mathrm{D_2}$	$3p^5(^2P^\circ)3d^3(^2F)^{-1}D_2^\circ$	19 624	605 841	2.5	1.2+11	D	2°,76*
						• -		,

Co VIII - Continued

Wave- length (Å)	Classification Lower	on Upper	Energy Lev	vels (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
170.169	$3p^63d^2\ ^3{ m F_4}$	$3p^5(^2P^\circ)3d^3(^2H)^{-1}H_5^\circ$	3 144	590 805	1.9 – 1	4.0+9	Е	2°,76*
169.819	$3p^63d^2$ $^1\mathrm{D}_2$	$3p^5(^2\mathrm{P}^\circ)3d^3(^2\mathrm{G})\ ^1\mathrm{F}_3^\circ$	19 624	608 501	1.9	6.3+10	D	2°,76*
169.711	$3p^63d^2$ 3 P ₁	$3p^5(^2P^o)3d^3(^4P) ^3P_0^o$	22 839	612 076	6.3 - 1	1.4+11	D	2°,76*
169.537	2	1	24 055	613 869	5.5 - 1	4.3 + 10	D	2°.76*
169.196	1	1	22 839	613 869	5.7 - 1	4.5 + 10	D	2°,76* 2°,76*
169.051	0	1	22 304	613 869	5.8 - 1	4.5+10	D	2°,76*
168.084 167.738	2 1	2 2	$24\ 055$ $22\ 839$	619 010 619 010	$2.5 \\ 5.4 - 1$	1.2+11 $2.6+10$	D D	2°,76* 2°,76*
168.921	$3p^63d^2\ ^3{ m P}_2$	$3p^5(^2P^\circ)3d^3(^4F)\ ^3F_2^\circ$	24 055	616 019	2.9 - 2	1.3+9	D	2°,76*
167.152	$3p^63d^2$ 3 F $_3$	$3p^5(^2P^\circ)3d^3(^2F) \ ^3D_2^\circ$	1 430	599 641	4.1 - 1	1.9+10	D	2°,76*
166.256	3	3	1 430	602 844	9.1 - 2	3.1 + 9	D	2°,76*
167.016	$3p^63d^{2-1}\mathrm{D}_2$	$3p^5(^2P^\circ)3d^3(^4F) \ ^3F_3^\circ$	19 624	618 348	1.8 – 1	6.2+9	E	$2^{\circ},76^{*}$
165.191	$3p^63d^2$ 3 F ₄	$3p^5(^2P^o)3d^3(^2G)^{-1}F_3^o$	3 144	608 501	1.8 - 1	6.4+9	\mathbf{E}	2°,76*
164.721	3	3	1 430	608 501	1.6 - 1	5.6+9	E	2°,76*
162.708	$3p^63d^2\ ^3{ m F}_3$	$3p^5(^2P^\circ)3d^3(^4F)^{-3}F_2^\circ$	1 430	616 019	2.7 - 1	1.4 + 10	D	2°,76*
162.57	4	3	3 144	618 348	2.8 - 1	1.0+10	D	2°,76*
162.337	2	2	0	616 019	4.4	2.2+11	D	2°,76*
162.095 161.917	3	3	1 430 3 144	618 348 620 737	$6.2 \\ 8.9$	2.2+11 $2.5+11$	D D	2°,76* 2°,76*
161.733	4 2	4 3	0	618 348	5.0 - 1	1.9+10	Ď	2°,76*
161.479	3	4	1 430	620 737	5.6 - 1	1.6+10	D	2°,76*
158.783	$3p^63d^{2-1}G_4$	$3p^5(^2P^\circ)3d^3(^2H)^{-1}G_4^\circ$	32 360	662 151	1.3+1	3.7+11	D	2°,76*
158.066	$3p^63d^2$ 3 P ₂	$3p^5(^2P^\circ)3d^3(^4F) \ ^3D_3^\circ$		656 715	2.1	7.8+10	D	2°,76*
157.984	2	2	24 055	657 020	3.1 - 1		D	2°,76*
157.687 157.416	1	2		657 020 658 136	$1.4 \\ 3.6 - 1$	7.2+10 $3.1+10$	D D	2°,76* 2°,76*
157.266	1 0	1 1		658 136	5.0 - 1 $5.1 - 1$	4.6+10	D	2°, 76*
157.773	$3p^63d^{2-1}D_2$	$3p^5(^2P^{\circ})3d^3(^2P)^{-1}P_1^{\circ}$	19 624	653 446	1.0	8.8+10	D	2°,76*
156.958	$3p^63d^2$ ¹ D ₂	$3p^5(^2P^\circ)3d^3(^4F)\ ^3D_3^\circ$	19 624	656 715	1.8 + 1	7.0+9	E	2°,76*
153.926	$3p^63d^{2-1}G_4$	$3p^5(^2P^o)3d^3(^2F)^{-1}F_3^o$	32 360	682 051	8.1	3.3+11	D	2°,76*
153.005	$3p^63d^2\ ^3{ m F_4}$	$3p^5(^2P^o)3d^3(^4F) \ ^3D_3^o$		656 715	7.7	3.2+11	D	2°,76*
152.597	3	3	1 430	656 715	4.3 - 1		\mathbf{D}	2°,76*
152.534	3	2		657 020	5.3	3.0 + 11	D	2°,76*
152.200 151.944	2	2	_	657 020 658 136	4.9 - 1 3.0		D D	2°,76*
	2	5.0 0.4				2.8+11	Ъ	2°,76*
152.896 152.597	$3p^63d^2$ 3P_2	$3p^{5}(^{2}P^{o})3d^{3}(^{4}P) \ ^{3}S_{1}^{o}$	$24\ 055$ $22\ 839$	678 094 678 094	$\frac{2.7}{1.7}$	2.5+11 $1.7+11$	D D	2°,76* 2°,76*
150.958	$3p^63d^{2-1}D_2$	$3p^5(^2P^o)3d^3(^2F)^{-1}F_3^o$		682 051	6.5	2.6+11	D	2°,76*
150.701	$3p^63d^2\ ^3{ m P}_2$	$3p^5(^2P^\circ)3d^3(^2D)^{-1}P_1^\circ$		687 584	3.9 - 1		E	2°,76*
149.718	$3p^63d^{2-1}D_2$	$3p^5(^2\text{P}^\circ)3d^3(^2\text{D})^{-1}\text{P}_1^\circ$		687 584	2.5	2.5+11	D	2°,76*
133.985	$3p^63d^2$ 1 S ₀	$3p^63d4f$ $^3D_1^6$		820 599		2.0 (2.2	-	2
132.756	$3p^63d^2$ 1 S ₀	$3p^63d4f^{-1}P_1^6$		827 508	1.4	1.8+11	D	2°,76*
128.397	$3p^63d^{2-1}G_4$	$3p^63d4f^{-1}G_4^2$		811 205	1.9	8.4+10	D	2°,76*
127.916	$3p^63d^{2-1}G_4$	$3p^63d4f$ $^3F_2^6$	-	814 130	2.7 - 1		E	
125.821	$3p^63d^2$ 1 G ₄	$3p^6 3d4f^{-1}4$	-	814 130	8.1	1.2+10 3.1+11	D D	2°,76* 2°,76*
			•					
125.566 125.350	$3p^63d^2$ 3P_2	$3p^6 3d4f \ ^3$ D $_3^6$		820 450	9.0 - 1		D	2°,76*
125.350	1	2	00.000	820 605 820 599	$\frac{2.5}{3.3 - 1}$	2.1+11	D D	2°,76* 2°,76*
125.268	1 0	1	00.001	820 599 820 599	$\frac{3.3 - 1}{1.2}$	4.7+10 $1.7+11$	D	2°,76*
	$3p^63d^2\ ^3\mathrm{P_2}$							
125.340		$3p^63d4f^{-1}F_3^6$	•	821 881	2.8	1.7+11	E	2°,76*
125.155	$3p^63d^2$ ¹ D ₂	$3p^6 3d4f^{-1}$ D	19 624	818 633	2.0	1.7+11	D	2°,76*

Co VIII - Continued

Wave- length (Å)	Classif Lower	fication Upper	Energy Lev	rels (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
								
125.155	$3p^63d^2$ 3P_2	$3p^6 3d4f$ 3 P $_2^{\circ}$	24 055	823 064	2.2	1.9+11	D	2°,76*
125.071	2	op 001, 12	24 055	823 613	5.0 - 1		D	2°,76*
124.878	1	1	22 839	823 613	6.6 - 1	9.4+10	D	2°,76*
124.830	1	0	22 839	823 928	4.2 - 1		Ď	2°,76*
124.795	0	1	22 304	823 613	9.3 - 2		D	2°,76*
124.871	$3p^63d^2$ ¹ D ₂	$3p^63d4f$ $^3\mathrm{D}^{\circ}_3$	19 624	820 450	2.7	1.6+11	E	2°,76*
124.649	$3p^63d^2$ ¹ D ₂	$3p^6 3d4f\ ^1{ m F}_3^{ m o}$	19 624	821 881	1.2	7.2+10	D	2°,76*
123.753	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4f^{-1}G_4^{\circ}$	3 144	811 205	2.2 - 1	1.1+10	E	2°,76*
123.489	3	4	1 430	811 205	2.1 - 1	1.0+10	\mathbf{E}	2°,76*
123.307	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4f\ ^3{ m F}_4^{ m o}$	3 144	814 130	2.3	1.1+11	D	2°,76*
123.239	3	2	1 430	812 862	1.5 - 1	1.3 + 10	D	2°,76*
123.173	3	3	1 430	813 298	1.8	1.1 + 11	D	2°,76*
123.045	3	4	1 430	814 130	4.3 - 1	2.1 + 10	D	2°,76*
123.022	2	2	0	812 862	1.5	1.3 + 11	D	2°,76*
122.956	2	3		813 298	4.7 - 1	2.9 + 10	D	2°,76*
122.577	$3p^63d^2\ ^3{ m F_4}$	$3p^63d4f$ $^3G_4^{\circ}$	3 144	818 958	7.2 - 1	3.6+10	D	2°,76*
122.488	3	3	1 430	817 839	5.4 - 1	3.4 + 10	D	2°,76*
122.472	4	5	3 144	819 657	7.6	3.1 + 11	D	2°,76*
122.320	3	4		818 958	5.4	2.7 + 11	D	2°,76*
122.273	2	3	0	817 839	3.9	2.5 + 11	D	2°,76*
105.594	$3p^63d^2$ ¹ G ₄	$3p^63d5f^{-3}F_4^{\circ}$	32 360	979 360	1			2
104.801	$3p^63d^2$ ¹ G ₄	$3p^6 3d5f^{-1} ext{H}_5^{\circ}$	32 360	986 549	5			2
104.180	$3p^63d^2$ 3 P ₂	$3p^63d5f^{-1}F_3^0$	24 055	983 954	4			2
104.180	$3p^63d^2\ ^3{ m P}_1$	$3p^63d5f$ $^3D_2^{\circ}$	22 839	982 716	4			2
103.809	$3p^63d^{2-1}D_2$	$3p^63d5f$ $^3{ m D}_3^{ m o}$	19 624	982 933	2			2
103.699	$3p^63d^{2-1}D_2$	$3p^63d5f^{-1}F_3^{\circ}$	19 624	983 954	1			2
102.480	$3p^63d^2$ 3 F_3	$3p^63d5f^{-1}G_4^{\circ}$	1 430	977 281				2
102.439	$3p^63d^2$ 3 F ₄	$3p^63d5f^{-3}F_4^9$	3 144	979 360	2			2
102.367	3	3	4 400		2			$\overline{2}$
102.249	2	2	_		1			$\overline{2}$
102.086	$3p^63d^2$ 3 F ₄	$3p^63d5f^{-3}G_4^6$	3 144	982 728	1			2
102.033	4	5	0 144		4			$\frac{1}{2}$
101.904	3	4			3			$\bar{2}$
101.904	2	3	_	981 316				$\bar{2}$

 \mathbf{Co} IX

Wave-		fication	Energy L	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
ength (Å)	Lower	Upper							
13.574	$3p^63d^{2}D_{3/2}$	$3p^5(^2P^o)3d^2(^1G)^2F^o_{5/2}$	0	468 222	300				7
12.907	5/2	7/2	2 451	472 140	300				7
07.180	$3p^6 3d\ ^2 \mathrm{D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1D)^2F_{7/2}^\circ$	2 451	485 123		2.0 - 1	4.0+9	D-	7°,76*
01.086	·	•	2 451	499 750		1.0 - 2	2.9+8	E	7°,76*
00.100	5/2 3/2	5/2 5/2	0	499 750		1.4 - 1	4.0+9	D-	7°,76*
72.917	$3p^63d^{2}D_{5/2}$	$3p^5(^2P^o)3d^2(^3F)^2F^o_{5/2}$	2 451	580 759		2.1 - 1	7.8+9	E	7°,76*
72.190	3/2	5/2	0	580 759		2.8	1.1+11	D-	7°,76*
70.695	5/2	7/2	2 451	588 291		4.1	1.2+11	D-	7°,76*
59.972	$3p^63d^{2}D_{3/2}$	$3p^64p^2P_{1/2}^{\circ}$	0	625 109	250				7
59.575	5/2	3/2	2 451	629 117	300				7
58.953	3/2	3/2	0	629 117	100				7
55.669	$3p^6 3d^{-2}D_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)^{-2}D_{5/2}^\circ$	2 451	644 843		7.2	3.3+11	D-	7°,76*
.55.530	•	3/2	2 451	645 408		5.1 - 1	3.5+11	E E	7°,76*
55.076	5/2 3/2	3/2 5/2	0	644 843		5.2 - 1	2.4+10	Ē	7°,76*
54.942	3/2	3/2	0	645 408		4.8	3.3+11	D-	7°,76* 7°,76*
53.803	$3p^63d\ ^2{ m D}_{3/2}$	$3p^5(^2P^\circ)3d^2(^3P)^2P_{1/2}^\circ$.0	650 182		1.8	2.6+11	D-	7°,76*
53.308	5/2	3/2	2 451	654 735		3.4	2.4+11	D-	7°,76*
52.733	3/2	3/2		654 735		3.8 - 1		E	7°,76*
108.667	$3p^63d\ ^2{ m D}_{5/2}$	$3p^64f^2F_{7/2}^{\circ}$	2 451	922 690	10				4
108.390	3/2	5 <i>p</i> 4 <i>j</i> 17/2 5/2	0	922 590	9				4
01.410	$3p^63d\ ^2{ m D}_{3/2}$	$3p^{5}3d(^{3}P^{\circ})4s^{2}P_{1/2}^{\circ}$	0	986 100		16. 1	5.1±10	D	8°,76*
.01.410		•	0.454	986 100		1.6 - 1 $2.9 - 1$	5.1+10 $4.7+10$	D- D-	0,70
100.856	5/2 3/2	3/2 3/2	_	991 510		3.3 - 2		E	8°,76* 8°,76*
.00.636	$3p^63d^{-2}D_{5/2}$	$3p^{5}3d(^{3}F^{o})4s\ ^{4}F^{o}_{7/2}$		996 130	1				8
100.636	$3p \ 3a \ D_{5/2}$ 3/2	5p 5a(F)4s F _{7/2} 5/2	2 451 0	996 130	4				8 8
	$3p^63d^{-2}D_{5/2}$	· ·				0.0	F 0 : * C	ъ	
99.921		$3p^53d(^3F^\circ)4s\ ^2F^\circ_{7/2}$		1 003 240		6.6 - 1	5.3+10	D-	8°,76*
99.284 99.042	5/2 3/2	5/2 5/2		1 009 670 1 009 670		3.1 - 2 $4.4 - 1$	3.5+9 $4.9+10$	E D-	8°,76* 8°,76*
	•	•					1 20	_	
97.854	$3p^6 3d^{-2}D_{5/2}$	$3p^53d(^3D^{\circ})4s \ ^4D^{\circ}_{7/2}$		1 024 380	4				8
97.587	5/2	5/2		1 027 170	4				8
97.355	3/2	5/2		1 027 170	2				8
96.541	$3p^6 3d^{-2}D_{5/2}$	$3p^53d(^1F^\circ)4s\ ^2F^\circ_{7/2}$	2 451	1 038 280	3				8
96.305	$3p^6 3d^2 D_{5/2}$	$3p^53d(^3D^{\circ})4s^{\ 2}D^{\circ}_{3/2}$	2 451	1 040 830	2				8
96.076	5/2	5/2	~	1 043 280	6				8
96.076	3/2	5/2 3/2		1 040 830	6				8
95.852	3/2	5/2	•	1 043 280	2				8
88.636	$3p^63d^2D_{5/2}$	$3p^65f^{-2}F^{\circ}_{7/2}$	2 451	1 130 690	8				4
88.446	3/2	5/2		1 130 660	7				4
80.544	$3p^6 3d\ ^2{ m D}_{5/2}$	$3p^66f^{-2}F^{\circ}_{7/2}$		1 244 010	6				4
80.388	3/2	5p 0j 1 _{7/2}		1 243 970	5				4
76.305	$3p^6 3d\ ^2\mathrm{D}_{5/2}$			1 919 000					
		$3p^67f^{-2}F_{7/2}^{\circ}$		1 313 020	4				4
76.160	3/2	5/2		1 313 020	3				4
73.798	$3p^63d^{2}D_{5/2}$	$3p^68f^{-2}F_{7/2}^{\circ}$	2 451	1 357 500	3				4
73.665	3/2	5/2		1 357 500	2				4
72.177	$3p^63d\ ^2{ m D}_{5/2}$	$3p^69f^2F_{7/2}^{\circ}$	2 451	1 387 960	2				4
72.048	3/2	5/2		1 387 960	1				4
71.053	$3p^63d\ ^2{ m D}_{5/2}$	$3p^610f^2F_{7/2}^{\circ}$		1 409 880	1				4
70.928				1 409 880	1				4 4
.0.520	3/2	5/:	2 0	1 409 000					4

Сох

Wave- length (Å)	Classificatio Lower	n Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
200.893 ^P	$3p^{6-1}S_0$	$3p^53d\ ^3D_1^{\circ}$	0	497 780					12
158.873	$3p^{6-1}S_0$	$3p^5(^2P^o)3d^{-1}P_1^o$	0	629 430		2.5	2.2+11	C	6°,76*
111.542	$3p^5(^2{ m P^o})3d\ ^1{ m P_1^o}$	$3p^5(^2P^{\circ}_{1/2})4f^{\ 2}[\frac{5}{2}]_2$	629 430	1 525 950	4				11
99.596 ^L	$3p^{5}(^{2}\mathrm{P}^{\circ})3d^{-1}\mathrm{F}_{3}^{\circ}$	$3p^5(^2P^o_{3/2})4f^{-2}[\frac{7}{2}]_4$			4				11
98.261 ^L	$3p^5(^2P^\circ)3d\ ^3D_3^\circ$	$3p^5(^2P^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$			8				11
97.924 ^L	$3p^5(^2P^\circ)3d\ ^1F_3^\circ$	$3p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{-2}[\frac{7}{2}]_4$			5				11
97.575 ^L	$3p^{5}(^{2}\mathrm{P}^{\mathrm{o}})3d\ ^{3}\mathrm{D}_{2}^{\mathrm{o}}$	$3p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\frac{7}{2}]_3$			5				11
97.123 ^L	$3p^5(^2P^{\circ})3d^{-1}D_2^{\circ}$	$3p^{5}(^{2}P_{1/2}^{\circ})4f^{2}[\frac{5}{2}]_{3}$			3				11
96.300 ^L	$3p^5(^2P^o)3d\ ^3F_2^o$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$			5				11
96.215^{L}	$3p^5(^2P^\circ)3d\ ^3F_3^\circ$	$3p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{9}{2}]_4$			6				11
96.047 ^L	4	5			10				11
95.109 ^L	$3p^{5}(^{2}P^{\circ})3d^{3}P_{2}^{\circ}$	$3p^{5}(^{2}P_{3/2}^{o})4f^{2}[\frac{3}{2}]_{2}$			2				11
94.692 ^L	1	op (2 3/2) 27 (2)2			1				11
94.517^{L}	1	2			3				11
94.431 ^L	o	1			2				11
$94.789^{\rm L}$	$3p^{5}(^{2}P^{\circ})3d^{3}P_{2}^{\circ}$	$3p^{5}(^{2}P_{3/2}^{\circ})4f^{2}[\frac{5}{2}]_{3}$			1				11
90.474	$3p^{6-1}S_0$	$3p^5(^2{ m P}^{\circ})4s\ ^3{ m P}_1^{\circ}$	0	1 105 290		1.6 - 1	4.3+10	D	4°,76*
88.994	$3p^{6-1}S_0$	$3p^{5}(^{2}\mathrm{P^{o}})4s^{-1}\mathrm{P_{1}^{o}}$	0	1 123 670		2.3 - 1	6.5+10	D	4°,76*
72.454	$3p^{6-1}S_0$	$3p^5(^2{ m P}^{ m o})4d\ ^3{ m P}_1^{ m o}$	0	1 380 190		3.9 - 1	1.7+11	D	4°,76*
71.488	$3p^{6} {}^{1}S_{0}$	$3p^5(^2{ m P^o})4d\ ^1{ m P_1^o}$	0	1 398 800		2.0 - 1	8.7+10	D	4°,76*
63.017	$3p^{6-1}S_0$	$3p^5(^2P^\circ)5s\ ^3P_1^\circ$	0	1 586 870					11
62.332	$3p^{6-1}S_0$	$3p^{5}(^{2}P^{\circ})5s^{-1}P_{1}^{\circ}$	0	1 604 310					11

Co XI

Wave- length (Å)	Classifica Lower		Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	Lower	Upper	·						
5168. ^C	$3s^23p^5 \ ^2P^{\circ}_{3/2}$	$3s^23p^5$ $^2P_{1/2}^{o}$	0	19 345		M1	1.3+2	В	13,76*
339.81	$3s^23p^5$ ² P° _{1/2}	$3s3p^6 {}^2S_{1/2}$	19 345	313 630		6.6 - 2	1.9+9	C-	15°,76*
318.85	3/2	1/2	0	313 630		1.37 - 1	4.50 + 9	C-	9°,76*
177.586	$3s^23p^5$ $^2P_{1/2}^{o}$	$3s^23p^4(^1{\rm D})3d\ ^2{ m S}_{1/2}$	19 345	582 510		4.14 - 1	4.38+10	C-	6°,76*
171.668	3/2	1/2	0	582 510		1.2	1.3 + 11	C-	6°,76*
170.337	$3s^23p^5$ ² P° _{1/2}	$3s^23p^4(^3P)3d\ ^2P_{3/2}$	19 345	606 420	2				6
168.327	1/2	1/2	19 345	613 480	90				6
164.913	3/2	3/2	0	606 420	120				6
162.998	3/2	1/2	0	613 480	1				6
163.323	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2D_{3/2}$	19 345	631 680		2.98	1.86+11	C	6°,76*
162.565	3/2	5/2	0	615 140		4.60	1.94 + 11	C	6°,76*
158.278	3/2	3/2	0	631 680		7.2 - 2	4.7+9	D	6°,76*
89.31^{L}	$3s^23p^4(^1D)3d^2F_{7/2}$	$3s^23p^4(^1\mathrm{D})4f\ ^2\mathrm{G}^{\mathrm{o}}_{9/2}$							18
88.52^{L}	$3s^23p^4(^3P)3d^2F_{7/2}$	$3s^23p^4(^3P)4f^2G_{9/2}^{\circ}$							18
88.07^{L}	5/2	7/2							18
88.20^{L}	$3s^23p^4(^1S)3d^2D_{5/2}$	$3s^23p^4(^1S)4f^{-2}F^{\circ}_{7/2}$							18
87.78 ^L	3/2	5/2							18
87.49^{L}	$3s^23p^4(^3P)3d^4F_{7/2}$	$3s^23p^4(^3P)4f^4G_{9/2}^{o}$							10
87.27^{L}	9/2	11/2							10
86.95 ^L	3/2	•							10
86.87 ^L	5/2 5/2	5/2 7/2							10
87.35 ^L	$3s^23p^4(^1\mathrm{D})3d\ ^2\mathrm{G}_{9/2}$	$3s^23p^4(^1D)4f^{-2}H_{11/2}^o$	•						10
$84.72^{\rm L}$	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)4f\ ^4F_{9/2}^{\circ}$							10
84.67	$3s^23p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^3P)4s^4P_{5/2}$	0	1 181 100					10
84.039	3/2	3/2	0	1 189 920	2				14
83.861	$3s^23p^5 \ ^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)4s^2P_{1/2}$	10.045	1 011 700					
83.190		•		1 211 780	1				14
82.527	3/2	3/2	0	1 202 070 1 211 780	3				14
02.021	3/2	1/2	U	1 211 780					14
82.759	$3s^23p^5$ 2 P $^{\circ}_{1/2}$	$3s^23p^4(^1{\rm D})4s^2{\rm D}_{3/2}$	19 345	1 227 710	2				14
81.507	3/2	5/2	0	1 226 890	3				14
67.97	$3s^23p^5$ $^2P^{\circ}_{3/2}$	$3s^23p^4(^3P)4d\ ^2D_{5/2}$	0	1 471 200					10
66.49	$3s^23p^5$ ² P ^o _{1/2}	$3s^23p^4(^1D)4d\ ^2D_{3/2}$	19 345	1 523 400					10
66.19	3/2	5/2	0	1 510 800					10

 \mathbf{Co} XII

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
6319. ^C	$3s^23p^4\ ^3P_2$	$3s^23p^4$ 3 P ₁	0	15 820		M1	8.4+1	C+	76*
3801.2	$3s^23p^4$ 3 P ₁	$3s^23p^{4-1}D_2$	15 820	42 120		M1	1.3+1	E	13°,76*
2373.4 ^C	2	2	0	42 120		M1	1.6+2	E	76*
1368.7 ^C	$3s^23p^4$ 3 P ₁	$3s^23p^{4-1}S_0$	15 820	88 880		M1	1.6+3	\mathbf{E}	76*
343.86	$3s^23p^4$ 3P_1	$3s3p^5 \ ^3P_2^{\circ}$	15 820	306 640	1				15
332.66^{T}	1	. 2	15 820	316 430?					15
332.01	0	1	17 070	318 280	1				15
330.62	1	1	15 820	318 280	1				15
326.12	2	2	0	306 640		1.8 - 1	$^{2.3+9}$	E	15°, 76*
314.19	2	1	0	318 280	2		, -	-	15
286.64	$3s^23p^{4-1}D_2$	$3s3p^{5-1}P_1^{o}$	42 120	390 990		3.3 - 1	8.8+9	D	9°,76*
180.45	$3s^23p^4$ 3 P ₁	$3s^23p^3(^2D^{\circ})3d^3P_2^{\circ}$	15 820	569 990					9
175.44	2	2	0	569 990		2.8	1.2 + 11	D	9°,76*
172.41	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})3d\ ^1\mathrm{D_2^o}$	42 120	622 130		2.9	1.3+11	D	9°,76*
172.33	$3s^23p^{4-1}S_0$	$3s^23p^3(^2{\rm D}^o)3d\ ^1{\rm P}_1^o$	88 880	669 160		2.06	1.54+11	C-	9°,76*
170.33	$3s^23p^4$ 3 P ₁	$3s^23p^3(^4S^\circ)3d^{-3}D_2^\circ$	15 820	602 920					9
169.04	0	1	17 070	608 660					9
168.68	1	1	15 820	608 660					9
168.34	2	3	0	594 040					9
165.86	2	2	0	602 920					9
169.91	$3s^23p^{4}$ ¹ D ₂	$3s^23p^3(^2{\rm D^o})3d\ ^1{ m F}_3^{ m o}$	42 120	630 670		5.30	1.75+11	C-	9°,76*
80.19 ^L	$3s^23p^3(^2\mathrm{D}^\circ)3d\ ^3\mathrm{G}^\circ_5$	$3s^23p^3(^2D^o)4f^{-3}H_6$							10
80.14 ^L	51 5F (=)51 55								10
	4	5							10
79.31^{L}	$3s^23p^33d\ ^5{ m G}_5^{ m o}$	$3s^23p^34f^5F_5$							10
79.21^{L}	3	4							10
63.80	$3s^23p^4$ 3P_2	$3s^23p^3(^4S^o)4d\ ^3D_3^o$	0	1 567 400					10
63.70	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2D^o)4d^{-1}P_1^o$	88 880	1 658 800					10
63.60	$3s^23p^{4-1}D_2$	$3s^23p^3(^2\mathrm{D^o})4d\ ^1\mathrm{D^o_2}$	42 120	1 614 400					10
63.47	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^o)4d^{-1}F_3^o$	42 120	1 617 700					10

Co XIII

Wave-	Classification		Energy Lev	vels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	Reference
ength (Å)	Lower	Upper						
2791.7 ^C	$3s^23p^3 {}^2D_{3/2}^{\circ}$	$3s^23p^3 {}^2P_{1/2}^{\circ}$	43 650	79 460	M1	1.1+2	С	76*
598. ^C	5/2	3/2	49 690	88 170	M1	1.3+2	C	76*
245.5 ^C	3/2	3/2	43 650	88 170	M1	3.5+2	C	76*
290.2 ^C	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ ² D° _{3/2}	0	43 650	M1	9.0+1	C	76*
258.5 ^C	$3s^23p^3$ $^4S_{3/2}^{o}$	$3s^23p^3 {}^2P_{1/2}^{\circ}$	0	79 460	M1	2.8+2	D	76*
134.17 ^C	3/2 3/2	3/2	. 0	88 170	M1	4.7+2	C	76*
		·					_	
360.54 ^C	$3s^23p^3$ $^2P_{3/2}^{\circ}$	$3s3p^4\ ^2{ m D}_{3/2}$	88 170	365 530	2.4 - 3		E	76*
357.04 ^C 349.56 ^C	3/2	5/2	88 170 79 460	368 250 365 530	7.6 - 2 $2.4 - 2$		D D	76* 76*
343.00	1/2	3/2	15 400	300 030	2.4 — 2	, 3.4 _T 0	D	10
338.80	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s3p^4 \ ^4P_{5/2}$	0	295 160	1.9 - 1		D	$15^{\circ}, 76^{*}$
325.70	3/2	3/2	0	307 030	1.3 - 1		D	15°,76*
320.40	3/2	1/2	0	312 110	6.4 - 2	2.1+9	D	15°,76*
316.62^{C}	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s3p^4$ $^2D_{3/2}$	49 690	365 530	1.9 - 3	3.2+7	\mathbf{E}	76*
313.91	5/2	5/2	49 690	368 250	2.9 - 1		D	15°, 76*
310.67	3/2	3/2	43 650	365 530	2.4 - 1		D	15°, 76*
308.07 ^C	3/2	5/2	43 650	368 250	1.5 - 3	3 1.8+7	E	76 *
271.16	$3s^23p^3$ ² D° _{5/2}	$3s3p^{4} {}^{2}P_{3/2}$	49 690	418 480	5			15
263.41	3/2	1/2	43 650	423 290	2			15
215.19 ^C	$3s^23p^3$ ² P° _{3/2}	3s ² 3p ² (³ P)3d ⁴ P _{3/2}	88 170	552 880	7.2 - 3	3 2.5+8	E	76*
213.19 213.38 ^C			88 170	556 820	1.0 - 3		E, E	76*
209.49 ^C	3/2 1/2	1/2	79 460	556 820	8.8 - 3		E	76*
200.72 ^C	$3s^23p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$3s^23p^2(^3P)3d^4P_{5/2}$				•		
200.72° 198.73 ^C		•	49 690	547 890	5.4 - 1	-	E	76*
198.73 198.32 ^C	5/2	3/2	49 690	552 880	1.2 - 3 $2.3 - 3$		E	76*
194.87 ^C	3/2 3/2	5/2 1/2	43 650 43 650	547 890 556 820	5.2 - S		E E	76* 76*
		•	40 000	000 020	0.2 -	3 4.7 T B	L	70
198.15 ^C	$3s^23p^3$ $^2P_{3/2}^{\circ}$	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{3/2}$	88 170	592 830	1.2 -	2 5.2+8	E	76*
197.62 ^C	3/2	5/2	88 170	594 200	2.4 - 1		D	76*
194.79 ^C	1/2	3/2	79 460	592 830	1.7 -	7.5+9	D	76*
188.89	$3s^23p^3 {}^2P_{1/2}^{o}$	$3s^23p^2(^1D)3d^2P_{1/2}$	79 460	608 870				9
188.42	3/2	3/2	88 170	618 880	1.2	5.4 + 10	E	9°,76*
185.39	1/2	3/2	79 460	618 880	4.0 -	1 1.9+10	\mathbf{E}	9°, 76*
184.11 ^C	$3s^23p^3$ ² D $_{5/2}^{\circ}$	$3s^23p^2(^1D)3d^2D_{3/2}$	49 690	592 830	2.5 -	1 1.3+10	D	76*
183.65	5/2	5/2	49 690	594 200	1.5	4.9+10	D	9°,76*
182.09	3/2	3/2	43 650	592 830	1.3	6.5 + 10	D	9°,76*
181.64 ^C	3/2	5/2	43 650	594 200	4.8 —	2 1.8+9	D	76*
182.52	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{5/2}$	0	547 890	2.7	8.9+10	D	9°,76*
180.87	3/2	3/2	0	552 880	1.8	9.4+10	D	9°,76*
179.59	3/2	1/2	0	556 820	9.2 -	9.4+10	D	9°,76*
178.98	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^3P)3d^2D_{5/2}$	88 170	646 890				9
175.77	1/2	3/2		648 390				9
IRE OF								
175.69 ^C	$3s^23p^3$ ² D $_{5/2}^{\circ}$	$3s^23p^2(^1D)3d^2P_{3/2}$		618 880	1.6 -	,	E	76*
173.84 ^C	3/2	3/2	43 650	618 880	3.2 -	2 1.7+9	E	76*
174.82	$3s^23p^3$ ² D _{5/2}	$3s^23p^2(^1\mathrm{D})3d\ ^2\mathrm{F}_{7/2}$	49 690	621 710	4.2	1.1+11	E	9°,76*
168.29 ^C	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^1{ m D})3d\ ^2{ m D}_{5/2}$	0	594 200	5.2 -	3 2.1+8	E	76*
74.38^{L}	$3s^23p^2(^1\mathrm{D})3d^{-2}\mathrm{G}_{9/2}$	$3s^23p^2(^1D)4f^{2}H_{11/2}^{o}$						10
74.03 ^L		· ·						10 10
	7/2	9/2						10
73.86 ^L	$3s^23p^2(^3P)3d\ ^4D_{7/2}$	$3s^23p^2(^3P)4f\ ^4F_{9/2}^{\circ}$						10
73.66^{L}	$3s^23p^2(^3P)3d^4F_{9/2}$	$3s^23p^2(^3P)4f ^4G_{11/2}^o$						10
73.58 ^L								10
10.00	7/2	9/2						10
	$3s^23p^3 {}^2P_{3/2}^{\circ}$	$3s^23p^24d\ ^2\mathrm{D}_{5/2}$	88 170	1 464 400				18
72.66	03 JP 1 3/2	38 3p 4a D5/2	00 110	1 404 400				10

Co XIII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
						_		
72.02	$3s^23p^3$ 2 $\mathrm{D}^{\mathrm{o}}_{3/2}$	$3s^23p^24d^2P_{1/2}$	43 650	1 432 200				18
71.84	5/2	3/2		1 441 700				18
70.68	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^24d\ ^2\mathrm{D}_{5/2}$	49 690	1 464 500				18
69.83	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^24d\ ^4\mathrm{P}_{5/2}$	0	1 432 000				18
60.11	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^1{ m D})4d\ ^2{ m D}_{5/2}$	88 170	1 751 800				18
59.99	$3s^23p^{3-2}D_{3/2}^{o}$	$3s^23p^2(^3P)4d\ ^2F_{5/2}$	43 650	1 710 600				18
59.86	5/2	7/2		1 720 300				18
59.53	$3s^23p^3$ ² D $_{5/2}^{\circ}$	$3s^23p^24d\ ^4\mathrm{D}_{7/2}$	49 690	1 729 500				18

Co xiv

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
9242.2 ^P 8440.8 ^P	$3s^23p^2$ ³ P ₁	$3s^23p^2$ 3P_2	11 844 0	22 661 11 844		M1 M1	1.44+1 2.99+1	C+ C+	19°,76* 19°,76*
3099.2 ^P	$3s^23p^2$ 3P_2	$3s^23p^2$ 1D_2	22 661 11 844	54 921 54 921		M1 M1	1.2+2 $1.1+2$	E E	19°,76* 19°,76*
120.6 ^P	$3s^23p^2$ 3 P ₁	$3s^23p^{2-1}S_0$	11 844	101 080		M1	1.6+3	E	19°,76*
384.68 ^C	$3s^23p^{2-1}D_2$	$3s3p^3 \ ^3D_3^{\circ}$	54 921	314 880		1.9 - 2	1.2+8	E	76*
342.21 334.21	$3s^23p^2\ ^3{ m P}_2$	$3s3p^3 \ ^3D_3^{\circ}$	22 661 11 844	314 880 311 050		1.7 - 1 $1.4 - 1$	1.4+9 $1.7+9$	D D	15°,76* 15°,76*
298.42	$3s^23p^2$ 3P_2	$3s3p^3 \ ^3P_2^{\circ}$	22 661	357 760		2.5 - 1	3.7+9	D	15°,76*
296.66	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}\mathrm{D}_2^{\mathrm{o}}$	54 921	392 010	4				15
239.33	$3s^23p^2$ ¹ D ₂	$3s3p^{3}$ $^{1}P_{1}^{o}$	54 921	472 750	7				15
236.11 230.34 224.13	$3s^23p^2\ ^3\mathrm{P}_2$	$3s3p^3$ ${}^3\mathrm{S}^{\mathbf{o}}_1$ 1	22 661 11 844 0	446 180 446 180 446 180	9 5 3				15 15 15
207.85	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m D}_2^{ m o}$	54 921	536 040					9
203.34 ^C	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3{ m D}_3^{ m o}$	54 921	546 710		2.0 - 2	4.5+8	E	76*
200.75 197.01 196.48	$3s^23p^2$ $^3\mathrm{P}_2$ 2 1	$3s^23p3d$ $^3P_2^{\circ}$	22 661 22 661 11 844	520 800 530 230 520 800					9 9 9
188.60	0	1	0	530 230					9
195.66	$3s^23p^2$ ¹ S ₀	$3s^23p3d\ ^1P_1^{o}$	101 080	612 170		1.0	6.0+10	D	9°,76*
191.76 190.82 190.65 187.89 186.79	$3s^23p^2$ $^3\mathrm{P}_2$ 2 2 1 1	$3s^23p3d\ ^3\mathrm{D_1^o}$ 3 2 1 2	22 661 22 661 22 661 11 844 11 844	544 100 546 710 547 230 544 100 547 230		2.7	7.1+10	D	9 9°,76* 9 9
190.75	$3s^23p^2$ 3 P ₁	$3s^23p3d\ ^1{ m D}_2^{ m o}$	11 844	536 040					9
184.41	$3s^23p^{2-1}\mathrm{D}_2$	$3s^23p3d^{-1}F_3^{\circ}$	54 921	597 250		2.6	7.2+10	C	9°,76*
174.04 ^C	$3s^23p^2\ ^3{ m P}_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	22 661	597 250		1.4 - 1	4.2+9	E	76*
163.35 ^C	$3s^23p^2$ 3 P ₀	$3s^23p3d\ ^1\mathrm{P_1^o}$	0	612 170		6.5 - 3	5.4+8	E	76*
74.379	$3s^23p3d\ ^1\mathrm{P_1^o}$	$3s^23p4f^{-1}D_2$	612 170	1 956 600					20
73.402	$3s^23p3d\ ^1{ m F}_3^{ m o}$	$3s^23p4f^{-1}G_4$	597 250	1 959 600		5.3	7.3+11	E	20°,76*
71.493^{T}	$3s^23p3d\ ^3{ m D}_3^{\circ}$	$3s^23p4f\ ^3{ m F_4}$	546 710	1 945 4003	•				20
70.698 ^{T,L}	$3s^23p3d$ $^3P_0^o$	$3s^23p4f\ ^3{\rm D}_1$							20
69.017^{L} 68.807^{L}	$3s^23p3d$ $^3\mathrm{F}_3^{\circ}$	$3s^23p4f\ ^3{ m G}_4$				6.4	8.2+11	D	20 20°,76*
67.069	$3s^23p^{2-1}D_2$	$3s^23p4s\ ^1\mathrm{P_1^o}$	54 921	1 545 920					10
66.195^{T}	$3s3p^{3-1}\mathrm{D}_2^{\mathrm{o}}$	$3s^23p4f\ ^3{ m G}_3$	392 010	1 902 700	?				20
66.050 65.585	$3s^23p^2$ 3 P ₂	$3s^23p4s$ $^3P_2^{\circ}$	22 661 11 844	1 536 660 1 536 660					10 10
$\mathbf{65.712^{T}}$	$3s3p^{3-1}D_2^{o}$	$3s^23p4f\ ^1{ m F}_3$	392 010	1 913 800	?				20
56.900	$3s^23p^2$ ¹ S ₀	$3s^23p4d$ ¹ P ₁ °	101 080	1 858 500					20
56.115	$3s^23p^{2-1}D_2$	$3s^23p4d\ ^1{ m F}_3^{ m o}$	54 921	1 837 000		1.7	5.1+11	D	20°,76*
56.021 55.782 55.762 55.42	$3s^23p^2$ 3P_2 1 1 0	$3s^23p4d\ ^3{ m D}_3^{ m o}$ 1 2 1	11 844 11 844	1 807 700 1 804 500 1 805 200 1 804 500					20 10 20 20

Co xiv - Continued

Wave-	Classification	on	Energy Le	evels (cm ⁻¹) Int.	qf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				, ,		
55.431	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3F_3^{\circ}$	22 661	1 826 700				20
55.10^{T}	$3s^23p^2$ 3P_2	$3s^23p4d$ $^3\mathrm{P}_0^\circ$	22 661	1 838 000?				20

Co xv

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
334.452	4350.6	$3s^23p$ $^2P_{1/2}^{\circ}$	$3s^23p\ ^2P_{3/2}^{\circ}$	0	22 979		M1	1.09+2	C+	13°,76*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	334.740	3s3p(3P°)3d 4D°	$3p^2(^3P)3d^4F_{5/2}$	741 602	1 040 341	1				25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7/2	9/2							
309.849		$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2$ 2 D _{3/2}				4.0 - 3	6.0 + 7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5/2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	309.849	·	3/2	U	322 725	pı	1.6 - 1	2.7+9	Ъ	23,76
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	323.556	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	$3p^2(^3P)3d^4F_{7/2}$	738 955	1 048 021	1				25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	295.518	,	$3p^2(^3P)3d^4D_{7/2}$	738 955	1 077 344	2				25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	289.175	$3s3p(^{3}P^{o})3d^{-4}F_{9/2}^{o}$	$3p^2(^3P)3d^4F_{9/2}$	710 230	1 056 049	1				25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	5/2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	287.156	7/2	7/2	699 778	1 048 021	1				25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	285.317	$3s3p(^3P^{\circ})3d^4D_{7/2}^{\circ}$	$3p^2(^1{\rm D})3d\ ^2{\rm D}_{5/2}$	754 674	1 105 136	2				25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277.964	$3s3p(^{3}P^{\circ})3d^{2}F_{\pi/2}^{\circ}$	$3p^2(^1S)3d^2D_{5/2}$	815 014	1 174 753	1				25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	•							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275.361	•		815 014	1 178 172	1				25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273.741	$3s3p(^{3}P^{\circ})3d^{-4}D^{\circ}_{7/2}$	$3p^2(^3P)3d^4P_{5/2}$	754 674	1 119 966	1				25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273.116	$3s3p(^{3}P^{o})3d^{-4}P^{o}_{5/2}$	$3p^2(^1D)3d^2D_{5/2}$	738 955	1 105 136	1				25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	272 955	2°234 2D	2,2m/1D0\2,42D0	E00 709	075 000	7				0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	272.389	$3s3p(^{3}P^{\circ})3d^{4}F_{0/2}^{\circ}$	$3p^2(^3P)3d^4D_{7/2}$	710 230	1 077 344	2				25
266.416 $5/2$ $3/2$ $3/2$ 692.464 $1.067.817$ 1 2.55 255 265.990 $5/2$ $5/2$ 692.644 $1.068.418$ 1 1 1 1 1 1 1 1 1 1	271.267	•	,							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	265.990				1 068 418	1				25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272.159	$3s3p^2 {}^2D_{3/2}$	$3p^{3} {}^{2}P_{1/2}^{o}$	322 725	690 171	2				23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271.126	5/2		325 790	694 620	2				23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271 83 ^C	3 s ² 3 n ² P o	3,32225	22 070	200 855		17.9	7619	E	76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270.378	$3s3n^2 {}^4P_{5/2}$	3n3 4go	263 189	633 036	:	78 _ 1	1.7.1.10	n	990 76*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				251 699						23°,76*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	255.828									23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269.690	$3s3p(^3P^{\rm o})3d\ ^2P^{\rm o}_{3/2}$	$3p^2(^3\mathrm{P})3d\ ^2\mathrm{D}_{5/2}$	862 878	1 233 674	1				25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	255.762 ^T	$3s^{2}3d^{2}D_{5}$	3s3n(1P°)3d 2D°	508 793	800 603					22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	E00 E00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	955 119		·		000.046					0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	•	F00 000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	253.326	$3s^23p^{-2}P_{3/2}^{\circ}$	$3s3p^2 {}^2P_{1/2}$	22 979	417 717	7	4.4 - 1	2.4+10	E	23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·	00.070	426 629	•	1.36	3.7 + 10		23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1/2	1/2	0				1.3 + 10	\mathbf{E}	23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234.36 5				426 629	y	2.80 —	8.5+9	C-	23°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	944 490	•	•		1 150 15					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
232.592 $_{3/2}$ $_{5/2}$ 899 693 1 329 630 bl 25 225.083 $_{3s3p^2}$ $_{2D_{5/2}}$ $_{3s3p}$ $_{3r3p^2}$					1 100 00.	- 1				20
$3s3p^{2-2}D_{5/2} 3s3p(^{3}P^{\circ})3d^{-2}D_{5/2}^{\circ} 325.790 770.046 3 23$		•	·							
000.000	232.592	•			1 329 63	о ы				25
000.000	225.083	$3s3p^2$ $^2D_{5/2}$	$3s3p(^{3}P^{o})3d^{2}D_{s}^{o}$	325 790	770 04	6 3				23
0/4	223.992	3/2	3/2	000 505	769 13	8				23

Co xv - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	20wer								
222.041	$3s3p(^{3}P^{\circ})3d^{4}D_{5/2}^{\circ}$	$3s3d^{2}$ 4 F _{7/2}	755 594	1 205 961	1				25
220.697	7/2	9/2	754 674	1 207 784	1				25
216.007	3/2	5/2	741 602	1 204 550	1				25
211.879	$3s3p^2$ 2 S _{1/2}	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	390 855	862 878	1				23
211.846	$3p^{3}$ $^{4}S_{3/2}^{\circ}$	$3p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	633 036	1 105 136	1bl				25
210.861	$3s3p^2 {}^2D_{3/2}$	$3s3p(^{3}P^{o})3d\ ^{2}F_{5/2}^{o}$	322 725	796 989	2				23
204.394	5/2	7/2	325 790	815 014					23
	•	•		010 011	Ū				20
209.873	$3s3p^2 {}^2P_{3/2}$	$3s3p(^{1}P^{\circ})3d^{2}P_{3/2}^{\circ}$	426 629	903 152	2				23
209.620	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2D°	426 629	903 677	3				23
207.458	1/2	3/2	417 717	899 693					23
	•	•			_				
208.029	$3p^3 {}^2D_{5/2}^{\circ}$	$3p^2(^1D)3d^2D_{5/2}$	624 445	1 105 136	1				25
203.627	3/2	3/2	619 050	1 110 144	1				25
206.924	$3s^23p^{-2}P_{3/2}^{\circ}$	$3s^23d^2D_{3/2}$	22 979	506 230		2.4 - 1	9.1+9	D	23°,76*
205.848	3/2	5/2	22 979	508 793		1.6	4.3 + 10	D	23°,76*
197.554	1/2	3/2	0	506 230		9.0 - 1	3.9 + 10	D	23°,76*
205.375	$3p^3 \ ^4S_{3/2}^{\circ}$	$3p^2(^3P)3d\ ^4P_{5/2}$	633 036	1 119 966	2				25
205.229	$3s3p^2 \ ^4P_{3/2}$	$3s3p(^3P^\circ)3d\ ^4P^\circ_{5/2}$	251 699	738 955	2				23
203.468	$3s3p^2 {}^4P_{5/2}$	3s3p(3P°)3d 4D° _{7/2}	263 189	754 674	3				23
203.086	5/2	5/2	263 189	755 594	3				23
199.558	1/2	1/2	242 124	743 224	1				23
198.451	3/2	5/2	251 699	755 594	1				23
66.913	$3s^23d^2D_{5/2}$	$3s^24f ^2F^{\circ}_{7/2}$	508 793	2 003 200					10
66.819	3/2	5/2	506 230	2 002 800					10
64.480	$3s3p3d\ ^{4}\mathrm{F}^{\circ}_{7/2}$	$3s3p4f\ ^{4}G_{9/2}$	1 449 100	3 000 000					10
64.356	5/2	7/2	1 446 100	3 000 000					10
64.229	9/2	11/2	1 443 100	3 000 000					10
53.173	$3s^23p\ ^2\mathrm{P_{3/2}^{\circ}}$	$3s^24d\ ^2D_{5/2}$	22 979	1 903 600					21
52.583	1/2	3/2	0	1 901 800					21

Co XVI

490.391	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reference
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 390.533^{\text{C}} \\ 380.759^{\text{C}} \\ 380.759^{\text{C}} \\ 380.759^{\text{C}} \\ 380.759^{\text{C}} \\ 380.759^{\text{C}} \\ 380.759^{\text{C}} \\ 377.779 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	26°,76*
380.750 ^C 38.34 ³ D ₃ 39.24 ³ P ₂ 2 728 136 39.07 799 317.779 3 2 2 728 138 39.08 1 1 1 1 0.8848 D 2 84 76 779 317.779 310.324 38.36 1 2 728 138 100 2876 38.36 1 1 1 1 0.8848 D 2 84 76 78 78 78 78 78 78 78 78 78 78 78 78 78	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26,76*
277.886	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°, 76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29°,76*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76* 26°,76*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76* 26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26°.76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26°,76* 26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$26^{\circ},76^{*}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240.688 $3p^{2-1}D_2$ $3p3d^{-1}D_2^{\circ}$ 598 840 1 014 316 6.5 - 1 1.5+10 E	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 10,0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010.001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229.037 $3s3p$ $^{1}P_{1}^{\circ}$ $3s3d$ $^{1}D_{2}$ 376 323 812 929 1.8 $4.5+10$ D	26°,76*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	
223.928 1 2 603 814 1 050 383 130 26 216.74 1 0 603 814 1 065 190 1.6-1 2.3+10 C- 29°, 76	·	
216.74 1 0603 814 1 065 190 1.6-1 2.3+10 C- 29°, 76		
	000 014	
216.59 1 603 814 1 065 511 3.3 - 1 1.6+10 E 29°, 76	010 70	29°,76*

Co XVI - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
226.38	$3p^{2}$ 1 S ₀	$3p3d$ $^{1}P_{1}^{o}$	706 420	1 148 160		6.0 - 1	2.6+10	C-	29°,76*
221.702	$3p3d$ 3 F $^{\circ}_4$	$3d^2 \ ^3F_4$	1 017 157	1 468 205	1				32
216.117 211.580	3 2	3 2	1 002 876 990 769	1 465 589 1 463 403	1 1				32 32
221.574 ^C	$3s3p$ $^3P_2^{\circ}$	$3s3d$ $^3\mathrm{D}_1$	273 414	724 731		1.4 - 2	6.3+8	D-	76*
220.921	2	2	273 414	726 039		2.2 - 1	5.9 + 9	C-	26°,76*
219.915 213.370	2 1	3 1	273 414 256 060	728 136 $724 731$		1.20 $2.2 - 1$	2.35+10 $1.1+10$	C-	26°,76*
212.778	1	2	256 060	726 039		6.6 - 1	1.9+10	C-	26°,76* 26°,76*
210.239	0	1	249 081	724 731		2.9 - 1	1.5 + 10	C-	26°,76*
221.39	$3p3d\ ^{3}P_{2}^{o}$	$3d^2 \ ^3P_1$	1 050 383	1 502 075	1				32
220.446	2	2	1 050 383	1 504 024	1				32
215.145	$3p^2$ $^1\mathrm{D_2}$	$3p3d$ 3 D $_3^{\alpha}$	598 840	1 063 667	90				26
206.708	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3d^{2} {}^{1}D_{2}$	1 014 316	1 498 090	1				32
186.455	$3p^2$ $^1\mathrm{D}_2$	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	598 840	1 135 167					26
182.043 ^C	$3p^2$ $^1\mathrm{D}_2$	3p3d ¹ P ^o ₁	598 840	1 148 160		6.5 - 3	4.4+8	E	76*
64.780^{T}	$3p3d$ $^{1}P_{1}^{o}$	$3p4f$ $^{1}\mathrm{D}_{2}$	1 148 160	2 691 800?					20
64.773	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s4f$ $^{1}\mathrm{F}^{\circ}_{3}$	812 929	2 356 800					10
64.537	$3p3d$ $^1\mathrm{F_3^\circ}$	$3p4f$ $^{1}\mathrm{G}_{4}$	1 135 167	2 684 700		6.3	1.1+12	C	20°,76*
63.017^{T}	$3p3d$ $^3P_2^{\circ}$	$3p4f$ $^{1}\mathrm{F}_{3}$	1 050 383	2 637 100					20
62.805 62.805	$3p3d$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3p4f$ 3 F ₄	1 063 667 1 048 776	2 655 900 2 641 000					20 20
62.412	$3p3d$ $^3\mathrm{D}^\mathrm{o}_2$	$3p4f$ $^3\mathrm{D}_3$	1 065 955	2 668 200					20
62.334	$3p3d$ $^3P_1^{\circ}$	$3p4f$ 3D_2	1 065 511	2 669 800					20
62.131 62.131	0	1	1 065 190 1 065 511	2 674 900 2 674 900		9.2 - 1	5.3+11	С	20°,76* 20
61.982	$3s3d\ ^3\mathrm{D}_3$	3s4f ³ F ₄ °	728 136	0.241.500	0				0.1
61.916	2	3347 14	726 039	2 341 500 2 341 100	2 2				21 21
61.875	1	2	724 731	2 340 900	1				21
61.621	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3p4f$ $^{1}\mathrm{F}_{3}$	1 014 316	2 637 100					20
61.200	$3p3d$ 3 F $^{\circ}_3$	$3p4f {}^{3}G_{4}$	1 002 876	2 636 900					20
61.025	2	3	990 769	2 629 400				_	20
61.025	4	5	1 017 157	2 656 400		7.2	1.2+12	С	20°,76*
59.625	$3p^2 \ ^3P_2$	$3p4s$ $^3P_2^{\circ}$	624 984	2 302 100					18
58.96	$3s3p^{-3}P_{2}^{o}$	$3s4s {}^{3}S_{1}$	273 414	1 969 500					18
58.365 58.127	1	1	256 060	1 969 500					18
	0	1	249 081	1 969 500					18
56.83	$3p^{2-1}D_2$	3s4f ¹ F ₃ °	598 840	2 356 800					10
53.043	$3s3p^{-1}P_{1}^{o}$	$3s4d$ $^{1}\mathrm{D}_{2}$	376 323	2 261 600					10
51.279	$3p^2$ $^1\mathrm{D}_2$	$3p4d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	598 840	2 549 000					18
51.239	$3p^2 \ ^3P_2$	$3p4d\ ^{3}\mathrm{D_{3}^{o}}$	624 984	2 576 600					18
51.007 50.94	1 0	2	603 814 591 131	2 564 300 2 554 200					18 18
EO 202	$3s3p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$3s4d$ $^3\mathrm{D_2}$							
50.393 50.357	$3s3p$ $^{\circ}P_{2}$	$3s4d$ $^{\circ}D_2$	273 414 273 414	2 257 800 2 259 200	2				$\begin{array}{c} 21 \\ 21 \end{array}$
49.979	1	1	256 060	2 256 900					21
49.958	1	2	256 060	2 257 800	1				21
49.808	0 3s ² ¹S ₀	2-4: 100	249 081	2 256 900	1	0.01		~	21
47.483		3s4p ¹ P ₁ °		2 106 020		3.81 — I	3.76+11	C	21°,76*
46.522	$3s3p$ $^3P_2^{\circ}$	$3p4p$ $^3\mathrm{P}_1$	273 414	2 422 900					18

Co XVI - Continued

Wave- length (Å)	Classificatio Lower	n Upper	Energy Levels (cm ⁻¹)		Int.	gf	$A (s^{-1})$	Acc.	References
46.433	3s3p ³ P ₂ °	$3p4p$ $^3\mathrm{D}_3$	273 414	2 427 100					18
44.253	$3s3d$ $^3\mathrm{D}_3$	$3s5f \ ^{3}F_{4}^{o}$	728 136	2 987 900					18
38.84 ^T	3s3p ³ P ₂ °	$3s5s$ 3S_1	273 414	2 848 100?					18
37.401 37.165 37.070	$3s3p$ $^3P_2^{\circ}$ 1 0	$3s5d$ $^3\mathrm{D}_3$ 2 1	273 414 256 060 249 081	2 947 100 2 946 800 2 946 700	3 2 1				27 27 27
14.080	$2p^63s^2$ ¹ S ₀	$2p^53s^23d\ ^1\mathrm{P_1^o}$	0	7 102 300					28

Co XVII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int	gf	$A (s^{-1})$	Acc.	References
855.066 ^C	4s ² S _{1/2}	$4p\ ^{2}P_{1/2}^{\circ}$	2 079 550	2 196 500	3.4 - 1	1.5+9	С	76*
787.216 ^C	1/2	3/2	2 079 550	2 206 580	7.4 - 1	2.0+9	C	76*
679.763 ^C	$4p$ $^2\mathrm{P}^{\circ}_{3/2}$	$4d^{2}\mathrm{D}_{3/2}$	2 206 580	2 353 690	1.6 - 1	5.6+8	C	76 *
672.631 ^C			2 206 580	2 355 250	1.0 - 1 1.4	3.4+9	C	76*
636.173 ^C	3/2 1/2	5/2 3/2	2 196 500	2 353 250	8.2 - 1	3.4+9 $3.4+9$	C	76*
339.516 ^S	$3s\ ^{2}\mathrm{S}_{1/2}$			204 527	0.20 1		ъ	000 70*
312.559 ^S	38 3 _{1/2}	$3p^{-2}P_{1/2}^{\circ}$	0 0	294 537 319 940	2.38 - 1 $5.22 - 1$	6.86+9 8.93+9	B B	39°,76* 39°,76*
276.932 ^C	$5d\ ^2{ m D}_{3/2}$	$6p^{2}P_{1/2}^{o}$	3 102 200	3 463 300	4.48 - 1	1.94 + 10	C	76*
275.330 ^C 274.725 ^C	5/2	3/2	3 103 000 3 102 200	3 466 200 3 466 200	7.8 - 1 $8.8 - 2$	1.7+10	C	76*
	3/2	3/2	3 102 200	3 400 200	8.8 – 2	1.9+9	D	76*
269.906 ^C	$5f {}^{2}F_{5/2}^{\circ}$	$6d\ ^2{ m D}_{3/2}$	3 135 200	3 505 700	2.5 - 1	5.7 + 9	C	76*
269.687 ^C	7/2	5/2	3 135 300	3 506 100	3.6 - 1	5.5 + 9	C	76*
269.614 ^C	5/2	5/2	3 135 200	3 506 100	1.8 2	2.8+8	D	76*
249.834 ^S	$3p^{2}P_{3/2}^{o}$	$3d^{2}D_{3/2}$	319 940	720 211	1.04 - 1	2.78 + 9	В	39°,76*
247.540 ^{\$}	3/2	5/2	319 940	723 915	9.52 - 1	1.72 + 10	В	39°, 76*
34.918 ^S	1/2	3/2	294 537	720 211	5.58 - 1	1.68+10	В	39°,76*
237.248 ^C	$5d^{2}D_{5/2}$	$6f^{2}F_{7/2}^{o}$	3 103 000	3 524 500	3.7	5.5+10	С	76 *
237.248 ^C	5/2	5/2	3 103 000	3 524 500	1.9 - 1	3.8 + 9	D	76*
236.798 ^C	3/2	5/2	3 102 200	3 524 500	2.6	5.1 + 10	$^{\rm C}$	76*
210.571 ^C	$5p\ ^{2}\mathrm{P_{3/2}^{o}}$	$6d^{2}D_{3/2}$	3 030 800	3 505 700	1.1 - 1	4.1+9	D	76*
210.393 ^C	3/2	5/2	3 030 800	3 506 100	1.0	2.5 + 10	C	76*
208.507 ^C	1/2	3/2	3 026 100	3 505 700	5.50 - 1	2.11+10	C	76*
201.776 ^C	$5s$ $^2\mathrm{S}_{1/2}$	$6p\ ^{2}\mathrm{P}_{1/2}^{\mathrm{o}}$	2 967 700	3 463 300	1.8 - 1	1.5+10	C	76*
200.602 ^C	1/2	3/2	2 967 700	3 466 200	3.66 - 1	1.5+10	C	76*
163.292 ^C	$5f^{2}F_{5/2}^{\circ}$	$7d^{2}D_{3/2}$	3 135 200	3 747 600	4.4 - 2	2.8+9	D	76*
163.212 ^C	7/2	5/2	3 135 300	3 748 000	6.5 - 2	2.7+9	D	76*
163.185 ^C	5/2	5/2	3 135 200	3 748 000	3.2 - 3	1.3+8	E	76*
152.486 ^C	$5d$ $^2\mathrm{D}_{5/2}$	$7f^{2}F_{7/2}^{\circ}$	3 103 000	3 758 800	1.0	3.6+10	С	76*
152.486 ^C		•	3 103 000	3 758 800	5.0 - 2	2.4+9	D	76*
152.300 ^C	5/2 3/2	5/2 5/2	3 102 200	3 758 800	7.2 - 1	3.4 + 10	C	76*
148.719 ^C	$4d~^2\mathrm{D}_{3/2}$	$5p^{2}P_{1/2}^{o}$	2 353 690	3 026 100	2.9 - 1	4.3+10	C	76*
148.028 ^C			2 355 250	3 030 800	5.2 - 1	3.9+10	C	76*
147.686 ^C	5/2 3/2	3/2 3/2	2 353 690	3 030 800	5.6 - 2	4.2+9	D	76*
146.539 ^C	$4f\ ^{2}\mathrm{F}_{5/2}^{\circ}$	$5d^2\mathrm{D}_{3/2}$	2 410 700	3 102 200	1.0 - 1	8.1+9	C	76*
146.501 ^C			2 419 790					
146.368 ^C	7/2 5/2	5/2 5/2	$2\ 420\ 410$ $2\ 419\ 790$	3 103 000 3 103 000	1.4 - 1 $7.2 - 3$	7.6+9 $3.9+8$	C D	76* 76*
139.509 ^C		$7d\ ^{2}\mathrm{D}_{3/2}$	2 020 000	2 747 600	0.7. 0	2010	Б	ma*
139.509 139.431 ^C	$5p^{-2}P_{3/2}^{\circ}$		3 030 800 3 030 800	3 747 600	3.7 - 2	3.2+9	D	76* 76*
139.431 138.600 ^C	3/2 1/2	5/2 3/2	3 026 100	3 748 000 3 747 600	3.3 - 1 $1.8 - 1$	1.9+10 1.6+10	C C	76*
		•						
139.04 138.97	$4f^{-2}F^{o}_{7/2}$	$5g^{-2}G_{9/2}$	$2\ 420\ 410$ $2\ 419\ 790$		bl bl			40 40
	5/2	7/2	2 413 790	3 139 300	OI.			40
131.385 ^C	$4p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$5s\ ^{2}\mathrm{S}_{1/2}$	$2\ 206\ 580$	2 967 700	4.08 - 1	7.9 + 10	C	76*
129.668 ^C	1/2	1/2	$2\ 196\ 500$	2 967 700	2.0 - 1	4.1+10	C	76*
128.21 ^C	$4d~^2\mathrm{D}_{5/2}$	5f ² F _{5/2}	2 355 250	3 135 200	2.1 - 1	1.4+10	D	76*
128.20	5/2	7/2	2 355 250		bl 4.3	2.2+11	c	40°,76*
127.96	3/2	5/2	2 353 690	3 135 200	2.8	1.9+11	Č	40°,76*
111.654 ^C	$4p~^2\mathrm{P_{3/2}^o}$	$5d^{2}D_{3/2}$	2 206 580	3 102 200	1.2 - 1	1.5+10	D	76*
111.555 ^C	3/2	5/2		3 103 000	1.0	9.2+10	C	76*
110.412 ^C	1/2	3/2		3 102 200	5.8 - 1	7.9 + 10	C	76*
105.647 ^C	$4s\ ^2{ m S}_{1/2}$	r 2no	0.070 ==0	9 002 100	177	F 1 1 1 C	C	70*
105.647 ^C		$5p^{2}P_{1/2}^{o}$		3 026 100	1.7 - 1	5.1+10	С	76* 76*
105.125	1/2	3/2	2 079 550	3 030 800	3.38 - 1	5.1+10	С	76*

Co XVII - Continued

Wave-	Classification		Energy Leve	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper		(0.1.1)	37	· (,	-2007	
92.107 ^C	$4f ^2F^{\circ}_{7/2}$	6d ² D _{5/2}	2 420 410	3 506 100	2.5 - 2	3.2+9	D	76*
92.089 ^C			2 419 790	3 505 700	1.7 - 2	3.4+9	D	76*
92.055 ^C	5/2 5/2	3/2 5/2	2 419 790	3 506 100	1.2 - 3	1.6+8	E	76*
90.122 ^C	$4d~^2\mathrm{D_{3/2}}$	$6p\ ^{2}\mathrm{P_{1/2}^{o}}$	2 353 690	3 463 300	4.80 - 2	1.97+10	C	76*
90.013 ^C	5/2	3/2	2 355 250	3 466 200	8.64 - 2	1.77+10	Ċ	76*
89.887 ^C	3/2	3/2	2 353 690	3 466 200	9.6 - 3	1.9+9	D	76*
			0.055.050		1.0		_	~~*
85.525 ^C	$4d~^2\mathrm{D}_{5/2}$	$6f^{2}F_{7/2}^{\circ}$	2 355 250	3 524 500	1.0	1.2+11	C	76*
85.525 ^C	5/2	5/2	2 355 250	3 524 500	5.3 - 2	8.1+9	D	76*
85.411 ^C	3/2	5/2	2 353 690	3 524 500	7.2 - 1	1.1+11	С	76*
76.975^{C}	$4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$6d^{2}D_{3/2}$	2 206 580	3 505 700	3.7 - 2	1.0+10	D	76*
76.951 ^C	3/2	5/2	2 206 580	3 506 100	3.3 - 1	6.2 + 10	\mathbf{C}	76*
76.383 ^C	1/2	3/2	2 196 500	3 505 700	1.9 - 1	5.3 + 10	C	76*
75.324 ^C	$4f^{2}F_{7/2}^{o}$	$7d\ ^{2}\mathrm{D}_{5/2}$	2 420 410	3 748 000	8.8 - 3	1.7+9	D	76*
75.312 ^C	5/2	3/2	2 419 790	3 747 600	6.0 - 3	1.8 + 9	D	76*
75.289 ^C	5/2	5/2	2 419 790	3 748 000	4.4 - 4	8.7+7	E	76 *
72.267 ^C	$4s^{-2}S_{1/2}$	$6p^{-2}P_{1/2}^{o}$	2 079 550	3 463 300	5.4 - 2	3.5+10	С	76*
72.116 ^C	48 S _{1/2} 1/2	0 <i>p</i> F _{1/2} 3/2	2 079 550	3 466 200	3.4 - 2 $1.1 - 1$	3.4+10	C	76*
71.248 ^C	$4d~^2\mathrm{D}_{5/2}$	$7f^{2}F_{7/2}^{o}$	2 355 250	3 758 800	4.1 - 1	6.8 + 10	С	76*
71.248 ^C	5/2	5/2	2 355 250	3 758 800	2.1 - 2	4.6+9	D	76*
71.169 ^C	3/2	5/2	2 353 690	3 758 800	2.9 - 1	6.4+10	С	76*
67.737 ^C	$3d^2\mathrm{D}_{3/2}$	$4p^{2}P_{1/2}^{\circ}$	720 211	2 196 500	1.2 - 1	8.8 + 10	C-	76*
67.446 ^C	5/2	3/2	723 915	2 206 580	2.2 - 1	8.1+10	C-	76*
67.278 ^C	3/2	3/2	720 211	2 206 580	2.5 - 2	9.1 + 9	D	76*
64.892 ^C	$4p^{-2}P_{3/2}^{o}$	$7d^{2}D_{3/2}$	2 206 580	3 747 600	1.8 - 2	7.0+9	D	76*
64.875 ^C	3/2	5/2	2 206 580	3 748 000	1.6 - 1	4.2+10	C	76*
64.470^{C}	1/2	3/2	2 196 500	3 747 600	9.0 - 2	3.6+10	C	76*
58.967^{C}	$3d^{-2}D_{5/2}$	$4f^{2}F_{5/2}^{o}$	723 915	2 419 790	2.65 - 1	8.5+10	C	76*
58.945 ^S			723 915	2 420 410	5.3	1.3+12	C	39°,76*
58.838 ^S	5/2 3/2	7/2 5/2	720 211	2 419 790	3.7	1.2+12	Ċ	39°,76*
56.833	$3p\ ^{2}P_{3/2}^{o}$	$4s\ ^{2}{ m S}_{1/2}$	319 940	2 079 550				33
56.021	3/2 1/2	1/2	294 537	2 079 550				33
		·						
49.171	$3p^{-2}P_{3/2}^{o}$	$4d^{2}D_{3/2}$	319 940	2 353 690	1.30 - 1	9.0+10	C	33°,76*
49.133 48.564	3/2 1/2	5/2 3/2	319940 294537	2 355 250 2 353 690	$1.16 \\ 6.2 - 1$	5.4+11 $4.4+11$	C C	33°,76* 33°,76*
45.527	$3s$ $^2\mathrm{S}_{1/2}$	$4p^{2}P_{1/2}^{o}$	0	2 196 500	1.57 - 1	2.53+11	C+	33°,76*
45.319	1/2	3/2	0	2 206 580	2.92 1	2.37 + 11	С	33°,76*
43.367^{C}	$3d^{2}D_{3/2}$	$5p^{2}P_{1/2}^{o}$	720 211	3 026 100	2.0 - 2	3.6 + 10	D	76*
43.348 ^C	5/2	3/2	723 915	3 030 800	3.7 - 2	3.2 + 10	\mathbf{D}	76*
43.279^{C}	3/2	3/2	720 211	3 030 800	4.0 - 3	3.6 + 9	E	76*
41.472 ^C	$3d^{2}D_{5/2}$	$5f^{-2}F_{5/2}^{\circ}$	723 915	3 135 200	4.9 - 2	3.2+10	D	76*
41.462	5/2	7/2	723 915	3 135 300	9.72 - 1	4.73+11	C	33°,76*
41.404	3/2	5/2	720 211	3 135 200	6.8 - 1	4.4+11	C	27°,76*
37.768	$3p^{-2}P_{3/2}^{\circ}$	$5s\ ^{2}{ m S}_{1/2}$	319 940	2 967 700	4.8 - 2	1.1+11	С	18°,76*
36.466 ^C	$3d\ ^2{ m D}_{5/2}$	$6p^{-2}P_{3/2}^{\circ}$	723 915	3 466 200	1.3 - 2	1.6+10	D	76*
36.455 ^C	3/2	3/2 1/2	720 211	3 463 300	6.8 - 3	1.7+10	D	76*
36.417 ^C	3/2	3/2	720 211	3 466 200	1.4 - 3	1.8+9	E	76*
35.942 ^C	$3p^{-2}P_{3/2}^{\circ}$	$5d^{2}D_{3/2}$	310.040	2 102 200	40.0	5.1.10	D	76*
35.932		·	319 940 319 940	3 102 200 3 103 000	4.0 - 2 $3.6 - 1$	5.1+10 $3.1+11$	D C	76* 27°,76*
35.617	3/2 1/2	5/2 3/2	294 537	3 103 000	2.0 - 1	2.7+11	C	27°,76*
G.	$3d^{2}D_{5/2}$	6f ² F _{5/2}	700 000	0.504.500	1.0 0	1 0 1 10	ъ	70*
	37 711	6f Fr.	723 915	3 524 500	1.8 - 2	1.6 + 10	D	76*
35.707 ^C 35.707	50 D5/2 5/2	7/2	723 915	3 524 500	3.6 - 1	2.3 + 11	C	27°,76*

Co XVII - Continued

Wave-	Classificati		Energy Leve	els (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
33.046	$3s\ ^{2}\mathrm{S}_{1/2}$	$5p^{2}P_{1/2}^{o}$	0	3 026 100	4.8 - 2	1.5+11	C	27°,76*
32.995	1/2	3/2	0	3 030 800	1.0 - 1	1.6+11	C	27°,76*
32.951	$3d^{2}D_{5/2}$	$7f^{2}F_{7/2}^{o}$	723 915	3 758 800	1.76 - 1	1.35+11	С	27°,76*
32.950^{C}	5/2	5/2	723 915	3 758 800	9.0 - 3	9.1+9	D	76*
32.910	3/2	5/2	720 211	3 758 800	1.24 - 1	1.27+11	C	27°,76*
31.390 ^C	$3p^{2}P_{3/2}^{\alpha}$	$6d^{2}D_{3/2}$	319 940	3 505 700	1.8 - 2	3.1+10	D	76*
31.386	3/2	5/2	319 940	3 506 100	1.64 - 1	1.86 + 11	C	27°,76*
31.142	1/2	3/2	294 537	3 505 700	9.2 - 2	1.6+11	C	27°,76*
31.38	$3d\ ^2\mathrm{D}_{5/2}$	$8f\ ^{2}\mathrm{F}_{7/2}^{\circ}$	723 915	3 910 700				18
29.174 ^C	$3p\ ^{2}P_{3/2}^{o}$	$7d^{2}D_{3/2}$	319 940	3 747 600	1.0 - 2	2.0+10	\boldsymbol{a}	76*
29.171	3/2	5/2	319 940	3 748 000	8.8 - 2	1.2 + 11	C	27°,76*
28.960	1/2	3/2	294 537	3 747 600	5.04 - 2	1.0+11	C	27°,76*
28.874	$3s\ ^{2}{ m S}_{1/2}$	$6p^{-2}P_{1/2}^{o}$	0	3 463 300	2.2 - 2	8.8+10	C	27°,76*
28.85	1/2	3/2	0	3 466 200	4.4 - 2	8.6 + 10	C	27°,76*
27.902	$3p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$8d$ $^2\mathrm{D}_{5/2}$	319 940	3 903 900				27
15.828	$2p^63s\ ^2{ m S}_{1/2}$	$2p^53s^2$ 2 P $^{\circ}_{3/2}$	0	6 317 900				35
15.551	1/2	1/2	0	6 430 500				35

Co xviii

Wave- length (Å)	Classificat Lower	ion Upper	Ener	gy Levels (cm ⁻¹) Int.	gf	A (s ⁻¹)	Acc.	References
45.640 ^L	$2p^53p^{-3}P_2$	$2p^54d\ ^3{ m F}_3^o$						47
45.454 ^L	$2p^53p^{-1}D_2$	$2p^54d\ ^1{ m F}_3^{ m o}$						47
45.454 ^L 44.959 ^L	$2p^53p\ ^3{ m D}_1$	$2p^54d\ ^3{ m D}_2^{ m o}$ 3						47 47
45.35 ^L	$2p^{5}3p^{-3}D_{3}$	$2p^54d\ ^3{ m F_4^o}$			2.1	7.6+11	D-	47°,76*
44.869 ^L	$2p^53p^{-1}P_1$	$2p^54d\ ^1{ m D_2^o}$						47
15.437	$2p^{6} {}^{1}\mathrm{S}_{0}$	$2p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	0	6 477 900	1.19 - 1	1.11+12	C	44°,76*
15.169	$2p^{6}$ $^{1}S_{0}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})3s\;(\frac{1}{2},\frac{1}{2})_{1}^{\mathrm{o}}$	0	6 592 400	1.05 - 1	1.01+12	C	44°,76*
14.041	$2p^{6-1}\mathrm{S}_0$	$2p^{5}3d\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	0	7 122 000	1.2 - 2	1.3+11	E	44°,76*
13.868	$2p^{6}$ 1 S ₀	$2p^53d$ $^3\mathrm{D}^{\circ}_1$	0	7 210 800	7.0 - 1	8.1+12	D	44°,76*
13.634	$2p^{6} {}^{1}S_{0}$	$2p^53d\ ^1\mathrm{P_1^o}$	0	7 334 600	2.40	2.87+13	C	44°,76*
12.667	$2s^22p^6$ 1S_0	$2s2p^{6}3p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	0	7 894 500				44
12.606	$2s^22p^6$ 1S_0	$2s2p^63p^{-1}P_1^o$	0	7 932 700	2.9 - 1	4.1+12	a	44°,76*
11.486	$2p^{6} {}^{1}S_{0}$	$2p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4s~(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	0	8 706 000	2.5 - 2	4.2+11	D	44°,76*
11.321	$2p^{6}$ $^{1}S_{0}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4s(\frac{1}{2},\frac{1}{2})_{1}^{\circ}$	0	8 833 000	2.2 - 2	3.8+11	D	44°,76*
11.155	$2p^{6}$ $^{1}S_{0}$	$2p^{5}4d\ ^{3}\mathrm{P_{1}^{o}}$	0	8 965 000	3.4 - 3	6.1+10	E	45°,76*
11.108	$2p^{6}$ $^{1}S_{0}$	$2p^{5}4d\ ^{3}\mathrm{D_{1}^{o}}$	0	9 003 000	4.2 - 1	7.6 + 12	D	44°,76*
10.975	$2p^{6-1}S_0$	$2p^54d~^1{ m P}_1^o$	0	9 112 000	5.1 - 1	9.4+12	D	44°,76*
10.207	$2p^{6} {}^{1}S_{0}$	$2p^55d\ ^3{ m P}_1^{ m o}$	0	9 797 000				44
10.184	$2p^{6}$ 1 S ₀	$2p^55d\ ^3D_1^{ m o}$	0	9 819 000				44
10.066	$2p^{6-1}S_0$	$2p^{5}5d\ ^{1}\mathrm{P_{1}^{o}}$	0	9 934 000				44
10.030	$2s^22p^{6-1}S_0$	$2s2p^{6}4p^{-1}P_{1}^{\circ}$	0	9 970 000	1.2 - 1	2.7+12	D	44°,76*
10.025	$2s^22p^{6-1}S_0$	$2s2p^{6}4p^{3}P_{1}^{\circ}$	0	9 980 000				45
9.748	$2p^{6}$ $^{1}S_{0}$	$2p^{5}6d\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	0	10 260 000				45
9.742	$2p^{6-1}S_0$	$2p^{5}6d\ ^{3}{ m D}_{1}^{ m o}$	0	10 265 000				44
9.633	$2p^{6-1}S_0$	$2p^{5}6d\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	10 381 000				44
9.501	$2p^{6-1}S_0$	$2p^{5}7d\ ^{3}\mathrm{D_{1}^{o}}$	0	10 525 000				43
9.371	$2p^{6}$ 1 S ₀	$2p^{5}7d^{-1}P_{1}^{o}$	0	10 671 000				43
9.347	$2p^{6-1}$ S $_0$	$2p^58d\ ^3{ m D}_1^{ m o}$	0	10 699 000				43
9.225	$2p^{6-1}S_0$	$2p^{5}9d\ ^{3}\mathrm{D}_{1}^{o}$	0	10 840 000				45
9.200	$2p^{6-1}\mathrm{S}_0$	$2p^58d^{-1}{ m P}_1^{ m o}$	0	10 870 000				45
9.070	$2p^{6}$ $^{1}S_{0}$	$2p^{5}9d^{-1}\mathrm{P}_{1}^{c}$	0	11 030 000				45

 $\mathbf{Co}\ xix$

Wave- length (Å)	Classific Lower	eation Upper	Energy Le	evels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
819.9 ^C	$2s^22p^5$ ² P° _{3/2}	$2s^22p^5$ $^2P_{1/2}^{\circ}$	0	121 960		M1	3.25+4	C+	76*
99.02 88.35	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2} \ _{3/2}$	$2s2p^6 \ ^2\mathrm{S}_{1/2}$	121 960 0	1 131 860 1 131 860		1.03 - 1 $2.34 - 1$	3.5+10 1.0+11	C+ C+	40,52°,76* 40,52°,76*
14.794 14.557	$2s^2 2p^5 \ ^2 P_{1/2}^{\circ}$	$2s^22p^4(^3{ m P})3s^{-2}{ m P}_{3/2}$	121 960 121 960	6 880 900 6 991 500	5	1.1 - 1	1.8+12	D-	44 44°,51 [△] ,76*
14.534 14.303	3/2 3/2	3/2 1/2	0	6 880 900 6 991 500	4	9.6 - 2	1.6+12	E	44°,51 ^Δ 44°,51 ^Δ ,76*
14.594 14.355	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)3s^4P_{5/2}$. 0	6 852 100 6 966 200	4				44 44°,51 [△]
14.423	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^1D)3s^2D_{3/2}$	121 960	7 055 300		2.0 - 1	1.6+12	D	44°,51 ^Δ ,76*
14.184	3/2	5/2	0	7 050 200		2.4 - 1	1.3+12	D	44°,51 [△] ,76*
14.041	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^1S)3s^{-2}S_{1/2}$	121 960	7 243 900		8.0 - 2	1.3+12	D-	44°,76*
13.314	$2s^2 2p^5 \ ^2$ P $_{1/2}^{\circ}$	$2s^22p^4(^3P)3d\ ^2P_{3/2}$	121 960	7 632 800	5				44°,51 ^Δ
13.289	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)3d\ ^4P_{1/2}$	0	7 525 000	6				44°,51 ^Δ
13.258 13.246	3/2 3/2	3/2 5/2	0	7 542 600 7 549 400	7 8				44°,51 ^Δ 51
13.240	$2s^22p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s^22p^4(^3{ m P})3d\ ^2{ m F}_{5/2}$	0	7 552 900					44
13.192 12.985	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{1/2}$ $_{3/2}$	$2s^22p^4(^1{ m D})3d\ ^2{ m S}_{1/2}$	121 960 0	7 701 800 7 701 800		1.6 - 1 $9.6 - 1$	3.0+12 1.9+13	E D	44°,51 [△] ,76* 44°,51 [△] ,76*
13.157	$2s^22p^5$ ² P $_{3/2}^{\circ}$	$2s^22p^4(^3P)3d^2D_{3/2}$	0	7 600 500	6				51
13.084	3/2	5/2	0	7 642 900	12				44°,51 [△]
13.151	$2s^22p^5$ ² P° _{1/2}	$2s^22p^4(^1\mathrm{D})3d^2\mathrm{P}_{3/2}$	121 960	7 725 900	6				44°,51 [△]
13.084	1/2	1/2	121 960	7 764 900	10				44°,51△
$12.942 \\ 12.876$	3/2 3/2	3/2 1/2	0	7 725 900 7 764 900	9 7				44°,51 [△] 51
13.123	$2s^22p^5$ ² P $_{3/2}^o$	$2s^22p^4(^3\mathrm{P})3d\ ^4\mathrm{D}_{3/2}$	0	7 620 200					44
13.097	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^1D)3d^2D_{3/2}$	121 960	7 757 700	12				44°,51 ^Δ
12.942	3/2	5/2	0	7 726 800	10				44°,51 ^Δ
12.890	3/2	3/2	0	7 757 700	7				44°,51 [△]
12.828	$2s^22p^5$ $^2P^o_{1/2}$	$2s^22p^4(^1{ m S})3d\ ^2{ m D}_{3/2}$	121 960	7 917 400	5				44°,51 [△]
12.300 12.155	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2} _{3/2}$	$2s2p^{5}(^{3}\mathrm{P}^{\circ})3p^{4}\mathrm{P}_{3/2}$ 5/2	121 960 0	8 252 000 8 227 000					44 44
12.281 12.238	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s2p^{5}(^{3}P^{\circ})3p^{-4}D_{5/2}$	Λ	8 143 000 8 171 000					44 44
12.224	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s2p^{5}(^{3}P^{\circ})3p^{2}D_{3/2}$	121 060	0 202 000					44
12.212	28 2p F 1/2 3/2			8 303 000 8 189 000					44 44
12.193 12.015	$2s^22p^5 \ ^2P_{1/2}^o$	$5/2$ $2s2p^5(^3P^\circ)3p^{-2}S_{1/2}$ $1/2$	121 960	8 323 000					44
	3/2			8 323 000					44
12.168 12.155	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2} \ _{3/2}$	$2s2p^{5}(^{3}\mathrm{P^{o}})3p^{-2}\mathrm{P}_{3/2}$	0 0	8 218 000 8 227 000					44 44
11.954 11.744	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2} \ _{3/2}$	$2s2p^{5}(^{1}P^{o})3p^{-2}D_{3/2}$		8 487 000 8 515 000					44 44
11.906		$2s2p^{5}(^{1}\mathrm{P}^{\circ})3p^{2}\mathrm{P}_{1/2}$		8 521 000					44
11.892	1/2	3/2	121 960	8 531 000					44
10.776		$2s^22p^4(^3P)4s^{-2}P_{3/2}$		9 280 000					44
10.704 10.568	$2s^22p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2} \ _{3/2}$	$2s^22p^4(^1\mathrm{D})4s^2\mathrm{D}_{3/2}$	121 960 0	9 464 000 9 462 000					44 44

Co XIX - Continued

Wave- ength (Å)	Classific Lower	ation Upper	Energy Lev	vels (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
10.645	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^2 2p^4 (^3P) 4s ^4P_{3/2}$	0	9 394 000				44
10.477	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3P)4d^2D_{5/2}$	0	9 545 000				44
10.477	3/2	3/2	0	9 545 000				44
10.406	$2s^22p^5$ ² P $_{1/2}^{\circ}$	$2s^22p^4(^1D)4d^2D_{3/2}$	121 960	9 732 000				44
10.290	3/2	5/2	0	9 718 000				44
10.406	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^1D)4d^2P_{1/2}$	121 960	9 732 000				44
10.290	3/2	3/2	0	9 718 000				44
10.406	$2s^22p^5$ ² P° _{3/2}	$2s^22p^4(^3P)4d^4F_{3/2}$	0	9 610 000				44
10.406	3/2	5/2	0	9 610 000				44
10.373	$2s^22p^5$ $^2P_{3/2}^{\circ}$	$2s^22p^4(^3\mathrm{P})4d\ ^4\mathrm{P}_{5/2}$	0	9 640 000				44
10.290	$2s^22p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^1D)4d\ ^2S_{1/2}$	0	9 718 000				44
10.275	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^1{ m D})4d\ ^2{ m F}_{5/2}$	0	9 732 000				44
10.206	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^1{ m S})4d\ ^2{ m D}_{3/2}$	121 960	9 920 000				44

 $\mathbf{Co} \ \mathbf{xx}$

Wave- length (Å)	Lower	Classification	Upper	Energy Levels	(cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
4249. ^C	$2s^22p^4$	3 _D .	$2s^22p^4$ 3P_1	83 890	107.480		Mi	1.710		76*
930.9 ^C	28 2p	2	$2s 2p \cdot P_1$	83 890	107 420 107 420		M1 M1	1.7+2 $2.46+4$	C C	76* 76*
1221. ^C	$2s^22p^4$	${}^{3}P_{1}$	$2s^22p^{4-1}D_2$	107 420	189 290		M1	8.3+2	D	76*
528.3 ^C		2	2	0	189 290		M1	2.7 + 4	D	76*
390.9^{C}	$2s^22p^4$	$^{3}P_{1}$	$2s^22p^{4-1}S_0$	107 420	363 240		M1	2.3 + 5	D	76*
144.92^{C}	$2s^22p^4$	¹ S ₀	$2s2p^{5-3}$ P $_{1}^{\circ}$	363 240	1 053 290		8.9 - 3	9.4+8	E	76*
126.22	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s2p^{5}$ $^{3}P_{2}^{\circ}$	189 290	981 550		3.3 - 2	2.7+9	\mathbf{E}	40°,76*
114.40	$2s^22p^4$	$^{3}P_{1}$	$2s2p^{5-3}P_{2}^{o}$	107 420	981 550		1.07 - 1	1.09+10	C	40°,76*
105.72 103.16		1	1	107 420 83 890	1 053 290		6.75 - 2	1.34+10	C	40°,76* 40°,76*
101.88		0 2	1 2	03 090	1 053 290 981 550		8.3 - 2 $3.3 - 1$	1.7+10 $4.2+10$	C C	40°,76*
99.89		1	0	107 420	1 108 520		9.99 - 2	6.7+10	Č	40°,76*
94.94		2	1	0	1 053 290		1.48 - 1	3.64+10	C	40°,76*
109.14	$2s2p^5$	¹ P ₁ ^o	$2p^{6} {}^{1}S_{0}$	1 349 530	2 265 740	bl	3.09 - 1	1.73+11	C	40°,76*
101.39	$2s^22p^4$	1 1 S ₀	$2s2p^{5-1}P_1^{\circ}$	363 240	1 349 530	bl	5.2 - 2	1.1 + 10	C	40°,76*
86.19	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s2p^{5-1}P_1^{\circ}$	189 290	1 349 530		5.30 - 1	1.59+11	C	40°,76*
82.48	$2s2p^5$	$^{3}P_{1}^{o}$	$2p^{6} {}^{1}S_{0}$	1 053 290	2 265 740		1.7 - 2	1.6+10	E	40°,76*
80.51	$2s^22p^4$	³ P ₁	$2s2p^{5-1}P_1^{o}$	107 420	1 349 530		3.9 - 3	1.3+9	E	40°,76*
79.01	- -	0	1	83 890	1 349 530	Ы	5.4 - 3	1.9+9	Ē	40°,76*
74.10		2	1	0	1 349 530		3.7 - 2	1.5 + 10	\mathbf{E}	40°,76*
13.825	$2s^22p^4$	$^{3}P_{1}$	$2s^22p^3(^4S^\circ)3s^3S_1^\circ$	107 420	7 338 000					44
13.786	•	0	1	83 890	7 338 000		5.3 - 2	6.2 + 11	D	44°,76*
13.634		2	1	0	7 338 000		2.4 - 1	2.9 + 12	D-	44°,76*
13.775	$2s^22p^4$	$^{1}\mathrm{D_{2}}$	$2s^2 2p^3 (^2D^o)3s \ ^3D_2^o$	189 290	7 447 000					44
13.676	$2s^22p^4$		$2s^22p^3(^2P^\circ)3s^{-1}P_1^o$	363 240	7 688 000					44
13.661	$2s^22p^4$		$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	189 290	7 507 000		3.5 - 1	2.5+12	E	44°,76*
13.634	$2s^22p^4$	³ P ₁	$2s^22p^3(^2{\rm D^o})3s\ ^3{\rm D_1^o}$	107 420	7 447 000		1.3 - 1	1.5+12	D-	44°,76*
13.634 13.425		1 2	2	107 420 0	7 447 000 7 447 000					44
13.356		2	2 3	ő	7 487 000		2.4 - 1	1.3+12	D+	44 44°,76*
13.517	$2s^22p^4$	3 _D	$2s^22p^3(^2D^\circ)3s^{-1}D_2^\circ$	107 420	7 -07 000		40.0	0.1.11	Б	440 70
13.321 ^C	28 2p	2	28 2p (D)38 D ₂	0	7 507 000 7 507 000		4.2 - 2 $2.3 - 2$	3.1+11 $1.7+11$	E E	44°,76* 76*
13.496	$2s^22p^4$	10	$2s^22v^3(^2P^\circ)3s^3P^\circ$	100 000	7 500 000				_	0*
13.356	28 2p	D_2	2s 2p (P) 3s P ₁	189 290 189 290	7 599 000 7 668 000		5.5 - 2	6.7+11	Е	44°,76* 44
13.372	$2s^22p^4$	³ P ₁	$2s^22p^3(^2P^o)3s^3P_0^o$	107 420	7 586 000		3.3 - 2	1.2+12	C	44°,76*
13.307 ^C	-	0	1	83 890	7 599 000		6.9 - 2	8.7+11	E	76*
13.240		1	2	107 420	7 668 000		1.0 - 1	7.8+11	Ē	44°,76*
13.314	$2s^22p^4$	$^{1}D_{2}$	$2s^22p^3(^2P^{\circ})3s^{-1}P_1^{\circ}$	189 290	7 688 000					44
12.606	$2s^22p^4$	¹³ P ₂	$2s^22p^3(^4S^\circ)3d^{-3}D_3^\circ$	0	7 933 000		1.6	9.3+12	E	44°,76*
12.551	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s^22p^3(^2D^\circ)3d^{-1}F_3^\circ$	189 290	8 150 000		2.0	1.2+13	D	44°,76*
12.551	$2s^22p^4$	$^{-1}\mathrm{D}_2$	$2s^22p^3(^2P^\circ)3d^3F_3^\circ$	189 290	8 157 000					44
12.551	$2s^22p^2$	⁴ ¹ S ₀	2s ² 2p ³ (² P°)3d ¹ P ₁ °	363 240	8 331 000		2.4	3.4+13	D	44°,76*
12.551	$2s^22p^4$	^{4 3} P ₁	$2s^22p^3(^2D^{\circ})3d^{3}P_2^{\circ}$	107 420	8 110 000					44
12.331	p	2	2	0	8 110 000					44
12.513	$2s^22p^4$	1 1 D_{2}	$2s^22p^3(^2P^{\circ})3d\ ^3P_2^{\circ}$	189 290	8 181 000)				44
12.348	$2s^22p^4$	1 1 D_{2}	$2s^22p^3(^2P^{\circ})3d^{-1}D_2^{\circ}$	189 290	8 288 000)				44
12.348	$2s^22p^4$	1 1 D ₂	$2s^22p^3(^2{ m P^o})3d\ ^1{ m F_3^o}$	189 290	8 288 000)				44
12.348	$2s^22p^4$	^{4 3} P ₂	$2s^22p^3(^2D^{\circ})3d^3D_3^{\circ}$	0	8 098 000)	3.8	2.4+13	E	44°,76*
			ū							

Co xx - Continued

Wave- length (Å)	Lower	Classification	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
12.300	$2s^22p^4$	$^{3}P_{1}$	$2s^22p^3(^2P^\circ)3d^3P_1^o$	107 420	8 237 000					44
12.282^{C}	$2s^22p^{4-1}$	$^{1}\mathrm{D_{2}}$	$2s^22p^3(^2P^\circ)3d^{-1}P_1^\circ$	189 290	8 331 000		1.0 – 1	1.5+12	D	76 *
12.281	$2s^22p^4$	$^{3}P_{2}$	$2s^22p^3(^2{\rm D^o})3d\ ^1{ m F}_3^{ m o}$	0	8 150 000					44
12.238	$2s^22p^4$	$^{3}P_{1}$	$2s^22p^3(^2{ m P}^{ m o})3d\ ^3{ m D}_2^{ m o}$	107 420	8 279 000					44
11.880	$2s^22p^4$	$^{1}\mathrm{D_{2}}$	$2s2p^43d\ ^1{ m F}_3$	189 290	8 607 000					45
9.970	$2s^22p^4$	³ P ₁	$2s^22p^3(^4S^{\circ})4d^{\ 3}D_2^{\circ}$	107 420	10 146 000					45
9.924		0	1	83 890	10 160 000					44
9.856		2	2	0 0	10 146 000					44
9.856		2	3	U	10 146 000					44
9.856	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s^22p^3(^2{\rm D^o})4d\ ^1{\rm D_2^o}$	189 290	10 335 000					44
9.856	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s^22p^3(^2{\rm D^o})4d\ ^1{ m F}_3^{ m o}$	189 290	10 335 000					44
9.856	$2s^22p^4$	¹ S ₀	$2s^22p^3(^2\mathrm{P^o})4d\ ^1\mathrm{P_1^o}$	363 240	10 509 000					44
9.828	$2s^22p^4$	³ P,	$2s^22p^3(^2D^{\circ})4d^{3}D_{2}^{\circ}$	107 420	10 306 000					44
9.694	•	2	3	0	10 316 000					44
9.681		2	2	0	10 306 000					44
9.784	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s^22p^3(^2{ m P}^{\circ})4d\ ^3{ m F}_3^{\circ}$	189 290	10 410 000					45
9.742	$2s^22p^4$	³ P ₂	$2s^22p^3(^2{\rm D^o})4d\ ^3{ m F}_3^{ m o}$	0	10 265 000					44
9.694	$2s^22p^4$	$^{1}\mathrm{D}_{2}$	$2s^22p^3(^2P^\circ)4d\ ^1F_3^\circ$	189 290	10 505 000					44
9.694	$2s^22p^4$	$^1\mathrm{D}_2$	$2s^22p^3(^2\mathrm{P^o})4d\ ^3\mathrm{D_2^o}$	189 290	10 510 000					44
9.694	$2s^22p^4$	3 _P ,	$2s^22p^3(^2P^\circ)4d^3P_2^\circ$	107 420	10 423 000					44
9.633	20 2p	1	20 20 (1)14 12	107 420	10 488 000					44
3.000		•	1	107 120	10 100 000					**
9.681	$2s^22p^4$	$^{3}P_{2}$	$2s^22p^3(^2{ m D}^\circ)4d\ ^3{ m S}_1^\circ$	0	10 330 000					44
9.661	$2s^22p^4$	³ P ₀	$2s^22p^3(^2P^\circ)4d^3D_1^\circ$	83 890	10 435 000					45
9.603	- P	1	20 % (1)14 %	107 420	10 510 000					45

Co xxi

Wave- length (Å)	C Lower	lassification	Upper	Energy Level	s (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
2247. ^C	$2s^22p^3$ $^2{ m D}_3^{ m o}$	/2	$2s^2 2p^3$ ² D $_{5/2}^{\circ}$	147 040	191 530		M1	6.7+2	С	76*
1270. ^C	$2s^22p^3\ ^2{ m P}_1^{ m o}$	/2	$2s^22p^3$ $^2P_{3/2}^{\circ}$	280 260	359 000		M1	3.0+3	C-	76*
750.6^{C}	$2s^22p^3$ $^2{ m D}_3^{ m o}$	//2	$2s^22p^3$ 2 P $_{1/2}^{\circ}$	147 040	280 260		M1	7.6+3	D	76*
597.1 ^C		/2	3/2	191 530	359 000		M1	2.0+4	D	76*
471.8 ^C	3	/2	3/2	147 040	359 000		Mı	7.7+4	D	76*
680.1 ^C	$2s^22p^3$ $^4S_3^{\circ}$	/2	$2s^22p^3$ ² D _{3/2}	0	147 040		M1	2.6+4	D	76*
522.1 ^C		/2	5/2	0	191 530		M1	2.4+3	D-	76*
356.8 ^C	$2s^22p^3$ $^4S_3^{\circ}$		$2s^22p^3$ 2 P $_{1/2}^o$	0	280 260		M1	5.0+4	D	76*
278.55 ^C		i/2 i/2	23 2p 1 1/2 3/2	. 0	359 000		M1	3.7+4	D	76*
227.25 ^C	$2s^22p^3\ ^2{ m P}_3^{ m o}$	1/2	$2s2p^4$ 4 P _{5/2}	359 000	799 040		1.3 - 3	2.8+7	E	76*
192.12^{C}		:/2	3/2	359 000	879 510		5.2 - 3	2.3+8	E	76*
160.51^{C}	1	/2	1/2	280 260	903 260		2.8 - 3	3.6+8	E	76*
164.61^{C}	$2s^22p^3$ $^2{ m D}_5^{ m o}$	/2	$2s2p^{4} {}^{4}P_{5/2}$	191 530	799 040		8.4 - 3	3.4+8	\mathbf{E}	76*
153.37 ^C		1/2	5/2	147 040	799 040		2.0 - 2	9.5 + 8	\mathbf{E}	76*
145.35 ^C	5	6/2	3/2	191 530	879 510		9.0 - 4	7.1 + 7	E	76*
136.52 ^C	3	1/2	3/2	147 040	879 510		2.2 - 3	2.0 + 8	\mathbf{E}	76*
132.24 ^C		1/2	1/2	147 040	903 260		2.7 - 3	5.1+8	E	76*
157.40 ^C	$2s2p^{4-2}P_{1}$./2	$2p^{5-2}P_{3/2}^{\circ}$	1 434 220	2 069 550		2.46 - 2	1.66 + 9	$^{\rm C}$	76*
133.06		1/2	3/2	1 318 040	2 069 550		3.4 - 1	3.2 + 10	C	40°,76*
131.09	1	/2	1/2	1 434 220	2 197 070		1.8 - 1	3.5 + 10	C	40°,76*
113.76		3/2	1/2	1 318 040	2 197 070	ы	1.70 - 1	4.37+10	С	40°,76*
133.64 ^C	$2s^22p^3$ ² P ³	3/2	$2s2p^{4-2}D_{3/2}$	359 000	1 107 300		7.2 - 3	6.7 + 8	D	76*
130.02		3/2	5/2	359 000	1 128 160	bl	9.64 - 2	6.3 + 9	C	40°,76*
120.91		./2	3/2	280 260	1 107 300		2.66 - 2	3.03 + 9	C	40°, 76*
125.15	$2s^22p^3$ $^4S_3^9$	3/2	$2s2p^{4} {}^{4}P_{5/2}$	0	799 040	bl	1.96 - 1	1.39 + 10	\mathbf{C}	40°,76*
113.70		3/2	3/2	0	879 510	bl	1.62 - 1	2.08+10	C	40°,76*
110.71		3/2	1/2	0	903 260	bl	8.68 - 2	2.36+10	C	40°,76*
124.67	$2s2p^{4-2}S_1$	1/2	$2p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	1 267 430	2 069 550		9.34 - 2	1.0+10	C	40°,76*
107.57 ^C		1/2	1/2	1 267 430	2 197 070		1.2 - 2	3.4+9	D	76*
110.08	$2s^22p^{3-2}$ P ₃	2 / 2	$2s2p^{4}$ $^{2}S_{1/2}$	359 000	1 267 430	bl	8.0 - 3	2.2 + 9	D	40°,76*
101.30		1/2	1/2	280 260	1 267 430	bl	1.2 - 1	4.0+10	C	40°,76*
106.76	$2s^22p^{3-2}$ D	2	$2s2p^{4-2}D_{5/2}$	191 530	1 128 160		3.7 - 1	3.6+10	С	40°,76*
104.14		3/2 3/2	3/2	147 040	1 107 300		3.0 - 1	4.7 + 10	C	40°,76*
101.92^{C}		3/2	5/2	147 040	1 128 160		6.0 - 4	6.4+7	E	76*
106.23	$2s2p^{4-2}D_{2}$	5/2	$2p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	1 128 160	2 069 550	ы	3.1 - 1	4.6+10	С	40°,76*
103.93		3/2	3/2	1 107 300	2 069 550	~-	1.35 - 1	2.08+10	Č	40°,76*
91.76	:	3/2	1/2	1 107 300	2 197 070		1.20 - 1	4.77+10		40°,76*
104.27	$2s^22p^3$ ² P ₃	3 / 0	$2s2p^4 {}^{2}P_{3/2}$	359 000	1 318 040		6.36 - 2	9.8+9	C	40°,76*
96.36		1/2	3/2	280 260	1 318 040		5.80 - 2	1.04+10	Č	40°,76*
93.00		3/2	1/2	359 000	1 434 220	bl	2.8 - 1	1.1 + 11	C	40°,76*
86.66	:	1/2	1/2	280 260	1 434 220		9.4 - 3	4.2+9	D	40°,76*
90.31	$2s^22p^3$ 4S	3/2	$2s2p^{4-2}D_{3/2}$	0	1 107 300		1.5 - 2	3.0+9	E	40°,76*
89.25	$2s^22p^{3-2}$ D	3/2	$2s2p^{4-2}S_{1/2}$	147 040	1 267 430		1.2 - 1	5.0+10	E	40°,76*
88.77	$2s^22p^{3-2}$ D	•	$2s2p^{4-2}P_{3/2}$	191 530	1 318 040		5.2 - 1	1.1+11	С	40°,76*
85.40		3/2 3/2	3/2	147 040	1 318 040	bl	6.00 - 2	1.37+10	C	40°,76*
77.69		3/2	1/2	147 040	1 434 220		5.16 - 2	2.85 + 10	Č	40°,76*
85.74 ^C	$2s2p^{4-4}P$	1/2	$2p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	903 260	2 069 550		3.4 - 3	7.7+8	E	76*
84.03		3/2	3/2	879 510	2 069 550		1.0 - 2	2.4+9	E	40°,76*
78.71		5/2	3/2	799 040	2 069 550		1.5 - 2	4.0+9	Ē	40°,76*
77.29^{C}		1/2	1/2	903 260	2 197 070		2.2 - 3	1.2 + 9	E	76*
75.90	;	3/2	1/2	879 510	2 197 070	ы	6.8 - 4	3.9 + 8	\mathbf{E}	40°,76*
78.90	$2s^22p^3$ 4S	3/2	$2s2p^4$ 2 S _{1/2}	0	1 267 430	bl	5.2 - 3	2.8+9	E	40°,76*
	$2s^22p^3$ 4S	_	$2s2p^{4-2}P_{3/2}$							40°,76*

Со ххи

Wave- length (Å)	Lower	Classification	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
2104. ^C 1102.2 ^C	$2s^22p^2$	² ³ P ₁	$2s^22p^2$ ³ P ₂	90 730	138 250 90 730		M1 M1	1.05+3 1.19+4	C C	76* 76*
696.5 ^C 523.3 ^C	$2s^22p^2$	² ³ P ₂	$2s^22p^2$ ¹ D ₂	138 250 90 730	281 820 281 820		M1 M1	2.4+4 $2.6+4$	C D	76* 76*
307.89 ^C	$2s^22p^2$		$2s^22p^2$ ¹ S ₀	90 730	415 520		M1	2.1+5	D	76*
252.71 ^C 196.59 ^C	$2s2p^3$	³ ¹ P ₁ °	$2p^4 \ ^3P_2$	1 356 870 1 356 870	1 752 580 1 865 530		5.7 - 3 $1.6 - 2$	1.2+8 9.0+8	E E	76* 76*
252.20 ^C	$2s^22p^2$	² ³ P ₂	$2s2p^3$ $^5\mathrm{S}^{\mathrm{o}}_2$	138 250	[534 760]		2.3 - 3	4.8+7	Е	76*
225.21 ^C 239.05 ^C	$2s^22p$	1 ² ¹ S ₀	$2s2p^3$ $^3\mathrm{D^o_1}$	90 730 415 520	[534 760] 833 840		2.1 - 3 $1.5 - 3$	5.6+7 5.8+7	E E	76* 76*
185.03 ^C	$2s2p^3$		$2p^4$ 3 P ₂	1 212 130	1 752 580		2.4 - 2	9.4+8	E	76 *
153.05 ^C	. 2. 5	2	1	1 212 130	1 865 530		6.0 - 3	5.7+8	E	76*
181.15 ^C 180.36 ^C	$2s^22p^2$	-	$2s2p^3 \ ^3D_1^{\circ}$	281 820 281 820	833 840		3.6 - 3 $9.5 - 4$	2.4+8	E E	76* 76*
170.16 ^C		2 2	2	281 820	836 280 869 510		9.5 - 4 $4.0 - 2$	3.9+7 $1.3+9$	E	76*
171.79	2s2p	^{3 3} S ₁ °	$2p^{4-3}P_2$	1 170 450	1 752 580		1.5 - 1	6.9+9	С	40°,76*
146.40 143.87	,	1	0	1 170 450 1 170 450	1 853 530 1 865 530	ьl	7.11 - 2 $1.5 - 1$	2.21+10 $1.6+10$	C C	40°,76* 40°,76*
171.49 ^C	$2s^22p$	² ¹ S ₀	$2s2p^3$ 3 P $_1^{\circ}$	415 520	998 650		2.6 - 3	2.0+8	E	76*
170.09	2s2p	³ ¹ P ₁ ^o	$2p^{4-1}D_2$	1 356 870	1 944 800		1.17 - 1	5.4+9	C	40°,76*
143.76 ^C	$2s^22p$	² ³ P ₂	$2s2p^{3-3}D_1^{o}$	138 250	833 840		1.1 - 3	1.2+8	Е	76*
143.26 ^C	•	2	2	138 250	836 280		7.5 - 4	4.9+7	E	76*
136.75		2	3	138 250	869 510		1.38 - 1	7.0 + 9	\mathbf{C}	40°,76*
134.57 134.13		1	1	90 730 90 730	833 840 836 280		5.1 - 3 $1.49 - 1$	6.3+8 $1.1+10$	D C	40°,76* 40°,76*
119.92		0	2 1	0	833 840		9.6 - 2	1.5+10	C	40°,76*
139.50 ^C 135.42 ^C	$2s^22p^3$	² ¹ D ₂	$2s2p^3$ $^3P_1^{\circ}$	281 820 281 820	998 650 1 020 290		2.5 - 3 $3.2 - 3$	2.9+8 2.3+8	E E	76 * 76*
100 50	0.0	^{3 3} P ₂ °	$2p^{4-3}P_{2}$	1 000 000	1 750 500		* 00 0	. =	~	
136.56 132.63	2s2p	_		1 020 290 998 650	1 752 580 1 752 580	Ы	5.30 - 2 $5.43 - 2$	3.79+9 $4.12+9$	C C	40°,76* 40°,76*
118.31		1 2	2	1 020 290	1 865 530		1.25 - 1	1.98+10	Č	40°, 76*
116.97		1	0	998 650	1 853 530		4.44 - 2	2.16+10	Č	40°,76*
115.36 ^C		1	1	998 650	1 865 530		2.4 - 3	4.1 + 8	\mathbf{E}	76*
113.93		0	1	987 830	1 865 530	bl	3.34 - 2	5.7+9	С	40°,76*
136.49		³ ¹ D ₂ °	$2p^{4-1}D_2$	1 212 130	1 944 800	bl	5.30 - 1	3.8+10	C	40°,76*
132.46 ^C		o ^{2 1} S ₀	2s2p ³ ³ S ₁ °	415 520	1 170 450		6.7 - 3	8.5+8	E	76*
119.55 116.22	$2s^2p$ $2s^22p$	-	$2p^4$ $^{1}S_0$ $2s2p^3$ $^{3}P_1^{\circ}$	1 356 870	2 193 340		2.0 - 1	9.1+10	С	40°,76*
113.37	25 2p	2	282p P ₁	138 250 138 250	998 650 1 020 290	bl	1.9 - 2 $2.40 - 1$	3.0+9 $2.49+10$	D C	40°,76* 40°,76*
111.47		1	0	90 730	987 830	bl	4.95 - 2		č	40°,76*
110.14		1	1	90 730	998 650	bl	1.11 - 1		C	40°,76*
107.58 100.14		1 0	2	90 730 0	1 020 290 998 650	bl	2.0 - 3 $1.98 - 2$	2.3+8 $4.39+9$	E C	40°,76* 40°,76*
113.24	2s2p	3 3 0	$2p^4\ ^3{ m P}_2$	869 510	1 752 580	bl	3.09 - 1	3.21+10	C	40°,76*
109.14		2	2	836 280	1752580	Ы	1.45 - 1	1.62 + 10	\mathbf{C}	40°.76*
108.84 98.07		1	2	833 840 833 840	1 752 580 1 853 530		4.23 - 2		C	40°,76*
97.16		1 2	0	836 280	1 865 530	bl	5.82 - 2 $1.01 - 1$		C	40°,76* 40°,76*
96.93		1	1	833 840	1 865 530	bl	7.05 - 2			40°,76*
112.53 ^C	_	$0^{2-1}D_2$	$2s2p^{3} {}^{3}S_{1}^{\circ}$	281 820	1 170 450		2.7 - 3	4.7+8	Е	76*
108.16 105.69 ^C	2s2p	9 ^{3 3} P ₂ ° 1	$2p^{4}$ 1 D $_{2}$	1 020 290 998 650	1 944 800 1 944 800	bl	3.4 - 2 $1.5 - 2$	3.8+9 $1.8+9$	E E	40°,76* 76*
107.49	$2s^22p$	$p^{2-1}D_2$	$2s2p^3$ $^1\mathrm{D}_2^\circ$	281 820	1 212 130	ьl	4.4 - 1	5.0+10	С	40°,76*

Co XXII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
106.23	$2s^22p^2$ ¹ S ₀	$2s2p^{3}$ ¹ P ₁	415 520	1 356 870	ьl	1.00 - 1	1.97+10	С	40°,76*
97.76 ^C	$2s2p^3\ ^3{ m S}^{ m o}_1$	$2p^{4-1}\mathrm{S}_0$	1 170 450	2 193 340		9.3 - 3	6.5+9	E	76 *
96.88 92.61 85.43	$2s^22p^2\ ^3{ m P}_2$ 1 0	$2s2p^3$ ${}^3S_1^{\circ}$ 1	138 250 90 730 0	1 170 450 1 170 450 1 170 450	bl bl	3.0 - 1 $1.05 - 1$ $3.39 - 2$	7.0+10 2.72+10 1.03+10	С С	40°,76* 40°,76* 40°,76*
93.12 89.17 ^C	$2s^22p^2\ ^3{ m P}_2$	$2s2p^{3}$ $^{1}D_{2}^{\circ}$	138 250 90 730	1 212 130 1 212 130	bl	7.0 - 2 $3.3 - 3$	1.1+10 5.5+8	E E	40°, 76* 76*
93.02	$2s^22p^2$ ¹ D ₂	$2s2p^{3-1}P_1^{o}$	281 820	1 356 870	bl	3.0 - 1	7.7+10	C	40°,76*
93.00 90.21 ^C	$2s2p^3\ ^3{ m D}_3^{ m o}$	$2p^{4} \ ^{1}\mathrm{D}_{2} \ _{2}$	869 510 836 280	1 944 800 1 944 800	bl	4.8 - 2 $5.0 - 3$	7.3+9 8.2+8	E E	40°,76* 76*
83.70 ^C	$2s2p^3$ $^3\mathrm{P}_1^{\mathrm{o}}$	$2p^{4}$ ¹ S ₀	998 650	2 193 340		6.3 - 3	6.0+9	E	76*
82.11 ^C 75.14 ^C	$2s2p^3$ $^5\mathrm{S}^{\mathbf{o}}_{2}$	$2p^4\ ^3{ m P}_2$	534 760 534 760	1 752 580 1 865 530		1.1 - 2 $8.5 - 4$	2.1+9 3.3+8	E E	76* 76*
82.06 ^C 78.98	$2s^22p^2\ ^3{ m P}_2$	$2s2p^3$ $^1 ext{P}_1^{\circ}$	138 250 90 730	1 356 870 1 356 870	Ы	1.1 - 3 $1.7 - 2$	3.6+8 6.2+9	E E	76* 40°,76*

Co XXIII

length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
iength (A)			·., ·						
717.9 ^C	$2s^22p^{-2}P_{1/2}^{o}$	$2s^22p\ ^2{ m P}_{3/2}^{ m o}$	0	139 290		M1	2.42+4	В	76*
365.23 ^C	$2s2p^2$ ² P _{3/2}	$2p^{3} {}^{4}S_{3/2}^{o}$	1 064 960	1 338 760		3.0 - 3	3.7+7	E	76*
229.62 ^C	*	·	903 260	1 338 760		6.4 - 3	2.0+8	E	76*
	1/2	3/2						-	
347.34 ^C	$2s2p^2$ $^2S_{1/2}$	$2p^3 \ ^4S_{3/2}^{\circ}$	1 050 860	1 338 760		1.1 - 3	1.5+7	E	76*
342.15 ^C	$2s^22p\ ^2\mathrm{P_{3/2}^o}$	$2s2p^2$ ⁴ P _{1/2}	139 290	431 560		6.0 - 4	1.7 + 7	\mathbf{E}	76*
277.79 ^C	3/2	3/2	139 290	499 270		4.8 - 4	1.0+7	${f E}$	76*
237.83 ^C	3/2	5/2	139 290	559 760		5.2 - 3	1.0 + 8	\mathbf{E}	76*
231.72 ^C	1/2	1/2	. 0	431 560		2.0 - 3	1.2+8	E	76*
237.31 ^C	$2s2p^2 \ ^2$ P _{3/2}	$2p^{3} {}^{2}\mathrm{D}_{3/2}^{\circ}$	1 064 960	1 486 350		1.5 - 3	4.5+7	\mathbf{E}	76*
218.25^{C}	3/2	5/2	1 064 960	1 523 150		1.52 - 1	3.56 + 9	C	76*
171.50	1/2	3/2	903 260	1 486 350		1.4 - 1	7.7 + 9	C	40°,76*
229.63^{C}	$2s2p^2$ 2 S _{1/2}	$2p^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$	1 050 860	1 486 350		2.32 - 2	7.3+8	C	76*
181.74 ^C	$2s2p^2\ ^2\mathrm{D}_{3/2}$	$2p^{3}$ ${}^{4}S_{3/2}^{\circ}$	788 520	1 338 760		4.4 - 3	2.2+8	E	76*
164.70 ^C	$2s2p^2\ ^2{ m P}_{3/2}$	$2p^{3} {}^{2}P_{1/2}^{\circ}$	1 064 960	1 672 130		1.8 - 2	2.2+9	D	76*
146.86	3/2	2P 1/2 3/2	1 064 960	1 745 870	Ы	3.0 - 1	2.2+3	C	40°, 76*
130.06	1/2	1/2	903 260	1 672 130	bl	1.7 - 2	3.4+9	Ď	40°,76*
118.68	1/2	3/2	903 260	1 745 870		3.12 - 2	3.69 + 9	C	40°,76*
160.97	$2s2p^2$ 2 S _{1/2}	$2p^3 \ ^2P_{1/2}^{\circ}$	1 050 860	1 672 130		9.50 - 2	1.22+10	C	40°,76*
143.89	1/2	3/2	1 050 860	1 745 870	bl	2.80 - 2	2.26+9	Ċ	40°,76*
154.03 ^C	$2s^22p\ ^2{ m P}_{3/2}^{\circ}$	$2s2p^2 {}^2\mathrm{D}_{3/2}$	139 290	788 520		1.7 - 4	1.2+7	E	76*
147.09	3/2	5/2	139 290	819 150		1.31 - 1	6.7+9	C	40°,76*
126.82	1/2	3/2	0	788 520		1.2 - 1	1.3+10	C	40°,76*
149.88	$2s2p^2$ 2 $D_{5/2}$	$2p^{3-2}D_{3/2}^{\circ}$	819 150	1 486 350		7.44 - 2	5.5+9	С	40°,76*
143.30	3/2	3/2	788 520	1 486 350		9.60 - 2	7.8+9	C	40°,76*
142.05 136.12	5/2	5/2	819 150	1 523 150	l. 1	2.47 - 1 $7.12 - 2$	1.36+10	C C	40°, 76*
	3/2	5/2	788 520	1 523 150	bl	1.12 - 2	4.27+9	C	40°,76*
130.90 ^C	$2s^22p\ ^2{ m P}^{ m o}_{3/2}$	$2s2p^2\ ^2\mathrm{P}_{1/2}$	139 290	903 260		4.0 - 4	7.7 + 7	\mathbf{E}	76*
110.71	1/2	1/2	0	903 260	bl	1.6 - 1	4.3 + 10	$^{\rm C}$	40°,76*
108.03 93.90	3/2 1/2	3/2	139 290 0	1 064 960 1 064 960	bl	3.4 - 1 $3.42 - 2$	4.9 + 10 $6.5 + 9$	C C	40°,76* 40°,76*
		3/2		1 004 200		J.42 - 2	0.578	C	40 , 10
128.37	$2s2p^{2}$ 4 P _{5/2}	$2p^{3} {}^{4}S_{3/2}^{\circ}$	559 760	1 338 760		2.04 - 1	2.06+10	C	$40^{\circ}, 76^{*}$
119.12	3/2	3/2	499 270	1 338 760		1.35 - 1	1.59 + 10	$^{\rm C}$	40°, 76*
110.23	1/2	3/2	431 560	1 338 760	bl	8.44 - 2	1.16+10	C	40°,76*
113.17	$2s2p^2$ 2 D $_{3/2}$	$2p^3 \ ^2P_{1/2}^{\circ}$	788 520	1 672 130	bl	1.26 - 1	3.29 + 10	$^{\mathrm{C}}$	40°,76*
107.91	5/2	3/2	819 150	1 745 870		1.06 - 1	1.52 + 10	C	40°,76*
104.45	3/2	3/2	788 520	1 745 870		3.6 - 2	5.6+9	D	40°,76*
109.70	$2s^22p\ ^2{ m P}^{\circ}_{3/2}$	$2s2p^2$ 2 S _{1/2}	139 290	1 050 860		1.38 - 1	3.84 + 10	C	40°,76*
95.16	1/2	1/2	0	1 050 860		6.4 - 3	2.4 + 9	D	40°,76*
107.92 ^C	$2s2p^2$ 4 P _{5/2}	$2p^{3} {}^{2}\mathrm{D}^{\mathrm{o}}_{3/2}$	559 760	1 486 350		2.8 - 3	4.0+8	E	76*
103.80^{T}	5/2	5/2	559 760	1 523 150		2.6 - 2	2.7+9	E	40°,76*
101.31 ^C	3/2	3/2	499 270	1 486 350		2.1 - 2	3.4+9	Ē	76*
97.67 ^C	3/2	5/2	499 270	1 523 150		5.6 - 4	6.5 + 7	\mathbf{E}	76*
94.81 ^C	1/2	3/2	431 560	1 486 350		4.2 - 4	7.8 + 7	E	76*
84.31 ^C	$2s2p^2$ ⁴ P _{5/2}	$2p^{3} {}^{2}P_{3/2}^{\circ}$	559 760	1 745 870		7.2 - 4	1.7+8	E	76*
80.61 ^C	1/2	1/2	431 560	1 672 130		5.4 - 4	2.8+8	E	76*
$80.22^{\mathbf{C}}$	3/2	3/2	499 270	1 745 870		1.4 - 3	3.5+8	E	76 *
11.197^{T}	$2s2p^2\ ^2{ m D}_{3/2}$	2s2p(³ P°)3d ² D _{5/2}	788 520	9 720 000?					45
11.173 ^T	$2s2p^2$ 2 S _{1/2}	2s2p(¹ P°)3d ² D° _{3/2}	1 050 860	10 000 000?					45
11.105^{T}	$2s2p^{2-2}D_{5/2}$	2s2p(³ P°)3d ² F _{5/2} °							
11.105 11.064 ^T	•	, -	819 150	9 832 000?					45
11.064 T	5/2 3/2	7/2 5/2	819 150 788 520	9 858 000? 9 832 000?					45 45
11.040									

Co XXIII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
11.070 ^T	$2s2p^2 {}^2\mathrm{P}_{3/2}$	2s2p(¹ P°)3d ² P° _{3/2}	1 064 960	10 100 000?				45
$11.010^{\mathbf{T}}$	$2s2p^2 {}^4P_{5/2}$	$2s2p(^{3}P^{\circ})3d\ ^{4}F_{7/2}^{\circ}$	559 760	9 640 000?				45
$10.933^{\mathbf{T}}$	$2s2p^2 {}^4P_{3/2}$	$2s2p(^{3}P^{\circ})3d^{4}P_{5/2}^{\circ}$	499 270	9 646 000?				45
10.868^{T}	5/2	3/2	559 760	9 761 000?				45
10.799^{T}	3/2	1/2	499 270	9 759 000?				45
10.799 ^T	3/2	3/2	499 270	9 761 000?				45
10.901^{T}	$2s2p^2 {}^4\mathrm{P}_{5/2}$	2s2p(3P°)3d 4D° _{5/2}	559 760	9 710 000?				45
10.889^{T}	3/2	5/2	499 270	9 710 000?				45
10.885^{T}	5/2	7/2	559 760	9 747 000?				45
10.847^{T}	1/2	3/2	431 560	9 651 000?				45
10.835^{T}	1/2	1/2	431 560	9 661 000?				45
10.847^{T}	$2s2p^2$ 2 D _{5/2}	2s2p(1P°)3d 2F° _{7/2}	819 150	10 040 000?				45
10.809^{T}	3/2	5/2	788 520	10 040 000?				45

Co xxiv

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	Dowel	Opper							··
2809. ^C	$2s2p$ $^3P_0^{\circ}$	$2s2p$ $^3P_1^{\circ}$	363 130	398 720		M1	7.18+2	C+	76*
905.06 ^C	1	2	398 720	509 210		M1	1.66+4	C+	76*
492.61 ^C	$2s2p^{-1}\mathrm{P_{I}^{o}}$	$2p^2 {}^3P_0$	799 040	1 002 040		9.0 - 4	2.5 + 7	E	76 *
344.65 ^C	1	1	799 040	1 089 190		5.4 - 4	1.0+7	E	76*
294.90^{C}	1	2	799 040	1 138 140		3.0 - 2	4.6 + 8	D	76*
345.03 ^C	$2s2p$ $^3P_2^{\circ}$	$2s2p^{-1}P_{1}^{o}$	509 210	799 040		M1	1.6+4	D	76*
249.80 ^C	1	1	398 720	799 040		M1	2.6+4	D	76*
229.41 ^C	0	1	363 130	799 040		M1	4.4+4	D	76*
204.10	$2s2p^{-1}$ P $_1^{\circ}$	$2p^{2-1}D_2$	799 040	1 289 000		1.63 - 1	5.20 + 9	В	40°, 76*
1=0.40	$2s2p$ $^3P_2^{\circ}$	$2p^{2-3}P_{1}$	F00 010	1 000 100		0.00		70	400 -0*
172.42 165.75			509 210 398 720	1 089 190 1 002 040	ы	6.20 - 2 $5.37 - 2$	4.64+9 $1.3+10$	B B	40°,76* 40°,76*
159.00	1 2	0 2	509 210	1 138 140	bl	1.45 - 1	7.65+9	В	40°,76*
144.83	1	1	398 720	1 089 190		4.35 - 2	4.61 + 9	В	40°,76*
137.73	0	1	363 130	1 089 190		6.33 - 2	7.42 + 9	В	40°,76*
135.24	1	2	398 720	1 138 140		8.43 - 2	6.15 + 9	В	40°, 76*
120.00	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^{2}$ 1 S ₀	700 040	1 514 350		1.06 1	2.61.10	В	40°,76*
139.80	282p P ₁	2p 30	799 040	1 514 550		1.06 - 1	3.6+10	ь	40 , 70
128.24	$2s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^{2-1}D_2$	509 210	1 289 000		7.55 - 2	6.12 + 9	C	40°,76*
		-r -2					0.22 (0	-	,
125.15	$2s^{2}$ 1 S ₀	$2s2p\ ^{1}{ m P}_{1}^{ m o}$	0	799 040	bl	1.52 - 1	2.16 + 10	В	40°, 76*
	- 2.10	150						_	
11.430	$2p^{2-1}S_0$	$2p3s\ ^{1}P_{1}^{o}$	1 514 350	10 264 000		5.4 - 2	9.2 + 11	D	43°,76*
11.141	$2p^{2-1}D_2$	$2p3s^{-1}P_{1}^{o}$	1 289 000	10 264 000		1.4 - 1	2.4+12	D	43°,76*
11.141	zp D_2	2p38 F ₁	1 289 000	10 204 000		1.4 - 1	2.4+12	D	45,76
11.141	$2p^2\ ^3{ m P_1}$	$2p3s\ ^{3}P_{0}^{o}$	1 089 190	10 065 000		4.8 - 2	2.6+12	D	43°,76*
		•							,
10.933	$2p^{2-1}S_0$	$2p3d\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	1 514 350	10 661 000		1.28	2.38 + 13	C-	43°,76*
	3.00	30						_	
10.933 10.811	$2s2p$ $^3P_2^{\circ}$	$2s3s$ $^3\mathrm{S}_1$	509 210	9 653 000		1.3 - 1	2.4+12	D	43°,76*
10.764 ^C	1	1	398 720 363 130	9 653 000 9 653 000		7.8 - 2 $2.7 - 2$	1.5+12 $5.2+11$	D D	43°,76* 76*
10.704	О	1	303 130	9 033 000		2.1 – 2	5.2+11	ט	10
10.811	$2p^{2-1}D_2$	$2p3d\ ^{1}\mathrm{D_{2}^{o}}$	1 289 000	10 539 000		2.3 - 1	2.6 + 12	C-	43°,76*
	•	-							
10.800	$2s2p\ ^{1}P_{1}^{o}$	$2s3d$ $^{1}\mathrm{D}_{2}$	799 040	10 058 000		1.82	2.08 + 13	$^{\rm C}$	43°,76*
10.700	$2p^2$ $^1\mathrm{D}_2$	$2p3d$ $^3P_2^{\circ}$	1 000 000	10 570 000		0.5.	0.01.0	_	
10.760	$2p$ D_2	2p3a P ₂	1 289 000	10 578 000		8.5 - 1	9.8 + 12	C	43°,76*
10.760	$2p^{2-3}P_2$	$2p3d ^3D_2^o$	1 138 140	10 430 000		1.6 - 1	1.8+12	D	43°,76*
10.743	2	1	1 138 140	10 449 000		1.5 - 2	2.9+11	Ď	43°,76*
10.709	1	2	1 089 190	10 430 000		1.43	1.67 + 13	C-	43°,76*
10.674	1	1	1 089 190	10 449 000		2.6 - 1	5.1 + 12	C-	43°,76*
10.593	0	1	1 002 040	10 449 000		1.30	2.58+13	C-	43°,76*
10.674	$2p^{2-1}{ m D}_2$	$2p3d\ ^{1}\mathrm{F_{3}^{o}}$	1 289 000	10 658 000		5.0	4.18+13	C-	43°,76*
		-13		10 000 000		0.0	1.10 10	Ŭ	10 ,10
10.674	$2p^{2-1}D_2$	$2p3d\ ^{1}P_{1}^{o}$	1 289 000	10 661 000		7.5 - 2	1.5 + 12	D	61°,76*
	2 2 _	. 2							
10.593	$2p^2 \ ^3P_2$	$2p3d$ $^3P_1^{\circ}$	1 138 140	10 578 000		3.4 - 1	6.6+12	C-	43°, 76*
10.593 10.543	2	2	1 138 140	10 578 000 10 578 000		1.05	1.25+13	C-	43°,76*
10.543	1 1	1 2	1 089 190 1 089 190	10 578 000		7.5 - 1 $1.9 - 1$	1.5+13 $2.3+12$	C- D	43°,76* 43°,76*
10.543	1	0	1 089 190	10 578 000		3.3 - 1	2.0+12	C-	43°,76*
10.443 ^C	0	1	1 002 040	10 578 000		1.5 - 3	3.1+10	Č-	76*
10.587 ^C	$2s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p3p^{-3}D_1$	799 040	10 245 000		8.1 - 2	1.6 + 12	D	76*
10 571	$2s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	0.013-	F00 010	0.007.057		0.0 5		_	
10.571 10.571		$2s3d$ $^3\mathrm{D}_1$	509 210 509 210	9 965 000 9 971 000		3.6 - 2	7.2+11	C-	43°,76*
10.552	2 2	2	509 210	9 986 000		5.5 - 1 2.99	6.6+12 $2.55+13$	C-	43°,76* 43°,76*
10.445	1	3	398 720	9 965 000		5.4 - 1	1.1+13	C-	61°,76*
10.445	1	2	398 720	9 971 000		1.64	2.01+13	Č-	43°,76*
10.428	0	1	363 130	9 965 000		7.5 - 1	1.5 + 13	C-	43°,76*
10 502	$2p^2$ 3 P $_2$	0.04150	1 100 140	10.050.000	_				46
10.503	2p P ₂	$2p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	1 138 140	10 658 000	2				43
10.503	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p3p^{-1}P_{1}$	799 040	10 320 000		8.7 - 2	1.8+12	D	43°,76*
10.000	_		100 040	10 320 000		0.1 - 2	1.0712	ט	20,10
10.389 ^C	$2s2p^{-1}$ P $_1^{o}$	$2p3p$ 3P_2	799 040	10 425 000		2.2 - 1	2.7 + 12	D	76*
10.389^{C}	1	1	799 040	10 425 000		2.1 - 1	4.3+12	Č-	76*

Co XXIV - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
10.265	$2s2p$ 1 P $_{1}^{o}$	$2p3p^{-1}D_2$	799 040	10 541 000		6.0 - 1	7.6+12	C-	43°,76*
10.182	$2s2p~^1\mathrm{P}^{\mathrm{o}}_{1}$	$2s3s$ $^{1}\mathrm{S}_{0}$	799 040	10 620 000?		3.3 - 2	2.1+12	D	43°,76*
10.179 ^C	$2s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$2p3p$ 3D_2	509 210	10 333 000		1.4 - 2	1.7+11	E	76*
10.156	- 1	1	398 720	10 245 000		1.6 - 1	3.4 + 12	\mathbf{E}	43°,76*
10.115	0	1	363 130	10 245 000		8.4 - 2	1.8 + 12	\mathbf{E}	43°,76*
10.066	1	2	398 720	10 333 000		4.8 - 1	6.3 + 12	C-	43°,76*
10.066	2	3	509 210	10 444 000		7.5 - 1	7.0 + 12	C-	43°,76*
10.115	$2s^{2}$ 1 S ₀	$2s3p$ $^3\mathrm{P_1^o}$	0	9 886 000		2.7 - 1	5.9+12	C-	43°,76*
10.085 ^C	$2s2p^{-3}P_{2}^{o}$	$2p3p\ ^{3}P_{2}$	509 210	10 425 000		4.6 - 1	6.0+12	C-	76*
10.066	. 2	0	398 720	10 333 000		1.2 - 1	7.9 + 12	Ď	43°,76*
9.974	1	1	398 720	10 425 000	1		,	_	43
9.974	1	2	398 720	10 425 000		1.4 - 2	1.9 + 11	D	43°,76*
10.053	$2s2p$ $^3\mathrm{P_0^o}$	$2p3p^{-1}\mathrm{P}_1$	363 130	10 320 000	3				43
10.053	$2s2p$ $^3P_2^{\circ}$	$2p3p$ 3S_1	509 210	10 456 000	3				43
9.974	$2s2p$ $^3P_2^{\circ}$	$2p3p^{-1}D_2$	509 210	10 541 000	1				43

Co xxv

Wave- length (Å)	Classific Lower	ation Upper	Energy Lev	els (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
659.39 ^C	$1s^22p\ ^2\mathrm{P}^o_{1/2}$	1s ² 2p ² P _{3/2}	409 445	561 101	M1	3.13+4	В	76*
244.233 ^S	$1s^2 2s ^2 S_{1/2}$	$1s^22p\ ^2P_{1/2}^{\circ}$	0	409 445	3.40 - 2	1.92+9	B+	62°,76*
178.221 ^S	1/2	3/2	0	561 101	9.48 - 2	-	B+	62°,76*
63.837 ^C	$1s^24p\ ^2\mathrm{P}^o_{3/2}$	$1s^25d\ ^2{ m D}_{3/2}$	[13 579 530]	[15 146 030]				
63.712 ^C		5/2	[13 579 530]	[15 149 100]				
63.074 ^C	3/2 1/2	3/2	[13 560 590]	[15 146 030]				
30.2727 ^C	$1s^23p ^2P_{3/2}^o$	$1s^24s$ $^2S_{1/2}$	[10 209 610]	[13 512 920]				
29.8665 ^C	18 5p 1 3/2 1/2	15 45 51/2	[10 164 690]	[13 512 920]				
	•	•						
29.5155 ^C	$1s^23p\ ^2P_{3/2}^o$	$1s^24d\ ^2\mathrm{D}_{3/2}$	[10 209 610]	[13 597 660]				
29.4634 ^C 29.1293 ^C	3/2	5/2	[10 209 610] [10 164 690]	[13 603 650] [13 597 660]				
	1/2	3/2	[10 104 030]	[13 397 000]				
28.4947 ^C	$1s^23s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{o}$	[10 051 160]	[13 560 590]				
28.3417 ^C	1/2	3/2	[10 051 160]	[13 579 530]				
$20.4368^{\rm C}$	$1s^23p ^2\mathrm{P}^o_{3/2}$	$1s^25s$ $^2S_{1/2}$	[10 209 610]	[15 102 750]				
20.2509^{C}	1/2	1/2	[10 164 690]	[15 102 750]				
20.2576 ^C	•	•						
20.2576° 20.2450 ^C	$1s^23p\ ^2P_{3/2}^o$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[10 209 610]	[15 146 030]				
20.0749 ^C	3/2 1/2	5/2 3/2	[10 209 610] [10 164 690]	[15 149 100] [15 146 030]				
		•	[20 20 000]	[20 220 000]				
10.5373 ^C	$1s^22p\ ^2\mathrm{P}^o_{3/2}$	$1s^23s ^2S_{1/2}$	561 101	[10 051 160]	7.2 - 2	2.2 + 12	C	45,63,76*
10.3716 ^C	1/2	1/2	409 445	[10 051 160]	3.4 - 2	1.1 + 12	D	45,63,76*
10.3183^{C}	$1s^2 2p ^2 P_{3/2}^o$	$1s^23d\ ^2\mathrm{D}_{3/2}$	561 101	[10 252 660]	2.7 - 1	4.3+12	C	45, 63, 76*
10.3032^{C}	3/2	5/2	561 101	[10 266 840]	2.43	2.56+13	C+	45,63,76*
10.1593^{C}	1/2	3/2	409 445	[10 252 660]	1.36	2.19 + 13	C+	45,63,76*
9.83798^{C}	$1s^22s$ $^2S_{1/2}$	$1s^23p\ ^2P_{1/2}^{\circ}$	0	[10 164 690]	2.58 - 1	8.89+12	В+	45,63,76*
9.79469 ^C	1/2	3/2	0	[10 209 610]	4.94 - 1		B+	45, 63, 76*
7.72092 ^C								
7.72092° 7.63156 ^C	$1s^22p\ ^2P^o_{3/2}$	$1s^24s \ ^2S_{1/2}$	561 101 409 445	[13 512 920]				63
	1/2	1/2	409 443	[13 512 920]				63
7.67074 ^C	$1s^2 2p ^2P_{3/2}^{\circ}$	$1s^24d\ ^2{ m D}_{3/2}$	561 101	[13 597 660]				63
7.66721 ^C	3/2	5/2	561 101	[13 603 650]				63
7.58253 ^C	1/2	3/2	409 445	[13 597 660]				63
7.37431 ^C	$1s^22s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{o}$	0	[13 560 590]				63
7.36403 ^C	1/2	3/2	0	[13 579 530]				63
6.87680 ^C	$1s^22p ^2P_{3/2}^{\circ}$	$1s^25s$ $^2S_{1/2}$	561 101	[15 102 750]				63
6.80582^{C}	1/2	1/2	409 445	[15 102 750]				63
6.85639 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	504 404					
6.85495 ^C			561 101 561 101	[15 146 030]				63
6.78583 ^C	3/2 1/2	5/2 3/2	409 445	[15 149 100] [15 146 030]				63 63
	•	•		•				
6.61066 ^C 6.60643 ^C	$1s^2 2s {}^2S_{1/2}$	$1s^25p\ ^2\mathrm{P}^{\circ}_{1/2}$	0	[15 127 080]				63
	1/2	3/2	0	[15 136 760]				63
1.7544 ^C	$1s^2 2p ^2P_{3/2}^{\circ}$	$1s2s^2$ 2 S _{1/2}	561 101	[57 558 000]				63
1.7499 ^C	1/2	1/2	409 445	[57 558 000]				63
1.7362^{C}	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s(^2S)2p^2(^3P)^4P_{1/2}$	561 101	[58 157 000]				63
1.7338 ^C	3/2	3/2	561 101	[58 237 000]				63
1.7322 ^C	3/2	5/2	561 101	[58 289 000]				63
1.7317 ^C 1.7293 ^C	1/2	1/2	409 445	[58 157 000]				63
	1/2	3/2	409 445	[58 237 000]	I			63
1.7342 ^C	$1s^22s$ 2 S _{1/2}	$1s(^{2}S)2s2p(^{3}P^{o}) ^{4}P_{1/2}^{o}$	0	[57 663 000]]			63
1.7332 ^C	1/2	3/2	0	[57 697 000]	Ī			63
1.7277 ^C	$1s^22p$ $^2P_{3/2}^{\circ}$	$1s(^{2}S)2p^{2}(^{1}D)^{2}D_{3/2}$	561 101	[58 441 000	1			63
1.7259^{C}	3/2	5/2	561 101	[58 500 000	•			63
1.7232^{C}								

Co xxv - Continued

Wave- length (Å)	Classif Lower	Energy Lev	Acc.	. References			
C	2 2 2	Upper	 .		 	·	
1.7275 ^C	$1s^22p\ ^2\mathrm{P}^{o}_{3/2}$	$1s(^2S)2p^2(^3P)^2P_{1/2}$	561 101	[58 446 000]			63
1.7231 ^C	1/2	1/2	409 445	[58 446 000]			63
1.7225 ^C	3/2	3/2	561 101	[58 615 000]			63
1.7181 ^C	1/2	3/2	409 445	[58 615 000]			63
1.7241 ^C	$1s^22s$ $^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o})^{2}P_{1/2}^{o}$	0	[58 001 000]			63
1.7215 ^C	1/2	3/2	0	[58 089 000]			63
1.7180 ^C	$1s^22s$ $^2S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o}) \ ^{2}P_{1/2}^{o}$	0	[58 207 000]			63
1.7172 ^C	1/2	3/2	0	[58 234 000]			63
1.7177 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s(^2S)2p^2(^1S)^2S_{1/2}$	561 101	[58 776 000]			63
1.7134 ^C	1/2	1/2	409 445	[58 776 000]			63

Co XXVI

Wave- length (Å)	Classification Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
6600 ^C	1s4p ³ P ₂ °	1s4d ³ D ₂	[72 314 300]	[72 329 400]				
4590 ^C	2	3	[72 314 300]	[72 336 100]				
3040 ^C			[72 296 500]	[72 329 400]				
3010 ^C	1	2	: :					
	1	1	[72 296 500]	[72 329 700]				
2820 ^C	o	1	[72 294 300]	[72 329 700]				
6400 ^C	1 5 30	$1s5p\ ^{3}P_{1}^{\circ}$	[=0.0=0.00]	[=0 00= ==0]			_	
	$1s5s\ ^{3}\mathrm{S}_{1}$	$1s5p P_1$	[73 972 000]	[73 987 500]	8.1 - 2	4.4 + 6	E	76*
4060 ^C	1	2	[73 972 000]	[73 996 600]				
5400 ^C	$1s5s$ $^{1}S_{0}$	1 - 100	[20 000 000]	[= 4 00 = 400]			_	
5400	1858 50	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[73 987 000]	[74 005 400]	1.0 - 1	7.5 + 6	\mathbf{E}	76*
3280 ^C	$1s4s\ ^{3}S_{1}$	$1s4p\ ^{3}P_{1}^{o}$	[70 000 000]	[70 000 500]	7 . 0	1 6 1 7	10	# a *
2070 ^C		=	[72 266 000]	[72 296 500]	7.5 - 2	1.6 + 7	E	76*
2070	1	2	[72 266 000]	[72 314 300]				
2780 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}P_{1}^{o}$	[72 295 500]	[72 331 500]	6.9 - 2	2.0+7	D	76*
2100	1310 50	1319 11	[12 250 000]	[12 001 000]	0.0 - 2	2.071	D	10
1380 ^C	$1s3s\ ^{3}\mathrm{S}_{1}$	$1s3p\ ^{3}P_{1}^{o}$	[68 560 000]	[68 632 500]	4.8 - 2	5.6+7	C	76*
2000	2555 51	2007 1	[00 000 000]	[00 002 000]	4.0 2	0.0-1 1	0	10
1180 ^C	$1s3s^{-1}S_0$	$1s3p\ ^{1}P_{1}^{o}$	[68 630 600]	[68 715 500]	5.7 - 2	9.1 + 7	\mathbf{C}	76*
		_	[,	[00 120 000]	··· -	0.2,.	-	
408.65 ^C	$1s2s\ ^{3}S_{1}$	$1s2p\ ^{3}P_{0}^{\circ}$	[57 857 380]	[58 102 090]	1.01 - 2	4.04+8	В	76*
381.24^{C}	1	1	[57 857 380]	[58 119 680]	2.94 - 2	4.50+8	В	76*
247.65 ^C	1	2	[57 857 380]	[58 261 180]	8.34 - 2	1.82+9	В	76*
		•		[]	3. 3.		-	••
346.34 ^C	$1s2s\ ^{1}\mathrm{S}_{0}$	$1s2p^{-1}P_{1}^{o}$	[58 122 700]	[58 411 430]	3.35 - 2	6.21 + 8	В	76*
		_	•		_			
180.49^{C}	$1s2s\ ^{3}{ m S}_{1}$	$1s2p^{-1}P_{1}^{o}$	[57 857 380]	[58 411 430]	6.78 - 3	4.62 + 8	В	76*
_		_	,			•		
60.40 ^C	$1s4p^{-1}P_{1}^{o}$	$1s5s {}^{1}S_{0}$	[72 331 500]	[73 987 000]	1.6 - 1	3.0 + 11	В	76*
		_						
60.32 ^C	$1s4p\ ^{3}P_{2}^{o}$	$1s5s\ ^{3}\mathrm{S}_{1}$	[72 314 300]	[73 972 000]				
59.68 ^C	1	1	[72 296 500]	[73 972 000]	1.6 - 1	9.7 + 10	В	76*
C	•	_						
58.48 ^C	$1s4s\ ^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$[72\ 295\ 500]$	[74 005 400]	4.38 - 1	2.85 + 11	В	76*
C	30	2						
58.09 ^C	$1s4s\ ^{3}\mathrm{S}_{1}$	$1s5p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	[72 266 000]	[73 987 500]	4.50 - 1	2.96 + 11	В	76*
27.933 ^C	t a lne	10	[00]					
27.933	$1s3p\ ^{1}\mathrm{P_{1}^{o}}$	$1s4s$ $^{1}S_{0}$	[68 715 500]	[72 295 500]	9.9 - 2	8.5 + 11	В	76*
$27.910^{\rm C}$	$1s3d$ $^3\mathrm{D}_1$	$1s4p\ ^{3}P_{0}^{\circ}$	[00 711 000]	[=0.004.000]				
27.892 ^C			[68 711 300]	[72 294 300]				
27.887 ^C	1	1	[68 711 300]	[72 296 500]				
27.887°	2	1	[68 710 600]	[72 296 500]				
27.872 ^C	3	2	$[68\ 726\ 500]$	[72 314 300]				
27.749 ^C	2	2	[68 710 600]	[72 314 300]				
C	2 -							
27.846 ^C	$1s3p$ $^3\mathrm{P}^{\mathrm{o}}_2$	$1s4s$ $^3\mathrm{S}_1$	$[68\ 674\ 800]$	[72 266 000]				
27.522^{C}	1	1	[68 632 500]	[72 266 000]	9.6 - 2	2.8 + 11	В	76*
		-						
27. 7 58 ^C	$1s3d^{-1}D_{2}$	$1s4p^{-1}P_{1}^{o}$	[68 728 900]	[72 331 500]	5.5 - 2	1.6 + 11	$^{\rm C}$	76*
2= 4+2C	- 1-0	. 1						
27.612 ^C	$1s3p^{-1}P_{1}^{o}$	$1s4d$ $^{1}D_{2}$	[68 715 500]	[72 337 100]	1.9	3.3 + 12	C	76*
0= 000C	3700							
27.363 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4d$ $^3\mathrm{D}_2$	[68 674 800]	[72 329 400]				
27.313 ^C	2	3	[68 674 800]	[72 336 100]				
27.050 ^C	1	2	[68 632 500]	[72 329 400]				
27.047^{C}	1	1	[68 632 500]	[72 329 700]				
27.011 ^C	0	1	[68 627 500]	[72 329 700]				
	_		-	. ,				
$27.020^{\rm C}$	$1s3s$ $^{1}S_{0}$	1s4p ¹ P ₁ °	[68 630 600]	[72 331 500]	3.93 - 1	1.20 + 12	В	76*
0								
26.763 ^C	$1s3s\ ^{3}S_{1}$	1s4p ³ P ₁ °	[68 560 000]	[72 296 500]	3.99 - 1	1.24 + 12	В	76*
26.636^{C}	1	2	[68 560 000]	[72 314 300]				
C								
18.970 ^C	$1s3p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[68 715 500]	[73 987 000]	2.3 - 2	4.2 + 11	\mathbf{C}	76*
10.050C	- 0 3-0							
18.878 ^C	$1s3p\ ^{3}P_{2}^{\circ}$	$1s5s$ 3S_1	[68 674 800]	[73 972 000]				
18.728 ^C	1	1	[68 632 500]	[73 972 000]	2.1 - 2	1.3 + 11	C	76*
10.00=C	10	1	toe :	-				
18.605 ^C	$1s3s\ ^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[68 630 600]	[74 005 400]	1.01 - 1	6.49 + 11	В	76 *
	_							
10 42EC	1.0.30	4 × 3mn	[00 =00 000]	[mo oom ====				
$18.425^{ m C} \\ 18.394^{ m C}$	1s3s ³ S ₁	1s5p ³ P ₁ °	[68 560 000] [68 560 000]	[73 987 500] [73 996 600]		6.7 + 11	В	76*

Co xxvi - Continued

Wave- ength (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
9.7855 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s3s {}^{1}S_{0}$	[58 411 430]	[68 630 600]	4.2 - 2	2.9+12	В	76*
9.7099 ^C	$1s2p$ $^3P_2^{\circ}$	$1s3s$ $^3\mathrm{S}_1$	[58 261 180]	[68 560 000]				
9.5783 ^C	1	1	[58 119 680]	[68 560 000]	4.2 - 2	1.0 + 12	В	76 *
9.6923 ^C	1s2p 1P1	$1s3d$ $^{1}\mathrm{D_{2}}$	[58 411 430]	[68 728 900]	2.1	3.0+13	C+	76*
9.5699^{C}	$1s2p\ ^{3}P_{2}^{o}$	$1s3d$ $^3\mathrm{D}_2$	[58 261 180]	[68 710 600]				
9.5554 ^C	2	3	[58 261 180]	[68 726 500]				
9.4421 ^C	1	2	[58 119 680]	[68 710 600]				
9.4414 ^C	1	1	[58 119 680]	[68 711 300]				
9.4258^{C}	0	1	[58 102 090]	[68 711 300]				
9.4404 ^C	$1s2s^{-1}S_{0}$	$1s3p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[58 122 700]	[68 715 500]	3.58 - 1	8.93+12	В	76*
9.2806 ^C	$1s2s\ ^{3}\mathrm{S}_{1}$	1s3p ³ P ₁ °	[57 857 380]	[68 632 500]	3.63 - 1	9.37+12	В	76*
7.2025 ^C	$1s2p^{-1}P_{1}^{o}$	1s4s ¹ S ₀	[58 411 430]	[72 295 500]	9.3 - 3	1.2+12	C	76*
7.1810 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\circ}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[58 411 430]	[72 337 100]	3.6 - 1	9.3+12	C	76*
7.1404 ^C	1s2p ³ P ₂ °		•		5.0	***		
7.1404° 7.0690°	$1s2p$ $^{\circ}P_{2}^{\circ}$	1s4s ³ S ₁	[58 261 180] [58 119 680]	[72 266 000] [72 266 000]	9.0 - 3	4.0+11	C	76*
		1	[00 119 000]	[12 200 000]	9.U - 3	4.0411	C	10
7.1082^{C}	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s4d$ $^3\mathrm{D}_2$	[58 261 180]	[72 329 400]				
7.1048^{C}	2	3	[58 261 180]	[72 336 100]				
$7.0374^{\rm C}$	1	2	[58 119 680]	[72 329 400]				
7.0373 ^C	1	1	[58 119 680]	[72 329 700]				
7.0286 ^C	0	1	[58 102 090]	[72 329 700]				
7.0379 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	1s4p ¹ P ₁	[58 122 700]	[72 331 500]	8.6 - 2	3.9+12	В	76*
6.9256 ^C	$1s2s$ $^3\mathrm{S}_1$	•	• • • •	,				
6.9256 ⁵ 6.9171 ^C		1s4p ³ P ₁	[57 857 380] [57 857 380]	[72 296 500] [72 314 300]	9.3 - 2	4.3+12	В	76*
	1	2	[31 631 360]	[12 314 300]				
6.4203 ^C	$1s2p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[58 411 430]	[73 987 000]	3.6 - 3	5.8+11	C	76*
$6.3650^{\rm C}$	$1s2p\ ^{3}\mathrm{P}_{2}^{\mathrm{o}}$	$1s5s\ ^{3}\mathrm{S}_{1}$	[58 261 180]	[73 972 000]				
6.3082^{C}	1	1	[58 119 680]	[73 972 000]	3.6 - 3	2.0 + 11	C	76*
6.2962 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}P_{1}^{\circ}$	[58 122 700]	[74 005 400]	3.5 - 2	2.0+12	В	76*
		_		, ,				
6.1996 ^C	$1s2s$ 3S_1	$1s5p$ $^3\mathrm{P}^{\mathrm{o}}_1$	[57 857 380]	[73 987 500]	3.6 - 2	2.1 + 12	В	76*
6.1961 ^C	1	2	[57 857 380]	[73 996 600]				
1.728388^{C}	$1s^{2} {}^{1}S_{0}$	1s2s ³ S ₁	0	[57 857 380]	M1	3.12+8	В	76*
1.720588 ^C	$1s^{2}$ 1 S ₀	$1s2p\ ^{3}P_{1}^{o}$	0	[58 119 680]	7.84 - 2	5.89+13	В	76*
1.716409 ^C	0	1327 1 1	ő	[58 261 180]	M2	9.05 + 9	D	76*
$1.711994^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	$1s2p^{-1}P_1^o$	0	[58 411 430]	6.93 - 1	5.26+14	В	65,66,67
1.6778 ^C	$1s2p^{-1}P_1^o$	$2s^{2}$ 1 S ₀	[58 411 430]	[118 012 000]	2.6 - 2	6.2+13	D	63,76*
1.6697 ^C	1s2p 3P ₁	$2s^{2}$ 1 S ₀	[58 119 680]	[118 012 000]	2.7 - 2	6.4+13	D	63,76*
1.6691 ^C	$1s2p^{-1}\mathrm{P_1^o}$	$2p^2 {}^3P_0$	[58 411 430]	[118 322 000]	4.2 - 3	1.0+13	D	69 76*
1.6664 ^C	-	2p P ₀	[58 411 430]		4.2 - 3 $2.0 - 2$			63,76*
1.6649 ^C	1	1		[118 418 000]		1.6+13	D C	63,76*
1.0043	1	2	[58 411 430]	[118 474 000]	2.7 - 1	1.3+14	C	63,76*
1.6677 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p\ ^3\mathrm{P_1^o}$	[58 122 700]	[118 086 000]	1.9 - 2	1.5+13	D	$63,76^*$
1.6623^{C}	$1s2p\ ^{3}P_{2}^{\circ}$	$2p^2\ ^3{ m P}_1$	[58 261 180]	[118 418 000]	3.5 - 1	2.8 + 14	\mathbf{C}	63,76*
1.6611^{C}	1		[58 119 680]	[118 322 000]	2.5 - 1	6.0 + 14	C	63,76*
1.6607 ^C	2	2	[58 261 180]	[118 474 000]	6.5 - 1	3.2 + 14	Č	63, 76*
1.6585 ^C		_	[58 201 180]	[118 418 000]	1.9 - 1	1.5+14	Č	63,76*
1.6580 ^C	1	1	[58 102 090]	: :	2.7 - 1	2.2+14	Ċ	
1.6570 ^C	0	1	[58 102 090] [58 119 680]	[118 418 000] [118 474 000]	4.2 - 1	2.2+14 $2.1+14$	C	63,76*
1.0010	1	2	[99 119 000]	[110 414 000]	4.2 - 1	2.1714	C	63,76*
1.6615 ^C	$1s2s\ ^{3}\mathrm{S}_{1}$	$2s2p\ ^{3}P_{0}^{\circ}$	[57 857 380]	[118 044 000]	1.4 - 1	3.3+14	C	63,76*
1.6603 ^C	1323 31	P · 0	[57 857 380]	[118 086 000]	3.9 - 1	3.2+14	Č	63,76*
1.6563 ^C	1	2	[57 857 380]	[118 233 000]	6.9 - 1	3.3+14	Ċ	63,76*
1.6598 ^C	1s2p 1P1	$2p^{2-1}D_2$						•

Co xxvi - Continued

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1.6556 ^C 1.6519 ^C	1s2p ³ P ₂	$2p^{2} {}^{1}D_{2}$	[58 261 180] [58 119 680]	[118 659 000] [118 659 000]		3.7 – 1	1.8+14	С	63,76* 63
1.6556 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ 1 P $_{1}^{o}$	[58 122 700]	[118 525 000]		3.9 - 1	3.2+14	\mathbf{C}	63,76*
1.6519^{C}	$1s2p$ $^{1}P_{1}^{o}$	$2p^2$ 1 So	[58 411 430]	[118 946 000]		2.4 - 1	5.9+14	C	63,76*
1.6483 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p^{-1}P_1^{o}$	[57 857 380]	[118 525 000]		1.8 - 2	1.5+13	D	63,76*
1.6441 ^C	$1s2p$ $^3P_1^o$	$2p^{2-1}S_0$	[58 119 680]	[118 946 000]					63 -
1.45704 ^C	$1s^2$ 1 S ₀	1s3p ³ P ₁ °	0	[68 632 500]		1.8 - 2	1.9+13	\mathbf{E}	76*
1.45528 ^C	$1s^2$ 1 S ₀	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[68 715 500]		1.35 - 1	1.42+14	В	76*
1.38319 ^C	$1s^{2}$ $^{1}S_{0}$	1s4p ³ P ₁ °	0	[72 296 500]		6.6 - 3	7.7+12	E	76*
1.38252 ^C	$1s^{2}$ 1 S ₀	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[72 331 500]		4.88 - 2	5.68+13	В	76*
1.35158 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p$ $^3\mathrm{P}_1^{\mathrm{o}}$	0	[73 987 500]		3.3 - 3	4.0+12	E	76*
1.35125 ^C	$1s^2$ 1 S ₀	$1s5p^{-1}\mathrm{P_1^o}$	0	[74 005 400]		2.40 - 2	2.92+13	В	76*

Co xxvii

Wave- length (Å)	Classifica Lower	tion Upper	Energy Leve	els (cm ⁻¹) In	t. gf	$A (s^{-1})$	Acc.	References
1740 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[71 778 270]	[71 835 750]	5.18 - 2	2.85+7	A	75*
1695.2 ^C	$3p\ ^{2}P_{1/2}^{o}$	$3d^2\mathrm{D}_{3/2}$	[71 776 650]	[71 835 640]	3.32 - 2	1.93+7	A	75*
515.04 ^C	$2s$ 2 S _{1/2}	$2p\ ^{2}P_{3/2}^{\circ}$	[60 511 130]	[60 705 290]	2.92 - 2	1.83+8	Α	75*
25.6718 ^C	$3d^2D_{5/2}$	$4f$ 2 F $^{\circ}_{7/2}$	[71 854 990]	[75 750 320]	5.83	7.37+12	A	75*
25.5720 ^C	$3p\ ^{2}P_{3/2}^{\circ}$	$4d~^2\mathrm{D}_{5/2}$	[71 835 750]	[75 746 270]	2.24	3.80+12	A	75*
25.2533 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$4p$ 2 P $^{\circ}_{3/2}$	[71 778 270]	[75 738 150]	6.58 - 1	1.72+12	A	75*
17.5567 ^C	$3d^2\mathrm{D}_{5/2}$	$5f^{-2}F_{7/2}^{\circ}$	[71 854 990]	[77 550 810]	8.94 - 1	2.42+12	Α	75*
$17.5040^{\rm C}$	3p 2P3/2	$5d$ $^2\mathrm{D}_{5/2}$	[71 835 750]	[77 548 740]	5.04 - 1	1.83+12	A	75*
17.3421 ^C	$3s\ ^{2}{ m S}_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	[71 778 270]	[77 544 580]	1.64 - 1	9.07+11	A	75 *
8.968851 ^C	$2p\ ^{2}P_{3/2}^{o}$	$3d$ $^2\mathrm{D}_{5/2}$	[60 705 290]	[71 854 990]	2.51	3.47+13	A	75*
8.830318 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^2P_{3/2}^{\circ}$	[60 511 130]	[71 835 750]	5.92 - 1	1.26+13	Α	75*
6.648503 ^C	$2p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$4d~^2\mathrm{D}_{5/2}$	[60 705 290]	[75 746 270]	4.40 - 1	1.11+13	Α	75*
6.567273 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	[60 511 130]	[75 738 150]	1.39 - 1	5.38+12	A	75*
$5.937026^{\rm C}$	$2p\ ^2{ m P}_{3/2}^{\circ}$	$5d~^2\mathrm{D}_{5/2}$	[60 705 290]	[77 548 740]	1.60 - 1	5.05+12	A	75*
5.870801 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	[60 511 130]	[77 544 580]	5.68 - 2	2.74+12	A	75*
1.652730 ^C 1.647303 ^C	$1s\ ^2{ m S}_{1/2}$	$2p\ ^2{ m P}^{ m o}_{1/2}$	0 0	[60 505 950] [60 705 290]	2.80 - 1 $5.62 - 1$	3.42+14 3.45+14	A A	75* 75*
1.393211^{C} 1.392065^{C}	$1s\ ^2\mathrm{S}_{1/2}$	$3p {}^{2}\mathrm{P}^{\circ}_{1/2}$ $3/2$	0	[71 776 650] [71 835 750]	5.32 - 2 $1.07 - 1$	9.15+13 9.17+13	A A	75* 75*
1.320339 ^C	$1s^{2}S_{1/2}$	4p ² P _{3/2}	0	[75 738 150]	3.90 - 2	3.73+13	A	75*
$1.289581^{\rm C}$	$1s$ $^2S_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	0 .	[77 544 580]	1.88 - 2	1.88+13	A	75*

2.7.3. References for Comments and Tables for Co Ions

- E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, J. Opt. Soc. Am. 56, 651 (1966).
- [2] B. C. Fawcett, A. Ridgeley, and J. O. Ekberg, Phys. Scr. 21, 155 (1980).
- [3] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [4] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [5] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [6] S. Goldsmith, J. Opt. Soc. Am. 59, 1678 (1969).
- [7] A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348 (1980).
- [8] S. Hoory, S. Goldsmith, B. S. Fraenkel, and U. Feldman, Astrophys. J. 160, 781 (1970).
- [9] B. C. Fawcett and R. W. Hayes, J. Phys. B 5, 366 (1972).
- [10] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [11] M. Swartz, S. O. Kastner, L. Goldsmith, and W. M. Neupert, J. Opt. Soc. Am. 66, 240 (1976).
- [12] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1927 (1987).
- [13] M. H. L. Price, Astrophys. J. 140, 1192 (1964).
- [14] B. Edlén, Z. Physik 104, 407 (1937).
- [15] B. C. Fawcett and A. T. Hatter, Astron. Astrophys. 84, 78 (1980).
- [16] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [17] R. Smitt, L. A. Svensson, and M. Outred, Phys. Scr. 13, 293 (1976).
- [18] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, Supplementary Publication No. SUP 70005, unpublished (1972).
- [19] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 7, 152 (1990).
- [20] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [21] B. Edlén, Z. Physik, 103, 536 (1936).
- [22] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [23] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [24] V. E. Levashov, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 69, 20 (1990).
- [25] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [26] S. S. Churilov, E. Ya. Kononov, A. N. Ryabtsev, and Yu. F. Zayikin, Phys. Scr. 32, 501 (1985).
- [27] U. Feldman, L. Katz, W. Behring, and L. Cohen, J. Opt. Soc. Am. 61, 91 (1971).
- [28] M. Swartz, S. Kastner, E. Rothe, and W. Neupart, J. Phys. B 4, 1747 (1971).
- [29] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [30] A. Redfors, Phys. Scr. 38, 702 (1988).
- [31] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. **65**, 143 (1988).
- [32] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [33] B. Edlén, Z. Physik 100, 621 (1936).
- [34] U. Feldman, L. Cohen, and M. Swartz, J. Opt. Soc. Am. 57, 535 (1967).
- [35] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [36] K. G. Widing, G. D. Sandlin, and R. D. Cowan, Astrophys. J. 169, 405 (1971).
- [37] G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 (1976).
- [38] B. Edlén, Phys. Scr. 17, 565 (1978).

- [39] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [40] K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 (1980).
- [41] F. Tyrén, Z. Physik, 111, 314 (1938).
- [42] U. Feldman and L. Cohen, Astrophys. J. 149, 265 (1967).
- [43] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [44] H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985 (1980).
- [45] S. Chang, P. Fan, S. Zhao, J. Zhou, and R. Jin, Phys. Scr. 35, 798 (1987).
- [46] N. Spector, A. Ziqler, H. Zmora, and J. L. Schwob, J. Opt. Soc. Am. 70, 857 (1980).
- [47] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [48] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [49] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, J. Opt. Soc. Am. 63, 1445 (1973).
- [50] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Opt. Spectrosc. 44, 498 (1978).
- [51] V. A. Boiko, S. A. Pikuz, A. S. Safronova, A. Ya. Faenov, P. O. Bogdanovich, G. V. Merkelis, Z. B. Rudzikas, and R. D. Sadziuviene, J. Phys. B 12, 1927 (1979).
- [52] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [53] K. T. Cheng, unpublished material (1981).
- [54] W. C. Martin, unpublished material (1982).
- [55] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).
- [56] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [57] B. Edlén, Phys. Scr. 31, 345 (1985).
- [58] B. Edlén, Phys. Scr. 28, 483 (1983).
- [59] B. Edlén, Phys. Scr. 28, 51 (1983).
- [60] B. Edlén, Phys. Scr. 32, 86 (1985).
- [61] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [62] Y.-K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [63] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [64] B. Edlén, Phys. Scr. 19, 255 (1979).
- [65] S. Morita, J. Phys. Soc. Jpn 52, 2673 (1983).
- [66] S. Morita and J. Fujita, Nucl. Instr. Meth., B 7, 713 (1985).
- [67] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).
- [68] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [69] K. T. Cheng, Private communication (1996).
- [70] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [71] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [72] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [73] P. J. Mohr, Atom. Data Nucl. Data Tables 3, 453 (1983).
- [74] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [75] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser. 4, Vol. I (1966).
- [76] J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. No 4 (1988).
- [77] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. Sec. 79A, 629 (1975).

2.8. Nickel

2.8.1. Brief Comments on Each Nickel Ion

Ni IX

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 1 560 000 cm^{-1} (193 eV)

Transitions between the configurations $3d^2$ and 3d4f were observed by Alexander et al. [1]. Corrected classifications and remeasured wavelengths were given by Even-Zohar and Fraenkel [2], which are adopted in the present compilation. The uncertainty of the wavelengths is ± 0.003 Å. The singlet transitions and levels derived from them are connected to the triplet system by an estimated value for the $3d^2$ D term by Alexander et al. [1]. The systematic error is given in the form of an additive constant x: x is expected to be a few hundred cm⁻¹.

Fawcett et al. [3] classified the $3p^63d^2 - 3p^53d^3$ transition array. The uncertainty of the wavelengths is ± 0.007 Å.

A coronal line at 7143.9 Å was classified as the $3p^63d^2(^1D_2 - {}^1G_4)$ intrashell transition by Pryce [4].

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni x

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 1 812 000 cm^{-1} (224.6 eV)

In 1965, Alexander et al. [6] published the wavelengths for the 3d-4f and 5f transitions. The 3d-4f lines were observed in the solar spectrum by Feldman et al. [7] and Widing and Sandlin [8]. In 1968, Even-Zohar and Fraenkel [2] gave measurements of 3d-nf transitions (n=4 to 7) with improved wavelengths, which are adopted in this compilation. The uncertainties of the wavelengths are in the range from ± 0.005 to ± 0.01 Å.

Gabriel et al. [9] measured the wavelengths in the region from 144 to 160 Å and identified the $3p^63d$ $^2D - 3p^53d^2(^3F)$ $^2D^\circ$ and $^2F^\circ$ transitions. Goldsmith and Fraenkel [10] remeasured these lines and also added the $3p^63d$ $^2D - 3p^53d^2(^3P)$ $^2P^\circ$ transitions. The most comprehensive investigation of the $3p^63d - 3p^53d^2$ transitions was reported by Ramonas and Ryabtsev [11], who redetermined the known level values and identified the $3p^63d$ $^2D - 3p^53d^2(^1G)$ 2F and (^1D) 2F and the 3d - 4p transitions, with uncertainties of about ± 0.003 Å. Sugar et al. [12] reobserved six strong $3p^23d - 3p^53d^2$ lines in a tokamak plasma.

The lines in the wavelength range of 83-88 Å were identified as the $3p^63d-3p^53d4s$ transitions by Hoory et al. [13] and Swartz et al. [14]. The wavelength values are taken from the former article, with an uncertainty of ± 0.005 Å.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni xi

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy 2 589 000 cm^{-1} (321.0 eV)

Alexander et al. [6] observed two lines due to the transitions from the $3p^54s$ levels to the ground state. These lines were also observed in the solar spectrum by Widing and Sandlin [8] and Behring et al. [15].

There are many observations including those of Alexander et~al.~[16] and Gabriel et~al.~[9] for the transition from the $3p^53d~^1\mathrm{P}_1^\circ$ level to the ground state. The tabulated wavelengths of the transitions from the $3p^53d~^1\mathrm{P}_1^\circ, 3p^54s$, and $3p^54d$ levels to the ground level are those of Even-Zohar and Fraenkel [2]. The uncertainty of the wavelengths is ± 0.005 Å. The $3p^6~^1\mathrm{S}_0 - 3p^53d~^1\mathrm{P}_1^\circ$ line at 148.377 ± 0.005 Å was observed by Sugar et~al.~[12] with a tokamak plasma.

Svensson et al. [17] classified three lines observed by Behring et al. [15] to the transitions from the $3p^53d$ $^3P_{1,2}^{\circ}$ and $^3D_1^{\circ}$ levels to the ground state on the basis of an isoelectronic extrapolation. The wavelengths for these lines are taken from Behring et al. [18] with identifications by Edlén and Smitt [19].

An extended analysis of the forbidden transitions within the $3s^23p^53d$ configuration was made by Edlén and Smitt [19] who identified five transitions in the coronal lines: ${}^3F_3^{\circ} - {}^3D_3^{\circ}$ (3338.5 Å) [20], ${}^3F_4^{\circ} - {}^1F_3^{\circ}$ (2000.4 Å) [21], ${}^3P_2^{\circ} - {}^3D_2^{\circ}$ (1717.42 Å) [21], ${}^3P_2^{\circ} - {}^1F_3^{\circ}$ (1605.93 Å) [22], and ${}^3P_1^{\circ} - {}^3D_2^{\circ}$ (1510.51 Å) [21].

The transition array $3p^53d - 3p^54f$ in the region of 81 - 94 Å was first identified by Fawcett *et al.* [23]. The wavelengths were remeasured by Swartz *et al.* [14], which are the values quoted here.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni XII

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 2 840 000 cm^{-1} (352 eV)

Observations of the transitions $3p^5 - 3p^4 3d$ in the range 152 - 155 Å were reported by Gabriel *et al.* [9], Behring

et al. [15], Fawcett and Hayes [24], and Malinovsky and Heroux [25]. More accurate measurements in the range 147 – 161 Å were given by Goldsmith and Fraenkel [10], who identified the $3p^5$ $^2\mathrm{P}^{\circ} - 3p^4(^3\mathrm{P})3d$ $^2\mathrm{D}$ and $^2\mathrm{P}$ multiplets and the $3p^5$ $^2\mathrm{P}^{\circ}_{3/2} - 3p^4(^1\mathrm{D})3d$ $^2\mathrm{S}_{1/2}$ line. The uncertainty of the wavelengths is estimated to be ± 0.005 Å. Ryabtsev [26] remeasured the 138-166 Å region and obtained wavelength values for the identified lines in good agreement with the earlier values. New measurements with a tokamak plasma were made by Sugar et al. [12] for five strong $3p^5-3p^43d$ lines with an estimated uncertainty of ± 0.005 Å.

Fawcett et al. [23] observed lines of the $3p^5 - 3p^44s$, $3p^5 - 3p^44d$, and $3p^43d - 3p^44f$ arrays and measured the wavelengths with accuracies ranging from ± 0.01 Å to ± 0.015 Å.

Fawcett and Hatter [27] observed two $3s^23p^5 - 3s3p^6$ transitions at 295.321 Å and 317.475 Å with an accuracy of ± 0.008 Å.

Jefferies *et al.* [20] observed the forbidden $3s^23p^5$ $^2P^{\circ}_{3/2} - ^2P^{\circ}_{1/2}$ transition in the ground configuration at 4231.2 Å in the solar spectrum.

Four coronal lines at 3167.0 Å, 1370.52 Å, and 1225.05 Å and 1686.74 Å were observed by Jefferies et al. [20], Sandlin et al. [21], and Sandlin and Tousey [22], respectively. They were classified as forbidden transitions within the configuration $3s^23p^43d$ by Edlén and Smitt [19].

No intersystem line connecting the quartet terms to the ground term has been identified. We estimate a value of $454~000~{\rm cm^{-1}}$ for the $^4D_{7/2}$ level with a systematic error "+x" for the levels tied to it.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni xiii

S I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4$ ³P₂

Ionization energy 3 100 000 cm^{-1} (384 eV)

Three forbidden lines within the ground configuration were observed in the solar corona. The $^3P_2-^3P_1$ line at 5115.8 Å was identified by Pryce [4] and Jefferies et al. [20]. The other two lines at 2125.5 and 1277.23 Å were classified as $^3P_2-^1D_2$ and 1S_0 transitions by Sandlin et al. [21].

Gabriel et al. [9] observed the lines at 157.75 and 157.56 Å in a laboratory plasma for the first time. In the solar corona a line at 157.73 Å, corresponding to the former line, was observed by Behring et al. [15] and Malinovsky and Heroux [25]. These lines were identified as due to the $3s^23p^4 - 3s^23p^33d$ transitions by Fawcett and Hayes [24], who reported identifications for seven lines in the wavelength region of 155 – 303 Å. The uncertainty of the wavelengths is ± 0.03 Å. More accurate measure-

ments with an uncertainty of ± 0.005 Å were made by Sugar et al. [12] for six strong lines.

Fawcett et al. [23] measured wavelengths with an accuracy of ± 0.015 Å for the $3p^4 - 3p^34d$ and $3p^33d - 3p^34f$ transitions in the wavelength regions of ~ 56 Å and ~ 70 Å, respectively.

The transition array $3s^23p^4 - 3s3p^5$ was identified by Fawcett and Hatter [27], who measured the wavelengths with an uncertainty of ± 0.008 Å. Sugar *et al.* [12] also reobserved the $^3P_0 - ^3P_1^\circ$ line of this array at 308.542 Å.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni xiv

P i isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 3 470 000 cm^{-1} (430 eV)

Wavelengths for the forbidden lines within the ground configurations were classified by Sandlin *et al.* [21] in the solar coronal spectrum.

The $3s^23p^3$ $^2\mathrm{D}^{\circ}_{5/2}-3s^23p^2(^1\mathrm{D})3d$ $^2\mathrm{F}_{7/2}$ transition was first observed and identified by Gabriel *et al.* [9]. Fawcett and Hayes [24] classified the line in the solar spectrum at 164.146 Å as this transition.

Fawcett and Hayes [24] carried out an analysis of the $3s^23p^3 - 3s^23p^23d$ transition array in the region from 164 - 178 Å. The uncertainty of the wavelengths is ± 0.03 Å.

Fawcett et al. [23] identified three lines as $3p^23d-3p^24f$ transitions in the region near 65 Å with an accuracy of ± 0.015 Å.

Fawcett and Hatter [27] reported wavelengths for the $3s^23p^3-3s3p^4$ transition array. Their values are adopted here, except for the $^4\mathrm{S}^\circ_{3/2}-^4\mathrm{P}_{3/2}$ line at $302.264\pm0.005\,\mathrm{\AA}$ observed by Sugar *et al.* [12] in a tokamak discharge. The uncertainty of their wavelengths is $\pm0.008\,\mathrm{\AA}$.

The value for the ionization energy was derived by Lotz [5] by extrapolation.

Ni xv

Si I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ ³P₀

Ionization energy 3 740 000 cm^{-1} (464 eV)

Forbidden transitions between terms in the $3s^23p^2$ ground configuration were observed in the solar corona. The wavelength values of the ${}^3P_1 - {}^3P_2$, ${}^3P_0 - {}^3P_1$, and ${}^3P_1 - {}^1D_2$ transitions are from Jefferies *et al.* [20] and Sandlin *et al.* [21]. Identifications of the $3s^23p^2$ ${}^3P_{1,2} - 3s3p^3$ ${}^5S_2^\circ$ intercombination transitions were first reported by

Träbert et al. [28] and revised by Träbert et al. [29] with the beam-foil excitation technique.

An analysis of the $3s^23p^2 - 3s3p^3$ transition array was performed by Fawcett and Hatter [27]. They, in addition to the earier work of Fawcett and Hayes [24], classified nine transitions in the region from 209 to 319 Å with an uncertainty of ± 0.008 Å.

Fawcett and Hayes [24] also identified 11 lines as transitions from the $3s^23p3d$ levels to the ground configuration, in addition to the above transition array, with an uncertainty of ± 0.03 Å.

A recent measurement of Sugar et al. [12] provided more accurate wavelengths with an uncertainty of ± 0.005 Å for these two arrays with a tokamak plasma light source. We adopted their wavelengths to revise the level values, except for the $3s^23p^2$ $^3P_2 - 3s3p^3$ $^3S_1^\circ$ transition at 221.938 Å which is not a good fit.

Fawcett et al. [23] and Kastner et al. [30] measured wavelengths in the region of 50-65 Å and identified the $3s^23p^2-3s^23p4d$ and 4f transitions. Identifications of the $3p^23p^2-3p^23p4s$ transitions are also included in the former article. The wavelength uncertainty is ± 0.015 Å.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni xvi

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 4 020 000 cm^{-1} (499 eV)

The $3s^23p$ $^2\mathrm{P}^{\circ}_{1/2} - ^2\mathrm{P}^{\circ}_{3/2}$ intrashell transition was observed in the solar corona and identified by Pryce [4] and Jefferies *et al.* [20]. The quoted wavelength is from the latter article.

The transition array $3s^23p - 3s3p^2$ in the wavelength range 218-309 Å was observed by Fawcett and Hayes [24] and more fully by Fawcett and Hatter [27] with an uncertainty of ± 0.008 Å. Fawcett and Hayes [24] also reported identifications of the $3s^23p - 3s^23d$ transitions with wavelength uncertainties of ± 0.03 Å. Subsequently, transitions among all terms in the configurations $3s^23p$, $3s3p^2$, $3s^23d$, $3p^3$, and 3s3p3d (except $^4F^\circ$) were observed by Redfors and Litzén [31] with an uncertainty of ± 0.02 Å using a laser-produced plasma. A wavelength of 288.149 Å instead of 289.165 Å in Ref. [27] was assigned to the $3s^23p$ $^2\mathrm{P}_{1/2}^{\circ}-3s3p^2$ $^2\mathrm{D}_{3/2}$ transition. The $3s^23p$ $^2\mathrm{P}_{3/2}^{\circ}-3s3p^2$ $^2\mathrm{S}$ and $^2\mathrm{P}$, and $3s^23p$ $^2\mathrm{P}_{3/2}^{\circ}-3s^23d$ $^2\mathrm{D}_{5/2}$ transitions were reobserved by Sugar et al. [12] with an estimated uncertainty of ±0.005 Å. Additional identifications were made by Träbert et al. [29] and Pinnington et al. [32] in beamfoil experiments with estimated wavelength uncertainties of $\pm 0.2 - 0.4$ Å and ± 0.1 Å, respectively. The $3s^23p^2$ P° $-3s3p^2$ 4P transitions were reported by Träbert et al. The $3p^{3/2}P_{1/2,3/2}^{\circ}$ levels are derived tentatively from the wavelengths of Pinnington et al. [32]. Five tentative classifications of Buchet-Poulizac and Buchet [33] with a similar light source were omitted, because of inconsistencies with the wavelengths adopted here.

The transition arrays $3s3p3d - 3p^23d$, $3s3d^2$ were newly identified by Churilov and Levashov [34] in a laser-produced plasma with an estimated uncertainty of ± 0.01 Å. They also determined energy levels of the configurations with n=3. We have adopted their results but included the $3s3p^2$ $^4P_{5/2}$ level of Ref. [31] and the levels of Ref. [12]. It should be noted that the term designations of $3s3p(^3P^\circ)3d$ $^4P_{1/2}^\circ$, $^4D_{3/2}^\circ$ and $3s3p(^1P^\circ)3d$ $^2P_{3/2}^\circ$ have been interchanged with $3s3p(^3P^\circ)3d$ $^4D_{1/2}^\circ$, $^4P_{3/2}^\circ$ and $3s3p(^1P^\circ)3d$ $^2D_{3/2}^\circ$, due to the level crossing at the Mn ion, as is shown the calculation of Redfors and Litzén [31].

Fawcett et al. [23] analyzed the $3s^23d - 3s^24f$, $3s^23p - 3s^24d$, and 3s3p3d - 3s3p4f transitions from observations of a laser produced plasma. They measured the wavelengths with an uncertainty of ± 0.015 Å.

The value for the ionization energy was obtained by Lotz [5] by extrapolation.

Ni xvii

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{-1}S_0$

Ionization energy 4 606 000 \pm 1000 cm⁻¹ (571.08 \pm 0.12 eV)

Pryce [4] tentatively identified the 3s3p $^3P_1^{\circ} - ^3P_2^{\circ}$ transition at 4744 Å in the coronal spectrum.

Fawcett et al. [35] measured wavelengths in the region from 30 to 55 Å and classified the singlet transitions: $3s^2 - 3snp$ (n = 4, 5); 3s3d - 3snf (n = 4, 5), and also the triplet transitions: 3s3p - 3snd (n = 4, 5), 3s4s; 3s3d - 3snf (n = 4 to 6). Feldman et al. [36] remeasured the wavelengths, mainly for the triplet transitions, with improved accuracy of ± 0.01 Å and added several new classifications. Fawcett et al. [23] revised the classification of 3s3d $^1D_2 - 3s4f$ $^1F_3^\circ$ and extended their measurements to the $3p^2$ $^1D_2 - 3s4f$ $^1F_3^\circ$, 3s3p $^1P_1^\circ - 3s4d$ 1D_2 , and 3p3d - 3p4f transitions in the wavelength range of 47 - 58 Å.

Transitions among the configurations $3s^2$, 3s3p, $3p^2$, 3s3d, and 3p3d were observed and identified in the region 175-462 Å in a laser-produced spectrum by Churilov et al. [37], whose wavelengths and energy levels are adopted in the present compilation. Wavelengths were measured with an accuracy of ± 0.007 Å. Additional identifications completing the levels of 3p3d were reported by Litzén and Redfors [38]. Their wavelengths with an uncertainty of ± 0.02 Å and their level values were included except for the 3s3p $^1P_1^\circ$ level derived from the wavelength of 249.189 ± 0.005 Å measured by Sugar et al. [12]. New observations of these arrays were made by Buchet-Poulizac and Buchet [33] in a beam-foil spectrum, from

which the 3s3d $^3D_2 - 3p3d$ $^3D_3^\circ$ line at 277.31 ± 0.2 Å has been adopted. It should be noted that the 3p3d $^3D_{1,2}^\circ$ and $^3P_{1,2}^\circ$ levels in Ref. [37] have been interchanged according to the level scheme in Ref. [38].

The $3p3d-3d^2$ transitions were first identified by Redfors [39] in the range 203.3-254.9 Å and reobserved by Levashov and Churilov [40] and Churilov *et al.* [41], who added seven new lines, three of which are blended. Wavelengths were given with an uncertainty of ± 0.02 Å. The $3d^2$ ³F and ¹G levels are taken from Ref. [39].

Kastner et al. [30] published an investigation of the 3p3d-3p4f and $3s3d^3D-3s4f$ $^3F^\circ$ transitions. It should be noted that identification of the 3p3d $^3D_3^\circ-3p4f$ 3F_4 and 3p3d $^3F_3^\circ-3p4f$ 3F_4 transitions at 55.887 and 54.384 Å by Kastner et al. [30] is doubtful because the position of the 3p4f 3F_4 level obtained from the lower 3p3d levels by Churilov et al. [37] is inconsistent with those results.

The $3s^2$ $^1\mathrm{S}_0$ - 3s3p $^3\mathrm{P}_1^\circ$ intercombination line at 366.7 ± 0.3 Å was first observed in a tokamak plasma by Finkenthal et al. [42]. Peacock et al. [43] observed the line at 366.82 ± 0.04 Å in a similar source. Dere [44] had obtained the wavelengh value of 366.80 ± 0.03 Å in a solar flare measurement without giving a line identification. Dere's wavelength value is adopted here.

The value for the ionization energy was derived by Sugar and Corliss [45] from the three member 3snd 3D series.

Ni XVIII

Na I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s$ $^2S_{1/2}$

Ionization energy 4 896 200 \pm 500 cm⁻¹ (607.06 \pm 0.06 eV)

Fawcett et al. [35] and Feldman et al. [46] observed the transitions: 3s - np (n = 4, 5), 3p - 4s, 3p - nd (n = 4 to 7), and 3d - nf (n = 4 - 7). The observations were followed by Feldman et al. [36] who measured and identified 24 lines in the wavelength range of 24 - 53 Å. The uncertainty of the wavelengths is ± 0.01 Å. Fawcett et al. [23] added identifications of the 3d - 4p transitions at 60.212 and 59.950 ± 0.015 Å.

Lines of the transition array 3p - 3d at 220 - 236 Å were observed by Feldman *et al.* [36], Fawcett *et al.* [23], and Sandlin *et al.* [47]. An isoelectronic comparison of the measured wavelengths of the 3p - 3d and 3d - 4f doublet, with Dirac-Fock calculations was made by Reader *et al.* [48] for Ar^{7+} to Xe^{43+} , and least squares adjusted wavelength values were derived from the differences between theory and experiment. The overall uncertainty estimate is ± 0.007 Å. We give these results.

There are many observations for the 3s - 3p transitions. We adopted the most accurate wavelength values of

Sugar et al. [12], 320.558 \pm 0.005 Å, and 291.985 \pm 0.005 Å, for the $^2S_{1/2} - ^2P_{1/2,3/2}^{\circ}$ transitions, respectively.

Kononov et al. [49] and Lawson and Peacock [50] identified lines of the 4f - 5g and 4d - 5f transition arrays.

Feldman and Cohen [51] measured wavelengths for the $2p^63s$ ²S $-3p^53s^2$ ²P° transitions with an uncertainty of ± 0.01 Å.

Jupén et al. [52] identified the core excited $2p^53s3p$ $^4\mathrm{D}_{7/2}-2p^53s3d$ $^4\mathrm{F}^{\circ}_{9/2}$ line at 220.70 ± 0.05 Å in a beam-foil spectrum.

The value for the ionization energy was derived by Edlén [53] from core polarization theory applied to the nf series.

Ni xix

Ne i isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 12 430 000 \pm 10 000 cm⁻¹ (1541 \pm 1 eV)

Wavelengths for the resonance transitions from the configurations $2s^22p^53s$, $2s^22p^53d$, and $2s2p^63p$ were measured by Feldman et al. [54]. Swartz et al. [55] observed the spectrum below 14 Å, improved the wavelengths of the resonance transitions mentioned above and classified additional lines of $2p^6-2p^54s$, $2p^55d$ and $2p^56d$. Boiko et al. [56] identified 18 resonance transitions from the configurations $2p^53s$, 4s, $2p^5nd$ for n=3 to 8, and $2s2p^63p$. Gordon et al. [57] remeasured the transitions observed by Boiko et al. [56] except for n=7 and 8, with an uncertainty of ± 0.005 Å.

Klapisch et al. [58] observed and identified the $2p^6$ $^1\mathrm{S}_0 - 2p^53s$ $^3\mathrm{P}_2^\circ$ magnetic quadrupole transition at 14.077 Å as well as the transitions from the J=1 states of $2p^53s$ and $2p^53d$ to the ground state in a tokamak plasma.

Kastner *et al.* [59] identified four lines as the $2p^53p - 2p^54d$ transitions in the wavelength region from 40.6 to 41.4 Å.

Jupén [60] tentatively identified the spectral lines at 303.63, 306.29, 254.53, and 237.61 Å in the solar spectrum, measured by Dere [44], as $2p^53s - 2p^53p$ and $2p^53p - 2p^53d$ transitions. Fifteen lines of the $2p^53s - 2p^53p$ array in the range of 176 – 362 Å and 13 lines of the $2p^53p - 2p^53d$ array in the range of 225 – 273 Å were identified by Buchet *et al.* [61] in a beam-foil study. The uncertainty of the wavelengths is ± 0.05 Å. For blended lines, it is ± 0.1 Å. Their level values have been adopted.

The $2s^22p^53s - 2s2p^63s$ transitions were observed and identified in a tokamak plasma by Finkenthal *et al.* [62]. The uncertainty of the wavelengths is ± 0.02 Å.

The value for the ionization energy was derived by Sugar and Corliss [45] from the $2s^22p^5nd$ ³D₁° series for n=3-6.

Ni xx

F I isoelectronic sequence

Ground state $1s^22s^22p^5$ ²P $_{3/2}^{\circ}$

Ionization energy 13 265 000 cm^{-1} (1644.6 eV)

Lines of the $2p^5 - 2p^43s$ and $2p^5 - 2p^43d$ arrays were observed and classified in the wavelength range of 11.5 - 13.3 Å by Cohen et al. [63], Swartz et al. [55], and Boiko et al. [64,65,66]. They were remeasured by Gordon et al. [57], who also reported additional line identifications of the $2s^22p^5 - 2s2p^53p$ and $2p^5 - 2p^44d$ and $2p^44s$ transition arrays in the wavelength region from 9 to 11.5 Å with uncertainties of ± 0.005 Å.

Doschek et al. [67] measured and identified the $2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2,1/2}-2s2p^6$ $^2\mathrm{S}_{1/2}$ transitions in a laser produced plasma. Breton et al. [68], Lawson and Peacock [50], and Sugar et al. [12] reobserved these lines in tokamak-produced plasmas. The most accurate wavelength values of 83.185 ± 0.005 Å and 94.492 ± 0.005 Å in Ref. [12] are quoted here.

The magnetic dipole transition $2p^5$ $^2P_{3/2}^{\circ} - ^2P_{1/2}^{\circ}$ was first observed by Hinnov and Suckewer [69], and subsequently by Hinnov *et al.* [70], Peacock *et al.* [43], and Finkenthal *et al.* [71]. The wavelength value of 694.64 ± 0.03 Å is from Ref. [43].

Fifteen transitions among the $2p^43s$, 3p, and 3d configurations were newly identified by Buchet-Poulizac and Buchet [33] in a beam-foil device with an uncertainty of ± 0.05 Å in the range of 259-366 Å. The $2p^4(^3\mathrm{P})3p$ $^4\mathrm{P}_{5/2}^\circ-2p^4(^3\mathrm{P})3d$ $^4\mathrm{D}_{7/2}^\circ$ line at 265.36 Å has no connection with the other observed lines.

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxi

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 14 175 000 cm⁻¹ (1757.4 eV)

The $2s^22p^4 - 2s2p^5$ transition array was analyzed by Doschek *et al.* [67]. The wavelength of the $2s2p^5$ $^1P_1^{\circ} - 2p^6$ 1S_0 transition was given by Doschek *et al.* [74]. A comprehensive analysis of the n=2-2 transitions in the wavelength region from 69 to 120 Å was reported by Lawson and Peacock [50]. Their wavelengths are adopted in this compilation, except for those of the $2s^22p^4$ 3P —

 $2s2p^5$ ³P° triplet reobserved by Sugar *et al.* [12] with an uncertainty of ± 0.005 Å in a tokamak plasma. The uncertainty of the wavelengths of Lawson and Peacock is ± 0.03 Å.

The M1 transition ${}^3P_2 - {}^1D_2$ in the ground configuration was observed at 471.15 Å in the solar corona by Widing [75] and at 471.3 ± 0.3 Å in a tokamak plasma by Hinnov *et al.* [70]. Hinnov *et al.* [70] also measured two other magnetic dipole transitions ${}^3P_2 - {}^3P_1$ at 779.5 Å and ${}^3P_0 - {}^3P_1$ at 2818.2 Å. The wavelength of the latter line was corrected as 2818.52 ± 0.10 Å by Hinnov *et al.* [76] The ${}^3P_1 - {}^1D_2$ line at 1191.1 ± 0.4 Å was identified by Finkenthal *et al.* [71].

Classifications for the transitions $2p^4 - 2p^33s$, $2p^33d$, and $2p^34d$ were provided by Gordon *et al.* [57] in the wavelength ranges of 12-12.7 Å, 11-11.6 Å, and 8.7-9.2 Å. The uncertainty of the wavelengths is ± 0.005 Å.

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxii

N I isoelectronic sequence

Ground state $1s^2 2s^2 2p^3 {}^4S_{3/2}^{\circ}$

Ionization energy 15 158 000 cm^{-1} (1879.4 eV)

Lawson and Peacock [50] measured the $2s^22p^3-2s2p^4$ transition array observed previously by Doschek et al. [67]. They extended the measurements to include the $2s2p^4-2p^5$ transition array and found intersystem lines. They measured wavelengths in the range from 71 to 124.5 Å with an uncertainty of ± 0.03 Å. Sugar et al. [12] gave more accurate wavelengths with an uncertainty of ± 0.005 Å for six strong lines of the $2s^22p^3$ $^4S^\circ-2s2p^4$ 4P , $^2P_{1/2}^\circ-^2S_{1/2}$, and $^2D^\circ-^2D$ transitions. Level values of Lawson and Peacock have been adjusted to those derived from the wavelengths of Sugar et al. [12].

Hinnov et al. [70] observed two magnetic dipole lines assigned to the $2s^22p^3$ $^4\mathrm{S}^\circ_{3/2}$ $-^2\mathrm{D}^\circ_{3/2,5/2}$ transitions at 634.8 ± 0.3 Å and 477.6 ± 0.3 Å, respectively. Hinnov et al. [76] found an additional magnetic dipole line $^2\mathrm{D}^\circ_{3/2}$ $-^2\mathrm{D}^\circ_{5/2}$ at 1928.88 ± 0.01 Å.

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxiii

C I isoelectronic sequence

Ground state $1s^2 2s^2 2p^2$ ³P₀

Ionization energy 16 219 000 cm^{-1} (2010.9 eV)

Lawson and Peacock [50] extended the earlier measurements of the $2s^22p^2-2s2p^3$ transition array by Feldman et al. [77]. They reported classifications of 18 lines for this array and also for the $2s2p^3-2p^4$ array. Wavelengths were measured in the range of 74-134 Å with an uncertainty of ± 0.03 Å. Four strong lines of the $2s^22p^2$ $^3P_{2,1}-2s2p^3$ $^3P_{2,1}^\circ$, $^1D_2-^1D_2^\circ$, and $^3P_2-^3S_1^\circ$ transitions were reobserved by Sugar et al. [12] with an uncertainty of ± 0.005 Å in a tokamak plasma. These wavelengths have been employed to adjust the level values of Lawson and Peacock.

Hinnov et al. [70] measured the magnetic dipole transitions of the ground configuration, i.e., $2s^22p^2$ $^3P_0-^3P_1$ at 911.0 Å, $^3P_1-^3P_2$ at 1915.0 Å, $^3P_2-^1D_2$ at 614.8 Å, and $^3P_1-^1D_2$ at 465.4 Å. The uncertainty of the wavelengths is ± 0.3 Å. The wavelength of the second transition was revised to 1917.47 ± 0.01 Å in a new measurement of Hinnov et al. [76].

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxiv

B I isoelectronic sequence

Ground state $1s^22s^22p$ $^2P_{1/2}^{\circ}$

Ionization energy 17 187 000 cm^{-1} (2131.0 eV)

Four lines due to the transitions $2s^22p-2s2p^2$ were observed by Doschek et al. [78]. Lawson and Peacock [50] measured lines in the range of 87 - 160 Å and identified seven $2s^22p - 2s^22p^2$ and sixteen $2s^22p^2 - 2p^3$ transitions with an uncertainty of ± 0.03 Å. The adopted wavelengths are from Lawson and Peacock except for four strong lines from Sugar et al. [12] who remeasured their wavelengths with an uncertainty of ±0.005 Å in a tokamak plasma. Three intercombination lines $2s^22p$ $^2P^{\circ}$ – $2s2p^2$ ⁴P at 185.283 ± 0.030 Å, 218.608 ± 0.025 Å, and 224.712 ± 0.025 Å were identified by Myrnäs et al. [79] in tokamak discharges. They also showed that the $2s2p^{2/4}P$ levels are about 1000 cm⁻¹ lower than those given in Ref. [50]. This fact makes the identification of the $2s2p^2$ $^4\mathrm{P}_{5/2}-2p^3$ $^2\mathrm{D}^\circ_{5/2}$ line at 98.39 Å in Ref. [50] questionable, because the difference between the observed and calculated wavelengths is as large as 0.08 Å. The designations of the two levels $2s2p^2$ $^2P_{1/2}$ and $^2S_{1/2}$ have been interchanged according to Edlén [80] and are confirmed by the calculated percentage composition in Sugar and

The magnetic dipole transition $2s^22p$ $^2P_{1/2}^{\circ} - ^2P_{3/2}^{\circ}$ was observed in tokamak plasmas by Hinnov *et al.* [70]. The wavelength value of 609.9 ± 0.3 Å is taken from this article.

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxv

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy $18\ 523\ 000\ cm^{-1}\ (2296.5\ eV)$

A faint image at 238.82 Å was observed in a solar flare spectrum by Sandlin et~al.~[47], who tentatively identified the line as the $2s^2$ $^1S_0 - 2s2p$ $^3P_1^\circ$ line by extrapolation along the isoelectronic sequence. The wavelength of the $2s^2$ $^1S_0 - 2s2p$ $^1P_1^\circ$ transition was measured by Breton et~al.~[68], Hinnov [82], Lawson and Peacock [50], and Sugar et~al.~[12]. The value of 117.933 ± 0.005 Å is from the last author. A corrected value of 117.933 Å was obtained from the author.

The transition arrays $2s^2-2s3p$, 2s2p-2s3d, $2p^2-2p3d$, and 2s2p-2p3p in the wavelength range 9.3-10 Å were analyzed by Fawcett $et\ al.$ [83]. Wavelengths were given with an accuracy of ± 0.006 Å. Earlier identifications by Boiko $et\ al.$ [56,84] were substantially revised by the analysis in this article.

Lawson and Peacock [50] investigated the $2s2p - 2p^2$ array in the range of 120 - 190 Å. The uncertainty of the wavelengths is ± 0.03 Å.

For the ionization energy we use a value calculated by Cheng [72] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [73].

Ni xxvi

Li I isoelectronic sequence

Ground state $1s^2 2s$ $^2S_{1/2}$

Ionization energy 19 510 000 \pm 5000 cm⁻¹ (2399.2 \pm 0.6 eV)

The 2s-2p doublet was observed in solar flares by Widing and Purcell [85] and Sandlin et~al. [47]. These lines were also measured in a tokamak plasma by Hinnov [82] who identified the $^2\mathrm{S}_{1/2}-^2\mathrm{P}_{3/2}^\circ$ line at 165.3 ± 0.2 Å and $^2\mathrm{S}_{1/2}-^2\mathrm{P}_{1/2}^\circ$ at 234.1 ± 0.1 Å. These wavelength values were remeasured as 165.396 ± 0.01 and 234.155 ± 0.01 Å by Hinnov et~al. [86] and as 165.400 ± 0.005 and 234.153 ± 0.005 Å by Sugar et~al. [12]. The smoothed values of 165.406 and 234.152 Å of Kim et~al. [87] are adopted here.

Spectral line classifications at 9 Å for the 2s-3p, 2p-3d and 2p-3s transitions were reported by Fawcett *et al*. [83].

The $1s^22p$ $^2\mathrm{P}^{\circ}_{3/2} - 1s2p3p$, 1s2p4p $^2\mathrm{D}_{5/2}$ transitions were measured with an uncertainty of ± 0.0002 Å in a spark discharge by Aglitskii and Panin [88].

Vainshtein and Safronova [89] calculated energy levels of the $1s^2nl$ with n=2-5, and l=s,p, and d. We use their energy levels adjusted to the $1s^22p$ $^2\mathrm{P}^{\circ}_{1/2,3/2}$ levels of Kim et al. by adding 270 cm⁻¹. They also calculated wavelengths of the $1s^22s - 1s2s2p$, $1s^22p - 1s2p^2$, and $1s^22p - 1s2s^2$ transitions. We use their results to derive these autoionizing levels. All theoretical levels from Ref. [89] are given in brackets.

The value for the ionization energy was calculated by Edlén [90].

Ni xxvii

He I isoelectronic sequence

Ground state 1s² ¹S₀

Ionization energy 82 985 800 \pm 3500 cm⁻¹ (10 288.93 \pm 0.4 eV)

Cohen et al. [91] and Morita [92] measured the wavelength of the $1s^2-1s2p$ transitions. Low-inductive vacuum spark measurements were made by Aglitskii and Panin [88] for the blended $1s^2$ $^1\mathrm{S}_0-1s3p$, 1s4p, 1s5p $^{1,3}\mathrm{P}_1^\circ$ lines and by Aglitsky et al. [93] for the $1s^2$ $^1\mathrm{S}_0-1s2p$ $^1\mathrm{P}_1^\circ$ resonance line at 1.58837 Å.

Cheng et al. [94] give calculated total energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [95] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [96] we obtain the value for the ionization energy of the Helike ions. For the 1s3l states we use the level values from Drake [97].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [89] have been tabulated after increasing them by $1500~\rm{cm^{-1}}$ to correspond with

corrected values of lower n by Drake. We have adopted the calculated wavelengths of Vainshtein and Safronova [89] for transitions from the n=2 doubly-excited states without correction. All wavelengths have been derived from differences of the adopted energy levels

Ni xxviii

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 86 909 350 \pm 30 cm⁻¹ (10 775.3900 \pm 0.0039 eV)

No observations of this spectrum have been reported. We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [96] for the n=2 shell whose estimated uncertainty is $\pm 30~{\rm cm}^{-1}$. Their energy differences are in close agreement with those of Mohr [99]. The binding energies for the levels with n=3-5 have been calculated by Erickson [100]. We subtract these energies from the binding energy of the ground state obtained by Johnson and Soff to obtain predicted energies.

Transition probabilities and oscillator strengths were obtained by scaling the data tabulated for the hydrogen spectrum by Wiese *et al.* [101]. The scaling was actually performed for the line strengths S, which for a hydrogen-like ion of nuclear charge Z are reduced according to $S_Z = Z^{-2}S_H$, so that

$$S_{Ni XXVIII} = S_H(28)^{-2} = S_H/784.$$

The f and A values were then obtained from the usual numerical conversion formulas, given for example in Ref. [101]. For these conversions the accurate wavelengths listed in the Ni XXVIII table were used, in which relativistic and QED effects in the energies were taken into account. Relativistic effects in the line strengths are only of the order of 1-5% for Ni XXVIII, according to the work by Younger and Weiss [102], and have been neglected.

The value for the ionization energy is from Johnson and Soff [96].

2.8.2. Spectroscopic Data for Ni IX through Ni XXVIII

Ni IX

Wave-	Classific	Energy Lev	Energy Levels (cm ⁻¹)			$A (s^{-1})$	Acc.	References	
length (Å)	Lower	Upper			Int.	gf			
$7141.9^{\mathbf{T}}$	$3p^63d^2$ ¹ D ₂	$3p^63d^2 {}^1G_4$	21 900+x	35 898+x		E2	8.1 - 4	Е	4°,109*
166.306	$3p^63d^2\ ^3{ m F}_2$	$3p^5(^2P^\circ)3d^3(^2H) \ ^3G_3^\circ$	0	601 300	4	1.3	4.3+10	D	3°,109*
166.079	3	4	1 880	604 000	4	3.2	8.7 + 10	D	3°,109*
165.436	4	5	4 070	608 530	6	4.4	9.7 + 10	D	3°, 109*
165.436	$3p^63d^2$ ¹ G ₄	$3p^5(^2P^o)3d^3(^2G)^{-1}H_5^o$	35 898+x	640 360+x	6	3.3	7.3+10	D	3°,109*
151.700	$3p^63d^2$ 3 F ₃	$3p^5(^2P^\circ)3d^3(^4F)^{-3}F_2^\circ$	1 880	661 050	1				3
151.281	2	2	0	661 050	3	4.0	2.3 + 11	D	3°,109*
151.022	3	3	1 880	664 080	4	5.3	2.2 + 11	D	3°, 109*
150.836	4	4	4 070	667 080	4	8.6	2.8+11	Ď	3°,109* 3°,109*
150.574	2	3	0	664 080	1	4.2 - 1	1.8+10	Ď	3°,109*
150.32	3	4	1 880	667 080	1	5.4 - 1	1.8+10	Ď	3°,109*
147.013	$3p^63d^{2-1}G_4$	$3p^5(^2P^\circ)3d^3(^2H)^{-1}G_4^\circ$	35 898+x	716 110+x	4	1.2+1	4.1+11	D	3°,109*
141.356	$3p^63d^2 \ ^3F_4$	$3p^5(^2P^\circ)3d^3(^4F) ^3D_3^\circ$	4 070	711 510	5	5.5	2.6+11	D	3°,109*
141.002	. 2	1 () () -3	0	709 210	3	1.7	1.9+11	$\widetilde{\mathbf{D}}$	3°,109*
140.917	3	2	1 880	711 520	4	3.9	2.6 + 11	D	3°,109*
140.917	3	3	1 880	711 510		2.4 - 1	1.2+10	Ď	3°,109*
140.542	2	2	0	711 520	1	3.4 - 1	2.3+10	D	3°,109*
103.993	$3d^{2} {}^{3}P_{2}$	$3d4f$ $^3D_3^{\circ}$	27 160+x	988 760+x	10				1,2°
103.981^{L}	i	2			10				1,2°
103.926 ^L	0	1							1,2°
103.871	$3d^{2-1}\mathrm{D}_2$	$3d4f$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	21 900+x	984 630+x	6				1,2°
103.620	$3d^{2-1}D_2$	$3d4f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	21 900+x	986 960+x	8				1,2°
103.428	$3d^{2-1}D_2$	$3d4f$ $^3\mathrm{D}^{lpha}_3$	21 900+x	988 760+x	4				1,2°
102.710	$3d^{2} {}^{3}F_{4}$	3d4f ³ F ₃ °	4 070	977 680					1,2°
102.602	4	- 3	4 070	978 740	10				1,2°
102.539	3	2	1 880	977 130					1,2°
102.480	3	3	1 880	977 680	6				1,2°
102.364	3	4	1 880	978 740					1,2°
102.340	2	2	0	977 130	6				1,2°
102.283	2	3	0	977 680	1				1, 2°
101.932	$3d^{2} {}^{3}F_{4}$	$3d4f$ $^3G_4^{\circ}$	4 070	985 140	2				1,2°
101.846	4	5	4 070	985 940	10				1,2°
101.701	3	4	1 880	985 140	8				$1,2^{\circ}$
101.657	2	3	0	983 700	8				1,2°

Ni x

Wave-				evels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc. References
ength (Å)	Lower	Upper		, .		
97.909	$3p^63d^{-2}D_{3/2}$	$3p^5(^2P^\circ)3d^2(^1G)^2F^\circ_{5/2}$	0	505 283	150	11
97.405	5/2	7/2	3 178	509 751	170	11
92.599	$3p^63d^2D_{5/2}$	$3p^5(^2P^o)3d^2(^1D) \ ^2F^o_{7/2}$	3 178	522 391	250	11°,26
84.937	3/2	5/2	0	540 725	150	11°,26
60.794	$3p^63d^2D_{5/2}$	$3p^5(^2P^o)3d^2(^3F)^2F^o_{5/2}$	3 178	625 091	40	10,11°,26
59.977	3/2	5/2	0	625 091	600	9, 10, 11°, 12, 25, 26
58.377	5/2	7/2	3 178	634 583	600	9, 10, 11°, 12, 25, 26
46.081	$3p^63d\ ^2{ m D}_{3/2}$	$3p^5(^2P^o)3d^2(^3P) \ ^2P^o_{1/2}$	0	684 552	250	10, 11°, 12, 26
45.733	5/2	3/2	3 178	689 365	400	10, 11°, 12, 26
45.061	3/2	3/2	0	689 365	100	10,11°,26
144.988	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^o)3d^2(^3F)\ ^2D^o_{5/2}$	3 178	692 890	500	9, 10, 11°, 12, 15, 25, 26
44.880	5/2	3/2	3 178	693 404 692 890	80 100	9, 10, 11°, 26
144.323 144.216	3/2 3/2	5/2 3/2		693 404	400	9, 10, 11°, 25, 26 9, 10, 11°, 12, 15, 25, 26
129.258	$3d^2\mathrm{D}_{3/2}$	$4p^2 P_{1/2}^{\circ}$	0	773 647	70	11
128.796	5/2	3/2		779 600	120	11
28.273	3/2	3/2	_	779 600	10	11
91.790	$3d^2\mathrm{D}_{5/2}$	$4f$ $^2\mathrm{F}^{\mathrm{o}}_{7/2}$	3 178	1 093 440	6	2°, 6, 7, 8, 15
91.527	3/2	5/2		1 093 360	4	2°, 6, 7, 8
87.680	$3p^63d^2D_{3/2}$	$3p^53d(^3P^{\circ})4s\ ^2P^{\circ}_{1/2}$	0	1 140 510	4	13°,14
87.317	5/2	3/2		1 148 420	5	13°,14
87.077	3/2	3/2		1 148 420		13°,14
86.865	$3p^6 3d\ ^2{ m D}_{5/2}$	$3p^53d(^3F^\circ)4s\ ^4F^\circ_{7/2}$	3 178	1 154 390	1	13°,14
86.464	3/2	5/2	0	1 156 550	2	13°,14
86.300	$3p^63d\ ^2{ m D}_{5/2}$	$3p^53d(^3F^\circ)4s\ ^2F^\circ_{7/2}$		1 161 930	7	13°,14
85.753	5/2	5/2		1 169 300	2	13°,14
85.523	3/2	5/2		1 169 300	5	13°,14
84.659	$3p^6 3d\ ^2{ m D}_{5/2}$	$3p^53d(^3D^{\circ})4s \ ^4D^{\circ}_{7/2}$	3 178	1 184 390	2	13°,14
84.418	5/2	5/2		1 187 750	2	13°, 14
84.194	3/2	5/2		1 187 750	1	13°,14
83.676	$3p^63d^{-2}D_{5/2}$	$3p^53d(^1F^{\circ})4s\ ^2F^{\circ}_{7/2}$	3 178	1 198 260	3	13°,14
83.326	$3p^63d^{-2}D_{5/2}$	$3p^53d(^3D^\circ)4s^2D^\circ_{3/2}$	3 178	1 203 270	1	13°,14
83.108	3/2	3/2	•	1 203 270	5	13°,14
83.108	5/2	5/2	3 178	1 206 410	5	13
82.892	3/2	5/2		1 206 410	1	13
74.266	$3p^63d^2D_{5/2}$	$3p^65f^2F_{7/2}^{o}$	3 178	1 349 690	3	2°,6
74.097	3/2	5/2		1 349 580	2	2°,6
66.687	$3p^63d^2D_{5/2}$	$3p^{6}6f^{2}F_{7/2}^{\circ}$	3 178	1 502 720	1	2
66.542	3/2	5/2		1 502 810	1	2
61.915	$3p^63d^{2}D_{5/2}$	$3p^67f^2F_{7/2}^{\circ}$	3 178	1 618 310		2
61.809	3/2	5/2		1 617 890		2

Ni xı

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3338.5	$3p^53d$ $^3F_3^o$	$3p^53d$ $^3\mathrm{D}_3^\circ$	497 520	527 470		M1			19,20°
2000.4	$3p^{5}3d^{3}F_{4}^{\circ}$	$3p^53d\ ^1{ m F}_3^{ m o}$	493 250	543 220		M1			17,19,21°
1717.42 1510.51	$3p^53d\ ^3P_2^{\circ}$	$3p^53d\ ^3{ m D}_2^{ m o}$	480 950 472 970	539 180 539 180		M1 M1			17,19,21° 19,21°
1605.93	$3p^{5}3d^{3}P_{2}^{\circ}$	$3p^53d\ ^1{ m F}_3^{ m o}$	480 950	543 220		M1			19,22°
211.428 207.93	$3p^{6} {}^{1}S_{0}$	$3p^53d\ ^3P_1^{\circ}$	0 0	472 970 480 950	20 30	2.9 - 4 M2	1.4+7	Е	17,18°,19,109* 17,18°,19
186.976	$3p^{6}$ 1 S ₀	$3p^53d$ $^3\mathrm{D}^{\mathrm{o}}_1$	0	534 830	20	6.8 - 3	4.3+8	E	17,18°,19,109*
148.377	$3p^{6-1}S_0$	$3p^53d$ $^1\mathrm{P}^{\mathrm{o}}_1$	0	673 960	50	2.31	2.34+11	C+	2,7,9,12°,15,16,17,19, 24,25,26,103,109*
93.85	$3p^{5}3d^{-1}P_{1}^{\circ}$	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4f^{\ 2}[\frac{5}{2}]_2$	673 960	1 739 500	1				14
85.226	$3p^53d\ ^1{ m F}_3^{\circ}$	$3p^5(^2P_{3/2}^{\circ})4f^{\ 2}[\frac{7}{2}]_4$	543 220	1 716 600	1				14
84.092	$3p^53d$ $^3\mathrm{D}^{\circ}_3$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$	527 470	1 716 600	7				14°, 23
83.798	$3p^53d\ ^1{ m F}_3^{\circ}$	$3p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4f^{\ 2}[\frac{7}{2}]_4$	543 220	1 736 600	6				14°,23
83.546	$3p^53d$ $^3\mathrm{D}^{\circ}_2$	$3p^5(^2P^o_{1/2})4f^{\ 2}[\frac{7}{2}]_3$	539 180	1 736 100	4				14°, 23
83.139	$3p^5 3d\ ^1{ m D}_2^{ m o}$	$3p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4f^{\ 2}[\frac{5}{2}]_3$	530 830	1 733 700	6				14°,23
82.625	$3p^{5}3d\ ^{3}\mathrm{F}_{2}^{\mathrm{o}}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_3$	504 070	1 714 400	6				14°,23
82.530 82.417	$3p^{5}3d\ ^{3}\mathrm{F}_{3}^{\circ}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{9}{2}]_4$	497 520 493 250	1 709 200 1 706 600	7 10				14°,23 14°,23
81.732 81.378 81.213 81.138	$3p^53d\ ^3\mathrm{P}_2^\circ$	$3p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_{2}$ 1 2	480 950 472 970 472 970 469 310	1 704 400 1 701 800 1 704 400 1 701 800	5				14°, 23 14 14°, 23 14°, 23
81.468	$3p^53d\ ^3{ m P}_2^o$	$3p^5(^2\mathbf{P_{3/2}^o})4f^{\ 2}[\frac{5}{2}]_3$	480 950	1 708 500	7				14°,23
78.744	$3p^{6-1}S_0$	$3p^54s\ ^3{ m P}_1^{ m o}$	0	1 269 940	6	1.7 – 1	6.1+10	D	2°, 6, 8, 15, 103, 109*
77.393	$3p^{6-1}S_0$	$3p^54s\ ^1{ m P}_1^{ m o}$	0	1 292 110	8	2.3 - 1	8.5+10	D	2°, 6, 8, 15, 103, 109*
63.641	$3p^{6}$ 1 S ₀	$3p^54d\ ^3{ m P}_1^{ m o}$	0	1 571 310	4	4.5 - 1	2.5+11	D	2°,109*
62.730	$3p^{6-1}S_0$	$3p^54d\ ^1{ m P}_1^{ m o}$	0	1 594 130	2	2.2 - 1	1.2+11	D	2°, 15, 109*

Ni xII

Wave- length (Å)	Classifi Lower	ication Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4231.2	$3s^23p^5$ $^2P^{\circ}_{3/2}$	$3s^23p^5$ $^2P^o_{1/2}$	0	23 629		M1	2.37+2	В	4, 20°, 109*
3167.0	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)3d\ ^4F_{9/2}$	454 000+x	485 570+x		M1			19,20°
1686.74	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)3d\ ^2F_{7/2}$	454 000+x	513 290+x		M1			19,22°
1370.52	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^1\mathrm{D})3d\ ^2\mathrm{G}_{7/2}$	454 000+x	526 960+x		M1			19,21°
1225.05	$3s^23p^4(^3P)3d\ ^4F_{9/2}$	$3s^23p^4(^1{ m D})3d\ ^2{ m F}_{7/2}$	485 570+x	567 200+x		M1			19,22°
317.475 295.321	$3s^23p^5$ $^2\mathrm{P}^{\circ}_{1/2}$ $_{3/2}$	$3s3p^6 \ ^2\mathrm{S}_{1/2}$	23 629 0	338 615 338 615	4 6	6.4 - 2 $1.35 - 1$	2.1+9 5.2+9	C- C-	27°,109* 27°,109*
166.88 160.556	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$ $_{3/2}$	$3s^23p^4(^1\mathrm{D})3d\ ^2\mathrm{S}_{1/2}$	23 629 0	622 840 622 840	5	3.78 - 1 1.1	4.53+10 1.4+11	C- C-	24°,109* 10,12°,24,26,109*
159.970 157.795 154.171	$3s^23p^5$ 2 P $_{1/2}^{\circ}$ $_{1/2}^{\circ}$ $_{1/2}^{\circ}$ $_{3/2}^{\circ}$	$3s^23p^4(^3P)3d\ ^2P_{3/2}$ $^{1/2}$ $^{3/2}$	23 629 23 629 0	648 670 657 290 648 670	10 5 20				10,12° 10,12°,26 9,10,12°,15,24,25,
152.151	3/2	1/2	0	657 290	40				26,103 10,12°
153.174	$3s^23p^5\ ^2{ m P}^{ m o}_{1/2}$	$3s^23p^4(^3P)3d\ ^2D_{3/2}$	23 629	676 420	2	2.80	1.99+11	C	9,10°,24,25,26,
152.153	3/2	5/2	0	657 230	4	4.32	2.08+11	C	103, 109* 9, 10°, 15, 24, 25, 26, 103, 109*
147.847	3/2	3/2	0	676 420		5.2 - 2	4.1+9	D	10°, 24, 26, 109*
75.83 75.62	$3s^23p^4(^3P)3d\ ^4F_{7/2}$ 9/2	$3s^23p^4(^3P)4f\ ^4G^o_{9/2}$	492 750+x 485 570+x	1 811 400+x 1 808 000+x					23 23
75.69	$3s^23p^4(^1{ m D})3d\ ^2{ m G}_{9/2}$	$3s^23p^4(^1\mathrm{D})4f^{\ 2}\mathrm{H}^{\mathrm{o}}_{11/2}$	527 230+x	1 848 400+x					23
74.44	$3s^23p^4(^3P)3d^4D_{7/2}$	$3s^23p^4(^3P)4f\ ^4F^o_{9/2}$	454 000+x	1 797 400+x					23
72.77 72.17	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$ $_{3/2}$	$3s^23p^4(^3P)4s\ ^2P_{3/2}$	0 0	1 374 200 1 385 600					23 23
72.57 71.4	$3s^23p^5$ $^2P^{\circ}_{1/2}$	$3s^23p^4(^1D)4s\ ^2D_{3/2}$	23 629 0	1 401 600 1 401 000					23 23
60.02	$3s^23p^5 \ ^2P^{\circ}_{3/2}$	$3s^23p^4(^3P)4d^2D_{5/2}$	0	1 666 100					23

Ni xiii

Wave- length (Å)	Lower	Classification	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
5115.8	$3s^23p^4$	³ P ₂	$3s^23p^4$ 3 P ₁	0.0	19 541.8		M1	1.57+2	C+	4,20°,109*
2125.50	$3s^23p^4$	$^{3}P_{2}$	$3s^23p^{4-1}D_2$	0.0	47 032.9		M1	2.6+2	\mathbf{E}	21°, 106, 107, 109*
1277.23	$3s^23p^4$	$^{3}\mathrm{P}_{1}$	$3s^23p^{4}$ 1S_0	19 541.8	97 836.2		M1	2.5+3	\mathbf{E}	21°,109*
321.881 308.542 308.049 302.844 290.574	$3s^23p^4$	³ P ₁ 0 1 2 2	$3s3p^5$ 3 P $_2^{\circ}$ 1 1 2 1	19 541.8 20 060 19 541.8 0.0 0.0	330 215 344 156 344 156 330 215 344 156	1 3 1 5 2	1.2 – 1	2.9+9	D	27 12°,27 27°,109* 24,27° 27
267.468	$3s^23p^4$	$^{1}\mathrm{D_{2}}$	$3s3p^{5-1}P_1^{o}$	47 032.9	420 910	3	3.3 - 1	1.0+10	D	27°,109*
169.61^{C} 164.172	$3s^23p^4$	³ P ₁ 3	$s^2 3p^3 (^2 D^\circ) 3d {}^3 P_2^\circ$	19 541.8 0.0	609 120 609 120	30	4.5 - 1 2.6	2.1+10 1.3+11	D D	109* 12°,24,109*
161.752	$3s^23p^4$	$^{1}S_{0}$ 3	$s^2 3p^3 (^2 P^o) 3d^{-1} P_1^o$	97 836.2	716 070	1	1.93	1.64+11	C	12°,24,109*
161.547	$3s^23p^4$	¹ D ₂ 3	$s^2 3p^3 (^2 D^o) 3d^{-1} D_2^o$	47 032.9	666 050	2	2.7	1.4+11	C	12°,24,109*
159.970 158.77 157.732 155.12	$3s^23p^4$	³ P ₁ 3	$(s^2 3p^3 (^4S^\circ) 3d\ ^3D_2^\circ$	19 541.8 20 060 0.0 0.0	644 660 649 900 633 990 644 660	10 10				12°, 24 24 9, 12°, 15, 24, 25, 103 24
157.532	$3s^23p^4$	$^{1}D_{2}$ 3	$s^2 3p^3 (^2 D^{\circ}) 3d {}^1 F_3^{\circ}$	47 032.9	681 820	5	5.00	1.92+11	C	9,12°,24,103,109*
154.68 ^C	$3s^23p^4$	³ P ₁ 3	$s^2 3p^3 (^2 D^o) 3d^{-1} D_2^o$	19 541.8	666 050		2.6 - 1	1.5+10	D	109*
70.07^{L}	$3s^23p^3(^2D^{\circ})3d$	³ G ₅ 3.	$s^2 3p^3 (^2 D^{\circ}) 4f^{-3} H_6$							23
69.37^{L} 69.25^{L}	$3s^23p^33d$	⁵ D ₄ ° 3	$3s^23p^34f$ ⁵ F ₅							23 23
56.57	$3s^23p^4$	³ P ₂ 3	$3s^23p^3(^4S^\circ)4d^{-3}D_3^\circ$	0.0	1 767 700					23
56.39	$3s^23p^4$	$^{1}D_{2}$ 3	$s^2 3p^3 (^2 D^{\circ}) 4d^{-1} D_2^{\circ}$	47 032.9	1 820 400					23
56.18	$3s^23p^4$	$^{1}D_{2}$ 3	$(s^2 3p^3 (^2 D^{\circ}) 4d^{-1} F_3^{\circ})$	47 032.9	1 827 000					23

Ni xiv

Wave- length (Å)	Classif Lower	ication Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
2184.26	$3s^23p^3 {}^4S_{3/2}^{\circ}$	3s ² 3p ³ ² D _{3/2} °	0.0	45 767.8		M1	1.6+2	C	21°,107,109*
1866.75	3/2	5/2	0.0	53 569.0		M1	7.6	D	21°, 106, 107, 109*
1174.72	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ $^2P_{1/2}^{\circ}$	0.0	85 126.7		M1	4.6+2	D	21°, 109*
$369.58^{\rm C}$	$3s^23p^3$ ² D $_{3/2}^{o}$	$3s3p^4 \ ^4P_{5/2}$	45 767.8	316 343		4.0 - 3	3.4+7	E	109*
338.65 ^C	$3s^23p^3$ ² P $_{3/2}^{\circ}$	$3s3p^{4}$ 2 D _{3/2}	96 630+x	391 916		3.0 - 3	4.4+7	E	109*
334.52^{C}	3/2	5/2	96 630+x	395 567		7.6 - 2	7.6 + 8	D	109*
325.96 ^C	1/2	3/2	85 126.7	391 916		2.4 - 2	3.7 + 8	D	109*
316.113	$3s^23p^3$ $^4S_{3/2}^{\circ}$	3s3p4 4P5/2	0.0	316 343	6	1.8 - 1	2.0+9	D	24,27°,109*
302.264	3/2	3/2	0.0	330 837	4	1.2 - 1	2.2 + 9	D	12°, 24, 27, 109*
295.55 ^C	$3s^23p^{3-2}D_{5/2}^{\circ}$	$3s3p^{4-2}D_{3/2}$	53 569.0	391 916		8.4 - 4	1.6+7	E	109*
292.399	5/2	5/2	53 569.0	395 567	4	2.8 - 1	3.6+9	D	24,27°,109*
288.894	3/2	3/2	45 767.8	391 916	3	2.3 - 1	4.6 + 9	D	27°,109*
285.88 ^C	3/2	5/2	45 767.8	395 567		8.0 - 4	1.1+7	E	109*
253.681	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s3p^{4-2}P_{3/2}$	53 569.0	447 765	5				24,27°
245.650	3/2	1/2	45 767.8	452 850	2				27
202.97 ^C	$3s^23p^3$ $^2P_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{3/2}$	96 630+x	589 310		9.2 - 3	3.7+8	E	109*
200.73 ^C	3/2	1/2	96 630+x	594 810		4.4 - 2	3.8 + 9	E	109*
196.20 ^C	1/2	1/2	85 126.7	594 810		3.2 - 2	2.9+9	E	109*
188.69 ^C	$3s^23p^{3-2}D_{5/2}^{o}$	$3s^23p^2(^3P)3d^4P_{5/2}$	53 569.0	583 530		6.0 - 2	1.9+9	E	109*
186.66 ^C		3/2	53 569.0	589 310		2.0 - 2		E	109*
185.96 ^C	5/2 3/2	3/2 5/2	45 767.8	583 530		3.1 - 2		E	109*
182.14 ^C	3/2	1/2	45 767.8	594 810		1.5 - 1	1.5+10	Ē	109*
186.69 ^C	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^1D)3d^2D_{3/2}$	96 630+x	632 280		1.5 - 2	7.1+8	Е	109*
185.94 ^C	3/2	5/2	96 630+x	634 430		2.2 - 1	7.1 + 9	D	109*
182.76 ^C	1/2	3/2	85 126.7	632 280		1.7 - 1	8.4 + 9	D	109*
177.56	$3s^23p^3 {}^2P_{1/2}^{o}$	$3s^23p^2(^1D)3d^{2}P_{1/2}$	85 126.7	648 320					24
177.28	3/2	3/2	96 630+x	660 710+2	c	1.1	5.6+10	E	24°,109*
173.74 ^C	1/2	3/2	85 126.7	660 710+		4.0 - 1	2.4+10	E	109*
172.80 ^C	$3s^23p^3$ $^2D_{5/2}^{o}$	$3s^23p^2(^1D)3d^2D_{3/2}$	53 569.0	632 280		2.5 - 1	1.4+10	D	109*
172.16	5/2	5/2	53 569.0	634 430		1.3	4.7 + 10	D	24°,109*
170.50	3/2	3/2	45 767.8	632 280		1.2	7.1 + 10	D	24°,109*
169.88 ^C	3/2	5/2	45 767.8	634 430		4.4 - 2	1.7 + 9	D	109*
171.37	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{5/2}$	0.0	583 530		2.5	9.4+10	D	24°,109*
169.69	3/2	3/2	0.0	589 310		1.7	9.8 + 10	D	24°,109*
168.12	3/2	1/2	0.0	594 810		7.2 - 1	8.5+10	D	24°,109*
168.37	$3s^23p^3 {}^2P_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^2D_{5/2}$	96 630+x	690 560+	x				24
164.80	1/2	3/2	85 126.7	691 930	· -				24
164.71 ^C	$3s^23p^{3-2}D_{5/2}^{o}$	$3s^23p^2(^1D)3d^{2}P_{3/2}$	53 569.0	660 710+	·	13-2	7.7+8	E	109*
162.62 ^C	·		45 767.8	660 710+		3.3 - 2		E	109*
	3/2	3/2			^			Ľ	
164.146	$3s^23p^3 {}^2D_{5/2}^{\circ}$	$3s^23p^2(^3P)3d^2F_{7/2}$	53 569.0	662 780		3.9	1.2+11	D	9,15°,24,25,103,109
157.62^{C}	$3s^23p^3$ $^4S_{3/2}^o$	$3s^23p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	0.0	634 430		5.2 - 3	2.3+8	E	109*
65.40^{L}	$3s^23p^23d\ ^2{ m G}_{9/2}$	$3s^23p^24f$ $^2\mathrm{H}^{\mathrm{o}}_{11/2}$							23
65.01 ^L	$3s^23p^23d^4D_{7/2}$	$3s^23p^24f$ $^4F_{9/2}^{o}$							23
64.79 ^L	$3s^23p^23d^4F_{9/2}$	$3s^23p^24f$ $^4G_{11/2}^{\circ}$							22
04.19	эвэрэй г9/2 	38 SP 4J G _{11/2}							23

Ni xv

Wave- length (Å)	Classificatio Lower	n Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
8024.1	$3s^23p^2$ 3P_1	$3s^23p^2$ ³ P ₂	14 917.5	27 376.5		M1	2.27+1	С	4,20°,109*
6701.7	0	1	0.0	14 917.5		M1	5.65 + 1	С	4,20°,109*
2085.51	$3s^23p^2$ 3P_1	$3s^23p^2$ ¹ D ₂	14 917.5	62 852.1		M1	2.0+2	E	21°, 106, 107, 109°
439.86 416.92	$3s^23p^2$ 3 P ₂	$3s3p^3$ 5 S $_2^{\circ}$	27 376.5 14 917.5	254 700 254 700					28, 29° 28, 29°
359.79 ^C	$3s^23p^2$ ¹ D ₂	$3s3p^3 \ ^3D_3^{\circ}$	62 852.1	340 794		2.4 - 2	1.7+8	E	109*
324.65 ^C	$3s^23p^2$ 3P_2	$3s3p^{3} \ ^{3}D_{1}^{o}$	27 376.5	335 400		9.5 - 4	2.0+7	E	109*
324.35 ^C	2	2	27 376.5	335 682	_	1.7 - 3	2.1 + 7	E	109*
319.063 312.03 ^C	2	3	27 376.5	340 794	6	1.6 - 1	1.5+9	D	24, 27°, 44, 109*
311.756	1	1	14 917.5 14 917.5	335 400 335 682	3	1.5 - 2 $1.5 - 1$	3.3+8 $2.0+9$	D- D	109* 24,27°,109*
298.15	1 0	2 1	0.0	335 400	1	7.4 - 2	1.9+9	D	24, 27°, 109 27°, 109*
278.386	$3s^23p^2$ 3P_2	$3s3p^3 \ ^3P_2^{o}$	27 376.5	386 590	5	2.5 - 1	4.3+9	D	27°,109*
269.05 ^C	1	2	14 917.5	386 590	Ů	2.0 - 2	3.7+8	D-	109*
277.775	$3s^23p^{2-1}D_2$	$3s3p^{3}$ ¹ D ₂ °	62 852.1	422 855	4				27
224.057	$3s^23p^{2-1}D_2$	$3s3p^{3-1}P_1^{\circ}$	62 852.1	509 167	1				12°,24,27
215.925	$3s^23p^2$ 3P_1	$3s3p^{3}$ $^{3}S_{1}^{o}$	14 917.5	478 041	3				12°, 24, 27
209.18	0	1	0.0	478 041	3				24°, 27
195.52	$3s^23p^2$ ¹ D ₂	$3s^23p3d$ ¹ D ₂ °	62 852.1	574 267					24
189.21	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3P_2^{o}$	27 376.5	555 797					24
184.884 176.741	1 0	2	14 917.5 0.0	555 797 565 800	1 7				12°,24 12°,24
180.06	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3D_1^{\circ}$	07 070 5						
179.273	2 39 3p 1 2	38 3p3a D ₁	$27 \ 376.5$ $27 \ 376.5$	582 760 585 185	4	2.6	7.5+10	D	24 12°, 24, 44, 109*
178.890	2	2	27 376.5	586 379	1	2.0	1.5+10	D	12°, 24, 44, 109
176.10	1	1	14 917.5	582 760					24
174.99	1	2	14 917.5	586 379					24
178.779	$3s^23p^2 \ ^3P_1$	$3s^23p3d\ ^1{ m D}_2^{\rm o}$	14 917.5	574 267	1				12°,24
173.724	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m F}_3^{ m o}$	62 852.1	638 477	2	2.40	7.6+10	C	12°,24,109*
163.64 ^C	$3s^23p^2 \ ^3P_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	27 376.5	638 477		1.6 - 1	5.6+9	E	109*
$65.415^{\rm L}$	$3s^23p3d\ ^1\mathrm{P_1^o}$	$3s^23p4f^{-1}{ m D}_2$							30
64.635	$3s^23p3d\ ^1{ m F}_3^{ m o}$	$3s^23p4f^{-1}G_4$	638 477	2 185 600		5.4	9.6+11	D	30°,109*
$62.369^{\rm L}$	$3s^23p3d$ $^3\mathrm{P}_0^{\circ}$	$3s^23p4f\ ^3{ m D_1}$							30
61.152^{L} 60.890^{L}	$3s^23p3d\ ^3F_3^{\circ}$	$3s^23p4f\ ^3{ m G_4}$				6.4	1.0+12	D	23,30° 23,30°,109*
59.947 ^L	$3s^23p^2$ ¹ S ₀	$3s^23p4d\ ^1P_1^{\circ}$							30
59.58	$3s^23p^{2-1}D_2$	$3s^23p4s^{-1}P_1^{\circ}$	62 852.1	1 741 300					23
58.71	$3s^23p^2$ 3 P ₂	$3s^23p4s\ ^3P_2^{\rm o}$	27 376.5	1 730 700					23
50.249	$3s^23p^{2-1}D_2$	$3s^23p4d\ ^1F_3^{\circ}$	62 852.1	2 053 000		1.8	6.8+11	D	23,30°,109*
50.172 49.914	$3s^23p^2$ 3P_2	$3s^23p4d\ ^3\mathrm{D_{3}^{o}}$	27 376.5 14 917.5	2 020 500 2 018 400					23, 30° 23, 30°
49.626	$3s^23p^2$ 3 P ₂	$3s^23p4d\ ^3{ m F}_3^{ m o}$	27 376.5	2 042 500					30

Ni xvi

Wave- length (Å)	Classific Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
3601.23	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$3s^23p^{-2}P_{3/2}^{\circ}$	0	27 760.4		M1	1.92+2	С	4, 20, 76°, 109*
$471.622^{\rm C}$	$3s3p^2 {}^2P_{3/2}$	$3p^{3} {}^{2}D_{5/2}^{o}$	457 912	669 946					32
466.181 ^C	1/2	3/2	448 169	662 678					32
$453.502^{\rm C}$	$3s3p^2 {}^2P_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	457 912	678 418		1.5 - 2	1.2 + 8	${f E}$	109*
434.312 ^C	1/2	3/2	448 169	678 418		3.8 - 3	3.3+7	Е	109*
$431.539^{\rm C}$	$3s^23p^2P_{3/2}^{\circ}$	$3s3p^2 {}^4P_{1/2}$	27 760.4	259 489					29
$410.542^{\rm C}$	3/2	3/2	27 760.4	271 341					29
388.820 ^C	3/2	5/2	27 760.4	284 949		7.6 - 3	5.6 + 7	\mathbf{E}	29, 109*
385.373 ^C	1/2	1/2	0	259 489		2.6 - 3	5.7 + 7	\mathbf{E}	29, 109*
368.540 ^C	1/2	3/2	0	271 341					29
407.905 ^C	$3s3p^2 {}^2S_{1/2}$	$3p^3 \ ^2D_{3/2}^{o}$	417 523	662 678					32
407.677 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{3}P^{\circ})3d\ ^{4}P^{\circ}_{5/2}$	543 107	788 399		7.2 - 3	5.0+7	E	109*
355.1 ^C	$3s3p^2 {}^2P_{3/2}$	$3p^3 {}^2P_{1/2}^{\circ}$	457 912	739 500?		2.9 - 2	7.7+8	E	109*
347.0 ^C	3/2	3/2	457 912	746 100?		2.4 - 1	3.4+9	D	109*
343.3 ^C	1/2	1/2	448 169	739 500?		1.5 - 1	4.3 + 9	E	109*
335.6 ^C	1/2	3/2	448 169	746 100?		2.8 - 3	4.3 + 7	E	109*
325.904 ^C	$3s^23d\ ^2{ m D}_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}F_{5/2}^{\circ}$	543 107	849 946		5.1 - 2	5.4+8	E	109*
322.469 ^C	3/2	5/2	539 839	849 946		1.5 - 1	1.6+9	\mathbf{E}	109*
304.436 ^C	5/2	7/2	543 107	871 583		2.9 - 1	2.6 + 9	E	109*
316.811	$3s3p^2 {}^2D_{3/2}$	$3p^{3-2}D_{3/2}^{\circ}$	347 032	662 678	3				31°,32
313.724	5/2	5/2	351 185	669 946	4	3.2 - 1	3.6 + 9	\mathbf{E}	31°, 32, 109*
309.680 ^C	3/2	5/2	347 032	669 946		3.5 - 2	4.1 + 8	\mathbf{E}	32, 109*
313.213 ^C	$3s^23p^2P_{3/2}^{o}$	$3s3p^2 {}^2D_{3/2}$	27 760.4	347 032		2.5 - 3	4.3+7	E	109*
309.196	3/2	5/2	27 760.4	351 185	5	2.0 - 1	2.3+9	D	24, 27, 31°, 33, 109*
288.149	1/2	3/2	0	347 032	4	1.6 - 1	3.2+9	D	27,31°,109*
310.016	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	$3p^2(^3P)3d\ ^4F_{9/2}$	807 214	1 129 778	1				34
$304.3^{\rm C}$	$3s3p^2$ 2 S _{1/2}	$3p^{3} {}^{2}P_{3/2}^{\circ}$	417 523	746 100?		1.3 - 1	2.3+9	E	109*
302.584 ^C	$3s3p^2 {}^2P_{3/2}$	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	457 912	788 399		4.4 - 3	5.2 + 7	E	109*
301.763 ^C	$3s3p^2 \ ^2D_{3/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	347 032	678 418		1.4 - 2	2.6+8	E	109*
271.638	$3s3p(^{3}P^{o})3d^{4}F_{9/2}^{o}$	$3p^2(^3P)3d^4F_{9/2}$	761 641	1 129 778	2				34
$269.645^{\rm L}$	5/2	5/2			1				34
269.118^{L}	7/2	7/2			2				34
265.649 ^C	3 s 2 3 d 2 D = 4 s	3s3p(3P°)3d 2P°	543 107	919 543		3.0 - 2	7.0+8	E	109*
263.363 ^C	3/2	3/2	539 839	919 543		4.8 - 2	1.1+9	E	109*
259.742 ^C	$3s3p^2 \ ^4P_{5/2}$	$3p^3 {}^2D_{5/2}^{o}$	284 949	669 946		1.1 - 2	1.8+8	E	109*
257.842 254.628	$3s3p(^{3}P^{\circ})3d\ ^{2}F^{\circ}_{7/2}$	$3p^2(^3\mathrm{P})3d\ ^2\mathrm{F}_{5/2}$	871 583 871 583	1 259 417 1 264 313	1 1				34 34
256.566 ^C 239.508	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s3p^2 \ ^2S_{1/2}$	27 760.4 0	417 523 417 523	3	7.6 - 3 $4.4 - 1$	3.8+8 2.6+10	E E	109* 12°,24,27,31,33,44,109
255.741	$3s^23d\ ^2{ m D}_{5/2}$	3s3p(1Po)3d 2Fo	543 107	934 137	5	2.4	3.0+10	Е	31°, 32, 109*
253.155 ^C	5/2	5/2	543 107	938 122	,	4.9 - 2	3.0+10 8.5+8	E	109*
251.088	3/2	5/2 5/2	539 839	938 122	3	$\frac{4.3}{1.7}$	3.0+10	E	31°, 32, 109*
255.164 248.996 L	3s3p(³ P°)3d ⁴ F° _{9/2} 5/2	$3p^2(^3P)3d\ ^4D_{7/2}$	761 641	1 153 546	1 1				34 34
254.798 ^C	$3s3p^2$ 2 D _{3/2}		947 000	700 F000		9.0		-	00.100
254.798 ^C 253.219 ^C	•	$3p^3 {}^{2}P^{o}_{1/2}$	347 032	739 500?		3.0 - 1	1.5+10	D	32,109*
253.219° 250.6°	5/2	3/2	351 185 347 032	746 100?		4.6 - 1	1.2+10	D	32, 109*
200.0	3/2	3/2	341 032	746 100?		5.6 - 2	1.4+9	D	109*
254.139	$3s3p^2 {}^4P_{5/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	284 949	678 418	3	7.2 - 1	1.8+10	D	31 [△] , 109*, 114°
		·	971 941		_		1 4 1 1 0		
245.671 238.699	3/2	3/2	271 341 259 489	678 418	2	5.2 - 1 $2.6 - 1$	1.4 + 10	D	31 [△] ,33,109*,114° 31 [△] ,109*,114°

Ni XVI - Continued

Wave-	Classific	cation	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	Energy Lev	reis (cm)	1116.	gj	A (S)	Acc.	References
251.609	3s3p(³ P°)3d ² P° _{3/2}	$3p^2(^3P)3d^2D_{5/2}$	919 543	1 316 985	1				34
239.904	3s ² 3d ² D ₅ /2	3s3p(1P°)3d 2D°	543 107	959 869	2	4.4 - 1	1.3+10	E	31°, 32, 109*
238.078 ^C		-,-	539 839	959 869	_	4.0 - 1	1.2+10	E	109*
237.470	3/2 5/2	3/2 5/2	543 107	964 187	4	1.2	2.4+10	E	31°, 32, 109*
235.656 ^C	3/2	5/2 5/2	539 839	964 187	•	8.0 - 3	1.6+8	Ē	109*
239.055	$3s^23d^{-2}D_{3/2}$	3s3p(¹ P°)3d ² P _{1/2} °	539 839	958 134	1	6.4 - 1	3.6+10	D	31°,32,109*
237.612 ^C		•			1				·
237.012	5/2 3/2	3/2 3/2	543 107 539 839	963 961 963 961	1	7.8 - 2 $5.2 - 1$	2.3+9 $1.5+10$	D D	109* 31°,32,109*
	•								
237.864	$3s^23p^2P_{3/2}^{\alpha}$	$3s3p^2 {}^2P_{1/2}$	27 760.4	448 169	2	4.4 - 1	2.6 + 10	E	12°, 24, 27, 31, 33, 109*
232.484	3/2	3/2	27 760.4	457 912	4	1.32	4.07 + 10	C-	12°, 24, 27, 31, 33, 44, 109*
223.117	1/2	1/2	0	448 169	1	1.9 - 1	1.3+10	E	24, 27, 31°, 33, 44, 109*
218.376	1/2	3/2	0	457 912	1	2.72 - 1	9.5 + 9	C-	12°, 24, 27, 31, 33, 44, 109*
231.367	$3s3p(^{1}P^{o})3d^{2}F_{5/2}^{o}$	$3s3d^2$ 2 G _{7/2}	938 122	1 370 336	1bl				34
229.128	7/2	9/2	934 137	1 370 574	2				34
228.721 ^C	$3s3p^2 {}^2D_{5/2}$	$3s3p(^3P^{\circ})3d\ ^4P^{\circ}_{5/2}$	351 185	788 399		6.6 - 2	1.4+9	E	109*
226.913	$3s3p(^3P^{\circ})3d\ ^2D_{5/2}^{\circ}$	$3p^2(^3P)3d\ ^2F_{7/2}$	823 538	1 264 313	2bl				34
219.857	$3s3p(^{1}P^{\circ})3d^{2}D_{5/2}^{\circ}$	$3s3d^2\ ^2{ m F}_{7/2}$	964 187	1 419 028					34
$219.284^{\rm C}$	2 .2 m ² 2 D	$3s3p(^{3}P^{\circ})3d^{4}D_{7/2}^{\circ}$	251 105	907 914		20.0	6719	100	100*
219.284 216.786 ^C	$383p D_{5/2}$ $3/2$	•	351 185 347 032	807 214 808 316		3.9 - 2 $7.6 - 3$	6.7+8 $1.8+8$	E E	109* 109*
	·	5/2	347 032	000 310		1.0 - 3	1.070	I)	109
$216.8^{ m C}$	$3s3p^2 {}^4P_{5/2}$	$3p^{3} {}^{2}P_{3/2}^{o}$	284 949	746 100?		8.4 - 3	2.9 + 8	\mathbf{E}	109*
210.6^{C}	3/2	3/2	271 341	746 100?		2.2 - 2	8.1+8	\mathbf{E}	109*
205.5^{C}	1/2	3/2	259 489	746 100?		1.0 - 2	4.1+8	\mathbf{E}	109*
216.623 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(3P°)3d 2P°	457 912	919 543		3.1 - 1	1.1+10	D	32, 109*
212.146 ^C	1/2	3/2	448 169	919 543		2.8 - 3	1.1+8	E	109*
	•	•		720 010		2.0		_	100
212.234^{C}	$3s3p^2 \ ^2D_{5/2}$	$3s3p(^{3}P^{\circ})3d^{2}D_{3/2}^{\circ}$	351 185	822 364					32
211.715	5/2	5/2	351 185	823 538	3				31°,32
210.375	3/2	3/2	347 032	822 364	2				31°,32
209.861 ^C	3/2	5/2	347 032	823 538					32
209.008	$3s3p(^{3}P^{o})3d^{-4}D_{5/2}^{o}$	$3s3d^2 {}^4{ m F}_{7/2}$	808 316	1 286 767	bì				34
$208.242^{\rm C}$	$3s3p^2 {}^2P_{3/2}$	$3s3p(^{1}P^{o})3d\ ^{2}F_{5/2}^{o}$	457 912	938 122		2.9 - 2	7.5 + 8	Е	109*
202.557	$3s3p(^{3}P^{o})3d\ ^{4}P_{3/2}^{o}$	$3s3d^2 {}^4F_{5/2}$	791 390	1 285 078	1				34
$200.497^{\rm C}$	$3s3p^2$ ² D _{5/2}	$3s3p(^{3}P^{o})3d^{2}F_{5/2}^{o}$	351 185	849 946		1.5 - 1	4.2 + 9	E	32,109*
198.844	3/2	5/2	347 032		1			E	31°, 32, 109*
192.187	5/2	7/2	351 185	871 583	3	8.4 - 1	1.9 + 10	E	31°, 32, 109*
199.911 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2P°	457 912	958 134		1.4 - 1	1.1+10	C-	109*
197.614	3/2	3/2	457 912	963 961		8.0 - 1	3.3+10	Ď	31°, 32, 109*
$196.092^{\rm C}$	1/2	1/2	448 169	958 134		6.0 - 2	5.2+9	E	109*
199.220 ^C	$3s3p^2 {}^2P_{3/2}$	3s3p(1P°)3d 2D°	457 912	959 869		1.2 - 1	5.1+9	E	109*
197.515	3/2	553p(r)5a D _{3/2} 5/2	457 912	964 187	2	$\frac{1.2 - 1}{2.3}$	6.6+10	E	31°, 32, 109*
195.391	1/2	3/2	448 169	959 869	1	1.2	5.4+10	E	31°, 32, 109*
199.210	$3s3p^2 {}^2S_{1/2}$	•	417 523	919 543	2	1.2	4.9+10	E	31°, 32, 109*
100 000C	0 - 2 4 -	-,-						_	
198.629 ^C 193.412		3s3p(³ P°)3d ⁴ P _{5/2}	284 949	788 399	9	1.1 - 1 $9.6 - 1$	3.3+9	E	109*
133.412	3/2	•	271 341	788 399	2	9.0 – 1	2.8+10	E	31°,109*
195.266	$3s^23p^2P_{3/2}^{o}$	$3s^23d\ ^2{ m D}_{3/2}$	27 760.4	539 839		2.2 - 1	9.5 + 9	D	31°,109*
194.046	3/2		27 760.4	543 107	7	1.6	4.6 + 10	D	12°, 24, 31, 33, 44, 109*
185.251	1/2	3/2	_	539 839	1	8.6 - 1	4.2 + 10	D	24, 31°, 33, 44, 109*
191.654 ^C	$3s3p^2 {}^4P_{3/2}$	$3s3p(^{3}P^{\circ})3d^{4}D_{1/2}^{\circ}$	271 341	793 115		1.0 - 2	9.5+8	\mathbf{E}	109*
		-, -	284 949	807 214	3	2.02	4.58+10	D	31°,109*
191.486	5/2	112							
191.055	5/2 5/2	•	284 949	808 316	1	1.0	3.1 + 10	D	31°,109*
		5/2		808 316 793 115 808 316	1 1	1.0 $5.0 - 1$ $3.9 - 1$	3.1+10 $4.8+10$ $1.3+10$	D D	31°,109* 31°,109* 109*

Ni xvi - Continued

Wave-	Classifi	cation	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper					. ,		
184.976 ^C	$3s3p^2 {}^2S_{1/2}$	3s3p(¹ P°)3d ² P° _{1/2}	417 523	958 134		2.4 - 1	2.4+10	E	109*
183.003 ^C	1/2	3/2	417 523	963 961		1.4 - 1	6.8 + 9	E	109*
184.384 ^C	$3s3p^2$ 2 S _{1/2}	$3s3p(^{1}P^{\circ})3d^{2}D_{3/2}^{\circ}$	417 523	959 869		4.2 - 2	2.0+9	E	32,109*
174.669 ^C	$3s3p^2 {}^2\mathrm{D}_{3/2}$	$3s3p(^{3}P^{o})3d\ ^{2}P_{3/2}^{o}$	347 032	919 543		8.4 - 4	4.6+7	E	109*
172.829 ^C	$3s3p^{2-4}P_{3/2}$	$3s3p(^3P^o)3d\ ^2F^o_{5/2}$	271 341	849 946		4.0 - 3	1.5+8	E	109*
170.464^{C}	5/2	7/2	284 949	871 583		2.9 - 2	8.2+8	E	109*
171.541 ^C	$3s3p^2$ $^2D_{5/2}$	3s3p(1P°)3d 2F°	351 185	934 137		1.0	3.0+10	E	109*
170.376 ^C	5/2	5/2	351 185	938 122		3.7 - 2	1.4 + 9	E	109*
169.179^{C}	3/2	5/2	347 032	938 122		7.6 - 1	2.9 + 10	E	109*
$164.289^{\rm C}$	$3s3p^2$ $^2D_{5/2}$	3s3p(1P°)3d 2D°	351 185	959 869		3.9 - 3	2.4+8	E	109*
163.176^{C}	3/2	3/2	347 032	959 869		3.4 - 3	2.1 + 8	E	109*
163.639 ^C	$3s3p^2 \ ^2D_{3/2}$	$3s3p(^{1}P^{o})3d^{2}P_{1/2}^{o}$	347 032	958 134		9.2 - 4	1.1+8	E	109*
$163.192^{\rm C}$	5/2	3/2	351 185	963 961		6.0 - 3	3.8+8	\mathbf{E}	109*
162.093^{C}	3/2	3/2	347 032	963 961		6.8 - 3	4.4+8	E	109*
154.039 ^C	$3s3p^2 {}^4P_{5/2}$	$3s3p(^{1}P^{\circ})3d\ ^{2}F_{7/2}^{\circ}$	284 949	934 137		1.8 - 2	6.3+8	E	109*
151.503 ^C	$3s3p^2 {}^4P_{1/2}$	$3s3p(^3P^{\circ})3d\ ^2P^{\circ}_{3/2}$	259 489	919 543		7.8 - 3	5.7+8	E	109*
59.336	$3s^23d^2D_{5/2}$	$3s^24f ^2F_{7/2}^{\circ}$	543 107	2 228 500					23
59.217	3/2	5/2	539 839	2 228 600					23
$57.349^{\rm L}$	$3s3p(^{3}P^{o})3d^{4}F_{7/2}^{o}$	3s3p4f 4G _{9/2}							23
57.257^{L}	5/2	7/2							23
57.137 ^L	9/2	11/2	761 641						23
47.772	$3s^23p\ ^2{ m P}^{ m o}_{3/2}$	$3s^24d\ ^2{ m D}_{5/2}$	27 760.4	2 121 100					23
47.184	1/2	3/2	0	2 119 400					23

Ni xvii

Wave- length (Å)	Classification Lower	on Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4744 ^T	3s3p ³ P ₁ °	$3s3p$ $^3P_2^{\circ}$	272 634	293 686		M1	1.25+2	C+	4°,109*
461.515	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{D}_{2}^{\circ}$	864 465	1 081 126	110	1.4 - 1	8.6+8	D	37°,109*
441.289	$3s3p\ ^{1}P_{1}^{o}$	$3p^{2} {}^{3}P_{0}$	401 302	627 914	170	4.2 - 3	1 4 9	T.	270 100*
412.363 ^C	-	• •	401 302		170		1.4+8	E	37°,109*
372.833	1	1		643 807	100	1.0 - 3	1.4+7	E	109*
	1	2	401 302	669 535	190	6.0 - 2	5.9+8	E	37°,109*
421.020	$3s3p\ ^{1}P_{1}^{o}$	$3p^{2} {}^{1}D_{2}$	401 302	638 820	520	2.4 - 1	1.8+9	E	37°,109*
366.80	$3s^2 {}^1S_0$	$3s3p$ $^3P_1^{\circ}$	0	272 634		3.5 - 3	5.8+7	E	42,43,44°,109*
359.234 ^C	$3s3d$ $^3\mathrm{D}_3$	$3p3d$ $^3F_2^o$	775 567	1 053 937		9.8 - 4	1.0+7	E	109*
355.886	2	2	772 953	1 053 937	40	1.0 - 1	1.0+9	D	37°, 38, 109*
353.773	1	2	771 268	1 053 937	190	3.6 - 1	3.8 + 9	D	33,37°,109*
341.23	3	3	775 567	1 068 632	2	1.6 - 1	1.3 + 9	C	38°,109*
338.205	2	3	772 953	1 068 632	220	6.0 - 1	5.0 + 9	C	33,37°,109*
322.033	3	4	775 567	1 086 107	330	1.05	7.5 + 9	C	33,37°,109*
$291.913^{\rm C}$	$3s3d$ $^3\mathrm{D}_2$	$3p3d$ $^3D_1^o$	772 953	1 115 521		2.9 - 1	7.4+9	E	109*
291.697	3	2	775 567	1 118 392	130				37
290.004	1	1	771 268	1 115 521	70	9.6 - 2	2.5 + 9	\mathbf{E}	37°,109*
279.163	3	3	775 567	1 133 775	370b	7.0 - 1	8.4+9	C	33,37°,109*
277.145 ^C	2	3	772 953	1 133 775		2.1 - 1	2.6 + 9	C	33,109*
290.232	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{F}^{\mathrm{o}}_{3}$	864 465	1 209 017	650	2.0	2.2+10	D	33,37°,109*
289.743	$3s3p\ ^{3}P_{2}^{o}$	$3p^{2-1}D_2$	293 686	638 820	200	1.7 - 1	2.7+9	E	37°,109*
273.093	1	3p D ₂	272 634	638 820	170	8.4 - 2	1.5+9	E	37°,109°
285.619	$3s3p\ ^{3}P_{2}^{o}$	$3p^{2-3}P_1$	293 686	643 807	350	3.1 - 1	0 5 1 0	0	02 07 20 079 100
281.468			272 634	627 914	300	2.5 - 1	8.5+9	C	23, 27, 33, 37°, 109
269.417	1	0	272 634	643 807			2.1+10	C	23, 27, 33, 37°, 109
266.062	1	1	293 686		220	1.9 - 1	5.8+9	C	23, 27, 33, 37°, 109
263.579	2	2	264 431	669 535	610	7.5 - 1	1.4+10	D	23, 27, 33, 37°, 109
251.949	0	1 2	272 634	643 807 669 535	$\frac{310}{260}$	2.7 - 1 $2.4 - 1$	$8.6+9 \\ 5.0+9$	C D	23, 27, 33, 37°, 109 23, 27, 33, 37°, 109
283.122	$3s3p\ ^{1}\mathrm{P}_{1}^{o}$	$3p^{2} {}^{1}S_{0}$	401 302	754 513	430	2.9 - 1	2.4+10	С	37°,109*
279.12	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}P_{1}^{\circ}$	864 465	1 222 730	4	5.5 - 1	1.5+10	D	38°,109*
275.353 ^C	$3s3d$ $^3\mathrm{D}_2$	$3p3d\ ^{3}P_{1}^{o}$	772 953	1 136 123		1.3 - 1	3.7+9	E	109*
274.967	2	2	772 953	1 136 643	240		311 0	_	33, 37°
274.376 ^C	1	0	771 268	1 135 732	210	1.5 - 1	1.3+10	C	109*
274.08	1	1	771 268	1 136 123	5	3.3 - 1	9.6+9	E	38°,109*
C	1 -	•							
270.295 ^C 269.070 ^C	$3s3p \ ^{1}P_{1}^{o}$	$3s3d \ ^{3}D_{1}$	401 302 401 302	771 268 772 953		1.4 - 3 $1.1 - 3$	4.1+7 $2.0+7$	E E	109* 109*
						1.1 – 3	2.0+1	Ľ	
268.702	$3p3d\ ^{1}P_{1}^{\circ}$	$3d^2$ ¹ D ₂	1 222 730	1 594 821	1				41
254.851	$3p3d$ 1 F $_{3}^{\circ}$	$3d^{2}$ ${}^{1}G_{4}$	1 209 017	1 601 404	5				39°, 40, 41
249.189	$3s^{2} {}^{1}S_{0}$	$3s3p^{-1}P_{1}^{o}$	0	401 302	60	7.67 - 1	2.75+10	C	12°,24,25,27,33, 37,44,109*,112
240.90	$3p^2$ $^1\mathrm{D}_2$	$3p3d$ $^3F_2^o$	638 820	1 053 937	1				38
235.941	$3p3d$ $^3P_2^{\circ}$	$3d^2$ 3 F $_3$	1 136 643	1 560 490	2				39°, 40, 41
232.516	$3p3d$ $^3D_3^{\circ}$	$3d^2 \ ^3F_4$	1 133 775	1 563 822					39°, 40, 41
226.093	1	2	1 115 521	1 557 900?	b				41
226.093	$3p^2$ $^1\mathrm{D}_2$	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	638 820	1 081 126	170	6.0 - 1	1.6+10	E	33, 37°, 109*
224.222 ^C	$3p^2 \ ^3P_2$	$3p3d$ $^3D_1^o$	669 535	1 115 521		6.0 - 3	2.6+8	E	109*
215.413	2	3	669 535	1 133 775	150	1.2	2.4 + 10	Ð	33,37°,109*
211.710	1	1	643 807	1 115 521	90	9.9 - 2	4.8 + 9	\mathbf{E}	33, 37°, 109*
210.704	1	2	643 807	1 118 392	170				33,37°
205.08	0	1	627 914	1 115 521	3	5.7 - 1	3.0+10	\mathbf{E}	38°,109*
215.905	$3s3p$ $^{1}P_{1}^{o}$	$3s3d$ $^{1}\mathrm{D}_{2}$	401 302	864 465	440	1.7	4.8+10	D	23,33,37°,109*
215.014	$3p3d\ ^{3}P_{2}^{o}$	$3d^{2} {}^{3}P_{2}$	1 136 643	1 601 729	1				41
	- 2	4			•				**

Ni xvII - Continued

Wave-	Classificat	tion	Energy Levels (cm ⁻¹)			gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper		, , ,	Int.	55	\- /		
014.070	$3p^2 ^3P_2$	3p3d ³ P ₂ °	660 525	1 126 642	110			·	33, 37°
214.079	•	•	669 535	1 136 643	110	15 1	2 4 1 10	C	38°, 109*
203.28	1	0	643 807	1 135 732	1	1.5 - 1	2.4+10	C	
203.12	1	1	643 807	1 136 123	1	3.3 - 1	1.8 + 10	E	38°,109*
202.90	1	2	643 807	1 136 643	2				38
213.58	$3p^{2} {}^{1}S_{0}$	$3p3d\ ^{1}P_{1}^{o}$	754 513	1 222 730	2	5.7 - 1	2.7+10	C	38°,109*
209.388 ^C	$3s3p$ $^3P_2^o$	$3s3d$ $^3\mathrm{D}_1$	293 686	771 268	70	1.3 - 2	6.6+8	D	109*
208.653	2	2	293 686	772 953	70	2.0 - 1	6.1+9	C	23, 33, 37°, 109*
207.519	2	3	293 686	775 567	460	1.13	2.5 + 10	C	23, 33, 37°, 109*
200.546	1	1	272 634	771 268	90	2.1 - 1	1.2+10	C	23, 33, 37°, 109*
99.873	1	2	272 634	772 953	320	6.3 - 1	2.1+10	C	23, 33, 37°, 109*
97.304	0	1	264 431	771 268	130	2.8 - 1	1.6+10	С	23,33,37°,109*
209.337	$3p3d$ 3 $\mathbf{F_4^o}$	$3d^2 \ ^3F_4$	1 086 107	1 563 822	2				39°, 40, 41
203.300	3	3	1 068 632	1 560 490	2				39°,41
98.391	2	2	1 053 937	1 557 900?	1bl				41
208.118	$3p3d$ $^3\mathrm{D}_2^{\mathrm{o}}$	$3d^{2} {}^{3}P_{1}$	1 118 392	1 598 889	1				41
207.518	1	0	1 115 521	1 597 400?	ь				41
					-			_	
207.521 ^C	$3s3p$ $^3P_1^o$	$3p^{2} {}^{1}S_{0}$	272 634	754 513		2.0 - 3	3.2+8	Е	109*
202.046	$3p^{2-1}D_2$	$3p3d$ $^3D_3^{\circ}$	638 820	1 133 775	110				37
194.668	$3p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	$3d^2$ 1 D $_2$	1 081 126	1 594 821	1				41
185.389	$3p^2$ 3 P ₂	$3p3d$ 1 $\mathbf{F_{3}^{o}}$	669 535	1 209 017	70b				37
175.399	$3p^2$ 1 D ₂	$3p3d$ $^{1}\mathrm{F_{3}^{o}}$	638 820	1 209 017					33,37°
175.199 ^C	$3s3p$ $^3P_2^o$	$3s3d$ $^{1}\mathrm{D}_{2}$	293 686	864 465		6.5 - 4	2.8 + 7	E	109*
168.967 ^C	1	2	272 634	864 465		1.1 - 2	5.1+8	Ē	109*
2001001			2.2 00 -	00.100			5.1 , 5		
57.579	$3s3d$ $^{1}\mathrm{D}_{2}$	3s4f ¹ F ^o ₃	864 465	2 601 200					23°,35
55.258	$3s3d$ $^3\mathrm{D}_3$	$3s4f \ ^{3}F_{4}^{o}$	775 567	2 585 260	4				30°, 35, 36
55.186	2	3	772 953	2 585 000	3				30°, 36
55.136	1	2	771 268	2 584 960	2				30°,36
52.801	$3s3p$ $^3\mathrm{P}_2^\mathrm{o}$	$3s4s$ $^3\mathrm{S}_1$	293 686	2 187 600	2				96
52.224	-		272 634	2 187 600	3				36 35,36°
52.000	1	1	264 431	2 187 600	2				
32.000	0	1	204 431	2 167 000	4				36
50.958	$3p^{2-1}D_2$	$3s4f$ $^{1}\mathrm{F}_{3}^{o}$	638 820	2 601 200					23
47.663	$3s3p$ $^{1}\mathrm{P}_{1}^{o}$	$3s4d$ $^{1}\mathrm{D}_{2}$	401 302	2 499 400					23
45.424	$3s3p\ ^{3}P_{2}^{\circ}$	$3s4d$ $^3\mathrm{D}_2$	293 686	2 495 200	2				36
45.382	2	3	293 686	2 497 300	4				35,36°
45.018	1	1	272 634	2 494 100	-				36
44.995	1	2	272 634	2 495 200	3				35,36°
44.850	ō	1	264 431	2 494 100	$\mathbf{\hat{2}}$				35,36°
42.855	$3s^2$ 1 S $_0$	$3s4p^{-1}P_{1}^{o}$	0	2 333 400		3.92 - 1	4.75+11	C	35, 36°, 109*
39.415	$3s3d$ $^3\mathrm{D}_3$	$3s5f$ $^{3}F_{2,3,4}^{\circ}$	775 567	3 312 800	2				35,36°
39.373	2		772 953	3 312 800	3				•
39.346	1	2,3,4	771 268	3 312 800	1				36 36
		2,3,4	111 200	5 512 600	1				36
38.96	$3s3d$ $^{1}\mathrm{D}_{2}$	$3s5f$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	864 465	3 431 300					35
33.96	$3s3d$ $^3\mathrm{D}_3$	$3s6f$ 3 F $_4^o$	775 567	3 720 200					35
33.567	$3s3p$ $^3\mathrm{P}_2^\mathrm{o}$	$3s5d$ $^3\mathrm{D_3}$	293 686	3 272 900	1				35,36°
33.340	1	1,2	272 634	3 272 200	1				35, 36°
33.249	0	1,2	264 431	3 272 200	2				35,36°
	$3s^{2-1}S_0$	3s5p 1P1	0	3 234 300				C	35°,109*

Ni xvIII

Wave-	Classifica		Energy Leve	els (cm^{-1})	nt.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
804.5 ^C	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^64p\ ^2\mathrm{P}_{1/2}^{\circ}$	2 301 800	2 426 100		3.2 - 1	1.6+9	C	109*
733.7 ^C	1/2	3/2	2 301 800	2 438 100		6.82 - 1	2.12+9	Ċ	109*
39.8 ^C	$2p^{6}4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$2p^64d^{-2}\mathrm{D}_{3/2}$	2 438 100	2 594 400		1.4 - 1	5.8+8	С	109*
331.3 ^C	3/2	2p 4d D _{3/2} 5/2	2 438 100	2 596 500		1.3	3.7+9	C	109*
94.2 ^C	1/2	3/2	2 426 100	2 594 400		7.8 - 1	3.7+9	Č	109*
320.558	$2p^63s\ ^2{ m S}_{1/2}$	$2p^63p$ $^2P_{1/2}^o$	0	311 956		2.28 - 1	7.38+9	В	12°, 23, 27, 33, 36, 43, 44, 47, 48, 109*, 111, 112
291.985	1/2	3/2	0	342 485		5.06 - 1	9.91+9	В	12°, 23, 25, 27, 33, 36, 44, 47, 48, 109*, 111, 112
246.5 ^C	$2p^65d\ ^2{ m D}_{3/2}$	$2p^66p\ ^2{ m P}^{ m o}_{1/2}$	3 433 700	3 839 400		4.28 - 1	2.35+10	C	109*
244.7 ^C	5/2	3/2	3 434 600	3 843 200		7.8 - 1	2.1 + 10	C	109*
244.2 ^C	3/2	3/2	3 433 700	3 843 200		8.4 - 2	2.4 + 9	D	109*
240.0 ^C	$2p^65f$ $^2F_{5/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	3 469 100	3 885 700		2.48 - 1	7.2+9	C	109*
240.0 ^C	7/2	5/2	3 469 400	3 886 100		3.56 - 1	6.9+9	C	109*
239.8 ^C	5/2	5/2	3 469 100	3 886 100		1.8 - 2	3.4+8	D	109*
236.334 ^S	$2p^63p^2P_{3/2}^{\circ}$	$2p^6 3d^{-2}D_{3/2}$	342 485	765 620		9.84 - 2	2.94+9	В	23, 33, 36, 47, 48°, 109*
233.759 ^S	3/2	5/2	342 485	770 280		9.00 - 1	1.83+10	В	23, 33, 36, 44, 47, 48°, 109
220.424 ^S	1/2	3/2	311 956	765 620		5.32 - 1	1.83+10	В	23, 33, 36, 44, 47, 48°, 109
220.00 ^L	$2p^53s3p^4D_{7/2}$	$2p^53s3d\ ^4{ m F}^{ m o}_{9/2}$							52
$_{212.2}^{\mathbf{c}}$	$2p^65d\ ^2{ m D}_{5/2}$	$2p^{6}6f^{2}F_{5/2}^{\circ}$	3 434 600	3 905 800		1.9 - 1	4.6 + 9	D	109*
212.1 ^C	5/2	7/2	3 434 600	3 906 100		3.7	6.9 + 10	C	109*
211.8 ^C	3/2	5/2	3 433 700	3 905 800		2.6	6.4 + 10	C	109*
189.54 ^C	$2p^65p^2P_{3/2}^{\circ}$	$2p^66d\ ^2\mathrm{D}_{3/2}$	3 358 100	3 885 700		1.1 - 1	5.3+9	D	109*
189.39 ^C	3/2	5/2	3 358 100	3 886 100		1.0	3.2 + 10	C	109*
187.51 ^C	1/2	3/2	3 352 400	3 885 700		5.78 - 1	2.74+10	C	109*
145.75 ^C	$2p^65f$ $^2F^o_{5/2}$	$2p^67d^{-2}D_{3/2}$	3 469 100	4 155 200		4.4 - 2	3.4+9	D	109*
145.50 ^C	7/2	5/2	3 469 400	4 156 700		6.2 - 2	3.3+9	D	109*
$145.43^{ m C}$	5/2	5/2	3 469 100	4 156 700		3.1 - 3	1.6 + 8	\mathbf{E}	109*
136.17 ^C	$5d^{2}D_{5/2}$	$2p^{6}7f^{2}F_{5/2}^{\circ}$	3 434 600	4 169 000		5.1 - 2	3.1+9	D	109*
136.15 ^C	5/2	7/2	3 434 600	4 169 100		1.0	4.6+10	c	109*
136.00 ^C	3/2	5/2	3 433 700	4 169 000		7.2 - 1	4.3 + 10	C	109*
131.9 ^C	$2p^64d^{2}\mathrm{D}_{3/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	2 594 400	3 352 400		2.8 - 1	5.3+10	С	109*
131.3 ^C	5/2	3/2	2 596 500	3 358 100		4.9 - 1	4.7+10	Ċ	109*
130.9 ^C	3/2	3/2	2 594 400	3 358 100		5.2 - 2	5.2+9	D	109*
130.30 ^C	$2p^{6}4f^{2}F_{5/2}^{\circ}$	$2p^65d^{-2}\mathrm{D}_{3/2}$	2 666 230	3 433 700		1.01 - 1	1.00+10	C	109*
130.29^{C}	7/2	2p 50 D3/2 5/2	2 667 100	3 434 600		1.4 - 1	9.5+9	C	109*
130.15 ^C	5/2	5/2	2 666 230	3 434 600		7.2 - 3	4.8+8	D	109*
125.45 ^C	$2p^65p\ ^2\mathrm{P}^o_{3/2}$	$2p^67d\ ^2{ m D}_{3/2}$	3 358 100	4 155 200		3.9 - 2	4.1+9	D	109*
125.22 ^C	3/2 3/2	5/2	3 358 100	4 156 700		3.9 - 2 $3.4 - 1$	$\frac{4.1+3}{2.4+10}$	C	109*
124.56 ^C	1/2	3/2	3 352 400	4 155 200		1.9 - 1	2.1+10	Č	109*
124.04	$2p^64f\ ^2{ m F}^o_{7/2}$	$2p^65g^{-2}G_{9/2}$	2 667 100	3 473 300	bl				50
123.96	2p 1 1 7/2 5/2	2p 0g Cg/2	2 666 230	3 473 000	bl				50
	$2p^64d\ ^2{ m D}_{5/2}$	•					0.5	~	
114.74 114.6 ^C		$2p^65f$ $^2F_{7/2}^o$	2 596 500 2 596 500	3 469 400 3 469 100		4.3 $2.1 - 1$	2.7+11 $1.8+10$	C D	49,50°,109* 109*
114.46	5/2 3/2	5/2 5/2	2 594 400	3 469 100	bl	2.1 - 1 2.9	2.5+10	C	109 49,50°,109*
110.52 ^C	$5d^{2}D_{5/2}$	$2p^68f$ $^2F_{7/2}^{\circ}$	3 434 600	4 339 400		4.4 - 1	3.0+10	C	109*
110.50 ^C	5/2	2p of 17/2 5/2	3 434 600	4 339 600		$\frac{4.4-1}{2.2-2}$	2.0+9	D	109*
110.39 ^C	3/2	5/2	3 433 700	4 339 600		3.0 - 1	2.8+10	C	109*
110.55									
	2n65n 2po	2n68d 2D	3 358 100	4 321 100		18 2	2010	D	100*
102.77 ^C 102.75 ^C	$2p^65p^{-2}\mathrm{P}^o_{3/2}$	$2p^68d\ ^2\mathrm{D}_{3/2}$	3 358 100 3 358 100	4 331 100 4 331 300		1.8 - 2 $1.6 - 1$	2.9+9 1.7+10	D C	109* 109*

Ni xvIII - Continued

Wave-	Classification		Energy Leve	els (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
100.44 ^C	$2p^64p\ ^2P_{3/2}^{o}$	$2p^65d\ ^2\mathrm{D}_{3/2}$	2 438 100	3 433 700	1.2 - 1	1.9+10	D	109*
100.35 ^C	3/2	5/2	2 438 100	3 434 600	1.0	1.2+11	C	109*
99.25 ^C	1/2	3/2	2 426 100	3 433 700	6.2 - 1	1.0+11	Č	109*
95.18 ^C	$2p^64s\ ^2\mathrm{S}_{1/2}$	$2p^65p^{-2}P_{1/2}^{o}$	2 301 800	3 352 400	1.8 - 1	6.5+10	D	109*
94.67 ^C	1/2	3/2	2 301 800	3 358 100	3.52 - 1	6.6+10	C	109*
82.034 ^C 82.003 ^C	$2p^64f$ $^2F_{7/2}^{\circ}$	$2p^66d\ ^2{ m D}_{5/2}$	2 667 100	3 886 100	2.3 - 2	3.9+9	D	109*
82.003 ^C	5/2	3/2	2 666 230 2 666 230	3 885 700 3 886 100	1.6 - 2	4.0+9	D E	109*
	5/2	5/2	2 000 230	3 880 100	1.1 - 3	1.9+8	E	109*
80.321 ^C	$2p^64d\ ^2{ m D}_{3/2}$	$2p^66p\ ^2{ m P}^{ m o}_{1/2}$	2 594 400	3 839 400	4.60 - 2	2.39 + 10	C	109*
80.212 ^C	5/2	3/2	2 596 500	3 843 200	8.34 - 2	2.16+10	C	109*
80.077 ^C	3/2	3/2	2 594 400	3 843 200	9.2 - 3	2.4 + 9	D	109*
76.377 ^C	$2p^64d^{2}D_{5/2}$	$2p^{6}6f ^{2}\mathrm{F}^{\circ}_{5/2}$	2 596 500	3 905 800	5.2 - 2	9.9+9	D	109*
76.359^{C}	5/2	7/2	2 596 500	3 906 100	1.03	1.47 + 11	C	109*
76.254^{C}	3/2	5/2	2 594 400	3 905 800	7.20 - 1	1.38+11	C	109*
69.080 ^C	$2p^64p\ ^2\mathrm{P}^o_{3/2}$	$2p^66d^2D_{3/2}$	2 438 100	3 885 700	3.8 - 2	1.3+10	D	109*
69.061 ^C	3/2	5/2	2 438 100	3 886 100	3.4 - 1	8.0+10	C	109*
68.512 ^C	1/2	3/2	2 426 100	3 885 700	1.9 - 1	6.8+10	C	109*
67.161 ^C	$2p^64f$ $^2F_{5/2}^o$	$2p^67d\ ^2{ m D_{3/2}}$	2 666 230	4 155 200	6.6 - 3	2.3+9	D	109*
67.132 ^C		5/2	2 667 100	4 156 700	8.8 - 3	2.1+9	D	109*
67.093 ^C	7/2 5/2	5/2	2 666 230	4 156 700	4.4 - 4	1.1+8	E	109*
65.036 ^C	$2p^64s\ ^2{ m S}_{1/2}$	$2p^66p^2P_{1/2}^{\circ}$	2 301 800	3 839 400	re 9	4.4.10	C	109*
64.876 ^C		2p 0p 1 1/2 3/2	2 301 800	3 843 200	5.6 - 2 $1.1 - 1$	4.4+10 $4.3+10$	C C	109*
	1/2	•	2 301 000	3 043 200	1.1 - 1	4.0710	O	103
63.593 ^C	$2p^64d\ ^2{ m D}_{5/2}$	$2p^{6}7f^{2}F_{5/2}^{o}$	2 596 500	4 169 000	2.0 - 2	5.6 + 9	D	109*
63.589 ^C	5/2	7/2	2 596 500	4 169 100	4.1 - 1	8.5 + 10	C	109*
63.508 ^C	3/2	5/2	2 594 400	4 169 000	2.9 - 1	7.9+10	C	109*
60.212	$2p^6 3d\ ^2{ m D}_{3/2}$	$2p^64p^2P_{1/2}^{\circ}$	765 620	2 426 100	1.2 - 1	1.1+11	C-	23°,109*
59.950	5/2	3/2	770 280	2 438 100	2.1 - 1	9.6 + 10	C	23°,109*
59.791 ^C	3/2	3/2	765 620	2 438 100	2.3 - 2	1.1+10	D	109*
60.089^{C}	$2p^64f$ $^2F_{7/2}^o$	$2p^68d\ ^2{ m D}_{5/2}$	2 667 100	4 331 300	4.1 - 3	1.2+9	E	109*
60.065 ^C	5/2	3/2	$2\ 666\ 230$	4 331 100	2.8 - 3	1.3+9	\mathbf{E}	109*
60.058 ^C	5/2	5/2	2 666 230	4 331 300	2.0 - 4	6.2 + 7	\mathbf{E}	109*
58.238 ^C	$2p^64p^{-2}\mathrm{P_{3/2}^o}$	$2p^67d\ ^2\mathrm{D}_{3/2}$	2 438 100	4 155 200	1.8 - 2	9.0+9	D	109*
58.187^{C}	3/2	5/2	2 438 100	4 156 700	1.7 - 1	5.5+10	C	109*
57.834 ^C	1/2	3/2	2 426 100	4 155 200	9.4 - 2	4.7 + 10	$^{\rm C}$	109*
57.376^{C}	$2p^64d\ ^2{ m D}_{5/2}$	$2p^68f\ ^2{ m F}_{7/2}^{o}$	2 596 500	4 339 400	2.2 - 1	5.6+10	C	109*
57.369^{C}	5/2	5/2	2 596 500	4 339 600	1.1 - 2	3.8+9	D	109*
57.300 ^C	3/2	5/2	2 594 400	4 339 600	1.5 - 1	5.2+10	c	109*
52.826 ^C	$2p^64p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^6 8d\ ^2\mathrm{D}_{3/2}$	2 438 100	4 331 100	1.0 - 2	6.2+9	D	109*
52.821 ^C	3/2	5/2	2 438 100	4 331 300	9.32 - 2	3.71+10	C	109*
52.493^{C}	1/2	3/2	2 426 100	4 331 100	5.32 - 2	3.71+10 $3.2+10$	C	109*
52.744 ^C	$2p^6 3d^{2}D_{5/2}$	$2p^{6}4f^{2}F_{5/2}^{o}$	770 220	2 666 000	0.00	1.00 : 11	C	100*
52.744 52.721 ^S		•	770 280 770 280	2 666 230 2 667 100	2.66 - 1	1.06+11	C C	109* 36 [△] , 46, 48°, 109*
52.614 ^S	5/2 3/2	7/2 5/2	765 620	2 666 230	5.3 3.7	1.6+12 $1.5+12$	C	$36^{\triangle}, 46, 48^{\circ}, 109^{*}$ $36^{\triangle}, 46, 48^{\circ}, 109^{*}$
					J.,	(I E	J	50 , 10, 10 , 100
51.042	$2p^63p^2P_{3/2}^{o}$	$2p^64s\ ^2{ m S}_{1/2}$	342 485	2 301 800				35, 36°, 46
50.253	1/2	1/2	311 956	2 301 800				35, 36°, 46
44.405	$2p^63p^2P_{3/2}^o$	$2p^64d\ ^2{ m D}_{3/2}$	342 485	2 594 400	1.35 - 1	1.14+11	C	36°, 109*
44.365	3/2	5/2	342 485	2 596 500	1.20	6.80+11	\mathbf{C}	36°, 46, 109*
43.814	1/2	3/2	311 956	2 594 400	6.4 - 1	5.5 + 11	C	36°, 46, 109*
	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^64p$ $^2P_{1/2}^{o}$	0	2 426 100	1.62 1	2 20 1 1 1	C+	35, 36°, 46, 109*
41.218	$2p$ 3s $S_{1/2}$	#P 4P 1 1/2	U	2 440 100	1.63 - 1	3.20 + 11	O+-	33,30 .40.109

Ni XVIII - Continued

Wave-	Classifica	ation	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
38.658 ^C	$2p^63d^{-2}D_{3/2}$	$2p^65p\ ^2P_{1/2}^{o}$	765 620	3 352 400		1.9 - 2	4.2+10	D	109*
38.643^{C}	5/2	3/2	770 280	3 358 100		3.5 - 2	3.9+10	D	109*
38.573 ^C	3/2	3/2	765 620	3 358 100		3.8 - 3	4.3+9	E	109*
37.053 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2F_{5/2}^{\circ}$	770 280	3 469 100		4.9 - 2	3.9+10	D	109*
37.049	5/2	7/2	770 280	3 469 400		9.66 - 1	5.9 + 11	C	35, 36°, 46, 109*
36.990	3/2	5/2	765 620	3 469 100		6.80 - 1	5.5 + 11	C	36°, 46, 109*
32.542^{C}	$2p^6 3d\ ^2 \mathrm{D}_{5/2}$	$2p^66p^2P_{3/2}^{o}$	770 280	3 843 200		1.2 - 2	1.9+10	D	109*
32.533^{C}	3/2	1/2	765 620	3 839 400		6.8 - 3	2.1+10	D	109*
32.493 ^C	3/2	3/2	765 620	3 843 200		1.4 - 3	2.2+9	\mathbf{E}	109*
32.350^{C}	$2p^63p^2P_{3/2}^{\circ}$	$2p^65d\ ^2{ m D}_{3/2}$	342 485	3 433 700		4.0 - 2	6.6+10	D	109*
32.340	3/2	5/2	342 485	3 434 600		3.8 - 1	4.0+11	Ċ	35, 36°, 46, 109*
32.034	1/2	3/2	311 956	3 433 700		2.0 - 1	3.4+11	Č	35, 36°, 46, 109*
31.893 ^C	$2p^63d^2D_{5/2}$	$2p^66f \ ^2F_{5/2}^{\circ}$	770 280	3 905 800		1.8 - 2	2.0+10	D	109*
31.890	5/2	7/2	770 280	3 906 100		3.6 - 1	3.0+11	C	35, 36°, 46, 109*
31.845	3/2	5/2	765 620	3 905 800		2.5 - 1	2.7 + 11	C	36°,109*
29.829	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^65p^2P_{1/2}^o$	0	3 352 400		5.0 - 2	1.9+11	D	36°,109*
29.779	1/2	3/2	0	3 358 100		1.0 - 1	1.9 + 11	C	35,36°,109*
29.423 ^C	$2p^63d\ ^2{ m D}_{5/2}$	$2p^67f$ $^2F_{5/2}^{\circ}$	770 280	4 169 000		9.0 - 3	1.1+10	D	109*
29.422	5/2	7/2	770 280	4 169 100		1.76 - 1	1.69 + 11	C	35,36°,109*
29.383	3/2	5/2	765 620	4 169 000		1.23 - 1	1.58 + 11	С	36°,109*
28.223^{C}	$2p^63p^2P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{3/2}$	342 485	3 885 700		1.8 - 2	3.8+10	D	109*
28.220	3/2	5/2	342 485	3 886 100		1.67 - 1	2.33 + 11	C	35,36°,109*
27.982	1/2	3/2	311 956	3 885 700		9.4 - 2	2.0+11	С	35,36°,109*
28.018	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^68f$ $^2F_{7/2}^{\circ}$	770 280	4 339 400		1.0 - 1	1.1+11	C	36°,109*
28.017^{C}	5/2	5/2	770 280	4 339 600		5.1 - 3	7.2 + 9	\mathbf{E}	109*
27.98	3/2	5/2	765 620	4 339 600		7.2 - 2	1.0+11	С	36°,109*
26.228^{C}	$2p^63p^2P_{3/2}^{\circ}$	$2p^67d\ ^2{ m D}_{3/2}$	342 485	4 155 200		1.0 - 2	2.4+10	D	109*
26.218	3/2	5/2	342 485	4 156 700		9.2 - 2	1.5 + 11	C	35,36°,109*
26.02	1/2	3/2	311 956	4 155 200		5.10 - 2	1.26+11	С	35,36°,109*
26.046	$2p^63s\ ^2{ m S}_{1/2}$	$2p^66p^{-2}P_{1/2}^{\circ}$	0	3 839 400		2.2 - 2	1.1+11	C	36°,109*
26.020	1/2	3/2	0	3 843 200		4.4 - 2	1.1+11	C	36°,109*
25.071 ^C	$2p^63p^2P_{3/2}^{\circ}$	$2p^68d\ ^2{ m D}_{3/2}$	342 485	4 331 100		6.0 - 3	1.6+10	D	109*
25.070	3/2	5/2	342 485	4 331 300		5.6 - 2	9.9 + 10	C	36°,109*
24.881	1/2	3/2	311 956	4 331 100		3.2 - 2	8.6 + 10	$^{\mathrm{C}}$	36°,109*
14.37	$2p^63s \ ^2S_{1/2}$	$2p^53s^2$ $^2P_{3/2}^o$	0	6 959 000					51
14.10	1/2	1/2	0	7 092 000					51

Ni xix

Wave- length (Å)	Classifi Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
388.24	$2s^22p^5(^2P^{\circ}_{1/2})3s(\frac{1}{2},\frac{1}{2})^{\circ}_1$	$2s^22p^5(^2P_{3/2}^{\circ})3p(\frac{3}{2},\frac{3}{2})_0$	7 258 100	7 515 675					61
361.32 348.05 328.24	$2s^22p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_2$	$2s^22p^5(^2\mathbf{P_{3/2}^{\circ}})3p(\frac{3}{2},\frac{1}{2})_1$	7 105 260 7 122 600 7 105 260	7 381 990 7 409 915 7 409 915					61 61 61
346.43 334.3	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathbf{P}^o_{1/2})3p(\frac{1}{2},\frac{1}{2})_1$	7 258 100 7 247 700	7 546 760 7 546 760	ы				61 61
315.01 306.30 297.90 283.30 254.10	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 122 600 7 105 260 7 122 600 7 105 260 7 122 600	7 440 050 7 431 735 7 458 260 7 458 260 7 515 675		8.0 – 1	8.0+9	D	61 60,61°,109* 61 61 61
307.90 303.80 298.42	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3s (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^5(^2\mathbf{P}^o_{1/2})3p(\frac{1}{2},\frac{3}{2})_1$	7 258 100 7 258 100 7 247 700	7 582 880 7 587 265 7 582 880	ы				61 60,61° 61
272.10 254.10 250.39 234.90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d~(\frac{3}{2},\frac{5}{2})^{\circ}_{2}$ 4 3 3	7 458 260 7 431 735 7 458 260 7 431 735	7 825 770 7 825 280 7 857 640 7 857 640	bl bl	1.1	1.2+10	D	61 60,61°,109* 61 61
251.30 250.39	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3p(\frac{1}{2},\frac{3}{2})_1$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3d(\frac{1}{2},\frac{5}{2})^{\circ}_2$	7 582 880 7 587 265	7 980 810 7 986 640					61 61
245.65	$2s^22p^5(^2P^o_{3/2})3p(\frac{3}{2},\frac{3}{2})_1$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3d(\frac{3}{2},\frac{3}{2})^{\circ}_2$	7 440 050	7 847 100					61
240.40 237.52 234.90 228.76	$2s^22p^5(^2\mathbf{P}^{\mathrm{o}}_{3/2})3p(\frac{3}{2},\frac{1}{2})_1$	$2s^22p^5(^2P^{\circ}_{3/2})3d(\frac{3}{2},\frac{3}{2})^{\circ}_0$	7 381 990 7 409 915 7 381 990 7 409 915	7 797 965 7 830 930 7 807 700 7 847 100					61 60,61° 61
234.90	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p(\frac{1}{2},\frac{1}{2})_1$	$2s^22p^5(^2\mathbf{P}_{1/2}^{\circ})3d(\frac{1}{2},\frac{3}{2})_2^{\circ}$	7 546 760	7 972 475					61
225.34	$2s^22p^5(^2P^o_{3/2})3p(\frac{3}{2},\frac{1}{2})_1$	$2s^22p^5(^2P_{3/2}^{\circ})3d(\frac{3}{2},\frac{5}{2})_2^{\circ}$	7 381 990	7 825 770					61
176.01	$2s^22p^5(^2\mathbf{P_{3/2}^o})3s\ (\frac{3}{2},\frac{1}{2})_1^o$	$2s^22p^5(^2\mathbf{P}^{\circ}_{1/2})3p(\frac{1}{2},\frac{1}{2})_0$	7 122 600	7 690 800					61
91.02	$2s^22p^5(^2P_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s2p^63s\ ^3{ m S}_1$	7 258 100	8 358 000		1.1 - 1	2.9+10	D	62°,109*
86.36	$2s^22p^5(^2\mathbf{P_{1/2}^{\circ}})3s(\frac{1}{2},\frac{1}{2})_1^{\circ}$	$2s2p^63s^{-1}S_0$	7 258 100	8 416 000	ı	4.8 - 2	4.4+10	D	62°,109*
80.91	$2s^22p^5(^2\mathbf{P_{3/2}^o})3s\ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s2p^{6}3s^{-3}S_{1}$	7 122 600	8 358 000	+				62
77.32	$2s^22p^5(^2\mathbf{P_{3/2}^o})3s~(\frac{3}{2},\frac{1}{2})_1^{\mathbf{o}}$	$2s2p^63s^{-1}{ m S}_0$	7 122 600	8 416 000)	7.5 - 2	8.3+10	D	62°,109*
41.385	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p(\frac{1}{2},\frac{3}{2})_2$	$2s^22p^54d\ ^3\mathrm{F_3^o}$	7 587 265	10 003 600	ı				59
41.132	$2s^22p^5(^2\mathbf{P_{3/2}^o})3p(\frac{3}{2},\frac{3}{2})_3$	$2s^22p^54d\ ^3{ m F_4^o}$	7 431 735	9 863 000)	2.2	9.4+11	D	59°,109*
40.731	$2s^22p^5(^2P^o_{3/2})3p(\frac{3}{2},\frac{1}{2})_2$	$2s^22p^54d\ ^3{ m D}_3^{ m o}$	7 409 915	9 865 100)				59
40.650	$2s^22p^5(^2\mathbf{P_{1/2}^o})3p(\frac{1}{2},\frac{1}{2})_1$	$2s^22p^54d\ ^1{ m D}_2^{ m o}$	7 546 760	10 006 800)				59
14.077 14.043	$2s^22p^6$ 1S_0 0	$2s^22p^5(^2\mathrm{P}^{\circ}_{3/2})3s\ (\frac{3}{2},\frac{1}{2})^{\circ}_{2}$	0 0	7 105 260 7 122 600		M2 1.16 – 1	4.2+5 1.31+12	C-	58°,109* 54,55,56,57°, 58,109*
13.779	$2s^22p^{6-1}S_0$	$2s^22p^5(^2\mathrm{P}^{\circ}_{1/2})3s\ (\frac{1}{2},\frac{1}{2})^{\circ}_{1}$	0	7 258 100)	1.05 - 1	1.23+12	C-	54, 55, 56, 57°, 58, 109*
12.812	$2s^22p^{6-1}S_0$	$2s^22p^53d\ ^3P_1^{\circ}$	0	7 805 200)	8.1 - 3	1.1+11	E	54, 55, 56, 57°, 109*
12.656	$2s^22p^{6-1}S_0$	$2s^22p^53d\ ^3D_1^{ m o}$	0	7 901 400)	7.2 - 1	1.0+13	D	54, 55, 56, 57°, 58, 109*
12.435	$2s^22p^{6-1}S_0$	$2s^22p^53d$ $^1P_1^{\circ}$		8 041 800)	2.55	3.66+13	C-	54,55,56,57° 58,109*
11.599	$2s^22p^{6-1}S_0$	$2s2p^{6}3p^{-3}P_{1}^{\circ}$	0	8 621 400)	3.8 - 2	6.3+11	E	54, 55, 56, 57° 109*

Ni XIX - Continued

Wave-	Class	ification	Energy Lev	rels (cm ⁻¹) Ir	nt. gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
11.539	$2s^22p^{6-1}S$	$2s2p^{6}3p^{-1}P_{1}^{\circ}$	0	8 666 300	2.9 - 1	4.8+12	D	54,55,56,57°, 109*
10.433	$2s^22p^{6-1}$ S	$2s^2 2p^5 (^2 P_{3/2}^{\circ}) 4s (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	0	9 585 000	2.5 - 2	5.1+11	D	55,56,57°,109*
10.283	$2s^22p^{6-1}$ S	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 4s (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	0	9 725 000	2.2 - 2	4.7+11	D	55, 56, 57°, 109*
10.157	$2s^22p^{6-1}S$	$2s^2 2p^5 4d ^3P_1^{\circ}$	0	9 845 000	3.2 - 3	7.0+10	E	57°,109*
10.110	$2s^22p^{6-1}{ m S}$	$2s^2 2p^5 4d \ ^3\mathrm{D_1^o}$	0	9 891 000	4.3 - 1	9.4 + 12	D	56,57°,104,109*
9.977	$2s^22p^{6-1}$ S	$2s^22p^54d \ ^1P_1^{\circ}$	0	10 023 000	4.9 - 1	1.1+13	D	56,57°,104,109*
9.262	$2s^22p^{6-1}$ S	$2s^2 2p^5 5d \ ^3P_1^0$	0	10 797 000				57
9.254	$2s^22p^{6-1}S$	$2s^2 2p^5 5d$ $^3\mathrm{D_1^o}$	0	10 806 000	1.2 - 1	3.1+12	D	55, 56, 57°, 109*
9.153	$2s^22p^{6-1}S$	$2s2p^{6}4p^{3}P_{1}^{o}$	0	10 925 000	2.0 - 2	5.2+11	E	57°,109*
9.140	$2s^22p^{6-1}$ S	$2s2p^{6}4p^{-1}P_{1}^{\circ}$	0	10 941 000	1.2 - 1	3.1+12	D	55,57°,109*
9.139	$2s^22p^{6-1}S$	$2s^2 2p^5 5d$ ¹ P ₁ °	0	10 942 000				56,57°
8.849	$2s^22p^{6-1}$ S	$2s^2 2p^5 6d \ ^3D_1^{o}$	0	11 301 000				55, 56, 57°
8.744	$2s^22p^6$ 1S	$2s^2 2p^5 6d \ ^1\mathrm{P}_1^{\circ}$	0	11 436 000				55, 56, 57°
8.614	$2s^22p^{6-1}S$	$2s^2 2p^5 7d \ ^3D_1^{\circ}$	0	11 609 000				56
8.512	$2s^22p^{6-1}$ S	$2s^2 2p^5 7d$ ¹ P ₁ °	0	11 748 000				56
8.487	$2s^22p^{6-1}S$	$2s^2 2p^5 8d \ ^3D_1^{\circ}$	0	11 783 000				56

Ni xx

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
694.64	$2s^22p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^5$ $^2P_{1/2}^{\circ}$	0	143 959		M1	5.35+4	В	43°, 69, 70, 71, 109*
365.63 325.97	$2s^22p^4(^1\mathrm{D})3s\ ^2\mathrm{D}_{3/2}$	$2s^22p^4(^1\mathrm{D})3p\ ^2\mathrm{F}^{\mathrm{o}}_{5/2}$	7 742 200 7 735 700	8 015 700 8 042 500					33 33
353.82	$2s^22p^4(^3P)3s^4P_{3/2}$	$2s^22p^4(^3P)3p^4P_{1/2}^{\circ}$	7 648 200	7 930 800					33
346.50 312.66 259.47	$2s^22p^4(^3\mathrm{P})3s^4\mathrm{P}_{3/2}$ 5/2 5/2	$2s^22p^4(^3P)3p^4D_{5/2}^{\circ}$ 7/2 3/2	7 648 200 7 513 700 7 513 700	7 936 800 7 833 500 7 899 100					33 33 33
322.67	$2s^22p^4(^3P)3s^2P_{3/2}$	$2s^22p^4(^3P)3p^2D_{5/2}^o$	7 543 800	7 853 700					33
297.23	$2s^22p^4(^1D)3s^2D_{5/2}$	$2s^22p^4(^1\mathrm{D})3p^2\mathrm{D}^{\mathrm{o}}_{5/2}$	7 735 700	8 072 100					33
277.38	$2s^22p^4(^3P)3p^2D_{5/2}^{o}$	$2s^22p^4(^3\mathrm{P})3d^{\ 2}\mathrm{F}_{7/2}$	7 853 700	8 214 200					33
275.55 271.11 266.19	$2s^22p^4(^3P)3p\ ^4D^{\circ}_{7/2} \ ^{3/2}_{5/2}$	$2s^22p^4(^3\mathrm{P})3d\ ^4\mathrm{F}_{9/2}$ 5/2 7/2	7 833 500 7 899 100 7 936 800	8 196 400 8 268 000 8 312 500					33 33 33
273.10	$2s^22p^4(^1D)3p^2D_{5/2}^o$	$2s^22p^4(^1{ m D})3d\ ^2{ m F}_{7/2}$	8 072 100	8 438 300					33
$265.36^{\rm L}$	$2s^22p^4(^3P)3p^4P_{5/2}^{o}$	$2s^22p^4(^3P)3d^4D_{7/2}$							33
260.52	$2s^22p^4(^1\mathrm{D})3p^2\mathrm{F}^o_{5/2}$	$2s^22p^4(^1\mathrm{D})3d\ ^2\mathrm{G}_{7/2}$	8 015 700	8 399 500					33
94.492 83.185	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2} \ _{3/2}$	$2s2p^6 \ ^2\mathrm{S}_{1/2}$	143 959 0	1 202 200 1 202 200		9.86 - 2 $2.28 - 1$	3.68+10 1.1+11	C+ C+	12°,50 ^{\(\Delta\)} ,67,68,109* 12°,50 ^{\(\Delta\)} ,67,68,109*
13.309 13.135 13.075	$2s^22p^5$ $^2 ext{P}^\circ_{3/2}$ $^{3/2}$ $^{3/2}$	$2s^22p^4(^3\mathrm{P})3s^4\mathrm{P}_{5/2}$ 1/2 3/2	0 0 0	7 513 700 7 613 200 7 648 200		2.7 - 2 $3.1 - 2$	1.7+11 6.0+11	E E	55,57°,63,109* 57°,109* 55,57°,63,64,65,66
13.282 13.256 13.032	$2s^22p^5$ $^2\mathrm{P}_{1/2}^{\circ}$ $^{3/2}$ $^{3/2}$	$2s^22p^4(^3P)3s\ ^2P_{1/2}$ 3/2 1/2	143 959 0 0	7 673 200 7 543 800 7 673 200	1	1.1 - 1 $9.2 - 2$	2.0+12 1.8+12	D D	57°, 64, 65, 66, 109* 55, 57°, 63, 64, 65, 66 57°, 64, 65, 66, 109*
13.161 12.927	$2s^{2}2p^{5} {}^{2}P_{1/2}^{\circ}$ 3/2	$2s^22p^4(^1\mathrm{D})3s\ ^2\mathrm{D}_{3/2}$	143 959 0	7 742 200 7 735 700)	2.0 - 1 $2.4 - 1$	1.9+12 1.6+12	D D	57°, 64, 65, 66, 109* 55, 57°, 63, 64, 65, 66, 109*
12.916^{C}	3/2	3/2	0	7 742 200)	1.0 - 2	1.0+11	E	109*
12.812 12.580 ^C	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^1S)3s^2S_{1/2}$	143 959 0	7 949 000 7 949 000		8.4 - 2 $1.3 - 2$	1.7+12 $2.8+11$	D E	57°,109* 109*
12.181 11.972^{C}	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$2s^22p^4(^3\mathrm{P})3d\ ^2\mathrm{P}_{3/2}$	143 959 0	8 353 000 8 353 000					57°, 63, 64, 65, 66 55,63
$12.157 \\ 12.130$	$2s^22p^5$ 2 P $^{\circ}_{3/2}$ $^{3/2}$	$2s^22p^4(^3P)3d\ ^4P_{1/2}$	0 0	8 226 000 8 244 000					57°, 64, 65, 66 57°, 64, 65, 66
12.112	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3{ m P})3d\ ^2{ m F}_{5/2}$	0	8 256 000)				57°,66
12.079	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1D)3d\ ^2S_{1/2}$	143 959	8 423 000)	1.5 - 1	3.4+12	D	57°, 63, 64, 65, 66,
11.874	3/2	1/2	0	8 423 000)	9.6 - 1	2.3+13	D	57°, 64, 65, 66, 109*
$\frac{12.042}{12.006}$	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)3d\ ^4D_{1/2}$	0 0	8 304 000 8 329 000					57 55,57°,63
12.042 11.974 11.846	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{1/2}$ $^{1/2}$ $^{3/2}$	$2s^22p^4(^1{ m D})3d\ ^2{ m P}_{3/2}$	143 959 143 959 0	8 445 000 8 495 000 8 445 000	O				57°, 64, 65, 66 57°, 64, 65, 66 55, 57°, 63, 64, 65, 66
11.991 11.832 11.787	$2s^22p^5$ $^2P^{\circ}_{1/2}$ $^{3/2}$ $^{3/2}$	$2s^22p^4(^1{ m D})3d\ ^2{ m D}_{3/2}$ 5/2 3/2	0	8 484 006 8 452 006 8 484 006	0				57°, 64, 65, 66 55, 57°, 63, 64, 65, 66 57°, 64, 65, 66
11.961	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s^22p^4(^3P)3d\ ^2D_{5/2}$	0	8 360 00	0				55,57°,63,64,65,66
11.779	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^1S)3d\ ^2D_{3/2}$	143 959	8 634 00	0				55,57°,63,64,65,66

Ni xx - Continued

Wave- length (Å)	Classi Lower	fication Upper	Energy Lev	els (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
11.282	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	2s2p ⁵ (³ P°)3p ⁴ P _{3/2}	143 959	9 008 000				57
11.226	$2s^22p^5$ $^2P_{3/2}^{\circ}$	$2s2p^{5}(^{3}P^{o})3p^{-2}D_{5/2}$	0	8 908 000				57
11.226	1/2	3/2	143 959	9 052 000				5 7
11.226	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s2p^{5}(^{3}\mathrm{P^{o}})3p^{-4}\mathrm{D}_{3/2}$	0	8 908 000				57
11.176	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{1/2}$	$2s2p^5(^3P^o)3p^{-2}S_{1/2}$	143 959	9 092 000				57
11.158	$2s^22p^5$ ² P ^o _{3/2}	$2s2p^{5}(^{3}P^{\circ})3p^{-2}P_{3/2}$	0	8 962 000				57
11.138	3/2	1/2	0	8 978 000				57
10.982	$2s^22n^5$ 2P°	$2s2p^{5}(^{1}P^{\circ})3p^{2}D_{3/2}$	143 959	9 250 000				57
10.772	3/2		0	9 283 000				57
10.936		$2s2p^{5}(^{1}P^{o})3p^{2}P_{1/2}$	140.050					
10.918			143 959 143 959	9 288 000 9 303 000				57 57
	1/2	3/2		3 303 000				91
9.821	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3P)4s\ ^2P_{3/2}$	0	10 182 000				57
9.693	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)4s^4P_{3/2}$	0	10 317 000				57
9.581	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^3\mathrm{P})4d\ ^2\mathrm{P}_{3/2}$	143 959	10 581 000				57
9.558	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s^22p^4(^3P)4d\ ^2D_{3/2,5/2}$	0	10 462 000				57
9.497	$2s^22p^5$ ² P°	$2s^22p^4(^1\mathrm{D})4d\ ^2\mathrm{P}_{1/2}$	143 959	10 674 000				57
9.385	3/2	3/2		10 655 000				57
9.497	2.22m5 2Do	$2s^22p^4(^1{\rm D})4d\ ^2{ m D}_{3/2}$	143 959	10 674 000				57
9.385	23 2p 1 1/2 3/2	23 2p (D)4u D3/2 5/2	143 939	10 655 000				57 57
9.497		$2s^22p^4(^3P)4d^4F_{3/2,5/2}$						
3.431	23 2p 1 3/2	25 2p (F)4a F _{3/2,5/2}	U	10 530 000				57
9.455	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)4d\ ^4P_{5/2}$	0	10 576 000	ı			57
9.385	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^1{\rm D})4d\ ^2{\rm S}_{1/2}$	0	10 655 000				57
9.366	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^1{ m D})4d\ ^2{ m F}_{5/2}$	0	10 677 000	ŀ			57
9.338	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^1{ m S})4d\ ^2{ m D}_{3/2}$	143 959	10 853 000	ı			57

Ni xxi

	NI XXI										
Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References		
2818.52 779.5	$2s^22p^4$ ³ P ₀	$2s^22p^4$ 3 P ₁	92 821 0	128 290 128 290		M1 M1	5.6+2 4.14+4	D C	70,76°,109* 70°,71,109*		
1191.1 471.15	$2s^22p^4$ 3 P ₁	$2s^22p^{4-1}D_2$	128 290 0	212 250 212 250		M1 M1	1.0+3 4.2+4	D D	71°,109* 70,75°,109*		
139.07 ^C	$2s^22p^{4-1}S_0$	$2s2p^{5-3}P_{1}^{o}$	406 800	1 125 850		9.3 - 3	1.1+9	E	105*		
120.33 109.44	$2s^22p^{4-1}D_2$	$2s2p^{5-3}{ m P}_2^o$	212 250 212 250	1 043 150 1 125 850		3.5 - 2 $5.5 - 4$	3.2+9 $1.0+8$	E E	50°,109* 50°,109*		
109.303 100.241 96.803 95.866 93.926 88.826	$2s^22p^4$ $^3\mathrm{P}_1$ 1 0 2 1 1 2	$2s2p^{5-3}$ P $_{2}^{\circ}$ 1 2 0 1	128 290 128 290 92 821 0 128 290	1 043 150 1 125 850 1 125 850 1 043 150 1 192 960 1 125 850		$ \begin{array}{r} 1.03 - 1 \\ 6.45 - 2 \\ 7.9 - 2 \\ 3.2 - 1 \\ 9.75 - 2 \\ 1.49 - 1 \end{array} $	1.15+10 1.43+10 1.9+10 4.6+10 7.4+10 4.19+10	00000	12°, 50, 67, 68, 109* 12°, 50, 67, 68, 109* 12°, 50, 67, 68, 109* 12°, 50, 67, 68, 109* 12°, 50, 67, 68, 109*		
103.40	$2s2p^5$ 1 P $_1^{\circ}$	$2p^{6-1}S_0$	1 436 400	2 403 500	bl	2.9 - 1	1.8+11	C	50°,74,109*,110		
97.13	$2s^22p^{4-1}S_0$	$2s2p^{5-1}$ P $_{1}^{o}$	406 800	1 436 400	bl	5.0 - 2	1.2+10	C	49,50°,67,109*		
81.69	$2s^22p^{4-1}D_2$	$2s2p^{5-1}$ P $_1^{\circ}$	212 250	1 436 400		5.10 - 1	1.7+11	C	50°, 67, 68, 109*		
78.28	$2s2p^5$ $^3\mathrm{P}^\mathrm{o}_1$	$2p^{6-1}$ S ₀	1 125 850	2 403 500	bl	2.1 - 2	2.3 + 10	\mathbf{E}	50°, 109*		
76.45 74.43 69.62	$2s^22p^4$ $^3\mathrm{P}_1$ 0 2	$2s2p^{5-1} ext{P}_{1}^{o}$ 1	128 290 92 821 0	1 436 400 1 436 400 1 436 400		4.8 - 3 $5.7 - 3$ $3.8 - 2$	1.8+9 2.3+9 1.7+10	E E E	50°,109* 50°,109* 49,50°,108,109*		
$12.656 \\ 12.592 \\ 12.435$	$2s^22p^4$ 3 P ₁ 0 2	$2s^22p^3(^4\mathrm{S}^{\mathrm{o}})3s\ ^3\mathrm{S}^{\mathrm{o}}_1$	128 290 92 821 0	8 035 000 8 035 000 8 035 000		4.8 - 2 $5.3 - 2$ $2.3 - 1$	6.7+11 $7.4+11$ $3.3+12$	D D	55,57°,109* 55,57°,109* 55,57°,109*		
12.592 12.533 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{D^o})3s\ ^3\mathrm{D_2^o}$	212 250 212 250	8 146 000 8 191 000		3.0 - 2	1.8+11	E	57 109*		
12.502	$2s^22p^{4-1}D_2$	$2s^22p^3(^2D^{\circ})3s^{-1}D_2^{\circ}$	212 250	8 212 000		3.3 - 1	2.8+12	D~	57°,109*		
12.502	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^\circ)3s^{-1}P_1^\circ$	406 800	8 422 000					57		
12.472 12.277 12.208	$2s^22p^4$ 3 P ₁ 2 2	$2s^22p^3(^2\mathrm{D^o})3s\ ^3\mathrm{D^o_{1,2}}$	128 290 0 0	8 146 000 8 146 000 8 191 000		1.3 - 1 $2.21 - 1$	1.8+12 1.41+12	D- C	57°,109* 57 57°,109*		
12.370 12.177 ^C	$2s^22p^4$ 3 P ₁	$2s^22p^3(^2\mathrm{D^o})3s^{-1}\mathrm{D^o_2}_2$	128 290 0	8 212 000 8 212 000		4.2 - 2 $2.3 - 2$	3.7+11 2.1+11	E E	57°,109* 109*		
12.345 12.209	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^o)3s\ ^3P_1^o$	212 250 212 250	8 313 000 8 405 000		5.5 - 2 $1.0 - 1$	8.0+11 8.9+11	E E	57°,109* 57°,109*		
12.245 12.165 ^C 12.079	$2s^22p^4$ 3P_1 0	$2s^22p^3(^2\mathrm{P}^\circ)3s\ ^3\mathrm{P}^\circ_0$	128 290 92 821 128 290	8 295 000 8 313 000 8 405 000)	3.3 - 2 $6.7 - 2$ $9.9 - 2$	1.5+12 1.0+12 9.1+11	C D- E	57°,109* 109* 57°,109*		
12.181	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^{\circ})3s^{-1}P_1^{\circ}$	212 250	8 422 000)				57		
11.597 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{D^o})3d\ ^3\mathrm{D_3^o}$	212 250	8 835 000)	9.0 - 2	6.4+11	E	109*		
11.539	$2s^22p^4\ ^3{ m P}_2$	$2s^22p^3(^4S^\circ)3d\ ^3D_3^\circ$	0	8 666 000)	1.7	1.2+13	D-	57°,109*		
11.517 11.302	$2s^22p^4$ 3 P ₁	$2s^22p^3(^2D^{\circ})3d\ ^3P_2^{\circ}$	128 290 0	8 848 000 8 848 000					57 57		
11.517	$2s^22p^{4-1}D_2$	$2s^22p^3(^2P^\circ)3d\ ^3F_3^\circ$	212 250	8 895 000)				57		
11.517	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m D}^{ m o})3d\ ^1{ m F}_3^{ m o}$	212 250	8 896 000)	2.0	1.4+13	D-	57°,109*		
11.517	$2s^22p^{4-1}S_0$	$2s^22p^3(^2P^o)3d^{-1}P_1^o$	406 800	9 090 000)	2.4	4.0+13	E	57°,109*		
11.478	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m P}^{ m o})3d\ ^3{ m P}_2^{ m o}$	212 250	8 924 000)				57		
11.318	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m P^o})3d^{-1}{ m D}_2^{ m o}$	212 250	9 048 000)				57		
11.318	$2s^22p^{4-1}D_2$	$2s^22p^3(^2{ m P}^{ m o})3d\ ^1{ m F}_3^{ m o}$	212 250	9 048 006	0				57		

Ni xxi - Continued

Wave-	Classif	ication	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
11.318	$2s^22p^4$ ³ P ₂	$2s^22p^3(^2D^{\circ})3d^{-3}D_3^{\circ}$	0	8 835 000	3.8	2.8+13	D-	57°,109*
11.272	$2s^22p^4$ 3 P ₁	$2s^22p^3(^2P^o)3d\ ^3P_1^o$	128 290	9 000 000				57
11.264 ^C	$2s^22p^{4-1}D_2$	$2s^22p^3(^2\mathrm{P^o})3d^{-1}\mathrm{P_1^o}$	212 250	9 090 000	9.5 - 2	1.7+12	D	109*
11.239	$2s^22p^4$ 3P_2	$2s^22p^3(^2D^\circ)3d^{-1}F_3^\circ$	0	8 896 000	7.5 - 1	5.7+12	E	57°,109*
11.229	$2s^22p^4$ ³ P ₁	$2s^22p^3(^2P^o)3d\ ^3D_2^o$	128 290	9 034 000				57
11.159 ^C	$2s^22p^4$ 3 P ₁	$2s^22p^3(^2P^o)3d^{-1}P_1^o$	128 290	9 090 000	9.3 - 2	1.7+12	E	109*

Ni xxII

Wave- length (Å)	Classif Lower	ication Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1928.88	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s^22p^3$ ² D _{5/2}	157 536	209 380	·	M1	1.04+3	С	76°,109*
634.8	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	0	157 536		M1	4.2+4	D	70°,109*
477.6	3/2	5/2	0	209 380		M1	4.5 + 3	D	70°, 109*
223.294 ^C	$2s^22p^3$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s(^{2}S)2p^{4}(^{3}P)^{4}P_{5/2}$	400 100	947 040		122	2.9+7	E	100*
223.294 184.255 ^C			400 100	847 940 942 827		1.3 - 3 $5.6 - 3$	2.9+7	E	109* 109*
150.328 ^C	3/2 1/2	3/2 1/2	302 600	967 811		3.6 - 3	5.3+8	E	109*
156.602 ^C	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s(^{2}S)2p^{4}(^{3}P) {^{4}P_{5/2}}$	209 380	847 940		9.6 - 3	4.4+8	E	109*
144.843 ^C 136.343 ^C	3/2	5/2	157 536	847 940		2.5 - 2	1.3+9	E	109*
136.343 ^C	5/2	3/2	209 380 157 536	942 827 942 827		1.3 - 3 $2.8 - 3$	1.1+8 $2.9+8$	E E	109* 109*
127.341 123.415 ^C	3/2 3/2	3/2 1/2	157 536	967 811		2.8 - 3 $3.4 - 3$	7.4+8	E	109*
	·	•	20. 220	00, 011			****		
153.0 ^C	$2s(^2S)2p^4(^3P)^2P_{1/2}$	$2p^{5} {}^{2}P_{3/2}^{\circ}$	1 536 500	2 190 300		2.12 - 2	1.51 + 9	C	109*
126.32	3/2	3/2	1 398 800	2 190 300		3.2 - 1	3.3+10	C	50°, 109*
124.31 106.16	1/2	1/2	1 536 500 1 398 800	2 340 900 2 340 900		1.7 - 1 $1.74 - 1$	3.7+10 $5.1+10$	C C	50°,109* 50°,109*
	3/2	1/2	1 350 000	2 040 000		1.1.1	0.1 10	~	50 ,100
128.879^{C}	$2s^22p^3$ ² P° _{3/2}	$2s(^{2}S)2p^{4}(^{1}D) {^{2}D_{3/2}}$	400 100	1 176 022		6.4 - 3	6.4 + 8	D	109*
124.48	3/2	5/2	400 100	1 203 298	1. 1	9.32 - 2	6.7+9	C	50°,109*
114.45	1/2	3/2	302 600	1 176 022	bl	2.38 - 2	3.03 + 9	С	50°,109*
118.21	$2s(^2S)2p^4(^1S)^2S_{1/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$	1 344 300	2 190 300		9.26 - 2	1.11 + 10	\mathbf{C}	50°,109*
100.3^{C}	1/2	1/2	1 344 300	2 340 900		1.5 - 2	4.9 + 9	D	109*
117.933	$2s^22p^3$ $^4S_{3/2}^o$	$2s(^{2}S)2p^{4}(^{3}P)^{4}P_{5/2}$	0	847 940	bl	1.83 - 1	1.46+10	C	12°, 50 ^{\triangle} , 67, 68, 109*
106.064		•	0	942 827		1.59 - 1	2.36+10	C	$12^{\circ}, 50^{\triangle}, 67, 68, 109^{*}$
103.326	3/2 3/2	3/2 1/2	0	967 811	bl	8.52 - 2	2.66+10	C	$12^{\circ}, 50^{\circ}, 68, 109^{*}$
	·	•							. , .
105.88	$2s^22p^3$ ² P $_{3/2}^{\circ}$		400 100	1 344 300		4.8 - 3	1.4+9	D	50°,109*
95.995	1/2	1/2	302 600	1 344 300	bl	1.2 - 1	4.4+10	$^{\rm C}$	$12^{\circ}, 50^{\triangle}, 109^{*}$
103.451 ^C	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s(^2S)2p^4(^1D)^2D_{3/2}$	209 380	1 176 022	:	3.1 - 4	4.8+7	E	109*
100.612	5/2	5/2	209 380	1 203 298		3.5 - 1	3.9 + 10	$^{\rm C}$	$12^{\circ}, 50^{\triangle}, 67, 68, 109^{*}$
98.185	3/2	3/2	157 536	1 176 022		3.0 - 1	5.2 + 10	$^{\rm C}$	$12^{\circ}, 50^{\triangle}, 67, 68, 109^{*}$
$95.624^{\rm C}$	3/2	5/2	157 536	1 203 298		9.6 - 4	1.2+8	E	109*
101.31	$2s(^{2}S)2p^{4}(^{1}D) ^{2}D_{5/2}$	$2p^5 \ ^2P_{3/2}^{\circ}$	1 203 298	2 190 300	1	2.97 - 1	4.83+10	C	50°,109*
98.58	3/2		1 176 022	2 190 300		1.43 - 1	2.45 + 10	Č	50°,109*
85.86	3/2	•	1 176 022	2 340 900	l	1.08 - 1	4.9 + 10	C	50°,109*
100.12	$2s^22p^3$ ² P $_{3/2}^{o}$	$2s(^{2}S)2p^{4}(^{3}P)^{2}P_{3/2}$	400 100	1 398 800	bl	6.12 - 2	1.02+10	C	50°,109*
91.20	1/2		302 600	1 398 800		5.94 - 2	1.19+10	C	50°,109*
88.00	3/2	•	400 100	1 536 500		2.7 - 1	1.2+11	$\check{\mathbf{c}}$	50°, 67, 109*
81.04	1/2		302 600	1 536 500)	7.8 - 3	4.0 + 9	D	50°,109*
85.02	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s(^2S)2p^4(^1D)^{-2}D_{3/2}$	0	1 176 022	!	2.0 - 2	4.7+9	E	50°,109*
84.24	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s(^2S)2p^4(^1S)\ ^2S_{1/2}$	157 536	1 344 300)	1.2 - 1	5.6+10	D	50°,109*
84.06	$2s^22p^3$ ² D $_{5/2}^{o}$	$2s(^2S)2p^4(^3P)^2P_{3/2}$	209 380	1 398 800)	5.0 - 1	1.2+11	C	50°, 67, 68, 109*
80.55	3/2		157 536	1 398 800		4.84 - 2		C	50°, 67, 68, 109*
72.52	3/2	· · · · · · · · · · · · · · · · · · ·	157 536	1 536 500)	4.48 - 2		C	50°,109*
81.8 ^C	$2s(^{2}S)2p^{4}(^{3}P)^{-4}P_{1/2}$	$2p^{5-2}P_{3/2}^{\circ}$	967 811	2 190 300)	4.6 - 3	1.1+9	Е	109*
80.16	3/2	0,2	942 827	2 190 300		1.3 - 2	3.4+9	E	50°,109*
74.49	5/2		847 940	2 190 300		1.7 - 2	5.2+9	E	50°,109*
72.8 ^C	1/2	•	967 811	2 340 900)	2.4 - 3	1.5+9	\mathbf{E}	109*
71.54	3/2		942 827	2 340 900)	9.2 - 4	6.0 + 8	E	50°,109*
74.37	$2s^22p^3$ ${}^4S_{3/2}^{\circ}$	$2s(^2S)2p^4(^1S) \ ^2S_{1/2}$	0	1 344 300)	6.4 - 3	3.9+9	E	50°,109*
71.48	$2s^22p^3$ ${}^4S_{3/2}^{\circ}$	$2s(^{2}S)2p^{4}(^{3}P)^{2}P_{3/2}$	0	1 398 800)	2.3 - 2	7.6+9	E	50°,109*

Ni xxiii

Wave- length (Å)	Classific Lower	cation Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
1917.47 911.0	$2s^22p^2$ 3 P ₁	$2s^22p^2$ ³ P ₂	109 770 0	161 922 109 770		M1 M1	1.32+3 2.07+4	C C	70,76°,109* 69,70°,71,109*
614.8 465.4	$2s^22p^2$ 3 P ₂	$2s^22p^2$ ¹ D ₂	161 922 109 770	324 640 324 640		M1 M1	3.7+4 4.1+4	C D	70°,109* 70°,109*
246.91 ^C 185.29 ^C	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^4 \ ^3P_2$	1 459 700 1 459 700	1 864 700 1 999 400		5.4 - 3 $1.7 - 2$	1.2+8 1.1+9	E E	109* 109*
235.3^{C} 209.6^{C}	$2s^22p^2\ ^3{ m P}_2$	$2s(^{2}S)2p^{3}(^{4}S^{\circ})^{5}S_{2}^{\circ}$	161 922 109 770	[586 890] [586 890]		2.8 - 3 $2.8 - 3$	6.6+7 8.5+7	E E	109* 109*
232.5°	$2s^22p^{2-1}S_0$	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{3}D_{1}^{\circ}$	463 900	894 100		1.6 - 3	6.6+7	E	109*
178.6 ^C 143.9 ^C	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D_{2}^{\circ}$	$2p^4\ ^3{ m P}_2$	1 304 640 1 304 640	1 864 700 1 999 400		2.4 - 2 $7.5 - 3$	9.8+8 8.1+8	E E	109* 109*
175.6 ^C	$2s^22p^2$ ¹ D ₂	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{1}^{o}$	324 640	894 100		3.9 - 3	2.8+8	Е	109*
173.8^{C}	2	2	324 640	900 000		9.0 - 4	4.0+7	E	109*
162.1 ^C	2	3	324 640	941 400		4.3 - 2	1.6+9	E	109*
162.8 ^C	$2s(^{2}S)2p^{3}(^{4}S^{\circ})^{3}S_{1}^{\circ}$	$2p^{4-3}P_2$	1 250 470	1 864 700		1.42 - 1	7.2 + 9	C	109*
137.55	1	0	1 250 470	1 977 400		7.17 - 2	2.53+10	C	50°,109*
133.54	1	1	1 250 470	1 999 400		1.49 - 1	1.86+10	С	50°,109*
162.7 ^C	$2s^22p^{2-1}S_0$	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{3}P_{1}^{\circ}$	463 900	1 078 350		2.8 - 3	2.4+8	Е	109*
161.1 ^C	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^{4-1}\mathrm{D}_2$	1 459 700	2 080 600		1.13 - 1	5.8 + 9	C	109*
136.6 ^C	$2s^22p^2$ 3 P ₂	$2s(^{2}S)2p^{3}(^{2}D^{o})^{3}D_{1}^{o}$	161 922	894 100		1.7 - 3	2.0+8	\mathbf{E}	109*
135.5 ^C	2	2	161 922	900 000		1.4 - 3	1.0+8	$\mathbf{E}_{\widetilde{\sim}}$	109*
128.30 127.46	2	3	161922 109770	941 400 894 100		1.29 - 1 $3.6 - 3$	7.4+9 $4.9+8$	$_{ m D}^{ m C}$	50°,68,109* 50°,109*
126.54	1	1 2	109 770	900 000		1.45 - 1	1.2+10	C	50°, 68, 109*
111.86	0	1	0	894 100	bl	9.8 - 2	1.7+10	Č	50°, 68, 109*
132.677 ^C 128.187 ^C	$2s^22p^2$ ¹ D ₂	$2s(^{2}S)2p^{3}(^{2}P^{\circ}) \ ^{3}P_{1}^{\circ}$	324 640 324 640	1 078 350 1 104 750		2.0 - 3 $2.4 - 3$	2.5+8 1.9+8	E E	109* 109*
131.60	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{3}P_{2}^{\circ}$	$2p^{4} {}^{3}P_{2}$	1 104 750	1 864 700		5.15 - 2	3.97+9	C	50°,109*
127.21	1	2	1 078 350	1 864 700		5.34 - 2	4.40+9	Ċ	50°,109*
111.78	2	1	1 104 750	1 999 400		1.23 - 1	2.19+10	Č	50°, 109*
111.23 108.57 ^C	1	0	1 078 350	1 977 400	Ы	4.20 - 2	2.26+10	C	50°,109*
107.00	1 0	1	1 078 350 1 064 900	1 999 400 1 999 400		4.5 - 3 $3.29 - 2$	8.5+8 $6.4+9$	D C	109* 50°,109*
128.87	$2s(^{2}S)2p^{3}(^{2}D^{\circ})^{-1}D_{2}^{\circ}$	$2p^{4-1}\mathrm{D}_2$	1 304 640	2 080 600	bl	5.00 - 1	4.02+10	C	50°,109*
127.13 ^C	$2s^22p^{2-1}S_0$	$2s(^{2}S)2p^{3}(^{4}S^{\circ})^{3}S_{1}^{\circ}$	463 900	1 250 470		7.5 - 3	1.0+9	E	109*
120.46 ^C	$2s(^2S)2p^3(^4S^\circ)$ $^3S_1^\circ$	$2p^{4-1}\mathrm{D}_2$	1 250 470	2 080 600		4.2 - 4	3.9+7	E	109*
112.55	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	$2p^{4-1}\mathrm{S}_0$	1 459 700	2 348 200		1.9 - 1	1.0+11	C	50°,109*
109.06	$2s^22p^2$ ³ P ₂	$2s(^{2}S)2p^{3}(^{2}P^{o})^{3}P_{1}^{o}$	161 922	1 078 350	bl	1.6 - 2	2.9+9	D	50°,109*
106.064	2	2	161 922	1 104 750		2.42 - 1	2.87+10	C	12°,50 ^{\(\Delta\)} ,68,109*
104.70	1	0	109 770	1 064 900	bl	4.83 - 2	2.94 + 10	C	50°, 109*
103.244	1	1	109 770	1 078 350		1.15 - 1	2.40+10	C	$12^{\circ}, 50^{\triangle}, 109^{*}$
100.50 92.75	1 0	2	109 770 0	1 104 750 1 078 350		8.7 - 4 $1.75 - 2$	$1.1+8 \\ 4.52+9$	E C	50°,109* 50°,109*
108.27 103.67	$2s(^{2}S)2p^{3}(^{2}D^{o}) \ ^{3}D_{3}^{o}$	$2p^4 \ ^3P_2$	941 400 900 000	1 864 700 1 864 700		2.92 - 1 $1.43 - 1$	3.32+10 $1.78+10$	C	50°,109* 50°,109*
103.07	2	2 2	894 100	1 864 700		4.74 - 2	6.0+9	C	50°,109 50°,109*
92.32	1	0	894 100	1 977 400)	5.61 - 2	4.39 + 10	C	50°,109*
90.96	2	1	900 000	1 999 400)	9.30 - 2	2.50+10	$^{\rm C}$	50°,109*
90.49	1	1	894 100	1 999 400)	6.51 - 2	1.77+10	С	50°, 109*
108.01 ^C	$2s^22p^{2-1}D_2$	$2s(^{2}S)2p^{3}(^{4}S^{\circ}) \ ^{3}S_{1}^{\circ}$	324 640	1 250 470)	3.7 - 3	7.0+8	E	109*
102.50 99.776 ^C	$2s(^{2}S)2p^{3}(^{2}P^{\circ})^{3}P_{2}^{\circ}$	$2p^{4}$ $^{1}{ m D}_{2}$ 2	1 104 750 1 078 350	2 080 600 2 080 600		4.5 - 2 $1.7 - 2$	5.7+9 2.3+9	E E	50°,109* 109*
		$2s(^{2}S)2p^{3}(^{2}D^{o})^{-1}D_{2}^{o}$	324 640			4.2 - 1	5.3+10	C	12°,50 ^{\Delta} ,68,77,109

Ni XXIII - Continued

Wave-	Classification		Energy Levels (cm ⁻¹)		Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
100.42	$2s^22p^2$ ¹ S ₀	$2s(^{2}S)2p^{3}(^{2}P^{o})^{-1}P_{1}^{o}$	463 900	1 459 700	ы	9.6 - 2	2.1+10	С	50°, 109*
91.865 87.66 79.99	$2s^22p^2$ 3 P ₂ 1 0	$2s(^2S)2p^3(^4S^\circ)$ $^3S_1^\circ$ 1	161 922 109 770 0	1 250 470 1 250 470 1 250 470	bl	2.9 - 1 $9.66 - 2$ $3.08 - 2$	7.5+10 2.80+10 1.07+10	С С С	12°,50 ^{\(\Delta\)} ,68,77,109* 50°,68,109* 50°,109*
91.097^{C}	$2s(^{2}S)2p^{3}(^{4}S^{o})^{3}S_{1}^{o}$	$2p^4$ 1 S $_0$	1 250 470	2 348 200		8.7 - 3	7.0+9	E	109*
88.11	$2s^22p^{2-1}D_2$	$2s(^2S)2p^3(^2P^o)^{-1}P_1^o$	324 640	1 459 700	ьl	2.9 - 1	8.3+10	C	50°,109*
87.77 84.703 ^C	$2s(^{2}S)2p^{3}(^{2}D^{\circ}) \ ^{3}D_{3}^{\circ}$	$2p^{4} \ ^{1}\mathrm{D}_{2}$	941 400 900 000	2 080 600 2 080 600	bl	5.2 - 2 $5.0 - 3$	9.0+9 9.3+8	E E	50°,109* 109*
87.50 83.691 ^C	$2s^22p^2$ ³ P ₂	$2s(^{2}S)2p^{3}(^{2}D^{o})^{-1}D_{2}^{o}$	161 922 109 770	1 304 640 1 304 640	ы	7.0 - 2 $3.6 - 3$	1.2+10 6.9+8	E E	50°,109* 109*
78.749 ^C	$2s(^2S)2p^3(^2P^o)^3P_1^o$	$2p^4$ 1 S $_0$	1 078 350	2 348 200		6.9 - 3	7.4+9	E	109*
78.21 70.796 ^C	$2s(^{2}S)2p^{3}(^{4}S^{\circ}) ^{5}S_{2}^{\circ}$	$2p^4\ ^3{ m P}_2$	[586 890] [586 890]	1 864 700 1 999 400		1.4 - 2 $8.5 - 4$	2.9+9 3.8+8	E E	50°,109* 109*
77.055 ^C 74.07	$2s^22p^2$ 3 P ₂	$2s(^2S)2p^3(^2P^\circ) \ ^1P_1^\circ$	161 922 109 770	1 459 700 1 459 700		1.4 - 3 $1.8 - 2$	5.1+8 7.2+9	E E	109* 50°,109*

Ni xxiv

Wave- length (Å)	Classifi Lower	cation Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
609.9	$2s^22p\ ^2\mathrm{P}^{\circ}_{1/2}$	2s ² 2p ² P _{3/2}	0	163 960		M1	3.95+4	В	70°,71,109*
356.3 ^C	$2s2p^2$ 2 P _{3/2}	$2p^{3} {}^{4}S_{3/2}^{\circ}$	1 143 250	1 423 900		3.2 - 3	4.2 + 7	E	109*
213.6 ^C	1/2	3/2	955 790	1 423 900		9.0 - 3	3.3+8	E	109*
340.7 ^C	$2s^22p\ ^2{ m P}_{3/2}^{ m o}$	$2s2p^2 {}^4\mathrm{P}_{1/2}$	163 960	457 440		6.4.4	1.0.17	177	100*
266.1 ^C	•	·	163 960	457 440 539 715		6.4 - 4 $5.6 - 4$	1.9+7 $1.3+7$	E E	109* 109*
224.712	3/2 3/2	3/2 5/2	163 960	608 975		6.4 - 3	1.4+8	E	79°, 109*
218.608	1/2	1/2	0	457 440		2.4 - 3	1.7+8	$ar{\mathbf{E}}$	79°,109*
85.283	1/2	3/2	0	539 715	bl				79
339.9 ^C	$2s2p^2$ 2 S _{1/2}	$2p^3\ ^4{ m S}^{ m o}_{3/2}$	1 129 710	1 423 900		1.2 - 3	1.8+7	\mathbf{E}	109*
228.0 ^C	$2s2p^2$ 2 P _{3/2}	$2p^{3-2}\mathrm{D}^{\mathrm{o}}_{3/2}$	1 143 250	1 581 900		1.5 - 3	4.9+7	E	109*
207.1 ^C	3/2	5/2	1 143 250	1 626 200		1.44 - 1	3.74 + 9	C	109*
59.69	1/2	3/2	955 790	1 581 900		1.4 - 1	8.9 + 9	C	50°,109*
221.1 ^C	$2s2p^2$ $^2S_{1/2}$	$2p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{3/2}$	1 129 710	1 581 900		1.9 - 2	6.3+8	D	109*
185.3 ^C	$2s2p^2\ ^2{ m D}_{5/2}$	$2p^3$ $^4S_{3/2}^{\circ}$	884 100	1 423 900		7.8 - 4	3.8+7	E	109*
172.3 ^C	3/2	2p 53/2 3/2	843 500	1 423 900		6.0 - 3	3.4+8	E	109*
156.8 ^C	$2s2p^2\ ^2{ m P}_{3/2}$	•						_	
137.01		$2p^3\ ^2{ m P}^{ m o}_{1/2}$	1 143 250	1 781 100		1.5 - 2	2.1+9	D	109*
21.15	3/2 1/2	3/2 1/2	1 143 250 955 790	1 873 000 1 781 100		2.9 - 1 $1.9 - 2$	2.6+10 $4.4+9$	D D	50°,109* 50°,109*
.09.03	1/2	3/2	955 790	1 873 000		2.62 - 2	3.68+9	č	50°,109*
.53.5 ^C	$2s2p^2$ $^2S_{1/2}$	$2p^3 \ ^2P_{1/2}^{\circ}$	1 129 710	1 781 100		8.94 - 2	1.27+10	С	109*
134.53	1/2	3/2	1 129 710	1 873 000		3.08 - 2	2.84+9	Č	50°,109*
143.30	$2s2p^2$ 2 D _{5/2}	$2p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{3/2}$	884 100	1 581 900	,	7.44 - 2	6.0+9	C	50°,109*
35.47	3/2	3/2	843 500	1 581 900)	8.84 - 2	8.0+9	C	50°,109*
134.73	5/2	5/2	884 100	1 626 200		2.36 - 1	1.44+10	C	50°, 109*
127.78	3/2	5/2	843 500	1 626 200	,	7.60 - 2	5.2+9	С	50°,109*
138.80	$2s^22p\ ^2{ m P}_{3/2}^{\circ}$	$2s2p^2$ 2 D _{5/2}	163 960	884 100)	1.26 - 1	7.2 + 9	C	50°, 68, 109*
118.553	1/2	3/2	0	843 500)	1.3 - 1	1.5+10	С	$12^{\circ}, 50^{\triangle}, 68, 109^{*}$
126.29 ^C	$2s^22p\ ^2{ m P}_{3/2}^{\circ}$	$2s2p^{2-2}P_{1/2}$	163 960	955 790)	8.8 - 4	1.8+8	E	109*
104.626	1/2	1/2	0	955 790	bl bl	1.5 - 1	4.7 + 10	\mathbf{C}	$12^{\circ}, 50^{\triangle}, 68, 109^{*}$
102.115	3/2	3/2	163 960	1 143 250		3.4 - 1	5.4 + 10	$^{\rm C}$	12°,50 ^{\Delta} ,68,78,109*
87.50	1/2	3/2	0	1 143 250) bl	3.06 - 2	6.7 + 9	$^{\mathrm{C}}$	50°, 109*
122.72	$2s2p^2$ ⁴ P _{5/2}	$2p^{3} {}^{4}S_{3/2}^{\circ}$	608 975	1 423 900)	1.96 - 1	2.17+10	\mathbf{C}	50°,109*
113.14	3/2	3/2	539 715	1 423 900		1.26 - 1	1.65 + 10	$^{\rm C}$	50°, 109*
103.43	1/2	3/2	457 440	1 423 900) Ы	8.36 - 2	1.30+10	C	50°, 109*
106.68	$2s2p^2$ 2 $D_{3/2}$	$2p^3 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	843 500	1 781 100)	1.25 - 1	3.67+10	C	50°,109*
101.13	5/2	3/2	884 100	1 873 000		1.00 - 1	1.63 + 10	\mathbf{C}	50°,109*
97.17	3/2	3/2	843 500	1 873 000) Ы	3.4 - 2	5.9 + 9	D	50°, 109*
103.546	$2s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s2p^2$ 2 S _{1/2}	163 960	1 129 710) bl	1.34 - 1	4.17+10	\mathbf{C}	$12^{\circ}, 50^{\triangle}, 109^{*}$
88.54	1/2	1/2	0	1 129 710)	4.8 - 3	2.0+9	D	50°, 109*
102.78 ^C	$2s2p^2$ ⁴ P _{5/2}	$2p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{3/2}$	608 975	1 581 900)	4.2 - 3	6.6+8	E	109*
98.39	5/2	5/2	608 975	1 626 200		3.2 - 2	3.7+9	E	50°, 109*
95.952^{C}	3/2	3/2	539 715	1 581 900		2.7 - 2	4.9+9	Ē	109*
92.040^{C}	3/2	5/2	539 715	1 626 200		6.4 - 4	8.4+7	E	109*
88.932 ^C	1/2	3/2	457 440	1 581 900		7.2 - 4	1.5+8	E	109*
$79.112^{\rm C}$	$2s2p^2 {}^4\mathrm{P}_{5/2}$	$2p^3 \ ^2P_{3/2}^{\circ}$	608 975	1 873 000)	6.6 - 4	1.8+8	E	109*
75.548 ^C	1/2	1/2	457 440	1 781 100		5.8 - 4	3.4+8	E	109*
75.003 ^C	3/2	3/2	539 715	1 873 000		1.4 - 3	4.1+8	E	109*

Ni xxv

1 length (Å) 498.2 ^C 326.0 ^C 277.6 ^C 238.82 188.13	2s2p ¹ P ₁ ° 1	Upper 2p ^{2 3} P ₀		·					
326.0 ^C 277.6 ^C 238.82	1	-							
326.0 ^C 277.6 ^C 238.82	1	-	0.455 550				0.41.89	*	
277.6 ^C 238.82			847 558	1 048 300		9.0 - 4	2.4 + 7	E	109*
238.82	1	1	847 558	1 154 300		6.3 - 4	1.3+7	E	109*
		2	847 558	1 207 800		3.3 - 2	5.4+8	D	109*
188.13	$2s^2 \ ^1\mathrm{S}_0$	$2s2p$ $^3P_1^{\circ}$	0	418 720		2.1 - 3	8.2+7	D	47°,109*,113
	$2s2p^{-1}P_1^{o}$	$2p^2$ $^1\mathrm{D}_2$	847 558	1 379 100		1.57 - 1	5.91+9	В	50°,109*
165.36	$2s2p\ ^3\mathrm{P_2^o}$	$2p^2\ ^3{ m P}_1$	549 500	1 154 300	bl	6.00 - 2	4.88+9	В	50°,109*
158.84	1	0	418 720	1 048 300		5.22 - 2	1.38+10	$\bar{ m B}$	50°,109*
151.90	2	2	549 500	1 207 800		1.33 - 1	7.66 + 9	В	50°,109*
135.95	1	- 1	418 720	1 154 300		4.26 - 2	5.12 + 9	В	50° 109*
128.85	ō	1	378 190	1 154 300		6.25 - 2	8.37 + 9	В	50°, 109*
126.73	1	2	418 720	1 207 800		8.43 - 2	7.00+9	В	50°,109*
130.99	$2s2p$ 1 P $_{1}^{\circ}$	$2p^{2}$ 1 S ₀	847 558	1 611 000		1.03 - 1	3.99+10	В	50°, 109*
120.53	$2s2p$ $^3P_2^{\circ}$	$2p^{2-1}D_2$	549 500	1 379 100		8.35 - 2	7.7+9	C	50°,109*
104.13 ^C	1	2	418 720	1 379 100		6.0 - 3	7.4+8	Ď	109*
117.986	$2s^2$ 1 S $_0$	$2s2p$ $^{1}\mathrm{P}_{1}^{\circ}$	0	847 558	bl	1.49 - 1	2.38+10	В	12°, 50 ^{\(\Delta\)} , 68, 82, 109*, 113
9.9712 ^C	$2p^{2-1}\mathrm{D}_2$	$2s2p 1 1$ $2p3d 1 D_2^o$					•		
		~	1 379 100	11 408 000		2.1 - 1	2.8+12	C-	109*
9.97	$2s2p\ ^{1}P_{1}^{o}$	$2s3d$ $^{1}\mathrm{D}_{2}$	847 558	10 880 000		1.8	2.5+13	D	83°,109*
9.938	$2p^2 \ ^3P_2$	$2p3d$ $^3\mathrm{F}^{\circ}_3$	1 207 800	11 271 000		1.34	1.29+13	D	83°,109*
9.9254 ^C	$2p^2 \ ^3P_2$	$2p3d$ $^3\mathrm{D}^\mathrm{o}_2$	1 207 800	11 283 000		1.6 - 1	2.2 + 12	D	109*
9.9126^{C}	2	1	1 207 800	11 296 000		1.7 - 2	3.8 + 11	D	109*
9.873	1	2	1 154 300	11 283 000		1.48	2.03 + 13	$^{\mathrm{C}-}$	83°,109*
$9.8603^{ m C}$	1	1	1 154 300	11 296 000		2.5 - 1	5.7 + 12	C-	109*
9.776	2	3	1 207 800	11 437 000		3.0	2.9 + 13	C-	83°,109*
9.759	0	1	1 048 300	11 296 000)	1.3	3.03+13	C-	83°,109*
9.9237^{C}	$2p^{2-1}D_2$	$2p3d$ $^3\mathrm{P}_2^\mathrm{o}$	1 379 100	11 456 000)	9.5 - 1	1.3+13	C-	109*
9.860	$2p^{2-1}\mathrm{D}_2$	$2p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	1 379 100	11 525 000)	4.9	4.8+13	C-	83°,109*
$9.8037^{\rm C}$	$2p^{2-3}P_2$	$2p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	1 207 800	11 409 000		20 1	4.4.1.19	0	100*
9.753		2psa D ₂	1 154 300	11 408 000 11 408 000		3.2 - 1 $9.0 - 1$	4.4+12 $1.3+13$	C- D	109* 83°,109*
3.100	1	2	1 104 300	11 408 000	•	9.0 - 1	1.5715	D	65 ,109
9.7613^{C}	$2s2p$ $^3P_2^{\circ}$	$2s3d\ ^{3}{\rm D}_{1}$	549 500	10 794 000	,	3.6 - 2	8.4 + 11	C-	109*
9.75	2	2	549 500	10 800 000		5.5 - 1	7.7 + 12	Č–	83°,109*
9.744	2	3	549 500	10 813 000		3.0	3.0+13	$\tilde{\mathrm{C}}-$	83°,109*
9.633	1	2	418 720	10 800 000		1.7	2.4+13	Č-	83°,109*
9.63	1	1	418 720	10 794 000		5.4 - 1	1.3 + 13	$\bar{\mathbf{C}}-$	83°,109*
9.601	0	1	378 190	10 794 000		7.5 - 1	1.8+13	C-	83°,109*
9.759	$2p^2\ ^3{ m P}_2$	$2p3d\ ^{3}P_{1,2}^{o}$	1 207 800	11 456 000	3	9.5 - 1	2.3+13	C-	83°,109*
9.707	1	1,2	1 154 300	11 456 000		7.5 - 1	1.8 + 13	Ď	83°,109*
9.707	1	0	1 154 300	11 456 000		3.3 - 1	2.3+13	C-	83°, 109*
9.691	$2p^{2-3}P_2$	$2p3d$ $^{1}\mathrm{F}_{3}^{\circ}$	1 207 800	11 525 000)				83
9.5617 ^C	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p3p$ $^3\mathrm{P}_2$	847 558	11 306 000)	2.3 - 1	3.4+12	D	109*
9.4308 ^C	$2s2p$ $^3P_2^{\circ}$	$2p3p^{-3}D_{2}$	549 500	11 150 000	,	10 0		ъ	100*
9.316	202p 1 2	2psp D ₂	418 720	11 153 000 11 153 000		1.0 - 2 $5.1 - 1$	$1.5+11 \\ 7.8+12$	$_{\mathrm{C}-}$	109* 83°,109*
9.306	2	3	549 500	11 296 000		7.5 - 1	8.2+12	C-	83°,109*
9.39	$2s^{2}$ 1 S ₀	$2s3p$ $^3\mathrm{P}_1^{\mathrm{o}}$	0	10 650 000)	2.6 - 1	6.6+12	C-	83°,109*
9.340	$2s^2$ 1 S $_0$	2s3p ¹ P ₁ °	0	10 707 000		4.5 - 1	1.1+13	C-	83°, 109*
		·							·
9.297	$2s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$2p3p$ 3 P ₂	549 500	11 306 000		4.5 - 1	6.9 + 12	C-	83°,109*
9.1850 ^C	1	2	418 720	11 306 000)	9.9 - 3	1.6+11	D	109*
9.297	$2s2p$ $^3P_2^o$	$2p3p$ 3S_1	549 500	11 306 000	3				83

Ni xxvi

Wave- length (Å)	C Lower	lassification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
563.383 ^C	1s ² 2p ² P _{1/2}	$1s^2 2p \ ^2P_{3/2}^{\circ}$	427 073	604 572		M1	5.02+4	В	109*
234.152 ^S 165.406 ^S	$1s^2 2s ^2S_{1/2}$	$1s^22p\ ^2P_{1/2}^{\circ}$	0 0	427 073 604 572		3.28 - 2 $9.44 - 2$	1.99+9 5.75+9	B+ B+	12,47,82,85,86,87°,109* 12,82,85,86,87°,109*
59.032 ^C 58.907 ^C 58.270 ^C	$1s^24p$ $^2P_{3/2}^{\circ}$ $_{3/2}^{\circ}$ $_{1/2}^{\circ}$	$1s^25d\ ^2\mathrm{D}_{3/2}$ 5/2 3/2	[14 681 920] [14 681 920] [14 659 760]	[16 375 920] [16 379 510] [16 375 920]					
27.9888 ^C 27.5830 ^C	$1s^23p \ ^2P^{\circ}_{3/2}$	$1s^24s$ $^2S_{1/2}$	[11 037 190] [10 984 630]	[14 610 050] [14 610 050]					
27.2956 ^C 27.2434 ^C 26.9095 ^C	$1s^2 3p \ ^2P_{3/2}^{\circ}$ 3/2 1/2	$1s^24d\ ^2\mathrm{D}_{3/2}$ 5/2 3/2	[11 037 190] [11 037 190] [10 984 630]	[14 700 790] [14 707 800] [14 700 790]					
26.3605 ^C 26.2074 ^C	$1s^2 3s \ ^2 S_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	[10 866 210] [10 866 210]	[14 659 760] [14 681 920]					
18.8951 ^C 18.7093 ^C	$1s^2 3p \ ^2P_{3/2}^{\circ}$	$1s^25s \ ^2S_{1/2}$	[11 037 190] [10 984 630]	[16 329 570] [16 329 570]					
18.7310 ^C 18.7185 ^C 18.5484 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$ $3/2$ $1/2$	$1s^25d\ ^2\mathrm{D}_{3/2}$ 5/2 3/2	[11 037 190] [11 037 190] [10 984 630]	[16 375 920] [16 379 510] [16 375 920]					
9.74503 ^C 9.57934 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s^2 3s \ ^2 S_{1/2}$	604 572 427 073	[10 866 210] [10 866 210]		7.2 - 2 $3.6 - 2$	2.5+12 1.3+12	C C	83,89,109* 89,109*
9.54432 ^C 9.52922 ^C 9.38532 ^C	$1s^2 2p \ ^2P_{3/2}^{o}$ 3/2 1/2	$1s^2 3d\ ^2 \mathrm{D}_{3/2}$ 5/2 3/2	604 572 604 572 427 073	[11 082 010] [11 098 610] [11 082 010]		2.7 - 1 2.42 1.37	5.0+12 2.96+13 2.59+13	C C+ C+	83,89,109* 83,89,109* 83,89,109*
9.10363 ^C 9.06028 ^C	$1s^2 2s \ ^2S_{1/2}$	$1s^23p \ ^2P_{1/2}^{\circ}$	0 0	[10 984 630] [11 037 190]		2.58 - 1 $4.92 - 1$	1.04+13 9.99+12	B+ B+	83,89,109* 83,89,109*
7.14006 ^C 7.05071 ^C	$1s^2 2p \ ^2P_{3/2}^{o}$	$1s^24s$ $^2S_{1/2}$	604 572 427 073	[14 610 050] [14 610 050]					89 89
7.09410 ^C 7.09058 ^C 7.00588 ^C	$1s^{2}2p {}^{2}P_{3/2}^{o}$ 3/2 1/2	$1\mathrm{s}^24d^{-2}\mathrm{D}_{3/2}$ 5/2 3/2	604 572 604 572 427 0 73	[14 700 790] [14 707 800] [14 700 790]					89 89 89
6.82139 ^C 6.81110 ^C	$1s^2 2s \ ^2 \mathrm{S}_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	0 0	[14 659 760] [14 681 920]					89 89
6.35930 ^C 6.28832 ^C	1s ² 2p ² P _{3/2} 1/2	$1s^25s \ ^2S_{1/2}$	604 572 427 073	[16 329 570] [16 329 570]					89 89
6.34061 ^C 6.33917 ^C 6.27005 ^C	$1s^{2}2p \ ^{2}P_{3/2}^{\circ}$ $_{3/2}^{\circ}$ $_{1/2}^{\circ}$	$1s^25d\ ^2{ m D}_{3/2}$ 5/2 3/2	604 572 604 572 427 073	[16 375 920] [16 379 510] [16 375 920]					89 89 89
6.11436 ^C 6.11012 ^C	$1s^2 2s \ ^2 S_{1/2}$	$1s^25p \ ^2\mathrm{P_{1/2}^o}$	0 0	[16 354 940] [16 366 280]					89 89
1.6274 ^C 1.6228 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s2s^2 {}^2S_{1/2}$	604 572 427 073	[62 051 000] [62 051 000]					89 89
1.6108 ^C 1.6083 ^C 1.6068 ^C 1.6063 ^C 1.6039 ^C	$1s^22p$ $^2P_{3/2}^{\circ}$ $_{3/2}^{\circ}$ $_{3/2}^{\circ}$ $_{3/2}^{\circ}$ $_{1/2}^{\circ}$ $_{1/2}^{\circ}$	$1s(^{2}S)2p^{2}(^{3}P) ^{4}P_{1/2}$ 3/2 5/2 1/2 3/2	604 572 604 572 604 572 427 073 427 073	[62 684 000] [62 779 000] [62 837 000] [62 684 000] [62 779 000]	j 				89 89 89 89
1.6087 ^C 1.6077 ^C	$1s^2 2s \ ^2S_{1/2}$	•	0 0	[62 162 000 [62 201 000]				89 89

Ni xxvi - Continued

Wave- length (Å)	C Lower	lassification Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1.6029 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	604 572	[62 991 000]		1.6 - 1	2.1+14	C	89,109*
1.5984^{C}	1/2	1/2	427 073	[62 991 000]		5.6 - 1	7.3 + 14	C	89,109*
1.5977^{C}	3/2	3/2	604 572	[63 192 000]		1.2	8.1 + 14	C	89,109*
1.5933^{C}	1/2	3/2	427 073	[63 192 000]					89
1.6029 ^C	$1s^2 2p^2 P_{3/2}^{o}$	$1s(^2S)2p^2(^1D)^{-2}D_{3/2}$	604 572	[62 991 000]					89
1.6009 ^C	3/2	5/2	604 572	[63 067 000]		6.4 - 1	2.7 + 14	C	89,109*
1.5984^{C}	1/2	3/2	427 073	[62 991 000]		6.8 - 1	4.4 + 14	C	89,109*
1.5997 ^C	$1s^2 2s {}^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o})^{2}P_{1/2}^{o}$	0	[62 512 000]		2.0 - 1	2.7+14	C	89, 109*
1.5970^{C}	1/2	3/2	0	[62 617 000]					89
1.5938 ^C	$1s^2 2s ^2S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o})^{2}P_{1/2}^{o}$	0	[62 743 000]		3.0 - 1	4.0+14	C	89,109*
1.5931 ^C	1/2	3/2	0	[62 771 000]					89
1.5936^{C}	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s(^2S)2p^2(^1S)^{-2}S_{1/2}$	604 572	[63 354 000]		2.6 - 1	3.4+14	C	89,109*
1.5892^{C}	1/2	1/2	427 073	[63 354 000]					89
1.367	$1s^22p\ ^2P_{3/2}^o$	$1s2p3p\ ^{2}\mathrm{D}_{5/2}$	604 572	73 760 000					88
1.303	$1s^2 2p \ ^2P_{3/2}^{o}$	$1s2p4p\ ^{2}\mathrm{D}_{5/2}$	604 572	77 350 000					88

Ni xxvii

Wave- length (Å)	Classificatio Lower	on Upper	Energy Leve	els (cm ⁻¹) Int	. gf	$A (s^{-1})$	Acc.	References
6400 ^C	$1s4p$ $^3P_2^{\circ}$	$1s4d\ ^{3}{ m D}_{2}$	[77 953 500]	[77 969 200]				
4240 ^C		-	[77 953 500]	[77 977 100]				
2720 ^C	2	3						
2690 ^C	1	2	[77 932 500]	[77 969 200]				
2690°	1	1	[77 932 500]	[77 969 600]				
2540 ^C	0	1	[77 930 200]	[77 969 600]				
6100 ^C	$1s5s\ ^{3}{ m S}_{1}$	1 <i>s</i> 5 <i>p</i> ³ P ₁ °	[79 741 000]	[79 757 300]	7.8 - 2	4.7 + 6	E	109*
3690 ^C	1	2	[79 741 000]	[79 768 100]		2, 0	_	100
4900 ^C	$1s5s^{-1}S_{0}$	1 5 100	[mo mro moo]	[=0 === +00]				
	1858 - 50	$1s5p\ ^{1}P_{1}^{\circ}$	[79 756 700]	[79 777 100]	1.0 - 1	9.3 + 6	\mathbf{E}	109*
3140 ^C	$1s4s\ ^{3}S_{1}$	$1s4p\ ^{3}P_{1}^{\circ}$	[77 900 700]	[77 932 500]	7.8 - 2	1.8 + 7	\mathbf{E}	109*
1890 ^C	1	2	[77 900 700]	[77 953 500]			_	
or a C	10	1=0						
2510 ^C	$1s4s^{-1}S_{0}$	$1s4p\ ^{1}P_{1}^{o}$	[77 931 400]	[77 971 200]	6.2 - 2	2.2 + 7	D	109*
1320 ^C	$1s3s\ ^{3}\mathrm{S}_{1}$	1s3p ³ P ₁ ^o	[73 903 000]	[73 978 900]	4.5 - 2	5.7+7	C	109*
		•	[000 000]	[10 010 000]	1.0 2	0.1 1	O	103
1060 ^C	$1s3s\ ^{1}S_{0}$	$1s3p\ ^{1}P_{1}^{o}$	[73 976 800]	[74 070 700]	5.7 - 2	1.1+8	C	109*
390.44 ^C	$1s2s$ $^3\mathrm{S}_1$	1s2p ³ P ₀ °	[62 350 670]	[60 615 700]	0.94 2	4 21 10	D	100*
		-	[62 359 670]	[62 615 790]	9.84 - 3	4.31+8	В	109*
363.78 ^C	1	1	[62 359 670]	$[62\ 634\ 560]$	2.84 - 2	4.77 + 8	В	109*
226.23 ^C	1	2	[62 359 670]	$[62\ 801\ 690]$	8.46 - 2	2.21 + 9	В	109*
313.22 ^C	$1s2s^{-1}S_0$	$1s2p^{-1}P_{1}^{o}$	[62 637 030]	[62 956 290]	3.37 - 2	7.64+8	В	109*
		_	,	[02 000 200]	5.0. 2		_	100
167.61 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p^{-1}P_{1}^{\circ}$	$[62\ 359\ 670]$	[62 956 290]	7.59 - 3	6.01 + 8	В	109*
56.01 ^C	1s4p 1P1	$1s5s\ ^{1}S_{0}$	[27 071 000]	[20 250 200]	10.1	0.4.11	ъ	***
30.01	184p F ₁	1858 50	[77 971 200]	[79 756 700]	1.6 - 1	3.4 + 11	В	109*
55.94 ^C	$1s4p$ $^3P_2^o$	$1s5s\ ^{3}{ m S}_{1}$	[77 953 500]	[79 741 000]				
55.29 ^C	1	1	[77 932 500]	[79 741 000]	1.5 - 1	1.1+11	В	109*
				[anal			_	
54.18^{C}	$1s4s$ $^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[77 931 400]	[79 777 100]	4.31 - 1	3.26 + 11	В	109*
53.86 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}P_{1}^{o}$	[77 000 700]	[70 757 200]	4 43 3	0.00 11	ъ	100*
00.00		180p - P ₁	[77 900 700]	[79 757 300]	4.41 - 1	3.38+11	В	109*
25.902^{C}	$1s3p\ ^{1}P_{1}^{o}$	$1s4s$ $^{1}S_{0}$	[74 070 700]	[77 931 400]	9.9 - 2	9.8 + 11	В	109*
o= o==C	3							
25.885 ^C	$1s3d$ $^3\mathrm{D}_1$	$1s4p\ ^{3}P_{0}^{\circ}$	[74 066 900]	[77 930 200]				
25.869 ^C	1	1	[74 066 900]	[77 932 500]				
25.863 ^C	2	1	[74 066 000]	[77 932 500]				
25.847 ^C	3	2	[74 084 600]	[77 953 500]				
$25.723^{\rm C}$	2	2	[74 066 000]	[77 953 500]				
C	2							
25.827 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4s\ ^{3}\mathrm{S}_{1}$	[74 028 800]	[77 900 700]				
25.498^{C}	1	1	[73 978 900]	[77 900 700]	9.3 - 2	3.2 + 11	В	109*
25.747 ^C	$1s3d$ $^{1}\mathrm{D}_{2}$, , 1mn	[74 007 000]	[mm.omr.occ1			~	***
	180a D2	$1s4p$ $^{1}P_{1}^{o}$	[74 087 200]	[77 971 200]	5.5 - 2	1.8+11	С	109*
25.592 ^C	$1s3p^{-1}P_1^{\alpha}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[74 070 700]	[77 978 200]	1.9	3.9+12	C	109*
	_		•	•		•		
25.378 ^C	$1s3p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[74 028 800]	[77 969 200]				
25.327 ^C	2	3	[74 028 800]	[77 977 100]				
25.061 ^C	1	2	[73 978 900]	[77 969 200]				
25.058 ^C	1	1	[73 978 900]	[77 969 600]				
25.025^{C}	0	1	[73 973 600]	[77 969 600]				
25.035 ^C	1.9.10	150	[20 020 000]	[mm on - 000]	0.0= -			***
25.035	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}P_{1}^{o}$	[73 976 800]	[77 971 200]	3.87 - 1	1.37 + 12	В	109*
24.817^{C}	1 <i>s</i> 3 <i>s</i> ³ S ₁	$1s4p$ $^3\mathrm{P}_1^\mathrm{o}$	[73 903 000]	[77 932 500]	3.93 - 1	1.42+12	В	109*
24.688 ^C	1909 51	1849 11	[73 903 000]	[77 953 500]	5.55 - 1	1.72712	п	103
22.000	1	2	[10 000 000]	. [11 000 000]				
17.587^{C}	$1s3p\ ^{1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[74 070 700]	[79 756 700]	2.2 - 2	4.7+11	С	109*
	_		•	[. ,	~	
17.506 ^C	$1s3p$ $^3\mathrm{P}^{\mathrm{o}}_{2}$	$1s5s {}^{3}S_{1}$	[74 028 800]	[79 741 000]				
17.355 ^C	1	1	[73 978 900]	[79 741 000]	2.1 - 2	1.6 + 11	C	109*
4 = 6 : - C	1							
17.240 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[73 976 800]	[79 777 100]	9.9 - 2	7.4 + 11	В	109*
17.081 ^C	$1s3s$ $^3\mathrm{S}_1$	1.5_ 350	[72 002 000]	[70 757 200]	0.0	W F	Б	100*
17.081 ^C		$1s5p\ ^{3}P_{1}^{o}$	[73 903 000]	[79 757 300]	9.9 - 2	7.5 + 11	В	109*
17.000	1	2	[73 903 000]	[79 768 100]				

Ni xxvii - Continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Classificatio	n Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Opper						
8.848°		-		[62 956 290]	[73 976 800]	4.2 - 2	3.4+12	В	109*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		• •				3.9 - 2	1.1+12	В	109*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,					
**************************************			_			2.1	3.0+13	C+	109
$\begin{array}{c} 3.7478^{\circ} \\ 8.7431^{\circ} \\ 8.7323^{\circ} \\ 0 \\ 0 \\ 1 \\ 10^{\circ} 20^{\circ} 3570^{\circ} \\ 1 \\ 10^{\circ} 20^{\circ} 3570^{\circ} \\ 1 \\ 10^{\circ} 20^{\circ} 3700^{\circ} \\ 1 \\ 10^{\circ} 20^{\circ} 30^{\circ} \\ 1 \\ 10^{\circ} 20^{\circ} 30$		-		•					
$\begin{array}{c} 8.741^{\circ} \\ 8.7461^{\circ} \\ 1 \\ 182s^{\circ} \\ 50 \\ 1 \\ 182s^{\circ} \\ 1 \\ 182s^$				•	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			=						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.7461 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s3p^{-1}P_1^{\alpha}$	[62 637 030]	[74 070 700]	3.53 - 1	1.03+13	В	109*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.6064 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s3p$ $^3\mathrm{P}_1^{\mathrm{o}}$	[62 359 670]	[73 978 900]	3.57 - 1	1.07+13	В	109*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.6777 ^C	$1s2p~^1\mathrm{P}^{\mathrm{o}}_1$	$1s4s$ $^{1}\mathrm{S}_{0}$	[62 956 290]	[77 931 400]	9.0 - 3	1.3+12	C	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6569^{C}	$1s2p^{-1}$ P $_1^{\circ}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[62 956 290]	[77 978 200]	3.6 - 1	1.1+13	C	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6230 ^C	1s2n ³ Po	1 s4 s 3 S -	[62 801 690]	[77 900 700]				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5504 ^C	_				9.0 - 3	4.7+11	C	109*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5930 ^C	1s2p ³ P ₂ °	$1s4d$ $^3\mathrm{D}_2$	[62 801 690]	[77 969 200]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$6.5896^{ m C}$	-			•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$6.5212^{\rm C}$		2	[62 634 560]	[77 969 200]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	[62 634 560]	[77 969 600]				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5130 ^C		1	[62 615 790]	[77 969 600]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5214 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[62 637 030]	[77 971 200]	8.5 - 2	4.4+12	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s2s$ $^3\mathrm{S}_1$	$1s4p\ ^{3}P_{1}^{o}$	[62 359 670]	[77 932 500]	9.6 - 2	5.2+12	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4128 ^C	1		[62 359 670]	[77 953 500]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.9522^{C}	$1s2p^{-1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[62 956 290]	[79 756 700]	3.6 - 3	6.8+11	C	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s2p\ ^{3}P_{2}^{\circ}$	$1s5s {}^{3}S_{1}$	[62 801 690]	[79 741 000]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.8458 ^C		1	[62 634 560]	[79 741 000]	3.6 - 3	2.3+11	C	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.8343 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	1s5p ¹ P ₁ °	[62 637 030]	[79 777 100]	3.5 - 2	2.3 + 12	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s2s\ ^{3}S_{1}$	1s5p 3P1	[62 359 670]	[79 757 300]	3.6 - 2	2.4+12	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.7443 ^C	1		[62 359 670]	[79 768 100]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.603601 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2s$ $^3\mathrm{S}_1$	0	[62 359 670]	M1	4.52 + 8	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s^{2}$ $^{1}S_{0}$	$1s2p$ $^3P_1^{\circ}$	0	[62 634 560]	8.83 - 2	7.70 + 13	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	2	0	[62 801 690]	M2	1.22+9	В	109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_	0	[62 956 290]	6.83 - 1	6.02+14	В	91, 92, 93, 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5587 ^C	-		[62 956 290]	[127 111 000]	2.4 - 2	6.5+13	D	89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		[62 634 560]	[127 111 000]	3.0 - 2	8.2 + 13	D	89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^2 {}^3P_0$	[62 956 290]	[127 437 000]	4.2 - 3	1.2 + 13	D	89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				[62 956 290]	[127 554 000]			D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5466 ^C	1	2	[62 956 290]	[127 614 000]	2.9 - 1	1.6 + 14	C	89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5491 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3\mathrm{P}_1^\mathrm{o}$	[62 637 030]	[127 190 000]	2.2 - 2	2.0+13	D	89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5443 ^C	$1s2p$ $^3P_2^{\circ}$	$2p^2 \ ^3P_1$						89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0				6.9 + 14		89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5429 ^C	2	2	• •					·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	•					89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	1						89,109*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•	[127 614 000]	4.5 - 1	2.6+14	С	89,109*
1.5384^{C} 1 2 [62 359 670] [127 362 000] 6.9 - 1 3.9 + 14 C 89, 109*		$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^3P_0^{\circ}$		• •				89,109*
		1	1		[127 190 000]		3.6 + 14		89,109*
$1.5415^{\mathrm{C}} \qquad \qquad 1s2p \ ^{1}\mathrm{P}_{1}^{\mathrm{o}} \qquad \qquad 2p^{2} \ ^{1}\mathrm{D}_{2} [62\ 956\ 290] \qquad [127\ 827\ 000] \qquad \qquad 9.9-1 5.5+14 \mathrm{C} \qquad 89,109^{\bullet}$	1.5384 ^C	1	2	$[62 \ 359 \ 670]$	[127 362 000]	6.9 - 1	3.9 + 14	C	89,109*
	1.5415^{C}	$1s2p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^{2-1}D_2$	[62 956 290]	[127 827 000]	9.9 - 1	5.5+14	C	89,109*

Ni xxvII - Continued

Wave-	Classific		Energy Le	vels (cm ⁻¹) Int	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
1.5379 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ 1 P $_{1}^{o}$	[62 637 030]	[127 662 000]	3.9 - 1	3.7+14	C	89,109*
1.5378 ^C 1.5340 ^C	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^{2} \ ^{1}\mathrm{D}_{2}$	[62 801 690] [62 634 560]	[127 827 000] [127 827 000]	4.1 - 1	2.3+14	С	89,109* 89
$1.5346^{\rm C}$	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$2p^{2}$ 1 S ₀	[62 956 290]	[128 117 000]	2.4 - 1	6.9+14	C	89, 109*
1.5313 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[62 359 670]	[127 662 000]	2.1 - 2	2.0+13	D	89,109*
1.5272 ^C	$1s2p$ $^3\mathrm{P}_1^\mathrm{o}$	$2p^2$ ¹ S ₀	[62 634 560]	[128 117 000]				89
1.35173 ^C	$1s^{2}$ $^{1}S_{0}$	1s3p ³ P ₁ °	0	[73 978 900]	2.0 - 2	2.4+13	E	88,109*
1.35006 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^{1}P_{1}^{\circ}$	0	[74 070 700]	1.34 - 1	1.63+14	В	88,91,109*
1.28316 ^C	$1s^{2}$ 1 S ₀	$1s4p$ $^3\mathrm{P}_1^\mathrm{o}$	0	[77 932 500]	7.4 - 3	1.0+13	E	88,109*
1.28252 ^C	$1s^{2}$ 1 S ₀	$1s4p^{-1}P_{1}^{o}$	0	[77 971 200]	4.72 - 2	6.38+13	В	88,109*
$1.25380^{\rm C}$	$1s^{2}$ 1 S ₀	$1s5p$ $^3\mathrm{P}_1^{\circ}$	0	[79 757 300]	3.7 - 3	5.2+12	E	88,109*
$1.25349^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	$1s5p\ ^{1}P_{1}^{o}$	0	[79 777 100]	2.37 - 2	3.35+13	В	88,109*

Ni xxviii

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹) In	t. gf	A (s ⁻¹)	Acc.	References
1500 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$3p\ ^{2}P_{3/2}^{\circ}$	[77 250 100]	[77 316 750]	5.58 - 2	4.13+7	A	101*
1463 ^C	$3p\ ^{2}P_{1/2}^{\circ}$	$3d$ $^2\mathrm{D}_{3/2}$	[77 248 260]	[77 316 630]	3.58 - 2	2.79+7	A	101*
444.19 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$2p\ ^{2}P_{3/2}^{\circ}$	[65 119 820]	[65 344 950]	3.14 - 2	2.65 + 8	Α	101*
23.8677 ^C	$3d^2\mathrm{D}_{5/2}$	$4f^{2}F_{7/2}^{\circ}$	[77 339 010]	[81 528 770]	5.83	8.53+12	A	101*
23.7680 ^C	$3p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$4d$ $^2\mathrm{D}_{5/2}$	[77 316 750]	[81 524 080]	2.24	4.40+12	A	101*
23.4490 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	[77 250 100]	[81 514 680]	6.60 - 1	2.00+12	A	101*
16.3235 ^C	$3d^{2}\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{o}$	[77 339 010]	[83 465 150]	8.94 - 1	2.80+12	A	101*
16.2707^{C}	$3p\ ^{2}P_{3/2}^{\circ}$	$5d^2\mathrm{D}_{5/2}$	[77 316 750]	[83 462 750]	5.04 - 1	2.11+12	A	101*
16.1087 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$5p^{-2}P_{3/2}^{o}$	[77 250 100]	[83 457 930]	1.64 - 1	1.05+12	A	101*
8.337460 ^C	$2p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$3d$ $^2\mathrm{D}_{5/2}$	[65 344 950]	[77 339 010]	2.51	4.02+13	A	101*
8.198784 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	[65 119 820]	[77 316 750]	5.92 - 1	1.47+13	Α	101*
$6.180802^{\rm C}$	$2p~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4d~^2\mathrm{D}_{5/2}$	[65 344 950]	[81 524 080]	4.40 - 1	1.28+13	A	101*
6.099473 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	[65 119 820]	[81 514 680]	1.39 - 1	6.24+12	A	101*
$5.519434^{\rm C}$	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$5d^2\mathrm{D}_{5/2}$	[65 344 950]	[83 462 750]	1.60 - 1	5.85+12	A	101*
5.453125^{C}	$2s$ $^2\mathrm{S}_{1/2}$	$5p\ ^{2}\mathrm{P_{3/2}^{o}}$	[65 119 820]	[83 457 930]	5.68 - 2	3.18+12	A	101*
1.535769 ^C	$1s^{-2}S_{1/2}$	$2p\ ^{2}P_{1/2}^{o}$	0	[65 113 960]	2.80 - 1	3.96+14	A	101*
1.530340 ^C	1/2	3/2	0	[65 344 950]	5.62 - 1	4.00+14	A	101*
1.294528 ^C	$1s^{2}S_{1/2}$	$3p^{-2}P_{1/2}^{o}$	0	[77 248 260]	5.34 - 2	1.06+14	A	101*
1.293381 ^C	18 S _{1/2}	3p F _{1/2} 3/2	0	[77 248 260] [77 316 750]	5.34 - 2 $1.07 - 1$	1.06+14 $1.06+14$	A A	101*
1.226773 ^C	$1s^2 S_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	0	[81 514 680]	3.92 - 2	4.33+13	A	101*
1.198208 ^C	$1s^{2}S_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	0	[83 457 930]	1.88 - 2	2.18+13	A	101*

2.8.3. References for Comments and Tables for Ni Ions

- E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, J. Opt. Soc. Am. 56, 651 (1966).
- [2] M. Even-Zohar and B. S. Fraenkel, J. Opt. Soc. Am. 58, 1420 (1968).
- [3] B. C. Fawcett, A. Ridgeley, and J. O. Ekberg, Phys. Scr. 21, 155 (1980).
- [4] M. H. L. Pryce, Astrophys. J. 3, 1192 (1964).
- [5] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [6] A. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [7] U. Feldman, B. S. Fraenkel, and S. Hoory, Astrophys. J. 142, 719 (1965).
- [8] K. G. Widing and G. D. Sandlin, Astrophys. J. 152, 545 (1968).
- [9] A. H. Gabriel, B. C. Fawcett, and C. Jordan, Proc. Phys. Soc. 87, 825 (1966).
- [10] S. Goldsmith and B. S. Fraenkel, Astrophys. J. 161, 317 (1970).
- [11] A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348 (1980).
- [12] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 9, 344 (1992).
- [13] S. Hoory, S. Goldsmith, B. S. Fraenkel, and U. Feldman, Astrophys. J. 160, 781 (1970).
- [14] M. Swartz, S. O. Kastner, L. Goldsmith, and W. M. Neupert, J. Opt. Soc. Am. 66, 240 (1976).
- [15] W. E. Behring, L. Cohen, and U. Feldman, Astrophys. J. 175, 493 (1972).
- [16] E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, Nature 206, 176 (1965).
- [17] L. A. Svensson, J. O. Ekberg, and B. Edlén, Solar Phys. 34, 173 (1974).
- [18] W. E. Behring, L. Cohen, U. Feldman, and G. A. Doschek, Astrophys. J. 203, 521 (1976).
- [19] B. Edlén and R. Smitt, Solar Phys. 57, 329 (1978).
- [20] J. T. Jefferies, F. Q. Orrall, and J. B. Zirker, Solar Phys. 16, 103 (1971).
- [21] G. D. Sandlin, G. E. Brueckner, and R. Tousey, Astrophys. J. 214, 898 (1977).
- [22] G. D. Sandlin and R. Tousey, Astrophys. J. 227, L107 (1979).
- [23] B. C. Fawcett, R. D. Cowan, and R. W. Hayes, J. Phys. B 5, 2143 (1972).
- [24] B. C. Fawcett and R. W. Hayes, J. Phys. B 5, 366 (1972).
- [25] M. Malinovsky and L. Heroux, Astrophys. J. 181, 1009 (1973).
- [26] A. N. Ryabtsev, Sov. Astron. 23, 732 (1979).
- [27] B. C. Fawcett and A. T. Hatter, Astron. Astrophys. 84, 78 (1980).
- [28] E. Träbert, J. H. Blanke, P. H. Heckmann, H. M. Hellmann, and R. Hucke, Z. Phys. A 321, 359 (1985).
- [29] E. Träbert, R. Hutton, and I. Martinson, Z. Phys. D 5, 125 (1987).
- [30] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [31] A. Redfors and U. Litzén, J. Opt. Soc. Am. B 6, 1447 (1989).
- [32] E. H. Pinnington, W. Ansbacher, A. Tauheed, E. Träbert, P. H. Heckmann, G. Möller, and J. H. Blanke, Z. Phys. D 17, 5 (1990).
- [33] M. C. Buchet-Poulizac and J. P. Buchet, Nucl. Instrum. Meth. B 31, 182 (1988).
- [34] S. S. Churilov and V. E. Levashov, Phys. Scr. 48, 425 (1993).
- [35] B. C. Fawcett, A. H. Gabriel, F. E. Irons, N. J. Peacock, and P. A. H. Saunders, Proc. Phys. Soc. 88, 1051 (1966).
- [36] U. Feldman, L. Katz, W. Behring, and L. Cohen, J. Opt. Soc. Am. 61, 91 (1971).
- [37] S. S. Churilov, E. Ya. Kononov, A. N. Ryabtsev, and Yu. F. Zayikin, Phys. Scr. 32, 501 (1985).
- [38] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).

- [39] A. Redfors, Phys. Scr. 38, 702 (1988).
- [40] V. E. Levashov and S. S. Churilov, Opt. Spectrosc. 65, 143 (1988).
- [41] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [42] M. Finkenthal, E. Hinnov, S. Cohen, and S. Suckewer, Phys. Lett. 91, 284 (1982).
- [43] N. J. Peacock, M. F. Stamp, and J. D. Silver, Phys. Scr. T8, 10 (1984).
- [44] K. P. Dere, Astrophys. J. 221, 1062 (1978).
- [45] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [46] U. Feldman, L. Cohen, and M. Swartz, J. Opt. Soc. Am. 57, 535 (1967).
- [47] G. D. Sandlin, G. E. Brueckner, V. E. Scherrer, and R. Tousey, Astrophys. J. 205, L47 (1976).
- [48] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [49] E. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, Sov. J. Quantum Electron. 7, 111 (1977).
- [50] K. D. Lawson and N. J. Peacock, J. Phys. B 13, 3313 (1980).
- [51] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [52] C. Jupén, L. Engström, R. Hutton, and E. Träbert, J. Phys. B 21, L347 (1988).
- [53] B. Edlén, Phys. Scr. 17, 565 (1978).
- [54] U. Feldman, L. Cohen, and M. Swartz, Astrophys. J. 148, 585 (1967).
- [55] M. Swartz, S. Kastner, E. Rothe, and W. Neupart, J. Phys. B 4, 1747 (1971).
- [56] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [57] H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985 (1980).
- [58] M. Klapisch, A. Bar Shalom, J. L. Schwob, B. S. Fraenkel, C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, Phys. Lett. 69A, 34 (1978).
- [59] S. O. Kastner, W. E. Behring, and L. Cohen, Astrophys. J. 199, 777 (1975).
- [60] C. Jupén, Mon. Not. Roy. Astron. Soc. 208, 1P (1984).
- [61] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, M. Druetta, S. Martin, and J. F. Wyart, J. Phys. B 20, 1709 (1987).
- [62] M. Finkenthal, P. Mandelbaum, A. Bar-Shalom, M. Klapisch, J. L. Schwob, C. Breton, C. De Michelis, and M. Mattioli, J. Phys. B 18, L331 (1985).
- [63] L. Cohen, U. Feldman, and S. O. Kastner, J. Opt. Soc. Am. 58, 331 (1968).
- [64] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Opt. Spectrosc. 44, 498 (1978).
- [65] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Phys. Scr. 20, 138 (1979).
- [66] V. A. Boiko, S. A. Pikuz, A. S. Safronova, A. Ya. Faenov, P. O. Bogdanovich, G. V. Merkelis, Z. B. Rudzikas, and R. D. Sadziuviene, J. Phys. B 12, 1927 (1979).
- [67] G. A. Doschek, U. Feldman, R. D. Cowan, and L. Cohen, Astrophys. J. 188, 417 (1974).
- [68] C. Breton, C. De Michelis, M. Finkenthal, and M. Mattioli, J. Opt. Soc. Am. 69, 1652 (1979).
- [69] E. Hinnov and S. Suckewer, Phys. Lett. 79A, 298 (1980).
- [70] E. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A 25, 2293 (1982).
- [71] M. Finkenthal, R. E. Bell, H. W. Moos, and TFR Group, J. Appl. Phys. 56, 2012 (1984).
- [72] K. T. Cheng, unpublished material (1981).
- [73] W. C. Martin, unpublished material (1982).
- [74] G. A. Doschek, U. Feldman, J. Davis, and R. D. Cowan, Phys. Rev. A 12, 980 (1975).
- [75] K. G. Widing, Astrophys. J. 222, 735 (1978).
- [76] E. Hinnov, B. Denne, A. Ramsey, B. Stratton, and J. Timberlake, J. Opt. Soc. Am. B 7, 2002 (1990).

- [77] U. Feldman, G. A. Doschek, R. D. Cowan, and L. Cohen, Astrophys. J. 196, 613 (1975).
- [78] G. A. Doschek, U. Feldman, and L. Cohen, J. Opt. Soc. Am. 65, 463 (1975).
- [79] R. Myrnäs, C. Jupén, G. Miecznik, I. Martinson, and B. Denne-Hinnov, Phys. Scr. 49, 429 (1994).
- [80] B. Edlén, Phys. Scr. 28, 483 (1983).
- [81] J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
- [82] E. Hinnov, Astrophys. J. 230, L197 (1979).
- [83] B. C. Fawcett, A. Ridgeley, and T. P. Hughes, Mon. Not. Roy. Astron. Soc. 188, 365 (1979).
- [84] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [85] K. G. Widing and J. D. Purcell, Astrophys. J. 204, L151 (1976).
- [86] E. Hinnov, the TFTR Operating Team, B. Denne, and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).
- [87] Y.-K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [88] E. V. Aglitskii and A. M. Panin, Opt. Spectrosc. 58, 453 (1985).
- [89] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [90] B. Edlén, Phys. Scr. 19, 255 (1979).
- [91] L. Cohen, U. Feldman, M. Swartz, and J. H. Underwood, J. Opt. Soc. Am. 58, 843 (1968).
- [92] S. Morita, J. Phys. Soc. Jpn. 52, 2673 (1983).
- [93] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).
- [94] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [95] K. T. Cheng, private communication (1996).

- [96] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [97] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [98] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [99] P. J. Mohr, Atom. Data Nucl. Data Tables 3, 453 (1983).
- [100] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [101] W. L. Wiese, M. W. Smith, and B. M. Glennon, Natl. Stand. Ref. Data Ser. 4, Vol. I (1966).
- [102] S. M. Younger and A. W. Weiss, J. Res. Natl. Bur. Stand. Sec. 79A, 629 (1975).
- [103] B. C. Fawcett, N. J. Peacock, and R. D. Cowan, J. Phys. B 1, 295 (1968).
- [104] U. Feldman and L. Cohen, Astrophys. J. 149, 265 (1967).
- [105] J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, J. Phys. Chem. Ref. Data 10, 305 (1981).
- [106] A. H. Gabriel, W. R. S. Garton, L. Goldberg, T. J. L. Jones, C. Jordan, F. J. Morgan, R. W. Nicholls, W. H. Parkinson, H. J. B. Paxton, E. M. Reeves, D. B. Shenton, R. J. Speer, and R. Wilson, Astrophys. J. 169, 595 (1971).
- [107] C. Jordan, Space Sci. Rev. 13, 595 (1972).
- [108] E. Ya. Kononov, A. N. Ryabtsev, U. I. Safronova, and S. S. Churilov, J. Phys. B 9, L477 (1976).
- [109] J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 4. (1988).
- [110] G. V. Peregudov, E. N. Ragozine, I. Yu Skobelev, A. V. Vinogradov, and E. A. Yukov, J. Phys. D 11, 2305 (1978).
- [111] J. E. Vernazza and E. M. Reeves, Astrophys. J., Suppl. Series 37, 485 (1978).
- [112] K. G. Widing, G. D. Sandlin, and R. D. Cowan, Astrophys. J. 169, 405 (1971).
- [113] K. G. Widing, Astrophys. J. 197, L33 (1975).
- [114] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).

2.9. Copper

2.9.1. Brief Comments on Each Copper Ion

Cu x

Ca I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 1 871 000 cm^{-1} (232 eV)

The lines of the $3p^63d^2 - 3p^53d^3$ transition array in the range of 132 - 155 Å were classified by Fawcett *et al.* [1]. They used vacuum spark observations and obtained a wavelength uncertainty of ± 0.007 Å.

Alexander et al. [2] identified $3p^63d^2 - 3p^63d4f$ transitions in the wavelength range of 86.1 - 88.0 Å using vacuum spark observations. They identified the transitions $^1\mathrm{D}_2 - ^1\mathrm{D}_2^\circ, ^1\mathrm{F}_3^\circ$ and $^3\mathrm{F} - ^3\mathrm{F}^\circ, ^3\mathrm{G}^\circ$. Tabulated wavelengths are from improved measurements by Even-Zohar and Fraenkel [3], who classified five new lines due to the $^3\mathrm{P} - ^3\mathrm{D}^\circ, ^1\mathrm{D}_2 - ^3\mathrm{D}_3^\circ$ and $^3\mathrm{F}_4 - ^3\mathrm{F}_3^\circ$ transitions. Their wavelength uncertainty is ± 0.005 Å.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu XI

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 2 140 000 \pm 2000 cm⁻¹ (265.3 \pm 0.2 eV)

The transition arrays $3p^63d^2D - 3p^53d^2^2P^{\circ}$, $^2D^{\circ}$, $^2F^{\circ}$ in the range of 134.9 - 150.4 Å were first identified and measured by Goldsmith and Fraenkel [5] with an uncertainty of ± 0.005 Å in a vacuum spark. Ramonas and Ryabtsev [6] remeasured the spectrum in a wider range with a wavelength uncertainty of ±0.003 Å using lowinductance vacuum sparks. They classified 16 lines in the range of 108 - 185 Å, and improved and extended the earlier analysis. Observing with a laser-produced plasma, Kaufman et al. [7] remeasured seven lines in the range of 134.9 - 149.5 Å with an uncertainty of $\pm 0.005 \text{ Å}$, in agreement with those of Ref. [6]. The wavelengths are adopted from Ref. [6]. The line at 147.742 Å is classified as the $3p^63d~^2D_{5/2} - 3p^5(^2P^\circ)3d^2(^3F)~^2F_{7/2}^\circ$ transition in Ref. [6], but in Ref. [7] it is given as $3p^63d~^2D_{5/2} - 3p^5(^2P^\circ)3d^2(^1G)~^2F_{7/2}^\circ$. We have adopted the designations of Ref. [7].

The $3p^63d$ $^2D - 3p^64f$ 2F ° doublet was first identified by Alexander *et al.* [8] in a vacuum spark. Even-Zohar and Fraenkel [3] extended the identifications to include $3p^63d$ $^2D - 3p^6nf$ 2F ° (n = 4 to 6) at 78 Å, 63 Å, and 57 Å. These wavelengths have an uncertainty of ± 0.01 Å.

Hoory et al. [9] observed 15 lines in the range 72.3 – 76.3 Å with a vacuum spark and identified them as transitions from the $3p^53d4s$ $^2P^{\circ}$, $^{2,4}D^{\circ}$, and $^{2,4}F^{\circ}$ levels to the ground $3p^63d$ 2D levels. The uncertainty of the wavelengths is ± 0.005 Å.

The value for the ionization energy was derived from the three-member nf series by Sugar and Musgrove [10].

Cu XII

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy 2 975 000 cm^{-1} (368.8 eV)

Sugar et al. [11] observed the resonance transitions $3p^6$ $^1\mathrm{S}_0 - 3p^53d$ $^3\mathrm{D}_1^\circ$ at 174.739 ± 0.005 Å and $3p^6$ $^1\mathrm{S}_0 - 3p^53d$ $^1\mathrm{P}_1^\circ$ at 139.175 ± 0.005 Å. Earlier measurements of the allowed transition were made by Even-Zohar and Fraenkel [3] and Goldsmith and Fraenkel [5] from vacuum spark observations. Even-Zohar and Fraenkel also identified the $3p^6$ $^1\mathrm{S}_0 - 3p^54s$ $(\frac{3}{2}, \frac{1}{2})_1^\circ$, $(\frac{1}{2}, \frac{1}{2})_1^\circ$ and $3p^54d$ $(\frac{3}{2}, \frac{5}{2})_1^\circ$, $(\frac{1}{2}, \frac{3}{2})_1^\circ$ transitions in the range of 55-69 Å. The uncertainty of the wavelengths is ±0.01 Å.

Swartz et al. [12] identified 13 lines as $3p^53d - 3p^54f$ transitions in the range of 70 - 81 Å with a high-voltage vacuum spark.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu XIII

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ 2 P $^{\circ}_{3/2}$

Ionization energy 3 234 000 cm $^{-1}$ (401 eV)

The magnetic-dipole transition within the ground configuration, $3s^23p^5$ $^2\mathrm{P}^{\circ}_{3/2}$ - $^2\mathrm{P}^{\circ}_{1/2}$ at 3500.4 ± 0.3 Å, was identified by Hinnov *et al.* [13] and Denne *et al.* [14] utilizing tokamak plasmas.

Goldsmith and Fraenkel [5] first identified the $3p^5$ $^2\mathrm{P}^\circ$ – $3p^4(^3\mathrm{P})3d$ $^2\mathrm{D}$ multiplet and the $3p^5$ $^2\mathrm{P}^\circ_{3/2}$ – $3p^4(^3\mathrm{P})3d$ $^2\mathrm{P}_{3/2}$ transitions in the range of 138-145 Å with a three-electrode vacuum spark. New measurements of the $3p^5-3p^43d$ transitions in the range of 138-151 Å were provided by Kaufman *et al.* [15] with a laser-produced plasma. The uncertainty of the wavelengths is ± 0.005 Å. The authors have communicated to us that the line at 148.318 Å should be removed from Ref. [15].

Fawcett and Hayes [16] observed two lines due to the transitions $3s^23p^4(^3\mathrm{P})3d^{-4}\mathrm{F}_{9/2}-3s^23p^4(^3\mathrm{P})4f^{-4}\mathrm{G}_{11/2}^\circ$ at 66.18 ± 0.05 Å and $(^3\mathrm{P})^{-4}\mathrm{D}_{7/2}-(^3\mathrm{P})^{-4}\mathrm{F}_{9/2}^\circ$ at 65.24 ± 0.05 Å in a laser-produced plasma.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu XIV

S I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^4$ 3P_2

Ionization energy 3 508 000 cm^{-1} (435 eV)

The magnetic-dipole line $3s^23p^4$ 3P_2 3P_1 at 4183.4 ± 0.3 Å was identified by Denne *et al.* [14], and the intercombination transition 3P_1 1S_0 transition at 1190.4 ± 0.5 Å was identified by Roberts *et al.* [17]. Both lines were observed in tokamak discharges.

Fawcett and Hayes [16] first identified the $3s^23p^4$ $^3P_2 - 3s^23p^3(^4S^\circ)3d$ $^3D_3^\circ$ transition at 148.30 ± 0.03 Å in a laser-produced plasma. Recently, Sugar and Kaufman [18] reported measurements of the $3s^23p^4 - 3s3p^5$ transitions in the range of 250 - 302 Å and of the $3s^23p^4 - 3s^23p^33d$ transitions in the range of 140 - 189 Å. From an isoelectronic study of this sequence Kaufman $et\ al.$ [19] revised some of the classifications and gave improved wavelengths with an uncertainty of ±0.007 Å.

Fawcett and Hayes [16] also identified the transitions $3s^23p^33d~^3\text{G}_5^\circ - 3s^23p^34f~^3\text{H}_6$ at $61.70\pm0.05~\text{Å}$ and $^5\text{D}_4^\circ - ^5\text{F}_5$ at $61.08\pm0.05~\text{Å}$.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu xv

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 3 903 000 cm^{-1} (484 eV)

Denne et al. [14,20] identified the two magnetic-dipole lines $3s^23p^3$ $^4S_{3/2}^{\circ} - ^2D_{3/2}^{\circ}$ and $^4S_{3/2}^{\circ} - ^2P_{3/2}^{\circ}$ in tokamak discharges. Their wavelengths of 2085.3±0.2 Å and 944.6±0.2 Å are from the latter article.

The first measurement of $3p^3-3p^23d$ transitions was reported by Fawcett and Hayes [16], who identified the $^4\mathrm{S}^\circ_{3/2}-(^3\mathrm{P})$ $^4\mathrm{P}_{5/2}$ and $^2\mathrm{D}^\circ_{5/2}-(^3\mathrm{P})$ $^2\mathrm{F}_{7/2}$ lines at 161.34 ± 0.03 Å and 154.67 ± 0.03 Å. New measurements and classifications by Sugar and Kaufman [18] included seven lines in the range of 154.7-172.8 Å. Wavelengths were measured in a laser-produced plasma with an uncertainty of ±0.01 Å. All the wavelengths tabulated have been reduced by 0.02 Å, as suggested by them [21]. Hutton et al. [22] reported observations in a beam-foil spectrum of the $3s^23p^3-3s3p^4$, $3s^23p^23d$ lines in the range

of 154 – 297 Å. We use their classifications and the more accurate measurements by Sugar *et al.* [23], except for the lines at 157.9 Å and 155.1 Å. It should be noted that the classifications of the lines at 172.821 Å, 169.923 Å and 158.944 Å in Ref. [18] have been revised.

The transitions $3s^2 3p^2 3d\ ^2G_{9/2} - 3s^2 3p^2 4f\ ^2H_{11/2}^{\circ}$ at $57.52 \pm 0.01\ \mathring{A}$ and $^4F_{9/2} - ^4G_{11/2}^{\circ}$ at $57.44 \pm 0.01\ \mathring{A}$ were observed by Fawcett and Hayes [16] in a laser-produced plasma.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu xvi

Si I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^2$ ³P₀

Ionization energy 4 194 000 cm^{-1} (520 eV)

The magnetic-dipole transitions within the ground configuration $3s^23p^2$ $^3P_0 - ^3P_1$ at 5375.8 ± 0.3 Å, $^3P_2 - ^1D_2$ at 2539.7 ± 0.3 Å, and $^3P_1 - ^1S_0$ at 952.8 ± 0.3 Å were observed by Denne *et al.* [14] and $^3P_1 - ^1D_2$ at 1871.3 ± 0.2 Å by Roberts *et al.* [17] in tokamak discharges. Datla *et al.* [24] assigned a new wavelength of 2544.7 Å for the $^3P_2 - ^1D_2$ line.

Fawcett and Hayes [16] identified only the $3s^23p^2$ $^3P_2 - 3s^23p3d$ $^3D_3^\circ$ transition at 168.80 ± 0.03 Å with a laser-produced plasma. Sugar and Kaufman [18] provided identifications for 10 lines of the $3s^23p^2 - 3s3p^3$ array and for 11 lines of $3s^23p^2 - 3s^23p3d$ in the ranges of 195-298 Å and 164-185 Å, respectively. With a laser-produced plasma wavelengths were obtained with an uncertainty of ±0.005 Å. Sugar et~al. [25] have revised the analysis in a study of the isoelectronic sequence. In a series of beam-foil measurements by Träbert [26] and Träbert et~al. [27,28], the $3s^23p^2$ $^3P_{2,1}-3s3p^3$ $^5S_2^\circ$ intercombination transitions were observed at 410.46 ± 0.4 Å and 387.56 ± 0.4 Å. The latter line is blended.

Observations in the range of 44-56 Å were performed by Khan [29] with a laser-produced plasma and by Kastner et al. [30] with a vacuum spark. The $3s^23p3d-3s^23p4f$ and $3s^23p^2-3s^23p4d$ lines were classified in both cases, but with wavelength differences of about 0.2 Å. For these transitions, wavelengths are taken from Ref. [30]. In addition, we have tabulated the wavelengths of the $3s^23p^2-3s^23p4s$ transitions from Ref. [29] and those of the $3s3p^3-3s^23p4f$ transitions tentatively identified in Ref. [30]. However, the wavelengths of 52.85 Å and 52.18 Å for the $3s^23p^2$ $^3P_{2,1}-3s^23p4s$ $^3P_2^\circ$ transitions in Ref. [29] lead to an incorrect 3P ground term splitting.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu XVII

Al I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^{-2} P_{1/2}^{\circ}$

Ionization energy 4 493 000 cm $^{-1}$ (557 eV)

Hinnov et al. [13] and Denne et al. [14] observed the $3s^23p$ $^2\mathrm{P}_{1/2}^{\circ} - ^2\mathrm{P}_{3/2}^{\circ}$ magnetic-dipole transition in tokamak plasmas. The wavelength value of 3007.6±0.2 Å is from Ref. [14].

Träbert et al. [27,28] identified the $3s^23p$ ²P° – $3s3p^2$ ⁴P intercombination transitions with five lines in the range of 342-411 Å in a beam-foil spectrum. Wavelengths are taken from the latter article. The line at 387.0 ± 0.5 Å is blended.

Fawcett and Hayes [16] classified three lines at 218.76 Å, 183.47 Å, and 174.12 Å observed in a laserproduced plasma as the $3s^23p$ $^2\mathrm{P}^{\circ}_{3/2}-3s3p^2$ $^2\mathrm{P}_{3/2}$ and $3s^23p-3s^23d$ ($^2\mathrm{P}^{\circ}_{3/2}-^2\mathrm{D}_{5/2},$ $^2\mathrm{P}^{\circ}_{1/2}-^2\mathrm{D}_{3/2}$) transitions. An extended analysis of the $3s^23p-3s3p^2,$ $3s3p^2-3p^3,$ and $3s^23p - 3s^23d$ transitions was carried out by Sugar and Kaufman [18] with a laser-produced plasma and subsequently by Buchet-Poulizac and Buchet [31] in a beamfoil source. Sugar et al. [32] reobserved these transitions of Cu¹⁶⁺ to Mo²⁹⁺ in a tokamak discharge and made revisions and additions to the previous work. We adopted their wavelengths, which were smoothed by utilizing multiconfiguration Dirac-Fock calculations along the isoelectronic sequence. The wavelength of the $3s3p^2$ $^4P_{1/2}$ – $3p^3$ $^4\mathrm{S}^{\circ}_{3/2}$ transition was given as 223.170±0.01 Å in Ref. [32] and as 223.181 ± 0.01 Å by Litzén and Redfors [33]. Buchet-Poulizac and Buchet identified the $3s3p^2-3s3p3d$ transitions with five lines in the range of 176 - 201 Å. Their wavelengths have an uncertainty of ± 0.05 Å except the blended lines at 188.19 ± 0.2 Å and 180.70 ± 0.2 Å.

Khan [29] observed 11 lines in the wavelength range of 42-53 Å with a laser-produced plasma, and classified the $3s^23d-3s^24f$, $3s3p^2-3s3p4s$, 3s3p3d-3s3p4f, and $3s^23p-3s^24s$, $3s^24d$ transitions. The wavelength uncertainties are ± 0.02 Å.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu xviii

Mg I isoelectronic sequence

Ground state: $1s^22s^22p^63s^2$ 1S_0

Ionization energy 5 105 000 cm⁻¹ (632.9 eV)

The magnetic-dipole transition 3s3p $^3P_1^{\circ} - ^3P_2^{\circ}$ at 3941.6 ± 0.3 Å was observed in a tokamak plasma by Denne *et al.* [14].

The singlet and triplet transitions 3s3p - 3s3d in addition to the $3s^2$ ${}^1S_0 - 3s3p$ ${}^1P_1^{\circ}$ resonance transition were classified by Fawcett and Hayes [16]. Finkenthal et al. [34] identified the $3s^2$ $^1S_0 - 3s3p$ $^3P_1^{\circ}$ intercombination transition with a line at 345.6±0.5 Å in a tokamak discharge. Sugar and Kaufman [18] classified a large number of lines of the arrays $3s3p - 3p^2$, $3s^2 - 3s3p$, and 3s3p - 3s3d in the range of 185 - 270 Å. In a subsequent paper of Sugar and Kaufman [35] the arrays $3p^2 - 3p3d$ and 3s3d - 3p3d were added. Sugar and Kaufman [21] made some additions and revisions and suggested that the wavelengths given in Refs. [18] and [35] should be reduced by 0.02 Å. In this compilation, we give their results as summarized in a paper by Sugar et al. [36] on the Mg I isoelectronic sequences. The uncertainty of the wavelengths is ± 0.005 Å. Additional identifications were made by Litzén and Redfors [37], from which five new lines, including the spin-forbidden lines $3s3p\ ^1\mathrm{P}_1^{\circ}-3p^2\ ^3\mathrm{P}_2$ at 346.44 Å, $3s3p\ ^3\mathrm{P}_2^{\circ}-3p^2\ ^1\mathrm{D}_2$ at 274.01 Å, and $3p^2\ ^1\mathrm{D}_2-3p3d\ ^3\mathrm{F}_2^{\circ}$ at 228.16 Å, are taken. These wavelengths have an uncertainty of ± 0.02 Å. In an analysis of a beam-foil spectrum by Buchet-Poulizac and Buchet [31], n = 3 - 3 lines were reported which include two new lines at 272.30±0.2 Å and $198.56\pm0.05 \,\text{Å}$, corresponding to the $3s3d\,^3D_2-3p3d\,^3D_2^\circ$ and $3s3p \, ^3P_2^{\circ} - 3s3d \, ^3D_1$ transitions, respectively. The latter one is 0.1 Å longer than the wavelength recalculated from the level values. Redfors [38] identified two lines of the array $3p3d - 3d^2$ at 219.410 Å and 240.028 Å. These observations were extended to seven lines by Sugar et al. [36].

Feldman et al. [39] measured wavelengths in the range of 30-50 Å and identified the arrays $3s^2-3s4p$, 3s3p-3s4s, 3s3p - 3snd (n = 4, 5), and 3s3d - 3snf (n = 4, 5). The measurements were made in a low-inductance vacuum spark, and the wavelengths have an uncertainty of ± 0.01 Å. The identifications were extended by Kastner et al. [30] to include the 3p3d - 3p4f transitions in the range of 48.8 - 51.5 Å with a similar light source. The $3p3d\ ^{3}F_{3}^{\circ} - 3p4f\ ^{3}F_{4}$ line at 48.783 Å has been omitted because it is inconsistent with the ³F₄ level obtained from the line at 50.067 Å. In addition, the line at 50.306 Å given as questionable by Kastner et al. has been excluded. The wavelength of 49.885 Å for the ${}^{3}F_{2}^{\circ} - {}^{3}G_{3}$ transition identified as a blended line is apparently a misprint and should be 48.885 Å. Khan [29] proposed four new classifications of these arrays, but they do not fit with the level scheme of Kastner et al.

Swartz et al. [40] identified the $2p^63s^2$ $^1S_0 - 2p^53s^23d$ $^1P_1^o$ inner-shell transition at 11.774 Å. This observation was made with a low-inductance vacuum spark with an uncertainty of ± 0.001 Å.

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu xix

Na 1 isoelectronic sequence

Ground state $1s^22s^22p^63s^{-2}S_{1/2}$

Ionization energy 5 408 660 \pm 250 cm⁻¹ (670.588 \pm 0.003 eV)

The n=3-3 transitions were first observed by Feldman et al. [39] in a low-inductance vacuum spark. They identified the $3s\ ^2\mathrm{S}_{1/2}-3p\ ^2\mathrm{P}_{3/2}^\circ$ resonance transition at 273.34 Å and the $3p\ ^2\mathrm{P}^\circ-3d\ ^2\mathrm{D}$ transition array in the range of 207-224 Å. Improved and extended measurements were made by Kononov et al. [41] and Sugar and Kaufman [18] with laser-produced plasmas. From an isoelectronic comparison of the measured wavelengths of the 3s-3p and the 3d-4f doublets with Dirac-Fock calculations, Reader et al. [42] derived least squares adjusted wavelength values for these transitions with an uncertainty of ± 0.007 Å, which are adopted in the present compilation.

Jupén et al. [43] identified the line at 210.70 ± 0.05 Å measured by Buchet-Poulizac and Buchet [31] in a beam-foil spectrum to the core-excited $2p^53s3p$ $^4\mathrm{D}_{7/2}-2p^53s3d$ $^4\mathrm{F}^{\circ}_{9/2}$ transition.

Kononov et al. [44] identified the 4f $^2F^{\circ} - 5g$ 2G doublet at 111 Å and Kononov et al. [41] reported the 4d $^2D - 5f$ $^2F^{\circ}$ doublet and the 4p $^2P^{\circ}_{3/2} - 5d$ $^2D_{5/2}$ and 4s $^2S_{1/2} - 5p$ $^2P^{\circ}_{3/2}$ transitions in the range of 85 - 103 Å with an uncertainty of ± 0.005 Å. The 4f $^2F^{\circ} - 5g$ 2G and 4d $^2D - 5f$ $^2F^{\circ}$ doublets were remeasured by Sugar and Kaufman [18] in a laser-produced plasma with an uncertainty of ± 0.01 Å. We give the wavelengths of Kononov et al.

Feldman et al. [39] also reported measurements for the 3s-np (n=4-6), 3p-nd (n=4-8), 3d-nf (n=5-8) transitions in the range of 22-46 Å. Their wavelengths were measured with an uncertainty of ± 0.01 Å. Fawcett and Hayes [16] and Khan [29] identified the $3d^2D-4p^2P^\circ$ doublet at ~ 53 Å. Improved measurements of the wavelengths were reported by Kononov et al. [41] for 21 lines due to the 3s-4p, 5p, 3p-4snd (n=4-6), 3d-4p, and 3d-nf (n=4-7) transitions. These results are adopted except for the blended doublet $3d^2D-7f^2F^\circ$ at 26.44 Å. For 3s-6p, 3p-7d, 8d, and 3d-7f, 8f the wavelengths of Ref. [39] are taken. The identification of the $3d^2D-8f^2F^\circ$ doublet at 25.175 Å and 25.142 Å in Ref. [39] is tentative.

Feldman and Cohen [45] identified the resonance line $2p^63s$ $^2\mathrm{S}_{1/2}-2p^53s^2$ $^2\mathrm{P}_{3/2}^{\circ}$ at 13.11 ± 0.01 Å using a low-inductance vacuum spark.

The value for the ionization energy was derived by Kononov *et al.* [41] from core-polarization theory applied to the 5g term.

Cu xx

Ne I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6$ 1S_0

Ionization energy 13 630 000 cm^{-1} (1697 eV)

Twelve lines of the $2s^22p^53s - 2s^22p^53p$ array in the range of 163 - 341 Å and 12 lines of the $2s^22p^53p - 2s^22p^53d$ array in the range of 212 - 272 Å were observed by Buchet *et al.* [46] in a beam-foil study. The uncertainty of the wavelengths is ± 0.05 Å. For the weak line at 163.6 Å it is ± 0.1 Å.

Feldman et al. [47] classified seven resonance transitions from the $2s^22p^53s$, $2s^22p^53d$, and $2s2p^63p$ J=1 levels to the ground $2s^22p^6$ 1S_0 level in the range of 10.6-12.8 Å using a low-inductance vacuum spark. Further classifications were given by Feldman and Cohen [48] for the $2p^6-2p^54d$ transitions and by Swartz et al. [40] for the $2p^6-2p^54d$ transitions and by Swartz et al. [40] for the $2p^6-2p^54s$, $2p^55d$ and $2p^56d$ transitions. Boiko et al. [49] measured these transitions again in their extensive investigation. We give the wavelengths for these transitions from the comprehensive observations of Gordon et al. [50] with a laser-produced plasma, including three new lines: $2s^22p^6$ $^1S_0-2s^22p^54d$ $(\frac{3}{2},\frac{3}{2})_1^{\circ}$ at 9.274 Å, $2s^22p^6$ $^1S_0-2s2p^64p$ $(\frac{1}{2},\frac{1}{2})_1^{\circ}$ at 8.400 Å, and $2s^22p^6$ $^1S_0-2s2p^64p$ $(\frac{1}{2},\frac{3}{2})_1^{\circ}$ at 8.385 Å. The uncertainty of the wavelengths is ± 0.005 Å. The $2s^22p^6-2s2p^64p$ transitions are also identified by Hutcheon et al. [51].

The value for the ionization energy was obtained by Lotz [4] by extrapolation.

Cu xxi

F I isoelectronic sequence

Ground state $1s^22s^22p^5$ $^2\mathbf{P}_{3/2}^{\circ}$

Ionization energy 14 508 400 cm $^{-1}$ (1798.82 eV)

The magnetic-dipole transition within the ground $2s^22p^5$ configuration, ${}^2\mathrm{P}^{\circ}_{3/2} - {}^2\mathrm{P}^{\circ}_{1/2}$ at 592.3 ± 0.3 Å, was observed in a tokamak discharge by Hinnov *et al.* [13].

Buchet-Poulizac and Buchet [31] identified eight lines of the $2s^22p^43s - 2s^22p^43p$ array in the range of 279 - 346 Å and seven lines of the $2s^22p^43p - 2s^22p^43d$ array in the range of 245 - 264 Å in beam-foil spectra. The uncertainty of the wavelengths is ± 0.05 Å except for blended lines at 279.40 Å and 257.50 Å, for which it is ± 0.2 Å.

Kononov et al. [44] first identified the $2s^22p^5$ ²P° – $2s2p^6$ ²S transitions at 90.353 ± 0.01 Å and 78.388 ± 0.01 Å in a laser-produced plasma. These lines were remeasured in laser-produced plasmas by Behring et al. [52] and Sugar and Kaufman [18] with uncertainties of ±0.02 Å

and ± 0.01 Å, respectively. Tabulated wavelengths are taken from Ref. [18]. The values have been reduced by 0.02 Å, as suggested by Sugar and Kaufman [21].

The $2p^5-2p^43s$ and $2p^43d$ transition arrays in the ranges of 11.7-12.2 Å and 10.8-11.4 Å were identified by Boiko et al. [53,54,55], and remeasured by Hutcheon et al. [51] and Gordon et al. [50] in laser-produced plasmas. Wavelengths adopted in this compilation are mainly from Ref. [50]. Ref. [51] includes additional classifications for two lines at 12.029 Å and 11.352 Å. Wavelengths in Refs. [50] and [51] have uncertainties of ± 0.005 Å and ± 0.002 Å, respectively.

Gordon et al. [50] also identified the $2s^22p^5 - 2s2p^53p$ transitions in the range of 9.9 - 10.4 Å.

The $2p^5-2p^44s$ and $2p^44d$ lines were observed by Gordon et al. [50] and Hutcheon et al. [56] in the ranges of 8.6-9 Å and 8.5-8.8 Å. They are mostly blends and are not suitable for classification.

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxii

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 15 462 700 cm $^{-1}$ (1917.13 eV)

Two magnetic-dipole transitions within the ground $2s^22p^4$ configuration, ${}^3P_2 - {}^3P_1$ at 657.7 ± 0.3 Å and ${}^3P_2 - {}^1D_2$ at 420.0 ± 0.3 Å, were observed by Hinnov et al. [13] in a tokamak discharge.

The $2s^22p^4-2s2p^5$ transitions were identified and measured by Kononov et~al.~[44] and Behring et~al.~[52], and the $2s2p^5$ $^1\mathrm{P}_1^\circ-2p^6$ $^1\mathrm{S}_0$ line by Peregudov et~al.~[59]. These transitions were remeasured by Ekberg et~al.~[60] in a laser-produced plasma. They identified two intercombination transitions: $2s^22p^4$ $^1\mathrm{D}_2-2s2p^5$ $^3\mathrm{P}_2^\circ$ at 114.974 ± 0.015 Å and $2s2p^5$ $^3\mathrm{P}_1^\circ-2p^6$ $^1\mathrm{S}_0$ at 74.383 ± 0.015 Å, in addition to the earlier identifications. For the $2s^22p^4$ $^3\mathrm{P}_2-2s2p^5$ $^1\mathrm{P}_1^\circ$ intercombination transition the wavelength of 65.43 ± 0.01 Å is adopted from Kononov et~al., because it gives a consistent value of the $^1\mathrm{P}_1^\circ$ term with the lines at 93.302 Å and 77.512 Å.

The $2p^4-2p^33s$, $2p^33d$ and $2p^34d$ transitions were classified by Gordon *et al.* [50] in the ranges of 11-12 Å, 10.3-10.6 Å, and 8.0-8.4 Å. The uncertainty of the wavelengths is ± 0.005 Å. Many of the lines are multiply classified and are not suitable for deriving energy levels.

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxiii

N I isoelectronic sequence

Ground state $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization energy 16 476 000 cm^{-1} (2042.76 eV)

Hinnov et al. [13] observed two magnetic-dipole transitions between the ground $2s^22p^3$ levels, $^4\mathrm{S}^{\circ}_{3/2} - ^2\mathrm{D}^{\circ}_{3/2}$ at 585.0 ± 0.3 Å and $^4\mathrm{S}^{\circ}_{3/2} - ^2\mathrm{D}^{\circ}_{5/2}$ at 434.8 ± 0.3 Å, in a tokamak plasma.

The $2s^22p^3-2s2p^4$ transitions were identified by Kononov et al. [44] and also by Behring et al. [52] with laser-produced plasmas. For the $2s2p^4-2p^5$ transitions, only the $^2\mathrm{D}_{5/2}-^2\mathrm{P}_{3/2}^\circ$ line at 96.762 Å was reported in Ref. [52]. With stronger laser excitation Ekberg et al. [60] identified two lines at 80.057 Å and 70.073 Å as the $2s^22p^3$ $^4\mathrm{S}_{3/2}^\circ-2s2p^4$ $^2\mathrm{D}_{3/2},^2\mathrm{S}_{1/2}$ spin-forbidden transitions in addition to 12 lines of the $2s^22p^3-2s2p^4$ array and four lines of the $2s2p^4-2p^5$ array. The wavelengths adopted from Ref. [60] have an uncertainty of ± 0.015 Å.

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxiv

C 1 isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 17 603 400 cm $^{-1}$ (2182.54 eV)

Hinnov et al. [13] identified the magnetic-dipole transitions between the ground $2s^22p^2$ levels, $^3P_1 - ^3P_2$ at 1776.0 Å, $^3P_0 - ^3P_1$ at 756.9 Å, and $^3P_{2,1} - ^1D_2$ at 540.0 Å and 414.1 Å, in a tokamak plasma. The wavelengths have an uncertainty of ± 0.3 Å.

Ekberg et~al.~[60] reported lines of the $2s^22p^2-2s2p^3$ and $2s2p^3-2p^4$ arrays, including the $2s^22p^2$ $^3\mathrm{P}_2-2s2p^3$ $^1\mathrm{D}_2^\circ$ spin-forbidden transition at 82.195 Å. The uncertainty of the wavelengths is ± 0.015 Å.

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxv

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy $18 614 400 \text{ cm}^{-1}$ (2307.89 eV)

The magnetic-dipole transition $2s^22p$ $^2\mathrm{P}_{1/2}^{\circ} - ^3\mathrm{P}_{3/2}^{\circ}$ at 522.8 ± 0.3 Å was observed in a tokamak plasma by Hinnov *et al.* [13].

Ekberg et al. [60] identified the $2s2p^2$ ⁴P $-2p^3$ ⁴S° array at 117.507 Å, 107.659 Å, and 97.272 Å in a laser-produced plasma. The wavelength uncertainty is ± 0.015 Å. We use the estimated value for the $2p^3$ ⁴S° level given by Edlén [61] and denote the error by "x".

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxvi

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 20 003 000 cm^{-1} (2480.06 eV)

In a tokamak plasma, Hinnov et al. [13] identified the 2s2p $^3P_1^{\circ} - ^3P_2^{\circ}$ magnetic-dipole transition at 648.0 ± 0.3 Å and also two lines at 227.8 ± 0.3 Å and 111.2 ± 0.3 Å as transitions from the 2s2p $^{3,1}P_1^{\circ}$ levels to the ground level, respectively. The more accurate wavelength of 227.808 ± 0.010 Å and 111.186 ± 0.010 Å measured by Hinnov and reported by Denne et al. [62] are adopted here.

New identifications in a beam-foil spectrum were made by Buchet et~al.~[63] of the $2s2p-2p^2$ transitions in the range of 113-173 Å, including the spin-forbidden transition $^3\mathrm{P}_2^\circ-^1\mathrm{D}_2$ at 113.14 ± 0.10 Å.

Brown et al. [64] classified the 2p3d-2p4f and 2s3d-2s4f transitions at about 27 Å, in addition to the n=2-3 transitions in the range of 8.5-9.8 Å, which were previously observed by Boiko et al. [49,65]. The wavelengths are taken from Ref. [64], except for 9.520 Å and 9.233 Å from Ref. [65]. The uncertainty of the wavelengths is ± 0.010 Å for lines longer than 12 Å and ± 0.005 Å for shorter wavelengths. Many of the lines in the range of 8.5 Å to 9.8 Å have multiple classifications. We omit these lines pending further confirmation.

For the ionization energy we use a value calculated by Cheng [57] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [58].

Cu xxvii

Li I isoelectronic sequence

Ground state $1s^22s$ $^2S_{1/2}$

Ionization energy 20 870 000 \pm 10 000 cm⁻¹ (2587.5 \pm 1 eV)

The two resonance transitions $1s^22s$ $^2S_{1/2}$ - $1s^22p$ $^2P_{1/2,3/2}^{\circ}$ at 224.8 ± 0.3 Å and 153.6 ± 0.3 Å were observed in a tokamak plasma by Hinnov et~al.~[13]. More accurate wavelengths were obtained by Knize et~al.~[66] with a similar source. They were then reobserved by Hinnov et~al.~[67] and Knize [68]. Kim et~al.~[69] have smoothed the energies of these transitions for Li-like ions with respect to calculated values. We use their smoothed values.

Brown et al. [64] using a laser-produced plasma classified the $3d\ ^2\mathrm{D}_{5/2}-4p\ ^2\mathrm{P}_{3/2}^\circ$, $3d\ ^2\mathrm{D}-4f\ ^2\mathrm{F}^\circ$, $3p\ ^2\mathrm{P}^\circ-4d\ ^2\mathrm{D}$, and $3s\ ^2\mathrm{S}_{1/2}-4p\ ^2\mathrm{P}_{3/2}^\circ$ transitions in the wavelength range of $24.2-25.9\ \text{Å}$ with an uncertainty of $\pm 0.010\ \text{Å}$ and the $2p\ ^2\mathrm{P}^\circ-3s\ ^2\mathrm{S}$, $2p\ ^2\mathrm{P}^\circ-3d\ ^2\mathrm{D}$, and $2s\ ^2\mathrm{S}-3p\ ^2\mathrm{P}^\circ$ arrays in the range of $8.4-9.0\ \text{Å}$ with an uncertainty of $\pm 0.005\ \text{Å}$.

Vainshtein and Safronova [70] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. We use their energy levels adjusted to the $1s^22p$ $^2\mathrm{P}^{\circ}_{1/2,3/2}$ levels of Kim et al. by adding 340 cm⁻¹. They also calculated wavelengths of the $1s^22s-1s2s2p$, $1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing levels.

Aglitskii and Panin [71] identified the inner-shell transitions $1s^22p$ $^2\mathrm{P}^{\circ}_{3/2}-1s2pnp$ $^2\mathrm{D}_{5/2}(n=3,4)$ at 1.272 ± 0.002 Å and 1.213 ± 0.002 Å in a low-inductance vacuum spark.

The value for the ionization energy was obtained by Brown et al. [64] using core-polarization.

Cu xxviii

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 89 224 700 \pm 4000 cm⁻¹ (11 062.48 \pm 0.5 eV)

The $1s^2$ $^1S_0 - 1s2p$ $^1P_1^{\circ}$ resonance line was observed at 1.47758 ± 0.00007 Å by Aglitsky *et al.* [72]. The earlier measurements are less accurate. The $1s^2$ $^1S_0 - 1snp$ $^{3,1}P_1^{\circ}$ (n=3-5) transitions were reported by Aglitskii and

Panin [71], but the singlets and triplets were not resolved. Turechek and Kunze [73] identified the forbidden transitions $1s^2$ $^1S_0 - 1s2p$ $^3P_{2,1}^\circ$ at 1.4805 ± 0.001 Å and 1.4840 ± 0.0005 Å and also the transitions 1s2p $^1P_1^\circ - 2p^2$ 1S_0 , 1D_2 at 1.430 Å and 1.435 Å.

Cheng et al. [74] give calculated binding energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [75] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [76] we obtain the value for the ionization energy of the Helike ions. For the 1s3l states we use the level values from Drake [77].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [70] have been tabulated after increasing them by 1600 cm^{-1} to correspond with corrected values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

For the 1s2s - 2s2p, $1s2p - 2s^2$, and $1s2p - 2p^2$ transitions we have adopted the calculated wavelengths of Vainshtein and Safronova [70] without correction.

Cu XXIX

H I isoelectronic sequence

Ground state $1s^{-2}S_{1/2}$

Ionization energy 93 299 090 \pm 30 cm⁻¹ (11 567.617 \pm 0.004 eV)

We have tabulated the wavelengths calculated from the theoretical level energies by Johnson and Soff [76] for the n=2 shell, which are in close agreement with those by Mohr [79]. All levels with n=3-5 are available from the work of Erickson [80]. For the ns and np (n=3-5) levels, Erickson's values for the binding energies were subtracted from the ground state binding energy given by Johnson and Soff to obtain the predicted wavelengths. The error in the 1s binding energy is given in Ref. [76] as $\pm 30~{\rm cm}^{-1}$.

The value for the ionization energy is from Johnson and Soff [76].

2.9.2. Spectroscopic Data for Cu x through Cu xxix

 $\mathbf{C}\mathbf{u}\ x$

Wave-	Classific	ation '	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					
154.591	$3p^63d^2$ 3 \mathbf{F}_2	$3p^5(^2P^\circ)3d^3(^2H)$ $^3G_3^\circ$	0	646 870	4		1
154.363	3	4	2 486	650 310	3		1
153.767	4	5	5 487	655 820	6		1
153.711 ^L	$3p^63d^{2-1}G_4$	$3p^5(^2\mathrm{P^o})3d^3(^2\mathrm{G})\ ^1\mathrm{H_5^o}$			4		1
140.071	$3p^63d^2$ 3F_2	$3p^5(^2P^\circ)3d^3(^4F)^{-3}F_2^\circ$. 0	713 920	7		1
139.868	3	3	2 486	717 450	6		1
139.771	4	4	5 487	720 940	7		1
137.036 ^L	$3p^63d^{2-1}G_4$	$3p^5(^2\mathrm{P^o})3d^3(^2\mathrm{H})\ ^1\mathrm{G_4^o}$			6		1
133.034	$3p^63d^2$ 3F_4	$3p^5(^2P^\circ)3d^3(^4F)^3D_3^\circ$	5 487	757 170	7		1
132.478	3	2	2 486	757 330	5		1
132.240	2	1	0	756 200	3		1
88.032	$3p^63d^2$ 3P_2	$3p^63d4f \ ^3D_3^{\circ}$	30 600+x	1 166 550+x	12		3
88.020^{L}	1	2			6		3
87.983 ^L	0	1			4		3
87.932	$3p^63d^2$ $^1{ m D}_2$	$3p^6 3d4f\ ^1{ m D}_2^{ m o}$	23 900+x	1 161 140+x	10		2, 3°
87.703	$3p^63d^2$ ¹ D ₂	$3p^63d4f\ ^1F_3^{\circ}$	23 900+x	1 164 110+x	10		2,3°
87.516	$3p^63d^{2-1}D_2$	$3p^6 3d4f\ ^3{\rm D}_3^{\circ}$	23 900+x	1 166 550+x	5		3
87.135	$3p^63d^2$ 3 F ₄	$3p^63d4f\ ^3F_3^0$	5 487	1 153 140			3
87.018	4	4	5 487	1 154 670	9		2.3°
86.964	3	2	2 486	1 152 390			2,3° 2,3° 2,3°
86.907	3	3	2 486	1 153 140	9		2,3°
86.792	3	4	2 486	1 154 670	1		2,3°
86.776	2	2	0	1 152 390	9		2,3° 2,3°
86.720	2	3	0	1 153 140	1		2, 3°
86.422	$3p^63d^2$ 3 F ₄	$3p^6 3d4f\ ^3 { m G_4^o}$	5 487	1 162 520	1		2, 3°
86.336	4	5	5 487	1 163 750	14		2,3°
86.204	3	4	2 486	1 162 520	10		2,3°
86.160	2	3	0	1 160 630	10		2, 3°

Cu XI

Wave- length (Å)	Classifica Lower	ation Upper	Energy L	evels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
184.320	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1G)^2F_{7/2}^\circ$	4 060	546 595	40			6
180.001	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1D)^2F^\circ_{7/2}$	4 060	559 612	100			6
171.875	3/2	5/2	0	581 818	50			6
150.369	$3p^63d^2D_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)\ ^2F^\circ_{5/2}$	4 060	669 100	30			5,6°
149.455	3/2	5/2	0	669 100	320			5,6°,7
147.742	5/2	7/2	4 060	680 940	350			5,6°,7
136.386	$3p^63d\ ^2{ m D}_{3/2}$	$3p^5(^2P^\circ)3d^2(^3P)^2P_{1/2}^\circ$	0	733 240	250			5,6°,7
136.034	5/2	3/2	4 060	739 200	350			$5,6^{\circ},7$
135.286	3/2	3/2	0	739 200	100			$5,6^{\circ},7$
135.734	$3p^63d^{-2}D_{5/2}$	$3p^5(^2P^o)3d^2(^3F)^{-2}D_{5/2}^o$	4 060	740 770	500			5,6°,7
135.655	5/2	3/2	4 060	741 240	90			5,6°
134.989	3/2	5/2	0	740 770	120			5,6°
134.914	3/2	3/2	0	741 240	400			5,6°,7
108.878	$3p^63d^{2}D_{3/2}$	$3p^64p\ ^2{ m P}_{1/2}^{ m o}$	0	918 459	70			6
108.479	5/2	3/2	4 060	925 897	100			6
108.002	3/2	3/2	0	925 897	5			6
78.786	$3p^63d^{\ 2}\mathrm{D}_{5/2}$	$3p^64f^{\ 2}\mathrm{F}^{\circ}_{7/2}$	4 060	1 273 300	13			3°,8
78.542	3/2	5/2	0	1 273 200	12			3°,8
76.256	$3p^63d^{2}D_{5/2}$	$3p^53d(^3P^{\circ})4s^{\ 2}P^{\circ}_{3/2}$	4 060	1 315 420	2			9
76.022	3/2	3/2	0	1 315 420				9
75.866	$3p^63d^{-2}D_{5/2}$	$3p^53d(^3F^\circ)4s\ ^4F^\circ_{7/2}$	4 060	1 322 170	1			9
75.472	3/2	5/2	0	1 324 990	1			9
75.325	$3p^6 3d^2 D_{5/2}$	$3p^53d(^3F^\circ)4s\ ^2F^\circ_{7/2}$	4 060	1 331 640	5			9
74.856	5/2	5/2	4 060	1 339 930	-			9
74.633	3/2	5/2	0	1 339 930	4			9
73.982	$3p^63d^{2}D_{5/2}$	$3p^53d(^3D^\circ)4s ^4D^\circ_{7/2}$	4 060	1 355 740	1			9
73.735	5/2	5/2	4 060	1 360 260	2			9
73.516	3/2	5/2	0	1 360 260	-			9
72.956	$3p^63d\ ^2{ m D}_{5/2}$	$3p^53d(^1{ m F}^{ m o})4s\ ^2{ m F}^{ m o}_{7/2}$	4 060	1 374 750	2			9
72.792	$3p^63d^{-2}D_{5/2}$	$3p^53d(^3D^\circ)4s^{\ 2}D^\circ_{3/2}$	4 060	1 377 810	2			9
72.580	5/2	5/2		1 381 830	4			9
72.580	3/2	3/2	_	1 377 810	4			9
72.369	3/2	5/2		1 381 830	1			9
63.192	$3p^63d\ ^2{ m D}_{5/2}$	$3p^65f^{-2}F_{7/2}^{o}$	4 060	1 586 400	4			3
63.038	3/2	5/2		1 586 300	4			3
57.047	$3p^63d\ ^2{ m D}_{5/2}$	$3p^66f\ ^2{ m F}^{\circ}_{7/2}$	4 060	1 757 000				3
56.915				1 757 000				3 3
	3/2	5/2		1 101 000				ა

 \mathbf{Cu} XII

Wave-	Classificat		Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					
174.739 ^S	$3p^6$ 1 S ₀	$3p^{5}3d\ ^{3}\mathrm{D_{1}^{\circ}}$	0	572 280			11
139.175 ^S	$3p^{6-1}\mathrm{S}_0$	$3p^53d^{-1}P_1^{\circ}$	0	718 520			3,5,11°
80.666	$3p^{5}3d^{-1}P_{1}^{o}$	$3p^5(^2{ m P}^{ m o}_{1/2})4f^{\ 2}[{5\over2}]_2$	718 520	1 958 200?	2		12
73.734^{L}	$3p^53d^{-1}F_3^{\circ}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$			3		12
72.821 ^L	$3p^53d$ $^3\mathrm{D}^{\mathrm{o}}_3$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{7}{2}]_4$			7		12
$72.572^{\rm L}$	$3p^{5}3d^{-1}F_{3}^{o}$	$3p^{5}(^{2}P_{1/2}^{o})4f^{2}[\frac{7}{2}]_{4}$			10		12
$72.373^{\rm L}$	$3p^{5}3d^{3}D_{2}^{o}$	$3p^5(^2\mathrm{P}^{\circ}_{1/2})4f^{\ 2}[\frac{7}{2}]_3$			6		12
71.948 ^L	$3p^53d$ $^1\mathrm{D}^{\circ}_2$	$3p^5(^2\mathrm{P}_{1/2}^{\circ})4f^{-2}[\frac{5}{2}]_3$			6		12
71.700 ^L	$3p^{5}3d\ ^{3}\mathrm{F_{2}^{o}}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{-2}[\frac{7}{2}]_3$			4		12
71.609 ^L	$3p^{5}3d\ ^{3}\mathrm{F}_{3}^{\circ}$	$3p^5(^2P^{\circ}_{3/2})4f^{-2}[\frac{9}{2}]_4$			7		12
71.530 ^L	4	5			8		12
71.033 ^t	$3p^53d\ ^3\mathrm{P}_2^{\mathrm{o}}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{3}{2}]_2$			4		12
70.656 ^L	1	1			5		12
70.551^{L}	1	2			6		12
$70.804^{\rm L}$	$3p^{5}3d\ ^{3}\mathrm{P_{2}^{o}}$	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4f^{\ 2}[\frac{5}{2}]_3$			4		12
69.128	$3p^{6-1}S_0$	$3p^54s~(rac{3}{2},rac{1}{2})_1^{\circ}$	0	1 446 600	3		3
67.882	$3p^6$ 1 S $_0$	$3p^54s~({1\over 2},{1\over 2})_1^{\circ}$	0	1 473 100	3		3
56.333	$3p^{6}$ 1 S ₀	$3p^54d \ (\frac{3}{2}, \frac{5}{2})_1^{\circ}$	0	1 775 200			3
55.466	$3p^{6-1}\mathrm{S}_0$	$3p^54d \ (\frac{1}{2}, \frac{3}{2})_1^{\circ}$	0	1 802 900			3

 $\mathbf{C}\mathbf{u}$ XIII

Wave-	Classification	on	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					. ,		
3500.4	$3s^23p^5$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^23p^5$ $^2P_{1/2}^{\circ}$	0	28 560		M1	4.19+2	В	13,14°,88*
150.638	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^1\mathrm{D})3d\ ^2\mathrm{S}_{1/2}$	0	663 840	10				15
144.720	$3s^23p^5$ 2 P $^o_{3/2}$	$3s^23p^4(^3P)3d\ ^2P_{3/2}$	0	690 990	20				5,15°
143.756	$3s^23p^5$ $^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2D_{3/2}$	28 560	724 240	200Ы				5,15°
142.963	3/2	5/2	. 0	699 480	200				5,15°
138.065	3/2	3/2	0	724 240	20				5,15°
66.18 ^L	$3s^23p^4(^3P)3d\ ^4F_{9/2}$	$3s^23p^4(^3P)4f\ ^4G^o_{11/2}$			1				16
$65.24^{\rm L}$	$3s^23p^4(^3P)3d\ ^4D_{7/2}$	$3s^23p^4(^3P)4f\ ^4F^{o}_{9/2}$			1				16

 $\mathbf{C}\mathbf{u}$ XIV

Wave- length (Å)	Lower	Classification	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
4183.4	$3s^23p^4$	³ P ₂	$3s^23p^4$ 3P_1	0	23 897		M1	2.83+2	С	14,17°,88*
1190.4	$3s^23p^4$	$^{3}P_{1}$	$3s^23p^{4-1}S_0$	23 897	107 902		M1	4.01+3	D	17°,88*
302.406 282.038	$3s^23p^4$	³ P ₁	$3s3p^5$ $^3P_2^{\circ}$	23 897 0	354 570 354 570	1 1				18,19° 18,19°
250.429	$3s^23p^4$	$^{1}\mathrm{D}_{2}$	$3s3p^{5-1}P_1^{\circ}$	52 540	451 850	1				18,19°
159.997 154.080	$3s^23p^4$	³ P ₁	$3s^23p^3(^2D^{\circ})3d\ ^3P_2^{\circ}$	23 897 0	648 960 648 960	10 50				19 18,19°
152.466	$3s^23p^4$	1 1 S ₀	$3s^23p^3(^2P^o)3d^{-1}P_1^o$	107 902	763 830	20				18,19°
151.938	$3s^23p^4$	$^{1}\mathrm{D}_{2}$	$3s^23p^3(^2\mathrm{D^o})3d^{-1}\mathrm{D_2^o}$	52 540	710 700	5				18,19°
150.836 148.318	$3s^23p^4$	³ P ₁	$3s^23p^3(^4S^\circ)3d\ ^3D_2^\circ$	23 897 0	686 870 674 230	20 200bl				18,19° 16,18,19°
148.318	$3s^23p^4$	$^{1}\mathrm{D}_{2}$	$3s^23p^3(^2\mathrm{D^o})3d\ ^1\mathrm{F_3^o}$	52 540	726 770	200Ы				19
140.580	$3s^23p^4$	$^{1}\mathrm{D_{2}}$	$3s^23p^3(^2P^o)3d^{-1}P_1^o$	52 540	763 830	10				18,19°
$61.70^{ m L}$	$3s^23p^3(^2D^{\circ})3d$	³ G ₅ °	$3s^23p^3(^2D^{\circ})4f^{3}H_6$							16
61.08 ^L	$3s^23p^33d$	⁵ D ₄ °	$3s^23p^34f$ ⁵ F ₅			1				16

Cu xv

Wave-	Classification		Energy Leve	els (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
length (Å)	Lower	Upper							·
2085.3	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ 2 D $^{\circ}_{3/2}$	0	47 940		M1	2.81 + 2	D	14,20°,88*
944.6	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ $^2\mathrm{P}^{\circ}_{3/2}$	0	105 962		M1	1.03+3	D	14,20°,88*
296.6	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s3p^{4-4}P_{5/2}$	0	337 100					22
238.1	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s3p^4\ ^2\mathrm{P}_{3/2}$	57 803	477 800					22
163.274	$3s^23p^3$ ² P° _{1/2}	$3s^23p^2(^1{ m D})3d\ ^2{ m P}_{3/2}$	[91 106]	703 573	2				22,23°
161.852	$3s^23p^3 {}^2D_{5/2}^{\circ}$	$3s^23p^2(^1D)3d^2D_{5/2}$	57 803	675 651	5				22, 23°
160.143	3/2	3/2	47 940	672 380	10				22,23°
161.381	$3s^23p^3$ ${}^4S_{3/2}^{\circ}$	$3s^23p^2(^3P)3d^4P_{5/2}$	0	619 652	40				16,22,23°
159.677	3/2	3/2	0	626 264	1				22,23°
157.9	3/2	1/2	0	633 300					22
158.944	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^3P)3d^2D_{5/2}$	105 962	735 114	10				22,23°
155.1	1/2	3/2	[91 106]	735 639					22
154.713	$3s^23p^3$ 2 D $^{\circ}_{5/2}$	$3s^23p^2(^3\mathrm{P})3d^{\ 2}\mathrm{F}_{7/2}$	57 803	704 207	200				16,22,23°
57.52^{L}	$3s^23p^2(^1\mathrm{D})3d^{-2}\mathrm{G}_{9/2}$	$3s^23p^2(^1D)4f^{-2}H_{11/2}^{\circ}$			1				16
57.44 ^L	$3s^23p^23d^4F_{9/2}$	$3s^23p^24f$ $^4G_{11/2}^{\circ}$			1				16

Cu xvi

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
5375.8	$3s^23p^2$ 3P_0	$3s^23p^2$ ³ P ₁	0.0	18 596.7		MI	1.07+2	В	14°,88*
2544.7 1871.3	$3s^23p^2\ ^3\mathrm{P}_2$	$3s^23p^2$ ¹ D ₂	32 730 18 596.7	72 016 72 016		M1 M1	3.28+2 3.32+2	D D	14,24°,88* 17°,88*
952.8	$3s^23p^2$ 3 P ₁	$3s^23p^2$ ¹ S ₀	18 596.7	123 550		M1	3.81+3	D	14°,88*
410.46 387.56	$3s^23p^2$ 3 P ₂	$3s3p^3$ ${}^5\mathrm{S}^{\mathrm{o}}_2$	32 730 18 596.7	276 430 276 430	Ы				26, 27, 28° 26, 27, 28°
298.162	$3s^23p^2$ 3P_2	$3s3p^3$ 3 D_3°	32 730	368 118	1				18,25°
$291.705 \\ 276.821$	1 0	2 1	$18 596.7 \\ 0.0$	361 409 361 244	$\frac{2}{2}$				18,25° 18,25°
261.247	$3s^23p^2$ 3P_2	$3s3p^3\ ^3{ m P}_1^{ m o}$	32 730	415 501	1				18,25°
259.857 251.954	2	2	32 730	417 557	3				18, 25°
	1	1	18 596.7	415 501	1				18,25°
210.385	$3s^23p^2$ ¹ D ₂	$3s3p^{3-1}P_1^{\circ}$	72 016	547 335	10				18,25°
209.160 203.155	$3s^23p^2$ 3P_2	$3s3p^3 \ ^3S_1^0$	32 730 18 596.7	510 826 510 826	10 10				18, 25° 18, 25°
195.766	1 0	1 1	0.0	510 826	5				18, 25°
192.461	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^3{ m P}_2^{ m o}$	72 016	591 646	1				25
184.613	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^1{ m D}_2^{ m o}$	72 016	613 690	20				18,25°
178.959	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^3P_2^0$	32 730	591 646	5bl				18,25°
174.505 166.887	1	2	18 596.7	591 646	20				25
165.504	1 1	0	18 596.7 18 596.7	$\begin{array}{c} 617 \ 805 \\ 622 \ 812 \end{array}$	$\frac{3}{2}$				18, 25° 18, 25°
173.921	$3s^23p^2$ ¹ S ₀	$3s^23p3d\ ^1\mathrm{P_1^o}$	123 550	698 524	2				18,25°
168.879	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^3D_3^{\circ}$	32 730	624 870	20				16, 18, 25°
168.295 166.025	2 0	2	32 730 0.0	626 925 602 319	$\begin{array}{c} 10 \\ 2 \end{array}$				18,25° 18,25°
168.019	$3s^23p^2$ 3P_1	$3s^23p3d\ ^1{ m D}_2^{ m o}$	18 596.7	613 690	1				18, 25°
164.228	$3s^23p^2$ $^1{ m D}_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	72 016	680 933	10				18,25°
154.271	$3s^23p^2\ ^3{ m P}_2$	$3s^23p3d\ ^1{ m F}_3^{\circ}$	32 730	680 933	5				25
$\mathbf{56.06^{T}}$	$3s^23p3d\ ^3{ m D}_3^{ m o}$	$3s^23p4f\ ^3{ m F_4}$	624 870	2 409 000?					30
55.46^{T}	$3s^23p3d\ ^3P_0^0$	$3s^23p4f\ ^3{\rm D}_1$	617 805	2 421 000?					30
54.48	$3s^23p3d\ ^3\mathrm{F}_3^{\circ}$	$3s^23p4f\ ^3{ m G_4}$	534 500?	2 370 000	200				29 [△] ,30°
54.24	4	5	553 300?	2 397 000	100				$29^{\triangle}, 30^{\circ}$ $29^{\triangle}, 30^{\circ}$
53.52	$3s^23p^2$ ¹ D ₂	$3s^23p4s$ ¹ P ₁ °		1 940 000	300				29
52.85 52.18	$3s^23p^2$ 3P_2	$3s^23p4s \ ^3P_2^o$	32 730 18 596.7	1 930 000 1 930 000	350 350				29 29
52.41^{T}	$3s3p^{3-1}D_2^{\circ}$	$3s^23p4f\ ^3{ m G}_3$	464 200?	2 372 000?					30
52.08^{T}	$3s3p^{3-1}D_2^{\circ}$	$3s^23p4f$ ¹ F ₃	464 200?	2 384 000?					30
45.90	$3s^23p^2$ ¹ S ₀	$3s^23p4d\ ^1{ m P}_1^{ m o}$	123 550	2 302 000					30
45.24	$3s^23p^2$ ¹ D ₂	$3s^23p4d\ ^1{ m F}_3^{ m o}$	72 016	2 282 000	300				29 ^Δ , 30°
45.21	$3s^23p^2 \ ^3P_2$	$3s^23p4d\ ^3{ m D}_3^{ m o}$	32 730	2 244 000	350				29 [△] , 30°
44.98	1	2	18 596.7	2 242 000	350				29 [△] , 30°
44.63 ^T	0 20.2 30	1 20 41370	0.0	2 241 000?					30
44.67	$3s^23p^2$ ³ P ₂	$3s^23p4d\ ^3F_3^{\circ}$	32 730	2 271 000					30
44.47 ^T	$3s^23p^2$ 3 P ₁	$3s^23p4d\ ^3P_0^{\circ}$	18 596.7	2 267 000?					30

Cu XVII

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3007.6	$3s^23p\ ^2P_{1/2}^{\circ}$	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$. 0	33 239		M1	3.30+2	В	13,14°,88*
410.6	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s3p^2 {}^4P_{1/2}$	33 239	277 231					27, 28°
387.0	3/2	3/2	33 239	291 810	bl				27, 28°
364.45	3/2	5/2	33 239	307 708					27, 28°
361.16	1/2	1/2	0	277 231					27, 28°
342.7	1/2	3/2	0	291 810					27, 28°
290.239	$3s^23p^2P_{3/2}^{\circ}$	$3s3p^2$ 2 $D_{5/2}$	33 239	377 783	2				18,31,32°
268.647	1/2	3/2	0	372 236	1				32
239.462	$3s3p^2 {}^4P_{5/2}$	$3p^3 \ ^4S_{3/2}^{\circ}$	307 708	725 320	5				10
239.402					2				18 18°,31
223.170	3/2	3/2	291 810	725 320	1				
223.170	1/2	3/2	277 231	725 320	1				18,32°,33
224.841	$3s^23p^{-2}P_{1/2}^{o}$	$3s3p^2 {}^2S_{1/2}$	0	444 759	10				18,31,32°
223.823	$3s^23p^{-2}P_{3/2}^{\circ}$	$3s3p^2 {}^2P_{1/2}$	33 239	480 016	10				18,31,32°
218.716 ^S	3/2	3/2	33 239	490 467	100				16, 18, 31, 32°
208.328	1/2	1/2	0	480 016	3				18
203.881 ^S	1/2	3/2	o	490 467	5				18,31,32°
200.40	$3s3p^2$ 2 D _{5/2}	•							
200.40	$3s3p^{-}$ $-D_{5/2}$	$3s3p3d\ ^{2}\mathrm{D}_{5/2}^{\circ}$	377 783	876 785?					31
188.19	$3s3p^2$ 2 D _{5/2}	$3s3p3d\ ^{2}\mathrm{F}_{5/2}^{\circ}$	377 783	909 161?	ы				31
180.70	5/2	7/2	377 783	931 186?	bl				31
184.855 ^S	$3s^23p\ ^2P_{3/2}^{o}$	$3s^23d^2D_{3/2}$	33 239	574 180	5				18,32°
183.485 ^S	•		33 239	578 243	100				16, 18, 31, 32°
174,168 ^S	3/2	5/2	33 239 0	574 180	50				
174,100	1/2	3/2	U	914 160	50				16,18,31,32°
180.70	$3s3p^2$ ⁴ P _{5/2}	$3s3p3d\ ^4D_{7/2}^{\circ}$	307 708	861 003?	bl				31
176.98	3/2	5/2	291 810	856 728?					31
52.76	$3s^23d^{-2}D_{5/2}$	$3s^24f\ ^2{ m F}^{ m o}_{7/2}$	578 243	2 474 000	350				00
52.59			578 243	2 474 000	450				29 29
02.00	3/2	5/2	314 100	2 470 000	400				29
51.16	$3s3p^2 {}^2D_{5/2}$	$3s3p4s\ ^{2}\mathrm{P}_{3/2}^{\circ}$	377 783	2 332 000	600				29
51.16 ^L	$3s3p3d\ ^{4}F_{7/2}^{\circ}$	$3s3p4f\ ^{4}G_{9/2}$			600				29
50.98^{L}	5/2	7/2			550				29
50.81 ^L	9/2	11/2			450				29
	•				-				
50.17	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^24s$ $^2S_{1/2}$	33 239	2 026 000	450				29
49.90	$3s3p^{2-4}P_{5/2}$	$3s3p4s\ ^4P_{3/2}^{\circ}$	307 708	2 312 000	350				29
48.89	3/2	5/2	291 810	2 337 000	350				29
40.03		,							
43.31	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^24d\ ^2{ m D}_{5/2}$	33 239	2 342 000	500				29
42.81	1/2	3/2	0	2 336 000	400				29

 \mathbf{Cu} XVIII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
3941.6	$3s3p$ $^3P_1^{\circ}$	$3s3p$ $^3\mathrm{P}_2^\mathrm{o}$	289 401	314 753		M1	2.16+2	С	14°,88*
430.44	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{D}_{2}^{\mathrm{o}}$	917 020	1 149 319	2				37
395.67	$3s3p^{-1}P_{1}^{o}$	$3p^{2} \ ^{1}D_{2}$	426 987	679 710	4				37
346.44	$3s3p\ ^{1}P_{1}^{o}$	$3p^2$ 3 P $_2$	426 987	715 608	2				37
345.542	$3s^2$ ¹ S ₀	$3s3p$ $^3P_1^{\circ}$	0	289 401					31,34,36°
334.002	$3s3d$ $^3\mathrm{D}_1$	$3p3d$ $^3F_2^{\circ}$	818 630	1 118 029	1				31,35°
317.563 300.417	2 3	3 4	820 704 823 970	1 135 602 1 156 841	5 10				31,35° 31,35°
302.406	$3s3d$ $^3\mathrm{D}_1$	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	818 630	1 149 319	1				35
	$3s3d$ $^3\mathrm{D}_2$	3p3d ³ D ₁ °							
275.813 274.779	383 <i>a</i> D ₂	$spsa$ D_1	820 704 823 970	1 183 252 1 187 907	3 1				35 35
272.30	2	2	820 704	1 187 907	bl				31
262.087	3	3	823 970	1 205 542	5				31,35°
259.857	2	3	820 704	1 205 542	2				31,35°
274.01 256.202	$3s3p^{-3}P_{2}^{o}$	$3p^{2-1}D_2$	314,753 289 401	679 710 679 710	5 3				37 35
	1 $3s3d$ $^{1}\mathrm{D}_{2}$	22.1 179							
272.120		3p3d ¹ F ₃ °	917 020	1 284 495	30				21°, 31, 35, 3
270.316	$3s3p\ ^{3}P_{2}^{o}$	$3p^2 \ ^3P_1$	314 753	684 689	10				18°,31 18°,31
266.258 252.981	1	0	289 401 289 401	664 977 684 689	$\frac{20}{10}$				18°,31 18°,31
249.467	1 2	1 2	314 753	715 608	100				18°,31
246.991	0	1	279 816	684 689	10				18°,31
234.610	1	2	289 401	715 608	10				18
265.145	$3s3p^{-1}P_1^{\circ}$	$3p^2$ 1 S ₀	426 987	804 139	10				21°,37
261.820	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	917 020	1 298 970	3				21°,37
257.464	$3s3d$ $^3\mathrm{D}_2$	$3p3d\ ^{3}P_{2}^{\circ}$	820 704	1 209 104	2				35
256.612	1	1	818 630	1 208 326	2				35
240.028	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d^{2}$ 1 G ₄	1 284 495	1 701 113	10				36°,38
234.199	$3s^2 {}^1S_0$	$3s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	426 987	500				16,18°,31
228.16	$3p^{2-1}D_2$	$3p3d$ $^3F_2^{\circ}$	679 710	1 118 029	2				37
223.170	$3p3d$ $^3P_2^o$	$3d^2$ 3 F $_3$	1 209 104	1 657 191	20				36
219.410	$3p3d$ $^3D_3^{\circ}$	$3d^{2} {}^{3}F_{4}$	1 205 542	1 661 315	10				36°,38
213.087	2	3	1 187 907	1 657 191	5				36
212.551	1	2	1 183 252	1 653 727	2				36
212.939	$3p^{2} {}^{1}D_{2}$	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	679 710	1 149 319	10				31,35°
204.110	$3p^2 \ ^3P_2$	$3p3d \ ^{3}D_{3}^{o}$	715 608	1 205 542	200bl				35
198.718	1	2	684 689	1 187 907	100				35
192.954	0	1	664 977	1 183 252	50				31,35°
204.072	$3s3p^{-1}P_{1}^{o}$	$3s3d$ $^{1}\mathrm{D}_{2}$	426 987	917 020	30				16,18°,31
202.962	$3p^2 \ ^3P_2$	$3p3d\ ^{3}P_{1}^{o}$	715 608	1 208 326	5				35
202.635	2	2	715 608	1 209 104	50				35
191.083	1	0	684 689	1 208 022	3				35 [△] , 36°
190.965 190.689	1	1 2	684 689 684 689	1 208 326 1 209 104	$\begin{array}{c} 10 \\ 2 \end{array}$				31,35° 31,35°
202.086	$3p^{2} {}^{1}S_{0}$	3p3d ¹ P ₁ °	804 139	1 298 970	30				21°,37
	$3s3p$ $^3P_2^{\circ}$	$3s3d$ 3D_1							
198.56 197.647			314 753	818 630	10				31
196.379	2 2	2	314 753 314 753	820 704 823 970	$\frac{10}{200}$				18 [△] ,31,36° 16,18°,31
188.953	1	3	289 401	818 630	200				18
188.215	1	2	289 401	820 704	200				16,18°,31
	-	-			50				16,18°,31

Cu xviii - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
198.224 191.723	$3p3d$ 3 F $^{\circ}_4$ 3	$3d^2 \ ^3F_4$	1 156 841 1 135 602	1 661 315 1 657 191	10 30				36 36
190.174	$3p^2$ ¹ D ₂	$3p3d$ $^3D_3^{\circ}$	679 710	1 205 542	20				35
175.785	$3p^2 \ ^3P_2$	$3p3d$ $^{1}\mathrm{F}_{3}^{\circ}$	715 608	1 284 495	5				21°,35
165.349	$3p^{2-1}D_2$	$3p3d$ $^{1}\mathrm{F}_{3}^{\circ}$	679 710	1 284 495	10				21°,31,35
51.496^{T}	$3p3d$ $^{1}P_{1}^{o}$	$3p4f$ $^{1}\mathrm{D}_{2}$	1 298 970	3 240 900?					30
51.287	$3p3d$ $^1F_3^{\circ}$	$3p4f$ $^{1}\mathrm{G}_{4}$	1 284 495	3 234 300?					30
50.118 50.067	$3p3d\ ^{3}\mathrm{D_{1}^{o}}$	$3p4f$ $^{3}F_{2}$	1 183 252 1 205 542	3 178 500? 3 202 900					30 29,30°
49.862	$3p3d$ $^3\mathrm{D}^\mathrm{o}_2$	$3p4f$ $^3\mathrm{D}_3$	1 187 907	3 193 400					30
49.769 49.639 49.639	$3p3d\ ^{3}P_{1}^{\circ}$ 1 0	$3p4f \ ^{3}\mathrm{D}_{2}$	1 208 326 1 208 326 1 208 022	3 217 600 3 222 900 3 222 900	Ы Ы				30 30 29,30°
49.558 49.490 49.452	$3s3d$ $^3\mathrm{D}_3$ 2 1	3s4f ³ F ₄ ° 3 2	823 970 820 704 818 630	2 841 800 2 841 300 2 840 800	4 4 3				30, 39° 30°, 39 [△] 30, 39°
49.395	$3p3d$ $^1\mathrm{D}^\mathrm{o}_2$	$3p4f^{-1}\mathrm{F}_3$	1 149 319	3 173 800					30
49.010 48.885 48.885	$3p3d\ ^3F_3^{\circ}$ 2	$3p4f$ $^3\mathrm{G}_4$ 3 5	1 135 602 1 118 029 1 156 841	3 176 000 3 163 600 3 202 500	bl bl				29,30° 30 29,30°
47.585 47.012 46.781	$3s3p \ ^{3}P_{2}^{\alpha}$ 1 0	3s4s ³ S ₁	314 753 289 401 279 816	2 416 400 2 416 400 2 416 400	3 2 1				39 39 39
41.173 41.134 40.769 40.749 40.613	$3s3p \ ^{3}P_{2}^{o}$ 2 1 1 0	$3s4d\ ^3{ m D}_2$ 3 1 2 2 1	314 753 314 753 289 401 289 401 279 816	2 743 500 2 745 800 2 742 100 2 743 500 2 742 100	3 6 3 5 2				39 39 39 39
38.876	$3s^{2}$ $^{1}S_{0}$	$3s4p$ 1 P $_{1}^{\alpha}$	0	2 572 300	5				39
35.294 35.256 35.238	$3s3d$ $^3\mathrm{D}_3$ 2 $_1$	$3s5f {}^{3}F_{4}^{\circ}$	823, 970 820 704 818 630	3 657 300 3 657 100 3 656 500	3 2 2				39 39 39
30.325 30.104 30.019	$3s3p\ ^{3}\mathrm{P}_{2}^{\circ}$	$3s5d\ ^3{ m D_3}$	314 753 289 401 279 816	3 612 400 3 611 200 3 611 000	5 4 3				39 39 39
11.774	$2p^6 3s^2$ $^1{ m S}_0$	$2p^53s^23d$ ¹ P ₁ °	0	8 493 000	2				40

Cu xix

Wave- length (Å)	Classificati Lower	on Upper	Energy Lev	rels (cm ⁻¹)	Int. $gf A (s^{-1})$ Acc	. References
303.549 ^S	$2p^6 3s \ ^2S_{1/2}$	$2p^63p^2P_{1/2}^{\circ}$	0.	329 436	200	18 [△] ,31,42°
273.354 ^S	1/2	3/2	0	365 826	150	$18, 31, 39, 41^{\triangle}, 42^{\circ}$
224.237 ^S	$2p^63p^2P_{3/2}^{\circ}$	$2p^6 3d\ ^2\mathrm{D}_{3/2}$	365 826	811 791	100	18, 31, 39, 41 ^{\triangle} , 42°
221.369 ^S	3/2	5/2	365 826	817 560	450	18, 31, 39, 41 ^{\(\Delta\)} , 42°
207.312 ^S	1/2	3/2	329 436	811 791	350	18, 31, 39, 41 ^Δ , 42°
210.70 ^L	$2p^5 3s 3p \ ^4 \mathrm{D}_{7/2}$	$2p^{5}3s3d\ ^{4}\mathrm{F}^{\circ}_{9/2}$				31,43°
111.353	$2p^64f\ ^2{ m F}^{lpha}_{7/2}$	$2p^65g$ $^2G_{9/2}$	2 925 400	3 823 400	350	18, 31, 41°, 44
111.274	5/2	7/2	2 924 400	3 823 100	250	18, 41°, 44
103.179	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2F_{7/2}^{\circ}$	2 849 500	3 818 700	150	18,41°
102.960	3/2	5/2	2 847 000	3 818 100	100	18, 41°
90.990	$2p^{6}4p^{2}P_{3/2}^{\circ}$	$2p^65d\ ^2{ m D}_{5/2}$	2 681 600	3 780 600	50	41
85.90	$2p^64s\ ^2{ m S}_{1/2}$	$2p^65p^2P_{3/2}^{\circ}$	2 535 440	3 699 300	20	41
53.889	$2p^63d\ ^2{ m D_{3/2}}$	$2p^64p^2P_{1/2}^{\circ}$	011 701	0 667 400	100	16 00 419
53.643	$2p^{\circ}3a^{\circ\circ}D_{3/2}$ 5/2	$2p^{-4}p^{-5}P_{1/2}^{5}$	811 791 817 560	2 667 490 2 681 600	100 200	16, 29, 41° 16, 29, 41°
		·				
47.442 ^S 47.335 ^S	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^64f$ $^2F_{7/2}^{\circ}$	817 560	2 925 400	1000	18, 41 ^{\triangle} , 42°, 81
47.335	3/2	5/2	811 791	2 924 400	850	18,41 ^{\(\Delta\)} ,42°,81
46.090	$2p^63p^2P_{3/2}^o$	$2p^6 4s \ ^2\mathrm{S}_{1/2}$	365 826	2 535 440	300	18,39,41°,82
45.332	1/2	1/2	329 436	2 535 440	200	39, 41°
40.298	$2p^63p^2P_{3/2}^{\circ}$	$2p^64d\ ^2{ m D}_{3/2}$	365 826	2 847 000	200	39,41°
40.263 39.725	3/2	5/2	365 826	2 849 500	650	39,41°,82
35.123	1/2	3/2	329 436	2 847 000	550	39,41°,82
37.488	$2p^63s$ $^2S_{1/2}$	$2p^64p\ ^2\mathrm{P_{1/2}^o}$	0	$2\ 667\ 490$	350	39,41°,82
37.293	1/2	3/2	0	2 681 600	450	39,41°,82
33.317	$2p^63d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2F_{7/2}^{\circ}$	817 560	3 818 700	6	39°,82
33.266	3/2	5/2	811 791	3 818 100	300	39,41°,82
29.277	$2p^63p^2P_{3/2}^{\circ}$	$2p^65d\ ^2\mathrm{D}_{5/2}$	365 826	3 780 600	9	39°,82
28.987	1/2	3/2	329 436	3 779 300	180	39, 41°, 82
28.674	$2p^63d^{-2}\mathrm{D}_{5/2}$	$2p^66f\ ^2{ m F}^{ m o}_{7/2}$	817 560	4 305 000	150	39,41°,82
28.631	3/2	5/2	811 791	4 304 500	100	39, 41°
27.075	$2p^63s\ ^2{ m S}_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	0	0.000.400	100	00 419
27.032	$2p \ 3s \ \ S_{1/2}$ $1/2$	$\begin{array}{c} 2p & 5p & P_{1/2} \\ 3/2 & \end{array}$	0 0	3 693 400 3 699 300	100 150	39, 41° 39, 41°
26.452	$2p^6 3d\ ^2{ m D}_{5/2}$	$2p^{6}7f$ $^{2}\mathrm{F}^{o}_{7/2}$	817 560	4 598 000	70	39°, 41 [△]
26.416	3/2	5/2	811 791	4 597 400	70	39°,41 [△]
25.526	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^66d\ ^2{ m D}_{5/2}$	365 826	4 283 400	150	39, 41°
25.297	1/2	3/2	329 436	4 282 500	100	39,41°
25.175^{T}	$2p^63d^{-2}D_{5/2}$	$2p^68f ^2F_{7/2}^{\circ}$	817 560	4 789 800?	1	39
25.142^{T}	3/2	5/2	811 791	4 789 200?		39
23.704	$2p^63p^2P_{3/2}^{\circ}$	$2p^67d\ ^2{ m D}_{5/2}$	365 826	4 584 500	10	39
23.503	1/2	3/2	329 436	4 584 200	10	39
23.621	$2p^63s^{-2}S_{1/2}$	$2p^{6}6p^{-2}P_{1/2}^{\circ}$	^	4 000 FOO	1	20
23.599	$2p \ 3s \ S_{1/2}$ $1/2$	$\frac{2p^{3}6p^{2}P_{1/2}^{2}}{3/2}$	0 0	4 233 500 4 237 500	1 10	39 39
		,			- -	
22.661 22.475	$2p^6 3p^2 P_{3/2}^o$	$2p^6 8d\ ^2{ m D}_{5/2}$	365 826 329 436	4 778 800	1	39
	1/2	3/2	329 430	4 778 800	1	39
13.11	$2p^63s\ ^2{ m S}_{1/2}$	$2p^53s^2$ 2 P $^{\circ}_{3/2}$	0	7 627 800?		45

Cu xx

Wave- length (Å)	Classificatio Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int. gf A (s ⁻¹)	Acc.	References
340.77 330.44	$2s^22p^53s \ (\frac{3}{2}, \frac{1}{2})_2^{\circ}$	$2s^22p^53p \ (\frac{3}{2},\frac{1}{2})_1$	7 777 270 7 795 650	8 070 680 8 098 270			46 46
311.53	2	2	7 777 270	8 098 270			46
328.69 317.63	$2s^22p^53s \left(\frac{1}{2}, \frac{1}{2}\right)_1^{\alpha}$ 0	$2s^22p^53p\ (\frac{1}{2},\frac{1}{2})_1$	7 955 050 7 943 950	8 259 280 8 259 280			46 46
296.07	$2s^22p^53s \ (\frac{3}{2},\frac{1}{2})_1^{\circ}$	$2s^22p^53p \ (\frac{3}{2},\frac{3}{2})_1$	7 795 650	8 133 410			46
287.09 279.40	2 1	3 2	7 777 270 7 795 650	8 125 590 8 153 580			46 46
265.72	2	2	7 777 270	8 153 580			46
288.94 284.70	$2s^22p^53s \ (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^53p(\frac{1}{2},\frac{3}{2})_1$	7 955 050 7 955 050	8 301 150 8 306 290			46 46
272.30 232.84	$2s^22p^53p\ (\frac{3}{2},\frac{3}{2})_2$	$2s^22p^53d \left(\frac{3}{2},\frac{3}{2}\right)_1^{\circ}$	8 153 580 8 133 410	8 520 820 8 562 820			46 46
258.18	$2s^22p^53p(\frac{3}{2},\frac{3}{2})_2$	$2s^22p^53d \left(\frac{3}{2},\frac{5}{2}\right)_2^{\circ}$	8 153 580	8 540 750			46
241.25 237.57	3 2	4. 3	8 125 590 8 153 580	8 540 100 8 574 510			46 46
247.00	$2s^22p^53p \ (\frac{1}{2}, \frac{3}{2})_2$	$2s^22p^53d(\frac{1}{2},\frac{3}{2})_2^{\circ}$	8 306 290	8 711 110			46
238.52	$2s^22p^53p \ (\frac{1}{2}, \frac{3}{2})_1$	$2s^22p^53d \ (\frac{1}{2}, \frac{5}{2})_2^{\circ}$	8 301 150	8 720 400			46
237.57	20 27 07 (2, 2)1	3	8 306 290	8 727 220			46
227.85	$2s^22p^53p(\frac{3}{2},\frac{1}{2})_1$	$2s^22p^53d \left(\frac{3}{2},\frac{3}{2}\right)_0^{\circ}$	8 070 680	8 509 560			46
223.83 215.30	2 2	3 2	8 098 270 8 098 270	8 545 040 8 562 820			46 46
212.75	$2s^22p^53p \ (\frac{3}{2},\frac{1}{2})_1$	$2s^22p^53d \left(\frac{3}{2},\frac{5}{2}\right)_2^{\circ}$	8 070 680	8 540 750			46
163.6	$2s^22p^53s \ (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	$2s^22p^53p\ (\frac{1}{2},\frac{1}{2})_0$	7 795 650	8 406 900			46
12.827	$2s^22p^{6-1}S_0$	$2s^22p^53s \ (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	0	7 795 650	9		47, 49, 50°
12.570	$2s^22r^{6-1}S_0$	$2s^22p^53s \ (\frac{1}{2},\frac{1}{2})_1^{\text{o}}$	0	7 955 050	6		$47,49,50^{\circ}$
11.736	$2s^22p^{6-1}S_0$	$2s^22p^53d \left(\frac{3}{2},\frac{3}{2}\right)_1^{\circ}$	0	8 520 820	7		47,49,50°
11.594	$2s^22p^{6-1}S_0$	$2s^22p^53d \left(\frac{3}{2},\frac{5}{2}\right)_1^{o}$	0	8 626 510	10		47,49,50°
11.383	$2s^22p^{6-1}S_0$	$2s^22p^53d \left(\frac{1}{2}, \frac{3}{2}\right)_1^{\circ}$	0	8 787 010	8		47, 49, 50°
10.653	$2s^22p^{6-1}S_0$	$2s2p^63p \ (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	0	9 387 000	5		40, 47, 49, 50°
10.597	$2s^22p^6$ ¹ S ₀	$2s2p^63p \ (\frac{1}{2}, \frac{3}{2})_1^{o}$	0	9 436 000	4		40, 47, 49, 50°
9.521	$2s^22p^6$ 1S_0	$2s^22p^54s \ (\frac{3}{2}, \frac{1}{2})_1^{\circ}$	0	10 504 000	1		40 [△] , 49, 50°, 5
9.375	$2s^22p^6$ 1 S ₀	$2s^22p^54s \ (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	0	10 667 000	1		40 [△] , 49, 50°, 5
9.274	$2s^22p^6$ 1S_0	$2s^22p^54d~(\frac{3}{2},\frac{3}{2})_1^{\circ}$	0	10 783 000			50
9.237	$2s^22p^{6-1}S_0$	$2s^22p^54d~(\frac{3}{2},\frac{5}{2})_1^o$	0	10 828 000			48,49,50°
9.106	$2s^22p^6$ $^1\mathrm{S}_0$	$2s^22p^54d~(\frac{1}{2},\frac{3}{2})_1^{\circ}$	0	10 984 000			48, 49, 50°
8.447	$2s^22p^6$ 1 S ₀	$2s^22p^55d \left(\frac{3}{2},\frac{5}{2}\right)_1^{\circ}$	0	11 840 000	1		40 ^{\triangle} , 49, 50°
8.400	$2s^22p^{6-1}S_0$	$2s2p^64p \ (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	0	11 905 000			50°,51
8.385	$2s^22p^6$ ¹ S ₀	$2s2p^64p \ (\frac{1}{2}, \frac{3}{2})_1^{\rm o}$	0	11 926 000			50°,51
8.333	$2s^22p^{6-1}S_0$	$2s^22p^55d \left(\frac{1}{2}, \frac{3}{2}\right)_1^{\circ}$	0	12 002 000	1		40 [△] , 49, 50°
8.073	$2s^22p^{6}$ 1S_0	$2s^22p^56d \left(\frac{3}{2}, \frac{5}{2}\right)_1^{\circ}$	0	12 389 000	1		$40^{\Delta}, 49, 50^{\circ}$
7.972	$2s^22p^{6-1}S_0$	$2s^22p^56d \left(\frac{1}{2}, \frac{3}{2}\right)_1^{\circ}$	0	12 544 000			49,50°

 $\mathbf{C}\mathbf{u}$ XXI

length (Å)	Lower	cation Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
	·····								
592.3	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^5$ ² P° _{1/2}	0	168 830		M1	8.62 + 4	В	13°,88*
346.25	$2s^22p^4(^1{ m D})3s\ ^2{ m D}_{3/2}$	$2s^22p^4(^1D)3p^2F_{5/2}^o$	8 458 000	8 747 000					31
305.44	5/2	7/2	8 452 000	8 779 000					31
332.02	$2s^22p^4(^3P)3s\ ^4P_{3/2}$	$2s^22p^4(^3P)3p^4P_{1/2}^{\circ}$	8 363 000	8 664 000					31
325.97	$2s^22p^4(^3P)3s\ ^4P_{3/2}$	$2s^22p^4(^3P)3p^4D_{5/2}^{\circ}$	8 363 000	8 670 000					31
293.58 242.30	5/2 5/2	7/2 3/2	8 206 000 8 206 000	8 547 000 8 619 000					31 31
302.56	$2s^22p^4(^3P)3s^2P_{3/2}$	$2s^22p^4(^3P)3p^2D_{5/2}^{\circ}$	8 236 000	8 566 000					
	·	-,-							31
279.40	$2s^22p^4(^1D)3s^2D_{5/2}$	$2s^22p^4(^1D)3p^2D_{5/2}^{\circ}$	8 452 000	8 810 000	bl				31
263.88	$2s^22p^4(^3P)3p\ ^2D_{5/2}^{o}$	$2s^22p^4(^3P)3d^2F_{7/2}$	8 566 000	8 945 000					31
262.12	$2s^22p^4(^3P)3p\ ^4D^{\circ}_{7/2}$	$2s^22p^4(^3P)3d\ ^4F_{9/2}$	8 547 000	8 928 500?					31
257.50 252.74	3/2 5/2	5/2 7/2	8 619 000 8 670 000	9 007 000 9 066 000	bl				31
		•	0 010 000	9 000 000					31
259.60	$2s^22p^4(^1D)3p\ ^2D_{5/2}^{\circ}$	$2s^22p^4(^1D)3d^2F_{7/2}$	8 810 000	9 195 000					31
250.48^{L}	$2s^22p^4(^3P)3p^4P_{5/2}^o$	$2s^22p^4(^3P)3d^4D_{7/2}$							31
245.40	$2s^22p^4(^1D)3p\ ^2F^o_{5/2}$	$2s^22p^4(^1{ m D})3d\ ^2{ m G}_{7/2}$	8 747 000	9 154 000					31
90.341	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s2p^6 \ ^2S_{1/2}$	168 830	1 275 750	30				18°,44,52
78.384	3/2	1/2	0	1 275 750	100				18°, 44, 52
12.186	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P)3s^4P_{5/2}$	0	8 206 000					50°,51
12.029	3/2	1/2	0	8 313 000					51
11.956	3/2	3/2	0	8 363 000	6				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
12.165	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^3P)3s^2P_{1/2}$	168 830	8 388 000	4				50°, 51, 53, 54 [△] , 55
12.140	3/2	3/2	0	8 236 000	7				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
11.920	3/2	1/2	0	8 388 000	4				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
12.061	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^1D)3s^2D_{3/2}$	168 830	8 458 000	7				50°, 51, 53, 54 [△] , 55
11.830	3/2	5/2	0	8 452 000	8				50°, 51, 53, 54 ^{\(\Delta\)} , 55
11.736	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$2s^22p^4(^1S)3s^2S_{1/2}$	168 830	8 690 000					50
11.352	$2s^22p^5$ ² P° _{1/2}	$2s^22p^4(^3P)3d^4P_{3/2}$	168 830	0.070.000					
11.162		*	0	8 979 000 8 959 000	7				51 50°,51,53,54 [△] ,55
11.136	3/2 3/2	1/2 3/2	0	8 979 000	10				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
11.185	$2s^22p^5$ ² P° _{1/2}	$2s^22p^4(^3P)3d^2P_{3/2}$	168 830	9 108 000	6				50°,51,53,54 ^{\triangle} ,55
11.114	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3P)3d^2F_{5/2}$	0	8 998 000?					50°,51
		•							
11.097 10.893	$2s^22p^5$ $^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s^22p^4(^1D)3d^2S_{1/2}$	168 830 0	9 180 000 9 180 000	45 14				$50^{\circ}, 53, 54^{\triangle}, 55$ $50^{\circ}, 51, 53, 54^{\triangle}, 55$
	3/2	1/2	U	9 180 000	14				
11.065	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1\mathrm{D})3d\ ^2\mathrm{P}_{3/2}$	168 830	9 206 000	12				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
11.002	1/2	1/2	168 830	9 258 000	12				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
10.863	3/2	3/2	0	9 206 000	28				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
10.801	3/2	1/2	0	9 258 000	16				$51^{\circ}, 53, 54^{\triangle}, 55$
11.014	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1{\rm D})3d\ ^2{\rm D}_{3/2}$	168 830	9 248 000	14				50°, 51, 53, 54 [△] , 55
10.858	3/2	5/2	0	9 209 000	28				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
10.813	3/2	3/2	0	9 248 000	16				$50^{\circ}, 51, 53, 54^{\triangle}, 55$
10.971	$2s^22p^5$ 2 P $^{\alpha}_{3/2}$	$2s^22p^4(^3{\rm P})3d\ ^2{\rm D}_{5/2}$	0	9 115 000	14				50°, 51, 53, 54 ^{\(\Delta\)} , 55
10.800	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s^22p^4(^1{ m S})3d\ ^2{ m D}_{3/2}$	168 830	9 428 000	5				50°, 51, 53, 54 ^{\Delta} , 55
10.392	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$2s2p^{5}(^{3}P^{o})3p^{-4}P_{3/2}$	168 830	9 792 000					50

Cu xxi - Continued

Wave-	Classifi	cation	Energy Le	vels (cm ⁻¹)	Int.	af	$A(s^{-1})$	Acc.	References
length (Å)	Lower	Upper				3,	,		
10.354	$2s^22p^5$ ² P $_{3/2}^{\circ}$	$2s2p^{5}(^{3}P^{o})3p^{-4}D_{5/2}$	0	9 658 000					50
10.316	3/2	3/2	0	9 694 000					50
10.306	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s2p^5(^3P^o)3p^{-2}D_{3/2}$	168 830	9 872 000					50
10.291	3/2	5/2	0	9 717 000					50
10.282	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	$2s2p^{5}(^{3}\mathrm{P^{o}})3p^{-2}\mathrm{S}_{1/2}$	168 830	9 894 000?					50
10.260	$2s^22p^5$ $^2P_{3/2}^{\circ}$	$2s2p^{5}(^{3}P^{\circ})3p^{2}P_{3/2}$	0	9 747 000					50
10.234	3/2	1/2	0	9 771 000					50
10.121	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s2p^5(^1P^o)3p^{-2}D_{3/2}$	168 830	10 049 000					50
9.912	3/2	5/2	0	10 089 000					50
10.074	$2s^22p^5$ ² P _{1/2}	$2s2p^5(^1P^o)3p^{-2}P_{1/2}$	168 830	10 095 000					50
10.057	1/2	3/2	168 830	10 112 000					50

 $\mathbf{C}\mathbf{u}$ XXII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
657.7	$2s^22p^4$ ³ P ₂	$2s^22p^4$ ³ P ₁	0	151 990	_	M1	6.78+4	C	13°,88*
420.0	$2s^22p^4$ ³ P ₂	$2s^22p^{4-1}D_2$	0	237 950		M1	6.52 + 4	C	13°,88*
114.974	$2s^22p^{4-1}D_2$	$2s2p^5$ $^3\mathrm{P}_2^{\mathrm{o}}$	237 950	1 107 710	3				60
104.620 95.222 90.864 90.276 88.395 83.183	$2s^{2}2p^{4}$ $^{3}P_{1}$ 1 0 2 1 1 2	$2s2p^{5-3} ext{P}_2^{\circ}$ 1 1 2 0 1	151 990 151 990 101 620 0 151 990	1 107 710 1 202 170 1 202 170 1 107 710 1 283 280 1 202 170	5 5 25 5 15				44,60° 44,60° 44,60° 44,52,60° 44,60° 44,52,60°
98.180	$2s2p^{5-1}P_1^{\circ}$	$2p^{6}$ 1 S ₀	1 528 080	2 546 610	10				59,60°
93.302	$2s^22p^{4-1}S_0$	$2s2p^{5-1}P_{1}^{o}$	456 290	1 528 080	4				44,60°
77.512	$2s^22p^{4-1}D_2$	$2s2p^{5-1}P_1^{o}$	237 950	1 528 080	30				44,52,60°
74.383	$2s2p^5$ $^3\mathrm{P_1^o}$	$2p^{6-1}S_0$	1 202 170	2 546 610	1				60
65.43	$2s^22p^4\ ^3{ m P}_2$	$2s2p^{5-1}P_{1}^{\circ}$	0	1 528 080	2				44°,60 [△] ,84

Cu xxiii

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1691.0	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s^22p^3$ 2 D $^{\circ}_{5/2}$	170 860	230 070		М1	1.49+3	С	83°,88*
585.0	$2s^22p^3$ $^4S^o_{3/2}$	$2s^22p^3$ 2 D $^o_{3/2}$	0	170 860		M1	6.40+4	D	13°,88*
434.8	3/2	5/2	0	230 070		M1	7.98 + 3	D	13°,88*
111.071	$2s^22p^3$ ${}^4S^{o}_{3/2}$	$2s2p^{4} {}^{4}P_{5/2}$	0	900 330	4bl				60
98.848	3/2	3/2	0	1 011 650	4bl				52,60°
96.485	3/2	1/2	0	1 036 430	70				52,60°
108.519	$2s^22p^3$ $^2P^o_{1/2}$	$2s2p^{4-2}D_{3/2}$	327 900	1 249 110	1				60
99.243	$2s2p^4\ ^2\mathrm{P}_{3/2}$	$2p^5\ ^2\mathrm{P}^{\circ}_{1/2}$	1 485 340	2 492 890	4bl				60
96.845	$2s2p^{4-2}D_{5/2}$	$2p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	1 283 940	2 316 720	5bl				52,60°
93.667	3/2	3/2	1 249 110	2 316 720	2				60
80.400	3/2	1/2	1 249 110	2 492 890	1				60
94.888	$2s^22p^3$ $^2D_{5/2}^{\circ}$	$2s2p^{4-2}D_{5/2}$	230 070	1 283 940	10bl				44,52,60°
92.728	3/2	3/2	170 860	1 249 110	5				44,52,60°
91.000	$2s^22p^3$ 2 P $^{\alpha}_{1/2}$	$2s2p^4$ 2 S _{1/2}	327 900	1 427 080	5				52,60°
83.340	$2s^22p^3\ ^2\mathrm{P}^{o}_{3/2}$	$2s2p^4\ ^2{ m P}_{1/2}$	446 780	1 646 680	15bl				44, 52, 60°
80.057	$2s^22p^3$ $^4\mathrm{S}^o_{3/2}$	$2s2p^{4-2}D_{3/2}$	0	1 249 110	1				60
79.664	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s2p^{4} {}^{2}P_{3/2}$	230 070	1 485 340	20				44, 52, 60°
76.076	3/2	3/2	170 860	1 485 340	1				60
67.759	3/2	1/2	170 860	1 646 680	2				60
79.615	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s2p^4\ ^2{ m S}_{1/2}$	170 860	1 427 080	5				52,60°
70.073	$2s^22p^3$ $^4S_{3/2}^o$	$2s2p^4$ 2 S _{1/2}	0	1 427 080	1				60

Cu xxiv

Wave- length (Å)	Classificatio	on Upper	Energy Lev	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
	2 2 2	2 2 2							
1776.0	$2s^22p^2$ ³ P ₁	$2s^22p^2$ 3 P ₂	132 120	188 430		M1	1.57 + 3	$^{\rm C}$	13°,88*
756.9	0	1	0	132 120		M1	3.55 + 4	В	13°,88*
540.0	$2s^22p^2$ 3 P $_2$	$2s^22p^{2-1}D_2$	188 430	373 620		M1	5.78+4	D	13°,88*
414.1	1	2	132 120	373 620		M1	6.53 + 4	Ď	13°,88*
120.442	$2s^22p^2\ ^3{ m P}_2$	$2s2p^3\ ^3{ m D}_3^{\circ}$	188 430	1 010 700	0				
119.572	28 2p 1 2	-	132 120	1 018 700 968 440	2 3				60
104.292	0	2	132 120	958 850	3				60
101.202	O	1	U	900 000	3				60
105.859	$2s2p^{3-1}P_1^{o}$	$2p^{4} {}^{1}S_{0}$	1 573 500	2 518 200	2				60
105.760	$2s2p^3$ 3 P $_2^{\circ}$	$2p^{4-3}P_1$	1 196 100	2 141 600	4				
100.637	0	2p 1 1	1 147 900	2 141 600	3				60 60
	_	1	1 147 500	2 141 000	3				00
103.702	$2s2p^{3-3}D_3^{o}$	$2p^4 \ ^3P_2$	1 018 700	1 983 000	7				60
98.576	2	-7 - 2	968 440	1 983 000	i				60
97.639	ı	2	958 850	1 983 000	3				60
87.055	1	0	958 850	2 107 500	2				60
85.226	2	1	968 440	2 141 600	4				60
99.243	$2s^22p^2$ 3P_2	$2s2p^3$ $^3P_2^{\circ}$	188 430	1 196 100	4bl				50.000
98.444	23 2p 1 2	-	132 120	1 147 900	1				52,60°
96.845	1	0	132 120	1 164 700	5bl				60 60
		1	102 120	1 104 100	001				00
96.930	$2s^22p^{2-1}D_2$	$2s2p^{3-1}D_2^{\circ}$	373 620	1 404 900	8				60
		-							
94.888	$2s^22p^{2-1}S_0$	$2s2p^{3-1}P_1^{o}$	519 650	1 573 500	10bl				60
87.128	$2s^22p^2$ ³ P ₂	$2s2p^3$ ${}^3{ m S}_1^{ m o}$	188 430	1 335 700	7				52,60°
83.084	20 2p 12	2329 51	132 120	1 335 700	i				52,60°
	1	1	132 120	1 333 100					52,00
83.340	$2s^22p^{2-1}D_2$	$2s2p^{3-1}P_1^{o}$	373 620	1 573 500	15bl				60
		-		2 5.5 500	1001				00
82.195	$2s^22p^2$ 3P_2	$2s2p^{3-1}D_2^{\circ}$	188 430	1 404 900	4				60

Cu xxv

Wave-	Classification		Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
522.8	$2s^22p\ ^2P_{1/2}^{o}$	$2s^22p\ ^2{ m P}_{3/2}^{\circ}$	0	191 280		Mı	6.26+4	В	13°,88*
117.507	$2s2p^2 {}^4P_{5/2}$	$2p^{3} {}^{4}S_{3/2}^{\circ}$	662 770+x	1 513 780+x	3				60
107.659	3/2	3/2	584 920+x	1 513 780+x	3				60
97.272	1/2	3/2	485 730+x	1 513 780+x	3				60

Cu xxvi

Wave-	Classification		Energy Levels (cm ⁻¹) pper		Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					<u>-</u>		
648.0	$1s^2 2s 2p$ 3 P $_1^{\circ}$	$1s^2 2s 2p \ ^3P_2^o$	438 970	593 290		M1	4.74+4	C	13°,88*
227.808	$1s^22s^2$	$1s^2 2s2p$ $^3P_1^{\circ}$	0	438 970					13,62°
173.34	$1s^2 2s 2p^{-1} P_1^{\circ}$	$1s^22p^{2-1}D_2$	899 390	1 477 200					63
158.70 152.29 145.70 127.48 120.56 119.00 122.58	$1s^2 2s2p\ ^3 ext{P}_2^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$1s^22p^2$ 3P_1 0 0 2 1 1 2 2 2 1 2 2 2 3 3 3 3 3 3 3 3	593 290 438 970 593 290 438 970 393 900 438 970 899 390 593 290	1 223 400 1 095 600 1 279 600 1 223 400 1 223 400 1 279 600 1 716 100					63 63 63 63 63 63
111.186	$1s^22s^2$	$1s^2 2s2p^{-1} P_1^o$	0	899 390	10bl				13,62°,63,64
27.395 27.013 ^L	$1s^22p3d$ $^3\mathrm{F}_3^\circ$	$1s^2 2p4f \ ^3{ m G_4} \ _5$	12 156 000	15 806 000	1 1				64 64
27.182	$1s^2 2s3d\ ^3{ m D}_3$	$1s^2 2s4f \ ^3F_4^{\circ}$	11 672 000	15 351 000	1				64

Cu xxvii

Wave-	Classifi		Energy Levels (cm ⁻¹)		Int.	gf	$A (s^{-1})$	Acc.	References	
length (Å)	Lower	Upper								
184.142 ^C	$1s^22p\ ^2P_{1/2}^{\circ}$	$1s^2 2p \ ^2P_{3/2}^{\circ}$	444 861	651 412		M1				
224.789 ^S	$1s^2 2s ^2 S_{1/2}$	$1s^2 2p ^2P_{1/2}^o$	0	444 861					13,66,67,68,69°	
153.513 ^S	1/2	3/2	0	651 412	4				$13,64^{\triangle},66,67,68,69$	
54.748 ^C	$1s^24p\ ^2{ m P}_{3/2}^{ m o}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[15 829 290]	[17 655 830]						
54.624 ^C	3/2	5/2	[15 829 290]	[17 660 000]						
53.986 ^C	1/2	3/2	[15 803 510]	[17 655 830]						
25.9547 ^C	$1s^23p^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	[11 898 880]	[15 751 740]						
25.5492 ^C	1/2	1/2	[11 837 720]	[15 751 740]						
25.8764 ^C	$1s^2 3d^2 D_{5/2}$	$1s^24p\ ^2P_{3/2}^o$	[11 964 770]	[15 829 290]	1				64 [△]	
25.646	$1s^2 3d\ ^2 \mathrm{D}_{5/2}$	$1s^24f ^2F^{o}_{7/2}$	[11 964 770]	15 864 000	7				64	
25.543	3/2	5/2	[11 945 450]	15 860 400	6				64	
25.3163 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^24d\ ^2\mathrm{D}_{3/2}$	[11 898 880]	[15 848 900]						
25.2641 ^C	3/2	5/2	[11 898 880]	[15 857 060]	3				64△	
24.9303 ^C	1/2	3/2	[11 837 720]	[15 848 900]	1				64△	
24.4551 ^C	$1s^23s$ 2 S _{1/2}	$1s^24p\ ^2P_{1/2}^{\circ}$	[11 714 380]	[15 803 510]						
$24.3019^{\rm C}$	1/2	3/2	[11 714 380]	[15 829 290]	1				64△	
17.5214 ^C	$1s^23p ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25s$ $^2S_{1/2}$	[11 898 880]	[17 606 200]						
17.3356 ^C	1/2	1/2	[11 837 720]	[17 606 200]						
17.3703 ^C	$1s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^25d$ $^2D_{3/2}$	[11 898 880]	[17 655 830]						
17.3577 ^C	3/2	5/2	[11 898 880]	[17 660 000]						
17.1877 ^C	1/2	3/2	[11 837 720]	[17 655 830]						
$9.03917^{\rm C}$	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^23s$ $^2S_{1/2}$	651 412	[11 714 380]	10bl				$64^{\Delta}, 70$	
8.87349^{C}	1/2	1/2	444 861	[11 714 380]	2bl				64 [△] , 70	
8.85423 ^C	$1s^22p\ ^2{ m P}_{3/2}^{\circ}$	$1s^2 3d ^2 D_{3/2}$	651 412	[11 945 450]	2				64 [△] , 70	
8.83911 ^C	3/2	5/2	651 412	[11 964 770]	25				$64^{\triangle}, 70$	
8.69521 ^C	1/2	3/2	444 861	[11 945 450]	15				64^{\triangle} , 70	
8.44757 ^C	$1s^22s$ 2 S _{1/2}	$1s^23p^{-2}P_{1/2}^{o}$	0	[11 837 720]	10				64^{\triangle} , 70	
8.40415^{C}	1/2	3/2	0	[11 898 880]	20				$64^{ riangle}$, 70	
6.62237^{C}	$1s^22p^{-2}P_{3/2}^{o}$	$1s^24s$ $^2S_{1/2}$	651 412	[15 751 740]					70	
6.53301 ^C	1/2	1/2	444 861	[15 751 740]					70	
6.58003 ^C	$1s^22p$ 2 P $^{\circ}_{3/2}$	$1s^24d\ ^2{ m D}_{3/2}$	651 412	[15 848 900]					70	
6.57650 ^C	·	•	651 412	[15 857 060]					70	
6.49180 ^C	3/2 1/2	5/2 3/2	444 861	[15 848 900]					70	
6.32771 ^C	$1s^2 2s ^2\mathrm{S}_{1/2}$	$1s^24p\ ^2\mathrm{P}_{1/2}^{\mathrm{o}}$	0	[15 803 510]					70	
6.31740 ^C	1/2	3/2	0	[15 829 290]					70	
5.89804 ^C	$1s^2 2p \ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^25s$ $^2S_{1/2}$	651 412	[17 606 200]					70	
5.82705 ^C	10 27 1 3/2	1/2	444 861	[17 606 200]					70	
5.88082 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	651 412	[17 655 830]					70	
5.87938 ^C	3/2 3/2	5/2	651 412	[17 660 000]					70	
5.81025 ^C	1/2	3/2	444 861	[17 655 830]					70	
5.67131 ^C	$1s^22s\ ^2\mathrm{S}_{1/2}$	$1s^25p\ ^2\mathrm{P}^{\circ}_{1/2}$	0	[17 632 620]					70	
5.66707 ^C	1/2	3/2	0	[17 645 800]					70	
1.5136 ^C	$1s^22p\ ^2P_{3/2}^{o}$	$1s2s^2$ 2 S _{1/2}	651 412	[66 717 000]					70	
1.5090^{C}	1/2	1/2	444 861	[66 717 000]					70	
1.4985 ^C	$1s^2 2p ^2\mathrm{P}^{\circ}_{3/2}$	$1s(^2S)2p^2(^3P)^{-4}P_{1/2}$	651 412	[67 382 000]					70	
1.4959 ^C	•	•	651 412	[67 498 000]					70 70	
1.4945 ^C	3/2 3/2	3/2 5/2	651 412	[67 561 000]					70 70	
1.4940 ^C	1/2	1/2	444 861	[67 382 000]					70	
1.4914 ^C	1/2	3/2	444 861	[67 498 000]					70	

Cu XXVII - Continued

Wave-	Classification		Energy Lev	Int.	qf	$A (s^{-1})$	Acc.	References	
length (Å)	Lower	Upper							
1.4963 ^C	$1s^2 2s \ ^2 \mathrm{S}_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{\circ}) \ ^{4}P_{1/2}^{\circ}$	0	[66 832 000]					70
1.4953 ^C	1/2	3/2	0	[66 876 000]					70
1.4911 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	651 412	[67 712 000]					70
$1.4867^{\mathbf{C}}$	1/2	1/2	444 861	[67 712 000]					70
1.4860 ^C	3/2	3/2	651 412	[67 945 000]					70
1.4815 ^C	1/2	3/2	444 861	[67 945 000]					70
$1.4910^{\rm C}$	$1s^22p^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^1D)^{-2}D_{3/2}$	651 412	[67 716 000]					70
1.4889 ^C	3/2	5/2	651 412	[67 814 000]					70
1.4866 ^C	1/2	3/2	444 861	[67 716 000]					70
1.4853 ^C	$1s^22s^{-2}S_{1/2}$	$1s(^2S)2s2p(^3P^o)^{-2}P^o_{3/2}$	0	[67 326 000]					70
1.4811 ^C	1/2	1/2	0	[67 517 000]					70
1.4825 ^C	$1s^2 2s^{-2} S_{1/2}$	$1s(^2S)2s2p(^1P^o)^2P_{1/2}^o$	0	[67 454 000]					70
1.4817 ^C	1/2	3/2	0	[67 490 000]					70
1.4824 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^1S) ^2S_{1/2}$	651 412	[68 109 000]					70
1.4779 ^C	1/2	1/2	444 861	[68 109 000]					70
1.272	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s2p3p\ ^{2}\mathrm{D}_{5/2}$	651 412	79 260 000					71
1.213	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s2p4p\ ^{2}\mathrm{D}_{5/2}$	651 412	83 090 000					71

Cu xxviii

Wave- length (Å)	Classificati Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int. gj	$A (s^{-1})$	Acc.	References
5200 ^C	$1s4p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[83 812 400]	[83 828 600]				-
940 ^C	2	3	[83 812 400]	[83 837 800]				
2440 ^C		2	[83 787 700]	[83 828 600]				
2410 ^C	1		[83 787 700]	[83 829 100]				
280 ^C	1	1						
280	0	1	[83 785 300]	[83 829 100]				
C	30	350	(an =0.1.00a)	[0= === ===]				
900 ^C	$1s5s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}\mathrm{P}_{1}^{o}$	[85 734 300]	[85 751 300]				
380 ^C	1	2	[85 734 300]	[85 763 900]				
	_							
1440 ^C	$1s5s {}^{1}S_{0}$	$1s5p\ ^{1}{ m P}_{1}^{ m o}$	[85 750 700]	[85 773 200]				
			•					
3000 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s4p\ ^{3}\mathrm{P_{1}^{o}}$	[83 754 400]	[83 787 700]				
1720 ^C	1	2	[83 754 400]	[83 812 400]				
			` .					
270 ^C	$1s4s$ $^{1}S_{0}$	$1s4p\ ^{1}P_{1}^{o}$	[83 786 500]	[83 830 600]				
				()				
.260 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s3p\ ^{3}P_{1}^{o}$	[79 453 200]	[79 532 500]				
725 ^C				[79 591 200]				
120	1	2	[79 453 200]	[19 391 200]				
962 ^C	$1s3s\ ^{1}\mathrm{S}_{0}$	1-0 1D0	[70 700 000]	[20 004 000]				
304	1808 50	$1s3p^{-1}P_{1}^{o}$	[79 530 300]	[79 634 300]				
373.45 ^C	1.0.30	1-0 3-00	[67 005 000]	[67 000 170]				
	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{3}P_{0}^{\alpha}$	[67 035 380]	[67 303 150]				
347.74 ^C	1	1	[67 035 380]	[67 322 950]				
206.70 ^C	1	2	[67 035 380]	[67 519 170]				
~	_	-		_				
283.20 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p\ ^{1}P_{1}^{o}$	$[67 \ 324 \ 970]$	[67 678 080]				
_			•	-				
155.59 ^C	$1s2s\ ^{3}\mathrm{S}_{1}$	$1s2p^{-1}P_{1}^{o}$	[67 035 380]	[67 678 080]				
		•	•	` .				
52.08^{C}	$1s4p^{-1}P_{1}^{o}$	$1s5s$ $^{1}S_{0}$	[83 830 600]	[85 750 700]				
	_	· ·		ţ				
52.03^{C}	$1s4p$ $^3\mathrm{P}_2^\mathrm{o}$	$1s5s\ ^{3}\mathrm{S}_{1}$	[83 812 400]	[85 734 300]				
51.37 ^C	1	•	[83 787 700]	[85 734 300]				
01.01	1	1	[00 101 100]	[00 134 300]				
50.33 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	$1s5p^{-1}P_{1}^{o}$	[83 786 500]	[85 772 200]				
00.00	1343 50	1309 11	[03 700 300]	[85 773 200]				
50.08 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}P_{1}^{o}$	[00 754 400]	[05 551 200]				
30.00	1343 31	180p F 1	[83 754 400]	[85 751 300]				
24.084 ^C	$1s3p\ ^{1}P_{1}^{\circ}$	1-4-10	[70 004 000]	[00 #00 #00]				
24.064	issp r ₁	$1s4s {}^{1}S_{0}$	[79 634 300]	[83 786 500]				
24.070 ^C	$1s3d$ $^3\mathrm{D}_1$	3 A 3 DO	[70 000 000]	[00 =0= 000]				
	$1s3a$ D_1	$1s4p\ ^{3}P_{0}^{\circ}$	[79 630 800]	[83 785 300]				
24.056 ^C	1	1	[79 630 800]	[83 787 700]				
24.050 ^C	2	1	[79 629 700]	[83 787 700]				
24.033^{C}	3	2	[79 651 400]	[83 812 400]				
23.908^{C}	2	2	[79 629 700]	[83 812 400]				
		-	[[]				
24.020^{C}	$1s3p\ ^{3}P_{2}^{o}$	$1s4s\ ^{3}S_{1}$	[79 591 200]	[83 754 400]				
23.686 ^C	1		[79 532 500]	[83 754 400]				
20.000	1	1	[10 002 000]	[00 /04 400]				
23.944^{C}	$1s3d$ $^{1}\mathrm{D}_{2}$	104 100	[70 654 200]	[02 000 000]				
20.344	183a D2	$1s4p$ $^{1}P_{1}^{o}$	[79 654 200]	[83 830 600]				
23.783 ^C	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	1-4:15	[70 004 000]	[00.000.000]				
43.103	$1sop - P_1$	$1s4d$ $^{1}\mathrm{D}_{2}$	[79 634 300]	[83 838 900]				
on rooC	1.9 300	3~	[80 802 02	fon				
23.599 ^C	$1s3p\ ^{3}P_{2}^{o}$	$1s4d$ $^3\mathrm{D}_2$	[79 591 200]	[83 828 600]				
23.548 ^C	2	3	[79 591 200]	[83 837 800]				
23.277 ^C	1	2	[79 532 500]	[83 828 600]				
23.274 ^C	1	1	[79 532 500]	[83 829 100]				
23.244^{C}	0	1	[79 527 000]	[83 829 100]				
23.254^{C}	$1s3s^{-1}S_0$	1s4p 1P1	[79 530 300]	[83 830 600]				
		-r - 1	500]	(-= 550 550)				
23.071^{C}	$1s3s$ $^3\mathrm{S}_1$	$1s4p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	[79 453 200]	[83 787 700]				
22.940 ^C								
24.070	1	2	[79 453 200]	[83 812 400]				
16.349 ^C	$1s3p$ $^{1}\mathrm{P}_{1}^{o}$	t.F. 10	[70 624 000]	[ar == 0 ====				
10.349	183p P ₁	$1s5s {}^{1}S_{0}$	[79 634 300]	[85 750 700]				
10.0=-0	3-0		7					
16.278 ^C	$1s3p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s5s {}^{3}S_{1}$	[79 591 200]	[85 734 300]				
16.124^{C}	1	1	[79 532 500]	[85 734 300]				
_			-					
16.018 ^C	$1s3s$ ${}^{1}S_{0}$	$1s5p\ ^{1}P_{1}^{o}$	[79 530 300]	[85 773 200				
		_	• 1		•			
15.878 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	[79 453 200]	[85 751 300]	ł			
15.846 ^C	1	2	[79 453 200]	[85 763 900				
	1	າ	115 400 2001	100 100 900				

Cu xxviii - Continued

Wave- ength (Å)	Classificat Lower	ion Upper	Energy Lev	rels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
o topoC	. o lpo	- 10		······································				
8.4372 ^C	$1s2p\ ^{1}P_{1}^{o}$	$1s3s$ $^{1}S_{0}$	[67 678 080]	[79 530 300]				
8.3794 ^C	$1s2p$ $^3P_2^{o}$	$1s3s\ ^{3}S_{1}$	[67 519 170]	[79 453 200]				
8.2439 ^C	1	1	[67 322 950]	[79 453 200]				
		•	[()				
8.3499^{C}	$1s2p\ ^{1}\mathrm{P_{1}^{o}}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[67 678 080]	[79 654 200]				
	3	•						
8.2573 ^C	$1s2p$ $^3P_2^{\circ}$	$1s3d$ 3D_2	[67 519 170]	[79 629 700]				
8.2425 ^C	2	3	[67 519 170]	[79 651 400]				
8.1256 ^C	1	2	[67 322 950]	[79 629 700]				
8.1249 ^C 8.1118 ^C	1	1	[67 322 950]	[79 630 800]				
0.1110	0	1	[67 303 150]	[79 630 800]				
8.1239^{C}	$1s2s\ ^{1}\mathrm{S}_{0}$	$1s3p\ ^{1}\mathrm{P_{1}^{o}}$	[67 324 970]	[79 634 300]				
		_	(4. 322 3.0)	[.0 001 000]				
8.0018 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s3p\ ^{3}P_{1}^{o}$	[67 035 380]	[79 532 500]				
7.9644^{C}	1	2	[67 035 380]	[79 591 200]				
C		1 -						
6.2079 ^C	$1s2p\ ^{1}P_{1}^{o}$	$1s4s^{-1}S_0$	[67 678 080]	[83 786 500]				
6.1878 ^C	$1s2p\ ^{1}P_{1}^{o}$	$1s4d~^{1}\mathrm{D}_{2}$	[67 670 000]	[000 000 000]				
0.1070	rszp r ₁	184 <i>a</i> D ₂	[67 678 080]	[83 838 900]				
6.1594 ^C	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s4s$ $^3\mathrm{S}_1$	[67 519 170]	[83 754 400]				
6.0859^{C}	1	1	[67 322 950]	[83 754 400]				
		•	[]	[00 .01 100]				
$6.1314^{ m C}$	$1s2p\ ^{3}P_{2}^{o}$	$1s4d$ $^3\mathrm{D}_2$	[67 519 170]	[83 828 600]				
6.1280^{C}	2	3	[67 519 170]	[83 837 800]				
6.0585 ^C	1	2	[67 322 950]	[83 828 600]				
6.0583 ^C	1	1	[67 322 950]	[83 829 100]				
6.0511 ^C	o	1	[67 303 150]	[83 829 100]				
6.0585 ^C	$1s2s^{-1}S_0$	150	fam an , and					
0.0585	1828 -50	$1s4p\ ^{1}P_{1}^{o}$	[67 324 970]	[83 830 600]				
5.9693 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s4p\ ^{3}P_{1}^{o}$	[67 035 380]	[83 787 700]				
5.9605 ^C	1 1020	1349 11	[67 035 380]	[83 812 400]				
	*	_	[01 000 000]	[03 012 400]				
5.5332^{C}	$1s2p^{-1}P_{1}^{o}$	$1s5s {}^{1}S_{0}$	[67 678 080]	[85 750 700]				
0	•		•	,				
5.4899 ^C	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$1s5s\ ^{3}\mathrm{S}_{1}$	$[67\ 519\ 170]$	[85 734 300]				
5.4314 ^C	1	1	[67 322 950]	[85 734 300]				
5.4206 ^C	$1s2s\ ^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{o}$	[67 224 070]	[er 772 200]				
3.4200	1828 30	185p F ₁	[67 324 970]	[85 773 200]				
$5.3430^{\rm C}$	$1s2s\ ^{3}\mathrm{S}_{1}$	$1s5p^{-3}P_{1}^{o}$	[67 035 380]	[85 751 300]				
5.3395^{C}	1	2	[67 035 380]	[85 763 900]				
		_		11				
1.491750^{C}	$1s^{2}$ $^{1}S_{0}$	$1s2s\ ^{3}S_{1}$	0	[67 035 380]	M	l		
C	9.1.	•		-				
1.485378 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^{3}P_{1}^{o}$	0	[67 322 950]				71,73
1.481061°	О	2	0	[67 519 170]				73
1.477583 ^C	$1s^{2}$ $^{1}S_{0}$	1s2p 1P1	0	[67 670 000]				
1.477000	13 50	182p F ₁	U	[67 678 080]				71,72,73,85,86,8
1.4518^{C}	$1s2p^{-1}P_1^o$	$2s^{2}$ $^{1}S_{0}$	[67 678 080]	[136 557 000]				70
			[0. 0.0 000]	[100 001 000]				70
1.4445 ^C	$1s2p\ ^{1}P_{1}^{o}$	$2p^2 {}^3P_0$	[67 678 080]	[136 904 000]				70
1.4416 ^C	1	1	[67 678 080]	[137 042 000]				70
1.4403^{C}	1	2	[67 678 080]	[137 106 000]				70
1.4444 ^C	3.00	. 2 10	f					
1.4444	$1s2p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	$2s^{2}$ 1 S ₀	$[67\ 322\ 950]$	[136 557 000]				70
1.4426 ^C	$1s2s\ ^{1}\mathrm{S}_{0}$	$2s2p\ ^{3}P_{1}^{o}$	[67 324 970]	[126 644 000]				70
1.4420	1828 50	282p F 1	[01 324 910]	[136 644 000]				70
1.4383 ^C	$1s2p\ ^{3}P_{2}^{\circ}$	$2p^2 \ ^3P_1$	[67 519 170]	[137 042 000]				70
1.4372 ^C	1	-r · 1	[67 322 950]	[136 904 000]				70
1.4370 ^C	2	2	[67 519 170]	[137 106 000]				70
1.4344 ^C	1	1	[67 322 950]	[137 100 000]				70
1.4340^{C}	0	1	[67 303 150]	[137 042 000]				70
1.4331 ^C	1	2	[67 322 950]	[137 106 000]				70
			. ,					· ·
1.4377^{C}	$1s2s$ $^3\mathrm{S}_1$	$2s2p$ $^3P_0^{\circ}$	[67 035 380]	[136 591 000]				70
		- 0						
1.4366 ^C 1.4326 ^C	1	1	[67 035 380]	[136 644 000]				70

Cu XXVIII - Continued

Wave- length (Å)	Classifica Lower	ation Upper	Energy Lev	rels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
								
1.4353 ^C	$1s2p^{-1}P_1^o$	$2p^{2-1}D_2$	[67 678 080]	[137 348 000]				70,73
1.4321 ^C	$1s2s^{-1}S_0$	$2s2p$ $^{1}\mathrm{P_{1}^{o}}$	[67 324 970]	[137 152 000]				70
1.4320 ^C	$1s2p$ $^3\mathrm{P_2^o}$	$2p^{2-1}D_2$	[67 519 170]	[137 348 000]				70
1.4282^{C}	1	2	[67 322 950]	[137 348 000]				70
$1.4293^{ m C}$	$1s2p$ $^{1}P_{1}^{\circ}$	$2p^{2}$ 1 S ₀	[67 678 080]	[137 639 000]				70,73
1.4262 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p\ ^1\mathrm{P_1^o}$	[67 035 380]	[137 152 000]				70
1.4222^{C}	$1s2p$ $^3P_1^{\circ}$	$2p^2$ 1S_0	[67 322 950]	[137 639 000]				70
1.25734 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^3P_1^{\circ}$	0	[79 532 500]				71
$1.25574^{\rm C}$	$1s^{2}$ 1 S ₀	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[79 634 300]				71
1.19349 ^C	$1s^{2}$ $^{1}S_{0}$	$1s4p$ $^3\mathrm{P}_1^{\circ}$	0	[83 787 700]				71
1.19288 ^C	$1s^{2} {}^{1}S_{0}$	1s4p 1P ₁ °	0	[83 830 600]				71
1.16616 ^C	$1s^{2}$ 1 S ₀	$1s5p$ $^3\mathrm{P}_1^\circ$	0	[85 751 300]				71
$1.16587^{\rm C}$	$1s^2$ 1 S ₀	$1s5p\ ^{1}P_{1}^{o}$	0	[85 773 200]				71

Cu xxix

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
1300 ^C	$3s\ ^2{ m S}_{1/2}$	$3p\ ^{2}P_{3/2}^{\circ}$	[82 929 560]	[83 006 500]			
1269 ^C	$3p^2 P_{1/2}^o$	$3d^{2}\mathrm{D}_{3/2}$	[82 927 480]	[83 006 310]			
385.06 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	[69 902 760]	[70 162 460]			
22.2471 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$4f\ ^{2}\mathrm{F}_{7/2}^{\circ}$	[83 032 080]	[87 527 040]			
22.1477 ^C	$3p^{2}P_{3/2}^{o}$	$4d~^2\mathrm{D}_{5/2}$	[83 006 500]	[87 521 640]			
21.8281 ^C	$3s\ ^2{ m S}_{1/2}$	$4p\ ^2{ m P}_{3/2}^{ m o}$	[82 929 560]	[87 510 820]			
15.2157 ^C	$3d^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{\circ}$	[83 032 080]	[89 604 250]			
15.1630 ^C	$3p$ $^2P^{\circ}_{3/2}$	$5d^2\mathrm{D}_{5/2}$	[83 006 500]	[89 601 490]			
15.0006 ^C	$3s\ ^2{ m S}_{1/2}$	$5p^{2}P_{3/2}^{\circ}$	[82 929 560]	[89 595 950]			
7.770237 ^C	$2p$ $^2\mathrm{P}^o_{3/2}$	$3d^{2}D_{5/2}$	[70 162 460]	[83 032 080]			
7.631409 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{3/2}^{\circ}$	[69 902 760]	[83 006 500]			
5.760641 ^C	$2p\ ^2{ m P}_{3/2}^{ m o}$	$4d~^2\mathrm{D}_{5/2}$	[70 162 460]	[87 521 640]			
5.679217 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	[69 902 760]	[87 510 820]			
5.144290 ^C	$2p\ ^2{ m P}_{3/2}^{ m o}$	$5d^{2}\mathrm{D}_{5/2}$	[70 162 460]	[89 601 490]			
5.077897 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$5p\ ^2{ m P}^{ m o}_{3/2}$	[69 902 760]	[89 595 950]			
1.430694 ^C 1.425264 ^C	$1s^{2}S_{1/2}$	$2p\ ^{2}\mathrm{P}_{1/2}^{\circ}$ 3/2	0 0	[69 896 140] [70 162 460]			
1.205873 ^C 1.204725 ^C	1s ² S _{1/2}	$3p\ ^{2}\mathrm{P}_{1/2}^{\circ}$	0 0	[82 927 480] [83 006 500]			
1.142716 ^C	$1s$ $^2\mathrm{S}_{1/2}$	$4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$. 0	[87 510 820]			
1.116122 ^C	$1s^{-2}S_{1/2}$	$5p^{2}P_{3/2}^{o}$	0	[89 595 950]			

2.9.3. References for Comments and Tables for Cu Ions

- B. C. Fawcett, A. Ridgeley, and J. O. Ekberg, Phys. Scr. 21, 155 (1980).
- [2] E. Alexander, U. Feldman, B. S. Fraenkel, and S. Hoory, J. Opt. Soc. Am. 56, 651 (1966).
- [3] M. Even-Zohar and B. S. Fraenkel, J. Opt. Soc. Am. 58, 1420 (1968).
- [4] W. Lotz, J. Opt. Soc. Am 57, 873 (1967).
- [5] S. Goldsmith and B. S. Fraenkel, Astrophys. J. 161, 317 (1970).
- [6] A. A. Ramonas and A. N. Ryabtsev, Opt. Spectrosc. 48, 348 (1980).
- [7] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 142 (1989).
- [8] E. Alexander, U. Feldman, and B. S. Fraenkel, J. Opt. Soc. Am. 55, 650 (1965).
- [9] S. Hoory, S. Goldsmith, B. S. Fraenkel, and U. Feldman, Astrophys. J. 160, 781 (1970).
- [10] J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 19, 527 (1990).
- [11] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1927 (1987).
- [12] M. Swartz, S. O. Kastner, L. Goldsmith, and W. M. Neupert, J. Opt. Soc. Am. 66, 240 (1976).
- [13] E. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A 25, 2293 (1982).
- [14] B. Denne, E. Hinnov, S. Suckewer, and S. Cohen, Phys. Rev. A 28, 206 (1983).
- [15] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1444 (1989).
- [16] B. C. Fawcett and R. W. Hayes, J. Opt. Soc. Am. 65, 623 (1975).
- [17] J. R. Roberts, T. L. Pittman, J. Sugar, V. Kaufman, and W. L. Rowan, Phys. Rev. A 35, 2591 (1987).
- [18] J. Sugar and V. Kaufman, J. Opt. Soc. Am. B 3, 704 (1986).
- [19] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 7, 1169 (1990).
- [20] B. Denne, E. Hinnov, S. Suckewer, and J. Timberlake, J. Opt. Soc. Am. B 1, 296 (1984).
- [21] J. Sugar and V. Kaufman, J. Opt. Soc. Am. B 4, 2010 (1987).
- [22] R. Hutton, C. Jupén, E. Träbert, and P. H. Heckmann, Nucl. Instrum. Meth. B 23, 297 (1987).
- [23] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 8, 22 (1991).
- [24] R. U. Datla, J. R. Roberts, N. Woodward, S. Lippman, and W. L. Rowan, Phys. Rev. A 40, 1484 (1989).
- [25] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 7, 152 (1990).
- [26] E. Träbert, Z. Phys. D 2, 213 (1986).
- [27] E. Träbert, R. Hutton, and I. Martinson, Z. Phys. D 5, 125 (1987).
- [28] E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B 5, 2173 (1988).
- [29] M. A. Khan, Opt. Commun. 27, 242 (1978).
- [30] S. O. Kastner, M. Swartz, A. K. Bhatia, and J. Lapides, J. Opt. Soc. Am. 68, 1558 (1978).
- [31] M. C. Buchet-Poulizac and J. P. Buchet, Nucl. Instrum. Meth. B 31, 182 (1988).
- [32] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 5, 2183 (1988).
- [33] U. Litzén and A. Redfors, Phys. Lett. A 127, 88 (1988).
- [34] M. Finkenthal, E. Hinnov, S. Cohen, and S. Suckewer, Phys. Lett. 91A, 284 (1982).
- [35] J. Sugar and V. Kaufman, J. Opt. Soc. Am. B 3, 1612 (1986).
- [36] J. Sugar, V. Kaufman, P. Indelicato, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1437 (1989).
- [37] U. Litzén and A. Redfors, Phys. Scr. 36, 895 (1987).
- [38] A. Redfors, Phys. Scr. 38, 702 (1988).

- [39] U. Feldman, L. Katz, W. Behring, and L. Cohen, J. Opt. Soc. Am. 61, 91 (1971).
- [40] M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B 4, 1747 (1971).
- [41] E. Ya. Kononov, A. N. Ryabtsev, and S. S. Churilov, Phys. Scr. 19, 328 (1979).
- [42] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [43] C. Jupén, L. Engström, R. Hutton, and E. Träbert, J. Phys. B 21, L347 (1988).
- [44] E. Ya. Kononov, V. I. Kovalev, A. N. Ryabtsev, and S. S. Churilov, Sov. J. Quantum Electron. 7, 111 (1977).
- [45] U. Feldman and L. Cohen, J. Opt. Soc. Am. 57, 1128 (1967).
- [46] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, M. Druetta, S. Martin, and J. F. Wyart, J. Phys. B 20, 1709 (1987).
- [47] U. Feldman, L. Cohen, and M. Swartz, Astrophys. J. 148, 585 (1967).
- [48] U. Feldman and L. Cohen, Astrophys. J. 149, 265 (1967).
- [49] V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19, 11 (1978).
- [50] H. Gordon, M. G. Hobby, and N. J. Peacock, J. Phys. B 13, 1985 (1980).
- [51] R. J. Hutcheon, L. Cooke, M. H. Key, C. L. S. Lewis, and G. E. Bromage, Phys. Scr. 21, 89 (1980).
- [52] W. E. Behring, J. F. Seely, S. Goldsmith, L. Cohen, M. Richardson, and U. Feldman, J. Opt. Soc. Am. B 2, 886 (1985).
- [53] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Opt. Spectrosc. 44, 498 (1978).
- [54] V. A. Boiko, S. A. Pikuz, A. S. Safronova, A. Ya. Faenov, P. O. Bogdanovich, G. V. Merkelis, Z. B. Rudzikas, and S. D. Sadziuviene, J. Phys. B 12, 1927 (1979).
- [55] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, Phys. Scr. 20, 138 (1979).
- [56] R. J. Hutcheon, G. E. Bromage, R. L. Cooke, M. H. Key, and C. L. S. Lewis, J. Phys. B 13, 673 (1980).
- [57] K. T. Cheng, unpublished material (1981).
- [58] W. C. Martin, unpublished material (1982).
- [59] G. V. Peregudov, E. N. Ragozine, I. Yu. Skobelev, A. V. Vino-gradov, and E. A. Yukov, J. Phys. D 11, 2305 (1978).
- [60] J. O. Ekberg, J. F. Seely, C. M. Brown, U. Feldman, M. C. Richardson, and W. E. Behring, J. Opt. Soc. Am. B 4, 420 (1987).
- [61] B. Edlén, Phys. Scr. 28, 483 (1983).
- [62] B. Denne, G. Magyar, and J. Jacquinot, Phys. Rev. A 40, 3702 (1989).
- [63] J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. Desesquelles, M. Druetta, J. P. Grandin, X. Husson, D. Lecler, and H. F. Beyer, Nucl. Instrum. Meth. B 9, 645 (1985).
- [64] C. M. Brown, J. O. Ekberg, U. Feldman, J. F. Seely, M. C. Richardson, F. J. Marshall, and W. E. Behring, J. Opt. Soc. Am. B 4, 533 (1987).
- [65] V. A. Boiko, S. A. Pikuz, U. I. Safronova, and A. Ya. Faenov, J. Phys. B 10, 1253 (1977).
- [66] R. J. Knize, A. T. Ramsey, B. C. Stratton, and J. Timberlake, The Sixth Topical Conference on Atomic Processes in High Temperture Plasmas (1987).
- [67] E. Hinnov, the TFTR Operating Team, B. Denne, and the JET Operating Team, Phys. Rev. A 40, 4357 (1989).
- [68] R. J. Knize, Phys. Rev. A 43, 1637 (1991).
- [69] Y.-K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [70] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [71] E. V. Aglitskii and A. M. Panin, Opt. Spectrosc. 58, 453 (1985).
- [72] E. V. Aglitsky, P. S. Antsiferov, S. L. Mandelstam, A. M. Panin, U. I. Safronova, S. A. Ulitin, and L. A. Vainshtein, Phys. Scr. 38, 136 (1988).

- [73] J. J. Turechek and H. J. Kunze, Z. Phys. A 273, 111 (1975).
- [74] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [75] K. T. Cheng, private communication (1996).
- [76] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [77] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [78] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [79] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).

- [80] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [81] B. Edlén, Z. Phys. 100, 621 (1936).
- [82] U. Feldman, L. Cohen, and M. Swartz, J. Opt. Soc. Am. 57, 535 (1967).
- [83] E. Hinnov, private communication (1985).
- [84] E. Ya. Kononov, A. N. Ryabtsev, U. I. Safronova, and S. S. Churilov, J. Phys. B 9, L477 (1976).
- [85] T. N. Lie and R. C. Elton, Phys. Rev. A 3, 865 (1971).
- [86] S. Morita, J. Phys. Soc. Jpn. 52, 2673 (1983).
- [87] S. Morita and J. Fujita, Nucl. Instrum. Meth. B 9, 713 (1985).
- [88] V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986).

2.10. Krypton

2.10.1. Brief Comments on Each Krypton Ion

Kr v

Ge I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^2$ ³P₀

Ionization energy 521 800 \pm 1600 cm⁻¹ (64.7 \pm 0.2 eV)

The $4s^24p^2-4s^24p4d$ and $4s^24p^2-4s4p^3$ transition arrays were identified by Fawcett and Bromage [1]. They measured 29 lines in the range of 465-811 Å with an uncertainty of ± 0.03 Å. More accurate wavelengths and an extended analysis were given by Trigueiros et al. [2] in the range of 434-910 Å. They increased the identifications to 50 lines, including revisions of classifications of a few lines in Ref. [1]. Observations were made with a theta-pinch plasma source with a measurement uncertainty of ± 0.01 Å. We have adopted their results.

The value for the ionization energy was calculated by Finkelnburg and Humbach [3] by extrapolation of the effective charge on the residual ion.

\mathbf{Kr} VI

Ga I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{-2}\mathsf{P}_{1/2}^{\circ}$

Ionization energy 633 100 \pm 1600 cm⁻¹ (78.5 \pm 0.2 eV)

The $4s^24p-4s4p^2$ and $4s^24p-4s^24d$ transition arrays were identified by Fawcett et~al.~[4] in a Z-pinch plasma source. Trigueiros et~al.~[5] reobserved the spectrum in a wider range of 450-960 Å using a theta-pinch plasma source. They classified the $4s^24d~^2D-4s^25p~^2P^\circ$ doublet in the range of 936-960 Å. Ten lines comprising the $4s^24p~^2P^\circ-4s^24d~^2D,~4s^24p~^2P^\circ-4s4p^2~^2P$ and 2D transitions are taken from Ref. [5]. The uncertainty of their wavelengths is ± 0.01 Å.

Twenty-two emission lines, including intercombination transitions, from the terms of $4s4p^2$ ⁴P, $4p^3$ ⁴S°, ²D°, ²P°, $4s^25s$ ²S, and $4s^24f$ ²F° to lower terms were identified by Tauheed *et al.* [6] in a beam-foil spectrum in the range of 363-1054 Å. The uncertainty of their wavelengths varies from ± 0.2 Å to ± 0.5 Å. The spectrum was observed from 230-2540 Å by Pagan *et al.* [7] with an uncertainty of ± 0.01 to 0.005 Å. New values for the $4s4p^2$ ²S term and the $4s^25p$ ²P°_{1/2,3/2} levels were found, replacing those given in Ref. [5]. The $4s^24f$ ²F°_{5/2,7/2}

levels reported in Ref. [6] were replaced and their designations were changed to $4s4p(^{1}P^{\circ})4d^{2}F^{\circ}$ in accordance with a calculation of the eigenvectors. The value for the $4p^{3}$ $^{2}P_{1/2}^{\circ}$ level given in Ref. [6] was also changed. In addition to these corrections, Pagan et al. [7] identified most of the levels of the 4s4p4d configuration and all but one of 4s4p5s. They have reevaluated all of the energy levels with their new measurements and have given percentage compositions for them.

It should be noted that earlier measurements of Druetta and Buchet [8] and Livingston [9] are less accurate and incompatible with the level scheme adopted here.

Jacquet et al. [10] observed three-electron capture transitions $4s^26g - 4s^27h$ and $4s^26h - 4s^27i$ at 3381.7 Åand 3394.7 Å.

The value for the ionization energy was derived by Finkelnburg and Humbach [3] by extrapolation of the effective charge on the residual ion.

Kr VII

Zn I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^{2-1}S_0$

Ionization energy 895 300 \pm 2400 cm⁻¹ (111.0 \pm 0.3 eV)

The first observation was reported by Fawcett $et\ al.\ [4]$, who identified the $4s^2$ $^1S_0-4s4p$ $^1P_1^\circ$ resonance line at 585.37 Å and the 4s4p $^3P_2^\circ-4p^2$ 3P_2 line at 618.67 Å in a Z-pinch plasma discharge. The analysis was extended by Druetta and Buchet [8], Livingston [9], and Pinnington $et\ al.\ [11]$ in beam-foil experiments and by Trigueiros $et\ al.\ [12]$ using a theta-pinch plasma source. Trigueiros $et\ al.\ [12]$ identified 22 lines as transitions between levels of the $4s^2$, 4s4d, $4p^2$, and 4s4p configurations with an uncertainty of ± 0.01 Å. Their results are given here.

Trigueiros et al. [13] identified 17 new lines in the range of 200 - 2070 Å, comprising the n = 4 - 4, n = 4 - 5, and n = 5-5 transitions, with an uncertainty of ± 0.01 Å. The n = 4 - 5 transitions were also observed by Bouchama et al. [14] in an experiment on electron capture into excited states. Extended analyses were made by Pinnington et al. [15] in a beam-foil experiment. They reobserved the spectrum in the range of 554 - 2080 Å with uncertainties of ± 0.2 Å to ± 0.5 Å. Wavelengths adopted here are taken from Refs. [13], [14], and [15]. Five lines in Ref. [13] from the upper levels 4s5s $^{1}S_{0}$ and 4s5p $^{1}P_{1}^{\circ}$ and $^{3}P_{0}^{\circ}$ at 200.07 Å, 356.33 Å, 704.32 Å, 831.07 Å, and 2068.83 Å have been omitted, because they are inconsistent with the measurements of Bouchama et al. [14] and with those of Pinnington et al. [15] Moreover, the $4s5s\ ^3S_1 - 4s5p\ ^3P_{1,0}^{\circ}$ lines at 1832.5 Å and 1847.5 Å in Ref. [15] disagree by 1.2 Å and 1.3 Å with those calculated from the level values. However, they are retained as tentatively identified lines.

Jacquet et al. [10] observed double-electron capture transitions 4snl - 4sn'l' with $n \ge 6$ in the range of 2494 - 5659 Å. They have been omitted because their classifications are incomplete.

The value for the ionization energy was derived by Finklenburg and Humbach [3] by extrapolation of the effective charge on the residual ion.

Kr VIII

Cu I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s$ $^2S_{1/2}$

Ionization energy 1 014 665 \pm 25 cm⁻¹ (125.8025 \pm 0.003 eV)

The resonance doublet $4s^2S - 4p^2P^\circ$ was first identified by Fawcett et~al.~[4] in a Z-pinch plasma and by Druetta and Buchet [8], who also observed the three lines of the $4p^2P^\circ - 4d^2D$ doublet in a beam-foil spectrum. Livingston et~al.~[16] reobserved the spectrum in the range of 180-2000 Å in a beam-foil experiment. They identified twenty new transitions, including 4d-4f, 4f-5g, 5g-6h, and 6h-7i. The $4p^2P^\circ_{1/2,3/2}-5d^2D^\circ_{3/2,5/2}$ lines at 201.1 Å and 204.9 Å were also identified by McPherson et~al.~[17]. Improved measurements in the range of 288-2000 Å were made by Gallardo et~al.~[18] with a theta-pinch plasma with an uncertainty of ± 0.02 Å. The 5p-6s transition was observed by them and Bouchama et~al.~[14] who also reported the n=4-6 transitions.

Reader et al. [19] provided classifications of the $3d^{10}nl - 3d^{10}nl'$ arrays through 7i, and the $3d^{10}4s - 3d^94s4p$ and $3d^{10}4p - 3d^94p^2$ transitions in the range of 114-700 Å. Their wavelength uncertainty was ± 0.008 Å. They used wavelengths from Gallardo et al. [18] above 1000 Å . We quote their results. Calculated Ritz wavelengths are given for the 5p-6s and 4d-6p lines, because the measured wavelengths [14,18] are poor compared with those calculated from the levels of Reader et al. [19].

In colliding beams of $\mathrm{Kr^{8+}}$ and Li, Jacquet et~al.~[10] observed 46 lines above 1916 Å and identified the lines as $\mathrm{Kr^{7+}}$ due to electron-capture. We adopt all the measurements except for the 7p-7d, $5f~^2\mathrm{F^{\circ}_{7/2}}-6d~^2\mathrm{D_{5/2}}$, and $6d~^2\mathrm{D_{5/2}}-7p~^2\mathrm{P^{\circ}_{3/2}}$ doublets because of deviations greater than 1 Å present between their wavelengths and those calculated from the levels of Reader et~al.~[19].

The value for the ionization energy was derived by Reader $et\ al.$ [19] from the ns and nf series and from polarization formulas.

Kr IX

Ni I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}$ 1S_0

Ionization energy 1 863 000 cm^{-1} (230.9 eV)

The $3d^{10}-3d^94p$, 4f resonance transitions were identified by Fawcett and Gabriel [20] in a theta-pinch plasma. Reader et~al. [19] gave improved measurements for these transitions with an uncertainty of ± 0.005 Å in a low-inductance spark discharge.

The value for the ionization energy was calculated by Kim [21] from observations of the three-member $3d^9nf$ series.

Kr x

Co I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{9}$ $^2D_{5/2}$

Ionization energy 2 163 000 cm^{-1} (268.2 eV)

Fawcett and Gabriel [20] identified five lines as belonging to the $3d^9 - 3d^84p$ array in the range of 99 - 104 Å. Reader et al. [22] classified 44 lines in the range of 91 - 105 Å obtained with a spark discharge as the $3p^63d^9 - 3p^53d^{10}$ and $3p^63d^9 - 3p^63d^84p$ transitions. The uncertainty of their wavelengths is ± 0.005 Å. We quote their results.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xı

Fe I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^8$ 3F_4

Ionization energy 2 486 000 cm^{-1} (308.2 eV)

No wavelengths have been reported for this ion.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XII

Mn I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^7$ $^4F_{9/2}$

Ionization energy 2 824 000 cm^{-1} (350.1 eV)

No wavelengths have been reported for this ion. The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XIII

Cr I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^6$ 5D_4

Ionization energy 3 153 000 cm^{-1} (390.9 eV)

No wavelengths have been reported for this ion. The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XIV

V I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^5$ $^6S_{5/2}$

Ionization energy $3~602~000~cm^{-1}$ (446.6 eV)

No wavelengths have been reported for this ion. The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xv

Ti I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^{4-5}D_0$

Ionization energy $3\ 967\ 000\ cm^{-1}\ (491.8\ eV)$

No wavelengths have been reported for this ion. The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xvi

Sc 1 isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^{3-4}F_{3/2}$

Ionization energy 4 361 000 cm^{-1} (540.7 eV)

No wavelengths have been reported for this ion. The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24]. Kr XVII

Ca I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 4 771 000 cm^{-1} (591.5 eV)

No wavelengths have been reported for this ion.

The value for the ionization energy was calculated with
the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XVIII

K i isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 5 169 000 cm^{-1} (640.9 eV)

The $3p^63d-3p^53d^2$ and $3p^63d-3p^64f$ lines in the ranges of 91.3-93.6 Å and 35.1-35.4 Å, respectively, were first identified by Wyart and the TFR Group [25]. Their tokamak-plasma measurements have an uncertainty of ± 0.015 Å. The spectrum in the range of 92.2-102 Å was reobserved by Kaufman et al. [26] with an uncertainty of ± 0.005 Å in a similar light source. They found four of the seven lines given by Wyart and the TFR Group [25] and identified two new lines at 99.330 Å and 102.001 Å as the $3p^63d$ $^2D_{5/2,3/2}-3p^5(^2P^\circ)3d^2(^1G)$ $^2F_{7/2}^\circ$ and (^3F) $^2F_{5/2}^\circ$ transitions.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XIX

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization energy 6 339 000 cm^{-1} (785.9 eV)

The resonance transitions $3p^6$ $^1\mathrm{S}_0 - 3p^53d$ $^1\mathrm{P}_1^\circ$, $^3\mathrm{D}_1^\circ$ were identified by Wyart and the TFR Group [25] as the lines at 96.263 ± 0.015 Å and 118.063 ± 0.015 Å, observed in a tokamak plasma. Sugar et al. [27] reobserved the lines at 96.238 Å and 118.672 Å with a similar light source. From a plot of transition energy differences between observed and calculated values along the isoelectronic sequence they derived smoothed wavelengths with an uncertainty of ±0.005 Å. We adopt their results.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24]. Kr xx

Cl I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 6 719 000 cm^{-1} (833.0 eV)

Four lines of the $3p^5 - 3p^43d$ array were identified by the TFR Group and Wyart [28] with an uncertainty of ± 0.02 Å. The calculated $^2P^\circ$ ground term was combined with the four lines of the $3p^5 - 3p^43d$ array to obtain the upper levels. Improved measurements were obtained by Kaufman *et al.* [29] with an uncertainty of ± 0.005 Å.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xxi

S I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^4$ ³P₂

Ionization energy 7 129 000 cm^{-1} (883.9 eV)

Six lines of the $3p^4-3p^33d$ array were identified by Kaufman et~al.~[30] with an uncertainty of ± 0.007 Å. They predicted energy levels of the $3p^4$ ground configuration and gave predicted wavelengths of magnetic-dipole transitions: ${}^3P_0-{}^3P_1$, ${}^3P_2-{}^3P_1$, ${}^3P_1-{}^1D_2$, ${}^3P_2-{}^1D_2$, and ${}^3P_1-{}^1S_0$. Roberts et~al.~[31] assigned the line at 1268.7 ± 0.2 Å observed in a tokamak discharge to the ${}^3P_2-{}^3P_1$ transition. The $3p^4$ levels were combined with the six lines of the $3p^4-3p^33d$ array to obtain the upper levels.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xxII

P I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 7 555 000 cm^{-1} (936.7 eV)

Sugar et al. [32] classified six lines of the $3p^3 - 3p^23d$ array, obtained with an uncertainty of ± 0.005 Å in a tokamak discharge. They derived the energy levels of the $3p^3$ ground configuration by interpolation on a curve of calculated minus observed M1 transition energies, and gave a predicted wavelength of 913.1 ± 0.2 Å for the $^2\mathrm{D}^{\circ}_{5/2} - ^2\mathrm{P}^{\circ}_{3/2}$ magnetic-dipole transition. This was found by Roberts et al. [31] at 912.0 ± 1.0 Å. The levels of the $3p^3$ configuration were combined with the classified lines of the $3p^3 - 3p3d$ array to derive the values of the upper levels.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr xxiii

Si I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ ³P₀

Ionization energy 8 047 000 cm^{-1} (997.7 eV)

Roberts et al. [31] observed the $3p^2$ $^3P_1 - ^3P_2$, $^3P_0 - ^3P_1$, and $^3P_1 - ^1D_2$ magnetic-dipole transitions at 3840.9±0.3 Å, 1461.8±0.2 Å, and 853.8±1.0 Å in a tokamak discharge. For the $^3P_0 - ^3P_1$ line, Benjamin et al. [33] obtained the wavelength 1462.65±0.03 Å with the same tokamak.

Four lines of the $3p^2-3p3d$ array were identified by the TFR Group and Wyart [28] in the range of $116-145\,\text{ Å}$. More extensive and accurate measurements were made by Sugar et~al.~[34], who assigned eleven lines to the above array measured with an uncertainty of $\pm 0.005\,\text{ Å}$. Their results are given here. Sugar et~al.~[34] revised the classification of $3p^2~^3P_2-3p3d~^1P_1^\circ$ in Ref. [28] as $3s^23p^2~^3P_2-3s3p^3~^3S_1^\circ$. The $3p^2-3p3d$ array was combined with the $3p^2$ levels to derive the upper levels.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24].

Kr XXIV

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 8 476 000 cm^{-1} (1050.9 eV)

The $3s^23p - 3s^23d$, $3s3p^2$ arrays were identified by Wyart and the TFR Group [25] and the TFR Group and Wyart [28] in a tokamak discharge and by Stewart et al. [35] in a Z-pinch plasma. These transitions, except for the $3s^23p$ $^2P_{1/2}^{\circ} - 3s3p^2$ $^2P_{1/2}$ line at 132.44 ± 0.02 Å, were reobserved by Sugar et al. [36] with an uncertainty of ±0.01 Å. An isoelectronic comparison of the measured wavelengths with Hartree-Fock calculations was made by them, and smoothed wavelengths were derived. We give these results. The smoothed wavelength for the $3s^23p$ $^2P_{1/2}^{\circ} - 3s3p^2$ $^2P_{1/2}$ line is 132.498 Å, which is different by 0.06 Å from the value of the TFR Group and Wyart [28].

Three $3s^23p$ 2 P° $-3s3p^2$ 4 P intercombination transitions were identified by Jupén *et al.* [37] with an uncertainty of ± 0.02 Å using a tokamak light source. The 2 P°_{1/2} $-^4$ P_{1/2} line at 242.56 Å is blended with the Mg-like intercombination transition $3s^2$ 1 S₀ -3s3p 3 P°₁.

The value for the ionization energy was calculated with the Cowan [23] HFR code by Sugar and Musgrove [24]. Kr xxv

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{1}S_0$

Ionization energy 9 287 000 cm⁻¹ (1151.4 eV)

Roberts et al. [31] identified the 3s3p $^3P_1^{\circ} - ^3P_2^{\circ}$ magnetic-dipole transition at 1277.1 ± 1 Å. The value calculated from the levels derived with E1 lines by Sugar et al. [38] is 1275.0 Å.

The first observation of the $3s^2$ $^1S_0 - 3s3p$ $^1P_1^\circ$ transition was reported by Hinnov [39] at 159.0 ± 0.5 Å using a tokamak discharge. Wyart and the TFR Group [25] observed 11 lines of the $3s^2 - 3s3p$, 3s3p - 3s3d, $3s3p - 3p^2$ arrays in the range of 10 - 243 Å. They also observed the $3s^2$ $^1S_0 - 3s4p$ $^1P_1^\circ$ line at 21.840 ± 0.015 Å. The TFR Group and Wyart [28] withdrew the identification of two lines in Ref. [25], 3s3p $^3P_{1,2}^\circ - 3s3d$ 3D_1 line was identified by Stewart et al. [35] in a Z-pinch plasma. Sugar et al. [38] remeasured the $3s^2$ $^1S_0 - 3s3p$ 1A_1 , 3s3p $^3P_2^\circ - 3p^2$ 3P_2 , and 3s3p $^3P_{0,2}^\circ$, $^1P_1^\circ$) -3s3d 3D_1 , 1D_2) lines with an uncertainty of ±0.005 Å in a tokamak discharge. They derived smoothed wavelengths, except for the 3s3p $^3P_0^\circ - 3s3d$ 3D_1 transition, in an isoelectronic comparison with Dirac-Fock calculations.

Churilov et al. [40] analyzed the $3p3d-3d^2$ transitions from the spectrum observed by Stewart et al. [35] in the range of 129.3-246 Å. They included data from Ref. [25]. They identified 35 n=3-3 lines. Seven of them, comprising the 3s3p $^3\mathrm{P}_1^\circ - 3s3d$ $^3\mathrm{D}_2$ line and six $3s3p-3p^2$ lines, were reobserved by Jupén et al. [37], who assigned the line at 129.420 Å to the 3s3p $^3\mathrm{P}_1^\circ - 3s3d$ $^3\mathrm{D}_2$ transition. The uncertainty of their wavelengths is ± 0.02 Å. The 3s3p $^1\mathrm{P}_1^\circ - 3p^2$ $^3\mathrm{P}_2$ line at 217.03 Å has a deviation of ± 0.06 Å from the value calculated with the levels [38].

It should be noted that many wavelengths taken from Ref. [40], especially those of blended lines, exceed the stated uncertainty of ± 0.03 Å, compared with wavelengths calculated from the level values adopted here.

The value for the ionization energy was calculated by Cowan [23].

Kr XXVI

Na i isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^{-2} S_{1/2}$

Ionization energy 9 721 300 \pm 2000 cm⁻¹ (1205.3 \pm 0.3 eV)

Hinnov [39] first identified the 3s - 3p resonance doublet in a tokamak plasma. In addition to this doublet, Wyart and the TFR Group [25] measured 12 new lines,

including the 3p-3d, the 4f-5g, and n=3-4 transitions. The uncertainties of the wavelengths above 100 Å and of those below 100 Å are estimated to be ± 0.015 Å and ± 0.03 Å, respectively. Jupén et al. [37] identified the line at 165.120 ± 0.02 Å as the $3p\ ^2\mathrm{P}_{3/2}^{\circ}-3d\ ^2\mathrm{D}_{3/2}$ transition. An isoelectronic comparison of the measured wavelengths of the 3s-3p, 3p-3d, and 3d-4f doublets with Dirac-Fock calculations was made by Reader et al. [41] for Ar^{7+} to Xe^{43+} , and least squares adjusted (smoothed) wavelengths were derived. The overall uncertainty estimate is ± 0.007 Å. We quote these results.

An extended analysis using a Z-pinch plasma was given by Stewart *et al.* [35] in the range of 15-221 Å. They reobserved the above lines and identified the n=4-5 and n=3-5 transitions with an uncertainty of ± 0.03 Å. Additional lines are taken from these results.

The inner-shell 2p-3s transitions were observed by Burkhalter et~al.~[42] in the range of 7.3-7.6 Å with a Z-pinch plasma source. The classification of two lines, $2p^63s~^2\mathrm{S}_{1/2}-2p^53s^2~^2\mathrm{P}_{1/2,3/2}^{\circ}$ at 7.322 ± 0.003 Å and 7.570 ± 0.003 Å, are adopted here. The other 10 lines are not resolved and cannot be classified.

The value for the ionization energy was derived with the 4f and 5g levels by means of a polarization formula [24].

Kr xxvii

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 23 616 000 cm⁻¹ (2928 eV)

Stewart et al. [35] proposed identifications of 14 lines as n=3-3 transitions observed in a Z-pinch plasma source. An interpretation of 28 lines of the $2p^53s-2p^53p$ and $2p^53p-2p^53d$ arrays was made by Buchet et al. [43], who identified these transitions in a beam-foil plasma. The uncertainties of the wavelengths range from ± 0.05 Å to 0.2 Å. The lines at 147.51 Å, 158.45 Å, and 170.55 Å are tentatively identified. The last is confirmed in an isoelectronic study by Nilsen and Scofield [44] but the first is given by 149.77 Å. We adjusted the level values of the $2p^53p(\frac{1}{2},\frac{3}{2})_1$, $2p^53d(\frac{3}{2},\frac{5}{2})_4^\circ$, and $2p^53d(\frac{1}{2},\frac{5}{2})_2^\circ$ to 14 283 900 cm⁻¹, 14 399 000 cm⁻¹, and 14 858 300 cm⁻¹, in order to get a better agreement with the measured wavelengths.

The 2s-3p, 2p-3s, and 3d transitions in the range of $6.3-7.6\,$ Å were observed by Burkhalter et al. [42] and Gordon et al. [45] in a Z-pinch plasma and a laser-produced plasma, respectively. The tabulated wavelengths with an uncertainty of $\pm 0.005\,$ Å are from Gordon et al. [45].

The value for the ionization energy was calculated by Cowan [23].

Kr xxviii

F i isoelectronic sequence

Ground state $1s^22s^22p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 24 757 200 cm⁻¹ (3069.50 eV)

The $2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2,1/2}-2s2p^6$ $^2\mathrm{S}_{1/2}$ transitions were identified by Wyart and the TFR Group [25] and reobserved by Dietrich *et al.* [46] using a Z-pinch plasma source. In addition to observing these lines at 52.594 ± 0.02 Å and 68.733 ± 0.03 Å in a tokamak plasma, Denne *et al.* [47] identified a line at 223.995 ± 0.03 Å as the $^2\mathrm{P}^{\circ}_{3/2}-^2\mathrm{P}^{\circ}_{1/2}$ magnetic-dipole transition in the ground configuration. We adopted their results.

Burkhalter et al. [42] observed the spectrum in the range of 6.1-7.2 Å with a Z-pinch plasma and identified the $2p^5-2p^43s$, 3d, $2s^22p^5-2s2p^53p$, and $2s2p^6-2p^63p$ transitions. We have changed the $2p^4$ parent term of the $2p^43s$ configuration to 3P_0 , 3P_1 , and 3P_1 for the lines at 7.123 Å, 6.997 Å, and 6.975 Å, respectively, based on our calculation of the percentage compositions of the levels with Cowan's code [23]. Concerning the $2p^5-2p^43d$ line at 6.449 Å, we find no correspondence with a calculated level.

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr XXIX

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 26 022 700 cm^{-1} (3226.41 eV)

Wyart and the TFR Group [25] identified three lines of the $2s^22p^4 - 2s2p^5$ array in a tokamak discharge. This array was increased to seven lines by Dietrich *et al.* [46] using a Z-pinch plasma and to nine lines by Denne *et al.* [47] using a tokamak. The latter reference includes two magnetic-dipole transitions $2s^22p^4$ $^3P_2 - ^1D_2$ and $^3P_2 - ^3P_1$ at 190.515 ± 0.03 Å and 235.95 ± 0.10 Å, respectively. We give the results of Denne *et al.* [47] with a measurement uncertainty of ±0.03 Å, supplemented by the $2s^22p^4 - 2s2p^5$ $^1D_2 - ^1P_1^\circ$ transition at 53.977 ± 0.015 Å reported by Wyart and the TFR Group [25] and the $^3P_1 - ^3P_0^\circ$ transition at 58.48 ± 0.05 Å by Dietrich *et al.* [46].

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr xxx

N I isoelectronic sequence

Ground state $1s^2 2s^2 2p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 27 258 700 cm^{-1} (3379.65 eV)

Denne et al. [47] identified the magnetic-dipole lines $2s^22p^3$ $^2\mathrm{S}^\circ_{3/2} - ^2\mathrm{D}^\circ_{3/2,5/2}$ at 259.807 ± 0.02 Å and 205.247 ± 0.025 Å in a tokamak discharge. In addition, the $^4\mathrm{S}^\circ_{3/2} - ^2\mathrm{P}^\circ_{1/2}$ line was tentatively identified at 160.90 ± 0.10 Å. They also reported the three strong lines of the $2s^22p^3$ $^4\mathrm{S}^\circ - 2s2p^4$ $^4\mathrm{P}$ multiplet and four weaker lines of this multiplet in the range of 54-111 Å with an uncertainty varying from ±0.025 Å to ±0.06 Å.

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr XXXI

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ 3P_0

Ionization energy 28 958 700 cm^{-1} (3590.42 eV)

The magnetic-dipole line, $2s^22p^2$ $^3P_0 - ^3P_1$ at 252.001 ± 0.02 Å and eight lines of the $2s^22p^2 - 2s2p^3$ array were identified by Denne *et al.* [47] in a tokamak plasma and measured with an uncertainty between ± 0.02 Å and ± 0.05 Å. The line at 56.976 ± 0.05 Å is tentatively identified as the $2s^22p^2$ $^3P_1 - 2s2p^3$ $^3S_1^\circ$ transition. Beam-foil observations by Martin *et al.* [50] comprised four $2s^22p^2 - 2s2p^3$ transitions, including one new line, the $^3P_1 - ^3P_0^\circ$ transition at 64.14 ± 0.05 Å. They also identified the $2s2p^3$ $^3P_1^\circ - 2p^4$ 3P_0 transition at 79.45 ± 0.05 Å.

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr XXXII

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy 30 270 400 cm^{-1} (3753.06 eV)

The $2s^22p$ $^2\mathrm{P}_{1/2}-^2\mathrm{P}_{3/2}$ magnetic-dipole line was identified at 203.021 ± 0.02 Å by Denne et al. [47] in a tokamak plasma, together with four lines of the $2s^22p-2s2p^2$ array. Two of them, the $^2\mathrm{P}_{3/2}^{\circ}-^2\mathrm{P}_{3/2}$ at 64.65 ± 0.10 Å and $^2\mathrm{P}_{3/2}^{\circ}-^2\mathrm{D}_{5/2}$ at 84.94 ± 0.10 Å, are tentative identifica-

tions. Reobservations of this array by Martin et~al.~[50] in a beam-foil experiment and by Myrnäs et~al.~[51] in a tokamak plasma produced three lines of this array, not found by Denne et~al.~[47]. We adopt the results by Myrnäs et~al.~[51] with an uncertainty of ± 0.025 Å. They also identified two intercombination lines $2s^22p~^2\mathrm{P}_{1/2,3/2}^{\circ}~2s2p^2~^4\mathrm{P}_{1/2,5/2}$ at 143.266 ± 0.010 Å and 151.121 ± 0.025 Å. Martin et~al.~[50] identified the lines at 78.90 ± 0.20 Å and 93.75 ± 0.20 Å as the $2s2p^2-2p^3$ transitions.

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr xxxiii

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy $32\ 039\ 200\ cm^{-1}\ (3972.36\ eV)$

The intercombination line $2s^2$ $^1S_0 - 2s2p$ $^3P_1^\circ$ was measured by Dietrich et al. [52] at 169.9 ± 0.5 Å in a beam-foil spectrum and by Denne et al. [47] at 169.845 ± 0.025 Å in a tokamak discharge. Denne et al. [47] also identified the magnetic-dipole transition 2s2p $^3P_1^\circ - ^3P_2^\circ$ with a weak and blended line at 235.48 ± 0.05 Å, and the resonance line $2s^2$ $^1S_0 - 2s2p$ $^1P_1^\circ$ at 72.756 ± 0.020 Å. Their results are given here. Nine lines of the $2s2p - 2p^2$ transitions were obtained by Martin et al. [50] in a beam-foil experiment. The uncertainties of the wavelengths are estimated to be between ± 0.05 Å and ± 0.2 Å.

For the ionization energy we use a value calculated by Cheng [48] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [49].

Kr XXXIV

Li I isoelectronic sequence

Ground state $1s^22s^{-2}S_{1/2}$

Ionization energy 33 137 600 \pm 800 cm⁻¹ (4108.54 \pm 0.01 eV)

The resonance doublet 2s $^2S_{1/2} - 2p$ $^2P_{3/2,1/2}^{\circ}$ was observed by Dietrich *et al.* [52] and Martin *et al.* [50] in

beam-foil spectra and by Denne et al. [47] in a tokamak plasma. The wavelengths of 91.049 ± 0.025 Å and 174.036 ± 0.026 Å are reported by Denne et al. [47]. However, the smoothed values of 91.050 Å and 174.050 Å of Kim et al. [53] are adopted here.

Vainshtein and Safronova [54] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. Their results are adjusted to the $1s^22p^2P_{1/2,3/2}^{\circ}$ experimental levels of Denne et al. [47] by adding 1360 cm^{-1} . They also calculated wavelengths of the $1s^22s - 1s2s2p$, $1s^22p - 1s2p^2$, $1s^22p - 1s2s^2$ transitions. We use their results to derive these autoionizing levels. All the wavelengths given here are derived from the adjusted energy levels from Ref. [54].

The value for the ionization energy was calculated by Indelicato [55] with a MCDF code including radiative corrections.

Kr xxxv

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 139 505 500 \pm 7000 cm⁻¹ (17 296.48 \pm 0.87 eV)

Four beam-foil experiments were reported. Gould and Marrus [56] gave the $1s^2$ $^1S_0 - 1s2s$ 3S_1 transition. The $1s^2$ $^1S_0 - 1s2p$ $^1P_1^{\circ}$ and $^3P_{1,2}^{\circ}$ transitions were identified by Briand et al. [57] at 0.94545 Å, 0.95198 Å, and 0.94708 Å with an uncertainty of ± 0.00010 Å. Indelicato et al. [58] gave the wavelengths 0.945330 Å and 0.951763 Å with an uncertainty of ± 0.000028 Å for the first two transitions. Martin et al. [50] observed the 1s2s $^3S_1 - 1s2p$ $^3P_{0,2}^{\circ}$ lines at 279.80 ± 0.2 Å and 111.11 ± 0.03 Å. We adopt the results of Martin et al. and Indelicato et al.

Cheng et al. [59] give calculated binding energies for the ground and n=2 singlet states of selected He-like ions. We use a later calculation of both singlet and triplet states by Cheng [60] for all elements from Ti through Cu and Kr for the n=1 and 2 configurations. With these data and the binding energy of the H-like ions [61] we obtain the value for the ionization energy of the He-like ions. For the 1s3l states we use the level values from Drake [62].

The levels 1s4l and 5l calculated by Vainshtein and Safronova [54] have been tabulated after increasing them by 1400 cm^{-1} to correspond with corrected values of lower n by Drake. All wavelengths have been derived from differences of the adopted energy levels.

Vainshtein and Safronova also calculated wavelengths of the transitions 1s2s-2s2p, $1s2p-2s^2$, and $1s2p-2p^2$, which have been compiled without correction.

Kr XXXVI

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 144 665 280 cm^{-1} (17 936.21 eV)

Tavernier et al. [64] observed the 1s $^2\mathrm{S}_{1/2}-2p$ $^2\mathrm{P}_{3/2}^{\circ}$ transition at 0.91779±0.00004 Å in a beam-foil experiment.

We have tabulated the wavelengths calculated from the theoretical energy levels of Johnson and Soff [61] for the n=2 shell whose estimated uncertainty is $\pm 90~{\rm cm}^{-1}$. Their energy differences are in close agreement with those of Mohr [65]. The binding energies for the levels with n=2-5 have been calculated by Erickson [66]. We subtract Erickson's values from the binding energy of the ground state calculated by Johnson and Soff to obtain corrected values for Erickson's levels.

The value for the ionization energy is from Johnson and Soff [61].

2.10.2. Spectroscopic Data for Kr v through Kr xxxvi

Kr v

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	assification U	pper	Energy Lev	rels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Б.	3 370					
898.53 819.25 $4s^24p^2$ 818.43 $4s^24p^2$ 819.25 $4s^24p^2$ 818.43 $4s^24p^2$ 819.25 $4s^24p^2$ 793.43 $4s^24p^2$ 777.82 $4s^24p^2$ 708.85 693.87 691.84 690.01 6674.36 $4s^24p^2$ 641.88 $4s^24p^2$ 641.88 $4s^24p^2$ 573.67 $4s^24p^2$ 551.51 540.35 536.34 $4s^24p^2$ 551.53 551.51 507.23 $4s^24p^2$ 503.73 $4s^24p^2$ 500.84 499.75 490.81 $4s^24p^2$ 470.20 467.45 477.82 $4s^24p^2$ 473.59 $4s^24p^2$ 471.21 465.11 462.77 $4s^24p^2$		$4s4p^3 \ ^3D_1^{\circ}$	19 722.93	129 658.16	7		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	19 722.93	129 779.27	7		2
818.43 810.23 794.19 793.43 771.25 777.82 775.53 710.77 708.85 693.57 691.84 690.01 674.36 696.07 645.85 641.88 696.07 645.85 641.88 $624p^2$ 641.88 6573.67 645.151 645.35 6596.07 645.85 641.88 6573.67 6596.07 6796.07 6796	2	3	19 722.93	131 016.42	6		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P_2	$4s4p^3 \ ^3D_1^{\circ}$	7 595.34	129 658.16	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	7 595.34	129 779.27	9		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	7 595.34	131 016.42	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	3 742.86	129 658.16	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	3 742.86	129 779.27	10		2
775.53 710.77 708.85 193.57 $199.0.01$ 1974.36 396.07 $4s^{2}4p^{2}$ 341.88 $4s^{2}4p^{2}$ 361.84 391.84 390.01 345.85 $4s^{2}4p^{2}$ 341.88 $4s^{2}4p^{2}$ 363.49 363.49 3651.51 360.34 $4s^{2}4p^{2}$ 361.51 360.34 $4s^{2}4p^{2}$ 361.51 360.34 $4s^{2}4p^{2}$ 360.35 521.87 $4s^{2}4p^{2}$ 3607.23 $4s^{2}4p^{2}$ 3603.73 $4s^{2}4p^{2}$	0	1	0.00	129 658.16	10		2
775.53 710.77 708.85 593.57 691.84 690.01 674.36 696.07 $4s^24p^2$ 645.85 $4s^24p^2$ 641.88 $4s^24p^2$ 641.88 $4s^24p^2$ 6551.51 540.35 521.87 $4s^24p^2$ 5507.23 $4s^24p^2$ 500.84 499.75 490.81 4824p2 470.20 467.45 477.82 4824p2 473.59 472.19 471.21 469.20 473.59 472.19 471.21 465.11 462.77	D_2	$4s4p^{3}\ ^{3}P_{1}^{o}$	19 722.93	148 286.78	3		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	19 722.93	148 668.41	6		$\overset{-}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ip.	$4s4p^3 \ ^3P_1^{o}$	7 595.34	148 286.78	10		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		484p F ₁	7 595.34	148 668.41	10		$\frac{2}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	3 742.86	147 925.28	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	3 742.86	148 286.78			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	3 742.86	148 668.41	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0.00	148 286.78	10		$\overline{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4s4p^3$ ¹ D ₂ °	19 722.93	163 387.17	9		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ S ₀	$4s4p^3$ ¹ P ^o ₁	39 203.92	194 041.06	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{3}P_{2}$	$4s4p^{3-1}D_2^{o}$	7 595.34	163 387.17	5		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_2	$4s4p^3$ 1 P $_1^o$	19 722.93	194 041.06	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂	$4s4p^3$ $^3S_1^{\circ}$	7 595.34	185 063.54	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	10-2 51	3 742.86	185 063.54			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0.00	185 063.54			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bp.	$4s4p^3$ 1 P $_1^{ m o}$	7 595.34	194 041.06	10		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2		3 742.86	194 041.06			2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0.00	194 041.06			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}\mathrm{D_{2}}$	$4s^24p4d$ $^3P_2^{\circ}$	19 722.93	211 336.57	3		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}\mathrm{D}_{2}$	$4s^24p4d \ ^1\mathrm{D}_2^{\circ}$	19 722.93	216 874.54	2		2
$4s^24p^2$ $4s^24p^2$ 499.75 490.81 484.64 481.72 475.75 470.20 467.45 472.82 469.20 473.59 472.19 471.21 465.11 462.77		$4s^24p4d$ ¹ P ₁ °	39 203.92	237 720.58			2
500.84 499.75 490.81 $4s^24p^2$ 484.64 481.72 475.75 470.20 467.45 477.82 $4s^24p^2$ 469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77		_	00 200.02	201 120.00	•		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}D_{2}$	$4s^24p4d\ ^3D_1^{o}$	19 722.93	218 746.81	2		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	19 722.93	219 381.57			2
484.64 481.72 475.75 470.20 467.45 477.82 469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	2	2	19 722.93	219 823.27	2		2
484.64 481.72 475.75 470.20 467.45 477.82 469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	³ P ₂	$4s^24p4d\ ^3P_2^{\circ}$	7 595.34	211 336.57	7		2
481.72 475.75 470.20 467.45 477.82 48^24p^2 469.20 473.59 48^24p^2 471.21 465.11 462.77	2	·P · · · · · · · · · · · · · · · · ·	7 595.34	213 932.87			$\frac{2}{2}$
470.20 467.45 477.82 $4s^24p^2$ 469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	1	2	3 742.86	211 336.57			2
467.45 477.82 $4s^24p^2$ 469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	1	1	3 742.86	213 932.87			2
477.82 $4s^24p^2$ 469.20 $4s^24p^2$ 472.19 $4s^24p^2$ 471.21 465.11 462.77	1	0	3 742.86	216 420.28			2
469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	0	1	0.00	213 932.87			2
469.20 473.59 $4s^24p^2$ 471.21 465.11 462.77	³ P ₂	$4s^24p4d\ ^1\mathrm{D_2^o}$	7 595.34	216 874.54	5		2
472.19 471.21 465.11 462.77	1	48 4p44 D ₂	3 742.86	216 874.54			$\frac{2}{2}$
472.19 471.21 465.11 462.77	3 n						
471.21 465.11 462.77		$4s^24p4d\ ^3{ m D}_1^{ m o}$	7 595.34	218 746.81			2
465.11 462.77	2	3	7 595.34	219 381.57			2
462.77	2	2	7 595.34	219 823.27			2
	1	1	3 742.86 3 742.86	218 746.81 219 823.27			2
	0	2	0.00	218 746.81			$\frac{2}{2}$
466.43 $4s^24p^2$	$^{1}\mathrm{D}_{2}$	$4s^24p4d\ ^1{ m F}_3^{ m o}$	19 722.93	234 120.87			2
441.44 $4s^24p^2$		$4s^24p4d^{-1}F_3^{\circ}$	7 595.34	234 120.87			
434.55 $4s^24p^2$		$4s^{2}4p4d^{-1}P_{1}^{o}$ $4s^{2}4p4d^{-1}P_{1}^{o}$	7 595.34	234 120.87			2

 \mathbf{Kr} VI

length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
3394.7 ^L	4s ² 6h ² H°	4s ² 7i ² I					_	10
3381.7 ^L	$4s^26g$ $^2\mathrm{G}$	$4s^27h$ $^2\mathrm{H}^\mathrm{o}$						10
051.06	$4s^25s$ $^2S_{1/2}$	$4s^25p\ ^2P_{1/2}^{\circ}$	275 380	324 120	100			7
950.20	1/2	3 op 1 1/2 3/2	275 380	326 657	50			7
817.45	$4s^24d^2D_{5/2}$	$4p^3 {}^2\mathrm{D}^{\mathrm{o}}_{5/2}$	223 040	278 062	8			7
	-,-	•						•
061.069	$4s4p^2 {}^2P_{3/2}$	$4p^3 {}^2\mathrm{D}^{\mathrm{o}}_{5/2}$	183 817	278 062	75			7
045.23	1/2	3/2	180 339	276 011	30			7
053.3	$4s4p^2 {}^2P_{3/2}$	$4p^3 \ ^4S_{3/2}^{o}$	183 817	278 787				6
015.77	1/2	3/2	180 339	278 787	11			7
011.14	$4s^25s$ $^2S_{1/2}$	$4s4p(^{3}P^{\circ})4d^{2}P^{\circ}_{3/2}$	275 380	374 279	8			7
002.8	$4s^24p\ ^2{ m P}_{3/2}^{ m o}$	$4s4p^2 {}^4P_{1/2}$	8 110	107 836				6
970.2	3/2	3/2	8 110	111 193				6
931.4	3/2	5/2	8 110	115 479				6
927.4	1/2	1/2	0	107 836				6
899.4	1/2	3/2	. 0	111 193				6
980.411	$4s^24d\ ^2{ m D}_{3/2}$	$4s^25p\ ^2P_{1/2}^{\circ}$	222 122	324 120	30			7
965.093	5/2	3/2	223 040	326 657	20			7
956.615	3/2	3/2	222 122	326 657	12			7
944.05	$4s4p^2$ 2 S _{1/2}	$4p^3 \ ^2D_{3/2}^{\circ}$	170 084	276 011	15			7
919.934	$4s4p^2$ 2 S _{1/2}	$4p^3 \ ^4\mathrm{S}^{\circ}_{3/2}$	170 084	278 787	9			7
918.14	$4s^24d\ ^2{ m D}_{5/2}$	4s4p(³ P°)4d ⁴ P° _{5/2}	223 040	331 956	8			7
910.47	3/2	5/2	222 122	331 956	3			7
	·	•		001 000	Ü			•
868.96 859.65	$4s^24d\ ^2{ m D}_{5/2}$	$4s4p(^{3}\mathrm{P^{o}})4d\ ^{4}\mathrm{D}_{7/2}^{o}$	223 040	338 119	9			7
809.00	3/2	5/2	222 122	338 447	3			7
834.17	$4s4p^2 {}^2\mathrm{P}_{3/2}$	$4p^3 {}^2P_{1/2}^{\circ}$	183 817	303 697	12			7
822.8	3/2	3/2	183 817	305 385				6
810.65	1/2	1/2	180 339	303 697	20			7
799.8	1/2	3/2	180 339	305 385				6
830.11	$4s^24d^{-2}D_{5/2}$	$4s4p(^{3}P^{\circ})4d^{2}D_{5/2}^{\circ}$	223 040	343 505	7			7
825.98	3/2	3/2	222 122	343 190	5			7
823.84	3/2	5/2	$222\ 122$	343 505	3			7
780.92	$4s^25s$ $^2S_{1/2}$	$4s4p(^{3}P^{o})5s^{2}P_{1/2}^{o}$	275 380	403 436	5			7
751.10	1/2	3/2	275 380	408 520	2			7
W00 W0								
766.72	$4s^24d\ ^2{ m D}_{3/2}$	$4s4p(^3P^{\circ})4d\ ^2F^{\circ}_{5/2}$		352 547	6			7
735.316	5/2	7/2	223 040	359 035	10			7
750.277	$4s4p^2$ 2 D _{5/2}	$4p^3 {}^2\mathrm{D}^{\circ}_{3/2}$	142 727	276 011	30			7
744.3	3/2	3/2		276 011	5			6
738.9	5/2	5/2		278 062	•			6
733.2	3/2	5/2		278 062				6
748.70	$4s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s4p^2$ 2 D _{3/2}	8 110	141 672	5			5
742.83	3/2			142 727	9			5
705.85	1/2	5/2 3/2		141 672	8			5
739.096	$4s4p^2$ 2 S _{1/2}	$4p^3 {}^2P_{3/2}^{\circ}$	170 084	305 385	20			7
795 1	4-4-2 25			050 50-				0
735.1	$4s4p^2 {}^2D_{5/2}$	$4p^3 \ ^4S_{3/2}^{\circ}$		278 787				6
729.4	3/2	3/2		278 787				6
700.06	$4s4p^2 {}^2P_{3/2}$	$4s^25p\ ^2{ m P}^{ m o}_{3/2}$	183 817	326 657	3			7
675.033	$4s4p^2\ ^2{ m P}_{3/2}$	$4s4p(^{3}P^{\circ})4d~^{4}P_{5/2}^{\circ}$	183 817	331 956	10			7
657.20	$4s^24d\ ^2{ m D}_{3/2}$	$4s4p(^{3}P^{\circ})4d^{2}P_{3/2}^{\circ}$	222 122	374 279	3			7

Kr VI - Continued

Wave-	Classificatio	==	Energy Lev	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	Reference
ength (Å)	Lower	Upper						
626.220	$4s4p^2$ 2 P _{3/2}	$4s4p(^{3}P^{o})4d^{2}D_{5/2}^{o}$	183 817	343 505	10			7
614.05	1/2	3/2	180 339	343 190	9			7
522.8	$4s4p^2 \ ^4P_{5/2}$	$4p^3 \ ^2\mathrm{D}^{\circ}_{3/2}$	115 479	276 011				e
315.07			115 479	278 062	10			6 7
06.726	5/2 3/2	5/2 3/2	111 193	276 011	20			7
99.26	3/2	5/2	111 193	278 062	1			7
94.618	1/2	3/2	107 836	276 011	12			7
17 270	$4s^24p\ ^2{ m P}_{3/2}^{ m o}$	$4s4p^2$ 2 S _{1/2}	9 110	170 004	9			7
617.379 687.94		•	8 110	170 084 170 084	$\frac{9}{12}$			7 7
101.34	1/2	1/2	Ü	170 004	12			•
317.18	$4s4p^2$ 2 D _{3/2}	$4p^3 {}^2P_{1/2}^{\circ}$	141 672	303 697	150bl			7
14.9	5/2	3/2	142 727	305 385				6
10.828	3/2	3/2	141 672	305 385	5			7
312.4	$4s4p^2 \ ^4P_{5/2}$	$4p^3$ 4 S $^{\circ}_{3/2}$	115 479	278 787				6
596.7			111 193	278 787				6
84.958	3/2 1/2	3/2 3/2	107 836	278 787	11			7
		-,-						
599.79	$4s^25s \ ^2S_{1/2}$	4s4p(1P°)5s 2P° 1/2	275 380	442 106	9			7
95.970	1/2	3/2	275 380	443 176	9			7
593.56	$4s^24d\ ^2{ m D}_{3/2}$	$4s4p(^{1}P^{\circ})4d^{2}D_{3/2}^{\circ}$	222 122	390 595	4			7
592.28	5/2	5/2	223 040	391 878	4			7
		•			_			•
592.68	$4s4p^2 {}^2P_{3/2}$	$4s4p(^{3}P^{o})4d^{2}F_{5/2}^{o}$	183 817	352 547	2			7
	. 2 2	(150)						
588.31	$4s^24d\ ^2{ m D}_{5/2}$	$4s4p(^{1}P^{o})4d^{2}P^{o}_{3/2}$	223 040	393 018	9			7
585.14	3/2	3/2	222 122	393 018	4			7
580.63	$4s^24p\ ^2P_{3/2}^{\circ}$	$4s4p^2$ 2 P _{1/2}	8 110	180 339	6			5
69.13	3/2	3/2	8 110	183 817	9			5
54.51	1/2	1/2	0	180 339	8			5
544.02	1/2	3/2	0	183 817	6			5
577.68	$4s4p^2$ 2 S _{1/2}	4s4p(³ P°)4d ² D _{3/2}	170.004	242 100	6			_
311.08	484p 31/2	4s4p(P)4a D _{3/2}	170 084	343 190	6			7
569.354	$4s^24d^{-2}D_{5/2}$	$4s4p(^{1}P^{\circ})4d^{2}F_{7/2}^{\circ}$	223 040	398 678	11			7
563.44	3/2	5/2	222 122	399 599	7			7
	·	•						•
548.107	$4s4p^2$ 2 D _{3/2}	$4s^25p\ ^2P_{1/2}^{\circ}$		324 120	10			7
543.689 540.587	5/2	3/2	142 727	326 657	10			7
340.367	3/2	3/2	141 672	326 657	4			7
528.457	$4s4p^{2-2}D_{5/2}$	$4s4p(^{3}P^{\circ})4d^{-4}P^{\circ}_{5/2}$	142 727	331 956	5			7
	•	-,-		00-000	•			•
525.04	$4s4p^2 {}^2P_{3/2}$	$4s4p(^{3}P^{\circ})4d^{2}P_{3/2}^{\circ}$	183 817	374 279	6			7
516.96	3/2	1/2		377 255	1			7
507.82	1/2	1/2	180 339	377 255	6			7
522.30	$4s4p^2$ 2 D _{3/2}	$4s4p(^{3}P^{o})4d^{-4}D_{3/2}^{o}$	141 672	333 133	2			7
511.79	5/2	7/2		338 119	1			7 7
		,		000 110	•			1
498.061	$4s4p^2$ 2 D _{5/2}	$4s4p(^{3}P^{\circ})4d^{2}D_{5/2}^{\circ}$	142 727	343 505	9			7
496.237	3/2	3/2	141 672	343 190	8			7
495.46	3/2	5/2	141 672	343 505	7			7
489.738	$4s4p^2$ $^2S_{1/2}$	4s4p(3P°)4d 2P3/2	170 084	374 279	7			7
482.702	1049 51/2	1/2		377 255	3			7 7
	•	•		J., 200	J			•
480.63	$4s4p^2 {}^2P_{3/2}$	$4s4p(^{1}P^{\circ})4d^{2}D_{5/2}^{\circ}$	183 817	391 878	2			7
475.62	1/2	3/2		390 595	8			7
478.016	$4s4p^2 {}^2P_{3/2}$	404m/1me\4 J 2me	102 017	202 212	~			_
470.191	•	$4s4p(^{1}P^{o})4d^{2}P_{3/2}^{o}$		393 018	7			7
1,0.131	1/2	3/2		393 018	5			7
474.209	$4s4p^2$ $^2D_{3/2}$	$4s4p(^{3}P^{o})4d^{2}F_{5/2}^{o}$	141 672	352 547	7			7
462.31	5/2	7/2		359 035	8			7
		•						
467.25	$4s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s^24d\ ^2{ m D}_{3/2}$		222 122	6			5
465.27 450.20	3/2	5/2		223 040 222 122	9 8			5 5
	1/2		2 . 0					

Kr VI - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
461.94	$4s4p^2 \ ^4P_{5/2}$	4s4p(³ P°)4d ⁴ P° _{5/2}	115 479	331 956	4			7
452.972	3/2	5/2	111 193	331 956	7			7
448.668	5/2	3/2	115 479	338 364	5			7
440.840	3/2	1/2	111 193	338 032	5			7
440.192	3/2	3/2	111 193	338 364	5			7
433.79	1/2	3/2	107 836	338 364	1			7
459.47	$4s4p^2 \ ^4P_{5/2}$	4s4p(³ P°)4d ⁴ D _{3/2}	115 479	333 133	2bl			7
450.581	3/2	3/2	111 193	333 133	6			7
449.15	5/2 5/2	3/2 7/2	115 479	338 119	7			7
448.95	3/2	· · · · · · · · · · · · · · · · · · ·	111 193	333 936	2bl			7
448.502	5/2	1/2 5/2	115 479	338 447	4			7
443.858	1/2		107 836	333 133	6			7
442.28	1/2	3/2	107 836	333 936	6			7
440.038	3/2	1/2 5/2	111 193	338 447	2			7
445.0	$4s4p^2 {}^2P_{3/2}$	$4s4p(^{3}P^{\circ})5s^{2}P_{3/2}^{\circ}$	183 817	408 520	1			7
430.46	$4s4p^2 \ ^4P_{3/2}$	4s4p(³ P°)4d ² D _{5/2} 3/2	111 100	040 505				_
		$4s4p(^{\circ}P^{-})4a^{\circ}D_{5/2}^{\circ}$	111 193	343 505	4			7
424.91	1/2			343 190	4			7
428.56	$4s4p^2 {}^2S_{1/2}$	$4s4p(^3P^{\circ})5s\ ^2P^{\circ}_{1/2}$	170 084	403 436	6			7
419.42	1/2	3/2	170 084	408 520	6			7
410.59	$4s4p^2 \ ^4P_{5/2}$	$4s4p(^{3}\mathrm{P^{\circ}})4d\ ^{2}\mathrm{F}_{7/2}^{\circ}$	115 479	359 035	4			7
403.43	$4s4p^2$ $^2\mathrm{D}_{5/2}$	$4s4p(^{1}P^{o})4d\ ^{2}D_{3/2}^{o}$	142 727	390 595	2			7
399.54	$4s4p^2\ ^2{ m D}_{5/2}$	$4s4p(^{1}P^{\circ})4d\ ^{2}P_{3/2}^{\circ}$	142 727	393 018	2			7
390.70	$4s4p^2$ 2 D _{5/2}	$4s4p(^{1}P^{\circ})4d\ ^{2}F_{7/2}^{\circ}$	142 727	398 678	6			7
389.29	5/2		142 727	399 599	2			7
387.72	3/2	5/2		399 599	4			7
387.17	$4s4p^2$ 2 P $_{3/2}$	$4s4p(^{1}P^{\circ})5s \ ^{2}P_{1/2}^{\circ}$	183 817	442 106	4			7
382.01								
380.48	1/2	1/2	180 339 180 339	442 106 443 176	$rac{6}{2}$			7 7
000.40	1/2	3/2		449 110	Z			1
382.01	$4s4p^2$ 2 $D_{3/2}$	$4s4p(^3P^{\circ})5s\ ^2P^{\circ}_{1/2}$	141 672	403 436	6			7
376.23	5/2	3/2		408 520	6			7
374.74	3/2	3/2		408 520	4			7
374.2	$4s^24p\ ^2{ m P}^{ m o}_{3/2}$	$4s^25s$ $^2S_{1/2}$	8 110	275 380				6
363.2	1/2	1/2	0	275 380				6
366.17	$4s4p^2$ 2 S _{1/2}	$4s4p(^{1}P^{\circ})5s \ ^{2}P_{3/2}^{\circ}$	170 084	443 176	4			7
	•	-,-		449 110	4			•
357.99	$4s4p^2 \ ^4P_{5/2}$	$4s4p(^{3}P^{o})5s \ ^{4}P^{o}_{3/2}$	115 479	394 817	2			7
351.93	5/2	5/2	$115\ 479$	399 630	6bl			7
348.45	1/2	3/2		394 817	1			7
346.69	3/2	5/2		399 630	4			7
332.83	$4s4p^2$ 2 D _{5/2}	$4s4p(^{1}P^{\circ})5s \ ^{2}P^{\circ}_{3/2}$	142 727	443 176	6			7
332.83	3/2	1/2		442 106	6			7
331.65	3/2	1/2	141 672	112 100	•			7

 \mathbf{Kr} VII

Wave- length (Å)	Classification Lower	Upper	Energy Level	s (cm ⁻¹)	Int. gf A (s ⁻¹)	Acc.	References
2076.3	4s4f 3F2	$4s5d~^3\mathrm{D_1}$	530 380	578 520			15
2073.3	3	2	530 550	578 770			15
2068.3 2056.8	4	3	530 820	579 150			15
2049.8	3	3	530 550 530 380	579 150 579 150			15
2049.0	2	3	530 380	579 150			15
1985.5	$4s5s$ $^{1}\mathrm{S}_{0}$	$4s5p^{-1}P_1^{o}$	447 400	497 760			15
1847.5 ^T	$4s5s$ $^3\mathrm{S}_1$	$4s5p$ $^3\mathrm{P}^{\mathrm{o}}_0$	438 643.9	492 810			15
1832.5^{T} 1756.36	1	1	438 643.9 438 643.9	493 250	10		15
1730.30	1	2	438 043.9	495 578.4	10		13°,15
1202.7	$4s5p$ $^3P_2^{\circ}$	$4s5d$ $^3\mathrm{D}_2$	495 578.4	578 770			15
1197.1	2	3	495 578.4	579 150			15
1172.8	1	1	493 250	578 520			15
1169.3	1	2	493 250	578 770			15
1166.6	0	1	492 810	578 520			15
1168.8	$4s5p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$4s5d~^1\mathrm{D}_2$	497 760	583 320			15
960.638	$4s4p^{-1}P_1^{\circ}$	$4p^2 \ ^3P_0$	170 835.0	274 931.7	5		12
920.983	1	1	170 835.0	279 414.5	5		12
852.120	1	2	170 835.0	288 190.2	5		12
918.446	$4s4p$ $^{1}P_{1}^{o}$	$4p^2$ 1 D ₂	170 835.0	279 714.8	60		12
845.5	$4s4d$ $^{1}\mathrm{D}_{2}$	$4s5p^{-1}P_{1}^{o}$	379 488.3	497 760			15
832.682	$4s^2$ ¹ S ₀	$4s4p$ $^3P_1^0$	0.0	120 094.8	9		12
700.1	$4s4d~^3\mathrm{D}_1$	$4s5p$ $^3P_0^{\circ}$	349 973.1	492 810			15
700.1	2	1	350 416.8	493 250			15
697.9	1	· i	349 973.1	493 250			15
692.22	3	2	351 116.2	495 578.4	10		13°.15
688.89	2	2	350 416 8	495 578.4	10		13°,15
686.76	1	2	349 973.1	495 578.4	1		13
662.43	$4s4p^{-1}P_1^o$	$4p^{2-1}S_0$	170 835.0	321 794	10		13
654.189	$4s4p\ ^{3}\mathrm{P}_{2}^{\circ}$	$4p^{2-3}P_1$	126 553.0	279 414.5	50		12
645.847	1	o	120 094.8	274 931.7			12
627.668	1	1	120 094.8	279 414.5			12
618.664	2	2	126 553.0	288 190.2			12
617.189 594.899	0	1 2	117 389.6 120 094.8	279 414.5 288 190.2			$\frac{12}{12}$
			120 004.0	200 100.2	30		12
652.905	$4s4p$ $^3P_2^o$	$4p^{2-1}D_2$	126 553.0	279 714.8	5		12
626.486	1	2	120 094.8	279 714.8	4		12
585.361	$4s^2$ ¹ S ₀	$4s4p^{-1}P_1^o$	0.0	170 835.0	15		12
558.221	$4s4p$ $^{1}P_{1}^{o}$	$4s4d$ $^3\mathrm{D}_1$	170 835.0	349 973.1	. 4		12
556.855	1	2	170 835.0	350 416.8			12
557.3	$4s4d$ 3 D_3	4s4f ³ F ₃ °	251 116 9	E20 EE0			
556.5		484J F ₃	351 116.2	530 550			15
555.2	3 2	4	351 116.2 350 416.8	530 820 530 550			15
554.3	1	3 2	349 973.1	530 380			15 15
487.4	$4p^2$ $^3\mathrm{P}_2$	$4s5p$ $^3\mathrm{P}_1^{\mathrm{o}}$	200 100 0	400.000			
482.19	4p F ₂		288 190.2	493 250	. 0		14
462.63	2	2	288 190.2 279 414.5	495 578.4 495 578.4			13
457.6	1 0	2	274 931.7	493 250	. 3		13°,14 14
479.264	$4s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	4s4d ¹ D ₂	170 835.0	379 488.3	3 25		12
458.5	$4p^{2-1}D_2$	$4s5p$ $^{1}\mathrm{P}_{1}^{\circ}$	279 714.8	497 760			14
		_					
447.606	$4s4p$ $^3P_2^{\circ}$	$4s4d$ 3D_1	126 553.0	349 973.			12
446.700	2	2	126 553.0	350 416.8			12
445.309	2	3	126 553.0	351 116.5			12
435.018	1	1	120 094.8	349 973.			12
434.140 429.98	1	2	120 094.8	350 416.3			12
143.00	0	1	117 389.6	349 973.	1 4		13
385.51	$4s4p$ $^3P_1^o$	$4s4d$ $^{1}\mathrm{D}_{2}$	120 094.8	379 488.	3 4		13

Kr VII - Continued

Wave-	Classification		Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					
362.0	$4s4p$ $^{1}P_{1}^{o}$	$4s5s$ $^{1}\mathrm{S}_{0}$	170 835.0	447 400			14
320.41	$4s4p$ $^3\mathrm{P}_2^\circ$	4s5s ³ S ₁	126 553.0	438 643.9	2		13
313.92	1	1	120 094.8	438 643.9	3		13
311.26	0	1	117 389.6	438 643.9	1		13
221.4	$4s4p$ $^3\mathrm{P}_2^{\circ}$	$4s5d$ $^3\mathrm{D}_2$	126 553.0	578 770			14
200.9	$4s^2$ 1 S ₀	$4s5p^{-1}\mathrm{P_1^o}$	0.0	497 760			14

 \mathbf{Kr} VIII

Wave- length (Å)	Classification Lower	on Upper	Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc. References
6065.5	3d ¹⁰ 9l ² L	3d ¹⁰ 10m ² M°	927 985	944 467		10
6056.3	$3d^{10}9l$ $^2\mathrm{L}$	$3d^{10}10m^{2}M^{\circ}$	927 985	944 467		10
5848.8 ^T	$3d^{10}7s^{-2}S_{1/2}$	$3d^{10}7p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	796 490	813 577		10
4667.9	$3d^{10}10m^{2}M^{\circ}$	$3d^{10}12n^{2}N$	944 467	965 884		10
4338.1	$3d^{10}8k^{2}K^{o}$	$3d^{10}9l$ 2 L	904 940	927 985		10
4337.7	$3d^{10}8i$ 2 I	$3d^{10}9k^{-2}K^{\circ}$	904 901	927 948		10
4332.7 ^L	$3d^{10}8h$ $^2\mathrm{H}^{\mathrm{o}}$	$3d^{10}9i$ 2 I				10
4299.5 ^L	$3d^{10}8g$ $^{2}\mathrm{G}$	$3d^{10}9h^{2}H^{\circ}$				10
3929.2 ^L	$3d^{10}8f^{-2}F^{\circ}$	$3d^{10}9g$ $^2\mathrm{G}$				10
3770.7	$3d^{10}7d\ ^2\mathrm{D}_{3/2}$	$3d^{10}8p~^2\mathrm{P}_{1/2}^{\mathrm{o}}$	840 501	867 014		10
3702.9^{T} 3677.8^{T}	5/2	3/2	840 686	867 694 867 694		10
3011.8	3/2	3/2	840 501	807 094		10
3759.0	$3d^{10}6f^{2}F_{5/2}^{o}$	$3d^{10}7d^{2}D_{3/2}$	813 913	840 501		10
3727.4	7/2	5/2	813 865	840 686		10
3712.7	$3d^{10}7d^{-2}D_{5/2}$	$3d^{10}7f^{2}F_{7/2}^{\circ}$	840 686	867 613		10
3710.5	5/2	5/2	840 686	867 633		10
3684.1	3/2	5/2	840 501	867 633		10
3590.0	$3d^{10}8p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$3d^{10}9s {}^{2}S_{1/2}$	867 694	895 541		10
3506.2	1/2	1/2	867 014	895 541		10
3558.8 ^T	$3d^{10}6s\ ^2S_{1/2}$	$3d^{10}6p\ ^2\mathrm{P}_{1/2}^{\circ}$	692 482	720 565		10
3337.4	1/2	3d 0p 1 _{1/2} 3/2	692 482	722 429		10
3486.9	3d ¹⁰ 9l ² L	$3d^{10}11m^{-2}M^{\circ}$	927 985	956 656		10
3483.5	$3d^{10}9k^{-2}K^{\circ}$	$3d^{10}11l^{-2}L$	927 948	956 647		10
3189.4 ^L	$3d^{10}7g^{-2}\mathrm{G}$	3d ¹⁰ 8f ² F°				10
2973.5	$3d^{10}7i\ ^2\mathrm{I}$	$3d^{10}8k^{2}K^{\circ}$	871 319.5	904 940		10
2970.4	$3d^{10}7h^{2}\mathrm{H}^{\circ}$	$3d^{10}8i\ ^2\mathrm{I}$	871 245	904 901		10
2949.2^{L}	$3d^{10}7g$ $^2\mathrm{G}$	$3d^{10}8h$ $^2\mathrm{H^o}$				10
2529.9	$3d^{10}8k$ 2 K°	$3d^{10}10l^{-2}L$	904 940	944 456		10
2527.8	$3d^{10}8i\ ^2\mathrm{I}$	$3d^{10}10k^{-2}K^{\circ}$	904 901	944 449		10
2425.3 ^L	$3d^{10}8d^{-2}D_{5/2}$	$3d^{10}9f$ $^{2}F_{7/2}^{\circ}$				10
2418.3 ^L	3/2	5/2				10
2295.7^{T}	$3d^{10}7p^{-2}P_{3/2}^{\circ}$	$3d^{10}8s {}^{2}S_{1/2}$	813 577	857 086		10
2292.2	$3d^{10}6d^{2}D_{3/2}$	3d ¹⁰ 7p ² P _{1/2}	768 898	812 506		10
2276.5	$3d^{10}5f^{-2}F_{5/2}^{o}$	$3d^{10}6d^{2}D_{3/2}$		768 898		10
2237.2	$3d^{10}6d^{2}D_{5/2}$					
2219.9	$3a^{-1}ba^{-1}D_{5/2}$ 3/2	$3d^{10}6f$ $^{2}F_{7/2}^{\circ}$	769 179 768 898	813 865 813 913		10 10
		5/2				10
2152.3 ^T	$3d^{10}6p^{2}P_{3/2}^{\circ}$	$3d^{10}6d\ ^2\mathrm{D}_{3/2}$	722 429	768 898		10
2137.8 2068.7	3/2 1/2	5/2 3/2	722 429 720 565	769 179 768 898		10 10
1929.10	3d ¹⁰ 6h ² H°	$3d^{10}7i^{-2}I$		871 319.5	2	18
1916.7	$3d^{10}6g^{-2}G$	$3d^{10}7f^{2}F^{0}$		867 623	=	10
1766.99 1656.78	$3d^{10}5s {}^{2}S_{1/2}$	$3d^{10}5p\ ^{2}\mathrm{P}_{1/2}^{\circ}$		546 683.7 550 448.0	4 5	18 18
_000.10	1/2	3/2	100 030.2	300 440.0	•	10

Kr VIII - Continued

Wave- length (Å)	Classific Lower		Energy Lev	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
ength (A)	Lower	Upper						
1276.94	$3d^{10}4f^{2}F_{5/2}^{\circ}$	$3d^{10}5d^{2}D_{3/2}$	562 763.8	641 075.6	6			18
1267.68	7/2	5/2	562 738.1	641 623.1	7			18
1199.22	$3d^{10}5d^{2}D_{5/2}$	$3d^{10}5f^{-2}F_{7/2}^{\circ}$	641 623.1	725 010.6	8			18
1191.59	3/2	50 57 17/2	641 075.6	724 997.3	2			18
1157.60	$3d^{10}5g^{-2}\mathrm{G}$	3d ¹⁰ 6h ² H°	700 007 0	212 422 2				
1137.00	•		733 095.6	819 482.0	4			18
1096.77	$3d^{10}5p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$3d^{10}5d^{2}D_{5/2}$	550 448.0	641 623.1	11			18
1059.41	1/2	3/2	546 683.7	641 075.6	20			18
704.057 ^C	$3d^{10}5p^{-2}P_{3/2}^{o}$	$3d^{10}6s ^2S_{1/2}$	550 448.0	692 482				18
685.879 ^C	1/2	1/2	546 683.7	692 482				14
695.918	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^{10}4p\ ^{2}\mathrm{P}_{1/2}^{\circ}$	0.0	149 605 0	0000			**
651.566	$3a 4s S_{1/2}$		0.0 0.0	143 695.3 153 476.1	2000 4000			19 19
		3/2		100 1.0.1	4000			13
587.121	$3d^{10}4f^{2}F_{5/2}^{o}$	$3d^{10}5g$ $^{2}G_{7/2}$	562 763.8	733 086.4	45			19
586.969	7/2	9/2	562 738.1	733 104.8	50			19
579.246	$3d^{10}4d^{2}\mathrm{D}_{3/2}$	$3d^{10}5p^{2}P_{1/2}^{\circ}$	374 046.5	546 683.7	40			19
571.203	5/2	3/2	375 381.0	550 448.0	60			19
533.753	$3d^{10}4d^{2}D_{5/2}$	$3d^{10}4f^{2}F_{7/2}^{\circ}$	375 381.0	562 738.1	500			19
533.651	5/2	5/2	375 381.0	562 763.8	10			19
529.893	3/2	5/2	374 046.5	562 763.8	400			19
453.360	$3d^{10}4p\ ^{2}\mathrm{P_{3/2}^{o}}$	$3d^{10}4d^{2}D_{3/2}$	153 476.1	374 046.5	500			19
450.649	3/2	5/2	153 476.1	375 381.0	5000			19
434.124	1/2	3/2	143 695.3	374 046.5	3500			19
297.077	$3d^{10}4p\ ^{2}\mathrm{P_{3/2}^{o}}$	$3d^{10}5s^{2}S_{1/2}$	153 476.1	490 090.2	2000			19
288.684	1/2	1/2	143 695.3	490 090.2	1000			19
288.585 ^C	$3d^{10}4d\ ^2\mathrm{D}_{3/2}$	$3d^{10}6p^{-2}P_{1/2}^{o}$	274 046 5	790 565				1.4
288.145 ^C	54 44 D _{3/2} 5/2	·	374 046.5 375 381.0	720 565 722 429				14 14
		3/2	010 001.0	122 123				14
204.862	$3d^{10}4p\ ^{2}P_{3/2}^{\circ}$	$3d^{10}5d^{2}D_{5/2}$	153 476.1	641 623.1	8			19
201.061	1/2	3/2	143 695.3	641 075.6	10			19
185.525	$3d^{10}4p\ ^{2}\mathrm{P_{3/2}^{o}}$	$3d^{10}6s\ ^2\mathrm{S}_{1/2}$	153 476.1	692 482	130			19
182.222	1/2	1/2	143 695.3	692 482	70			19
182.922	$3d^{10}4s$ $^{2}\mathrm{S}_{1/2}$	$3d^{10}5p^{-2}P_{1/2}^{\circ}$	0.0	546 683.7	600			19
181.673	1/2	3/2	0.0	550 448.0	1000			19
100 410								
162.416 159.948	$3d^{10}4p^{-2}P_{3/2}^{o}$	$3d^{10}6d~^2\mathrm{D}_{5/2}$	153 476.1 143 695.3	769 179 768 898	35 15			19
100.040	1/2	3/2	143 033.3	100 050	13			19
155.518	$3d^{10}4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$3d^{10}7s\ ^2{ m S}_{1/2}$	153 476.1	796 490	50			19
153.187	1/2	1/2	143 695.3	796 490	35			19
145.516	$3d^{10}4p^{2}P_{3/2}^{o}$	$3d^{10}7d^{2}D_{5/2}$	153 476.1	840 686	10			19
143.512	1/2	3/2	143 695.3	840 501	3			19
142.123	$3d^{10}4p\ ^{2}P_{3/2}^{\circ}$	$3d^{10}8s~^2\mathrm{S}_{1/2}$	153 476.1	857 086	10			10
140.177	1/2	$\frac{3a}{3} = \frac{31}{2}$	143 695.3	857 086	3			19 19
	•	•						
138.780 138.422	$3d^{10}4s {}^{2}S_{1/2}$	$3d^{10}6p\ ^2\mathrm{P}^{\circ}_{1/2}$	0.0	720 565	100			19
100.424	1/2	3/2	0.0	722 429	200			19
127.738	$3d^{10}4s$ $^{2}\mathrm{S}_{1/2}$	$3d^9(^2D)4s4p(^3P^o) ^4P^o_{3/2}$	0.0	782 852	90			19
126.692	1/2	1/2	0.0	789 316	40			19
126.813	$3d^{10}4s\ ^2{ m S}_{1/2}$	$3d^9(^2D)4s4p(^3P^o) ^4F_{3/2}^o$	0.0	788 563	15			19
195 497	$3d^{10}4s^{-2}S_{1/2}$	-,-		707 010	,			
125.437	•	$3d^9(^2D)4s4p(^3P^o)^2D_{3/2}^o$	0.0	797 213	450			19
125.301	$3d^{10}4p^{-2}P_{3/2}^{o}$	$3d^9(^2D)4p^2(^1D)^2S_{1/2}$	153 476.1	951 580	10			19

Kr VIII - Continued

Wave-	Classi	fication	Energy Lev	vels (cm ⁻¹)	Int. gf A (s ⁻¹) Acc.	References
length (Å)	Lower	Upper					
125.014	$3d^{10}4p\ ^{2}P_{3/2}^{o}$	$3d^9(^2D)4p^2(^1D)^2P_{3/2}$	153 476.1	953 414	20		19
123.570	3/2	1/2	153 476.1	962 734	20		19
123.495	1/2	3/2	143 695.3	953 414	30		19
124.823	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^3P^\circ) \ ^2P^\circ_{3/2}$	0.0	801 134	550		19
124.759	1/2	1/2	0.0	801 545	450		19
124.481	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^3P^o) ^4D_{1/2}^o$	0.0	803 335	50		19
123.891	1/2	3/2	0.0	807 161	120		19
123.076	$3d^{10}4s^{-2}S_{1/2}$	$3d^{10}7p^{-2}P_{1/2}^{o}$	0.0	812 506	35		19
122.914	1/2	3/2	0.0	813 577	50		19
121.890	$3d^{10}4p\ ^2\mathrm{P}_{1/2}^{\circ}$	$3d^9(^2D)4p^2(^3P) \ ^4F_{3/2}$	143 695.3	964 107	80		19
121.595	$3d^{10}4p\ ^2{ m P}_{3/2}^{lpha}$	$3d^9(^2D)4p^2(^3P)^{-2}D_{5/2}$	153 476.1	975 878	250		19
121.577	1/2	3/2	143 695.3	966 219	90		19
121.493	$3d^{10}4p\ ^{2}\mathrm{P_{3/2}^{o}}$	$3d^9(^2D)4p^2(^3P)^4P_{3/2}$	153 476.1	976 569	35		19
119.603	1/2	1/2	143 695.3	979 794	5		19
121.303	$3d^{10}4p\ ^2{ m P}_{3/2}^{ m o}$	$3d^9(^2D)4p^2(^3P)^2P_{1/2}$	153 476.1	977 863	20		19
120.958	3/2	3/2	153 476.1	980 229	100		19
119.880	1/2	1/2	143 695.3	977 863	20		19
119.538	1/2	3/2	143 695.3	980 229	3		19
120.906	$3d^{10}4p$ $^{2}P_{1/2}^{\circ}$	$3d^9(^2D)4p^2(^1D)^{-2}D_{3/2}$	143 695.3	970 784	100		19
119.447	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^1P^o)^2P_{3/2}^o$	0.0	837 191	600		19
118.178	1/2	1/2	0.0	846 181	350		19
117.355	$3d^{10}4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$3d^9(^2D)4p^2(^1S)^2D_{5/2}$	153 476.1	1 005 591	12		19
116.047	3/2	3/2	153 476.1	1 015 205	1		19
114.742	1/2	3/2	143 695.3	1 015 205	4		19
115.248	$3d^{10}4s\ ^2\mathrm{S}_{1/2}$	$3d^{10}8p\ ^2\mathrm{P}_{3/2}^{\circ}$	0.0	867 694	5		19

 \mathbf{Kr} IX

Wave- length (Å)	Classification Lower	Upper	Ener	gy Levels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
117.709	$3d^{10}$ 1 S ₀	$3d^{9}(^{2}D)4p^{3}P_{1}^{\circ}$	0	849 553	30			19
115.738	$3d^{10} {}^{1}\mathrm{S}_{0}$	$3d^9(^2D)4p^{-1}P_1^{\circ}$	0	864 020	1000			19
114.948	$3d^{10} {}^{1}S_{0}$	$3d^9(^2{ m D})4p\ ^3{ m D}_1^{f o}$	0	869 959	400			19
76.789	$3d^{10} {}^{1}S_{0}$	$3d^9(^2{\rm D})4f\ ^3{\rm P}_1^{\rm o}$	0	1 302 270	5			19
76.296	$3d^{10} {}^{1}S_{0}$	$3d^9(^2{\rm D})4f\ ^3{ m D}_1^{ m o}$	0	1 310 680	20			19
75.455	$3d^{10}$ 1 S ₀	$3d^9(^2{ m D})4f^{-1}{ m P}_1^{ m o}$	0	1 325 290	40			19

Kr x

Wave-	Classificat		Energy Le	vels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper		W.				
04.618	$3p^63d^{9}$ $^2D_{3/2}$	$3p^63d^8(^3F)4p^4G_{5/2}^{\circ}$	10 367	966 252	25			22
03.493	5/2	5/2	0	966 252	100			22
04.369	$3p^63d^{9-2}D_{3/2}$	$3p^53d^{10}$ $^2P_{3/2}^{\circ}$	10 367	968 510	75			22
03.251	5/2	3/2	0	968 510	20000			22
96.690	3/2	1/2	10 367	1 044 605	200			22
04.023	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^3F)4p^2D_{3/2}^o$	10 367	971 691	1000			22
03.796	3/2	5/2	10 367	973 832	50			22
02.914	5/2	3/2	0	971 691	300			22
02.687	5/2	5/2	0	973 832	10000			22
03.572	$3p^63d^{9}$ $^2\mathrm{D}_{5/2}$	$3p^63d^8(^3F)4p^4D_{3/2}^{\circ}$	0	965 513	10000			22
02.837	$3p^63d^{9-2}D_{5/2}$	$3p^63d^8(^3F)4p^2F_{7/2}^{\circ}$	0	972 410	8000			22
101.367	5/2	5/2	0	986 513	10000			22
102.750	$3p^63d^{9-2}\mathrm{D}_{3/2}$	$3p^63d^8(^3F)4p^4F_{3/2}^{\circ}$	10 367	983 596	200			22
102.750	·		0	978 945	1500			22
102.131 101.985	5/2 5/2	5/2 7/2	0	980 534	5000			22
101.668	5/2 5/2	3/2	ő	983 596	200			22
102.299	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^3P)4p^4P_{3/2}^{\circ}$	10 367	987 902	1500			22
102.299 102.260	· · · · · · · · · · · · · · · · · · ·		10 367	988 265	1500			22
101.224	3/2	5/2	0	987 902	100			22
101.181	5/2 5/2	3/2 5/2	0	988 265	30			22
101.719	$3p^63d^{9}$ ² D _{5/2}	$3p^63d^8(^3F)4p^2G_{7/2}^{\circ}$	0	983 099	250			22
101 601	$3p^63d^{9-2}D_{3/2}$	2 62 18/17) 4 279	10 367	000 500	200			00
101.691	·	$3p^63d^8(^1D)4p^2F_{5/2}^o$		993 739	300			22
100.075	5/2	7/2	0	999 248	4000			22
101.162	$3p^63d^{9}$ $^2D_{3/2}$	$3p^63d^8(^1D)4p^2D_{3/2}^{\circ}$	10 367	998 883	1500			22
100.876	3/2	5/2	10 367	1 001 691	100			22
100.111	5/2	3/2	0	998 883	125			22
99.831	5/2	5/2	0	1 001 691	3000			22
101.065	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^1D)4p^2P_{1/2}^o$	10 367	999 829	5			22
100.261	3/2	$3p^6 3d^8 (^1D) 4p \ ^2P^o_{1/2}$	10 367	1 007 768	150			22
100.662	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^3P)4p^4D_{3/2}^{\circ}$	10 267	1 002 700	100			00
100.653		•	10 367	1 003 790 1 003 879	100			22
100.653	3/2	1/2	10 367 10 367	1 003 879	150 100			$\frac{22}{22}$
99.262	3/2 5/2	5/2 5/2	0	1 007 410	2000			22
98.410	5/2	7/2	0	1 016 191	1200			22
99.648	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^3P)4p^{\ 2}P_{1/2}^{o}$	10 367	1 013 897	1200			22
99.530			10 367	1 015 092	1000			22
98.513	3/2 5/2	3/2 3/2	.10 367	1 015 092	250			22
99.530	$3p^63d^{9-2}D_{3/2}$	$3p^63d^8(^3P)4p^2D_{5/2}^{\circ}$						
	•	•	10 367	1 015 092	1000			22
99.196 98.513	3/2	3/2	10 367	1 018 468	5			22
98.187	5/2 5/2	5/2	0 0	1 015 092 1 018 468	$\frac{250}{150}$			$\begin{array}{c} 22 \\ 22 \end{array}$
	5/2	3/2	U	1 010 100	100			22
99.246	$3p^63d^{9-2}D_{5/2}$	$3p^63d^8(^1\text{G})4p^2\text{F}^{\circ}_{7/2}$	0	1 007 600	8000			22
99.037	3/2	5/2	10 367	1 020 095	6000			22
98.910	$3p^63d^9$ 2 D $_{3/2}$	$3p^63d^8(^3P)4p^{-2}S_{1/2}^{\circ}$	10 367	1 021 383	75			22
97.012	$3p^63d^9$ $^2\mathrm{D}_{5/2}$	$3p^63d^8(^1{ m G})4p\ ^2{ m G}^{ m o}_{7/2}$	0	1 030 797	100			22
91.768	$3p^63d^{9-2}D_{5/2}$	$3p^63d^8(^1S)4p^2P_{3/2}^{\circ}$	0	1 089 708	50			22

 \mathbf{Kr} XVIII

Wave-	Classin	ication	Energy Le	vels (cm ⁻¹)	Int.	$qf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
102.001	$3s^23p^63d^{\ 2}\mathrm{D}_{3/2}$	$3s^23p^5(^2P^\circ)3d^2(^3F)\ ^2F^\circ_{5/2}$	0	980 380	50			26
99.330	$3s^23p^63d\ ^2{ m D}_{5/2}$	$3s^23p^5(^2\mathrm{P^o})3d^2(^1\mathrm{G})\ ^2\mathrm{F}^{\circ}_{7/2}$	15 694	1 022 440	100			26
93.569	$3s^23p^63d^2D_{5/2}$	$3s^23p^5(^2P^o)3d^2(^3F)^{-2}D_{3/2}^o$	15 694	1 084 470	2			25
93.349	5/2	5/2	15 694	1 086 940	100			26
92.211	3/2	3/2	0	1 084 470	100			26
92.005	3/2	5/2	0	1 086 940	3			25
92.949	$3s^23p^63d^2D_{3/2}$	$3s^23p^5(^2P^\circ)3d^2(^3P)^{-2}P_{1/2}^\circ$	0	1 075 860	20			26
92.721	5/2	3/2	15 694	1 094 200	30			26
91.391	3/2	3/2	0	1 094 200	5			25
35.397	$3s^23p^63d^2D_{5/2}$	$3s^23p^64f$ $^2\mathrm{F}^{\circ}_{7/2}$	15 694	2 840 800	20			25
35.190	3/2	5/2	0	2 841 700	10			25

Kr XIX

Wave-	Classification				gy Levels (cm ⁻¹)	-1) Acc.	References	
length (Å)	Lower	Upper				<u> </u>		
118.667 ^S	$3p^{6-1}$ S ₀		$3p^53d$ $^3D_1^o$	0	842 690	15		25 [△] , 27°
96.232 ^S	$3p^{6-1}\mathrm{S}_0$		$3p^53d\ ^1P_1^{\circ}$	0	1 039 160	45		25 [△] , 27°

 $\mathbf{Kr} \ \mathbf{xx}$

Wave-	Classificat	ion	Energy Levels (cm ⁻¹)		Int. gf A	(s^{-1}) Acc.	References
length (Å)	Lower	Upper	-	, ,		• ,	
103.021	$3s^23p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^1D)3d\ ^2S_{1/2}$	0	970 680	200		29
100.254	$3s^23p^5 \ ^2P_{1/2}^{\circ}$	$3s^23p^4(^3P)3d^2D_{3/2}$	87 287	1 084 750	20		29
99.156	3/2	5/2	0	1 008 510	200		29
99.660	$3s^23p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^3P)3d\ ^2P_{3/2}$	0	1 003 410	60		29

 \mathbf{Kr} XXI

Wave- length (Å)	Classificat Lower	ion Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
1268.7	$3s^23p^4$ 3P_2	$3s^23p^4$ ³ P ₁	0	78 680		M1	9.19+3	D	31°,67*
108.854	$3s^23p^{4}$ ¹ S ₀	$3s^23p^3(^2P^\circ)3d^{-1}P_1^\circ$	225 100	1 143 760	5				30
107.709	$3s^23p^4$ 3 P ₁	$3s^23p^3(^4S^{\circ})3d^{-3}D_2^{\circ}$	78 680	1 007 100	10				30
107.173	$3s^23p^4$ 3P_2	$3s^23p^3(^2P^{\circ})3d\ ^3P_2^{\circ}$	0	933 070	15				30
104.028	$3s^23p^{4-1}D_2$	$3s^23p^3(^2D^{\circ})3d^{-1}F_3^{\circ}$	114 820	1 076 100	10				30
103.684	$3s^23p^4$ 3P_2	$3s^23p^3(^2D^{\circ})3d^{3}P_2^{\circ}$	0	964 470	5				30
103.268	$3s^23p^4\ ^3P_2$	$3s^23p^3(^2P^\circ)3d^{-1}F_3^\circ$	0	968 350	100				30

Kr xxii

Wave- length (Å)	Classification Lower	u Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
912.0	$3s^23p^3 \ ^2D_{5/2}^{\circ}$	$3s^23p^3$ ² P $_{3/2}^{\circ}$	106 960	216 479		M1	5.59+3	D	31°,67*
114.005	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^3P)3d^{-2}D_{5/2}$	216 479	1 093 630	10				32
111.669 110.063	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})3d\ ^4\mathrm{P}_{5/2}$	0 0	895 500 908 570	100 20				32 32
109.648 108.977	$3s^23p^3$ 2 D $_{3/2}^{\circ}$	$3s^23p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{3/2}$	77 801 77 801	989 810 995 430	10 10				32 32
108.362	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})3d\ ^2\mathrm{F}_{7/2}$	106 960	1 029 790	300				32

 \mathbf{Kr} XXIII

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A(s^{-1})$	Acc.	References
3840.9	$3s^23p^2$ 3P_1	$3s^23p^2$ 3P_2	68 369	94 397		Mı	1.46+2	C	31°,67*
1462.65	0	1	0	68 369		M1	4.91 + 3	Č	33°,67*
853.8	$3s^23p^2$ 3 P ₁	$3s^23p^{2-1}D_2$	68 369	185 490		M1	8.43+3	D	31°,67*
144.666	$3s^23p^2$ 3 P ₂	$3s3p^3 \ ^3S_1^{\alpha}$	94 397	785 644	5				34
130.703	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^3{\rm D}_3^{\rm o}$	185 490	950 580	30				34
127.653	2	. 3	185 490	968 860	20				34
124.322	$3s^23p^2$ 3P_1	$3s^23p3d\ ^3P_2^{\circ}$	68 369	872 750	5				34
114.005	1	. 2	68 369	945 520	10				34
112.586	1	1	68 369	956 580	5				34
118.850	$3s^23p^2$ ¹ D ₂	$3s^23p3d\ ^1{ m F}_3^{ m o}$	185 490	1 026 920	10				34
118.468	$3s^23p^2$ 3P_2	$3s^23p3d^{-1}D_2^{\circ}$	94 397	938 520	5				34
114.921	1	2	68 369	938 520	8				34
116.797	$3s^23p^2$ 3P_2	$3s^23p3d\ ^3{ m D}_3^{ m o}$	94 397	950 580	10				34
112.586	0	1	0	888 210	50				34
107.231	$3s^23p^2\ ^3{ m P}_2$	$3s^23p3d\ ^1{ m F}_3^{\circ}$	94 397	1 026 920	7				34

 \mathbf{Kr} XXIV

Wave- length (Å)	Classification Lower	Upper	Energy Lev	vels (cm ⁻¹)	Int. gf	$A (s^{-1})$ Acc.	References
272.54	$3s^23p\ ^2P_{3/2}^{\circ}$	3s3p ² ⁴ P _{3/2}	97 312	464 230	70		37
248.07	3/2	5/2	97 312	500 420	180		37
242.56	1/2	1/2	0	412 270	720		37
194.420 ^S	$3s^23p\ ^2{ m P}_{3/2}^{ m o}$	$3s3p^2 \ ^2D_{5/2}$	97 312	611 662	2		36
172.471 ^S	1/2	3/2	0	579 808	10		36
52.111 ^S	$3s^23p\ ^2{ m P}^{ m o}_{3/2}$	$3s3p^2 {}^2P_{1/2}$	97 312	754 727	10		36
49.765 ^S	3/2	3/2	97 312	765 062	50		36
.32.44	1/2	1/2	0	754 727			28
30.702 ^S	1/2	3/2	0	765 062	30		36
152.016 ^S	$3s^23p\ ^2{ m P}_{1/2}^{ m o}$	$3s3p^2$ 2 S _{1/2}	0	657 825	20		36
134.097 ^S	$3s^23p\ ^2\mathrm{P_{3/2}^{\circ}}$	$3s^23d\ ^2{ m D}_{3/2}$	97 312	843 013	15		36
131.795 ^S	3/2	5/2		856 066	200		36
118.626 ^S	1/2	3/2	_	843 013	50		36

SPECTRAL DATA FOR HIGHLY IONIZED ATOMS

 $\mathbf{Kr} \ \mathbf{xxv}$

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int. gf A (s	Acc. References
242.548 ^S	$3s^2$ ¹ S ₀	3s3p ³ P ₁ °	0	412 290	20	38
217.03	$3s3p^{-1}P_1^{\circ}$	$3p^2 \ ^3P_2$	632 187	1 092 830	5	37
217.03	$3s3d\ ^3\mathrm{D_2}$	$3p3d$ 3 F $_3^o$	1 184 970	1 645 700	6	40
192.92	3	4	1 196 618	1 715 000	bl	40
197.620 171.14	$3s3p\ ^3P_2^{\circ}$	$3p^{2-1}D_2$	490 722 412 290	996 610 996 610	7 70	25 37
	$3s3p$ $^3\mathrm{P}^{\circ}_2$	$3p^2 \ ^3P_1$			20	
195.63 192.92	383 <i>p</i>	3p P ₁	490 722 412 290	1 001 890 930 645	bl	37 40
169.61	1	1	412 290	1 001 890	40	37
166.083 ^S	2	2	490 722	1 092 830	2	38
163.32 146.942 ^S	0	1 2	389 580 412 290	1 001 890 1 092 830	60	37 38
140.542			412 230	1 032 030		
186.79	$3s3d$ 3D_3	$3p3d$ $^3D_2^o$	1 196 618	1 731 900	8	40
175.77 172.38	3 2	3	1 196 618 1 184 970	1 765 500 1 765 500	10 10	40 40
112.36						
181.90	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{F}_{3}^{\circ}$	1 319 434	1 869 500?	18	40
174.86	$3s3d$ $^{1}\mathrm{D}_{2}$	3p3d ¹ P ₁	1 319 434	1 891 300	6	40
174.01	$3s3p^{-1}P_1^{\circ}$	$3p^{2} {}^{1}S_{0}$	632 187	1 206 900	10	40
168.9	$3s3d$ $^3\mathrm{D}_2$	$3p3d\ ^{3}P_{2}^{o}$	1 184 970	1 777 000	ы	40
168.9	1	0	1 177 690	1 769 800	bl	40
168.55	1	1	1 177 690	1 771 700	bl	40
168.55	$3p3d$ $^{1}\mathrm{F}^{\circ}_{3}$	$3d^{2} {}^{1}G_{4}$	1 869 500?	2 464 200?	bl	40
161.31	$3p3d$ $^3P_2^{\circ}$	$3d^2$ 3 F $_3$	1 777 000	2 396 500	4	40
158.181 ^S	$3s^2$ 1 S ₀	$3s3p^{-1}P_1^o$	0	632 187	600	38
155.09	$3p3d$ $^3D_3^{\circ}$	$3d^2 \ ^3F_4$	1 765 500	2 410 000	15	40
150.42	2	3	1 731 900	2 396 500	13	40
144.40	1	2	1 689 400	2 381 900	8	40
149.768	$3p^2$ 1 D ₂	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	996 610	1 664 300	23	40
148.61	$3p^2 \ ^3P_2$	$3p3d \ ^{3}D_{3}^{o}$	1 092 830	1 765 500	16	40
136.97	1	2	1 001 890	1 731 900	14	40
131.789	0	1	930 645	1 689 400	ы	40
146.15	$3p^2$ 1S_0	$3p3d$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	1 206 900	1 891 300	bl	40
146.15	$3p^2 \ ^3P_2$	$3p3d$ $^{3}P_{2}^{\circ}$	1 092 830	1 777 000	7	40
129.895 ^S	1	1	1 001 890	1 771 700	ы	40
145.508	$3s3p^{-1}P_{1}^{o}$	$3s3d$ $^{1}\mathrm{D}_{2}$	632 187	1 319 434	10	38
145.498	$3p3d$ $^3P_2^{\circ}$	$3d^2$ 3 P ₂	1 777 000	2 465 611	25	40
143.90	$3p3d\ ^{3}F_{4}^{o}$	$3d^2 \ ^3F_4$	1 715 000	2 410 000	10	40
133.24	3	3	1 645 700	2 396 500	ьl	40
143.90	$3s3p$ $^3\mathrm{P}_2^{\circ}$	$3s3d$ $^3\mathrm{D}_2$	490 722	1 184 970	bl	40
141.664 ^S	2	3	490 722	1 196 618	15	38
129.420 126.886	1 0	2	412 290 389 580	1 184 970 1 177 690	50 4	37 38
			000 000	1 111 000	*	30
136.04	$3p^{2-1}D_2$	$3p3d$ $^3D_2^{\circ}$	996 610	1 731 900	11	40
129.895	2	3	996 610	1 765 500	bl	40
110.242	$3s3p\ ^{3}P_{1}^{o}$	$3s3d~^1\mathrm{D}_2$	412 290	1 319 434	10	25
21.840	$3s^{2}$ $^{1}S_{0}$	3s4p 1P1	0	4 579 000	5	25

 \mathbf{Kr} xxvi

Wave- length (Å)	Classificat Lower	tion Upper	Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
220.064	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^63p\ ^2{ m P}_{1/2}^{ m o}$	0	454 413	50		25 [△] ,41°
178.994	1/2	3/2	0	558 678	70		25^{Δ} , 41°
165.160	$2p^{6}3p^{-2}P_{3/2}^{o}$	$2p^6 3d\ ^2{ m D}_{3/2}$	558 678	1 164 182			41
159.920	3/2	5/2	558 678	1 183 991	30		25 [△] , 41°
140.891	1/2	3/2	454 413	1 164 182	25		25 ⁴ , 41°
59.459	$2p^64f$ $^2\mathrm{F^o_{7/2}}$	$2p^65g\ ^2{ m G_{9/2}}$	5 070 800	6 752 600	8		25
59.377	5/2	7/2	5 067 200	6 751 400	6		25
55.93	$2p^64d\ ^2{ m D}_{5/2}$	$2p^65f$ $^2\mathrm{F}^{\circ}_{7/2}$	4 955 600	6 743 600			35
55.71	3/2	5/2	4 947 400	6 742 400			35
50.86	$2p^64p\ ^2{ m P}^{ m o}_{3/2}$	$2p^65d\ ^2{ m D}_{5/2}$	4 720 300	6 686 500			35
49.93	1/2	3/2	4 679 700	6 683 100			35
48.59	$2p^64s$ $^2S_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	4 492 700	6 550 700			35
48.11	1/2	3/2	4 492 700	6 571 200			35
25.728	$2p^63d^{2}D_{5/2}$	$2p^64f~^2\mathrm{F}^{\circ}_{7/2}$	1 183 991	5 070 800	40		25 ^Δ , 41°
25.621	3/2	5/2	1 164 182	5 067 200	30		25 [△] ,41°
25.416	$2p^63p^{-2}P_{3/2}^{o}$	$2p^64s^2S_{1/2}$	558 678	4 492 700	30		25
24.766	1/2	1/2	454 413	4 492 700	10		25
22.743	$2p^63p^2 P_{3/2}^{\circ}$	$2p^64d\ ^2{ m D}_{5/2}$	558 678	4 955 600	10		25
22.257	1/2	3/2	454 413	4 947 400	5		25
21.369	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^64p~^2\mathrm{P}^{\circ}_{1/2}$	0	4 679 700	10		25
21.185	1/2	3/2	0	4 720 300	15		25
17.99	$2p^6 3d^2 D_{5/2}$	$2p^65f^{-2}F^{\circ}_{7/2}$	1 183 991	6 743 600			35
17.94	3/2	5/2	1 164 182	6 742 400			35
16.34	$2p^63p^{-2}P_{3/2}^{\circ}$	$2p^65d\ ^2{ m D}_{3/2}$	558 678	6 683 100			35
16.07	1/2	3/2	454 413	6 683 100			35
15.21	$2p^63s^2S_{1/2}$	$2p^65p^{-2}P_{1/2}^{\circ}$	0	6 550 700			35
15.21	1/2	3/2	0	6 571 200			35
7.570	$2p^63s\ ^2\mathrm{S}_{1/2}$	$2p^53s^2\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	0	13 210 000			42
7.322	1/2	1/2	. 0	13 657 000			42

 \mathbf{Kr} XXVII

Wave- length (Å)	Classification		Energy Levels (cm ⁻¹)		Int. gf A (s	⁻¹) Acc.	References
	Lower	Upper				· · · · · · · · · · · · · · · · · · ·	
242.85	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})3s\;(\frac{3}{2},\frac{1}{2})_{1}^{\mathrm{o}}$	$2p^{5}(^{2}P_{3/2}^{\circ})3p(\frac{3}{2},\frac{1}{2})_{2}$	13 326 500	13 738 200			43
242.25	2	1	13 300 500	13 713 300			43
228.50	2	2	13 300 500	13 738 200			43
241.37	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s(\frac{1}{2},\frac{1}{2})_{1}^{\circ}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{o})3p(\frac{1}{2},\frac{1}{2})_{1}$	13 758 000	14 172 300			43
234.18	0	1	13 745 300	14 172 300			43
170.55 ^T	1	0	13 758 000	14 344 300?			43
196.30	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s(\frac{3}{2},\frac{1}{2})_{1}^{\circ}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3p(\frac{3}{2},\frac{3}{2})_{1}$	13 326 500	13 835 900			43
188.38	2	3	13 300 500	13 831 300	11		35 [△] , 43°
183.90	1	2	13 326 500	13 870 200	4		35 ⁴ ,43°
175.55	2	2	13 300 500	13 870 200	10		35 [△] ,43°
147.51 ^T	1	0	13 326 500	14 004 200?			43
190.14	$2p^{5}(^{2}P_{1/2}^{o})3s(\frac{1}{2},\frac{1}{2})_{1}^{o}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3p(\frac{1}{2},\frac{3}{2})_{1}$	13 758 000	14 283 900			43
186.70	1/2/ (2/2/1	2	13 758 000	14 293 600	8		35 [△] ,43°
185.65	0	2	13 745 300	14 283 900	4		35 ⁴ ,43°
		•					
188.38	$2p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})3p(\frac{3}{2},\frac{3}{2})_2$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3d(\frac{3}{2},\frac{5}{2})_{2}^{\circ}$	13 870 200	14 401 100	11		35 [△] , 43°
176.15	3	4	13 831 300	14 399 000	10		35 [△] ,43°
173.05	2	3	13 870 200	14 448 200	10		35 [△] ,43°
162.08	3	3	13 831 300	14 448 200			43
177.65	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3p(\frac{3}{2},\frac{3}{2})_{3}$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3d(\frac{3}{2},\frac{3}{2})^{\circ}_{3}$	13 831 300	14 394 500			43
169.97	1	2	13 835 900	14 424 300	4		35^{Δ} , 43°
174.10	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3p(\frac{1}{2},\frac{3}{2})_{1}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3d(\frac{1}{2},\frac{5}{2})_{2}^{\circ}$	14 283 900	14 858 300	10		35 [△] ,43°
173.60	27 (1/2) 07 (2, 2/1	-F (1/2) = (2, 2/2	14 293 600	14 869 700	9		35 [△] ,43°
		•			Ü		00 , 10
159.06	$2p^5(^2\mathrm{P}^{\circ}_{3/2})3p(\frac{3}{2},\frac{1}{2})_1$	$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3d(\frac{3}{2},\frac{3}{2})^{\circ}_{0}$	13 713 300	14 342 000			43
158.45^{T}	2		13 738 200	14 369 400			43
152.38	1	1	13 713 300	14 369 400			43
152.38	2	3	13 738 200	14 394 500			43
145.75	2	2	13 738 200	14 424 300			43
150.89	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3p(\frac{3}{2},\frac{1}{2})_{2}$	$2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3d(\frac{3}{2},\frac{5}{2})_{2}^{\circ}$	13 738 200	14 401 100			43
145.35	1	2	13 713 300	14 401 100			43
149.75	$2p^{5}(^{2}P_{1/2}^{\circ})3p(\frac{1}{2},\frac{1}{2})_{1}$	$2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3d(\frac{1}{2},\frac{3}{2})_{2}^{\circ}$	14 172 300	14 840 100			43
7.504	$2s^22p^6$ $^1{ m S}_0$	$2s^22p^5(^2\mathbf{P}^{\circ}_{3/2})3s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	13 326 500	9		45
7.268	$2s^22p^6$ $^1{ m S}_0$	$2s^2 2p^5 (^2 P_{1/2}^{\circ}) 3s (\frac{1}{2}, \frac{1}{2})_1^{\circ}$	0	13 758 000	6		45
6.955	$2s^22p^6$ ¹ S ₀	$2s^22p^5(^2P_{3/2}^{\circ})3d(\frac{3}{2},\frac{3}{2})_1^{\circ}$	0	14 369 400	7		45
6.878	$2s^22p^{6-1}S_0$	$2s^22p^5(^2P_{3/2}^{\circ})3d(\frac{3}{2},\frac{5}{2})_1^{\circ}$	0	14 533 000	10		45
6.694	$2s^22p^6$ 1S_0	$2s^22p^5(^2P_{1/2}^{\circ})3d(\frac{1}{2},\frac{3}{2})_1^{\circ}$	0	14 928 000	8		45
6.383	$2s^22p^{6-1}S_0$	$2s2p^{6}(^{2}\mathrm{S}_{1/2})3p(\frac{1}{2},\frac{1}{2})_{1}^{o}$	0	15 662 000	5		45
6.333	$2s^22p^{6-1}S_0$	$2s2p^{6}(^{2}S_{1/2})3p(\frac{1}{2},\frac{3}{2})_{1}^{o}$	0	15 783 000	4		45
0.000	20 2p 50	$20\mu \left(\frac{1}{2} \right) \sqrt{2} \left(\frac{1}{2} \right) \sqrt{2}$	U	10 100 000	-1		40

 \mathbf{Kr} XXVIII

Wave- ength (Å)	Classific Lower	ation Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	Reference
223.995	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^5$ 2 P $^{\circ}_{1/2}$	0	446 440		Mı	1.59+6	В	47°,67*
68.733	$2s^22p^5$ $^2\mathrm{P}^o_{1/2}$	$2s2p^6 \ ^2\mathrm{S}_{1/2}$	446 440	1 901 350	10				25 [△] ,47°
52.594	3/2	1/2	0	1 901 350	25				25 [△] , 47°
7.209	$2s^22p^5$ 2 P $^{o}_{3/2}$	$2s^22p^4(^3P_2)3s(2,\frac{1}{2})_{5/2}$	0	13 872 000					42
7.193	3/2	3/2	0	13 902 000					42
7.209	$2s^22p^5$ $^2\mathrm{P}_{1/2}^{\circ}$	$2s^22p^4(^3P_1)3s(1,\frac{1}{2})_{1/2}$	446 440	14 337 000					42
6.997	3/2	3/2	0	14 292 000					42
6.975	3/2	1/2	0	14 337 000					42
7.162	$2s^22p^5$ $^2P_{1/2}^o$	$2s^22p^4(^1D_2)3s(2,\frac{1}{2})_{3/2}$	446 440	14 409 000					42
6.941	3/2	5/2	0	14 407 000					42
7.123	$2s^22p^5$ ² P $_{3/2}^{\circ}$	$2s^22p^4(^3P_0)3s(0,\frac{1}{2})_{1/2}$	0	14 039 000					42
6.881	$2s^22p^5$ $^2P_{1/2}^{o}$	$2s^22p^4(^3P_2)3d(2,\frac{5}{2})_{3/2}$	446 440	14 977 000					42
6.678			440 440	14 977 000					42
6.678	3/2 3/2	3/2 1/2	0	14 977 000?	,				42
6.663	3/2	5/2	, ŏ	15 008 000					42
6.727	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s^22p^4(^3P_0)3d(0,\frac{3}{2})_{3/2}$	446 440	15 312 000					42
6.715	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3P_2)3d(2,\frac{3}{2})_{1/2}$	0	14 892 000					42
6.699	$2s^22p^5$ ² P $_{1/2}^{\circ}$	$2s^22p^4(^3P_1)3d(1,\frac{5}{2})_{3/2}$	446 440	15 374 000					42
6.502	23 2p 1 1/2 3/2	$23 \ 2p \ (11)3d \ (1, \frac{1}{2})3/2$ $5/2$	0	15 380 000					42
e eeo	$2s^22p^5$ 2 P $_{1/2}^{\circ}$	$2s^22p^4(^1D_2)3d(2,\frac{3}{2})_{3/2}$	446 440	15 460 000					40
6.663 6.479		- ,	446 440	15 460 000					42
6.466	3/2	1/2	0 0	15 434 000 15 460 000					42 42
6.466	3/2 3/2	3/2 5/2	0	15 466 000					42
6.639	$2s^22p^5$ $^2P_{3/2}^{\circ}$	$2s^22p^4(^1S_0)3d(0,\frac{3}{2})_{3/2}$	0	15 062 000					42
6.626	$2s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$	$2s^22p^4(^3P_0)3d(0,\frac{5}{2})_{5/2}$	0	15 092 000					42
6.626	$2s^22p^5$ $^2\mathrm{P}_{1/2}^{\mathrm{o}}$	$2s^22p^4(^1D_2)3d(2,\frac{5}{2})_{3/2}$	446 440	15 557 000					42
6.614		= :	446 440	15 573 000					42
6.428	1/2 3/2	1/2 3/2	0	15 557 000					42
6.418	3/2	1/2	Ö	15 573 000					42
6.519	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s^22p^4(^3P_1)3d(1,\frac{3}{2})_{5/2}$	0	15 340 000					42
C 400	$2s^22p^5$ ² P° _{1/2}	$2s2p^{5}(^{1}P^{\circ})3p^{2}S_{1/2}$		* F 000 000					
6.428 6.259		· ·	446 440 0	15 990 000° 15 990 000°					42
	3/2	1/2	U	15 990 000					42
6.214	$2s^22p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$2s2p^{5}(^{3}P^{\circ})3p^{4}D_{3/2}$	446 440	16 540 000	?				42
6.185	$2s2p^{6-2}S_{1/2}$	$2p^6 3p^2 P_{1/2}^{\circ}$	1 901 350	18 069 000					42
6.145	1/2	3/2	1 901 350	18 175 000					42
6.171	$2s^22p^5$ ² P° _{1/2}	$2s2p^{5}(^{3}P^{o})3p^{4}P_{3/2}$	446 440	16 652 000	?				42
6.171	$2s^22p^5$ ² P° _{3/2}	$2s2p^{5}(^{1}P^{\alpha})3p^{2}P_{1/2}$	0	16 200 000	?				42
6.166	$2s^22p^5$ 2 P $^{\circ}_{3/2}$	$2s2p^{5}(^{1}P^{o})3p^{-2}D_{5/2}$	0	16 218 000	?				42
6.145	$2s^22p^{5-2}P_{3/2}^{\circ}$	$2s2p^{5}(^{3}P^{o})3p^{2}S_{1/2}$	0	16 273 000	?				42
6 145	$2s^22p^5$ ² P _{1/2}	2s2p ⁵ (³ P°)3p ² P _{1/2}	110 110	10 500 000					40
6.145		·	446 440	16 720 000					42
6.129	3/2	3/2	0	16 316 000	:				42

 \mathbf{Kr} XXIX

Wave-	Classificat	ion	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
235.95	$2s^22p^4$ ³ P ₂	$2s^22p^4$ ³ P ₁	0	423 820	M1	1.34+6	C	47°,67*
190.515	$2s^22p^4\ ^3\mathrm{P}_2$	$2s^22p^{4-1}D_2$	0	524 890	M1	9.82 + 5	D	47°,67*
86.98	$2s^22p^{4-1}D_2$	$2s2p^5~^3{ m P}_2^{ m o}$	524 890	1 674 650				47
74.663	2	1	524 890	1 864 320				47
79.947	$2s^22p^4$ 3 P ₁	$2s2p^{5-3}P_{2}^{\circ}$	423 820	1 674 650				47
69.414	1	1	423 820	1 864 320				47
59.714	2	2	0	1 674 650				25,47°
58.700	0	1	160 700	1 864 320				47
58.48	1	0	423 820	2 133 800				46
53.640	2	1	0	1 864 320				$25,47^{\circ}$
53.977	$2s^22p^{4-1}D_2$	$2s2p^{5-1}P_1^{o}$	524 890	2 377 700				25

 $\mathbf{Kr} \ \mathbf{x} \mathbf{x} \mathbf{x}$

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
259.807	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ ² D _{3/2}	0	384 900	M1	1.21+6	D	47°,67*
205.247	3/2	5/2	0	487 220	M1	2.19 + 5		47°,67*
160.90^{T}	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s^22p^3$ 2 P $^{\circ}_{1/2}$	0	621 500?	M1	1.52+6	D	47°,67*
110.62	$2s^22p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$2s2p^4 {}^4 ext{P}_{5/2}$	487 220	1 391 300				47
86.26	5/2	3/2	487 220	1 646 580				47
71.875	$2s^22p^3$ $^4S_{3/2}^{\circ}$	$2s2p^{4} {}^{4}P_{5/2}$	0	1 391 300				47
60.732	3/2	3/2	0	1 646 580				47
60.332	3/2	1/2	0	1 657 500				47
63.671	$2s^22p^3$ 2 D $^{\circ}_{3/2}$	$2s2p^4\ ^2{ m D}_{3/2}$	384 900	1 955 480				47
54.596	$2s^22p^3$ $^2D_{5/2}^{\circ}$	$2s2p^4\ ^2{ m P}_{3/2}$	487 220	2 318 860				47

Kr xxxi

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
252.001	$2s^22p^2$ ³ P ₀	$2s^22p^2$ 3 P ₁	0	396 820	M1	8.78+5	В	47°, 67*
95.057	$2s^22p^2$ 3 P ₂	$2s2p^3\ ^3{ m D}_1^{ m o}$	478 200	1 530 200				47
79.557	1		396 820	1 653 800				47
76.610	2	3	478 200	1 783 500				47
65.352	0	1	0	1 530 200				47
79.45	$2s2p^3$ 3 P $_1^{\circ}$	$2p^4$ 3 P $_0$	1 999 100	3 258 000				50
64.14	$2s^22p^2$ ³ P ₁	$2s2p^3$ 3 P $_0^o$	396 820	1 955 900				50
63.103		2	478 200	2 062 900				47
62.411	1	1	396 820	1 999 100				47
59.748	$2s^22p^2$ ³ P ₂	$2s2p^{3}$ $^{3}S_{1}^{\circ}$	478 200	2 151 900				47
56.976^{T}	1	1	396 820	2 151 900				47

 \mathbf{Kr} xxxii

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
203.021	$2s^22p\ ^2P_{1/2}^{\circ}$	$2s^22p\ ^2{ m P}^{ m o}_{3/2}$	0	492 560	M1	1.06+6	В	47°,67*
151.121	$2s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$2s2p^2$ 4 P _{5/2}	492 560	1 154 280				51
143.266	1/2	1/2	0	698 000				51
93.75	$2s2p^2\ ^2{ m D}_{5/2}$	$2p^3 \ ^2\mathrm{D}^{\circ}_{5/2}$	1 676 630	2 743 000				50
84.454	$2s^22p^{-2}P_{3/2}^{o}$	$2s2p^2$ $^2D_{5/2}$	492 560	1 676 630				51
69.957	1/2	3/2	0	1 429 450				47
78.90	$2s2p^2\ ^2{ m P}_{3/2}$	$2p^3\ ^2{ m P}^{ m o}_{3/2}$	2 039 330	3 307 000				50
66.538	$2s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$2s2p^2$ 2 S _{1/2}	0	1 502 900				47
65.067	$2s^22p\ ^2{ m P}^{ m o}_{3/2}$	$2s2p^2 {}^2P_{1/2}$	492 560	2 029 440				51
64.651	3/2	3/2	492 560	2 039 330				51

Kr xxxiii

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
235.48	$1s^2 2s 2p \ ^3P_1^{\circ}$	1s ² 2s2p ³ P ₂ °	588 770	1 013 440	M1	9.29+5	С	47°, 67*
169.845	$1s^22s^{2-1}S_0$	$1s^2 2s2p\ ^3P_1^{\circ}$	0	588 770				47
123.10	$1s^2 2s2p$ 3 P $_2^{\circ}$	$1s^22p^2$ 3 P ₁	1 013 440	1 827 200				50
117.74	1	0	588 770	1 438 100				50
111.65	2	2	1 013 440	1 909 800				50
80.75	1	1	588 770	1 827 200				50
75.66	0	1	505 500	1 827 200				50
75.66	1	2	588 770	1 909 800				50
98.19	$1s^2 2s2p \ ^1\mathrm{P_1^o}$	$1s^22p^{2-1}D_2$	1 374 460	2 391 300				50
77.10	$1s^2 2s2p \ ^1 P_1^{\circ}$	$1s^22p^2$ 1 S ₀	1 374 460	2 671 500				50
72.756	$1s^22s^2$ 1 S ₀	$1s^2 2s2p \ ^1P_1^{\circ}$	0	1 374 460				47
72.66	$1s^2 2s2p\ ^3{ m P}_2^{ m o}$	$1s^22p^{2-1}D_2$	1 013 440	2 391 300				50

Kr xxxiv

Wave-		assification	Energy Lev	els (cm ⁻¹)	Int. gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper					
174.040 ^S 91.050 ^S	$1s^2 2s \ ^2S_{1/2}$	$1s^22p \ ^2P_{1/2}^{\circ}$	0	574 582 1 098 294			47,53° 47,53°
34.507 ^C	$1s^24p\ ^2P_{3/2}^{o}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[25 147 000]	[28 045 000]			
34.388 ^C 33.750 ^C	3/2 1/2	5/2 3/2	[25 147 000] [25 082 000]	[28 055 000] [28 045 000]			
16.377 ^C 15.972 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	[18 911 000] [18 756 000]	[25 017 000] [25 017 000]			
15.969 ^C	$1s^23p \ ^2P_{3/2}^{\circ}$	$1s^24d^2D_{3/2}$	[18 911 000]	[25 173 000]			
15.916 ^C 15.584 ^C	3/2 1/2	5/2 3/2	[18 911 000] [18 756 000]	[25 194 000] [25 173 000]			
15.425 ^C 15.272 ^C	$1s^23s {}^2S_{1/2}$	$1s^24p \ ^2\mathrm{P}^{\circ}_{1/2}$	[18 599 000] [18 599 000]	[25 082 000] [25 147 000]			
11.046 ^C 10.860 ^C	$1s^23p\ ^2P_{3/2}^{o}$	$1s^25s$ $^2S_{1/2}$	[18 911 000]	[27 964 000]			
10.860 10.948 ^C	$1/2$ $1s^2 3p \ ^2P_{3/2}^{\circ}$	$1/2$ $1s^25d^{-2}D_{3/2}$	[18 756 000] [18 911 000]	[27 964 000] [28 045 000]			
10.936 ^C 10.765 ^C	3/2 3/2 1/2	5/2 3/2	[18 911 000] [18 756 000]	[28 055 000] [28 045 000]			
5.7143 ^C 5.5482 ^C	$1s^2 2p ^2\mathrm{P}^{\circ}_{3/2}$	$1s^2 3s \ ^2S_{1/2}$	1 098 294 574 582	[18 599 000] [18 599 000]			54 54
5.5951 ^C	$1s^2 2p \ ^2P_{3/2}^{\circ}$	$1s^2 3d\ ^2 \mathrm{D}_{3/2}$	1 098 294	[18 971 000]			54
5.5799 ^C 5.4359 ^C	3/2 1/2	5/2 3/2	1 098 294 574 582	[19 020 000] [18 971 000]			54 54
5.3316 ^C 5.2879 ^C	$1s^2 2s \ ^2S_{1/2}$	$1s^23p \ ^2P_{1/2}^{\circ}$	0 0	[18 756 000] [18 911 000]			54 54
4.1809 ^C 4.0913 ^C	$1s^22p \ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	1 098 294 574 582	[25 017 000] [25 017 000]			54 54
4.1537 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s^24d\ ^2{ m D}_{3/2}$	1 098 294	[25 173 000]			54
4.1502 ^C 4.0653 ^C	3/2 1/2	5/2 3/2	1 098 294 574 582	[25 194 000] [25 173 000]			54 54
3.9870 ^C 3.9766 ^C	$1s^2 2s \ ^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	0 0	[25 082 000] [25 147 000]			54 54
3.7222^{C} 3.6510^{C}	$1s^22p\ ^2\mathrm{P}^o_{3/2}$	$1s^25s$ $^2S_{1/2}$	1 098 294	[27 964 000]			54
3.7111 ^C	$1/2$ $1s^2 2p {}^2 P_{3/2}^o$	$1/2$ $1s^25d^{-2}D_{3/2}$	574 582 1 098 294	[27 964 000] [28 045 000]			54 54
3.7097 ^C 3.6404 ^C	3/2 1/2	5/2 3/2	1 098 294 574 582	[28 055 000] [28 045 000]			54 54
$3.5718^{\rm C} \ 3.5676^{\rm C}$	$1s^2 2s ^2\mathrm{S}_{1/2}$	$1s^25p\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	0	[27 997 000]			54
0.96884 ^C	$1/2$ $1s^2 2p \ ^2P_{3/2}^{\circ}$	$3/2$ $1s2s^2$ 2 S _{1/2}	0 1 098 294	[28 030 000] [104 304 000]			54 54
0.96415 ^C	1/2	1/2	574 582	[104 304 000]	•		54
0.96028 ^C 0.95699 ^C 0.95615 ^C	$1s^2 2p \ ^2P_{3/2}^{o}$ 3/2	$1s(^2S)2p^2(^3P) ^4P_{1/2}$	1 098 294 1 098 294	[105 225 000] [105 582 000]	ĺ		54 54
0.95566 ^C 0.95241 ^C	3/2 1/2	5/2 1/2 3/2	1 098 294 574 582 574 582	[105 674 000] [105 225 000] [105 582 000]	j		54 54 54
0.95725 ^C	$1s^2 2s \ ^2S_{1/2}$	$1s(^2S)2s2p(^3P^\circ) \ ^4P_{1/2}^\circ$	0	[104 466 000]			54
0.95652 ^C 0.95491 ^C	$1/2$ $1s^2 2p {}^2P_{3/2}^{\circ}$	$3/2$ $1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	0 1 098 294	[104 546 000	•		54
0.95034 ^C 0.94963 ^C	1/2	1/2	574 582 1 098 294	[105 810 000 [105 810 000 [106 393 000]		54 54 54
0.94511 ^C	3/2 1/2	3/2 3/2	574 582	[106 393 000	•		54 54

Kr XXXIV - Continued

Wave-		lassification	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					
0.95451 ^C	$1s^2 2p^2 P_{3/2}^{o}$	$1s(^2S)2p^2(^1D)^{-2}D_{3/2}$	1 098 294	[105 854 000]			54
$0.95137^{\rm C}$	3/2	5/2	1 098 294	[106 199 000]			54
$0.94995^{\rm C}$	1/2	3/2	574 582	[105 854 000]			54
0.95288^{C}	$1s^2 2s \ ^2S_{1/2}$	$1s(^{2}S)2s2p(^{3}P^{o}) \ ^{2}P_{1/2}^{o}$	0	[104 945 000]			54
0.94961^{C}	1/2	3/2	0	[105 306 000]			54
0.94808 ^C	$1s^2 2p^2 P_{3/2}^{o}$	$1s(^2S)2p^2(^1S)^2S_{1/2}$	1 098 294	[106 564 000]			54
$0.94359^{\rm C}$	1/2		574 582	[106 564 000]			54
0.94804 ^C	$1s^2 2s ^2 S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{\circ}) ^{2}P_{1/2}^{\circ}$	0	[105 481 000]	1		54
0.94746^{C}	1/2	3/2	0	[105 545 000]			54

Kr xxxv

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int. g	$f A (s^{-1})$	Acc.	References
4970 ^C	$1s4p$ $^3\mathrm{P_2^o}$	$1s4d$ $^3\mathrm{D}_2$	[131 037 700]	[131 057 800]				
2320 ^C	2	3	[131 037 700]	[131 080 700]				
1170 ^C	1	2	[130 972 200]	[131 057 800]				
1150 ^C	1	1	[130 972 200]	[131 059 000]				
1120 ^C	0	1	[130 969 500]	[131 059 000]				
4520 ^C	$1s5s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}P_{1}^{o}$	[134 035 500]	[134 057 600]				
1800 ^C	1	2	[134 035 500]	[134 091 100]				
2300 ^C	1s4s ³ S ₁	1s4p ³ P ₁ °	[130 928 700]	[130 972 200]				
917 ^C	1	2	[130 928 700]	[130 972 200]				
2200 ^C	$1s5s$ $^{1}\mathrm{S}_{0}$	1s5p ¹ P ₁ °	[134 056 900]	[134 102 400]				
1130 ^C	$1s4s$ 1 S $_{0}$	$1s4p\ ^{1}P_{1}^{o}$	[130 970 800]	[131 059 600]				
962 ^C	$1s3s$ $^3\mathrm{S}_1$	1s3p ³ P ₁ °		• ,				
385.2 ^C	1858 51	183p P ₁	[124 175 700] [124 175 700]	[124 279 600] [124 435 300]				
477.3 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	1s3p ¹ P ₁ °	[124 278 000]	[124 487 500]				
		_	•					
279.8	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{3}P_{0}^{\circ}$	[104 684 520]	[105 041 440]				50
264.6 ^C	1	1	[104 684 520]	[105 062 480]				
111.11	1	2	[104 684 520]	[105 584 760]				50
141.0 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p\ ^{1}P_{1}^{\circ}$	[105 065 860]	[105 774 980]				
91.70 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p\ ^{1}P_{1}^{o}$	[104 684 520]	[105 774 980]				
33.363 ^C	$1s4p$ $^{1}P_{1}^{\circ}$	$1s5s$ $^{1}\mathrm{S}_{0}$	[131 059 600]	[134 056 900]				
33.358 ^C	1s4p 3P2	1s5s ³ S ₁	[101 00# #00]	[104.005.500]				
32.645 ^C	184p P ₂	1s5s S ₁	[131 037 700] [130 972 200]	[134 035 500] [134 035 500]				
31.960 ^C	$1s4s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	[130 928 700]	[134 057 600]				
31.933 ^C	1s4s ¹ S ₀	$1s5p^{-1}P_{1}^{o}$	[130 970 800]	[134 102 400]				
15.424 ^C	$1s3p^{-1}P_1^{\circ}$	1s4s ¹ S ₀	[124 487 500]	[130 970 800]				
15.424 ^C	$1s3d$ $^3\mathrm{D}_1$	1s4p ³ P ₀	•	,				
15.417 ^C		•	[124 485 900]	[130 969 500]				
	1	1	[124 485 900]	[130 972 200]				
15.410 ^C	2	1	[124 483 100]	[130 972 200]				
15.383 ^C	3	2	$[124\ 537\ 200]$	[131 037 700]				
15.256 ^C	2	2	[124 483 100]	[131 037 700]				
15.400 ^C	$1s3p\ ^{3}\mathrm{P_{2}^{o}}$	$1s4s {}^{3}S_{1}$	[124 435 300]	[100 000 700]				
15.040 ^C		-		[130 928 700]				
	1	1	[124 279 600]	[130 928 700]				
15.342 ^C	$1s3d$ $^{1}\mathrm{D}_{2}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[124 541 600]	[131 059 600]				
15.163 ^C	$1s3p^{-1}P_{1}^{o}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[124 487 500]	[131 082 500]				
15.100^{C}	$1s3p$ $^3P_2^{\circ}$	$1s4d$ $^3\mathrm{D}_2$	[124 435 300]	[131 057 800]				
$15.048^{ m C}$	2	9	[124 435 300]	[131 080 700]				
14.753 ^C	1	2	[124 279 600]	[131 057 800]				
14.751 ^C	1	1	[124 279 600]	[131 059 000]				
14.738 ^C	0	1	[124 273 800]	[131 059 000]				
14.746 ^C	$1s3s$ $^{1}\mathrm{S}_{0}$	1s4p 1P1	[124 278 000]	[131 059 600]				
14.713 ^C	$1s3s$ $^3\mathrm{S}_1$	1s4p ³ P ₁ °	[124 175 700]	[130 972 200]				
14.713 ^C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	184 <i>p</i> F ₁	[124 175 700]	[130 972 200]				
10.450 ^C	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s5s$ $^{1}S_{0}$	[124 487 500]	[134 056 900]				
40.45 aC	3			·				
10.416 ^C 10.250 ^C	$1s3p$ $^3P_2^o$	1s5s ³ S ₁	[124 435 300] [124 279 600]	[134 035 500] [134 035 500]				
10.179 ^C	1s3s ¹ S ₀	1s5p ¹ P ₁ °	•	[134 102 400]				
		-	-	[134 102 400]				
	1 0 30	3-0						
10.120 ^C 10.085 ^C	$1s3s$ $^3\mathrm{S}_1$	$1s5p$ $^3\mathrm{P}^{\mathrm{o}}_1$	[124 175 700] [124 175 700]	[134 057 600]				

Kr XXXV - Continued

Wave-	Classification		Energy Leve	ls (cm ⁻¹)	Int. gf	A (s ⁻¹) Acc.	References
length (Å)	Lower	Upper					
5.4045 ^C	$1s2p$ 1 P $_{1}^{\circ}$	$1s3s$ $^{1}S_{0}$	[105 774 980]	[124 278 000]			
5.3790 ^C 5.2320 ^C	$1s2p$ $^3P^{\circ}_2$	$1s3s \ ^{3}\mathrm{S}_{1}$	[105 584 760] [105 062 480]	[124 175 700] [124 175 700]			
5.3286^{C}	$1s2p$ $^{1}P_{1}^{o}$	$1s3d$ $^{1}\mathrm{D}_{2}$	[105 774 980]	[124 541 600]			
$5.2915^{ m C} \ 5.2764^{ m C}$	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	$1s3d$ $^3\mathrm{D}_2$	[105 584 760] [105 584 760]	[124 483 100] [124 537 200]			
5.1492 ^C	1	2	[105 062 480]	[124 483 100]			
5.1484^{C}	1	1	[105 062 480]	[124 485 900]			
5.1429 ^C	0	1	[105 041 440]	[124 485 900]			
5.1489 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s3p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[105 065 860]	[124 487 500]			
5.1033^{C}	$1s2s\ ^{3}\mathrm{S}_{1}$	$1s3p^{-3}P_{1}^{o}$	[104 684 520]	[124 279 600]			
5.0631 ^C	1	2	[104 684 520]	[124 435 300]			
3.96891 ^C	$1s2p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4s$ $^{1}S_{0}$	[105 774 980]	[130 970 800]			
3.95139^{C}	$1s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$1s4d$ $^{1}\mathrm{D}_{2}$	[105 774 980]	[131 082 500]			
$3.94572^{\rm C}$	$1s2p$ $^3\mathrm{P_2^o}$	$1s4s$ $^3\mathrm{S}_1$	[105 584 760]	[130 928 700]			
3.86605^{C}	1	1	[105 062 480]	[130 928 700]			
$3.92572^{\rm C}$	$1s2p\ ^{3}P_{2}^{\circ}$	$1s4d$ $^3\mathrm{D_2}$	[105 584 760]	[131 057 800]			
$3.92219^{\rm C}$	2	3	[105 584 760]	[131 080 700]			
3.84685^{C}	1	2	[105 062 480]	[131 057 800]			
3.84667^{C}	1	1	[105 062 480]	[131 059 000]			
3.84356 ^C	O	1	[105 041 440]	[131 059 000]			
3.84708 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s4p^{-1}P_{1}^{o}$	[105 065 860]	[131 059 600]			
3.80406°	$1s2s\ ^{3}\mathrm{S}_{1}$	$1s4p^{-3}P_{1}^{o}$	[104 684 520]	[130 972 200]			
3.79461 ^C	1	2	[104 684 520]	[131 037 700]			
3.53583 ^C	$1s2p^{-1}P_1^o$	$1s5s$ $^{1}S_{0}$	[105 774 980]	[134 056 900]			
3.51485 ^C 3.45149 ^C	$1s2p$ $^3\mathrm{P}_2^{\circ}$	$1s5s$ $^3\mathrm{S}_1$	[105 584 760] [105 062 480]	[134 035 500] [134 035 500]			
3.44394 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s5p~^1\mathrm{P_1^o}$	[105 065 860]	[134 102 400]			
3.40448 ^C 3.40060 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s5p\ ^{3}\mathrm{P}_{1}^{\mathrm{o}}$	[104 684 520] [104 684 520]	[134 057 600] [134 091 100]			
0.95519 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2s$ $^3\mathrm{S}_1$	0	[104 684 520]	M1		56
0.951763	$1s^{2}$ $^{1}S_{0}$	1s2p 3P1	. 0	[105 062 480]			57,58°
0.94705 ^C	0	2	0	[105 584 760]	M2		57
0.945330	$1s^{2}$ $^{1}S_{0}$	1s2p ¹ P ₁ °	0	[105 774 980]			57,58°
0.93642 ^C	$1s2p$ $^{1}P_{1}^{o}$	$2s^{2}$ ¹ S ₀	[105 774 980]	[212 560 000]			54
0.93215 ^C	$1s2p^{-1}\mathrm{P_1^o}$	$2p^2 \ ^3P_0$	[105 774 980]	[213 049 000]			54
0.92861 ^C 0.92300 ^C	1 1	1 2	[105 774 980] [105 774 980]	[213 458 000] [214 116 000]			54 54
0.93042^{C}	1s2p ³ P ₁ °	$2s^{2}$ $^{1}S_{0}$	[105 062 480]	[212 560 000]			54
$0.92919^{\rm C}$	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p$ $^3P_1^{\circ}$	[105 065 860]	[212 693 000]			54
0.92787^{C}	$1s2p$ $^{1}P_{1}^{o}$	$2p^{2-1}D_2$	[105 774 980]	[213 548 000]			54
0.92697^{C}	$1s2p$ $^3\mathrm{P}^\mathrm{o}_2$	$2p^2 \ ^3P_1$	[105 584 760]	[213 458 000]			54
0.92621^{C}	1	-r · 1	[105 062 480]	[213 049 000]			
0.92271 ^C	1	1	[105 062 480]	[213 458 000]			54 54
0.92252 ^C	0	1	[105 041 440]	[213 458 000]			54 54
0.92138 ^C	2	2	[105 584 760]	[214 116 000]			54 54
0.91717 ^C	1	2 2	[105 062 480]	[214 116 000]			54 54
$0.92670^{\rm C}$	$1s2s$ $^3\mathrm{S}_1$	$2s2p\ ^{3}P_{0}^{\alpha}$	[104 684 520]	[212 602 000]			54
0.92592 ^C	1020 51	202p 10	[104 684 520]	[212 693 000]			54 54
0.92160 ^C	1	1	[104 684 520]	[212 093 000]			54 54
.===4	1	2	[00 2 020]	[==0 100 000]	1		04

Kr xxxv - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Leve	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
0.92623 ^C	1s2p ³ P ₂ °	$2p^{2} {}^{1}D_{2}$	[105 584 760]	[213 548 000]				54
0.92198 ^C	1	2	[105 062 480]	[213 548 000]				54
0.92173^{C}	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p^{-1}P_1^{o}$	[105 065 860]	[213 563 000]				54
0.92027^{C}	$1s2p^{-1}P_1^{\alpha}$	$2p^{2}$ 1S ₀	[105 774 980]	[214 433 000]				54
$0.91852^{\rm C}$	$1s2s$ $^3\mathrm{S}_1$	$2s2p^{-1}P_1^{o}$	[104 684 520]	[213 563 000]				54
0.91448^{C}	$1s2p$ $^3P_1^{\circ}$	$2p^{2}$ $^{1}S_{0}$	[105 062 480]	[214 433 000]				54
0.804637 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p$ $^3P_1^{\circ}$	0	[124 279 600]				
0.803294 ^C	$1s^{2}$ $^{1}S_{0}$	$1s3p^{-1}P_1^o$	0	[124 487 500]				
0.763521^{C}	$1s^{2} {}^{1}S_{0}$	1s4p 3P2	0	[130 972 200]				
0.763012^{C}	$1s^{2}$ 1 S ₀	1s4p 1P1	0	[131 059 600]				
$0.745948^{\rm C}$	$1s^{2} {}^{1}S_{0}$	$1s5p$ $^3P_1^{\circ}$	0	[134 057 600]	i			
0.745699 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P_{1}^{o}}$	0	[134 102 400]	ı			

 \mathbf{Kr} XXXVI

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
537.3 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$3p\ ^{2}P_{3/2}^{o}$	[128 585 640]	[128 771 760]			
525.7 ^C	$3p^{-2}P_{1/2}^{\circ}$	$3d^2\mathrm{D}_{3/2}$	[128 581 180]	[128 771 410]			
159.11 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$2p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	[108 328 400]	[108 956 890]			
14.4214 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$4f^{2}F_{7/2}^{o}$	[128 832 870]	[135 767 020]			
14.3217 ^C	$3p\ ^{2}\mathrm{P}_{3/2}^{o}$	$4d^{2}\mathrm{D}_{5/2}$	[128 771 760]	[135 754 190]			
14.0002 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	[128 585 640]	[135 728 370]			
9.86602 ^C	$3d$ $^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{o}$	[128 832 870]	[138 968 670]			
9.81322 ^C	$3p\ ^{2}P_{3/2}^{o}$	5d ² D _{5/2}	[128 771 760]	[138 962 100]			
9.64949 ^C	38 ² S _{1/2}	$5p^{-2}P_{3/2}^{o}$	[128 585 640]	[138 948 880]			
5.03120 ^C	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3d^{2}D_{5/2}$	[108 956 890]	[128 832 870]			
$4.89156^{\rm C}$	$2s\ ^{2}\mathrm{S}_{1/2}$	$3p^{-2}P_{3/2}^{\circ}$	[108 328 400]	[128 771 760]			
3.73172 ^C	$2p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$4d^{2}\mathrm{D}_{5/2}$	[108 956 890]	[135 754 190]			
3.64964 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$4p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	[108 328 400]	[135 728 370]			
3.33275 ^C	$2p\ ^{2}P_{3/2}^{o}$	$5d^2\mathrm{D}_{5/2}$	[108 956 890]	[138 962 100]			
3.26579 ^C	$2s\ ^{2}\mathrm{S}_{1/2}$	$5p\ ^{2}\mathrm{P_{3/2}^{o}}$	[108 328 400]	[138 948 880]			
0.9232377 ^C	$1s^{-2}S_{1/2}$	$2p$ $^2\mathrm{P}^{\circ}_{1/2}$	0	[108 314 470]			
0.9177942^{C}	1/2	3/2	0	[108 956 890]			
0.7777188 ^C	$1s^2\mathrm{S}_{1/2}$	$3p^{2}P_{1/2}^{\circ}$	0	[128 581 180]			
0.7765678 ^C	1/2	3/2	0	[128 771 760]			
0.7367656 ^C	$1s^2S_{1/2}$	$4p\ ^{2}P_{3/2}^{\circ}$	0	[135 728 370]			
0.7196891 ^C	$1s^{-2}S_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	0	[138 948 880]			

2.10.3. References for Comments and Tables for Kr Ions

- [1] B. C. Fawcett and G. E. Bromage, J. Phys. B 13, 2711 (1980).
- [2] A. G. Trigueiros, C. J. B. Pagan, S. G. Pettersson, and J. G. R. Almandos, Phys. Rev. A 40, 3911 (1989).
- [3] W. Finkelnburg and W. Humbach, Naturwiss. 42, 35 (1955).
- [4] B. C. Fawcett, B. B. Jones, and R. Wilson, Proc. Phys. Soc. London 78, 1223 (1961).
- [5] A. G. Trigueiros, C. J. B. Pagan, and J. G. R. Almandos, Phys. Rev. A 38, 166 (1988).
- [6] A. Tauheed, E. H. Pinnington, W. Ansbacher, and J. A. Kernahan, Phys. Scr. 42, 431 (1990).
- [7] C. J. B. Pagan, J. G. Reyna Almandos, M. Gallardo, S. -G. Pettersson, G. H. Cavalcanti, and A. G. Trigueiros, J. Opt. Soc. Am. B 12, 203 (1995).
- [8] M. Druetta and J. P. Buchet, J. Opt. Soc. Am. 66, 433 (1976).
- [9] A. E. Livingston, J. Phys. B 9, L215 (1976).
- [10] E. Jacquet, P. Boduch, M. Chantepie, M. Druetta, D. Hennecart, X. Husson, D. Lecler, N. Stolterfort, and M. Wilson, 4th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas 136, NIST Special Publication 850, edited by J. Sugar and D. Leckrone (1993).
- [11] E. H. Pinnington, W. Ansbacher, and J. A. Kernahan, J. Opt. Soc. Am. B 1, 30 (1984).
- [12] A. Trigueiros, S. G. Petterson, and J. G. R. Almandos, Phys. Scr. 34, 164 (1986).
- [13] A. G. Trigueiros, S. G. Petterson, J. G. R. Almandos, and M. Gallardo, Phys. Lett. A 141, 135 (1989).
- [14] T. Bouchama, M. Druetta, and S. Martin, J. Phys. B 22, 71 (1989).
- [15] E. H. Pinnington, A. Tauheed, W. Ansbacher, and J. A. Kernahan, J. Opt. Soc. Am. B 8, 193 (1991).
- [16] A. E. Livingston, L. J. Curtis, R. M. Schectman, and H. G. Berry, Phys. Rev. A 21, 771 (1980).
- [17] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987).
- [18] M. Gallardo, F. Bredice, M. Raineri, J. R. Almandos, A. G. Pettersson, and A. G. Trigueiros, Appl. Opt. 28, 5088 (1989).
- [19] J. Reader, N. Acquista, and V. Kaufman, J. Opt. Soc. Am. B 8, 538 (1991).
- [20] B. C. Fawcett and A. H. Gabriel, Proc. Phys. Soc. 84, 1038 (1964).
- [21] H. H. Kim, J. Opt. Soc. Am. 58, 739 (1968).
- [22] J. Reader, A. N. Ryabtsev, and A. A. Ramonas, J. Opt. Soc. Am. B 2, 417 (1985).
- [23] R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley (1981)
- [24] J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 20, 859 (1991).
- [25] J. F. Wyart and TFR Group, Phys. Scr. 31, 539 (1985).
- [26] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 142 (1989).
- [27] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1927 (1987).
- [28] TFR Group and J. F. Wyart, Phys. Scr. 37, 66 (1988).
- [29] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1444 (1989).
- [30] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 7, 1169 (1990).
- [31] J. R. Roberts, T. L. Pittman, J. Sugar, V. Kaufman, and W. L. Rowan, Phys. Rev. A 35, 2591 (1987).
- [32] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 8, 22 (1991).

- [33] R. D. Benjamin, J. L. Terry, and H. W. Moos, Phys. Rev. A 36, 4504 (1987).
- [34] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 7, 152 (1990).
- [35] R. E. Stewart, D. D. Dietrich, R. J. Forther, and R. Dukart, J. Opt. Soc. Am. B 4, 396 (1987).
- [36] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 5, 2183 (1988).
- [37] C. Jupén, B. Denne, and I. Martinson, Phys. Scr. 41, 669 (1990).
- [38] J. Sugar, V. Kaufman, P. Indelicato, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1437 (1989).
- [39] E. Hinnov, Phys. Rev. A 14, 1533 (1976).
- [40] S. S. Churilov, V. E. Levashov, and J. F. Wyart, Phys. Scr. 40, 625 (1989).
- [41] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, C. M. Brown, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [42] P. G. Burkhalter, J. Shiloh, A. Fisher, and D. Cowan, J. Appl. Phys. 50, 4532 (1979).
- [43] J. P. Buchet, M. C. Buchet-Poulizac, J. Desesquelles, M. Druetta, S. Martin, D. Leclerc, E. Luc-Koenig, and J. F. Wyart, Nucl. Instrum. Meth. B 31, 177 (1988).
- [44] J. Nilsen and J. H. Scofield, Phys. Scr. 49, 588 (1994).
- [45] H. Gordon, M. G. Hobby, N. J. Peacock, and R. D. Cowan, J. Phys. B 12, 881 (1979).
- [46] D. D. Dietrich, R. E. Stewart, R. J. Fortner, and R. J. Dukart, Phys. Rev. A 34, 1912 (1986).
- [47] B. Denne, E. Hinnov, J. Ramette, and B. Saoutic, Phys. Rev. A 40, 1488 (1989).
- [48] K. T. Cheng, unpublished material (1981).
- 49] W. C. Martin, unpublished material (1982).
- [50] S. Martin, A. Denis, M. C. Buchet-Poulizac, J. P. Buchet, and J. Désesquelles, Phys. Rev. A 42, 6570 (1990).
- [51] R. Myrnäs, C. Jupén, G. Miecznik, I. Martinson, and B. Denne-Hinnov, Phys. Scr. 49, 429 (1994).
- [52] D. D. Dietrich, J. A. Leavitt, H. Gould, and R. Marrus, Phys. Rev. A 22, 1109 (1980).
- [53] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [54] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [55] P. Indelicato, private communication (1989).
- [56] H. Gould and R. Marrus, 4th International Conference on Beam-Foil Spectroscopy, Gatlinburg, TN, 305, Vol. I (1975) edited by I. A. Sellin and D. J. Pegg (Plenum Press, New York 1976).
- [57] J. P. Briand, P. Indelicato, M. Tavernier, O. Gorceix, D. Liesen, H. F. Beyer, B. Liu, A. Warczak, and J. P. Desclaux, Z. Phys. A 318, 1 (1984).
- [58] P. Indelicato, J. P. Briand, M. Tavernier, and D. Liesen, Z. Phys. D 2, 249 (1986).
- [59] K. T. Cheng, M. H. Chen, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 50, 247 (1994).
- [60] K. T. Cheng, private communication (1996).
- [61] W. R. Johnson and G. Soff, Atom. Data Nucl. Data Tables 33, 405 (1985).
- [62] G. W. F. Drake, Calculated transition frequencies for heliumlike ions, unpublished (1985).
- [63] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).
- [64] M. Tavernier, J. P. Briand, P. Indelicato, D. Liesen, and P. Richard, J. Phys. B 18, L327 (1985).
- [65] P. J. Mohr, Atom. Data Nucl. Data Tables 29, 453 (1983).
- [66] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
- [67] V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986).

2.11. Molybdenum

2.11.1. Brief Comments on Each Molybdenum Ion

Mo VI

Rb I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{-2}D_{3/2}$

Ionization energy 555 132 \pm 2 cm⁻¹ (68.8284 \pm 0.0002 eV)

The 4d-4f, 4d-5p, 5s-5p, 5p-6s, and 5p-5d doublets were first identified by Trawick [1]. Later Charles [2] corrected the 4d-4f identifications and added the 4d-6p doublet. A comprehensive analysis of the spectrum in the range of 232-6337 Å was reported by Edlén et al. [3] who determined 44 levels of the one-electron configurations: ns (n=5 to 8), np (n=5 to 8), nd (n=4 to 8), nf (n=4 to 6), ng (n=5 to 8), nh (n=6 to 8), ni (n=7 to 9), and nk (n=8 and 9). Wavelengths are taken from Edlén et al. Applying a polarization formula to the 6h, 7i, and 8k terms Edlén derived the value for the ionization energy quoted here. He found anomalous behavior of the nf series which he attributed to its interaction with the $4p^54d^2$ configuration.

Tauheed et al. [4] observed the $4p^64d - 4p^54d^2$ transitions in the range of 238 - 347 Å and derived the $4p^54d^2$ levels. They also reported classifications of the two-electron transitions from and to these levels in the range of 447 - 2521 Å. Reobservation of the $4p^64d - 4p^54d^2$ transitions was made by Kancerevicius et al. [5], who also newly identified the $4p^64d - 4p^54d5s$, $4p^64d - 4p^6np$ (n = 6 - 11), $4p^64d - 4p^6nf$ (n = 5 - 9), and $4p^65s - 4p^6np$ (n = 8 - 10) transitions. Wavelengths were measured with an uncertainty of ± 0.005 Å. They found that the identifications of Tauheed et al. were incorrect, as were the 6f and 8p levels of Edlén et al. The line at 224.083 Å in Ref. [5] should be 224.483 Å.

Mo vii

Kr I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{6-1}S_0$

Ionization energy 1 013 340 \pm 200 cm⁻¹ (125.638 \pm 0.002 eV)

Chaghtai [6] identified nine resonance lines from the $4p^5nl$ (4d, 5s, 5d, and 6s) configurations. The spectrum in the range of 107-328 Å was observed by Reader et al. [7] who extended the classifications of the transitions from $4p^56d$, $4p^5ns$ (n=7-10), and $4s4p^65p$ levels. The uncertainty of their wavelengths is ± 0.003 Å and

for weak lines ± 0.006 Å. They confirm four of Chaghtai's classifications. The data from Reader *et al.* were adopted in the present compilation.

Tauheed and Chaghtai [8] classified 318 lines in the range of 282-2326 Å as transitions between the $4p^6$, $4p^5ns$ (n=4 to 10), $4p^5np$ (n=5 and 6), $4p^5nd$ (n=4 to 6), $4s4p^64d$, and $4s4p^65p$ configurations. Reader and Feldman [9] reinvestigated the spectrum in the range of 140-2280 Å with a sliding-spark discharge and completely revised the classifications of Tauheed and Chaghtai. They identified 399 lines as transitions betweeen 86 levels of the $4p^6$, $4p^54d$, 4f, 5s, 5p, 5d, 5f, 5g, $4s4p^64d$, and $4p^44d^2$ configurations. Wavelengths were measured with an uncertainty of ± 0.005 Å. We adopted their results.

Reader and Feldman [9] determined the value for the ionization energy from the $4p^5ns$ series.

Mo VIII

Br I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 1 162 000 \pm 8000 cm⁻¹ (144.0 \pm 1.0 eV)

Wavelengths of the $4s^24p^5$ $^2\mathrm{P}^{\circ}_{1/2,3/2}-4s4p^6$ $^2\mathrm{S}_{1/2}$ transitions were measured by Charles [2]. The $4p^5$ $^2\mathrm{P}^{\circ}_{1/2,3/2}-4p^44d$ and 5s transition arrays were first classified by Chaghtai [10]. Improved measurements and new energy levels and classifications were reported by Ekberg et al. [11] whose wavelength values and classifications are quoted in the present compilation. The uncertainty of the wavelengths is ± 0.003 Å.

Classifications were extended to the transitions between the ground levels and the $4p^45d$, 6d, 6s, and 7s levels by Chaghtai $et\ al.$ [12]. It should be noted that misprints in upper level designation (the J of the parent state) of the lines at 123.973, 126.296, and 126.747 – 130.111 Å occurred in this article. The wavelengths of the $4p^5\ ^2\mathrm{P}_{1/2}^{\circ}-4p^4(^1\mathrm{D}_2)6s\ (2,^1/_2)_{3/2}$ and $4p^5\ ^2\mathrm{P}_{3/2}^{\circ}-4p^4(^1\mathrm{D}_2)6s\ (2,^1/_2)_{5/2}$ lines at 124.620 Å and 121.111 Å, were revised as 125.561 Å and 121.080 Å by Khan $et\ al.$ [13] The first is apparently a misprint and should be 124.561 Å.

The value for the ionization energy was calculated by Ekberg *et al.* [11].

Mo ix

Se I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{4-3}P_2$

Ionization energy 1 323 700 \pm 700 cm⁻¹ (164.11 \pm 0.09 eV)

An analysis of the $4s^24p^4-4s^24p^35s$ array in the range of 155-178 Å was published by Chaghtai *et al*. [14]. Level values for the ground configuration were revised by Reader and Acquista [15] in their interpretation of the $4s^24p^4-4s4p^5$ array at 538-577 Å. These were used to improve the level values of the $4p^35s$ configuration.

The $4s^24p^4-4s^24p^34d$ array was analyzed by Rahimullah et al. [16]. A considerable extension of the work was reported by Khatoon et al. [17] who interpreted the transitions from the $4p^35d$, 6d, 6s, and 7s configurations.

The uncertainty of the wavelengths is ± 0.005 Å.

The value for the ionization energy was derived by Khatoon et al. [17].

Mo x

As I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{3-4}S_{3/2}^{\circ}$

Ionization energy 1 503 000 \pm 10 000 cm⁻¹ (186.4 \pm 1.2 eV)

The $4s^24p^3 - 4s^24p^25s$ transition array was first identified by Rahimullah *et al.* [18] and confirmed by Reader and Acquista [19], whose wavelengths are adopted in the present compilation. The uncertainty of their wavelengths is ± 0.005 Å.

The $4s^24p^3 - 4s4p^4$ array was also analyzed by Reader and Acquista and all eight levels of $4s4p^4$ configuration were established.

The $4s^24p^3 - 4s^24p^24d$ array was identified and the 19 levels of $4s^24p^24d$ were determined by Rahimullah et al. [16]. Additional measurements were reported by Ateqad et al. [20] who determined the other seven levels of the $4s^24p^24d$ configuration (leaving ${}^4F_{9/2}$ which cannot combine with the ground configuration). The uncertainty of the wavelengths is ± 0.01 Å.

The value for the ionization energy was determined by Reader and Acquista [19].

Mo XI

Ge I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^2$ ³P₀

Ionization energy 1 688 000 cm^{-1} (209.3 eV)

An analysis of the $4s^24p^2-4s^24p5s$ array was first reported by Rahimullah et al. [18]. Rahimullah et al. [16] added analyses of the arrays $4s^24p^2-4s^24p4d$ and $4s^24p^2-4s4p^3$. Subsequently, the latter array was reobserved by Litzén and Reader [21], whose results are given here. Fifteen lines in the range of 287.7-432.5 Å were measured with an uncertainty of ± 0.005 Å, using a laser-produced plasma. They established all levels of the $4s^24p^2$ and $4s4p^3$ configurations except for $4s4p^3$ $^5S_2^\circ$.

In this compilation the $4s^24p4d$ levels have been revised with the new $4s^24p^2$ levels.

The value for the ionization energy was calculated by Cowan [22].

Mo XII

Ga I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^24p^{-2}P_{1/2}^{\circ}$

Ionization energy 1 857 300 \pm 500 cm⁻¹ (230.28 \pm 0.06 eV)

There are few measurements for this ionic species. Alexander et~al.~[23] classified the doublet $4s^24p~^2\mathrm{P^\circ}-4s^25d~^2\mathrm{D}$. Curtis et~al.~[24] measured the ground state $4s^24p~^2\mathrm{P^\circ}$ splitting as $28~463~\pm~2~\mathrm{cm^{-1}}$ from an M1 transition observed in a tokamak plasma. Comparing the $^2\mathrm{P}$ interval with that by Alexander et~al., they concluded that the line classifications in Ref. [23] were incorrect.

The transitions $4s^24p$ $^2\text{P}^{\circ} - 4s^25s$ ^2S and $4s^24p$ $^2\text{P}^{\circ} - 4s4p^2$ ^2P were identified by Reader et al. [25]. The analysis was extended to include additional $4s^24p - 4s4p^2$ transitions and new $4s^24p - 4s^24d$ and $4s4p^2 - 4p^3$ transitions by Litzén and Reader [26]. Their measurement uncertainty is ± 0.005 Å, except for wavelengths of two decimal places with an uncertainty ± 0.02 Å. Träbert and Pinnington [27] found four intercombination lines $4s^24p$ $^2\text{P}^{\circ} - 4s4p^2$ ^4P in the range of 50-60 Å with an uncertainty of ± 0.019 Å using a beam-foil technique.

The value for the ionization energy was determined by Reader *et al.* [25].

Mo XIII

Zn I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^2$ 1S_0

Ionization energy 2 251 000 \pm 4000 cm⁻¹ (279.09 \pm 0.50 eV)

The resonance line $4s^2$ $^1S_0 - 4s4p$ $^1P_1^{\circ}$ was observed in tokamak plasmas by Hinnov et~al.~[28] and Hinnov [29]. It was also identified in a laser-produced plasma by Reader and Acquista [30]. Finkenthal et~al.~[31] also observed this line as well as the intercombination line $^1S_0 - ^3P_1^{\circ}$ at 481.02 Å and the M2 line $4s^2$ $^1S_0 - 4s4p$ $^3P_2^{\circ}$ at 460.9 Å, in addition to three $4s4p - 4p^2$ transitions. Wavelengths of the $4s^2 - 4s4p$ and $4s4p - 4p^2$ transition arrays were remeasured by Litzén and Ando [32]. They showed that identification of the multiplet 4s4p $^3P^{\circ} - 4s5s$ 3S by Alexander et~al.~[23] is incorrect. They also confirmed the identification by Finkenthal et~al. of the 4s4p $^3P_2^{\circ} - 4p^2$ 3P_2 and $4s^2$ $^1S_0 - 4s4p$ $^3P_1^{\circ}$ lines, but found that the remaining are incorrect.

With new observations Wyart et al. [33] classified the $4s^2-4s5p$, 4s4p-4s5s, and 4s4p-4s5d transitions, followed by more comprehensive results by Litzén and Reader [34] for transitions among the levels of the $4s^2$, 4s4p, $4p^2$, 4s4d, 4s5s, 4s5p, 4p5s, and 4s5d configurations. They also found the 4s4f $^3\mathrm{F}^{\circ}-4s5g$ $^3\mathrm{G}$ triplet. Wavelengths were measured with an uncertainty of ± 0.005 Å except for a few of uncertainty ± 0.02 Å given with two decimal places. Träbert and Pinnington [27] reobserved the intercombination line $4s^2$ $^1\mathrm{S}_0-4s4p$ $^3\mathrm{P}_1^{\circ}$ at 480.820 ± 0.016 Å using a beam-foil technique.

The $4p^2$ 1D_2 , $^3P_2 - 4p4d$ $^1F_3^\circ$ and 4s4d $^{1,3}D - 4p4d$ $^{1,3}F^\circ$ transitions were identified by Litzén and Hansson [35] in a laser-produced plasma with an uncertainty of ± 0.01 Å.

Burkhalter et al. [36] reported the $3d^{10}4s^2$ $^1\mathrm{S}_0-3d^94s^24p$ $^3\mathrm{D}_1^\circ$ and $^1\mathrm{P}_1^\circ$ transitions, and Wyart et al. [37] confirmed them with an uncertainty of ± 0.010 Å. Wavelengths are quoted from the latter article.

The value for the ionization energy was determined by Litzén and Reader [34].

Mo XIV

Cu I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}4s^{-2}S_{1/2}$

Ionization energy 2 440 600 \pm 300 cm⁻¹ (302.60 \pm 0.04 eV)

Alexander et al. [23] observed the one-electron spectrum comprising the 4s - 5p, 4s - 6p, 4p - 5s, 4p - 5d, and 4d - 5f lines in the region from 45 to 350 Å.

The 4s - 4p resonance doublet was measured by Hinnov *et al.* [28] and Hinnov [29] in a tokamak discharge. An improved measurement was reported by Reader and Acquista [30].

Curtis et al. [38] classified the 4s - 7p, 4p - ns (n = 6 - 8), 4f - ng (n = 5 and 6), and 4d - 5p transitions in the range of 35 - 184 Å with wavelength accuracies ranging from ± 0.05 Å to ± 0.2 Å.

Reader et al. [39] observed the spectrum in the range of 70-630 Å. From 35 line identifications, a system of 22 energy levels was determined. The level system $(3d^{10}nl)$ includes the series ns (n=4-6), np (n=4-6), nd (n=4 and 5), nf (n=4-6), and ng (n=5-7). The uncertainty of the wavelengths is ± 0.005 Å. The value of the $6p^2P_{1/2}^{\circ}$ level was revised by Reader et al. [40]. Their results are adopted. They found that the identifications by Curtis et al. of the 4f-5g, 4f-6g, and 4d-5p transitions are incorrect.

The spectrum in the range of 50-54 Å was analyzed by Burkhalter et al. [36], Klapisch et al. [41], and Wyart et al. [37,42]. They identified the $3d^{10}4s-3d^94s4p$, $3d^{10}4p-3d^94p^2$, and $3d^{10}4s-3d^{10}7p$ transitions. The wavelengths from Ref. [42] are adopted in this compilation. The uncertainty is given as ± 0.005 Å. The $3d^{10}4p$ 2 P° $-3d^94s^2$ 2 D array at 69.5 ± 0.1 Å, 71.3 ± 0.1 Å, and 72.50 ± 0.025 Å was first observed by Sugar et al. [43] using a beam-foil technique.

Reader et al. [39] determined the value for the ionization energy from the ng series.

Mo XV

Ni I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{10}$ $^{-1}S_0$

Ionization energy 4 388 000 cm^{-1} (544.0 eV)

The three resonance lines $3d^{10}$ $^{1}S_{0}-3d^{9}4p$ $^{3}P_{1}^{\circ}$, $^{1}P_{1}^{\circ}$, and $^{3}D_{1}^{\circ}$ were first measured by Alexander et al. [23]. The $^{1}S_{0}-^{1}P_{1}^{\circ}$ and $^{3}D_{1}^{\circ}$ lines were observed in tokamak discharges together with new lines: the resonance line $3d^{10}$ $^{1}S_{0}-3d^{9}4f$ $^{1}P_{1}^{\circ}$ at 35.362 ± 0.005 Å by Schwob et al. [44] and two E2 lines $3d^{10}$ $^{1}S_{0}-3d^{9}4s$ $^{1,3}D_{2}$ at 57.927 ± 0.005 Å and 58.832 ± 0.005 Å by Klapisch et al. [45]. These lines were also observed by Mansfield et al. [46]

Improved measurements with an uncertainty of ± 0.005 Å were given by Schweitzer *et al.* [47] for the $3d^{10} - 3d^94f$ and 5f transitions, by Wyart *et al.* [37] for the $3d^{10}$ $^{1}S_0 - 3d^94p$ $^{1}P_1^{\circ}$ and $^{3}D_1^{\circ}$ transitions, and by Wyart *et al.* [42] for the $3d^{10}$ $^{1}S_0 - 3d^94p$ $^{3}P_1^{\circ}$ transition. These wavelength data are adopted here.

The $3d^94s - 3d^94p$ transitions were observed by Ryabtsev et al. [48] and Brage and Litzén [49] in laser-produced plasmas. Ryabtsev et al. identified nineteen lines in the range of 347.3 - 421.6 Å with an uncertainty of ± 0.015 Å, and determined all levels of the $3d^94s$ and 4p configurations

The value for the ionization energy was determined from nf terms by Sugar and Musgrove [50].

Mo XVI

Co I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^9$ $^2D_{5/2}$

Ionization energy 4 610 000 cm^{-1} (571 eV)

The M1 line $3p^63d^9$ $^2D_{5/2} - ^2D_{3/2}$ was measured in a tokamak discharge by Suckewer *et al.* [51] with an uncertainty of ± 0.2 Å.

The transition arrays $3p^63d^9 - 3p^53d^{10}$ and $3p^6 - 3d^84p$ in the range of 43 - 78 Å were first observed by Edlén [52]. Analyses of these arrays were given by Alexander et al. [23], Mansfield et al. [46], Burkhalter et al. [36], Ando [53], and Wyart et al. [54]. Revised identifications and additional lines were reported by Ryabtsev and Reader [55]. Their identifications of 46 lines of these transition arrays were adopted in the present compilation. The uncertainty of the wavelengths is ± 0.005 Å. Their level designations were based on calculated eigenvectors. Upper levels without major eigenvector components are represented by the symbol $(N)_J$, the index N increasing with energy from the lowest level (N = 1) for each J.

The E2 lines of the $3d^9-3d^84s$ array were first observed in a tokamak discharge by Mansfield et~al.~[46] in the range of 51-55 Å. New measurements were obtained by Wyart [56], who suggested revised classifications for the lines. His measurement uncertainty was ± 0.020 Å. More accurate measurements with an uncertainty of ± 0.005 Å were given by Sugar et~al.~[57]. We have adopted their results.

The $3d^9 - 3d^84f$ lines in the region from 32 to 34 Å were first observed in a tokamak spectrum by Schwob et al. [44] Mansfield et al. [46] identified six lines of this array. The identifications were extended to a total of 17 lines by Burkhalter et al. [36]. Ando and Ishii [58] revised the previous identifications and extended the number to 29 lines. Wavelength data are taken from Ref. [58].

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XVII

Fe I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{8}$ $^{3}F_4$

Ionization energy 5 130 000 cm^{-1} (636 eV)

The $3p^63d^8-3p^53d^9$ transitions were investigated by Bogdanovichene et~al.~[60] and Burkhalter et~al.~[36]. An extended analysis was reported by Reader and Ryabtsev [61], who measured wavelengths of 43 lines and established all of the $3p^63d^8$ and $3p^53d^9$ levels. The uncertainty of the wavelengths is ± 0.005 Å. An additional measurement of the $3p^63d^{8-1}S_0-3p^53d^{9-3}D_1^\circ$ line and revision of the $3p^63d^{8-1}S_0$ level were made by Reader and Ryabtsev [62].

The $3d^8 - 3d^74p$ transitions were observed as a band of lines in the region from 42.1-43.2 Å in a tokamak plasma by Schwob *et al.* [44]. Mansfield *et al.* [46] reobserved the same wavelength range and identified 18 lines and a band of lines extending from 42.08-42.12 Å. A comprehensive investigation of the transitions was reported by Wyart *et al.* [63] who measured and identified 47 lines.

According to their designations, the upper levels in the table are represented by the symbol $(N)_J$, the index N increasing with energy from the lowest level (N = 1) for each J.

The wavelength of the M1 transition $3d^8$ $^3F_4 - ^3F_3$ was measured in a tokamak discharge by Suckewer *et al.* [51]. The wavelength is in good agreement with that derived from the energy levels of the $3d^8$ 3F term of Reader and Ryabtsev [61]. The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XVIII

Mn I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{7-4}F_{9/2}$

Ionization energy 5 660 000 cm^{-1} (702 eV)

A group of unresolved lines in the range of 38.7-40.0 Å was attributed to $3d^7 - 3d^64p$ transitions by Schwob et al. [44].

Four lines, lying at about 67 Å, were measured and identified as $3p^63d^7 - 3p^53d^8$ lines by Burkhalter et al. [36]. Wyart et al. [64] extended the wavelength range of their measurements to 66 - 83.5 Å and identified about 50 lines as 3p - 3d transitions. In the table, the upper levels established by Wyart et al. are designated by the symbol $(N)_J$ for each J, the index N increasing with energy from the lowest level (N = 1) for each J. Designations of the $3d^7$ levels are taken from Kubo et al. [65] who reported the result of a calculation carried out by means of Cowans's Hartree-Fock program using scaling factors from Ref. [64]. Designations for the $3p^53d^8$ configuration are given in the compilation of Mo energy levels by Sugar and Musgrove [50].

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XIX

Cr I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^6$ ⁵D₄

Ionization energy 6 190 000 cm^{-1} (767 eV)

No resolved lines are reported for this ion. Schwob et al. [44] observed the $3d^6 - 3d^54p$ array in the range of 36.0 - 36.9 Å.

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo xx

V I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^5$ $^6S_{5/2}$

Ionization energy 6 720 000 cm^{-1} (833 eV)

No resolved lines are reported for this ion. Schwob et al. [44] observed the $3d^5 - 3d^44f$ array in the range of 25.8 - 26.6 Å.

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XXI

Ti I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{4-5}D_0$

Ionization energy 7 280 000 cm^{-1} (902 eV)

No resolved lines are reported for this ion. Schwob et al. [44] observed the $3d^4 - 3d^34f$ array in the range of 24.5 - 25.2 Å.

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XXII

Sc I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^63d^{3-4}F_{3/2}$

Ionization energy 7 810 000 cm^{-1} (968 eV)

No resolved lines are reported for this ion. Schwob et al. [44] observed the $3d^3 - 3d^24f$ array in the range of 23.5 - 24.1 Å.

The value for the ionization energy was calculated by Carlson *et al.* [59].

Mo XXIII

Ca i isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^2$ 3F_2

Ionization energy 8 230 000 cm^{-1} (1020 eV)

The M1 transition $3d^2$ $^3F_2 - ^3F_3$ was observed in a tokamak discharge at 3553.3 ± 0.3 Å by Suckewer et al. [51]. They also tentatively identified a weak line at 3319.8 ± 0.3 Å as $3d^2$ $^3F_3 - ^3F_4$. The latter identification was rejected by Wyart et al. [66].

Schwob et al. [44] observed the unresolved $3d^2 - 3d4f$ array in the range of 22.4 - 22.9 Å.

The value for the ionization energy was calculated by Cowan [22].

Mo XXIV

K I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^63d^{-2}D_{3/2}$

Ionization energy 8 730 000 cm^{-1} (1082 eV)

Schwob et al. [44] reported the 3d ²D- 4f ²F° doublet with an accuracy of ± 0.005 Å.

The ground state 2 D splitting was observed by means of an M1 line at 2686.5±0.3 Å in a tokamak discharge by Suckewer *et al.* [51].

The $3p^63d-3p^53d^2$ array was classified by Finkenthal et al. [67] with a wavelength uncertainty of ± 0.2 Å and Kaufman et al. [68] with an uncertainty of ± 0.005 Å in tokamak plasmas. We give the wavelengths from the latter article. Two of the lines classified by Finkenthal et al. at 72.7 Å and 78.9 Å differ from the results of Kaufman et al. The latter are based on a study of the K I isoelectronic sequence.

The value for the ionization energy was calculated by Cowan [22].

Mo xxv

Ar I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^6$ $^{1}S_0$

Ionization energy 10 190 000 cm^{-1} (1263 eV)

Two resonance lines $3p^6$ $^1S_0 - 3p^54d$ $^3D_1^{\circ}$ and $^1P_1^{\circ}$ were observed by Schwob *et al.* [44] in a tokamak discharge. They report a wavelength uncertainty of ± 0.005 Å.

The $3p^6$ $^1S_0 - 3p^53d$ $^1P_1^{\circ}$ transition was observed by Finkenthal *et al.* [67] with an uncertainty of ± 0.2 Å. Sugar *et al.* [69] reobserved this line along with the spin-forbidden $^1S_0 - ^3D_1^{\circ}$ line with an uncertainty of ± 0.005 Å.

The value for the ionization energy was calculated by Cowan [22].

Mo xxvi

Cl I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^5$ 2 P $^{\circ}_{3/2}$

Ionization energy $10\ 670\ 000\ cm^{-1}\ (1323\ eV)$

The ground term ²P° splitting was observed by means of an M1 transition observed in a tokamak discharge at 534.0±0.3 Å by Denne *et al.* [70].

Six lines in the range of 72 - 80 Å in a tokamak discharge were identified by Finkenthal *et al.* [67] as $3p^5 - 3p^43d$ transitions with an uncertainty of ± 0.2 Å.

482

Kaufman et al. [71] reobserved the spectrum with an uncertainty of ± 0.005 Å and disagree with the classifications of Finkenthal et al. The results of Kaufman et al. are based on a study of the Cl I isoelectronic sequence. We adopt their classifications.

The value for the ionization energy was calculated by Cowan [22].

Mo xxvii

S I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^4$ ³P₂

Ionization energy 11 190 000 cm^{-1} (1387 eV)

Four M1 lines were observed in tokamak discharges by Denne *et al*. [70] and Hinnov [72] arising within the $3p^4$ ground configuration. They established all levels but 3P_0 of this group.

Three lines of the $3p^4 - 3p^33d$ transitions in the range of 78.2 - 80.5 Å were observed by Kaufman et al. [73] in a tokamak discharge with an uncertainty of ± 0.007 Å. Their classifications are based on a study of the S I isoelectronic sequence.

The value for the ionization energy was calculated by Cowan [22].

Mo xxviii

P I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{3}$ $^4S_{3/2}^{\circ}$

Ionization energy 11 690 000 cm^{-1} (1449 eV)

Seven M1 lines were observed in tokamak discharges by Denne *et al.* [70,74], arising within the $3p^3$ ground configuration. These lines establish all the levels of the $3p^3$ configuration.

Four lines of the $3p^3 - 3p^23d$ array in the range of 83.3 - 91.4 Å were identified by Sugar *et al.* [75] in a tokamak discharge with an uncertainty of ± 0.005 Å.

The value for the ionization energy was calculated by Cowan [22].

Mo xxix

Si i isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2 3p^2$ ³P₀

Ionization energy 12 380 000 cm^{-1} (1535 eV)

Five M1 lines were observed in tokamak discharges by Denne *et al.* [70] and Hinnov [72] arising within the $3p^2$ ground configuration. These lines establish all the levels of the $3p^2$ configuration.

The $3p^2$ $^3P_2 - 3p3d$ $^3D_3^\circ$ transition was observed by Finkenthal *et al.* [67]. With a tokamak plasma, Sugar *et al.* [76] observed four lines of the $3p^2 - 3p3d$ array in the range of 86.3 - 95.5 Å and the $3s^23p^2$ $^3P_2 - 3s3p^3$ $^3S_1^\circ$ line at 108.714 Å. Wavelengths were measured with an uncertainty of ± 0.005 Å.

The value for the ionization energy was calculated by Cowan [22].

Mo xxx

Al I isoelectronic sequence

Ground state $1s^22s^22p^63s^23p^{-2}P_{1/2}^{\circ}$

Ionization energy 12 910 000 cm⁻¹ (1601 eV)

Denne et al. [70] and Hinnov et al. [77] identified the M1 line $3s^23p$ $^2\mathrm{P}_{1/2}^{\circ} ^2\mathrm{P}_{3/2}^{\circ}$ at 490.1 Å in a tokamak discharge.

Burkhalter et al. [78] classified the 3p-4d, 3p-4s, and 3d-4f lines in the wavelength range from 15.627-18.056 Å. The uncertainty of the wavelengths is ± 0.010 Å. The 3p-4d lines are not included in this compilation because they do not give the correct ground term splitting.

The $3s^23p - 3s3p^2$ and $3s^23p - 3s^23d$ transitions were observed by Finkenthal *et al.* [67] and Hinnov *et al.* Sugar *et al.* [79] classified six lines of these arrays in an isoelectronic study of the Al I sequence. These results differ from four of the six classifications given by Finkenthal *et al.* Sugar *et al.* derived smoothed wavelengths with an uncertainty of ± 0.01 Å for five observed lines and obtained five accurately predicted lines. We give their results here. Three additional lines of the $3s^23p - 3s3p^2$ array were given by Jupén *et al.* [80] with a wavelength uncertainty of ± 0.02 Å. Their energy level values agree with those of Sugar *et al.* within their estimated uncertainties.

The value for the ionization energy was calculated by Cowan [22].

Mo XXXI

Mg I isoelectronic sequence

Ground state $1s^2 2s^2 2p^6 3s^2$ $^{-1}S_0$

Ionization energy 13 920 000 cm^{-1} (1726 eV)

Two M1 lines 3s3p $^3P_1^{\circ} - ^3P_2^{\circ}$ and $^3P_2^{\circ} - ^1P_1^{\circ}$ at 577.5 ± 0.3 Å and 609.8 ± 0.3 Å were identified in tokamak discharges by Denne *et al.* [70]. The latter is classified tentatively by Kaufman and Sugar [81].

The resonance line $3s^2$ $^1S_0 - 3s3p$ $^1P_1^{\circ}$ was first observed by Hinnov [29] in a tokamak discharge. Burkhalter et al. [78] observed two other lines within a few Angstroms of Hinnov's wavelength and identified these as the 3s3p - 3s3d lines. Similar observations were made by Mansfield et al. [46], Reader [82], and Sugar et al. [83]. Mansfield et al. also classified the 3s3p $^3P_1^{\circ}$ – 3s3d 3D_2 line. The intercombination line $3s^2$ 1S_0 – 3s3p ³P₁ was observed by Finkenthal et al. [84], Seely et al. [85], and Sugar et al. [69]. The wavelength value of 190.466±0.005 Å is taken from Ref. [69]. Additional 3s3p - 3s3d and $3s3p - 3p^2$ transitions were identified by Jupén et al. [80]. An extensive study including new classifications of the $3p^2-3p3d$, 3s3d-3p3d, and $3p3d-3d^2$ transitions was made by Ekberg et al. [86] with a laserproduced plasma. The wavelengths of Ekberg et al. supplemented by those of Jupén et al. are quoted. Some lines are blended. The uncertainty of the wavelengths is estimated to be ± 0.02 Å. It should be noted that the $3p3d~^3\mathrm{F}^{\circ}_{2,3}$ and $3d^2~^3\mathrm{F}_{2,3}$ levels are obtained by fitting the differences between observed and calculated level energies.

The $3s^2$ $^1S_0 - 3s4p$ $^3P_1^{\circ}$ and $^1P_1^{\circ}$ lines at 14.928 Å and 14.745 Å were identified by Burkhalter *et al.* [78]. The latter was observed by Schwob *et al.* [44] and Mansfield *et al.* [46]. Identification of the 3s3d - 3s4f array was also given by Burkhalter *et al.*

The value for the ionization energy was calculated by Cowan [22].

Mo xxxii

Na i isoelectronic sequence

Ground state $1s^22s^22p^63s^{-2}\mathbf{S}_{1/2}$

Ionization energy 14 445 800 \pm 2400 cm⁻¹ (1791.05 \pm 0.30 eV)

The first measurements were reported by Hinnov [29], who identified the two resonance lines 3s $^2\mathrm{S}_{1/2}-3p$ $^2\mathrm{P}^{\circ}_{1/2,3/2}$ at 177 Å and 129 Å. Schwob et al. [44] observed the 3s $^2\mathrm{S}_{1/2}-4p$ $^2\mathrm{P}^{\circ}_{3/2}$, 3p $^2\mathrm{P}^{\circ}_{3/2}-4s$ $^2\mathrm{S}_{1/2}$, and 3d $^2\mathrm{D}_{5/2}-4f$ $^2\mathrm{F}^{\circ}_{7/2}$ transitions.

Burkhalter et al. [78] remeasured the wavelengths of the 3s-3p, 3p-3d, 3s-4p, 3p-(4s, 4d, and 5d), 3d-(4p, 4f, 5p, and 5f), transitions in the 100-177 Å and 10-19 Å ranges, and established 17 levels on the basis of 22 transitions at about the same time Mansfield et al. [46] reported similar results, adding the 3s-5p and 3d-6f transitions. The wavelength uncertainties of Burkhalter et al. and Mansfield et al. are ± 0.010 Å

and ± 0.005 Å, respectively. Smoothed wavelengths for the 3s-3p, 3p-3d, and 3d-4f doublets were derived by Reader et~al.~[87] in an isoelectronic comparison of the measured wavelengths with Dirac-Fock calculations for $\mathrm{Ar^{7+}}$ to $\mathrm{Xe^{43+}}$. Reader et~al.~[88] obtained more accurate wavelengths in the range of 14-40 Å with laser-produced plasmas for 16 lines including the 4d-5f and 4f-5g transitions. The overall uncertainty estimate is ± 0.007 Å. We adopt the values of Reader et~al. and of Refs. [46,78] for a few transitions. However, there appears a deviation of 0.015 Å on the weak line at 37.305 Å, compared with the recalculated one from level difference.

Jupén et al. [80] recently observed the 3p $^2\mathrm{P}^{\circ}_{3/2} - 3d$ $^2\mathrm{D}^{\circ}_{3/2}$ line at 134.62 ± 0.02 Å in good agreement with the prediction of Reader et al.

The value for the ionization energy was determined by Reader *et al.* [88] from the polarization treatment of Edlén [89] for the 4f, 5f, and 5g levels.

Mo XXXIII

Ne I isoelectronic sequence

Ground state $1s^22s^22p^6$ 1S_0

Ionization energy 34 340 000 cm⁻¹ (4257 eV)

The n=2-3 transitions in the range of 4.4-5.3 Å were identified by Aglitskii $et\ al.$ [90,91] in vacuum sparks, and by Schwob $et\ al.$ [44] and Gordon $et\ al.$ [92] in tokamak discharges. Improved wavelength measurements were reported by Aglitskii $et\ al.$ [93] for six lines of the $2s^22p^6-2s^22p^53s$, $2s^22p^53d$, and $2s2p^63p$ transitions. These lines and the $2p^6$ $^1S_0-2p^53d$ $^3P_1^o$ line from Ref. [91] are adopted in this compilation.

Wavelengths of the transitions 2p-4s, 4d and 2p-nd (n=5-7) were reported by Burkhalter *et al.* [94,95].

The value for the ionization energy was calculated by Cowan [22].

Mo xxxiv

F I isoelectronic sequence

Ground state $1s^2 2s^2 2p^5$ ${}^2P_{3/2}^{\circ}$

Ionization energy 35 705 800 cm^{-1} (4426.96 eV)

Boiko et al. [96] identified the $2p^5 - 2p^43d$ array in the wavelength range of 4.472 - 4.536 Å with an uncertainty of ± 0.002 Å.

Reader et al. [97] predicted the wavelength of the M1 transition $2s^22p^5$ $^2\mathrm{P}_{3/2}^{\circ}$ – $^2\mathrm{P}_{1/2}^{\circ}$ to be 112.80 Å from the observation of the $2s^22p^5-2s2p^6$ lines. Their wavelength uncertainty is ± 0.015 Å. A recent observation by Myrnäs et al. [98] with a tokamak plasma determined its wavelength value to be 112.828 ± 0.020 Å.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo xxxv

O I isoelectronic sequence

Ground state $1s^22s^22p^4$ ³P₂

Ionization energy 37 233 800 cm^{-1} (4616.40 eV)

Feldman et al. [101] identified 13 lines of the $2s^22p^4 - 2s2p^5$ transitions in the range of 37.4 - 71.3 Å in a laser-produced plasma. The estimated wavelength uncertainty is ± 0.010 Å.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo xxxvi

N 1 isoelectronic sequence

Ground state $1s^2 2s^2 2p^3$ ${}^4S_{3/2}^{\circ}$

Ionization energy 38 680 800 cm^{-1} (4795.81 eV)

No spectral lines have been identified for this ion.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo xxxvii

C I isoelectronic sequence

Ground state $1s^22s^22p^2$ ³P₀

Ionization energy 41 076 800 cm^{-1} (5092.88 eV)

No spectral lines have been identified for this ion.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo xxxviii

B I isoelectronic sequence

Ground state $1s^22s^22p^{-2}P_{1/2}^{\circ}$

Ionization energy 42 653 000 cm^{-1} (5288.30 eV)

Myrnäs et al. [98] identified the M1 line $2s^22p$ ($^2P_{1/2}^{\circ}-^2P_{3/2}^{\circ}$) at 103.696 ± 0.010 Å and two intercombination lines $2s^22p$ $^2P_{1/2,3/2}^{\circ}-2s2p^2$ $^4P_{1/2,5/2}$ at 111.85 ± 0.050 Å and 121.098 ± 0.025 Å in tokamak discharges. They also observed four lines of the $2s^22p-2s2p^2$ array in the range of 45-48 Å with an uncertainty of ±0.030 Å for $^2P_{3/2}^{\circ}-^2P_{1/2,3/2}$ and with ±0.020 Å for $^2P_{1/2}^{\circ}-^2S_{1/2}$, $^2D_{3/2}$.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo XXXIX

Be I isoelectronic sequence

Ground state $1s^22s^2$ 1S_0

Ionization energy 44 761 900 cm^{-1} (5549.77 eV)

Denne et al. [102] identified the lines at 49.904 ± 0.03 Å and 137.787 ± 0.03 Å in a tokamak discharge as the $2s^2$ $^1S_0 - 2s2p$ $^1P_1^\circ$ and $^3P_1^\circ$ transitions.

For the ionization energy we use a value calculated by Cheng [99] with a Dirac-Fock code, to which we add a correlation correction derived from lower members of the isoelectronic sequence by Martin [100].

Mo XL

Li I isoelectronic sequence

Ground state $1s^22s^{-2}S_{1/2}$

Ionization energy 46 081 400 cm^{-1} (5713.37 eV)

Observations of four x-ray lines by Beier and Kunze [103] at 0.6859 Å, 0.6885 Å, 0.6893 Å, and 0.6912 Å are attributed to transitions from doubly excited configurations 1s2s2p and $1s2p^2$. Three of these are multiply classified.

Denne et al. [102] identified the lines at 143.998 ± 0.02 Å and 58.499 ± 0.02 Å in a tokamak discharge as the 2s $^2S_{1/2} - 2p$ $^2P^{\circ}_{1/2,3/2}$ transitions. Smoothed wavelengths, however, are taken from Kim et al. [104] for these transitions.

Vainshtein and Safronova [105] calculated energy levels of the $1s^2nl$ configurations with n=2-5, and l=s,p, and d. Their energy levels are adjusted to the $1s^22p$ $^2\mathrm{P}^{\circ}_{1/2,3/2}$ levels of Kim et al. by adding 3290 cm $^{-1}$. They also calculated wavelengths of the $1s^22s-1s2s2p$, $1s^22p-1s2p^2$, and $1s^22p-1s2s^2$ transitions. We use their results to derive these autoionizing upper levels.

The ionization energy was obtained as follows: total binding energy of the Li-like ion from Chen *et al.* [106] minus the ionization energy of the He-like ion from Cheng [107] minus the binding energy of H-like ion from Kim [108].

Mo XLI

He I isoelectronic sequence

Ground state $1s^2$ 1S_0

Ionization energy 192 046 600 cm^{-1} (23 810.75 eV)

Beier and Kunze [103] observed three lines of the $1s^2-1s2p$ multiplet with an uncertainty of ± 0.0002 Å.

Energy levels for 1snl configurations (n=1-5 and l=s and p) were calculated by Indelicato [109] using a multiconfiguration Dirac-Fock approximation with QED corrections. He estimated the uncertainty to be $\pm 800~{\rm cm}^{-1}$. The 3d and 4d levels were calculated by Vainshtein and Safronova [105] and were adjusted to the n=3,4 levels of Indelicato. All wavelengths are calculated from the theoretical energy levels by the Ritz combination principle. The observed wavelengths in Ref. [103] differ at most by 0.006 Å from the calculated ones.

Vainshtein and Safronova [105] also calculated wavelengths for the 1s2l-2l2l' transitions, which we quote with no correction. They estimate their own relative uncertainty to be one part in 10^4 .

The ionization energy is taken from the calculations of Cheng [107].

Mo XLII

H I isoelectronic sequence

Ground state 1s ²S_{1/2}

Ionization energy 198 188 100 \pm 200 cm⁻¹ (24 572.21 \pm 0.01 eV)

Turechek and Kunze [110] measured the 1s 2 S-2p, 3p transitions with an accuracy of ± 0.0005 Å and ± 0.001 Å, respectively.

Kim [108] has provided calculations of the binding energies of the H-like orbits for n=1 to 5 and the ionization energy by using the Dirac-Fock code which includes QED and finite nuclear size corrections. All wavelengths are calculated from these level values, whose uncertainty is one part in 10^6 .

2.11.2. Spectroscopic Data for Mo ν I through Mo ν LII

 $\mathbf{Mo}\ vi$

length (Å) Lower Upper $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	A (s ⁻¹) Acc. Reference
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$448.82 \qquad 4p^{6}(^{1}S)5f^{2}F_{7/2}^{\circ} \qquad 4p^{6}(^{1}S)6d^{2}D_{5/2} \qquad 368\ 206.3 \qquad 386\ 553.8 \qquad 8$ $276.86 \qquad 4p^{6}(^{1}S)7i^{2}I \qquad 4p^{6}(^{1}S)8k^{2}K^{\circ} \qquad 474\ 436.4 \qquad 493\ 381.8 \qquad 45$ $247.45 \qquad 4p^{6}(^{1}S)7h^{2}H^{\circ} \qquad 4p^{6}(^{1}S)8i^{2}I \qquad 474\ 299.7 \qquad 493\ 351.3 \qquad 35$ $35043.55 \qquad 4p^{6}(^{1}S)7g^{2}G_{9/2} \qquad 4p^{6}(^{1}S)8h^{2}H_{11/2}^{\circ} \qquad 473\ 427.7 \qquad 493\ 249.5 \qquad 10$ $427.7 \qquad 7/2 \qquad 9/2 \qquad 473\ 424.6 \qquad 493\ 249.5 \qquad 9$ $4272.95 \qquad 4p^{6}(^{1}S)7p^{2}P_{3/2}^{\circ} \qquad 4p^{6}(^{1}S)7d^{2}D_{3/2} \qquad 416\ 070.2 \qquad 439\ 466.6 \qquad 8$ $4232.04 \qquad 3/2 \qquad 5/2 \qquad 416\ 070.2 \qquad 439\ 692.8 \qquad 100$ $1062.04 \qquad 1/2 \qquad 3/2 \qquad 414\ 855.4 \qquad 439\ 466.6 \qquad 60$ $4735.32 \qquad 4p^{6}(^{1}S)6s^{2}S_{1/2} \qquad 4p^{6}(^{1}S)6p^{2}P_{1/2}^{\circ} \qquad 313\ 809.1 \qquad 340\ 572.9 \qquad 90$ $476.60 \qquad 1/2 \qquad 3/2 \qquad 313\ 809.1 \qquad 342\ 564.6 \qquad 200$ $484.77 \qquad 4p^{6}(^{1}S)6d^{2}D_{3/2} \qquad 4p^{6}(^{1}S)7p^{2}P_{1/2}^{\circ} \qquad 386\ 167.3 \qquad 414\ 855.4 \qquad 13$ $3386.98 \qquad 5/2 \qquad 3/2 \qquad 386\ 553.8 \qquad 416\ 070.2 \qquad 20$ $3/2 \qquad 3/2 \qquad 386\ 553.8 \qquad 416\ 070.2 \qquad 20$ $3/2 \qquad 3/2 \qquad 386\ 167.3 \qquad 416\ 070.2 \qquad 20$ $3/2 \qquad 3/2 \qquad 386\ 167.3 \qquad 416\ 070.2 \qquad 20$ $3/2 \qquad 3/2 \qquad 386\ 167.3 \qquad 416\ 070.2 \qquad 20$	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
735.32 $4p^{6}(^{1}S)6s^{2}S_{1/2}$ $4p^{6}(^{1}S)6p^{2}P_{1/2}^{\circ}$ 313 809.1 340 572.9 90 476.60 $1/2$ $3/2$ 313 809.1 342 564.6 200 484.77 $4p^{6}(^{1}S)6d^{2}D_{3/2}$ $4p^{6}(^{1}S)7p^{2}P_{1/2}^{\circ}$ 386 167.3 414 855.4 13 386.98 5/2 3/2 386 553.8 416 070.2 20 343.20 3/2 3/2 386 167.3 416 070.2 2	3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·
$484.77 4p6(^{1}S)6d ^{2}D_{3/2} 4p6(^{1}S)7p ^{2}P_{1/2}^{\circ} 386 167.3 414 855.4 13 386.98 5/2 3/2 386 553.8 416 070.2 20 343.20 3/2 3/2 386 167.3 416 070.2 2$	3
386.98 5/2 3/2 386 553.8 416 070.2 20 343.20 3/2 3/2 386 167.3 416 070.2 2	3
386.98 5/2 3/2 386 553.8 416 070.2 20 343.20 3/2 3/2 386 167.3 416 070.2 2	3
343.20 3/2 3/2 386 167.3 416 070.2 2	3
$4p^{6}(^{1}S)6h^{2}H^{\circ}$ $4p^{6}(^{1}S)7i^{2}I$ 445 107.3 474 436.4 200	3
	3
$4p^6(^1S)5f$ $^2F^{\circ}_{5/2}$ $4p^6(^1S)5g$ $^2G_{7/2}$ 365 106.6 395 184.6 22	3
293.29 $4p^{6}(^{1}S)6g^{-2}G_{9/2}$ $4p^{6}(^{1}S)7h^{-2}H_{11/2}^{\circ}$ 443 943.7 474 299.7 50	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{3}$
3,2	J
133.32 $4p^6 (^1S)7i^2I$ $4p^6 (^1S)9k^2K^\circ$ 474 436.4 506 342.2 10	3
122.43 $4p^6(^1S)7h^2H^\circ$ $4p^6(^1S)9i^2I$ 474 299.7 506 316.7? 10	3
$4p^{6}(^{1}S)6p \ ^{2}P_{3/2}^{\circ} \qquad \qquad 4p^{6}(^{1}S)6d \ ^{2}D_{3/2} 342 \ 564.6 \qquad 386 \ 167.3 \qquad 10$	3
1273.28 3/2 5/2 342 564.6 386 553.8 50	3
2193.25 1/2 3/2 340 572.9 386 167.3 40	3
$4p^6(^1S)5g$ 2G $4p^6(^1S)6h$ $^2H^\circ$ 395 185.7 445 107.3 50	3
$4p^{6}(^{1}S)7p^{2}P_{3/2}^{\circ} \qquad \qquad 4p^{6}(^{1}S)8d^{2}D_{5/2} 416\ 070.2 \qquad 470\ 991.4 \qquad 4$	3
785.88 1/2 3/2 414 855.4 470 850.0 4	3
731.73 $4p^{6}(^{1}S)5d^{2}D_{3/2}$ $4p^{6}(^{1}S)6p^{2}P_{1/2}^{\circ}$ 282 827.1 340 572.9 50	2
606.20	3 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3
-7-	
$4p^6(^1S)6p^2P_{3/2}^\circ$ $4p^6(^1S)7s^2S_{1/2}$ $342\ 564.6$ $400\ 769.5$ 70 1661.22 $1/2$ $1/2$ $340\ 572.9$ $400\ 769.5$ 40	3
1/2 110 0.110	3
$4p^{6}(^{1}S)5s \ ^{2}S_{1/2} \qquad \qquad 4p^{6}(^{1}S)5p \ ^{2}P_{1/2}^{\circ} 119 \ 727.3 \qquad 182 \ 405.5 70$	3
$\frac{3}{2}$ 119 727.3 187 332.8 90	3
$4p^{6}(^{1}S)5f \ ^{2}F_{7/2}^{\circ} \qquad \qquad 4p^{6}(^{1}S)6g \ ^{2}G_{9/2} 368 \ 206.3 \qquad 443 \ 943.7 \qquad 10$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
6/10/8 29	
$4p^6(^1S)5g$ 2G $4p^6(^1S)7h$ $^2H^\circ$ 395 185.7 474 299.7 15	3
$4p^{6}(^{1}S)5d\ ^{2}D_{5/2} \qquad \qquad 4p^{6}(^{1}S)5f\ ^{2}F_{5/2}^{\circ} 283\ 612.5 \qquad 365\ 106.6 \qquad 15$	3
$\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{282}{2}$ $\frac{827.1}{3}$ $\frac{365}{106.6}$ $\frac{40}{40}$	3
1182.14 5/2 7/2 283 612.5 368 206.3 60	3
1047.18 $4p^6(^1S)5p\ ^2P_{3/2}^{\circ}$ $4p^6(^1S)5d\ ^2D_{3/2}$ 187 332.8 282 827.1 35	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3
995.800 1/2 3/2 182 405.5 282 827.1 70	1,3°
$4p^6(^1S)5g$ 2G $4p^6(^1S)8h$ $^2H^\circ$ 395 185.7 493 249.5 2	
6(10) 0. 200	3
$4p^{6}(^{1}S)6p \ ^{2}P_{1/2}^{o} \qquad \qquad 4p^{6}(^{1}S)7d \ ^{2}D_{3/2} 340 \ 572.9 \qquad 439 \ 466.6 \qquad 2$	3

Mo VI - Continued

Wave- length (Å)	Classifica Lower	tion Upper	Energy Lev	rels (cm ⁻¹)	Int. gf A (s	1) Acc.	References
engen (A)	TOMEI	Оррег					
972.930	$4p^6(^1S)5f^{\ 2}F^{\circ}_{7/2}$	$4p^6(^1{ m S})8d\ ^2{ m D}_{5/2}$	368 206.3	470 991.4	4		3
945.665 944.410	5/2	3/2	365 106.6 365 106.6	470 850.0 470 991.4	4 3		3 3
944.410	5/2	5/2	303 100.0	470 991.4	э		3
950.816	$4p^{6}(^{1}S)6p^{2}P_{3/2}^{o}$	$4p^{6}(^{1}S)8s\ ^{2}S_{1/2}$	342 564.6	447 738.6	10		3
933.125	1/2	1/2	340 572.9	447 738.6	4		3
950.335	$4p^6(^1S)5f^2F_{7/2}^o$	$4p^6(^1\mathrm{S})7g\ ^2\mathrm{G}_{9/2}$	368 206.3	473 427.7	10		3
839.655	$4p^{6}(^{1}S)4f^{2}F^{o}_{7/2}$	$4p^6(^1S)6d^2D_{5/2}$	267 458.4	386 553.8	6		3
	•	,					
804.233	$4p^6(^1S)5f\ ^2F^{\circ}_{7/2}$	$4p^6(^1{ m S})8g\ ^2{ m G}_{9/2}$	368 206.3	492 548	6		3
784.690	5/2	7/2	365 106.6	492 545	3		3
790.659	$4p^6(^1S)5p^2P_{3/2}^{\circ}$	$4p^6(^1S)6s\ ^2S_{1/2}$	187 332.8	313 809.1	75		$1, 2, 3^{\circ}$
761.020	1/2	1/2	182 405.5	313 809.1	50		$1,2,3^{\circ}$
782.912	$4p^6(^1S)4f^2F_{7/2}^{\circ}$	$4p^6(^1S)5g^2G_{9/2}$	267 458.4	395 186.7	75		3
780.429	5/2	7/2	267 048.8	395 184.6	60		3
		6/10/2			_		
778.670 767.595	$4p^6(^1S)6p^2P_{3/2}^{\circ}$	$4p^6(^1S)8d^2D_{5/2}$	342 564.6 340 572.9	470 991.4 470 850.0	8 3		3 3
101.393	1/2	3/2	340 372.9	470 850.0	J		3
757.396	$4p^6(^1{ m S})5d\ ^2{ m D}_{3/2}$	$4p^6(^1S)7p^2P_{1/2}^{\circ}$	282 827.1	414 855.4	5		3
750.522	3/2	3/2	282 827.1	416 070.2	5		3
580.616	$4p^6(^1S)4f^2F_{7/2}^{\circ}$	$4p^6(^1S)7d^2D_{5/2}$	267 458.4	439 692.8	6		3
	•	•					
566.620	$4p^6(^1S)4f^2F_{7/2}^{\circ}$	$4p^6(^1{ m S})6g\ ^2{ m G}_{9/2}$	267 458.4	443 943.7	60		3
565.317	5/2	7/2	267 048.8	443 941.0	50		3
548.229	$4p^6(^1S)4d^2D_{3/2}$	$4p^6(^1S)5p^2P_{1/2}^{\circ}$	0.0	182 405.5	80		1, 2, 3°, 31
541.286	5/2	3/2	2584.3	187 332.8	100		1, 2, 3°, 31
533.809	3/2	3/2	0.0	187 332.8	40		1, 2, 3°, 31
501.944	$4p^6(^1S)5p^2P_{3/2}^{\circ}$	$4p^6(^1S)6d^2D_{5/2}$	187 332.8	386 553.8	20		3
490.763	1/2	3/2	182 405.5	386 167.3	15		3
491.314	$4p^6(^1{ m S})4f\ ^2{ m F}^{\circ}_{7/2}$	$4p^6(^1S)8d^2D_{5/2}$	267 458.4	470 991.4	5		3
490.680	5/2	3/2	267 048.8	470 850.0	4		3
	,	•					
485.511 484.553	$4p^6(^1S)4f\ ^2F^o_{7/2}$	$4p^6(^1S)7g^2G_{9/2}$	267 458.4	473 427.7	55		3
404.555	5/2	7/2	267 048.8	473 424.6	30		3
468.533	$4p^6(^1S)5p^2P_{3/2}^o$	$4p^6(^1S)7s\ ^2S_{1/2}$	187 332.8	400 769.5	50		3
457.963	1/2	1/2	182 405.5	400 769.5	30		3
452.800	$4p^6(^1\mathrm{S})5s\ ^2\mathrm{S}_{1/2}$	$4p^6(^1S)6p\ ^2P_{1/2}^{\circ}$	119 727.3	340 572.9	50		3
448.754	1/2	3/2	119 727.3	342 564.6	80		3
444.000							
444.288	$4p^{6}(^{1}S)4f^{2}F^{o}_{7/2}$	$4p^6(^1S)8g\ ^2G_{9/2}$	267 458.4	492 548	8		3
396.628	$4p^6(^1S)5p^2P_{3/2}^{\alpha}$	$4p^6(^1S)7d^2D_{3/2}$	187 332.8	439 466.6	1		3
396.264	3/2	5/2	187 332.8	439 692.8	8		3
384.015	$4p^6(^1S)5p^2P_{3/2}^{\circ}$	$4p^6(^1S)8s\ ^2S_{1/2}$	197 222 8	447 729 6	1.5		
376.873	$4p \ (3)3p \ F_{3/2}$	$4p^{-}(-5)8s^{-}S_{1/2}$	187 332.8 182 405.5	447 738.6 447 738.6	15 10		3 3
	•	•	102 400.0	411 100.0	10		J
378.117	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^{6}(^{1}S)4f^{2}F_{5/2}^{o}$	2 584.3	267 048.8	30		2,3°
377.534 374.463	5/2 3/2	7/2	2 584.3 0.0	267 458.4 267 048.8	90 80		2,3°,31 2,3°
	•	5/2	0.0	207 040.0	00		2, 3
352.541	$4p^6(^1S)5p^2P_{3/2}^{o}$	$4p^6(^1{ m S})8d\ ^2{ m D}_{5/2}$	187 332.8	470 991.4	4		3
351.290	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^o)4d^2(^3F) \ ^4D_{3/2}^o$	2 584.3	287 245	2		5
349.365	3/2	1/2	0.0	286 233	3		5
349.220	5/2	5/2	2 584.3	288 934	15		5
348.135 346.102	3/2	3/2	0.0 0.0	287 245 $288 934$	$\begin{array}{c} 15 \\ 2 \end{array}$		5 5
345.478	3/2 5/2	5/2 7/2	2 584.3	292 038	15		5
000 505							
338.831	$4p^6(^1S)5s\ ^2S_{1/2}$	$4p^6(^1S)7p^2P_{1/2}^{\circ}$	119727.3	414 855.4	8		3
337.450	1/2	3/2	119 727.3	416 070.2	15		3

Mo VI - Continued

Wave-	Classific	ation	Energy Lev	vels (cm ⁻¹)	Int. gf A (s ⁻¹) Acc. References
length (Å)	Lower	Upper	Bhergy Bev	veia (cin)	yj A (y Acc. Telefelices
335.449	$4p^6(^1S)4d^2D_{5/2}$	$4p^{5}(^{2}P^{\circ})4d^{2}(^{3}P) \ ^{4}P_{5/2}^{\circ}$	2 584.3	300 690	5	5
332.570	3/2	5/2	0.0	300 690	20	5
331.689	5/2	3/2	2 584.3	304 070	15	5
328.872	3/2	3/2	0.0	304 070	2	5
325.328	3/2	1/2	0.0	307 382	10	5
334.080	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2\mathrm{P}^{\mathrm{o}})4d^2(^3\mathrm{F})~^4\mathrm{G}^{\mathrm{o}}_{7/2}$	2 584.3	301 913	5	5
313.950	3/2	5/2	0.0	318 522	150	5
		·				
332.673	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^o)4d^2(^3F) \ ^4F^o_{5/2}$	2 584.3	303 182	2	5
329.832	3/2	5/2	0.0	303 182	100	5
323.001	5/2	7/2	2 584.3	312 181	40	5
320.141	5/2	3/2	2 584.3	314 947	70	5
317.514	3/2	3/2	0.0	314 947	100	5
328.714	$4p^6(^1S)4d^2D_{5/2}$	$4p^5(^2P^\circ)4d^2(^1D) ^2D_{3/2}^\circ$	2 584.3	306 800	30	5
325.946	3/2	3/2	0.0	306 800	70	5
325.946	5/2	5/2	2 584.3	309 382	70	5
323.225	3/2	5/2	0.0	309 382	40	5
319.933	$4p^6(^1S)4d^2D_{5/2}$	$4p^5(^2P^\circ)4d^2(^1G)^2F_{5/2}^\circ$	2 584.3	315 151	150	5
317.308	3/2	•	0.0	315 151	200	5
252.294	3/2 5/2	5/2 7/2	2 584.3	398 948	350	5
318.584	$4p^6(^1S)4d^2D_{5/2}$	$4p^5(^2P^\circ)4d^2(^3F)^2F_{7/2}^\circ$	0.504.9	916 470	150	
255.443	•	-	2 584.3	316 472	150	5 ~
253.770	5/2 3/2	5/2 5/2	$2584.3 \\ 0.0$	394 060 394 060	100 400	5 5
316.666	$4p^6(^1S)4d\ ^2D_{3/2}$	$4p^{5}(^{2}P^{\circ})4d^{2}(^{1}D) {^{2}P_{1/2}^{\circ}}$	0.0	315 790	40	5
0101000	•	•	0.0	010 100	40	Ŭ
314.961	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2\mathrm{P^o})4d^2(^1\mathrm{D})\ ^2\mathrm{F}^{\mathrm{o}}_{7/2}$	2 584.3	320 084	200	5
298.968	5/2	5/2	2 584.3	337 067	220	5
296.677	3/2	5/2	0.0	337 067	200	5
307.739	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^\circ)4d^2(^3F) \ ^2G_{7/2}^\circ$	2 584.3	327 535	50	5
305.544	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^\circ)4d^2(^3P) \ ^4D_{5/2}^\circ$	2 584.3	329 869	200	5
304.303	5/2	7/2	2 584.3	331 203	200	5
303.853	5/2	3/2	2 584.3	331 690	100	5
303.150	3/2	5/2	0.0	329 869	60	5
301.487	3/2	3/2	0.0	331 690	120	5
296.677	3/2	1/2	0.0	337 066	200	5
296.743	$4p^6(^1S)5s\ ^2S_{1/2}$	$4p^6(^1S)8p\ ^2P_{3/2}^{\circ}$	119 727.3	456 712	15	5
294.139	$4p^6(^1S)4d^2D_{5/2}$	$4p^6(^1{ m S})6p\ ^2{ m P}_{3/2}^{ m o}$	2 584.3	342 564.6	50	3,5°
293.627	•	•	0.0	340 572.9	100	3,5°
291.920	3/2 3/2	1/2 3/2	0.0	342 564.6	15	3,5°
293.662	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^{\circ})4d^2(^3P) \ ^2D_{3/2}^{\circ}$	0.504.0	242 111	150	-
293.662			2 584.3	343 111	150	5
286.302	3/2 3/2	3/2 5/2	0.0 0.0	343 111 349 282	50 170	5 5
		•				
290.443 288.279	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^\circ)4d^2(^3P) \ ^4S_{3/2}^\circ$	2 584.3	346 886	80	5
	3/2	3,2	0.0	346 886	25	5
288.921	$4p^{6}(^{1}S)4d^{2}D_{5/2}$	$4p^{5}(^{2}\mathrm{P}^{\circ})4d^{2}(^{1}\mathrm{G})^{2}\mathrm{G}^{\circ}_{7/2}$	2 584.3	348 700	190	5
288.887	$4p^6(^1{ m S})4d\ ^2{ m D}_{3/2}$	$4p^{5}(^{2}P^{\circ})4d^{2}(^{3}P)^{2}S_{1/2}^{\circ}$	0.0	346 156	120	5
283.403	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^{5}(^{2}P^{\circ})4d^{2}(^{1}S) ^{2}P_{3/2}^{\circ}$	2 584.3	355 437	70	5
281.344	3/2	3/2	0.0	355 437	70	5
271.088	3/2	1/2	0.0	368 884	25	5
276.517	$4p^6(^1S)5s\ ^2S_{1/2}$	4n6/1510n 2Do	119 727.3	481 363	15	r
276.213	·	$4p^6(^1S)9p\ ^2P_{1/2}^{\circ}$	119 727.3	481 363 481 765	15 8	5 5
_, _, _, _,	1/2	3/2	110 121.3	401 100	0	б
275.851	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^{6}(^{1}S)5f^{2}F_{5/2}^{o}$	2 584.3	365 106.6	100	3,5°
273.898	3/2	5/2	0.0	365 106.6	250	3,5°
273.511	5/2	7/2	2 584.3	368 206.3	200	3,5°
264.151	$4p^6(^1S)5s\ ^2S_{1/2}$	$4p^6(^1\mathrm{S})10p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	119 727.3	498 293	5	5
	·	3/2				

'Mo vi - Continued

Wave-	Classific		Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	Reference
ength (Å)	Lower	Upper	·		-		
248.060	$4p^6(^1{ m S})4d\ ^2{ m D}_{3/2}$	$4p^5(^2P^\circ)4d^2(^3P)\ ^2P_{1/2}^\circ$	0.0	403 129	280		5
246.713	5/2	3/2	2 584.3	407 909	300		5
245.153	3/2	3/2	0.0	407 909	150		5
243.772	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^5(^2P^\circ)4d^2(^3F)\ ^2D_{5/2}^\circ$	2 584.3	412 803	280		5
243.487	5/2	3/2	2 584.3	413 282	230		5
242.246	3/2	5/2	0.0	412 803	250		5
241.966	3/2	3/2	0.0	413 282	300		5
041.044	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	6/10/2 200	0.504.0	410.070.0	200		0.50
241.844	·	$4p^6(^1S)7p\ ^2P_{3/2}^{\circ}$	2 584.3	416 070.2	200		3,5°
241.047 240.344	3/2	1/2 3/2	0.0 0.0	414 855.4 416 070.2	150 50		3,5° 3,5°
2101011	3/2	·	0.0	110 01012			0,0
239.411	$4p^6(^1{ m S})4d\ ^2{ m D}_{3/2}$	$4p^54d(^3P^\circ)5s\ ^4P_{1/2}^\circ$	0.0	417 692	25		5
239.185	5/2	3/2	2 584.3	420 670	40		5
237.716	3/2	3/2	0.0	420 670	18		5
235.900	5/2	5/2	2 584.3	426 490	30		5
234.472	3/2	5/2	0.0	426 490	4		5
234.192	$4p^6(^1S)4d\ ^2D_{3/2}$	$4p^54d(^3P^\circ)5s\ ^2P_{1/2}^\circ$	0.0	427 000	70		5
232,239	5/2	3/2	2 584.3	433 174	55		5
230.854	3/2	3/2	0.0	433 174	30		5
000 11-	. 6/10/ 2-	. 5 . 1/3-00 - 4-0	0.504.5				_
233.117	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^54d(^3F^{\circ})5s\ ^4F^{\circ}_{7/2}$	2 584.3	431 553	45		5
231.731 230.352	5/2	5/2	2 584.3	434 119	9		5 5 5 5
230.352 229.726	3/2	5/2	$0.0 \\ 2 584.3$	434 119 437 885	55 20		5
228.370	5/2 3/2	3/2 3/2	0.0	437 885	35		5
		·	0.0	101 000			•
230.633	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^6(^1{ m S})6f~^2{ m F}^{ m o}_{5/2}$	2 584.3	436 174	30		5
230.437	5/2	7/2	2 584.3	436 541	100		3,5°
229.266	3/2	5/2	0.0	436 174	50		3,5°
229.680	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^54d(^3{ m F}^\circ)5s\ ^2{ m F}^\circ_{7/2}$	2 584.3	437 970	85		5
227.804	5/2	5/2	2 584.3	441 558	33		5
226.471	3/2	5/2	0.0	441 558	50		5
204 400	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	5. 1/3 20 4 420					
224.483		$4p^54d(^3D^{\circ})5s \ ^4D^{\circ}_{7/2}$	2 584.3	448 050	35		5
220.641 219.846	5/2	3/2	2 584.3	455 807	3		5
219.391	3/2	1/2	0.0 0.0	454 863 455 807	2 11		5 5
217.395	3/2 5/2	3/2 5/2	2 584.3	462 574	45		5
216.182	3/2	5/2	0.0	462 574	3		5
200 500	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	5.1(350) 250					
222.593 221.319	·	$4p^54d(^3{ m D^o})5s~^2{ m D}^{ m o}_{5/2}$	2 584.3	451 835	50		5
215.600	3/2	5/2	0.0	451 835	1		5
214.409	5/2	3/2	$2584.3 \\ 0.0$	466 399 466 399	55 25		5 5
211.100	3/2	3/2	0.0		20		ð
220.202	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^6(^1S)8p^2P_{3/2}^o$	2 584.3	456 712	25		5
219.062	3/2	1/2	0.0	456 491	20		5
218.954	3/2	3/2	0.0	456 712	3		5
219.476	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^54d(^1D^{\circ})5s \ ^2D^{\circ}_{5/2}$	2 584.3	458 214	3		5
219.125	5/2	$4p \ 4a(D) \ 03 \ D_{5/2}$ $3/2$	2 584.3	458 943	2		5 5
218.238	3/2	5/2	0.0	458 214	55		5
217.892	3/2	3/2	0.0	458 943	40		5
215.600	$4p^6(^1S)4d^2D_{5/2}$	$4p^54d(^1F^o)5s\ ^2F^o_{7/2}$	9 504 9	466 40°	rr		
214.196	·	•	2 584.3 2 584.3	466 405 469 446	55 50		5
213.017	5/2 3/2	5/2 5/2	2 584.3	469 446	10		5 5
	·						
214.942	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^{6}(^{1}S)7f^{2}F_{5/2}^{\circ}$	2 584.3	467 823	14		5
214.890	5/2	7/2	2 584.3	467 934	60		5
213.756	3/2	5/2	0.0	467 823	55		5
208.691	$4p^6(^1S)4d^2D_{5/2}$	$4p^6(^1S)9p\ ^2P_{3/2}^o$	2 584.3	481 765	8		5
207.745	3/2	1/2	0.0	481 363	6		5
207.571	3/2	3/2	0.0	481 765	2		5
205 601			0.554.5	400 ===	40		_
205.691	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^6(^1{ m S})8f~^2{ m F}^{ m o}_{7/2}$	2 584.3 0.0	488 750	40		5
			0.0	488 710	25		5
204.620	3/2	5/2	0.0	488 710	20		U
	$^{3/2}$ $4p^6(^1\mathrm{S})4d^2\mathrm{D}_{5/2}$	$4p^6(^1\mathrm{S})10p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	2 584.3	498 293	3		5

Mo VI - Continued

Wave-	Classificati	on	Energy Lev	vels (cm ⁻¹)	Int. gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper					
199.835	$4p^6(^1{ m S})4d\ ^2{ m D}_{5/2}$	$4p^6(^1S)9f\ ^2F^{\circ}_{7/2}$	2 584.3	502 996	12		5
198.817	3/2	5/2	0.0	502 976	7		5
197.163	$4p^6(^1S)4d^2D_{5/2}$	$4p^6(^1S)11p^2P_{3/2}^{o}$	2 584.3	509 779	1		5
196.233	3/2	1/2	0.0	509 597	1		5

 \mathbf{Mo} VII

Wave- length (Å)	Clas Lower	sification Upper	Energy Lev	vels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
2273.428 1991.915	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{5}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{1/2})5d$ $\left[\frac{3}{2}\right]^{\circ}_{1}$	645 811.86 635 910.5	689 784.69 686 113.49	80 80			9
2248.554 2151.039	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f\ [\frac{5}{2}]_{2}$	$4p^{5}(^{2}P_{3/2}^{\circ})5d\left[\frac{3}{2}\right]_{1}^{\circ}$	624 603.86 615 203.92	669 063.09 661 678.46	120 160			9
2204.859	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_4$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d~[rac{7}{2}]^{\circ}_4$	616 148.25	661 488.47	40			9
2200.862 2179.154 2114.018	$4p^{5}(^{2}\mathrm{P}^{\alpha}_{3/2})4f\ [\frac{3}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\left[\frac{1}{2}\right]^{\circ}_{1}$	613 593.09 611 727.25 611 727.25	659 015.62 657 602.91 659 015.62	100 60 50			9 9
2175.449	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f\ [\frac{7}{2}]_{3}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d~[\frac{3}{2}]^{\circ}_{2}$	615 725.35	661 678.46	40			9
2150.819	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_3$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d~[\frac{7}{2}]^{\circ}_{3}$	615 203.92	661 683.19	10			9
2078.973	$4p^{5}(^{2}\mathrm{P}_{3/2}^{o})4f\ [\frac{3}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})5d\ [\frac{3}{2}]_{2}^{\mathrm{o}}$	613 593.09	661 678.46	60			9
2055.376 2016.880	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_{3}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{5}{2}]^{\circ}_{2}$	615 725.35 616 148.25	664 362.66 665 713.78	160			9 9
2033.572 1979.814	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{5}{2}]_{3}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d~[rac{5}{2}]^{\circ}_{2}$	615 203.92 615 203.92	664 362.66 665 713.78	200 40			9 9
1969.475 1963.730	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{9}{2}]_{4}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d\left[rac{7}{2} ight]^{\circ}_{3}$	610 908.23 610 564.98	661 683.19 661 488.47	120 40			9
1960.154 1946.563	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4f\ [\frac{7}{2}]_{3}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d\ [\frac{5}{2}]_{2}^{\circ}$	633 788.9 635 262.4	684 805.34 686 635.0	60 100			9 9
1834.721	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5s\ [\frac{1}{2}]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{3}{2}]_2$	502 933.27	557 437.49	120			9
1640.158 1550.435 1183.323	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5s~[rac{3}{2}]^{\mathrm{o}}_{1}$	1	481 295.99 477 767.89 481 295.99	542 265.29 542 265.29 565 803.85	200 100 160			9 9 9
1590.568	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5s\ [\frac{1}{2}]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_0$	502 933.27	565 803.85	120			9
1497.421 1422.278 1341.162	$4p^5(^2{ m P}^{\circ}_{3/2})5s~[rac{3}{2}]^{\circ}_{1}$	2	481 295.99 477 767.89 477 767.89	548 077.57 548 077.57 552 329.97	100 400 800			9 9 9
1476.458 1427.755 1338.494	$4p^5(^2{ m P}^{ m o}_{1/2})5s~[{1\over2}]^{ m c}_{1}$	$4p^5(^2\mathrm{P}_{1/2}^{\circ})5p\ [\frac{3}{2}]_1$	502 933.27 500 618.75 502 933.27	570 658.75 570 658.75 577 644.10	60 400 1000			9 9 9
1467.588 1421.413	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5s\ [\frac{3}{2}]^2_2$	$4s4p^64d\ ^3{ m D}_2$	477 767.89 477 767.89	545 906.83 548 120.43	20 400			9 9
1367.897 1313.339 1304.917 1255.186	$4p^5(^2{ m P}^{lpha}_{3/2})5s~[rac{3}{2}]^{rac{3}{2}}$	2	481 295.99 481 295.99 477 767.89 477 767.89	554 401.01 557 437.49 554 401.01 557 437.49	600 600 200 600			9 9 9 9
1336.317 1296.225 1218.134	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5s\ [\frac{1}{2}]_{5}^{\circ}$) 1	502 933.27 500 618.75 502 933.27	577 765.90 577 765.90 585 026.11	400 400 200			9 9 9
1215.483 1165.508	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5s\ [\frac{3}{2}]^{\circ}_{3}$	$4s4p^64d^{-1}D_2$	481 295.99 477 767.89	563 567.72 563 567.72	120 180			9
1189.952	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{1}{2}]$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d\ [\frac{3}{2}]_{1}^{\circ}$	585 026.11	669 063.09				9
1119.037 1037.905 1001.237	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5s\ [\frac{3}{2}]^{\circ}$	$4p^5(^2\mathrm{P}_{1/2}^{\circ})5p\ [\frac{3}{2}]_1$	481 295.99 481 295.99 477 767.89	570 658.75 577 644.10 577 644.10	20 80 80			9 9 9
1019.257	$4s4p^{6}4d^{-1}$ D	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5d\ [\frac{3}{2}]^{\circ}_2$	563 567.72	661 678.46	100			9
1019.216	$4s4p^64d^{-1}$ D	$4s^24p^5(^2P_{3/2}^{\circ})5d\left[\frac{7}{2}\right]_3^{\circ}$	563 567.72	661 683.19	80			9
1000.019 964.039	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5s\ [\frac{3}{2}]$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{1}{2}]_1$	477 767.89 481 295.99	577 765.90 585 026.11	160 160			9 9

Mo VII - Continued

Wave- length (Å)	Lower	Classification	Upper	Energy Levels	(cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
984.462 968.986	$4p^5(^2\mathrm{P}^o_{3/2})5p$	$\left[\frac{3}{2}\right]_2$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{1}{2}]^{\circ}_{1}$	557 437.49 554 401.01	659 015.62 657 602.91	200 10			9
978.985	$4s4p^64d$	$^{1}\mathrm{D}_{2}$	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5d~[\frac{5}{2}]^{\circ}_3$	563 567.72	665 713.78	120			9
968.436 837.429	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p$	$[\frac{1}{2}]_0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{3}{2}]^{\circ}_{1}$	565 803.85 542 265.29	669 063.09 661 678.46	200 200			9 9
959.316	$4p^5(^2\mathrm{P}^o_{3/2})5p$	$[\frac{3}{2}]_2$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{3}{2}]^{\circ}_{2}$	557 437.49	661 678.46	300			9
932.162 872.130		1	2 1	554 401.01 554 401.01	661 678.46 669 063.09	$\frac{160}{200}$			9 9
954.576	$4p^5(^2{ m P}^o_{1/2})5p$	$\left[\frac{1}{2}\right]_0$	$4p^{5}(^{2}P_{1/2}^{\circ})5d\left[\frac{3}{2}\right]_{1}^{\circ}$	585 026.11	689 784.69	300			9
922.955 892.709		1 1	2	577 765.90 577 765.90	686 113.49 689 784.69	300 150			9 9
952.684 893.798	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5d$	$\left[\frac{3}{2}\right]_{1}^{o}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5f\ [\frac{5}{2}]_{2}$	689 784.69 686 113.49	794 751.2 797 995.4	30 150			9 9
933.176	$4p^5(^2\mathrm{P}^o_{1/2})5p$	$[\frac{3}{2}]_2$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d\ [\frac{5}{2}]_{2}^{\circ}$	577 644.10	684 805.34	200			9
917.506 876.064		2 1	3 2	577 644.10 570 658.75	686 635.0 684 805.34	400 300			9 9
929.485 876.405	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d$	$\left[\frac{3}{2}\right]_{1}^{o}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5f\ [\frac{5}{2}]_{2}$	669 063.09 661 678.46	776 649.6 775 781.0	60			9 9
923.560 909.405	$4p^5(^2{ m P}^o_{3/2})5p$	$\left[\frac{3}{2}\right]_2$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{5}{2}]^{\circ}_{3}$	557 437.49 554 401.01	665 713.78 664 362.66	400 400			9
921.920 839.451	$4p^5(^2\mathrm{P}^o_{1/2})5p$	$\left[\frac{3}{2}\right]_2$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d\left[\frac{3}{2}\right]_{2}^{\circ}$	577 644.10 570 658.75	686 113.49 689 784.69	120 150			9 9
916.099	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p$		$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d~[\frac{7}{2}]^{\circ}_{4}$	552 329.97	661 488.47	400			9
914.461 880.244		3 2	3 3	552 329.97 548 077.57	661 683.19 661 683.19	400 400			9 9
914.507 880.275	$4p^5(^2\mathrm{P}^o_{3/2})5p$	$\left[\frac{5}{2}\right]_3$	$4p^{5}(^{2}P_{3/2}^{o})5d\left[\frac{3}{2}\right]_{2}^{o}$	552 329.97 548 077.57	661 678.46 661 678.46				9 9
826.546		2	1	548 077.57	669 063.09	80			9
908.536	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5d$	$\left[\frac{5}{2}\right]_3^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{5}{2}]_3$	665 713.78	775 781.0	40			9
901.404	$4p^5(^2\mathrm{P}^o_{3/2})5p$	$[\frac{5}{2}]_2$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})5d\left[\frac{1}{2}\right]^{\mathrm{o}}_{1}$	548 077.57	659 015.62	100			9
899.560	$4p^5(^2P_{1/2}^o)5d$	$[\frac{5}{2}]_3^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5f\;[\frac{7}{2}]_3$	686 635.0	797 800.5	80			9
884.994 880.555		2 3	3 4	684 805.34 686 635.0	797 800.5 800 199.7	150 150			9 9
898.030	$4p^5(^2\mathrm{P}^o_{3/2})5d$	$\left[\frac{3}{2}\right]_2^o$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f[\frac{3}{2}]_2$	661 678.46	773 033.3	80			9
892.597	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p$	$[\frac{5}{2}]_3$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{5}{2}]^{\circ}_{2}$	552 329.97	664 362.66	80			9
881.960 859.956		3 2	3 2	552 329.97 548 077.57	665 713.78 664 362.66	200 200			9 9
887.930	$4p^5(^2\mathrm{P}^o_{3/2})5d$	$[\frac{7}{2}]_{4}^{0}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f[\frac{9}{2}]_5$	661 488.47	774 110.0	200			9
879.332 877.817	5,2	3	4	661 683.19 661 488.47	775 406.0 775 406.0	200 90			9 9
887.370	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5d$		$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5f[\frac{3}{2}]_{1}$	659 015.62	771 708.2	80			9
877.057	. \ 3/2/	1	2	659 015.62	773 033.3	100			9
876.378	5 (2 7 0)	0	1	657 602.91	771 708.2				9
886.537 879.819	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d$	$\left[\frac{3}{2}\right]_2^0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5f[\frac{7}{2}]_{3}$	664 362.66 665 713.78	777 161.1 779 373.6	125 150			9 9
885.438 874.485	$4s4p^64d$	³ D ₁	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5d\ [\frac{1}{2}]^{\circ}_{0}$	544 663.1 544 663.1	657 602.91 659 015.62	70 70			9 9
883.472	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5d$	$\left[\frac{5}{2}\right]_2^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5f\ [\frac{5}{2}]_3$	684 805.34	797 995.4	70			9
882.083	$4s4p^64d$	$^{3}\mathrm{D}_{3}$	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5d~[\frac{7}{2}]^{\circ}_4$	548 120.43	661 488.47				9
867.030	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p$	$[\frac{1}{2}]_1$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d\ [\frac{1}{2}]^{\circ}_{0}$	542 265.29	657 602.91	150			9

Mo VII - Continued

Wave- length (Å)	Classifica Lower	tion Upper	Energy Leve	els (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
865.967	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d\left[\frac{7}{2}\right]_{3}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5f[\frac{7}{2}]_{3}$	661 683.19	777 161.1	80			9
849.687	3	4	661 683.19	779 373.6	70			9
848.282	4	4	661 488.47	779 373.6	50			9
863.763	$4s4p^64d\ ^3{ m D_2}$	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5d\ [\frac{3}{2}]^{\circ}_2$	545 906.83	661 678.46	40			9
860.274	$4s4p^64d\ ^3{ m D}_3$	$4s^24p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5d\ [\frac{5}{2}]^{\mathrm{o}}_2$	548 120.43	664 362.66	30			9
850.388	3	3	548 120.43	665 713.78	100			9
844.198	2	2	545 906.83	664 362.66	40			9
824.826	$4s4p^64d^{\ 1}{ m D}_2$	$4s^24p^5(^2\mathrm{P}^{\circ}_{1/2})5d\ [\frac{5}{2}]^{\circ}_2$	563 567.72	684 805.34	20			9
812.564	2	3	563 567.72	686 635.0	70			9
819.019	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{1}{2}]_1$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d\ [\frac{5}{2}]^{\circ}_2$	542 265.29	664 362.66	70			9
806.573	$4p^5(^2\mathbf{P_{3/2}^o})5p\ [\frac{1}{2}]_0$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})5d\left[\frac{3}{2}\right]_{1}^{\mathrm{o}}$	565 803.85	689 784.69	70			9
695.170	1	$4p \left(\frac{1}{1/2} \right) 00 \left(\frac{1}{2} \right) 1$	542 265.29	686 113.49	30			9
795.621	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5f[\frac{5}{2}]_{2}$	669 063.09	794 751.2	30			9
150.021	•	-,-	009 003.09	794 731.2	50			9
792.282	$4s4p^64d^{-1}\mathrm{D}_2$	$4s^24p^5(^2P_{1/2}^o)5d\left[\frac{3}{2}\right]_1^o$	563 567.72	689 784.69	40			9
778.946	$4s^24p^5(^2\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4s4p^{6}4d^{3}D_{2}$	417 528.6	545 906.83	80			9
507.023	2	1	347 433.4	544 663.1	5			9
503.845 498.286	2 2	2	347 433.4 347 433.4	545 906.83 548 120.43	100 120			9 9
430.200		3	347 433.4	040 120.43	120			3
777.147	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{3}{2}]_2$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d\left[\frac{3}{2}\right]_{2}^{\circ}$	557 437.49	686 113.49	60			9
755.586	2	1	557 437.49	689 784.69	20			9
766.847	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{3}{2}]_1$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})5d\ [\frac{5}{2}]_{2}^{\mathrm{o}}$	554 401.01	684 805.34	20			9
765.995	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5p\ [\frac{5}{2}]_{2}$	417 528.6	548 077.57	40			9
498.398	2	2	347 433.4	548 077.57	40			9
488.050	2	3	347 433.4	552 329.97	80			9
744.575	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{5}{2}]_3$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5d\ [\frac{5}{2}]^{\circ}_3$	552 329.97	686 635.0	10			9
730.614	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d~[\frac{3}{2}]_{1}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_1$	417 528.6	554 401.01	150			9
714.754	1	2	417 528.6	557 437.49	5			9
483.166 476.181	2 2	1	347 433.4 347 433.4	554 401.01 557 437.49	50 200			9 9
		2	017 100.1	001 431.43	200			3
724.677 695.027	$4s4p^64d$ 3 D ₃	$4s^24p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5d\ [\frac{3}{2}]^{\mathrm{o}}_2$	548 120.43 545 906.83	686 113.49 689 784.69	40 2			9 9
	2	1	343 900.83	069 184.09	2			9
693.169	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{1}{2}]_0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})6s\ [\frac{3}{2}]^{\circ}_{1}$	565 803.85	710 068.9	70			9°,112
600.320 595.932	1	2	542 265.29 542 265.29	708 843.6 710 068.9	90 10			9°,112 9°,112
694 740	4.24.5/200 \4.1(3)0	4 4 64 1 1 7						
684.748 462.675	$4s^24p^5(^2P_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_1^{\circ}$	$4s4p^{6}4d^{-1}D_{2}$	417 528.6 347 433.4	563 567.72 563 567.72	80			9 9
	4.64.15	4 24 5/2mg \a 1330						
682.586	$4s4p^64d^{-1}D_2$	$4s^24p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})6s\ [\frac{3}{2}]^{\mathrm{o}}_1$	563 567.72	710 068.9	3			9
677.709	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})5p\ [\frac{1}{2}]_{0}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6s\ [\frac{1}{2}]_{1}^{\circ}$	585 026.11	732 582.5	40			9°,112
648.934 645.925	1 1	0	577 765.90 577 765.90	731 864.9 732 582.5	60			9°,112
		1		132 082.5				9
674.944	$4p^4(^3P)4d^2(^3F)^{-5}D_4$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})5g\ [\frac{9}{2}]^{\mathrm{o}}_{5}$	648 282.6	796 442.6	50			9
674.419	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_0$	417 528.6	565 803.85	90			9
513.260	2	1	347 433.4	542 265.29	8			9
666.191	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{5}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5g\ [\frac{7}{2}]_{3}^{\circ}$	645 811.86	795 918.6	3			9
660.477	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5p\ [\frac{3}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6s\ [\frac{3}{2}]_{2}^{\circ}$	557 437.49	708 843.6	90			9°,112
655.174	2	2F (- 3/2) 00 12J2	557 437.49	710 068.9	70			9°,112
647.484	1	2	554 401.01	708 843.6	5			9°,112
642.394	1	1	554 401.01	710 068.9	80			9°,112
653.037	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5p\ [\frac{3}{2}]_{1}$		570 658.75	80			9
447.983		. 1	347 433.4	570 658.75	10			9

Mo VII - Continued

Wave-	Classification		Energy Level	s (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper						
645.417	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{3}{2}]_2$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6s\ [\frac{1}{2}]_{1}^{\circ}$	577 644.10	732 582.5	80			9°,112
620.324	1/2/07 [2]2	0	570 658.75	731 864.9	50			9°,112
617.573	1	1	570 658.75	732 582.5	70			9°,112
638.922	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{5}{2}]_3$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})6s~[\frac{3}{2}]^{\mathrm{o}}_2$	552 329.97	708 843.6	90			9°,112
622.020	2	2	548 077.57	708 843.6	80			9°,112
617.315	2	1	548 077.57	710 068.9	90			9°,112
624.069	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5p\ [\frac{1}{2}]_1$	417 528.6	577 765.90	80			9
597.024 434.156	1 2	0	417 528.6 347 433.4	585 026.11	200			9
101.100	_	1	347 433.4	577 765.90	500			9
622.187	$4s4p^{6}4d^{3}\mathrm{D}_{3}$	$4s^24p^5(^2P^{\circ}_{3/2})6s\ [\frac{3}{2}]^{\circ}_2$	548 120.43	708 843.6	30			9
615.002	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{7}{2}]_{3}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{9}{2}]^{\circ}_{4}$	633 788.9	796 389.5	10			9
599.60	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_0$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})6s\ [\frac{1}{2}]_{1}^{\mathrm{o}}$	565 803.85	732 582.5	bl			112
525.435	1	1	542 265.29	732 582.5	2			112
590.650	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{5}{2}]_2$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{5}{2}]^{\circ}_{3}$	624 603.86	793 909.1	50			0
559.569	3/2/17 (2)2	*P (1 3/2) 09 [2]3	615 203.92	793 909.1	10			9 9
507 147	$4p^4(^3P)4d^2(^3F)^{-5}D_4$	4 5/200) = 1910						
587.147	4p (P)4a (F) D4	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5g\ [\frac{9}{2}]_{5}^{\circ}$	648 282.6	818 597.8	40			9
583.723	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})4f\ [\frac{5}{2}]_{2}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5g\ [\frac{7}{2}]^{\circ}_3$	624 603.86	795 918.6	60			9
554.135	3	4	615 203.92	795 665.2				9
578.800	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{5}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5g\ [\frac{7}{2}]_{3}^{\circ}$	645 811.86	818 583.4	60			9
548.343	3	4	635 910.5	818 278.1	90			9
547.426	3	3	635 910.5	818 583.4	5			9
561.221	$4p^5(^2\mathrm{P}^{\mathbf{o}}_{3/2})5p\ [\frac{3}{2}]_1$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})6s\ [\frac{1}{2}]_{1}^{\mathrm{o}}$	554 401.01	732 582.5	5			112
560.157	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f\ [\frac{7}{2}]_{4}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{11}{2}]^{\circ}_{5}$	616 148.25	794 669.8	9			9
557.052	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_4$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{o})5g\ [\frac{7}{2}]_{4}^{o}$	616 148.25	795 665.2	50			9
555.742	3	4	615 725.35	795 665.2	90			9
555.224	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f\left[\frac{3}{2}\right]_{2}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{5}{2}]^{\circ}_{2}$	613 593.09	793 700.5				9
554.582	2	3	613 593.09	793 909.1				9
549.553	1	2	611 727.25	793 700.5	50			9
554.650	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f[\frac{7}{2}]_{4}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5g\ [\frac{9}{2}]_{5}^{\circ}$	616 148.25	796 442.6	120			9
553.514	3	4	615 725.35	796 389.5	90			9
551.922	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_3$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{9}{2}]^{\circ}_{4}$	615 203.92	796 389.5	70			9
548.470	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f\;[\frac{3}{2}]_{2}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5g\ [\frac{7}{2}]_{3}^{\circ}$	613 593.09	795 918.6				9
		•						
545.448 541.374	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4f\left[\frac{7}{2}\right]_{4}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})5g\ [\frac{9}{2}]_{5}^{\mathrm{o}}$	635 262.4	818 597.8	70			9
041.574	3	4	633 788.9	818 504.1	90			9
544.183	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{9}{2}]_{4}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5g\ [\frac{11}{2}]^{\circ}_5$	610 908.23	794 669.8	80			9
543.522	5	6	610 564.98	794 550.2	90			9
537.990	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{9}{2}]_5$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5g\ [\frac{9}{2}]^{\circ}_{5}$	610 564.98	796 442.6	50			9
515.518	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{5}{2}]_2$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5g\ [\frac{7}{2}]^{\circ}_3$	624 603.86	818 583.4				9
513.395	$4s^24p^5(^2P_{1/2}^o)4d\left[\frac{5}{2}\right]_3^o$	$4s4p^{6}4d^{3}D_{2}$	351 126.6	545 906.83	50			9
507.630	3	3	351 126.6	548 120.43	20			9
492.225 489.231	2	1	341 503.8	544 663.1	100			9
	2	2	341 503.8	545 906.83	150			9
507.740	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{5}{2}]_2$	351 126.6	548 077.57	80			9
497.009 484.090	3 2	3 2	351 126.6 341 503.8	552 329.97 548 077.57	80 200			9 9
498.623 446.248	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{3}{2}\right]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_1$	341 713.0 341 713.0	542 265.29 565 803.85	10 300			9 9
434.377	2	0	312 048.4	542 265.29	400			9
400 000	45(2ma \4 + 1510	4.5/250 >= -11	0.44					
498.099	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4d\left[\frac{5}{2}\right]^{\mathrm{o}}_{2}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_1$	341 503.8	542 265.29	2			9

Mo VII - Continued

Wave- length (Å)	Classification Lower	u Upper	Energy Lev	rels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc. Reference
492.731	$4s^24p^5(^2P_{3/2}^{\circ})4d\left[\frac{3}{2}\right]_1^{\circ}$	$4s4p^{6}4d^{3}\mathrm{D}_{1}$	341 713.0	544 663.1	100		9
489.731	1	2	341 713.0	545 906.83	100		9
427.611 423.601	2 2	2 3	312 048.4 312 048.4	545 906.83 548 120.43	200 400		9 9
484.581 423.677	$4p^{5}(^{2}\mathrm{P}_{3/2}^{o})4d\left[\frac{3}{2}\right]_{1}^{o}$	$4p^5(^2P^o_{3/2})5p\ [\frac{5}{2}]_2$	341 713.0 312 048.4	548 077.57 548 077.57	90 150		9 9
416.179	2 2	2 3	312 048.4	552 329.97	150		9
482.917 373.455	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_{2}$	417 528.6 347 433.4	624 603.86 615 203.92	80 60		9 9
470.719 450.321	$4s^24p^5(^2P_{1/2}^{\circ})4d\ [\frac{5}{2}]_3^{\circ}$	$4s4p^{6}4d^{-1}\mathrm{D_{2}}$	351 126.6 341 503.8	563 567.72 563 567.72	250 150		9 9
470.173	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{3}{2}]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_1$	341 713.0	554 401.01	250		9
463.553	1	2	341 713.0 312 048.4	557 437.49 554 401.01	50 300		9 9
412.623 407.515	2 2	1 2	312 048.4	557 437.49	400		9
469.711 463.105	$4p^{5}(^{2}P_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{2}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_1$	341 503.8 341 503.8	554 401.01 557 437.49	90 70		9 9
466.290	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5p\;[\frac{5}{2}]_{2}$	333 618.9	548 077.57	150		9
457.223	4 <i>p</i> (1 3/2)4 <i>u</i> [213	4p (13/2/0p [2]2	333 618.9	552 329.97	300		9
444.087	2	2	322 896.0	548 077.57	400		9
435.856	2	3	322 896.0	552 329.97	100		9
466.198	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ [\frac{5}{2}]^{\circ}_{3}$	$4s4p^{6}4d\ ^{3}\mathrm{D}_{3}$	333 618.9	548 120.43	125		9
450.922 448.411	2 2	1 2	322 896.0 322 896.0	544 663.1 545 906.83	300 60		9 9
455.852	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{5}{2}]^{\circ}_{2}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{1}{2}]_1$	322 896.0	542 265.29	100		9
450.742	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ [\frac{3}{2}]^{\circ}_{1}$	$4s4p^{6}4d^{-1}D_{2}$	341 713.0	563 567.72	40		9
446.790	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d~[\frac{5}{2}]^{\mathrm{o}}_{3}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_2$	333 618.9	557 437.49	300		9
431.956	2	1	322 896.0	554 401.01	300		9
441.466	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4d\left[\frac{5}{2}\right]_{3}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{3}{2}]_2$	351 126.6	577 644.10	400		9
436.388 423.478	2	1	341 503.8 341 503.8	570 658.75 577 644.10	400 200		9 9
438.976	2 4 2 4 5 (2 D9) 4 4 [7 19	$4s4p^{6}4d\ ^{3}\mathrm{D_{2}}$					
438.976	$4s^24p^5(^2P_{3/2}^{\circ})4d\left[\frac{7}{2}\right]_3^{\circ}$	4s4p-4a-D ₂	318 103.9 318 103.9	545 906.83 548 120.43	500 200		9 9
429.873	3 4	3	315 491.8	548 120.43	400		9
438.052	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f[\frac{5}{2}]_{2}$	417 528.6	645 811.86	200		9
346.647	2	3	347 433.4	635 910.5	400		9
335.142	2	2	347 433.4	645 811.86	70		9
436.786	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\ [\frac{3}{2}]^{o}_{1}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5p\ [\frac{3}{2}]_1$	341 713.0	570 658.75	100		9
$423.856 \\ 386.683$	1 2	2	341 713.0 312 048.4	577 644.10 570 658.75	20 40		9 9
376.513	2 2	2	312 048.4	577 644.10	200		9
434.881	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})4d\ [\frac{5}{2}]^{\circ}_3$	$4s4p^64d$ $^1\mathrm{D}_2$	333 618.9	563 567.72	300		9
415.504	2	2	322 896.0	563 567.72	250		9
434.835	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_3$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5p\ [\frac{5}{2}]_{2}$	318 103.9	548 077.57	200		9
426.939	3	3	318 103.9	552 329.97	300		9
422.232	4 4-5/2D0 \44[3]0	3 4-5/2D0 \s. [1]	315 491.8	552 329.97	900		9
423.634 410.994	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\left[\frac{3}{2}\right]_{1}^{o}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5p\ [\frac{1}{2}]_1$	341 713.0	577 765.90 585 026.11	150 200		9
376.341	1 2	0	341 713.0 312 048.4	577 765.90	200		9
423.259	$4p^{5}(^{2}P_{1/2}^{o})4d\left[\frac{5}{2}\right]_{2}^{o}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5p\ [\frac{1}{2}]_1$	341 503.8	577 765.90	80		9
422.465	$4p^{5}(^{2}P_{3/2}^{\circ})4d\left[\frac{1}{2}\right]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5p\ [\frac{1}{2}]_1$	305 558.9	542 265.29	500		9
416.805	0	1	302 343.7	542 265.29	400		9
384.255	1	0	305 558.9	565 803.85	200		9

Mo VII - Continued

Wave-	Classifica	tion	Energy Lev	els (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper						
418.227	$4s^24p^5(^2P_{3/2}^{\circ})4d\left[\frac{1}{2}\right]_1^{\circ}$	$4s4p^{6}4d^{3}D_{1}$	305 558.9	544 663.1	150			9
416.064 412.679	1	2	305 558.9 302 343.7	545 906.83 544 663.1	300			9 9
		1			150			Э
417.828	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_3$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_2$	318 103.9	557 437.49	200			9
412.340	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{1}{2}\right]^{\circ}_{1}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5p\ [\frac{5}{2}]_{2}$	305 558.9	548 077.57	200			9
409.797	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{5}{2}]^{\circ}_{3}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})5p\ [\frac{3}{2}]_{2}$	333 618.9	577 644.10	60			9
403.608 392.546	2 2	1 2	322 896.0 322 896.0	570 658.75 577 644.10	200 100			9 9
407.393	$4s^24p^5(^2\mathrm{P}^o_{3/2})4d~[\frac{7}{2}]^o_3$	$4s4p^{6}4d^{-1}{ m D}_{2}$	318 103.9	563 567.72	200			9
403.963	$4s4p^{6}4d^{3}D_{3}$	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5g\ [\frac{7}{2}]^{\circ}_4$	548 120.43	795 665.2	50			9
	$4s4p^{6}4d^{3}D_{1}$	·	•					
401.543	•	$4s^24p^5(^2\mathrm{P}^{\circ}_{3/2})5g\ [\frac{5}{2}]^{\circ}_2$	544 663.1	793 700.5	30			9
397.016	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{1}{2}]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5p\ [\frac{3}{2}]_2$	305 558.9	557 437.49	400			9
396.734	0	1	302 343.7	554 401.01	150			9
392.359	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d~[\frac{5}{2}]^{\mathrm{o}}_{2}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{1}{2}]_1$	322 896.0	577 765.90	60			9
387.585	$4s^24p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d\ [\frac{1}{2}]^{\mathrm{o}}_{1}$	$4s4p^64d$ $^1\mathrm{D}_2$	305 558.9	563 567.72	100			9
386.442	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\ [\frac{5}{2}]_{3}^{\circ}$	$4p^4(^3P)4d^2(^3F)^5D_2$	351 126.6	609 898.9	6			9
336.520	3	4	351 126.6	648 282.6	200			9
385.298	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_{3}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5p\ [\frac{3}{2}]_2$	318 103.9	577 644.10	200			9
384.939	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\ [\frac{5}{2}]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{9}{2}]_4$	351 126.6	610 908.23	100			9
384.219	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\ [\frac{5}{2}]_{3}^{\circ}$	$4p^4(^3P)4d^2(^3F)^{-5}F_4$	351 126.6	611 395.8	90			9
381.005	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d\left[\frac{5}{2}\right]_{3}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{3}{2}]_2$	351 126.6	613 593.09	70			9
370.063 367.526	2	1	341 503.8 341 503.8	611 727.25 613 593.09	15			9
	2	2			60			9
381.005	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4d\left[\frac{3}{2}\right]_{2}^{o}$	$4p^4(^3P)4d^2(^3F)^{-5}D_2$	347 433.4	609 898.9	70			9
378.679	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d\ [\frac{5}{2}]_{3}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{5}{2}]_3$	351 126.6	615 203.92	80			9
365.659 353.234	3 2	2 2	351 126.6 341 503.8	624 603.86 624 603.86	$\frac{100}{20}$			9 9
378.366	$4p^{5}(^{2}P_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{2}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})4f\left[\frac{3}{2}\right]_{1}$	347 433.4	611 727.25	50			9
375.715	2	2	347 433.4	613 593.09	100			9
377.934	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_3$	351 126.6	615 725.35	20			9
377.330 364.666	3 2	4	351 126.6 341 503.8	616 148.25 615 725.35	80 90			9 9
		3						
377.217 372.702	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d\left[\frac{1}{2}\right]^{\mathrm{o}}_{1}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5p\;[\frac{3}{2}]_{1}$	305 558.9 302 343.7	570 658.75 570 658.75	100 70			9 9
	45/2D0 \4.16310	4-5/200 \4.6131						
370.351 333.687	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\left[\frac{3}{2}\right]^{o}_{1}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f\left[\frac{3}{2}\right]_{1}$	341 713.0 312 048.4	611 727.25 611 727.25	90 80			9 9
331.623	2	2	312 048.4	613 593.09	300			9
367.366	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\left[\frac{1}{2}\right]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5p\ [\frac{1}{2}]_{1}$	305 558.9	577 765.90	90			9
$363.077 \\ 357.824$	0	1	302 343.7 305 558.9	577 765.90 585 026.11	100 100			9 9
366.734	$4s4p^64d$ $^3\mathrm{D}_2$	$4s^24p^5(^2\mathrm{P}^{\circ}_{1/2})5g\ [\frac{7}{2}]^{\circ}_{3}$	545 906.83	818 583.4	5			9
	$4p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$							
360.635	·	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f[\frac{9}{2}]_{4}$	333 618.9	610 908.23	100			9
360.003	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{5}{2}]^{\circ}_{3}$	$4p^4(^3P)4d^2(^3F)$ 5F_4	333 618.9	611 395.8	100			9
357.175	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\ [\frac{5}{2}]^{o}_{3}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f\ [\frac{3}{2}]_{2}$	333 618.9	613 593.09	100			9
$346.222 \\ 343.998$	2 2	1 2	322 896.0 322 896.0	611 727.25 613 593.09	150 100			9 9

Mo VII - Continued

Wave-	Classification	on	Energy Lev	rels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	·					
355.132	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_3$	333 618.9	615 203.92	300			9
343.659	3	2	333 618.9	624 603.86	50			9
342.102	2	3	322 896.0	615 203.92	200			9
331.444	2	2	322 896.0	624 603.86	150			9
354.474	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{5}{2}]^{\circ}_{3}$	$4p^5(^2\mathrm{P}^o_{3/2})4f\ [\frac{7}{2}]_3$	333 618.9	615 725.35	150			9
353.945	3	4	333 618.9	616 148.25	500			9
341.494	2	3	322 896.0	615 725.35	400			9
353.777	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d\left[\frac{5}{2}\right]_{3}^{\mathrm{o}}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4f\;[\frac{7}{2}]_{3}$	351 126.6	633 788.9	100			9
351.944	3	4	351 126.6	635 262.4	400			9
342.131	2	3	341 503.8	633 788.9	400			9
353.494	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\ [\frac{3}{2}]_{1}^{\circ}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_{2}$	341 713.0	624 603.86	300			9
329.861	2	3/2/ 1/23-	312 048.4	615 203.92	500			9
319.938	2	2	312 048.4	624 603.86	90			9
351.143	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^{5}(^{2}P_{1/2}^{\circ})4f[\frac{5}{2}]_{3}$	351 126.6	635 910.5	100			9
339.664	2	3	341 503.8	635 910.5	150			9
339.351	3	2	351 126.6	645 811.86	200			9
328.611	2	2	341 503.8	645 811.86	80			9
349.217	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\ [\frac{3}{2}]_{2}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})4f\ [\frac{7}{2}]_3$	347 433.4	633 788.9	100			9
342.705	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d~[\frac{7}{2}]^{\mathrm{o}}_{3}$	$4p^4(^3P)4d^2(^3F)$ 5D_2	318 103.9	609 898.9	30			9
300.488	4	4	315 491.8	648 282.6	200			9
341.524	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d~[\frac{7}{2}]^{\mathrm{o}}_{3}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{9}{2}]_4$	318 103.9	610 908.23	400			9
338.899	4	5	315 491.8	610 564.98	500			9
338.504	4	4	315 491.8	610 908.23	200			9
340.955	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_{3}$	$4p^4(^3P)4d^2(^3F)^5F_4$	318 103.9	611 395.8	400			9
337.946	4	4	315 491.8	611 395.8	100			9
338.420	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d~[\frac{7}{2}]^{o}_{3}$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{3}{2}]_{2}$	318 103.9	613 593.09	100			9
336.584	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d~[\frac{7}{2}]^{o}_{3}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4f\ [\frac{5}{2}]_3$	318 103.9	615 203.92	200			9
333.652	4	3	315 491.8	615 203.92	90			9
326.263	3	2	318 103.9	624 603.86	30			9
335.995	$4p^{5}(^{2}\mathrm{P}_{3/2}^{o})4d\left[\frac{7}{2}\right]_{3}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_3$	318 103.9	615 725.35	150			9
335.516	3	4	318 103.9	616 148.25	150			9
333.069 332.604	4	3	315 491.8	615 725.35	30			9
332.004	4	4	315 491.8	616 148.25	200			9
335.737	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})4d\left[\frac{3}{2}\right]^{\mathrm{o}}_{2}$	$4p^4(^3P)4d^2(^3F) ^5D_2$	312 048.4	609 898.9	100			9
331.511	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{5}{2}]^{\circ}_{3}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4f\left[\frac{7}{2}\right]_{4}$	333 618.9	635 262.4	300			9
321.661	2	3	322 896.0	633 788.9	80			9
329.294	$4p^{5}(^{2}\mathrm{P}_{3/2}^{o})4d\left[\frac{3}{2}\right]_{2}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{7}{2}]_3$	312 048.4	615 725.35	400			9
328.838	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{3}{2}]^{\circ}_{1}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4f\ [\frac{5}{2}]_{2}$	341 713.0	645 811.86	150			9
308.770	2	3	312 048.4	635 910.5	150			9
328.577	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d~[\frac{1}{2}]^{o}_{1}$	$4p^4(^3P)4d^2(^3F)^{-5}D_2$	305 558.9	609 898.9	200			9
327.266	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{1}{2}\right]^{\circ}_{1}$	0	305 558.9	500			9
000 010	4.5/2pg \4.1110	• -						
326.616 324.638	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\left[\frac{1}{2}\right]^{o}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{3}{2}]_1$	305 558.9	611 727.25	250			9
323.221	1 0	2	305 558.9 302 343.7	613 593.09 611 727.25	400 300			9 9
319.473	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{5}{2}\right]^{\circ}_{2}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{5}{2}]_{3}$	322 896.0	635 910.5	90			9
317.798	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^4(^3P)4d^2(^3F)$ 5D_4	333 618.9	648 282.6	400			9
	-,			040 202.0	-100			IJ
316.772	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_{3}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f\ [\frac{7}{2}]_{3}$	318 103.9	633 788.9	100			9
$315.300 \\ 312.722$	3	4	318 103.9	635 262.4	70			9
014.122	4	4	315 491.8	635 262.4	30			9

Mo VII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	evels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
314.656	$4p^{5}(^{2}P_{3/2}^{\circ})4d\left[\frac{7}{2}\right]_{3}^{\circ}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f[\frac{5}{2}]_{3}$	318 103.9	635 910.5	30	-		9
312.090	4	3	315 491.8	635 910.5	70			9
305.149	3	2	318 103.9	645 811.86	60			9
313.432	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{1}{2}]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})4f\ [\frac{5}{2}]_2$	305 558.9	624 603.86	120			9
310.807	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{3}{2}]^{\circ}_{2}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})4f\ [\frac{7}{2}]_3$	312 048.4	633 788.9	20			9
292.644	$4p^{6}$ ¹ S ₀	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{3}{2}]^{\circ}_{1}$	0	341 713.0	900			9
278.458	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d\left[\frac{3}{2}\right]_{1}^{\mathrm{o}}$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})5f\left[\frac{5}{2}\right]_{2}$	417 528.6	776 649.6	20			9
233.453	2	3	347 433.4	775 781.0	80			9
265.096	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4d\left[\frac{3}{2}\right]_{1}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5f\ [\frac{5}{2}]_2$	417 528.6	794 751.2	40			9
223.556 221.946	2	2	347 433.4	794 751.2	20			9
	2 $^{4p^{6-1}}S_{0}$	3 4_5/2pe \4.131e	347 433.4	797 995.4	150			9
239.504	•	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{3}{2}\right]_{1}^{\circ}$	0	417 528.6	1000			9
237.020	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5f\ [\frac{3}{2}]_2$	351 126.6	773 033.3	30			9
235.694	$4p^{5}(^{2}\mathrm{P}^{o}_{1/2})4d~[\frac{3}{2}]^{o}_{2}$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})5f\ [\frac{3}{2}]_{1}$	347 433.4	771 708.2	80			9
234.962	2	2	347 433.4	773 033.3	150			9
235.694	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{9}{2}]_4$	351 126.6	775 406.0	80			9
235.486	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4d~[\frac{5}{2}]_{3}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{5}{2}]_3$	351 126.6	775 781.0	150			9
235.007	3	2	351 126.6	776 649.6	10			9
230.268 229.808	2	3 2	341 503.8 341 503.8	775 781.0 776 649.6	$\frac{25}{150}$			9 9
	5.2-0 >	_						3
234.722 233.510 ^C	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})4d\left[\frac{5}{2}\right]_{3}^{o}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{7}{2}]_3$	351 126.6	777 161.1	25			9
229.538	3 2	4 3	351 126.6 341 503.8	779 373.6 777 161.1	20			9 9
232.558	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})4d~[\frac{3}{2}]_{1}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{3}{2}]_1$	341 713.0	771 708.2	50			0
231.842	1 1	$\frac{4p}{2} \left(\frac{1}{3/2} \right) = \frac{1}{2} \left[\frac{1}{2} \right] $	341 713.0	773 033.3	10			9 9
216.928	2	2	312 048.4	773 033.3	25			9
229.919	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d\left[\frac{3}{2}\right]^{o}_{1}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5f\ [\frac{5}{2}]_{2}$	341 713.0	776 649.6	80			9
215.642	2	3	312 048.4	775 781.0	100			9
227.576	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})4d~[\frac{5}{2}]^{o}_{3}$	$4p^5(^2P^{\circ}_{3/2})5f[\frac{3}{2}]_2$	333 618.9	773 033.3	10			9
226.163	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})4d~[rac{5}{2}]^{\mathrm{o}}_3$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f[\frac{5}{2}]_3$	333 618.9	775 781.0	80			0
220.385	2	$\frac{4p}{2}(\frac{1}{3/2})^{3}J(\frac{2}{2})^{3}$	322 896.0	776 649.6	20			9 9
224.340	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})4d[\frac{5}{2}]_{3}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5f[\frac{7}{2}]_4$	333 618.9	779 373.6	200			9
220.137	2	3	322 896.0	777 161.1	200			9
223.878	$4p^{5}(^{2}P_{1/2}^{\circ})4d\left[\frac{5}{2}\right]_{3}^{\circ}$	$4p^5(^2P_{1/2}^{\circ})5f[\frac{7}{2}]_3$	351 126.6	797 800.5	20			9
222.685	3	4	351 126.6	800 199.7	150			9
219.157	2	3	341 503.8	797 800.5	100			9
222.043	$4p^{5}(^{2}\mathrm{P}^{\circ}_{1/2})4d\left[\frac{3}{2}\right]^{\circ}_{2}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5f\ [\frac{7}{2}]_3$	347 433.4	797 800.5	50			9
220.734	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{3}{2}]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5f\ [\frac{5}{2}]_2$	341 713.0	794 751.2	60			9
220.632	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})4d~[rac{5}{2}]_{2}^{\mathrm{o}}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{o})5f[\frac{5}{2}]_{2}$	341 503.8	794 751.2	20			9
219.062	2	3	341 503.8	797 995.4				9
218.675	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\mathrm{o}})4d[\frac{7}{2}]_{3}^{\mathrm{o}}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f\ [\frac{9}{2}]_4$	318 103.9	775 406.0	150			9
218.048	4	5	315 491.8	774 110.0	200			9
217.432	4	4	315 491.8	775 406.0	25			9
217.838	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d~[\frac{7}{2}]^{\circ}_{3}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{3/2})5f\ [\frac{7}{2}]_3$	318 103.9	777 161.1	30			9
214.524	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{1}{2}\right]^{\circ}_{1}$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5f[\frac{3}{2}]_1$	305 558.9	771 708.2	30			9
213.916	1	2	305 558.9	773 033.3	25			9
213.056	0	1	302 343.7	771 708.2	30			9
210.571	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\left[\frac{5}{2}\right]^{\circ}_{2}$	$4p^5(^2\mathrm{P}^{\mathrm{o}}_{1/2})5f\ [\frac{7}{2}]_3$	322 896.0	797 800.5	25			9

Mo VII - Continued

Wave- length (Å)	Classifica Lower	tion Upper	Energy Levels (cm ⁻¹)		Int.	gf A (s ⁻¹)	Acc.	References
207.776	4p ⁶ ¹ S ₀	$4p^{5}(^{2}P_{3/2}^{\circ})5s\left[\frac{3}{2}\right]_{1}^{\circ}$	0	481 295.99	1000			9
207.435	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})4d\ [\frac{7}{2}]^{\circ}_{3}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5f[\frac{7}{2}]_4$	318 103.9	800 199.7	10			9
204.418	$4p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4d\left[\frac{1}{2}\right]_{1}^{\circ}$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5f\ [\frac{5}{2}]_2$	305 558.9	794 751.2	40			9
198.834	$4p^{6-1}S_0$	$4p^5(^2\mathrm{P}^{\circ}_{1/2})5s~[\frac{1}{2}]^{\circ}_{1}$	0	502 933.27	1000			9
151.747	$4p^{6-1}S_0$	$4p^5(^2\mathrm{P}^{\circ}_{3/2})5d\ [\frac{1}{2}]^{\circ}_{1}$	0	659 015.62	5			9
149.462	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})5d~[\frac{3}{2}]^{\circ}_{1}$	0	669 063.09	90			9
144.973	$4p^{6}$ 1 S ₀	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})5d\;[\frac{3}{2}]_{1}^{\mathrm{o}}$	0	689 784.69	70			9
140.833	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})6s~[rac{3}{2}]^{\circ}_{1}$	• 0	710 068.9	80			9
136.507	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})6s\;(\frac{1}{2},\frac{1}{2})_{1}^{\mathrm{o}}$	0	732 563	20			6,7°
128.141	$4s^24p^6$ 1S_0	$4s4p^65p^3P_1^0$	0	780 390	1			7
126.631	$4s^24p^{6-1}S_0$	$4s4p^65p^{-1}{ m P}_1^{ m o}$	0	789 696	5			7
125.704	$4p^{6} {}^{1}S_{0}$	$4p^{5}6d~^{3}\mathrm{D}_{1}^{\circ}$	0	795 532	1			7
122.487	$4p^{6} {}^{1}S_{0}$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})7s\;(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	0	816 413	4			7
119.141	$4p^{6} {}^{1}\mathrm{S}_{0}$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})7s\;(\frac{1}{2},\frac{1}{2})_{1}^{\circ}$	0	839 342	2			7
114.286	$4p^{6}\ ^{1}\mathrm{S}_{0}$	$4p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})8s\;(\frac{3}{2},\frac{1}{2})^{\circ}_{1}$	0	874 998	2			7
111.347	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})8s\;(\frac{1}{2},\frac{1}{2})_{1}^{\mathrm{o}}$	0	898 093				7
109.790	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}^{o}_{3/2})9s\;(\frac{3}{2},\frac{1}{2})^{o}_{1}$	0	910 830	1			7
107.005	$4p^{6-1}S_0$	$4p^{5}(^{2}\mathrm{P}^{\mathrm{o}}_{3/2})10s(\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_{1}$	0	934 536	1			7

Mo viii

Wave-	Classification	••	Energy Levels (cm ⁻¹)		Int. $gf A (s^{-1})$ Acc		. References
ength (Å)	Lower	Upper					
174.941	$4s^24p^5\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$4s4p^6$ 2 S _{1/2}	23 274	233 830	100		2°,10 ^Δ
127.660	3/2	1/2	0	233 830	160		2°,10 [△] ,31
	·	•					
325.176	$4p^5\ ^2{ m P}_{1/2}^{\circ}$	$4p^4(^1D)4d\ ^2P_{1/2}$	23 274	330 800?	8		10,11°
307.166 286.670	1/2	3/2	23 274	348 832	5		10,11°
200.070	3/2	3/2	0	348 832	2		10,11°
323.940	$4p^5\ ^2{ m P}^{\circ}_{3/2}$	$4p^4(^3P)4d^{-4}D_{5/2}$	0	308 699	30		11
322.645	3/2	3/2	0	309 938	10		11
		•					
318.822	$4p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$4p^4(^3P)4d\ ^4P_{1/2}$	23 274	336 936	3		10,11°
316.210 296.786	1/2	3/2	23 274	339 525	2		11
294.526	3/2	1/2	0	336 936 339 525	50 60		10,11°
288.838	3/2 3/2	3/2 5/2	0	346 215	100		11 10,11°
		•					,
314.379	$4p^5 \ ^2P_{1/2}^{\circ}$	$4p^4(^1{ m D})4d\ ^2{ m D}_{3/2}$	23 274	341 362	35		10,11°
292.943	3/2	3/2	0	341 362	75		10,11°
283.167	3/2	5/2	0	353 148	85		11
297.918	$4p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$4p^4(^3P)4d^4F_{3/2}$	0	335 663	75		10,11°
295.910	3/2	5/2	0	337 941	150		10, 11°
		·	ŭ	00. 011	100		10,11
279.477	$4p^{5-2}{ m P}_{3/2}^{\circ}$	$4p^4(^3P)4d^2F_{5/2}$	0	357 811	7 5		10,11°
		4.1					
269.352	$4p^5\ ^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$4p^4(^1{ m S})4d\ ^2{ m D}_{3/2}$	23 274	394 545	15		10,11°
253.457	3/2	3/2	0	394 545	30		10,11°
246.973	3/2	5/2	0	404 903	50		10,11°
269.294	$4p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$4p^4(^1\mathrm{D})4d\ ^2\mathrm{F}_{5/2}$	0	371 341	50		10,11°
05# 50#	4 5 2mg	. 4/1=> 2=					
257.597	$4p^5~^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^1{ m D})4d\ ^2{ m S}_{1/2}$	23 274	411 512	30		10,11°
243.006	3/2	1/2	0	411 512	200		10,11°
251.085	$4p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^3P)4d^2P_{3/2}$	23 274	421 559	2		11
245.276	1/2	1/2	23 274	430 969	100		11
237.215	3/2	3/2	0	421 559	700		11
232.040	3/2	1/2	0	430 969	50		11
235.510	$4p^5\ ^2\mathrm{P_{1/2}^o}$	$4p^4(^3P)4d^2D_{3/2}$	00.074	445.050			
234.314		•	23 274	447 876 426 778	500		11
223.280	3/2 3/2	5/2 3/2	0 0	447 876	900 15		10,11° 11
		•	Ü	227 010	10		11
198.367	$4p^5~^2{ m P}_{1/2}^{ m o}$	$4p^4(^3P_2)5s(2,\frac{1}{2})_{3/2}$	23 274	527 389	4		10,11°
191.769	3/2	5/2	0	521 461	90		10,11°
189.614	3/2	3/2	0	527 389	100		10,11°
192.286	$4p^5$ 2 P $^{\circ}_{1/2}$	$4p^4(^3P_1)5s(1,\frac{1}{2})_{3/2}$	02 074	E 42 22C	-		10.119
190.241		- '		543 336	5		10,11°
184.047	1/2	1/2	$\begin{array}{c} 23 \ 274 \\ 0 \end{array}$	548 923 543 336	25 75		10,11° 10,11°
182.175	3/2 3/2	3/2 1/2	ő	548 923	20		10,11°
							10,11
186.377	$4p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^1\mathrm{D}_2)5s\ (2,\frac{1}{2})_{3/2}$	23 274	559 813	7 5		10,11°
178.951	3/2	5/2	0	558 812	100		10,11°
178.634	3/2	3/2	0	559 813	3		11
185.621	$4p^5 \ ^2P_{3/2}^{\circ}$	$4p^4(^3P_0)5s\ (0,\frac{1}{2})_{1/2}$	0	538 732	25		10,11°
		- ,					
174.656	$4p^5 \ ^2P_{1/2}^{\circ}$	$4p^4(^1S_0)5s\ (0,\frac{1}{2})_{1/2}$		595 829	75		10,11°
167.833	3/2	1/2	0	595 829	20		11
141.287	$4p^5~^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^3P)5d^2D_{3/2}$	02.074	791 070	,		10
136.782		<u>-</u>		731 073	1		12
136.357	3/2 3/2	3/2		731 073 733 372	4 6		$\frac{12}{12}$
	3/2	5/2		100 012	U		14
138.520	$4p^5~^2{ m P}_{1/2}^{ m o}$	$4p^4(^3P)5d^4P_{3/2}$	23 274	745 165	3		12
136.898	3/2	1/2		730 472	2		12
134.203	3/2	3/2	_	745 165	11		12
133.661	3/2	5/2		748 161	2		12
	4 5 2 00	$4p^4(^3{ m P})5d~^2{ m P}_{3/2}$	23 274	#F0 00=	2		
137 495							
137.425 133.168	$4p^5 \ ^2\mathrm{P}^{\mathrm{o}}_{1/2} \ _{3/2}$	4p (F)5a F _{3/2}	^	750 937 750 937	6 1		12 12

Mo VIII - Continued

Wave-	Classification		Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper					
135.902	$4p^5\ ^2\mathrm{P}_{1/2}^{\mathrm{o}}$	$4p^4(^1D)5d\ ^2S_{1/2}$	23 274	759 112	1		12
131.730	3/2	1/2	0	759 112	1		12
35.378	$4p^5~^2\mathrm{P_{1/2}^o}$	$4p^4(^1D)5d^2P_{3/2}$	23 274	761 941	1		12
33.854	1/2	1/2	23 274	770 370	1		12
31.245	3/2	3/2	0	761 941	1		12
29.806	3/2	1/2	0	770 370	4		12
34.852	$4p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$4p^4(^3P)5d^4F_{3/2}$	0	741 552	1		12
34.362	3/2	5/2	0	744 258	1		12
134.428	$4p^5\ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^1D)5d^2D_{3/2}$	23 274	767 167	9		12
31.059	3/2	4p (D)00 D3/2	0	763 015	1		12
133.417	$4p^5~^2{\rm P}^{\rm o}_{3/2}$	$4p^4(^3P)5d^2F_{5/2}$	0	749 531	1		12
130.758	$4p^5~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4p^4(^1D)5d^2F_{5/2}$	o	764 770	1		12
130.111	$4p^5\ ^2{ m P}_{1/2}^{ m o}$	$4p^4(^3P_2)6s(2,\frac{1}{2})_{3/2}$	23 274	791 823	1		12
126.634	3/2	5/2	0	789 754	8		12
26.296	3/2	3/2	ő	791 823	10		12
128.688	$4p^5\ ^2{ m P}_{1/2}^{ m o}$	$4p^4(^1S)5d^2D_{3/2}$	23 274	800 351	5		12
125.191	3/2	5/2	. 0	798 781	1		12
127.662	$4p^5\ ^2 ext{P}^{\circ}_{1/2}$	$4p^4(^3P_0)6s\ (0,\frac{1}{2})_{1/2}$	23 274	806 614	1		12
123.973	3/2	1/2	0	806 614	3		12
127.058	$4p^5\ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^3P_1)6s\ (1,\frac{1}{2})_{3/2}$	23 274	810 363	3		12
126.747	1/2	1/2	23 274	812 274	6		12
23.394	3/2	3/2	0	810 363	5		12
23.108	3/2	1/2	0	812 274	4		12
124.561	$4p^5~^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$4p^4(^1D_2)6s (2, \frac{1}{2})_{3/2}$	23 274	826 096	4		12,13°
21.080	3/2	5/2	0	825 900	7		12,13°
119.114	$4p^5\ ^2{ m P}^{\circ}_{1/2}$	$4p^4(^1S_0)6s\ (0,\frac{1}{2})_{1/2}$	23 274	862 803	5		12
115.902	3/2	1/2	0	862 803	1		12
115.109	$4p^5 \ ^2P_{1/2}^{\circ}$	$4p^4(^3P)6d^2D_{3/2}$	23 274	891 999	1		12
112.254	3/2	5/2	0	890 834	5		12
112.110	3/2	3/2	0	891 999	2		12
113.205	$4p^5~^2\mathrm{P}^{\mathrm{o}}_{1/2}$	$4p^4(^3P)6d^4P_{3/2}$	23 274	906 608	1		12
110.304	3/2	3/2	0	906 608	1		12
110.189	3/2	5/2	0	907 534	1		12
112.746	$4p^{5-2}P_{1/2}^{\circ}$	$4p^4(^3P)6d^2P_{3/2}$	23 274	910 220	1		12
109.864	3/2	3/2	0	910 220	1		12
111.461	$4p^5~^2{ m P}_{1/2}^{ m o}$	$4p^4(^1D)6d\ ^2S_{1/2}$	23 274	000 400	,		10
108.648	3/2	4p (D)0 a $^{3_{1/2}}$	23 214	920 428 920 428	1		12 12
111.383	$4p^5\ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^1{ m D})6d\ ^2{ m P}_{3/2}$					
111.012		•	23 274	921 068	3		12
108.571	1/2 3/2	1/2 3/2	23 274 0	924 105 921 068	1 1		$\begin{array}{c} 12 \\ 12 \end{array}$
108.210	3/2	1/2	_	924 105	3		12
110.573	$4p^5~^2{ m P}_{1/2}^{ m o}$	$4p^4(^1D)6d\ ^2D_{3/2}$	23 274	927 660	1		12
108.255	3/2	5/2	_	923 747	1		12
107.797	3/2	3/2		927 660	1		12
109.904	$4p^5 \ ^2P_{3/2}^{\circ}$	$4p^4(^3{ m P})6d\ ^2{ m F}_{5/2}$	0	909 889	2		12
109.760	$4p^5 \ ^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^3P_1)7s(1,\frac{1}{2})_{1/2}$	23 274	934 364	3		12
107.203	3/2	3/2	0	932 812	4		12
107.024	3/2	1/2	_	934 364	3		12
109.095	$4p^5~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4p^4(^3P_2)7s(2,\frac{1}{2})_{5/2}$	0	916 634	2		12
108.796	3/2	3/2	_	919 154	4		12
107.652	$4p^5~^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4p^4(^3P_0)7s\ (0,\frac{1}{2})_{1/2}$. 0	928 921	1		12

Mo VIII - Continued

Wave-	Classificatio	n	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	-				
107.380	$4p^5 \ ^2\mathrm{P}_{1/2}^{\circ}$	$4p^4(^1D_2)7s (2, \frac{1}{2})_{3/2}$	23 274	948 153	3		12
105.423	3/2	5/2	0	948 129	6		12
106.259	$4p^5 {}^2\mathrm{P}^{\circ}_{1/2}$	$4p^4(^1{ m S})6d\ ^2{ m D}_{3/2}$	23 274	964 373	5		12
104.306	$4p^5 \ ^2P_{1/2}^{\circ}$	$4p^4(^1S_0)7s\ (0,\frac{1}{2})_{1/2}$	23 274	982 044	1		12
101.823	3/2	1/2	0	982 044	1		12

Mo ix

Wave- length (Å)	Classifica Lower	tion Upper	Energy Lev	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	Reference
577.272	$4s^24p^{4-1}S_0$	4s4p ⁵ ³ P ₁ °	72 884.6	246 113.0	8		15
		•					
06.462 75.197	$4s^24p^4$ ¹ D ₂	$4s4p^5$ 3 P $_2^o$	35 674.5 35 674.5	233 122.9 246 113.0	30 1		15 15
70.484	$4s^24p^4\ ^3\mathrm{P}_1$	$4s4p^5~^3\mathrm{P_2^o}$	20 576.3	233 122.9	40		15
43.388	1	1	20 576.3	246 113.0	18		15
35.684	0	1	16 588.8	246 113.0	20		15
28.959 23.800	2	2	0.0 $20\ 576.3$	233 122.9 256 536.7	100 25		15°, 31
23.800 06.319	1 2	0 1	0.0	246 113.0	50		15 15
48.956	$4s^24p^{4-1}S_0$	$4s4p^{5-1}P_1^{o}$	72 884.6	295 624.1	3		15
884.691	$4s^24p^{4-1}D_2$	$4s4p^{5-1}$ P $_{1}^{o}$	35 674.5	295 624.1	75		15
363.764	$4p^{4-1}S_0$	$4p^3(^2{ m D^o})4d\ ^3{ m D_1^o}$	72 884.6	347 777	2		16
338.264	$4s^24p^4\ ^3P_2$	$4s4p^{5-1}P_1^{o}$	0.0	295 624.1	15		15
325.188	$4p^{4-1}S_0$	$4p^3(^2P^\circ)4d\ ^3D_1^\circ$	72 884.6	380 383	7		16
320.416	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{D^o})4d\ ^3\mathrm{D_1^o}$	35 674.5	347 777	6		16
317.704	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2D^\circ)4d\ ^3F_2^\circ$	35 674.5	350 444	6		16
314.446	2	3	35 674.5	353 696	2		16
306.182	$4p^4$ $^1\mathrm{D}_2$	$4p^3(^2D^\circ)4d\ ^3G_3^\circ$	35 674.5	362 277	5		16
305.634	$4p^4$ 3 P $_1$	$4p^3(^2D^{\circ})4d\ ^3D_1^{\circ}$	20 576.3	347 777	3		16
01.939 87.537	0 2	1	16 588.8 0.0	347 777 347 777	2 9		16 16
03.148	$4p^4$ $^3\mathrm{P}_1$	$4p^3(^2{ m D}^{ m o})4d\ ^3{ m F}_2^{ m o}$	20 576.3	350 444	9		16
85.346	4 <i>p</i> 11	4p (D)4a r ₂	0.0	350 444	3		16
82.728	2	3	0.0	353 696	8		16
290.108	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2P^\circ)4d^3D_1^\circ$	35 674.5	380 383	10		1.0
80.133	$\frac{4p}{2}$	4p (1)4u D ₁	35 674.5	392 634	2		16 16
272.543	2	3	35 674.5	402 590	12		16
289.140	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2P^o)4d\ ^1D_2^o$	35 674.5	381 528	3		16
287.291	$4p^{4}$ $^{1}S_{0}$	$4p^3(^2\mathrm{D}^\circ)4d\ ^1\mathrm{P}_1^\circ$	72 884.6	420 947	9		16
283.169	$4p^{4-1}\mathrm{D}_2$	4n ³ (² P°)4d ³ P°	35 674.5	388 801	25		16
270.262	2	$4p^3(^2\mathrm{P^o})4d\ ^3\mathrm{P_1^o}$	35 674.5	405 684	3		16
278.019	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2{ m P}^{ m o})4d\ ^3{ m F}_3^{ m o}$	35 674.5	395 360	14		16
276.978	$\frac{4p}{2}$	*** (1)**u F 3	35 674.5 35 674.5	396 711	22		16 16
277.914	$4p^4$ 3 P $_1$	$4p^3(^2{ m P^o})4d\ ^3{ m D_1^o}$	20 576.3	380 383	2		16
274.885	0	τρ (τ)τα D ₁	16 588.8	380 383	18		16 16
268.771	1	2	20 576.3	392 634	7		16
262.894	2	1	0.0	380 383	8		16
254.702 248.391	2 2	2 3	0.0	392 634 402 590	3 24		16 16
277.347	$4p^{4-1}S_0$	$4p^3(^2D^\circ)4d^3P_1^\circ$	72 884.6	433 445			
276.032	$4p^4 \ ^3P_2$	$4p \text{ (D)} 4a \text{ P}_1$ $4p^3 \text{(^2D^\circ)} 4d \text{ ^3G}_3^\circ$			9		16
	$4p^{4} P_{1}$		0.0	362 277	24		16
271.572 259.667		$4p^3(^2P^{\circ})4d^{3}P_1^{\circ}$	20 576.3 20 576.3	388 801 405 684	6		16
257.202	1 2	2	0.0	388 801	6 8		16 16
246.499	2	2	0.0	405 684	12		16
265.860	$4p^{4}\ ^{3}\mathrm{P}_{1}$	$4p^3(^2{ m P^o})4d\ ^3{ m F}_2^{ m o}$	20 576.3	396 711	24		16
252.936	2	3	0.0	395 360	20		16
252.077	2	2	0.0	396 711	12		16
262.413	$4p^4~^1\mathrm{D}_2$	$4p^3(^2{ m D^o})4d\ ^3{ m S}_1^{ m o}$	35 674.5	416 746	24		16
262.103	$4p^4$ 3 P ₂	$4p^3(^2\mathrm{P^o})4d\ ^1\mathrm{D_2^o}$	0.0	381 528	14		16
260.792	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2{ m D}^{\circ})4d\ ^3{ m P}_2^{\circ}$	35 674.5	419 123	14		16

Mo IX - Continued

Wave-	Classificat		Energy Lev	els (cm ⁻¹)	Int. gf A (s	⁻¹) Acc.	References
length (Å)	Lower	Upper					
259.569	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2D^{\circ})4d^{1}P_1^{\circ}$	35 674.5	420 947	25		16
257.503	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2P^\circ)4d^{-1}F_3^\circ$	35 674.5	424 009	6		16
252.638	$4p^{4-1}\mathrm{D}_2$	$4p^3(^4S^{\circ})4d^3D_3^{\circ}$	35 674.5	431 498	2		16
246.718	. 2	2	35 674.5	441 012	25		16
242.817	2	1	35 674.5	447 509	11		16
252.418	$4p^4\ ^3P_1$	$4p^3(^2D^{\circ})4d\ ^3S_1^{\circ}$	20 576.3	416 746	13		16
249.906	0	1	16 588.8	416 746	14		16
239.953	2	1	0.0	416 746	24		16
250.912	$4p^4$ 3 P $_1$	$4p^3(^2{ m D^o})4d\ ^3{ m P}_2^{ m o}$	20 576.3	419 123	20		16
242.211 239.886	1	1	20 576.3	433 445	20		16
238.591	0 2	1 2	16 588.8 0.0	433 445 419 123	18 25		16 16
230.708	2	1	0.0	433 445	12		16
249.769	$4p^{4} {}^{3}P_{1}$	$4p^3(^2{ m D}^{\circ})4d\ ^1{ m P}_1^{\circ}$	20 576.3	420 947	20		16
247.304	0	1	16 588.8	420 947	22		16
237.560	2	1	0.0	420 947	20		16
240.958	$4p^{4}$ 1 S ₀	$4p^3(^2P^\circ)4d^{-1}P_1^\circ$	72 884.6	487 905	25		16
237.843	$4p^{4-1}\mathrm{D_2}$	$4p^{3}(^{2}\mathrm{D}^{\circ})4d^{-1}\mathrm{D}_{2}^{\circ}$		AEE 111			
237.043	-	-	35 674.5	456 111	25		16
237.843	$4p^4\ ^3P_1$	$4p^{3}(^{4}S^{\circ})4d^{3}D_{2}^{\circ}$	20 576.3	441 012	25		16
234.228	1	1	20 576.3	447 509	20		16
232.056 231.751	0	1	16 588.8	447 509	25		16
226.747	2 2	3	0.0 0.0	431 498 441 012	$\begin{array}{c} 24 \\ 25 \end{array}$		16 16
223.458	2	2	0.0	447 509	10		16
235.850	$4p^4$ 3 P $_2$	$4p^{3}(^{2}P^{\circ})4d^{1}F_{3}^{\circ}$	0.0	424 009	16		16
231.991	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2D^{\circ})4d^{-1}F_3^{\circ}$	35 674.5	466 718	25		16
229.607	$4p^4$ 3 P $_1$	$4p^3(^2{ m D^o})4d^{-1}{ m D^o_2}$	20 576.3	456 111	14		16
221.127	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2P^\circ)4d^{-1}P_1^\circ$	35 674.5	487 905	2		16
214.266	$4p^4 \ ^3P_2$	$4p^3(^2D^\circ)4d^{-1}F_3^\circ$	0.0	466 718	10		16
		• • •		400 110	10		10
213.980	$4p^4$ $^3\mathrm{P}_1$	$4p^3(^2P^\circ)4d^{-1}P_1^\circ$	20 576.3	487 905	9		16
212.168	0	1	16 588.8	487 905	6		16
178.010	$4p^{4-3}{ m P}_{1}$	$4p^3(^4S_{3/2}^{\circ})5s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	20 576.3	582 356	7		14°,16
176.750	0	1	16 588.8	582 356	6		14°,16
174.887	2	2	0.0	571 798	11		14°, 16
171.713	2	1	0.0	582 356	12		14°,16
176.682	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{D}^{\circ}_{3/2})5s\;(\frac{3}{2},\frac{1}{2})^{\circ}_2$	35 674.5	601 678	4		14°, 16
176.432	2	1	35 674.5	602 468	4		14°,16
174.346	$4p^{4-1}\mathrm{D}_2$	4-3/2D0 NE- (5 1)0	35 674.5	600 024	C		148 10
173.091	$4p$ D_2	$4p^{3}(^{2}\mathrm{D}^{o}_{5/2})5s\;(\frac{5}{2},\frac{1}{2})^{o}_{3}$	35 674.5 35 674.5	609 234 613 394	6 15		14°,16 14°,16
	$4p^{4-1}\mathrm{S}_0$	_					
174.019		$4p^3(^2P^{o}_{3/2})5s\ (\frac{3}{2},\frac{1}{2})^{o}_1$	72 884.6	647 535	7		14°,16
172.083	$4p^{4-3}P_1$	$4p^3(^2\mathrm{D}^{\mathrm{o}}_{3/2})5s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_2$	20 576.3	601 678	6		14°, 16
171.862	1	1	20 576.3	602 468	11		14°,16
170.674	0	1	16 588.8	602 468	3		14°, 16
166.201	2	2	0.0	601 678	12		14°,16
168.683	$4p^{4-3}{ m P}_1$	$4p^3(^2\mathrm{D}^{\circ}_{5/2})5s\;(\frac{5}{2},\frac{1}{2})^{\circ}_2$	20 576.3	613 394	6		14°,16
164.144	2	3/2/ (2/2/2	0.0	609 234	20		14°,16
163.033	2	2	0.0	613 394	5		14°,16
168.144	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathbf{P_{1/2}^o})5s\;(\frac{1}{2},\frac{1}{2})_1^o$	35 674.5	630 384	6		14°,16
164.454	$4p^4$ 3 P $_1$	$4p^{3}(^{2}P_{1/2}^{\circ})5s(\frac{1}{2},\frac{1}{2})_{0}^{\circ}$	20 576.3	628 649	6		14°,16
163.986	1	-F (- 1/2/90 (2) 2/0	20 576.3	630 384	4		14°, 16
162.918	0	1	16 588.8	630 384	7		14°, 16
102.010							

Mo IX - Continued

Wave- length (Å)	Classification Lower	on Upper	Energy Lev	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc. References
164.355 163.436	$4p^4 \ ^1\mathrm{D}_2$	$4p^{3}(^{2}\mathrm{P}_{3/2}^{\circ})5s(\frac{3}{2},\frac{1}{2})_{2}^{\circ}$	35 674.5 35 674.5	644 114 647 535	7 7	14°,16 14°,16
160.375 155.246	$4p^4\ ^3{ m P}_1$	$4p^3(^2\mathrm{P}^{\circ}_{3/2})5s\;(\frac{3}{2},\frac{1}{2})^{\circ}_2$	20 576.3 0.0	644 114 644 114	9 5	14°,16 14°,16
132.908	$4p^{4-1}\mathrm{S}_0$	$4p^3(^2P^o)5d\ ^3D_1^o$	72 884.6	825 266	1	17
132.077	$4p^{4}$ 1 S ₀	$4p^3(^2{ m P^o})5d\ ^3{ m P_1^o}$	72 884.6	830 015		17
128.878	$4p^{4-1}S_0$	$4p^3(^2\mathrm{D^o})5d\ ^3\mathrm{P_1^o}$	72 884.6	848 809		17
128.740 128.076	$4p^4\ ^3{ m P}_1$ 0	$4p^3(^2D^o)5d\ ^3D_1^o$	20 576.3 16 588.8	797 355 797 355	1 1	17 17
128.200 124.914	$4p^4\ ^3{ m P}_1$	$4p^3(^2{ m D}^{ m o})5d\ ^3{ m F}_2^{ m o}$	20 576.3 0.0	800 579 800 579	1 2	17 17
127.086	$4p^{4-1}D_2$	$4p^3(^2\mathrm{D^o})5d\ ^3\mathrm{G_3^o}$	35 674.5	822 534	1	17
126.187	$4p^{4}$ 1 S ₀	$4p^3(^4S^{\circ})5d\ ^3D_1^{\circ}$	72 884.6	865 366	2	17
126.100	$4p^{4-1}D_2$	$4p^3(^2P^o)5d^{-1}D_2^o$	35 674.5	828 728	4	17
124.408	$4p^{4-1}D_2$	$4p^3(^2P^\circ)5d\ ^3D_3^\circ$	35 674.5	839 507	5	17
124.369	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{P}^{\mathrm{o}})5d\ ^3\mathrm{P}_2^{\mathrm{o}}$	35 674.5	839 713	2	17
124.266 123.660 121.180 119.114	$4p^4\ ^3{ m P}_1$ 0	$4p^3(^2\mathrm{P}^o)5d\ ^3\mathrm{D}^o_1$	20 576.3 16 588.8 0.0 0.0	825 266 825 266 825 266 839 507	2	17 17 17
124.221	$^2_{4p^{4-1}\mathrm{D}_2}$	33/2no) = 1.3no			10	17
122.984	4p D ₂ 2	$4p^3(^2D^{\circ})5d\ ^3P_2^{\circ}$	35 674.5 35 674.5	840 654 848 809	1	17 17
123.778	$4p^{4} {}^{1}\mathrm{D}_{2}$	$4p^3(^2{\rm D}^{\rm o})5d\ ^1{ m P}_1^{\rm o}$	35 674.5	843 565		17
123.738 120.663	$4p^4$ $^3\mathrm{P}_1$ 2	$4p^3(^2\mathrm{P}^o)5d\ ^1\mathrm{D}^o_2$	20 576.3 0.0	828 728 828 728	5	17 17
123.545 122.084	$4p^4\ ^3P_1$	$4p^3(^2P^o)5d\ ^3P_1^o$	20 576.3 20 576.3	830 015 839 713	8	17
120.478 119.087	1 2	2	0.0	830 015	3	17 17
123.485	2 $^{4p^{4-1}}\mathrm{D}_{2}$	$4p^3(^2\mathrm{P}^\circ)5d\ ^1\mathrm{F}^\circ_3$	0.0 35 674.5	839 713		17
123.463	$4p D_2$ $4p^{4-1}D_2$	-		845 474	4	17
120.528	$\frac{4p}{2}$	$4p^3(^4S^o)5d\ ^3D_3^o$	35 674.5 35 674.5	847 507 865 366	6	17 17
122.897	$4p^{4-1}S_0$	$4p^3(^2{ m P^o})5d\ ^1{ m P_1^o}$	72 884.6	886 605	2	17
121.941	$4p^4$ 3 P $_1$	$4p^3(^2\mathrm{D^o})5d\ ^3\mathrm{P}_2^{\mathrm{o}}$	20 576.3	840 654	6	17
120.156 118.959	0 2	1 2	16 588.8 0.0	848 809 840 654	4 5	17 17
117.814	2	1	0.0	848 809	5	17
121.577	$4p^4 \ ^3P_2$	$4p^3(^2{ m D}^{ m o})5d\ ^3{ m G}_3^{ m o}$	0.0	822 534	6	17
121.517 118.537	$4p^4 \ ^3P_1$	$4p^3(^2\mathrm{D^o})5d\ ^1\mathrm{P_1^o}$	20 576.3 0.0	843 565 843 565	1	17 17
119.913	$4p^4$ ¹ D ₂	$4p^3(^2\mathrm{D}^\circ)5d\ ^1\mathrm{D}_2^\circ$	35 674.5	869 633	1	17
118.373 117.814	$4p^4 \ ^3P_1 \ _0$	$4p^3(^4S^\circ)5d\ ^3D_1^\circ$	20 576.3 16 588.8	865 366 865 366	4 5	17 17
118.279	$4p^4$ 3 P ₂	$4p^3(^2P^\circ)5d^{-1}F_3^\circ$	0.0	845 474	4	17
117.775	$4p^4$ 3 P ₁	$4p^3(^2\mathrm{D}^o)5d\ ^1\mathrm{D}^o_2$	20 576.3	869 633	1	17
116.248 114.212	$4p^4\ ^3P_1$	$4p^3(^4S_{3/2}^{\circ})6s(\frac{3}{2},\frac{1}{2})_1^{\circ}$		880 843 875 565	1	17 17
113.523	2	1		880 843	5	17

Mo IX - Continued

Wave- length (Å)	Classification Lower	ı Upper	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc. References
116.088	$4p^{4} {}^{1}S_{0}$	$4p^3(^2\mathrm{P}_{1/2}^{\circ})6s\;(\frac{1}{2},\frac{1}{2})_1^{\circ}$	72 884.6	934 288	2	17
115.471 114.935	$4p^4 \ ^3P_1 \ _0$	$4p^3(^2P^\circ)5d\ ^1P_1^\circ$	20 576.3 16 588.8	886 605 886 605	4	17 17
114.920 114.854	$4p^{4} {}^{1}{ m D}_{2}$	$4p^3(^2\mathrm{D}^{\mathrm{o}}_{3/2})6s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_2$	35 674.5 35 674.5	905 858 906 239	4	17 17
114.042 113.663	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{D}^{\circ}_{5/2})6s~(rac{5}{2},rac{1}{2})^{\circ}_3$	35 674.5	912 477	10	17
113.932	$^2_{4p^{4-1}\mathrm{S}_0}$	$4p^{3}(^{2}\mathrm{P}_{3/2}^{\circ})6s(\frac{3}{2},\frac{1}{2})_{1}^{\circ}$	35 674.5 72 884.6	915 504 950 649	10 4	17 17
112.916	$4p^4~^3\mathrm{P}_1$	$4p^3(^2\mathrm{D}^{\circ}_{3/2})6s\ (\frac{3}{2},\frac{1}{2})^{\circ}_1$	20 576.3	906 239	12	17
112.411 110.391	0 2	1 2	16 588.8 0.0	906 239 905 858	1 8	17 17
111.739 109.600	$4p^4\ ^3P_1$	$4p^3(^2D_{5/2}^{\circ})6s(\frac{5}{2},\frac{1}{2})_2^{\circ}$	20 576.3	915 504	2	17
109.000	2 2	3 2	0.0 0.0	912 477 915 504	5 1	17 17
111.286	$4p^4~^1\mathrm{D}_2$	$4p^3(^2\mathrm{P}^{\circ}_{1/2})6s\;(\frac{1}{2},\frac{1}{2})^{\circ}_1$	35 674.5	934 288	4	17
109.650 109.287	$4p^{4-1}D_2$	$4p^3(^2\mathrm{P}^{\circ}_{3/2})6s~(rac{3}{2},rac{1}{2})^{\circ}_2$	35 674.5 35 674.5	947 617 950 649	4 4	17 17
109.552	$4p^4$ 3 P ₁	$4p^3(^2P_{1/2}^o)6s(\frac{1}{2},\frac{1}{2})_0^o$	20 576.3	933 385	1	17
109.444 108.966	1 0	1	20 576.3 16 588.8	934 288 934 288	4 1	17 17
107.876	$4p^4~^3\mathrm{P_1}$	$4p^3(^2\mathrm{P}^{\circ}_{3/2})6s\;(\frac{3}{2},\frac{1}{2})^{\circ}_2$	20 576.3	947 617	1	17
106.080	$4p^4$ 1 S ₀	$4p^3(^2P^\circ)6d\ ^3D_1^\circ$	72 884.6	1 015 585	5	17
104.752	$4p^{4-1}\mathrm{D_2}$	$4p^3(^2D^{\circ})6d\ ^3F_2^{\circ}$	35 674.5	990 382	3	17
103.415 102.985	$4p^4 \ ^3P_1 \\ 0$	$4p^3(^2\mathrm{D}^\circ)6d\ ^3\mathrm{D}^\circ_1$	20 576.3 16 588.8	987 579 987 579	2 2	17 17
103.110 100.967	$4p^4 \ ^3P_1$	$4p^3(^2{ m D}^{ m o})6d\ ^3{ m F}_2^{ m o}$	20 576.3 0.0	990 382 990 382	4 2	17 17
102.152	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2{ m D}^{ m o})6d\ ^3{ m G}_3^{ m o}$	35 674.5	1 014 603	3	17
102.056 101.164	$4p^{4-1}{ m D_2}_2$	$4p^3(^2\mathrm{P^o})6d\ ^3\mathrm{D_1^o}$	35 674.5 35 674.5	1 015 585 1 024 196	5	17 17
101.744 101.069	$4p^4\ ^1{ m D}_2$	$4p^3(^2P^\circ)6d\ ^3P_1^\circ$	35 674.5 35 674.5	1 018 148 1 025 122	1 4	17 17
101.675	$4p^{4} {}^{1}S_{0}$	$4p^3(^4S^{\circ})6d\ ^3D_1^{\circ}$	72 884.6	1 056 382	2	17
100.742	$4p^{4} {}^{1}S_{0}$	$4p^3(^2\mathrm{P^o})6d\ ^1\mathrm{P_1^o}$	72 884.6	1 065 491	4	17
100.437	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{P^o})6d\ ^1\mathrm{F_3^o}$	35 674.5	1 031 317	2	17
100.370 98.345	$4p^4\ ^3{ m P}_1$	$4p^3(^2P^o)6d\ ^1D_2^o$	20 576.3 0.0	1 016 860 1 016 860	1 1	17 17
100.246 99.566	$^{4p^4}^{^{1}}\mathrm{D}_{2}$	$4p^3(^2\mathrm{D^o})6d\ ^3\mathrm{P}_2^{\mathrm{o}}$	35 674.5 35 674.5	1 033 227 1 040 059	4 1	17 17
100.246	$4p^4 \ ^3P_1$	$4p^3(^2P^{\circ})6d\ ^3P_1^{\circ}$	20 576.3	1 018 148	4	17
99.852 99.545 98.217	0 1 2	1 2 1	16 588.8 20 576.3 0.0	1 018 148 1 025 122 1 018 148		17 17 17
100.099 98.460	$4p^4 \ ^3P_0$	$4p^3(^2{ m P^o})6d\ ^3{ m D_1^o}$	16 588.8	1 015 585	4	17
97.635	2 2	1 3	0.0 0.0	1 015 585 1 024 196	4 1	17 17
99.194 98.795	$4p^4\ ^3{ m P_1} {}_0$	$4p^3(^4S_{3/2}^{\circ})7s(\frac{3}{2},\frac{1}{2})_1^{\circ}$	20 576.3 16 588.8	1 028 743 1 028 743	4	17 17
97.494 97.206	2 2	2	0.0	1 025 704 1 028 743	1 1	17 17

Mo IX - Continued

Wave- length (Å)	Classifica Lower	ution Upper	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
98.977	$4p^{4-1}\mathrm{S}_0$	$4p^3(^2\mathrm{P}^{\mathrm{o}}_{1/2})7s\ (\frac{1}{2},\frac{1}{2})^{\mathrm{o}}_1$	72 884.6	1 083 142	1		17
98.750	$4p^{4-3}P_1$	$4p^3(^2D^{\circ})6d^3P_2^{\circ}$	20 576.3	1 033 227	2		17
98.087	1	1	20 576.3	1 040 059	1		17
97.710	0	1	16 588.8	1 040 059	4		17
96.145	2	1	0.0	1 040 059	4		17
98.561	$4p^4$ 3P_2	$4p^3(^2{ m D}^{ m o})6d\ ^3{ m G}_3^{ m o}$	0.0	1 014 603	5		17
98.097	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{D}^{\circ}_{3/2})7s\ (\frac{3}{2},\frac{1}{2})^{\circ}_1$	35 674.5	1 055 089	1		17
98.077	2	2 3/2/ (2/2/1	35 674.5	1 055 312	1		17
97.885	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2D^{\circ})6d^{-1}D_2^{\circ}$	35 674.5	1 057 289	4		17
97.416	$4p^{4-1}\mathrm{D_2}$	$4p^3(^2D_{5/2}^{\circ})7s(\frac{5}{2},\frac{1}{2})_3^{\circ}$	35 674.5	1 062 162	1		17
97.206	2	2	35 674.5	1 064 357	1		17
97.416	$4p^4$ $^1\mathrm{S}_0$	$4p^{3}(^{2}P_{3/2}^{o})7s(\frac{3}{2},\frac{1}{2})_{1}^{o}$	72 884.6	1 099 412	4		17
96.964	$4p^4$ 3 P $_2$	$4p^3(^2P^o)6d\ ^1F_3^o$	0.0	1 031 317			17
96.660	$4p^4\ ^3{ m P}_1$	$4p^3(^2\mathrm{D}^{\circ}_{3/2})7s(\frac{3}{2},\frac{1}{2})^{\circ}_1$	20 576.3	1 055 089	4		17
96.295	0	1	16 588.8	1 055 089			17
94.756	2	2	0.0	1 055 312	5		17
96.546	$4p^4$ 3 P ₁	$4p^3(^4S^{\circ})6d\ ^3D_1^{\circ}$	20 576.3	1 056 382	2		17
96.458	$4p^4$ 3 P $_1$	$4p^3(^2{ m D}^{ m o})6d\ ^1{ m D}_2^{ m o}$	20 576.3	1 057 289	1		17
95.811	$4p^{4-3}P_1$	$4p^{3}(^{2}D_{5/2}^{\circ})7s(\frac{5}{2},\frac{1}{2})_{2}^{\circ}$	20 576.3	1 064 357	5		17
94.151	2	3	0.0	1 062 162	4		17
95.703	$4p^4\ ^3{ m P_1}$	4n ³ (2po)6d 1po	20 576.3	1 065 491	4		17
95.339	4p 11	$4p^{3}(^{2}P^{\circ})6d^{-1}P_{1}^{\circ}$	16 588.8	1 065 491	5		17
00.000	Ü	•	10 000.0	1 000 151	· ·		11
95.464	$4p^4~^1\mathrm{D}_2$	$4p^{3}(^{2}\mathrm{P}_{1/2}^{\mathrm{o}})7s(\frac{1}{2},\frac{1}{2})_{1}^{\mathrm{o}}$	35 674.5	1 083 142	1		17
94.216	$4p^{4-1}\mathrm{D}_2$	$4p^3(^2\mathrm{P}^{\mathrm{o}}_{3/2})7s\ (\frac{3}{2},\frac{1}{2})^{\mathrm{o}}_2$	35 674.5	1 097 040	3		17
94.008	2	1	35 674.5	1 099 412	6		17
		2.2					
94.172	$4p^4$ 3 P $_1$	$4p^3(^2P_{1/2}^{\circ})7s(\frac{1}{2},\frac{1}{2})_0^{\circ}$	20 576.3	1 082 463	1		17
94.120	1	1	20 576.3	1 083 142	5		17
93.763	0	1	16 588.8	1 083 142	2		17
92.899	$4p^{4-3}P_1$	$4p^3(^2\mathrm{P}^{\circ}_{3/2})7s\ (\frac{3}{2},\frac{1}{2})^{\circ}_2$	20 576.3	1 097 040	1		17

Mo x

Wave- ength (Å)	Lower	Classification	Upper	Energy Le	evels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
173.955	$4s^24p^3$	² P _{3/2}	4s4p ⁴ ² D _{5/2}	70 544	281 535	7000			19
144.565	$4s^24p^3$	4S° (2	4s4p4 4P _{5/2}	0	224 939	100000			19
16.856	•	3/2	3/2	0	239 891	70000			19
09.070		3/2	1/2	0	244 457	40000			19
06.480	$4s^24p^3$	2D°	$4s4p^4$ $^2D_{5/2}$	35 522	281 535	200000			10
00.502	45 4p	D _{5/2} 3/2	434 <i>p</i> D _{5/2} 3/2	26 886	276 573	300000 250000			19 19
03.419	$4s^24p^3$		$4s4p^4 {}^2P_{3/2}$		010 100	¥000			
80.070	4s 4p			70 544 55 313	318 423 318 423	5000 2000			19
68.869		1/2 3/2	3/2 1/2	70 544	341 642	70000			19 19
85.816	$4s^24p^3$	² P° (2	$4s4p^{4-2}S_{1/2}$	55 313	314 504	50000			19
		•	,						
53.483	$4s^24p^3$		$4s4p^4\ ^2\mathrm{P}_{3/2}$	35 522	318 423	600000			19
43.00 7 17.709		3/2 3/2	3/2 1/2	26 886 26 886	318 423 341 642	5000 10000			19 19
		·	,	20 000	541 042	10000			10
49.426	$4s^24p^3$		$4s^24p^2(^3P)4d\ ^4F_{3/2}$	70 544	356 732	7			20
44.569 31.683		3/2 1/2	5/2 3/2	70 544 55 313	360 764 356 732	5 1			20 20
	_		· · · · · · · · · · · · · · · · · · ·	00 313	300 132	1			20
47.683	$4s^24p^3$	•	$4s4p^4$ 2 S _{1/2}	26 886	314 504	100000			19
31.072	$4s^24p^3$	² P _{3/2}	$4s^24p^2(^3P)4d^4D_{1/2}$	70 544	372 595	6			20
26.255		3/2	3/2	70 544	377 099	2			16
19.630		3/2	5/2	70 544	383 440	3			16
15.162 10.774		1/2 1/2	1/2 3/2	55 313 55 313	372 595 377 099	$\frac{2}{2}$			20 16
14.049	$4s^24p^3$		4s4p ⁴ ² P _{3/2}	0	318 423	1000			19
11.000	$4s^24p^3$	•	$4s^24p^2(^3P)4d^4F_{3/2}$		AFA =00	_			
11.209 07.467	4s 4p	•	•	35 522 $35 522$	356 732 360 764	5 6			20 20
03.066		5/2 3/2	5/2 3/2	26 886	356 732	16			20
00.746		5/2	7/2	35 522	368 028	9			20
99.505		3/2	5/2	26 886	360 764	10			20
99.122	$4s^24p^3$	² D _{5/2}	$4s^24p^2(^3P)4d^2F_{5/2}$	35 522	369 830	8			20
94.271		5/2	7/2	35 522	375 345	3			20
91.576		3/2	5/2	26 886	369 830	5			20
99.081	$4s^24p^3$	${}^{2}P_{3/2}^{\circ}$	$4s^24p^2(^3P)4d^2P_{3/2}$	70 544	404 950	2			16
86.748		3/2	1/2	70 544	419 322	4			20
74.743		1/2	1/2	55 313	419 322	1			16
92.748	$4s^24p^3$	$^{2}D_{5/2}^{o}$	$4s^24p^2(^3P)4d^4D_{3/2}$	35 522	377 099	4			16
89.255		3/2	1/2	26 886	372 595	12			20
87.417		5/2	5/2	35 522	383 440	2			16
85.534 80.466		3/2	3/2		377 099 383 440	4 1			16
77.593		3/2 5/2	5/2 7/2	05 500	395 762	5			$\frac{16}{20}$
89.495	$4s^24p^3$		$4s^24p^2(^3P)4d^{4}P_{5/2}$		416 017	15			20
285.933	45 4p	1 3/2 3/2	43 4p (F)4a F5/2 3/2		420 260	2			20 16
280.253		3/2	1/2		427 397	6			16
268.771		1/2	1/2	0.0	427 397	7			16
280.269	$4s^24p^3$	⁴ S _{3/2}	$4s^24p^2(^3P)4d\ ^4F_{3/2}$	0	356 732	13			20
277.168	•	3/2	5/2		360 764	10			20
278.485	$4s^24p^3$	2po	$4s^24p^2(^3\mathrm{P})4d\ ^2\mathrm{D}_{3/2}$		400 001				90
278.485 270.954	4s 4p		·	70 744	429 661 439 671	7 10			$\frac{20}{16}$
267.085		3/2 1/2	5/2 3/2		439 661	5			20
70.707	$4s^24p^3$								
270.707 264.512	$4s^-4p^0$		$4s^24p^2(^3P)4d^2P_{3/2}$	00.000	404 950	8			16
54.821		3/2 3/2	3/2 1/2		404 950 419 322	8			16 16
	5 5	3 ⁴ S _{3/2}	•						
270.413	$4s^{2}4n^{3}$	* *S°	$4s^24p^2(^3P)4d^2F_{5/2}$. 0	369 830	6	:		20

Mo x - Continued

Wave-	Classificati		Energy Le	vels (cm^{-1})	Int. gf A	(s^{-1}) Acc.	References
length (Å)	Lower	Upper	· .				
268.402	$4s^24p^3$ $^4S_{3/2}^{\circ}$	$4s^24p^2(^3P)4d^{-4}D_{1/2}$	0	372 595	5		20
265.157	3/2	3/2	0	377 099	3		16
260.777	3/2	5/2	0	383 440	12		16
267.896	$4s^24p^3$ $^2D_{5/2}^{\circ}$	$4s^24p^2(^1{\rm D})4d\ ^2{\rm G}_{7/2}$	35 522	408 801	8		16
265.597	$4s^24p^3$ ² P° _{3/2}	$4s^24p^2(^1D)4d^2D_{3/2}$	70 544	446 930	9		20
264.403	3/2	5/2	70 544	448 779	8		16
255.355	1/2	3/2	55 313	446 930	10		16
261.557	$4s^24p^3$ $^2P_{3/2}^{\circ}$	$4s^24p^2(^1{\rm D})4d\ ^2{ m P}_{1/2}$	70 544	452 877	8		16
255.156	3/2	3/2	70 544	462 467	24		16
251.530 245.602	1/2	1/2	55 313 55 313	452 877 462 467	$\frac{14}{16}$		16
243.002	1/2	3/2	00 010	402 401	10		16
259.898	$4s^24p^3$ ² D $_{5/2}^{\circ}$	$4s^24p^2(^3P)4d^4P_{3/2}$	35 522	420 260	2		16
256.989	3/2	5/2	26 886	416 017	5		16
254.201 249.668	3/2	3/2	26 886 26 886	420 260 427 397	4 20		16
245.000	3/2	1/2		421 391	20		16
257.854	$4s^24p^3 \ ^2\mathrm{P}^{\circ}_{3/2}$	$4s^24p^2(^1\mathrm{D})4d\ ^2\mathrm{F}_{5/2}$	70 544	458 371	11		16
254.474	$4s^24p^3$ 2 P $_{3/2}^{\circ}$	$4s^24p^2(^1\mathrm{D})4d\ ^2\mathrm{S}_{1/2}$	70 544	463 532	20		16
244.959	10 17 1 3/2	10 17 (D) 14 51/2	55 313	463 532	9		16
253.731	$4s^24p^3$ $^2\mathrm{D}^{\circ}_{5/2}$	$4s^24p^2(^3P)4d^2D_{3/2}$	35 522	429 661	8		1.6
253.731 248.282	·		35 522 26 886	429 661 429 661	8 2		16 16
247.441	3/2 5/2	3/2 5/2	35 522	439 671	$1\overset{2}{2}$		16
242.258	3/2	5/2	26 886	439 671	16		16
246.924	$4s^24p^3$ $^4S_{3/2}^{\circ}$	4s ² 4n ² (³ P)4d ² Po to	. 0	404 950	2		16
238.459	3/2 3/2	$4s^24p^2(^3P)4d^2P_{3/2}$	0	419 322	5		16
	•	•					
243.071	$4s^24p^3$ $^2D_{5/2}^{o}$	$4s^24p^2(^1{ m D})4d\ ^2{ m D}_{3/2}$	35 522	446 930	6		16
241.969 238.064	5/2	5/2	35 522	448 779	22		16
237.023	3/2 3/2	3/2 5/2	26 886 26 886	446 930 448 779	$\frac{25}{2}$		16 16
240.370	$4s^24p^3$ $^4S_{3/2}^{\circ}$	$4s^24p^2(^3\mathrm{P})4d^{\ 4}\mathrm{P}_{5/2}$	0	416.017	25		1.0
237.909	•	·	0 0	416 017 420 260	25 25		16 16
233.957	3/2 3/2	3/2 1/2	0	427 397	21		16
239.998	$4s^24p^3\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s^24p^2(^1S)4d^2D_{3/2}$	70 544	407 041	10		
239.998		•		487 241 488 950	$\frac{12}{24}$		16
231.522	3/2 1/2	5/2 3/2		487 241	24		16 16
236.492	$4s^24p^3$ $^2\mathrm{D}^{\mathrm{o}}_{5/2}$	$4s^24p^2(^1D)4d^2F_{5/2}$	35 522	458 371	14		1.0
231.751		· · · · · · · · · · · · · · · · · · ·		458 371	14 24		16
231.110	3/2 5/2	5/2 7/2	25 500	468 216	25		16 16
234.744	$4s^24p^3$ 2 D $^{\circ}_{3/2}$	$4s^24p^2(^1\mathrm{D})4d\ ^2\mathrm{P}_{1/2}$	26 886	452 877	6		16
232.726	$4s^24p^3$ $^4S_{3/2}^{\circ}$	$4s^24p^2(^3P)4d^2D_{3/2}$	0	429 661	16		16
227.436	$\frac{43}{3} \frac{4p}{2} \frac{3_{3/2}}{3/2}$	48 4p (F)4u D _{3/2} 5/2	_	429 661	4		16 16
229.014	$4s^24p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{3/2}$	$4s^24p^2(^1\mathrm{D})4d\ ^2\mathrm{S}_{1/2}$		463 532	8		16
221.361	$4s^24p^3$ $^2D_{5/2}^{o}$	$4s^24p^2(^1\mathrm{S})4d^{-2}\mathrm{D}_{3/2}$	35 522	487 241	2		16
220.530	45 4 <i>p</i> D _{5/2} 5/2	$4s + p = (-5)4a - D_{3/2}$	~	487 241	$\frac{2}{4}$		16 16
		•					
166.831	$4s^24p^3\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s^24p^25s$ 2 P _{3/2}		669 948	6000		19
165.106 162.698	1/2 1/2	1/2 3/2		660 981 669 948	15000 40000		18,19° 18,19°
		•					
163.369	$4s^24p^3$ 2 $\mathrm{D^o_{3/2}}$	$4s^24p^25s$ 4 P _{1/2}	07 700	638 999	6000		18,19°
161.442 159.219	5/2	3/2	0000	654 947 654 947	6000 8000		18,19°
159.049	3/2 5/2	3/2 5/2	05 500	664 258	50000		18, 19° 18, 19°
160.745	$4s^24p^3\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$						
COST CALLS	$4s^{-}4p^{-} - P_{3/2}$	$4s^24p^25s$ $^2\mathrm{D}_{5/2}$		692 660	30000		18, 19°
160.075	3/2	3/2	70 544	695 263	100000		18,19°

Mo x - Continued

Wave- length (Å)	Classificati Lower	on Upper	Energy Lev	vels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
157.706	$4s^24p^3 \ ^2\mathrm{D}^{\circ}_{3/2}$	$4s^24p^25s$ 2 P _{1/2}	26 886	660 981	100000		_	18,19°
157.624	5/2	3/2	35 522	669 948	120000			18,19°
155.506	3/2	3/2	26 886	669 948	20000			19
156.494	$4s^24p^3$ $^4S_{3/2}^{\circ}$	$4s^24p^25s^4P_{1/2}$	0	638 999	100000			18,19°
152.683	3/2	3/2	0	654 947	100000			18,19°
150.544	3/2	5/2	0	664 258	100000			18,19°
153.242	$4s^24p^3$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s^24p^25s$ $^2S_{1/2}$	70 544	723 115	20000			18,19°
149.743	1/2	1/2	55 313	723 115	10000			18,19°
152.175	$4s^24p^3$ $^2D_{5/2}^{o}$	$4s^24p^25s$ $^2D_{5/2}$	35 522	692 660	100000			19
151.575	5/2	3/2		695 263	8000			19
150.201	3/2	5/2		692 660	30000			19
149.618	3/2	3/2		695 263	10000			19
144.370	$4s^24p^3$ $^4S_{3/2}^{\circ}$	$4s^24p^25s$ $^2D_{5/2}$	0	692 660	2000			19
143.631	$4s^24p^3$ $^2\mathrm{D}^{\mathrm{o}}_{3/2}$	$4s^24p^25s$ 2 S _{1/2}	-26 886	723 115	200			19

Mo XI

Wave- length (Å)	Lower	Classification Upper		Energy Le	vels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
432.429	$4s^24p^2$ ³ P ₂	4.54	1p ³ ³ D ₃ °	27 144	258 396	300			21
427.785	1		2	17 634	251 396	300			21
399.406	0		1	0	250 372	700			21
381.284	$4s^24p^2$ ³ P ₂	48	$4p^{3} {}^{3}P_{2}^{o}$	27 144	289 416	1000			21
375.464	1			17 634	283 971	100			21
371.979	1		1	17 634	286 470	800			21
349.077	0		1	0	286 470	100			21
376.913	$4s^24p^2$ ¹ D ₂	484	$p^{3-1}D_2^{\circ}$	54 744	320 056	1000			21
356.729	$4s^24p^2$ ¹ S ₀	4s	$4p^{3} {}^{1}P_{1}^{o}$	84 828	365 151	300			16,21°
341.400	$4s^24p^2$ ³ P ₂	484	$p^{3-1}D_2^{\alpha}$	27 144	320 056	400			21
325.220	$4s^24p^2$ ³ P ₂	4s	4p3 3S1	27 144	334 629	1300			16,21°
315.458	1		1	17 634	334 629	1000			16,21°
298.839	0		1	0	334 629	150			16, 21°
322.158	$4s^24p^2$ ¹ D ₂	4s	$4p^{3} {}^{1}P_{1}^{\circ}$	54 744	365 151	1000			16,21°
306.637	$4s^24p^2$ ¹ D ₂	4 s 2 4	$p4d$ $^3\mathrm{F}_2^\mathrm{o}$	54 744	380 857	2			16
298.242	2		3	54 744	390 034	2			16
287.756	$4s^24p^2$ ³ P ₁	4s	$4p^3$ 1 P $_1^o$	17 634	365 151	400			16,21°
282.728	$4s^24p^2$ ³ P ₂	4s ² 4	$p4d$ $^3\mathrm{F}_2^\circ$	27 144	380 857	8			16
275.572	2		3	27 144	390 034	6			16
275.305	1		2	17 634	380 857	3			16
277.103	$4s^24p^2$ ¹ D ₂	$4s^24$	$p4d$ $^{1}\mathrm{D_{2}^{o}}$	54 744	415 627	5			16
270.497	$4s^24p^2$ ¹ D ₂	$4s^{2}4$	$p4d$ $^3\mathrm{P}^{\mathrm{o}}_1$	54 744	424 418	7			16
266.365	2		2	54 744	430 171	12			16
258.410	$4s^24p^2$ ¹ D ₂	$4s^24$	$p4d$ $^3\mathrm{D}^{\circ}_1$	54 744	441 704	4			16
256.749	2		3	54 744	444 212	6			16
256.015	2		2		445 358	18			16
257.418 251.250	$4s^24p^2$ ³ P ₂	$4s^24$	$p4d$ $^1\mathrm{D}_2^\circ$	27 144 17 634	415 627 415 627	$\frac{23}{24}$			16 16
					410 021	24			10
251.725	$4s^24p^2$ ³ P ₂	$4s^24$	$p4d$ $^3\mathrm{P}_1^\circ$		424 418	8			16
248.134 245.817	2		2	27 144	430 171	8			16
242.390	1		1		424 418 430 171	8 16			16 16
239.253	1		2		435 602	8			16
235.629	0		1		424 418	12			16
251.351	$4s^24p^2$ 1S ₀	$4s^24$	p4d ¹ P ₁	84 828	482 674	14			16
241.228	$4s^24p^2$ ³ P ₂	4.24	$p4d$ $^3\mathrm{D}_1^6$	27 144	441 704	8			1.6
239.778	2	X0 4	piu D	27 144	444 212	25			16 16
239.121	2		2	~	445 358	22			16
235.802	1		1	1 PK 00 4	441 704	12			16
233.780	1		2		445 358	16			16
226.406	0		1		441 704	2			16
237.765	$4s^24p^2$ ¹ D ₂	$4s^24$	p4d ¹ F	54 744	475 316	24			16
233.684	$4s^24p^2$ ¹ D ₂	$4s^24$	$p4d^{-1}P_1^2$	54 744	482 674	3			16
223.134	$4s^24p^2\ ^3{ m P_2}$		lp4d ¹ F	-	475 316	8			16
219.526	$4s^24p^2$ ³ P ₂	$4s^{2}4$	lp4d ¹P′	27 144	482 674	3			16
207.179	0		•	0	482 674				16
160.188	$4s^24p^2$ ¹ S ₀	$4s^24p(^2\mathrm{P}^{\circ}_{1/2})5s$	$s(\frac{1}{2},\frac{1}{2})$	84 828	709 077	2	:		16,18°
152.818	$4s^24p^2$ ¹ D ₂	$4s^24p(^2\mathrm{P}^{\circ}_{1/2})5s$	$s(\frac{1}{2},\frac{1}{2})$	3 54 744	709 077	3			16,18°
152.723	$4s^24p^2$ ¹ S ₀	$4s^24p(^2P^{\circ}_{3/2})5s$	$s(\frac{3}{2},\frac{1}{2})$	84 828	739 589	10)		16,18°
140.000	. 2 . 2 1=	., .							
146.955 146.016	$4s^24p^2$ ¹ D ₂	$4s^24p(^2\mathrm{P}^{\circ}_{3/2})5$			735 196				16,18°
140.010	2			1 54 744	739 589	22			16,18°

Mo XI - Continued

Wave- length (Å)	Lower	Classification Upper	Energy	Levels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
146.641	$4s^24p^2\ ^3\mathrm{P}_2$	$4s^24p(^2P_{1/2}^{\circ})5s(\frac{1}{2},\frac{1}{2})$	27 14	4 709 077	18			16,18°
145.009	1	•	17 63	4 707 202	12			16,18°
144.616	1		17 63	4 709 077	10			16,18°
141.030	0		1	0 709 077	15			16,18°
141.231	$4s^24p^2$ ³ P ₂	$4s^24p(^2P_{3/2}^{\circ})5s(\frac{3}{2},\frac{1}{2})$	27 14	4 735 196	20			16,18°
140.357	2	-, -, <u>-</u> -	27 14	4 739 589	5			16,18°
139.353	1		17 63	4 735 196	18			16,18°

Mo XII

Wave-	Classification	n	Energy Leve	els (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper						
590.563	$4s^24p\ ^2{ m P}_{3/2}^{ m o}$	$4s4p^2 \ ^4P_{1/2}$	28 464	197 794				27
546.081	3/2	3/2	28 464	211 589				27
510.798	3/2	5/2	28 464	224 236	5			26,27°
505.571	1/2	1/2	0	197 794				27
508.80	$4s4p^2$ 2 S _{1/2}	$4p^3 \ ^2\mathrm{D}^{\mathrm{o}}_{3/2}$	297 054	493 598	4			26
452.64	$4s4p^2 {}^2P_{1/2}$	$4p^3 \ ^2P_{1/2}^{\circ}$	325 519	546 449	4			26
415.458	$4s^24p\ ^2{ m P}_{3/2}^{ m o}$	$4s4p^2$ 2 D _{5/2}	28 464	269 162	200			26
381.125	1/2	3/2	0	262 381	500			26
414.764	$4s4p^2\ ^2{ m D}_{5/2}$	$4p^3 \ ^2\mathrm{D}^{\circ}_{5/2}$	269 162	510 263	100			26
371.244	$4s4p^2 {}^4P_{5/2}$	$4p^3 \ ^2D_{3/2}^{\circ}$	224 236	493 598	400			26
354.594	3/2	3/2	211 589	493 598	300			26
338.061	1/2	3/2	197 794	493 598	100			26
352.738	$4s4p^2$ $^4P_{5/2}$	$4p^3 \ ^4S_{3/2}^{\circ}$	224 236	507 733	200			26
337.674	3/2	3/2	211 589	507 733	100			26
352.028	$4s4p^2$ $^2D_{3/2}$	$4p^3 \ ^2P_{1/2}^{\circ}$	262 381	546 449	100			26
344.093	5/2	3/2	269 162	559 781	300			26
336.639	$4s^24p\ ^2\mathrm{P}^{\circ}_{3/2}$	$4s4p^2 {}^2P_{1/2}$	28 464	325 519	800			25
329.414	3/2	3/2	28 464	332 036	1000			25
307.202	1/2	1/2	0	325 519	100			25
301.170	1/2	3/2	0	332 036	200			25
336.639	$4s^24p\ ^2{ m P}_{1/2}^{ m o}$	$4s4p^2$ 2 S _{1/2}	0	297 054	800			26
252.819	$4s^24p\ ^2\mathrm{P}^{\circ}_{3/2}$	$4s^24d\ ^2{ m D}_{3/2}$	28 464	424 004	40			26
250.112	3/2	5/2	28 464	428 285	500			26
235.847	1/2	3/2	0	424 004	400			26
136.499	$4s^24p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$4s^25s$ $^2S_{1/2}$	28 464	761 070	200			25
131.394	1/2	1/2	0	761 070	100			25

Mo xiii

Wave- length (Å)	Classification Lower	Upper	Energy Lev	rels (cm ⁻¹)	Int. gf	4 (s ⁻¹) A	cc. References
518.92	$4s4p^{-1}P_1^{\circ}$	$4p^{2-1}\mathrm{D}_2$	293 333	486 036	200		32,34°
480.820	$4s^2$ 1 S ₀	$4s4p$ $^3P_1^{\circ}$.0	207 982	100		27°, 31, 32, 34
474.619	$4s4d$ $^3\mathrm{D}_2$	$4p4d$ $^3F_2^{\circ}$	628 707	839 402	30		35
170.487	1	2 2	626 853	839 402	200Ы		35
151.585	3	3	631 755	853 198	100		35
145.450	2	3	628 707	853 198	150		35
116.031	3	4	631 755	872 164	300bl		35
153.09	$4s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	$4p^2 \ ^3P_2$	293 333	514 034	150		32,34°
104.357	$4s4d$ $^{1}\mathrm{D}_{2}$	$4p4d$ $^{1}\mathrm{F}^{\circ}_{3}$	676 590	923 898	150		35
395.400	$4s4p$ $^3P_2^{\circ}$	$4p^2 \ ^3P_1$	230 642	483 549	500		32,34°
389.929	1	0	207 982	464 439	500		31,32,34°
862.889	1	1	207 982	483 549	150		31, 32, 34°
352.994	o	1	200 259	483 549	200		32,34°
352.868 326.741	2	2	230 642 207 982	514 034	800		31,32,34°
720.141	1	2	201 902	514 034	100		32, 34°
391.552	$4s4p$ $^3P_2^{\circ}$	$4p^{2-1}D_2$	230 642	486 036	750		32, 34°
359.643	1	2	207 982	486 036	200		32, 34°
375.243	$4s4p^{-1}P_1^{\circ}$	$4p^{2-1}S_0$	293 333	559 827	75		34
340.909	$4s^2$ 1 S ₀	4s4p ¹ P ₁	0	293 333	4000		28, 29, 30, 31, 34
260.923	$4s4p^{-1}P_{1}^{o}$	$4s4d$ $^{1}\mathrm{D}_{2}$	293 333	676 590	300		34
249.306	$4s4p$ $^3P_2^{\circ}$	$4s4d$ $^3\mathrm{D}_3$	230 642	631 755	100		34
238.737	1	1	207 982	626 853	100		34
237.685	1	2	207 982	628 707	250		34
234.415	0	1	200 259	626 853	200		34
243.983	$4p^2$ 3 P $_2$	$4p4d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	514 034	923 898	200		35
228.382	$4p^2~^1\mathrm{D}_2$	$4p4d$ $^{1}\mathrm{F}_{3}^{o}$	486 036	923 898	100		35
213.397	$4s4p~^3\mathrm{P}_1^{\mathrm{o}}$	$4s4d$ $^{1}\mathrm{D}_{2}$	207 982	676 590	200		34
204.137 ^L	$4s4f\ ^{3}\mathrm{F}_{4}^{\mathrm{o}}$	$4s5g$ $^3\mathrm{G}_5$			100		34
204.059 ^L	3	4			70		34
204.017^{L}	2	3			50		34
134.763	$4p^2 {}^1S_0$	$4p5s \ (\frac{3}{2}, \frac{1}{2})_1^{o}$	559 827	1 301 864	15		34
134.428	$4s4p^{-1}P_1^{\circ}$	$4s5s$ $^{1}\mathrm{S}_{0}$	293 333	1 037 226	500		34
128.028	$4p^2 \ ^3P_1$	$4p5s \ (\frac{1}{2}, \frac{1}{2})_0^{\circ}$	483 549	1 264 629	50		34
127.575	1	1	483 549	1 267 402	35		34
124.541	0	1	464 439	1 267 402	30p	3-	
127.983	$4p^2$ 3 P ₂	$4p5s \ (\frac{3}{2}, \frac{1}{2})_2^{\circ}$	514 034	1 295 364	300		34
126.930			514 034	1 301 864	150		34 34
123.182	2 1	1 2	400 # 40	1 295 364	30		34 34
127.983	$4p^2~^1\mathrm{D}_2$	$4p5s\ (\frac{1}{2},\frac{1}{2})_1^{\circ}$	486 036	1 267 402	300		34
126.258	$4s4p$ $^3P_2^{\circ}$	$4s5s$ $^3\mathrm{S}_1$	230 642	1 022 664	500		34
122.746	1	1303 51	207 982	1 022 664	300		34
121.597	0	1	200 259	1 022 664	150		34
100 550	. 2 1						
123.558 122.577	$4p^{2-1}D_2$	$4p5s \ (\frac{3}{2}, \frac{1}{2})_2^{\circ}$		1 295 364 1 301 864	30 30		34 34
02 606	$4s4p\ ^3\mathrm{P}_2^{\mathrm{o}}$	$4s5d$ $^3\mathrm{D}_2$		1 007 001			
93.696 93.493				1 297 901	6		34
93.493	2	3		1 300 240	75 15		34
91.752	1	1	$207982 \\ 207982$	1 296 905 1 297 901	15 40		34 34
91.187	1 0	2		1 296 905	10		34
88.756	$4s^2$ 1 S ₀	$4s5p \left(\frac{1}{2}, \frac{1}{2}\right)_{1}^{\circ}$	0	1 126 684	50		23,34°
97 770							
87.770	$4s^2$ 1S_0	$4s5p \ (\frac{1}{2}, \frac{3}{2})_1^{\circ}$	0	1 139 342	100		23, 34°

Mo XIII - Continued

Wave-	Classi	fication	Energy Lev	vels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper						
54.101	$3d^{10}4s^2$ 1 S ₀	$3d^94s^24p\ ^1\mathrm{P_{1}^{\circ}}$	0	1 848 400	20			36,37°
53.551	$3d^{10}4s^2$	$3d^94s^24p\ ^3{ m D}^{ m o}_1$	0	1 867 400	10			36,37°

Mo xiv

Wave- length (Å)	Lower	Classification Upper	Energy Lev	vels (cm ⁻¹)	Int.	$gf A (s^{-1})$	Acc.	References
123.576 373.647	$4s\ ^2{ m S}_{1/2}$	$4p\ ^2\mathrm{P}_{1/2}^{\circ}$	0	236 085 267 632	2000 10000			29,30°,31,39 29,30°,31,39
295.366	$4f^{2}F_{5/2}^{\circ}$	$5d^2\mathrm{D}_{3/2}$	1 033 850	1 372 413	10			39
93.374	7/2	5/2	1 033 968	1 374 830	15			39
64.126	$4d\ ^{2}{ m D}_{5/2}$	$4f^{-2}F_{5/2}^{\circ}$	655 242	1 033 850	40			39
64.043	5/2	7/2	655 242	1 033 968	400			39
60.501	3/2	5/2	649 976	1 033 850	300			39
61.544	$4p^{-2}P_{3/2}^{\circ}$	$4d$ $^2\mathrm{D}_{3/2}$	267 632	649 976	200			39
57.993 41.609	3/2 1/2	5/2 3/2	267 632 236 085	655 242 649 976	800 800			39 39
84.481	$4d~^2\mathrm{D}_{3/2}$			1 100 020	000			38, 39°
81.817	4 <i>u</i> D _{3/2} 5/2	$5p\ ^2\mathrm{P}^{\circ}_{1/2}$ 3/2	649 976 655 242	1 192 036 1 205 254	300 600			38, 39°
80.087	3/2	3/2	649 976	1 205 254	85			38,39°
83.949	$4f\ ^{2}\mathrm{F_{7/2}^{o}}$	$5g^{-2}G_{7/2}$	1 033 968	1 577 546	1200			38,39°
83.949	7/2	9/2	1 033 968	1 577 546	1200			38,39°
23.902	$4f\ ^{2}\mathrm{F}_{7/2}^{\mathrm{o}}$	$6g^{-2}G_{7/2}$	1 033 968	1 841 006	150			38, 39°
23.902	7/2	9/2	1 033 968	1 841 006	150			38, 39°
23.902	5/2	7/2	1 033 850	1 841 006	150			38, 39°
21.647	$4p^{-2}P_{3/2}^{\circ}$	$5s\ ^2{ m S}_{1/2}$	267 632	1 089 691	1500			23, 30, 39°
17.149	1/2	1/2	236 085	1 089 691	1000			23, 30, 39°
12.973	$4d^{2}D_{5/2}$	$5f^{2}F_{5/2}^{\circ}$	655 242	1 540 440	30			39
12.952 12.300	5/2 3/2	7/2	655 242 649 976	1 540 574 1 540 440	300 150			23, 39° 23, 39°
	•	5/2			100			20,00
.03.500 .03.500	$4f^{2}F_{7/2}^{o}$	$7g^{-2}G_{7/2}$	1 033 968 1 033 968	2 000 101 2 000 101	40 40			39 39
03.500	7/2 5/2	9/2 7/2	1 033 850	2 000 101	40			39
.01.699	$4d^2\mathrm{D}_{3/2}$	$6p$ $^2\mathrm{P}^{\circ}_{1/2}$	649 976	1 633 270	15			39,40°
101.543	5/2	- r =	655 242	1 640 046	70			39
01.004	3/2	3/2	649 976	1 640 046	5			39
90.519	$4p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$5d$ $^2\mathrm{D}_{3/2}$	267 632	1 372 413	70			39
90.319 88.000	3/2 1/2		267 632 236 085	1 374 830 1 372 413	400 150			23,39° 23,39°
		·						
85.979 85.597	$4d\ ^{2}\mathrm{D}_{5/2}$	-/-	655 242 649 976	1 818 317 1 818 244	100 70			39 39
	3/2	·	040 310	1 010 244	10			
83.890 82.971	$4s^{2}S_{1/2}$	$5p\ ^2{ m P}^{ m o}_{1/2}$	0	1 192 036 1 205 254	400			23, 39°
02.311	1/2	, –	0	1 203 234	600			23, 39°
76.216 74.425	$4p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$		267 632	1 579 705	50			38,39°
14.420	1/2	•	236 085	1 579 705	20			38, 39°
72.50	$3d^{10}4p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$		267 632	1 647 000				43
71.3 69.5	3/2 1/2		$267 632 \\ 236 085$	1 673 000 1 673 000				43 43
69.45	,	.,-						
63.45 62.21	$4p^{-2}P_{3/2}^{\circ}$		267 632 236 085	1 843 580 1 843 580				38 38
C1 000		•						
61.229 60.975	$4s\ ^2\mathrm{S}_{1/2}$	-/-	0	1 633 270 1 640 046	40 60			23, 40° 23, 39, 40°
		•			00			
57.65 56.61	$4p^{-2}P_{3/2}^{\circ}$		267 632 236 085	2 002 340 2 002 340				38 38
		-,-						
53.729 53.100	$3d^{10}4s$ $^{2}S_{1/2}$	-, -	0	1 861 190	5 3			36, 37, 42°
	1/2	·	0	1 883 240	3			36, 37, 42°
53.341	$4s^{-2}S_{1/2}$	-,-	0	1 874 730	3			37, 38, 42°
53.228	1/2	,-	0	1 878 710				37, 38, 42°
53.341	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^3P^o)^4F_{3/2}^o$	0	1 874 730	3			36, 37, 41, 42

Mo xiv - Continued

Wave-	Clas	sification	Energy Leve	els (cm ⁻¹)	Int. gf A	(s ⁻¹) Acc.	References
length (Å)	Lower	Upper		· ,		` , 	
53.048	$3d^{10}4s\ ^2{ m S}_{1/2}$	$3d^9(^2D)4s4p(^3P^\circ) \ ^2D_{3/2}^\circ$	0	1 885 090	10		36, 37, 41, 42°
52.753	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^3P^o)^2P_{3/2}^o$. 0	1 895 630	20		36, 37, 41, 42°
52.690	1/2	1/2	0	1 897 890	10		36, 37, 41, 42°
52.476	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^3P^o)^{-4}D_{1/2}^o$	0	1 905 630	5		36, 37, 41, 42°
52.228	1/2	3/2	0	1 914 680	5		36, 37, 41, 42°
52.476	$3d^{10}4p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$3d^9(^2D)4p^2(^3P)^{-4}F_{5/2}$	267 632	2 173 140	5		42
51.668	1/2	3/2	236 085	2 171 600	5		37, 42°
52.460	$3d^{10}4p\ ^{2}P_{1/2}^{o}$	$3d^9(^2D)4p^2(^1D)^{-2}S_{1/2}$	236 085	2 142 670	2		37,42°
52.420	$3d^{10}4p\ ^2\mathrm{P}_{1/2}^{\circ}$	$3d^9(^2D)4p^2(^1D)^{-2}P_{3/2}$	236 085	2 143 750	2		37,42°
52.024	$3d^{10}4p\ ^{2}\mathrm{P}_{1/2}^{o}$	$3d^9(^2D)4p^2(^3P)^{-2}D_{3/2}$	236 085	2 158 460	8		37,42°
52.015	3/2	5/2	267 632	2 190 210	10		37,42°
52.00	$3d^{10}4p\ ^{2}\mathrm{P}_{3/2}^{o}$	$3d^9(^2D)4p^2(^3P)^{-2}P_{1/2}$	267 632	2 190 700	2		37,42°
51.895	3/2	3/2	267 632	2 194 630	8		37,42°
51.161	1/2	1/2	236 085	2 190 700	1		37,42°
51.531	$3d^{10}4p\ ^{2}P_{3/2}^{\circ}$	$3d^9(^2D)4p^2(^1D)\ ^2F_{5/2}$	267 632	2 208 270	1		37,42°
51.434	$3d^{10}4p\ ^{2}P_{1/2}^{\circ}$	$3d^9(^2D)4p^2(^1D)\ ^2D_{3/2}$	236 085	2 180 320	1		37,42°
51.398	$3d^{10}4s$ $^{2}S_{1/2}$	$3d^9(^2D)4s4p(^1P^\circ)^2P_{3/2}^\circ$	0	1 945 600	20		36, 37, 41, 42°
50.788	1/2	1/2	0	1 968 970	10		36, 37, 41, 42°
50.956	$3d^{10}4p\ ^2{ m P}^o_{3/2}$	$3d^9(^2D)4p^2(^1S)^2D_{5/2}$	267 632	2 230 110	1		37,42°

Mo xv

Wave- length (Å)	Class Lower	ification Upper	Energy Lev	els (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
424.184	$3d^9(^2D_{3/2})4s(\frac{3}{2},\frac{1}{2})_2$	$3d^9(^2D_{3/2})4p(\frac{3}{2},\frac{1}{2})^{\circ}_2$	1 726 410	1 962 160	10			48
421.581	2	1	1 726 410	1 963 620	20			48
415.994	1	2	1 721 770	1 962 160	70			48
420.270	$3d^9(^2\mathrm{D}_{5/2})4s\;(\frac{5}{2},\frac{1}{2})_3$	$3d^9(^2\mathrm{D}_{5/2})4p\ (\frac{5}{2},\frac{1}{2})^\circ_2$	1 694 910	1 932 860	70			48
417.373	2	3	1 699 860	1 939 450	65			48
408.943	3	3	1 694 910	1 939 450	40			48
397.450	$3d^9(^2\mathrm{D}_{3/2})4s\ (\frac{3}{2},\frac{1}{2})_2$	$3d^9(^2D_{5/2})4p(\frac{5}{2},\frac{3}{2})^{\circ}_2$	1 726 410	1 978 020	25			48
390.837	2	1	1 726 410	1 982 270	20			48
379.959	$3d^9(^2D_{3/2})4s(\frac{3}{2},\frac{1}{2})_1$	$3d^9(^2D_{3/2})4p(\frac{3}{2},\frac{3}{2})^{\circ}_0$	1 721 770	1 984 950	25			48
365.680	2	3	1 726 410	1 999 880	60			48
355.054	1	1	1 721 770	2 003 420	15			48
354.892	2	2	1 726 410	2 008 190	30			48
349.128	1	2	1 721 770	2 008 190	30			48
379.133	$3d^9(^2\mathrm{D}_{5/2})4s\;(\frac{5}{2},\frac{1}{2})_2$	$3d^9(^2D_{3/2})4p \ (\frac{3}{2},\frac{1}{2})^o_1$	1 699 860	1 963 620	30			48
365.924	$3d^9(^2D_{5/2})4s(\frac{5}{2},\frac{1}{2})_3$	$3d^9(^2D_{5/2})4p(\frac{5}{2},\frac{3}{2})^{\circ}_4$	1 694 910	1 968 200	100			48
359.500	2	2	1 699 860	1 978 020	40			48
354.100	2	1	1 699 860	1 982 270	25			48
353.421	2	3	1 699 860	1 982 810	30			48
347.339	3	3	1 694 910	1 982 810	45			48
58.832	$3d^{10}$ 1 S ₀	$3d^9(^2\mathrm{D}_{5/2})4s\ (\frac{5}{2},\frac{1}{2})_2$	0	1 699 860		E2		45°,46
57.927	$3d^{10}$ ¹ S ₀	$3d^9(^2\mathrm{D}_{3/2})4s\ (\frac{3}{2},\frac{1}{2})_2$	0	1 726 410		E2		45°, 46
50.928	$3d^{10} {}^{1}S_{0}$	$3d^9(^2\mathrm{D}_{3/2})4p\ (\frac{3}{2},\frac{1}{2})^\mathrm{o}_1$	0	1 963 620	2			23, 36, 37, 42°, 47
50.448	$3d^{10} {}^{1}S_{0}$	$3d^9(^2D_{5/2})4p(\frac{5}{2},\frac{3}{2})^{\circ}_1$	0	1 982 270	150			23, 36, 37, 42°, 44, 45,46,47
49.914	$3d^{10}$ 1 S ₀	$3d^9(^2\mathrm{D}_{3/2})4p\;(\frac{3}{2},\frac{3}{2})^o_1$	0	2 003 420	100			23, 36, 37, 42°, 44, 45,46,47
36.376	$3d^{10} {}^{1}S_{0}$	$3d^{9}4f$ $^{3}P_{1}^{o}$	0	2 749 060	3			47
36.060	$3d^{10}$ 1 S ₀	$3d^94f$ $^3\mathrm{D}^\mathrm{o}_1$	0	2 773 230	7			36,47°
35.368	$3d^{10}$ 1 S ₀	$3d^{9}4f^{-1}P_{1}^{o}$	0	2 827 410	12			36,44,46,47°
29.774	$3d^{10}$ 1 S ₀	$3d^95f\ ^3{ m D}^{ m o}_1$	0	3 358 600	1			47
29.458	$3d^{10}$ 1 S ₀	$3d^95f^{-1}P_1^{o}$	0	3 394 700	2			47

Mo xvi

Wave- length (Å)	Classific Lower	ation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf A (s ⁻¹)	Acc.	References
3708.1	$3p^63d^{9-2}D_{5/2}$	$3p^63d^{9-2}D_{3/2}$	0	26 960		M1		51
77.456	$3p^63d^{9}$ ² D _{3/2}	$3p^53d^{10}$ ² P° _{3/2}	26 960	1 318 040	8			23, 36, 46, 55°
75.869	5/2	3/2	0	1 318 040	25			23, 36, 46, 55°
69.596	3/2	1/2	26 960	1 463 860	15			23, 36, 46, 55°
	0 2	- 8/3 · / · 1 ›	_					
54.348 54.088	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3F_4)4s\ (4,\frac{1}{2})_{9/2}$	0 0	1 839 990 1 848 840	70 100	E2 E2		56,57°
34.000	5/2	7/2	O	1 040 040	100	LZ		46, 56, 57°
53.484	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3F_3)4s (3, \frac{1}{2})_{7/2}$	0	1 869 720	50	$\mathbf{E2}$		46, 56, 57°
	•							
52.644	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^1G_4)4s\ (4,\frac{1}{2})_{7/2}$	26 960	1 926 510	40	E2		46, 56, 57°
51.909	5/2	9/2	0	1 926 450	70	E2		46, 56, 57°
47.959	$3d^{9} {}^{2}\mathrm{D}_{5/2}$	$3d^8(^3F)4p^4D_{7/2}^{\circ}$	0	2 085 110	90			36,53,54,55°
47.382	5/2	5/2	0	2 110 510	30			55
47.871	$3d^{9} {}^{2}\mathrm{D}_{3/2}$	$3d^84p\ (1)_{3/2}^{\rm o}$	26 960	2 115 910	150			46,53,54,55°
47.165 46.573	3/2	5/2	26 960 0	2 147 170	170			36, 53, 54, 55°
46.352	5/2 5/2	5/2 7/2	0	2 147 170 2 157 400	750 450			23, 36, 46, 54, 55° 36, 54, 55°
10.002		•	Ŭ	2 101 400	100			50, 54, 55
47.302	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3F)4p^4G_{7/2}^{\circ}$	0	2 114 080	20			53,55°
47.262	5/2	5/2	0	2 115 860	180			$23, 36, 53, 54, 55^{\circ}$
47.186	$3d^{9} {}^{2}D_{3/2}$	$3d^84p \ (2)_{3/2}^{\circ}$	26.060	0.146.060	140			00 00 40 50 54 55
47.068		· ·	26 960 26 960	2 146 260	140 90			23, 36, 46, 53, 54, 55
46.592	3/2	5/2	20 900	2 151 550 2 146 260	80			36, 46, 53, 54, 55° 36, 55°
46.478	5/2 5/2	3/2 5/2	0	2 151 550	1000			23, 36, 46, 54, 55°
								, , , , ,
46.877	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3\mathrm{F})4p\ ^2\mathrm{F}^{\mathrm{o}}_{5/2}$	26 960	2 160 220	150			55
46.859	5/2	7/2	0	2 134 060	1000			23, 46, 54, 55°
46.291	5/2	5/2	0	2 160 220	650			23, 36, 46, 54, 55°
46.841	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3\mathrm{F})4p\ ^2\mathrm{D}^{\circ}_{5/2}$	0	2 134 880	900			36,54,55°
46.478	3/2	3/2	26 960	2 178 520	1000			36, 54, 55°
46.781	$3d^{9-2}D_{3/2}$	$3d^8(^3F)4p^4F^{\circ}_{3/2}$	26 960	2 164 610	120			36, 46, 54, 55°
46.378 46.197	5/2	7/2	0	2 156 190	260			23, 36, 46, 54, 55°
40.137	5/2	3/2	0	2 164 610	110			54,55°
46.712	$3d^9 {}^2\mathrm{D}_{3/2}$	$3d^84p \ (3)_{5/2}^{\circ}$	26 960	2 167 740	130			23, 36, 46, 54, 55°
46.623	3/2	3/2	26 960	2 171 850	250			36, 46, 54, 55°
46.131	5/2	5/2	0	2 167 740	600			23, 36, 46, 54, 55°
46.043	5/2	3/2	0	2 171 850	1000			23, 36, 46, 54, 55°
46.573	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3P)4p^{-4}D_{1/2}^{o}$	26 960	2 174 130	750			36,54,55°
45.938	3/2	5/2	26 960	2 203 810	500			23, 36, 46, 54, 55°
45.809	5/2	7/2	0	2 182 980	500			23, 36, 46, 54, 55°
40.400	0.49.25							
46.463	$3d^9 {}^2D_{3/2}$	$3d^84p \ (4)^{\circ}_{5/2}$	26 960	2 179 240	440			36, 54, 55°
46.043 45.887	3/2	3/2	26 960 0	2 198 620 2 179 240	1000 200			36,55°
45.483	5/2 5/2	5/2 3/2	0	2 179 240	220			36, 54, 55° 23, 36, 46, 54, 55°
								20,00,10,01,00
46.229	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^1D)4p\ ^2P_{3/2}^{\circ}$	26 960	2 190 130	220			23, 36, 46, 54, 55°
45.659	5/2	3/2	0	2 190 130	300			23, 36, 46, 54, 55°
45.553	3/2	1/2	26 960	2 222 200	300			23, 36, 46, 54, 55°
46.113	$3d^{9-2}D_{3/2}$	$3d^84p \ (5)_{5/2}^{\circ}$	26 960	2 195 590	300			36,54,55°
45.545	5/2	5/2		2 195 590	250			23, 46, 54, 55°
40.00:								
46.024	$3d^{9} {}^{2}\mathrm{D}_{5/2}$	$3d^8(^1G)4p\ ^2F^{\circ}_{7/2}$	00000	2 172 780	1600			23, 36, 46, 54, 55°
45.756	3/2	5/2	26 960	2 212 460	700			36, 54, 55°
45.867	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3P)4p^2S_{1/2}^{\circ}$	26 960	2 207 180	150			46, 54, 55°
		•		2 207 100	100			30,04,00
45.853	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3P)4p^2D_{3/2}^{\circ}$	26 960	2 207 920	170			36,54,55°
45.290	5/2	3/2	^	2 207 920	60			36, 46, 54, 55°
45 050	$3d^{9}$ 2 D _{5/2}	0.48/175\+ 2750	_	0.00=====				22.252
45.250	3a- D _{5/2}	$3d^8(^1D)4p\ ^2F^o_{7/2}$	0	2 209 940	30			36,55°
45.000	$3d^{9} {}^{2}D_{5/2}$	$3d^{8}(^{1}G)4p^{2}G_{7/2}^{\circ}$	0	2 222 220	220			22 26 46 54 550
10.000	54 55/2	04 (G/4p G7/2	U	4 444 420	420			23, 36, 46, 54, 55°

Mo XVI - Continued

Wave-	Classifica		Energy Le	vels (cm^{-1})	Int.	gf	$A (s^{-1})$	Acc.	References
ength (Å)	Lower	Upper							
44.509	$3d^{9} {}^{2}\mathrm{D}_{3/2}$	$3d^8(^1S)4p^2P_{1/2}^{\circ}$	26 960	2 273 700	100				36, 46, 54, 55°
43.837	3/2	3/2	26 960	2 308 160	30				36,55°
43.324	5/2	3/2	0	2 308 160	60				36,54,55°
33.992	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3\mathrm{F}_2)4f^{\ 2}[1]^o_{3/2}$	26 960	2 968 800	60				36,58°
33.982	$3d^{9}$ 2 D _{5/2}	$3d^8(^3\mathrm{F}_4)4f^2[3]^{\circ}_{5/2}$	0	2 942 700	40				58
33.853	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^3F_2)4f^2[2]_{5/2}^{\circ}$	26 960	2 981 100	10				58
33.543	5/2	5/2	0	2 981 100	50				36,58°
33.812	$3d^9 {}^2D_{5/2}$	$3d^8(^3\mathrm{F}_3)4f^{\ 2}[4]^{\circ}_{7/2}$	0	2 957 500	20				58
33.800	$3d^{9}$ 2 D _{3/2}	$3d^8(^3P_2)4f^2[2]^o_{3/2}$	26 960	2 985 500	30				36,58°
33.760	$3d^{9}$ 2 D _{5/2}	$3d^8(^3F_3)4f^2[3]^{\circ}_{7/2}$	0	2 962 100	20				58
33.740	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3\mathrm{F}_3)4f^2[1]^{\circ}_{3/2}$	0	2 963 800	35				58
33.680	$3d^{9}$ $^{2}\mathrm{D}_{5/2}$	$3d^8(^3\mathrm{F}_3)4f^2[2]^{\circ}_{5/2}$	0	2 969 100	35				36,58°
33.591	$3d^{9}$ $^{2}\mathrm{D}_{5/2}$	$3d^8(^3P_2)4f^2[4]^{\circ}_{7/2}$	0	2 977 000	45				36,58°
33.479	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3F_2)4f^2[3]^{\circ}_{7/2}$	0	2 986 900	25				58
33.429	$3d^{9} {}^{2}D_{5/2}$	$3d^8(^3P_2)4f^2[3]^{\circ}_{5/2}$	0	2 991 400	20				58
33.347	5/2	7/2	0	2 998 800	40				36,58°
33.293	$3d^9 {}^2D_{5/2}$	$3d^8(^3P_0)4f^2[3]^{\circ}_{7/2}$	0	3 003 600	45				36,58°
33.264	$3d^9 {}^2\mathrm{D}_{5/2}$	$3d^8(^3P_1)4f^{\ 2}[2]^{\circ}_{5/2}$	o	3 006 200	10				58
33.235	$3d^{9}$ $^{2}\mathrm{D}_{5/2}$	$3d^8(^3P_1)4f^2[4]^{\circ}_{7/2}$	0	3 008 900	10				36,58°
33.211	$3d^{9} {}^{2}D_{3/2}$	$3d^8(^1G_4)4f^2[1]_{3/2}^{\circ}$	26 960	3 038 000	15				36,58°
33.100	3/2	1/2	26 960	3 048 100	35				36,58°
32.916	5/2	3/2	0	3 038 000	50				36, 44, 46, 58°
33.185	$3d^9 {}^2\mathrm{D}_{5/2}$	$3d^8(^3\mathrm{P}_1)4f^{\ 2}[3]^{\circ}_{5/2}$	0	3 013 400	25				58
33.161	$3d^{9}$ 2 D _{3/2}	$3d^8(^1G_4)4f^2[2]^{\circ}_{5/2}$	26 960	3 042 600	25				58
32.981	3/2	3/2	26 960	3 058 900	70				36, 44, 46, 58°
32.691	5/2	3/2	0	3 058 900	20				36, 46, 58°
33.120	$3d^9 {}^2\mathrm{D}_{5/2}$	$3d^8(^1D_2)4f^{\ 2}[3]^{\circ}_{7/2}$	0	3 019 300	35				58
33.067	$3d^9 {}^2\mathrm{D}_{5/2}$	$3d^8(^1D_2)4f^2[1]^{\circ}_{3/2}$	0	3 024 200	25				58
32.860	$3d^{9} {}^{2}\mathrm{D}_{5/2}$	$3d^8(^1G_4)4f^2[3]^{\circ}_{7/2}$	0	3 043 200	75				36, 44, 46, 58°
32.323	$3d^{9}$ 2 $D_{3/2}$	$3d^8(^1S_0)4f^{-2}[3]_{5/2}^{\circ}$	26 960	3 120 700	40				36, 46, 58°
32.078	5/2	7/2	0	3 117 400	30				36, 46, 58°
32.061	5/2	5/2	0	3 120 700	15				58

Mo xvii

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	$gf A (s^{-1}) A$	Acc. References
4123.5	3d ⁸ ³ F ₄	$3d^{8} {}^{3}F_{3}$	0	24 250		M1	51
83.079	$3p^63d^{8-1}D_2$	$3p^53d^{9-1}D_2^{\circ}$	77 960	1 281 600	50		60,61°
82.556 81.261	$3p^63d^{8\ 3}{ m P}_1$	$3p^53d^{9}$ $^1D_2^9$	70 310 51 000	1 281 600 1 281 600	20 100		61 60,61°
82.317	$3p^63d^{8-1}S_0$	$3p^53d^9$ $^3D_1^{o}$	176 680	1 391 470	10		61,62°
81.382	$3p^63d^{8-1}G_4$	$3p^53d^9$ $^3F_3^{\circ}$	82 420	1 311 160	20		61
81.080 73.122	$3p^63d^{8-1}D_2$	$3p^53d^9$ $^3F_3^{\circ}$	77 960 77 960	1 311 160 1 445 570	20 150		61 36,60,61°
80.734	$3p^63d^{8}\ ^3{ m F}_3$	$3p^53d^9$ $^3F_4^{\circ}$	24 250	1 262 860	30		61
79.186 77.706	4	4	$0 \\ 24 250$	1 262 860 1 311 160	$1500 \\ 20$		36,60,61° 61
76.269	3 4	3	0	1 311 160	600		36, 60, 61°
70.494	2	2	27 030	1 445 570	5		61
70.367	3	2	24 250	1 445 570	3		61
79.711 79.532	$3p^63d^8 \ ^3{ m F_2}$	$3p^53d^{9}$ $^1D_2^{\circ}$	27 030 24 250	1 281 600 1 281 600	700 5		36,60,61° 61
79.359	$3p^63d^8 \ ^3P_2$	$3p^53d^9$ 3 F $^{\circ}_3$	51 000	1 311 160	5		61
71.705	2	2	51 000	1 445 570	7		61
79.062 77.396	$3p^63d^{8-1}{ m D}_2$	$3p^53d^9$ $^3D_2^{\circ}$ $_3$	77 960 77 960	1 342 800 1 370 010	100 5		60,61° 61
78.019	$3p^63d^{8-3}P_1$	$3p^53d^9$ $^3P_1^0$	70 310	1 352 050	40		60,61°
77.898	0	1	68 350	1 352 050	15		61
77.727	1	0	70 310	1 356 860	30		61
76.863 71.359	2	1	51 000 70 310	1 352 050 1 471 690	200 30		60,61° 36,60,61°
70.386	1 2	2 2	51 000	1 471 690	15		36, 60, 61°
77.666	$3p^63d^{8-1}G_4$	$3p^53d^9$ 3 D $_3^{\circ}$	82 420	1 370 010	30		60,61°
77.410 75.816	$3p^63d^{8-3}P_2$	$3p^53d^9 \ ^3D_2^{\circ}$	51 000 51 000	1 342 800 1 370 010	20 15		60,61° 61
75.580	2 0	3	68 350	1 391 470	15		61
74.600	2	1	51 000	1 391 470	5		61
75.840	$3p^63d^{8-3}F_3$	$3p^53d^9 \ ^3D_2^{o}$	24 250	1 342 800	150		60,61°
74.306	3	3	24 250	1 370 010	200		36, 60, 61°
73.289	2	1	27 030	1 391 470	200		36,60,61°
72.990	4	5 0 1	0	1 370 010	300		36, 60, 61°
72.092	$3p^63d^{8-1}S_0$	$3p^53d^{9-1}P_1^{\circ}$	176 680	1 563 830	20		61,62°
71.750	$3p^63d^{8-1}D_2$	$3p^{5}3d^{9}$ $^{3}P_{2}^{\circ}$	77 960	1 471 690	5		61
69.088	$3p^63d^{8-3}F_3$	$3p^53d^9 \ ^3P_2^{\circ}$	24 250	1 471 690	30		61
68.390	$3p^63d^{8-1}G_4$	$3p^53d^{9-1}F_3^0$	82 420	1 544 660	800		36,60,61°
68.188	$3p^63d^{8-1}D_2$	$3p^53d^{9}$ ¹ F ₃ °	77 960	1 544 660	3		61
67.302	$3p^63d^{8-1}D_2$	$3p^53d^{9-1}P_1^{\circ}$	77 960	1 563 830	15		36,60,61°
66.100	$3p^63d^8\ ^3{ m P}_2$	$3p^53d^{9-1}P_1^{o}$	51 000	1 563 830	3		61
65.891 65.770	$3p^63d^{8} \ ^3F_2$	$3p^53d^{9}$ 1 F o_3 3	27 030 24 250	1 544 660 1 544 660	1 4		61 61
44.045	$3d^{8}$ 3 F ₄	$3d^{7}4p \ (1)_{4}^{\circ}$	0	2 270 430	5		63
43.992	$3d^{8} {}^{3}P_{2}$	$3d^{7}4p \ (3)_{3}^{\circ}$	51 000	2 324 090	10		63
43.802	$3d^8$ $^3\mathrm{P}_2$	$3d^74p \ (4)_3^{\circ}$		2 334 250	5		63
43.553	$3d^{8} {}^{3}P_{1}$	$3d^{7}4p \ (9)_{2}^{\circ}$		2 366 360			63
43.198	2	3p (3) ₂	51 000	2 366 360			63

Mo XVII - Continued

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹)	Int.	gf A (s	Acc.	References
43.529 43.256	$3d^8$ 3 F $_4$	$3d^{7}4p \ (2)_{4}^{\circ}$ 5	0	2 297 320 2 311 790	15 20			63 63
43.510	$3d^{8} {}^{3}P_{2}$	$3d^74p \ (6)_3^{\circ}$	51 000	2 349 350	8			63
43.446	$3d^{8-1}G_4$	$3d^74p \ (7)^{\rm o}_5$	82 420	2 383 840	15			63
43.362	$3d^{8}$ 3 P $_1$	$3d^74p \ (10)^{\circ}_2$	70 310	2 376 490	15			63
43.340 42.980	$3d^8$ 3 F $_2$	$3d^74p \ (4)^{\circ}_3$	27 030	2 334 250	5			63
42.846 42.767	2 4	1 3	27 030 · 0	2 353 690 2 334 250	5 30			63 63
43.285	4 $^3d^8$ $^1\mathrm{G}_4$	$3d^{7}4p \ (11)_{4}^{\circ}$	0 82 420	2 338 250 2 393 213	5 25			63 63
43.224	$3d^{8} {}^{3}P_{1}$	$3d^{7}4p (8)_{1}^{\circ}$	70 310	2 383 830	5			63
43.105	$3d^8$ 3 F ₄	$3d^{7}4p (3)_{4}^{\circ}$	0					
43.029	4	3 <i>a</i> 4 <i>p</i> (3) ₄	0	2 319 900 2 324 090	25 5			63 63
42.939	$3d^{8}$ 1 G ₄	$3d^74p \ (9)_5^{\circ}$	82 420	2 411 280	15			63
42.891	$3d^{8}$ 1 G ₄	$3d^74p \ (13)_4^{\circ}$	82 420	2 413 910	50			63
42.817	$3d^{8-1}\mathrm{D}_2$	$3d^74p \ (16)_3^{\circ}$	77 960	2 413 480	5			63
42.802	$3d^{8} {}^{3}\mathrm{F}_{3}$	$3d^74p \ (8)_3^{\circ}$	24 250	2 360 950	5			63
42.704 42.400	$3d^{8}$ 3 F ₄	$3d^{7}4p \ (5)_{4}^{\circ}$	0 0	2 341 690 2 358 500	35 50			63 63
42.647 41.490	$3d^{8}\ ^{3}\mathrm{F}_{3}$	$3d^74p \ (9)_3^{\circ}$	24 250 0	$\begin{array}{c} 2 \ 368 \ 938 \\ 2 \ 411 \ 280 \end{array}$	5 5			63 63
42.603	$3d^8$ $^3\mathrm{P}_2$	$3d^74p \ (14)_3^{\circ}$	51 000	2 398 907	30			63
42.564 42.061	$3d^{8} {}^{3}{ m F_{4}}$	$3d^{7}4p \ (6)_{4}^{\circ}$	0 0	2 349 981 2 377 729	5 5			63 63
42.543	$3d^{8-1}\mathrm{D}_2$	$3d^74p \ (14)_1^{\rm o}$	77 960	2 429 152	25			63
42.489	$3d^{8}$ 1 S $_{0}$	$3d^74p \ (19)_1^{\circ}$	176 680	2 530 230	30			63
42.473	$3d^{8}$ 1 G ₄	$3d^74p \ (10)_5^{\circ}$	82 420	2 436 880	40			63
42.387 42.116	$3d^{8} {}^{3}\mathrm{F}_{3}$	$3d^{7}4p \ (10)_{4}^{\circ}$	24 250 0	2 383 490 2 374 600	50 15			63 63
42.290	$3d^{8-3}\mathrm{P}_1$	$3d^74p \ (19)^{\circ}_2$	70 310	2 434 930	5			63
42.245	$3d^8$ 3 F $_3$	$3d^74p \ (13)_3^{\circ}$	24 250	2 391 778	30			63
42.200	$3d^8$ 3 F $_3$	$3d^74p \ (14)_2^{\rm o}$	24 250	2 394 635	5			63
42.163	$3d^{8-1}D_2$	$3d^74p \ (20)^{\circ}_3$	77 960	2 449 993	5			63
42.089	$3d^8$ 3 P $_2$	$3d^74p \ (18)_3^{\circ}$	51 000	2 426 890	25			63
41.954	$3d^{8} {}^{3}F_{4}$	$3d^74p \ (7)_5^{\circ}$	0	2 383 840	19			63
41.908	$3d^{8}$ 3 F ₄	$3d^74p \ (12)_3^{\circ}$	0	2 386 200	30			63
41.844	$3d^{8}$ 1 G ₄	$3d^74p \ (21)_3^{\circ}$	82 420	2 472 230	20			63
41.767	$3d^8$ $^3\mathrm{P}_2$	$3d^74p \ (20)_2^{\circ}$	51 000	2 445 644	5			63
41.576	$3d^8$ 3 F $_3$	$3d^{7}4p \ (15)_{4}^{\circ}$	24 250	2 430 370	5			63
41.446	$3d^{8}$ 3 P ₁	$3d^74p \ (23)_2^{\circ}$	70 310	2 483 140	5			63
41.040	$3d^{8}$ $^{1}\mathrm{G}_{4}$	$3d^{7}4p \ (23)_{3}^{\circ}$	82 420	2 519 060	10			63

Mo xviii

Wave- length (Å)	Classification Lower	n Upper	Energy Le	vels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
83.428 80.492	$3p^6 3d^{7-4} \mathrm{F}_{9/2}$	$3p^53d^8 \ (1)_{11/2}^{\circ}$ 9/2	0 0	1 198 630 1 242 360	10 45		64 64
81.988	$3p^63d^7$ $^4P_{5/2}$	$3p^53d^8 \ (2)^{\circ}_{7/2}$	60 740	1 280 420	10		64
81.859	$3p^63d^7$ 2 G _{9/2}	$3p^53d^8 \ (2)^{\circ}_{9/2}$	62 500	1 284 110	25		64
80.686	$3p^63d^7$ 2 G _{7/2}	$3p^53d^8 \ (4)^{\circ}_{7/2}$	81 500	1 320 790	30		64
80.364	$3p^63d^7$ $^2\mathrm{G}_{9/2}$	$3p^53d^8 (3)_{7/2}^{\circ}$	62 500	1 306 770			64
77.415	9/2	9/2	62 500	1 354 790	45		64
80.201	$3p^63d^7 \ ^4P_{5/2}$	$3p^53d^8 \ (3)^{\circ}_{5/2}$	60 740	1 307 600	30		64
79.653	$3p^63d^7^2H_{9/2}$	$3p^53d^8 (5)^{\circ}_{7/2}$	107 650	1 362 690			64
67.141	11/2	9/2	84 900	1 574 310	48		36,64°
79.457 77.875	$3p^6 3d^7 {}^4F_{7/2}$	$3p^53d^8 (2)_{7/2}^{\circ}$	21 850	1 280 420 1 284 110			64
	9/2	9/2	0				64
78.735	$3p^63d^7^2H_{11/2}$	$3p^53d^8 \ (3)_{9/2}^{\circ}$	84 900	1 354 790	40		64
78.255	$3p^63d^7 \frac{2}{3}D_{5/2}$	$3p^53d^8 \ (4)^{\circ}_{3/2}$	94 000	1 372 180	10		64
78.053	$3p^63d^{7-2}G_{7/2}$	$3p^53d^8 (5)^{\circ}_{7/2}$	81 500	1 362 690			64
66.146	9/2	9/2	62 500	1 574 310	25		64
77.552	$3p^63d^7 \frac{2}{3}D_{5/2}$	$3p^53d^8 \ (6)^{\circ}_{5/2}$	94 000	1 383 380	10		64
76.992	$3p^63d^7$ 4 F $_{7/2}$	$3p^53d^8 (4)^{\circ}_{7/2}$	21 850	1 320 790	10		64
76.870 75.712	7/2 9/2	5/2	21 850 0	1 322 740 1 320 790			64 64
	·	7/2					
76.812 75.309	$3p^63d^7$ $^4\mathrm{P}_{5/2}$	$3p^5 3d^8 (5)_{7/2}^{\circ}$	60 740 60 740	1 362 690 1 388 018			64 64
76.647	$3p^63d^{7}$ 4 F _{5/2}	$3p^53d^8 \ (3)^{\circ}_{3/2}$	31 440	1 336 120	25		64
76.529	9/2	7/2	0	1 306 770			64
73.812	9/2	9/2	0	1 354 790	15		64
74.407	$3p^63d^7{}^2\mathrm{G_{9/2}}$	$3p^53d^8 (6)_{7/2}^{\circ}$	62 500	1 406 680	30		64
74.303	$3p^63d^7$ $^4P_{5/2}$	$3p^53d^8 (6)_{7/2}^{\circ}$	60 740	1 406 680	45		64
74.280	$3p^63d^7 {}^4F_{5/2}$	$3p^53d^8 (5)^{\circ}_{5/2}$	31 440	1 377 840			64
73.944 73.747	3/2	3/2	35 936 21 850	1 388 018 1 377 840			64 64
73.676	7/2 5/2	5/2 3/2	31 440	1 388 018			64
73.380	9/2	7/2	0	1 362 690	20		64
74.020	$3p^63d^7^2$ F _{7/2}	$3p^53d^8 \ (7)^{\alpha}_{7/2}$	141 650	1 492 600	15		64
73.446	$3p^63d^7 ^4F_{7/2}$	$3p^53d^8 (6)_{5/2}^{\circ}$		1 383 380			64
72.211 71.089	7/2 9/2	7/2 7/2	21 850 0	1 406 680 1 406 680			64 64
72.679	$3p^63d^{7/2}F_{7/2}$	$3p^53d^8 \ (8)_{7/2}^{\circ}$		1 517 570			64
70.171	·						
72.171 71.461	$3p^63d^7 \ {}^2_3{ m D}_{5/2} \ {}_1{ m D}_{5/2}$	$3p^53d^8 \ (9)^{\circ}_{5/2}$	94 000 210 770	1 479 650 1 610 200			64 64
	$3p^63d^7^2H_{9/2}$	•					
72.089	·	$3p^53d^8 (4)_{9/2}^{\circ}$		1 494 810			64
71.523	$3p^63d^{7/2}G_{7/2}$	$3p^{5}3d^{8} (9)_{5/2}^{\circ}$		1 479 650			64
71.196	$3p^63d^7 {}_1^2 D_{5/2}$	$3p^53d^8 \ (11)_{5/2}^{\circ}$		1 615 606	0 20		64
70.926	$3p^63d^7^2H_{9/2}$	$3p^53d^8 \ (8)^{\circ}_{7/2}$		1 517 570	0 30		64
70.121	$3p^63d^7$ $^2{ m F}_{5/2}$	$3p^53d^8 \ (9)^{\circ}_{3/2}$	129 033	1 553 19	8 15		64
69.929	$3p^63d^7 {}^2{ m G}_{9/2}$	$3p^53d^8 \ (7)^{\circ}_{7/2}$	62 500	1 492 60	0 35		64

Mo XVIII - Continued

Wave-	Classificat	ion	Energy Le	vels (cm ⁻¹)	Int. gf A (s	⁻¹) Acc.	References
length (Å)	Lower	Upper		. ,		,	
69.675	$3p^63d^7 {}^2G_{7/2}$	$3p^53d^8 \ (8)^{\circ}_{7/2}$	81 500	1 517 570	25		64
68.727	9/2	7/2	62 500	1 517 570	30		64
69.212	$3p^63d^7_{1}^2D_{3/2}$	$3p^53d^8 \ (7)^o_{1/2}$	199 694	1 643 278	25		64
68.128	$3p^63d^7^2$ F _{5/2}	$3p^53d^8 \ (10)^{\circ}_{3/2}$	129 033	1 597 386	30		64
67.984	$3p^63d^7 {}^4{ m F}_{7/2}$	$3p^53d^8 \ (7)^{\circ}_{7/2}$	21 850	1 492 600	22		64
67.845	$3p^63d^7$ $^2\mathrm{F}_{7/2}$	$3p^53d^8 \ (11)^{\circ}_{5/2}$	141 650	1 615 600	40		36,64°
67.648	$3p^63d^7$ $^2G_{7/2}$	$3p^53d^8 \ (10)^{\circ}_{5/2}$	81 500	1 559 730	40		36,64°
66.536	$3p^63d^7^2H_{9/2}$	$3p^53d^8 \ (9)^{\circ}_{7/2}$	107 650	1 610 200	55		36,64°

Mo xxiii

Wave- length (Å)	Cla Lower	ssification Upper		Energy	Levels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
3553.3	$3p^63d^2\ ^3F_2$	-	$3p^63d^2$ 3 F ₃	0	28 135	М1			51

Mo xxiv

Wave-	Classifi	cation	Energy Le	evels (cm ⁻¹)	Int.	$gf A (s^{-1}) Acc.$		References	
length (Å)	Lower	Upper				_			
2686.5	$3d$ $^2\mathrm{D}_{3/2}$	$3d$ $^2\mathrm{D}_{5/2}$	0	37 212		M1			51
77.369	$3p^63d^{\ 2}D_{3/2}$	$3p^5(^2P^\circ)3d^2(^3F)\ ^2F^\circ_{5/2}$	0	1 292 510	5				68
75.141	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^1G)^{-2}F^{\circ}_{7/2}$	37 212	1 368 040	30				68
72.050 70.726	$3p^63d^{-2}D_{5/2}$	$3p^5(^2P^\circ)3d^2(^3F)^2D_{5/2}^\circ$	37 212 0	1 425 140 1 413 910	100 80				68 68
71.175 70.596	$3p^63d\ ^2{ m D}_{5/2}$	$3p^5(^2P^\circ)3d^2(^3P) \ ^2P^\circ_{3/2}$	37 212 0	1 442 200 1 416 510	40 3				68 68
21.854 21.684	$3d^{-2}D_{5/2}$	$4f$ $^{2}\mathrm{F}_{7/2}^{\circ}$ 5/2	37 212 0	4 613 000 4 611 700	5 5				44 44

Mo xxv

Wave- length (Å)	Classification Lower	Upper	Energ	y Levels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
——————————————————————————————————————	Zowei -						
91.328^{S}	$3p^{6-1}S_0$	$3p^53d\ ^3{ m D}_1^o$	0	1 094 950			69
74.170 ^S	$3p^{6-1}\mathrm{S}_0$	$3p^53d\ ^1{ m P}^{ m o}_1$	0	1 348 250			69
18.500	$3p^{6-1}\mathrm{S}_0$	$3p^54d\ ^1{ m P}_1^{ m o}$	0	5 405 400	5		44
17.979	$3p^{6-1}S_0$	$3p^54d$ $^3\mathrm{D^o_1}$	0	5 562 000	6		44

Mo xxvi

Wave- length (Å)	Classifica Lower	ation Upper	Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
534.9	$3s^23p^5 {}^2P^{\circ}_{3/2}$	$3s^23p^5$ ² P $_{1/2}^{\circ}$	0	186 950		M1	1.17+5	В	70°,81*
78.056	$3s^23p^5$ 2 P $^{\circ}_{3/2}$	$3s^23p^4(^1{ m D})3d\ ^2{ m S}_{1/2}$	0	1 281 130	20				71
77.369 76.624	$3s^23p^5 \ ^2\mathrm{P}^{\circ}_{1/2} \ _{3/2}$	$3s^23p^4(^3P)3d\ ^2D_{3/2}$	186 950 0	1 479 460 1 305 070	5 200				71 71
75.698	$3s^23p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s^23p^4(^3{ m P})3d\ ^2{ m P}_{3/2}$	0	1 321 040	20				71

Mo XXVII

Wave- length (Å)	Classification Lower	n Upper	Energy Le	vels (cm ⁻¹)	Int. gf	$A (s^{-1})$	Acc.	References
2350.8 458.6	$3s^23p^4$ 3P_1	$3s^23p^4$ ¹ D ₂	175 500 0	218 030 218 030	M M	1 2.23+2 1 7.18+4		70,72°,81* 70°,81*
569.8	$3s^23p^4$ 3P_2	$3s^23p^4\ ^3\mathrm{P}_1$. 0	175 500	М	9.50+4	C	70°,81*
397.2	$3s^23p^4\ ^3{ m P}_1$	$3s^23p^{4}$ ¹ S ₀	175 500	427 000	М	1 4.13+5	D	70,72°,81*
80.403	$3s^23p^{4-1}D_2$	$3s^23p^3(^2{\rm D^o})3d\ ^1{ m F}_3^{ m o}$	218 030	1 461 760	2			73
79.613	$3s^23p^4$ 3P_2	$3s^23p^3(^2P^\circ)3d\ ^3P_2^\circ$	0	1 256 080	20			73
78.268	$3s^23p^4$ 3P_2	$3s^23p^3(^2P^\circ)3d^{-1}F_3^\circ$	o	1 277 660	10			73

Mo xxvIII

Wave- length (Å)	Classific Lower	ation Upper	Energy Le	vels (cm ⁻¹) In	nt. gf	$A (s^{-1})$	Acc.	References
2285.4	$3s^23p^3$ 2 D $_{3/2}^{\circ}$	$3s^23p^3$ ² D $_{5/2}^{\circ}$	156 960	200 710	M1	5.01+2	С	70°,81*
643.0	$3s^23p^3$ $^2P_{1/2}^{\circ}$	$3s^23p^3$ 2 P $_{3/2}^{\circ}$	257 940	413 440	M1	2.04+4	C	74°,81*
637.1 498.2	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ $^2\mathrm{D}^{\circ}_{3/2}$ $^{5/2}$	0 0	156 960 200 710	M1 M1		D D	74°,81* 74°,81*
470.0 389.9	$3s^23p^3$ $^2\mathrm{D}^{\circ}_{5/2}$ $_{3/2}$	$3s^23p^3$ ² P $_{3/2}^{\circ}$	200 710 156 960	413 440 413 440	M1 M1		D D	74°,81* 74°,81*
387.7	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^3$ 2 P $^{\circ}_{1/2}$	0	257 940	M1	1.05+5	D	74°,81*
91.301	$3s^23p^3$ ² P° _{3/2}	$3s^23p^2(^3\mathrm{P})3d\ ^2\mathrm{D}_{5/2}$	413 440	1 508 720	50			75
85.932	$3s^23p^3$ 2 D $_{5/2}^{\circ}$	$3s^23p^2(^1\mathrm{D})3d\ ^2\mathrm{D}_{5/2}$	200 710	1 364 420	2			75
83.756	$3s^23p^3$ $^4S_{3/2}^{\circ}$	$3s^23p^2(^3\mathrm{P})3d\ ^4\mathrm{P}_{5/2}$	0	1 193 940	5			75
83.308	$3s^23p^3$ $^2D_{5/2}^{\circ}$	$3s^23p^2(^3P)3d^2F_{7/2}$	200 710	1 401 070	5			75

Mo xxix

Wave- length (Å)	Classificati Lower	on Upper	Energy Le	vels (cm ⁻¹) I	nt. gf	$A (s^{-1})$	Acc.	References
		Opper						
2841.1	$3s^23p^2$ 3 P ₁	$3s^23p^2$ 3P_2	161 720	196 910	M	1 2.91+2	C	51°, 70, 81*
618.5	0	1	0	161 720	M	1 6.03+4	В	70°,81*
530.3	$3s^23p^2$ 3 P ₂	$3s^23p^{2-1}D_2$	196 910	385 480	M	1 6.68+4	D	70,72°,81*
446.9	1	2	161 720	385 480	M	1 7.59 + 4	D	70,72°,81*
$326.3^{\mathbf{P}}$	$3s^23p^2$ 3 P ₁	$3s^23p^2$ ¹ S ₀	161 720	468 220	M	1 3.10+5	D	70,76°,81*
108.714	$3s^23p^2$ 3 P ₂	$3s3p^3$ $^3\mathrm{S}^{\mathrm{o}}_1$	196 910	1 116 750	2			76
95.497	$3s^23p^{2-1}D_2$	$3s^23p3d\ ^1{ m F}_3^{ m o}$	385 480	1 432 630	2			76
89.059	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^1\mathrm{D}_2^{\circ}$	196 910	1 319 850	3			76
86.339	1	2	161 720	1 319 850	4			76
88.173	$3s^23p^2$ 3 P ₂	$3s^23p3d\ ^3{ m D}_3^{ m o}$	196 910	1 331 040	20			76

Mo xxx

Wave-	Classification		Energy Lev	els (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper					(-)		
490.1	$3s^23p\ ^2{ m P}^{ m o}_{1/2}$	$3s^23p\ ^2P_{3/2}^{o}$	0	204 020		Mı	7.60+4	В	70°,77,81*
186.22^{T}	$3s^23p\ ^2P_{1/2}^{\circ}$	$3s3p^2 {}^4P_{1/2}$	0	[538 435]					77
163.17	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s3p^2 \ ^2D_{3/2}$	204 020	816 860	1000				80
140.77 ^T	3/2	5/2	204 020	914 330					77
122.420 ^S	1/2	3/2	0	816 860	10				77,79°
145.50	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s3p^2 {}^2P_{1/2}$	204 020	891 280	300				80
114.087 ^S	3/2	3/2	204 020	1 080 540	3				77, 79°
112.17 ^T	1/2	1/2	0	891 280					77
92.546 ^S	1/2	3/2	0	1 080 540	30				77,79°
$112.16^{\mathbf{T}}$	$3s^23p\ ^2\mathrm{P}^{\circ}_{3/2}$	$3s3p^2$ 2 S _{1/2}	204 020	1 095 240					77
91.27	1/2	1/2	0	1 095 240	1500bl				77,80°
105.618 ^S	$3s^23p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3s^23d^2D_{3/2}$	204 020	1 150 820	7				77,79°
104.372 ^S	3/2	5/2	204 020	1 162 130	3				77,79°
86.86^{T}	1/2	3/2	0	1 150 820					77
18.056	$3s^23d\ ^2{ m D}_{5/2}$	$3s^24f ^2F^{o}_{7/2}$	1 162 130	6 701 000					78
17.964	3/2	5/2	1 150 820	6 718 000					78
18.004	$3s^23p\ ^2P_{3/2}^{\circ}$	$3s^24s$ $^2S_{1/2}$	204 020	5 760 000					78
17.355	1/2	1/2	0	5 760 000					78

Mo xxxi

Wave- length (Å)	Classificat Lower	on Upper	Energy Leve	els (cm ⁻¹)	Int.	gf	A (s ⁻¹)	Acc.	References
609.8	$3s3p\ ^{3}P_{2}^{o}$	3s3p ¹ P ₁ °	698 160	862 060		M1	9.56+3	С	70°,81*
577.5	$3s3p\ ^{3}P_{1}^{o}$	$3s3p$ $^3P_2^o$	525 030	698 160		M1	6.33+4	\mathbf{C}	70°,81*
190.466	$3s^{2}$ $^{1}S_{0}$	$3s3p$ $^3P_1^{\circ}$	0	525 030					69,83°,84,85
155.339	$3s3p\ ^{3}P_{1}^{o}$	$3p^2 \ ^3P_0$	525 030	1 168 780					80
123.38	1	1	525 030	1 335 450					80
121.870	2	2	698 160	1 518 870	0				80
100.620	1	2	525 030	1 518 870	2				80,83,86°
143.10	$3s3p\ ^{1}P_{1}^{o}$	$3s3d$ 3D_2	862 060	1 560 630					80
136.066	$3s3d$ $^3\mathrm{D}_3$	$3p3d$ 3 $\mathbf{F_4^o}$	1 585 980	2 320 910	2				80,86°
133.210	$3s3d$ $^{1}\mathrm{D}_{2}$	$3p3d$ $^{1}\mathrm{F_{3}^{o}}$	1 739 970	2 490 670	3				80,86°
131.905	$3p3d$ $^{1}\mathrm{F}_{3}^{\mathrm{o}}$	$3d^{2}$ 1 G ₄	2 490 670	3 248 790	3bl				86
124.54	$3s3p$ 1 P $_{1}^{o}$	$3p^{2} {}^{1}S_{0}$	862 060	1 664 960					80
124.236	3s3p ³ P ₁ °	$3p^{2-1}\mathrm{D_2}$	525 030	1 329 950	1				80,86°
121.373	$3p3d$ $^3D_3^{\circ}$	$3d^{2} {}^{3}F_{4}$	2 362 430	3 186 340	3				86
	$3p^2 \ ^3P_1$	$3p3d \ ^{1}D_{2}^{\circ}$							
118.797	$3p - P_1$	$spsa D_2$	1 335 450	2 177 240	1				86
118.560	$3p^2 \ ^3P_2$	$3p3d \ ^{3}D_{3}^{o}$	1 518 870	2 362 430	2				86
97.964	0	1	1 168 780	2 189 530	3				86
115.999	$3s^{2}$ 1 S ₀	$3s3p$ $^{1}P_{1}^{\circ}$	0	862 060	5bl				29,46,69,78,82, 83°,86
115.988	$3s3p\ ^{3}P_{2}^{o}$	$3s3d$ $^3\mathrm{D}_2$	698 160	1 560 630	5bl				86
112.640	2	3	698 160	1 585 980	3				46,78,82,83,86°
98.224	1	1	525 030	1 543 100	3bl				80,86°
96.563 94.737	1	2	525 030 487 560	1 560 630 1 543 100	2 5bl				46,86°
94.101	0	1	467 300	1 343 100	301				86
115.555	$3p3d\ ^{3}F_{4}^{\circ}$	$3d^{2} {}^{3}F_{4}$	2 320 910	3 186 340	1				86
100.430	3	3	2 162 220+x	3 157 940+x	2				86
94.737	2	2	2 069 150+x	3 124 800+x	5bl				86
113.897	$3s3p^{-1}P_{1}^{o}$	$3s3d$ $^{1}\mathrm{D}_{2}$	862 060	1 739 970	3				46,78,82,83,86°
101.081	$3p^{2-1}D_2$	$3p3d\ ^{3}D_{2}^{\circ}$	1 329 950	2 319 210	2				86
96.839	2	3	1 329 950	2 362 430	4bl				86
98.224	$3p3d$ $^3D_1^{\circ}$	$3d^{2} {}^{3}P_{0}$	2 189 530	3 207 640	3Ы				86
96.839	$3p^2 \ ^3P_1$	$3p3d$ $^3P_1^{\circ}$	1 335 450	2 368 610	4bl				86
96.471	$3p3d$ $^{1}\mathrm{D}_{2}^{\circ}$	$3d^{2-1}D_2$	2 177 240	3 213 700	2				86
95.358	$3p3d$ $^{1}\mathrm{D_{2}^{o}}$	$3d^{2}$ 3 P ₁		3 225 800	2				86
86.150	$3p^{2-1}D_2$		1 329 950	2 490 670	3				86
		_			3				
17.871	$3s3d$ $^{1}\mathrm{D}_{2}$	3s4f ¹ F ₃ °		7 335 700					78
17.578	$3s3d$ $^3\mathrm{D}_3$	$3s4f \ ^{3}F_{3}^{o}$	1 585 980	7 275 000					78
17.556 17.500	3	4	1 585 980	7 282 000					78
17.445	2 1	3	1 560 630 1 543 100	7 275 000 7 275 100					78 78
	$3s^2$ 1 S ₀	3s4p ³ P ₁ °							
14.928		-	0	6 698 800					78
14.745	$3s^{2}$ $^{1}S_{0}$	$3s4p\ ^{1}P_{1}^{o}$	0	6 782 000					44, 46, 78°

 \mathbf{Mo} XXXII

Wave- length (Å)	Classificat Lower	ion Upper	Energy Lev	rels (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
176.648 ^S	$3s$ $^2\mathrm{S}_{1/2}$	$3p^{2}P_{1/2}^{o}$	0	566 098	1		29, 46, 78 ^{\triangle} , 87°, 108
127.868 ^S	1/2	3/2	0	782 056	25		29,46,78 ^{\triangle} ,87°,108
134.615 ^S	$2p^63p\ ^2\mathrm{P_{3/2}^{\circ}}$	$2p^6 3d\ ^2{ m D}_{3/2}$	782 056	1 524 931			80,87°
126.979 ^S	$3p\ ^{2}P_{3/2}^{o}$	$3d^{2}D_{5/2}$	782 056	1 569 588	20		46,78 ^{\Delta} ,87°
104.291 ^S	1/2	3/2	566 098	1 524 931	20		$46,78^{\Delta},87^{\circ}$
39.272	$4f^{2}F_{7/2}^{\circ}$	$5g^{-2}G_{9/2}$	7 400 800	9 947 200			88
39.183	5/2	7/2	7 392 800	9 944 900			88
37.305	$4d~^2\mathrm{D}_{5/2}$	$5f^{2}F_{5/2}^{o}$	7 251 600	9 933 300			88
37.239	5/2	7/2	7 251 600	9 937 000			88
37.012	3/2	5/2	7 231 500	9 933 300			88
18.72	$3d^{2}D_{3/2}$	$4p^{-2}P_{1/2}^{o}$	1 524 931	6 865 500	1		78
18.581	5/2	3/2	1 569 588	6 951 500	26		46,78 ^{\Delta} ,88°
18.431	3/2	3/2	1 524 931	6 951 500	5		78
17.172	$3d^{2}D_{5/2}$	$4f^{-2}F_{5/2}^{\circ}$	1 569 588	7 392 800	3		78 [△] ,88°
17.149 ^S	5/2	7/2	1 569 588	7 400 800	45		44, 46, 78 ^{\triangle} , 87°
17.042 ^S	3/2	5/2	1 524 931	7 392 800	35		46,78 ^{\triangle} ,87°
17.097	$3p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$4s\ ^{2}\mathrm{S}_{1/2}$	782 056	6 630 700	5		44, 46, 78 ^{\Delta} , 88°
16.490	1/2	1/2	566 098	6 630 700	10		46,78 ^{\triangle} ,88°
15.506	$3p\ ^{2}P_{3/2}^{\circ}$	$4d^{2}D_{3/2}$	782 056	7 231 500	7		46,78 [△] ,88°
15.457	3/2	5/2	782 056	7 251 600	35		46,78 ^{\Delta} ,88°
15.002	1/2	3/2	566 098	7 231 500	22		46,78 ^{\triangle} ,88°
14.566	$3s\ ^{2}\mathrm{S}_{1/2}$	$4p\ ^{2}P_{1/2}^{o}$	0	6 865 500	19		46,78 ^{\triangle} ,88°
14.382	1/2	3/2	0	6 951 500	27		44,46°,78 ^Δ
12.284	$3d^2\mathrm{D}_{5/2}$	$5p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	1 569 588	9 735 200	1		78
11.957	$3d^{2}D_{5/2}$	$5f^{2}F_{7/2}^{o}$	1 569 588	9 937 000	17		46,78°
11.898	3/2	5/2	1 524 931	9 933 300	8		46, 78°
11.011	$3p\ ^{2}\mathrm{P}_{3/2}^{o}$	$5d^{2}D_{5/2}$	782 056	9 863 900	11		46,78°
10.767	1/2	3/2	566 098	9 853 700	5		46,78°
10.323	$3s\ ^2{ m S}_{1/2}$	$5p^{-2}P_{1/2}^{\circ}$	0	9 687 100	2		46
10.272	1/2	3/2	o	9 735 200			46
10.241	$3d$ $^2\mathrm{D}_{5/2}$	$6f\ ^{2}\mathrm{F}_{7/2}^{\mathrm{o}}$	1 569 588	11 334 300	3		46
10.197	3/2	5/2	1 524 931	11 331 700			46

Mo xxxiii

Wave- length (Å)	Classification Lower	Upper	Energy	Levels (cm ⁻¹)	Int. gf A (s ⁻¹) Acc	. References
5.2069	$2p^6$ $^1\mathrm{S}_0$	$2p^{5}3s$ $^{3}P_{1}^{o}$	0	19 205 000	9	44,90,92 ^{\(\Delta\)} ,93°,94
4.9828	$2p^{6-1}\mathrm{S}_0$	$2p^53s$ $^1P_1^o$	0	20 069 000	6	44,90,92 ^{\(\Delta\)} ,93°,94
4.8516	$2p^{6-1}\mathrm{S}_0$	$2p^{5}3d\ ^{3}\mathrm{P}_{1}^{o}$	0	20 612 000	7	91°, 92 [△] , 94
4.8044	$2p^{6-1}S_0$	$2p^5 3d\ ^3{ m D}^{ m o}_1$	0	20 814 000	10	44,90,91,92 ^{\triangle} ,93°,94
4.6325	$2p^{6-1}\mathrm{S}_0$	$2p^{5}3d^{-1}P_{1}^{o}$	0	21 587 000	8	$90, 91, 92^{\Delta}, 93^{\circ}, 94$
4.4653	$2s^22p^{6-1}S_0$	$2s2p^63p\ ^3\mathrm{P_1^o}$	0	22 395 000	5	$90, 91, 92^{\triangle}, 93^{\circ}, 94$
4.4184	$2s^22p^{6-1}S_0$	$2s2p^63p^{-1}P_1^{o}$	0	22 633 000	4	90,91,92 ^{\(\Delta\)} ,93°,94
3.809	$2p^{6}$ 1 S ₀	$2p^54s\ ^3{ m P}_1^{ m o}$	0	26 250 000	2	94°, 95
3.763	$2p^{6-1}S_0$	$2p^54s$ $^1{ m P}_1^{ m o}$	0	26 570 000	1	94°, 95
3.684	$2p^{6-1}S_0$	$2p^54d$ $^3\mathrm{D_1^o}$	0	27 140 000	12	94°, 95
3.636	$2p^6$ $^1\mathrm{S}_0$	$2p^54d\ ^1{ m P}_1^{ m o}$	0	27 500 000	7	94°, 95
3.42	$2p^{6-1}S_0$	$2p^55d\ ^3{ m D_1^o}$	0	29 200 000	4	95
3.32	$2p^{6}$ $^1\mathrm{S}_0$	$2p^55d$ 1 P $_1^{\circ}$	0	30 100 000	2	95
3.26	$2p^{6}$ $^1\mathrm{S}_0$	$2p^{5}6d\ ^{3}\mathrm{D_{1}^{o}}$	0	30 700 000	2	95
3.18	$2p^{6-1}\mathrm{S}_0$	$2p^{5}6d\ ^{3}\mathrm{P}_{1}^{o}$	0	31 400 000	1	95
3.18	$2p^{6-1}\mathrm{S}_0$	$2p^57d$ $^3\mathrm{D}^{\circ}_1$	0	31 400 000	1	95
3.09	$2p^{6-1}S_0$	$2p^{5}7d^{-1}P_{1}^{o}$	0	32 400 000	1	95

Mo XXXIV

Wave- length (Å)	Classification Lower	Upper	Energy Le	vels (cm ⁻¹) Int.	gf	$A (s^{-1})$	Acc.	References
112.828	$2p^5 \ ^2\mathrm{P_{3/2}^o}$	$2p^5 \ ^2P_{1/2}^{\circ}$	0	886 305	M1	1.24+7	В	81*,97,98°,111
56.527	$2s^22p^5 \ ^2P_{1/2}^{\circ}$	$2s2p^6 \ ^2S_{1/2}$	886 305	2 655 300				97
37.661	3/2	1/2	0	2 655 300				97
5.536	$2p^5\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^4(^3\mathrm{P})3d\ ^2\mathrm{F}_{5/2}$	0	18 064 000				96
4.550	$2p^5\ ^2{ m P}_{3/2}^{ m o}$	$2p^4(^3P)3d^2D_{3/2}$	0	21 978 000				96
4.521	3/2	5/2	0	22 119 000				96
4.512	$2p^5\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2p^4(^1\mathrm{D})3d\ ^2\mathrm{S}_{1/2}$	0	22 163 000				96
4.506	$2p^5\ ^2\mathrm{P_{3/2}^o}$	$2p^4(^1\mathrm{D})3d\ ^2\mathrm{F}_{5/2}$	0	22 193 000				96
4.506	$2p^5 \ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^4(^1D)3d^{2}P_{3/2}$	0	22 193 000				96
4.472	3/2	1/2	0	22 361 000				96
4.503	$2p^5\ ^2\mathrm{P}^{\circ}_{3/2}$	$2p^4(^1\mathrm{D})3d^{2}\mathrm{D}_{5/2}$	0	22 207 000				96
4.480	3/2	3/2	0	22 321 000				96
4.493	$2p^5\ ^2{ m P}^{lpha}_{1/2}$	$2p^4(^1\mathrm{S})3d\ ^2\mathrm{D}_{3/2}$	886 305	23 143 000				96

Mo xxxv

Wave-	Classification		Energy Lev	els (cm ⁻¹)	Int. gf	A (s ⁻¹) Acc	. References
length (Å)	Lower	Upper					
71.223	$2s^22p^{4-1}D_2$	$2s2p^{5-3}P_{2}^{o}$	976 560	2 380 360	1		101
59.590	2	1	976 560	2 654 560	1		101
65.933	$2s^22p^4$ ³ P ₁	$2s2p^{5-3}P_{2}^{\circ}$	863 620	2 380 360	2		101
55.842	1	1	863 620	2 654 560	1		101
12.014	2	2	0	2 380 360	5		101
41.221	1	0	863 620	3 289 690	2		101
40.866	0	1	208 080	2 654 560	3		101
37.661	2	1	0	2 654 560	10bl		101
62.135	$2s^22p^{4-1}S_0$	$2s2p^{5-1}P_1^{o}$	1 920 420	3 530 130	1		101
57.362	$2s2p^5$ $^1\mathrm{P}^\mathrm{o}_1$	$2p^{6-1}S_0$	3 530 130	5 273 440	3		101
39.161	$2s^22p^{4-1}D_2$	$2s2p^{5-1}P_1^{o}$	976 560	3 530 130	5bl		101
38.187	$2s2p^5$ $^3\mathrm{P}^o_1$	$2p^{6-1}S_0$	2 654 560	5 273 440	3		101
37.483	$2s^22p^{4-3}P_1$	$2s2p^{5-1}P_{1}^{o}$	863 620	3 530 130	1bl		101

\mathbf{Mo} xxxvIII

Wave-	Classificatio		Energy Le	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper				_			
121.098	$2s^22p\ ^2{ m P}^{\circ}_{3/2}$	$2s2p^2$ ⁴ P _{5/2}	964 360	1 790 130					98
111.85	1/2	1/2	0	894 050	ы				98
103.696	$2s^2 2p \ ^2P_{1/2}^{\circ}$	$2s^22p\ ^2{ m P}_{3/2}^{ m o}$. 0	964 360		M1	7.94 + 6	В	98
47.553	$2s^22p^{-2}P_{1/2}^{o}$	$2s2p^2\ ^2{ m D}_{3/2}$	0	2 102 900					98
46.570	$2s^22p\ ^2{ m P}_{1/2}^{ m o}$	$2s2p^2$ 2 S _{1/2}	0	2 147 300					98
45.446	$2s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$2s2p^2$ 2 P _{1/2}	964 360	3 164 770					98
45.312	3/2	3/2	964 360	3 171 300					98

Mo xxxix

Wave-	Classification			Ener	gy Levels (cm ⁻¹) Int. gf A (s ⁻¹)	Acc.	References
length (Å)	Lower	Upper						
137.787	$2s^2$ 1 S ₀		2s2p ³ P ₁ °	0	725 758			102
49.904	$2s^2$ $^1\mathrm{S}_0$		$2s2p\ ^1\mathrm{P_1^o}$	0	2 003 847			102

Mo XL

Wave-	Classifica		Energy Lev	els (cm ⁻¹) Ir	nt. $gf A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper	···				
143.997 ^S	$1s^22s\ ^2\mathrm{S}_{1/2}$	$1s^2 2p \ ^2{ m P}^{ m o}_{1/2}$	0	694 460			102, 104°
58.4912 ^S	1/2	3/2	0	1 709 658			102,104°
98.5030 ^C	$1s^22p\ ^2P_{1/2}^{o}$	$1s^22p\ ^2P_{3/2}^{o}$	694 460	1 709 658	M1		
	•	•	001 100	1 100 000			
24.9287 ^C	$1s^24p\ ^2P_{3/2}^{\circ}$	$1s^25d^2D_{3/2}$	[35 000 550]	[39 011 990]			
24.8031 ^C 24.1666 ^C	3/2	5/2	[35 000 550]	[39 032 310]			
	1/2	3/2	[34 874 050]	[39 011 990]			
11.8550^{C}	$1s^23p\ ^2\mathrm{P_{3/2}^o}$	$1s^24s$ $^2S_{1/2}$	[26 358 700]	[34 793 960]			
11.4473 ^C	1/2	1/2	$[26\ 058\ 250]$	[34 793 960]			
11.5334 ^C	$1s^23p\ ^2P_{3/2}^{o}$	$1s^24d^2D_{3/2}$	[26 358 700]	[35 029 200]			
11.4808 ^C	3/2 3/2	5/2	[26 358 700]	[35 068 860]			
11.1471 ^C	1/2	3/2	[26 058 250]	[35 029 200]			
11.1020 ^C	$1s^23s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$	for acc mool	[04.074.050]			
10.9483 ^C			[25 866 700] [25 866 700]	[34 874 050] [35 000 550]			
	1/2	3/2	[23 800 100]	[33 000 330]			
7.97876 ^C	$1s^23p\ ^2P_{3/2}^{o}$	$1s^25s$ $^2S_{1/2}$	[26 358 700]	[38 891 980]			
7.79197 ^C	1/2	1/2	[26 058 250]	[38 891 980]			
7.90308 ^C	$1s^23p\ ^2P_{3/2}^{\circ}$	$1s^25d\ ^2\mathrm{D}_{3/2}$	[26 358 700]	[39 011 990]			
7.89041 ^C	3/2	5/2	[26 358 700]	[39 032 310]			
7.71978 ^C	1/2	3/2	[26 058 250]	[39 011 990]			
4.139580 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^23s^2S_{1/2}$	1 700 659	[95 866 700]			105
3.972630 ^C			1 709 658 694 460	[25 866 700] [25 866 700]			105 105
	1/2	1/2	034 400	[25 500 700]			103
4.045765 ^C	$1s^22p$ $^2P_{3/2}^{\circ}$	$1s^23d\ ^2\mathrm{D_{3/2}}$	1 709 658	[26 426 860]			105
4.030462 ^C 3.886151 ^C	3/2	5/2	1 709 658	[26 520 710]			105
3.886151	1/2	3/2	694 460	[26 426 860]			105
$3.837556^{\rm C}$	$1s^22s$ $^2S_{1/2}$	$1s^23p^2P_{1/2}^{\circ}$	0	[26 058 250]			105
$3.793814^{\rm C}$	1/2	3/2	0	[26 358 700]			105
3.022582 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s^24s$ $^2S_{1/2}$	1 700 050	[04 702 060]			105
2.932594 ^C			1 709 658 694 460	[34 793 960] [34 793 960]			105 105
	1/2	1/2	034 400	[04 105 500]			100
3.001242 ^C	$1s^2 2p \ ^2{ m P}^{ m o}_{3/2}$	$1s^24d\ ^2{ m D}_{3/2}$	1 709 658	[35 029 200]			105
$2.997674^{ m C} \ 2.912502^{ m C}$	3/2	5/2	1 709 658	[35 068 860]			105
2.912502	1/2	3/2	694 460	[35 029 200]			105
$2.867462^{\rm C}$	$1s^22s$ $^2S_{1/2}$	$1s^24p\ ^2P_{1/2}^{\circ}$. 0	[34 874 050]			105
2.857098^{C}	1/2	3/2	0	[35 000 550]			105
2.689450 ^C	$1s^22p\ ^2\mathrm{P_{3/2}^o}$	$1s^25s$ $^2S_{1/2}$	1 709 658	[38 891 980]			105
2.617971 ^C	13 2p 1 3/2 1/2	1,3 5 51/2	694 460	[38 891 980]			105
			301 105	[00 002 000]			100
2.680798 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s^25d^2D_{3/2}$	1 709 658	[39 011 990]			105
2.679338 ^C 2.609772 ^C	3/2	5/2	1 709 658	[39 032 310]			105
2.003112	1/2	3/2	694 460	[39 011 990]			105
$2.568532^{ m C}$	$1s^2 2s \ ^2 S_{1/2}$	$1s^25p\ ^2P_{1/2}^{\circ}$	0	[38 932 740]			105
$2.564275^{\rm C}$	1/2	3/2	0	$[38\ 997\ 370]$			105
0.70487 ^C	$1s^22p\ ^2\mathrm{P_{3/2}^o}$	$1s2s^2$ 2 S _{1/2}	1 709 658	[143 551 000]			105
0.70014 ^C			694 460	[143 551 000]			105 105
	1/2	1/2	001 100	[110 001 000]			100
0.69911 ^C	$1s^22p\ ^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$1s(^2S)2p^2(^3P) ^4P_{1/2}$	1 709 658	[144 721 000]			105
0.69533 ^C	3/2	3/2	1 709 658	[145 499 000]			105
$0.69445^{ m C} \\ 0.69072^{ m C}$	1/2	1/2	694 460 694 460	[144 721 000] [145 499 000]			105 105
0.69013 ^C	1/2 3/2	3/2 5/2	1 500 050	[146 582 000]			105
0.68559^{C}	1/2	5/2	201 100	[146 582 000]			103,105
0.69554 ^C	$1s^2 2s \ ^2 \mathrm{S}_{1/2}$	·		[140 880 222]			
0.69554 ^C		$1s(^{2}S)2s2p(^{3}P^{o}) \ ^{4}P_{1/2}^{o}$	•	[143 773 000]			105
0.09901	1/2	3/2	0	[143 883 000]			105

Mo XL - Continued

Wave-	Classifi	cation	Energy Lev	vels (cm ⁻¹)	Int.	gf	$A (s^{-1})$	Acc.	References
length (Å)	Lower	Upper							
0.69482 ^C	$1s^22p\ ^2\mathrm{P}^{\circ}_{3/2}$	$1s(^2S)2p^2(^1D)^{-2}D_{5/2}$	1 709 658	[145 604 000]			·		105
0.69381^{C}	3/2	3/2	1 709 658	[145 813 000]					103,105
0.68923^{C}	1/2	3/2	694 460	[145 813 000]					103,105
0.69417 ^C	$1s^22p\ ^2\mathrm{P}^{\alpha}_{3/2}$	$1s(^2S)2p^2(^3P)^{-2}P_{1/2}$	1 709 658	[145 738 000]					105
0.68958^{C}	1/2	1/2	694 460	[145 738 000]					105
0.68898 ^C	3/2	3/2	1 709 658	[146 823 000]					105
0.68446^{C}	1/2	3/2	694 460	[146 823 000]					103,105
0.69275 ^C	$1s^22s {}^2S_{1/2}$	$1s(^2S)2s2p(^3P^\circ) \ ^2P_{1/2}^\circ$	0	[144 352 000]					105
0.68913^{C}	1/2	3/2	0	[145 111 000]					103,105
0.68814 ^C	$1s^22p\ ^2P_{3/2}^{\circ}$	$1s(^2S)2p^2(^1S)^{-2}S_{1/2}$	1 709 658	[147 001 000]					103,105
0.68363 ^C	1/2	1/2	694 460	[147 001 000]					105
0.68809 ^C	$1s^22s$ $^2S_{1/2}$	$1s(^{2}S)2s2p(^{1}P^{o})^{2}P_{1/2}^{o}$	0	[145 330 000]					103,105
0.68763^{C}	1/2	3/2	0	[145 427 000]					105

Mo XLI

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wave- length (Å)	Classifica Lower	tion Upper	Energy Lev	els (cm ⁻¹)	Int.	9f	$A (s^{-1})$	Acc.	References
653C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4320°	1s4p 3P2	$1s4d$ $^3\mathrm{D}_2$	[180 411 970]	[180 435 100]					
644° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	3	[180 411 970]	[180 478 600]					
830°C 1.55.2°S, 1.55.9°S, 1.50.9°S, 1.50.9°S,	653 ^C	1	2	[180 281 880]	[180 435 100]					
155° 156°	644 ^C	1	1							
184 184	639	0	1	[180 280 590]	[180 437 200]					
1.64 2	857 ^C	$1s5s$ $^3\mathrm{S}_1$	$1s5p$ $^3P_1^{\circ}$	•						
1.551.0° 1.551.5°	.082	1	2	[184 517 020]	[184 609 430]					
1.551.0° 1.551.5°	.946 ^C	$1s4s^{-3}S_1$	1s4p 3P2	[180 230 480]	[180 281 880]					
706.75°	551.0 ^C		=							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	258 ^C	$1s5s$ $^{1}\mathrm{S}_{0}$	1s5p 1P ₁ °	[184 542 600]	[184 622 090]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	796.75 ^C	$1s3s^{-3}S_{1}$	1s3n ³ P°	[170 903 110]	[171 028 620]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	230.32 ^C		_							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	640.25 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	1s4v 1P°	[180 280 820]	[180 437 010]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	•						
80.3536°				•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	[143 972 040]	[145 466 040]					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.3536 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s2p\ ^{1}P_{1}^{o}$	[144 441 300]	[145 685 800]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.3512 ^C	$1s2s$ $^3\mathrm{S}_1$	$1s2p^{-1}P_1^{\circ}$	[143 972 040]	[145 685 800]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.3602 ^C	$1s4p$ $^{3}P_{o}^{o}$	1s5s ³ S ₁	[180 411 970]	[184 517 020]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.3570 ^C	$1s4p^{-1}\mathrm{P_1^o}$	$1s5s$ $^{1}S_{0}$	[180 437 010]	[184 542 600]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.1886 ^C	$1s4s$ $^3\mathrm{S}_1$	1s5p ³ P ₁ °	[180 230 480]	[184 542 940]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.0347 ^C	$1s4s$ $^{1}\mathrm{S}_{0}$	1s5p 1Pi	[180 280 820]	[184 622 090]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-		•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: :	•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 1	• •					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				[1.1 002 000]	[100 111 010]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$1s3p\ ^{3}\mathrm{P_{2}^{o}}$	$1s4s {}^{3}S_{1}$	[171 337 280]	[180 230 480]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.8674 ^C	1	1	[171 028 620]	[180 230 480]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.992 ^C	$1s3p$ $^{3}P_{n}^{o}$	$1s4d^{-3}D_{2}$	[171 337 280]	[180 435 100]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0004C	1030	350	f						
$10.6275^{\text{C}} \qquad 1s3s^{-1}S_0 \qquad 1s4p^{-1}P_1^{\circ} \qquad [171\ 027\ 460] \qquad [180\ 437\ 010]$ $7.607762^{\text{C}} \qquad 1s3p^{-1}P_1^{\circ} \qquad 1s5s^{-1}S_0 \qquad [171\ 398\ 130] \qquad [184\ 542\ 600]$ $7.58740^{\text{C}} \qquad 1s3p^{-3}P_2^{\circ} \qquad 1s5s^{-3}S_1 \qquad [171\ 337\ 280] \qquad [184\ 517\ 020]$ $7.413778^{\text{C}} \qquad 1 \qquad \qquad 1 \qquad [171\ 028\ 620] \qquad [184\ 517\ 020]$ $7.355846^{\text{C}} \qquad 1s3s^{-1}S_0 \qquad 1s5p^{-1}P_1^{\circ} \qquad [171\ 027\ 460] \qquad [184\ 622\ 090]$ $7.331470^{\text{C}} \qquad 1s3s^{-3}S_1 \qquad 1s5p^{-3}P_1^{\circ} \qquad [170\ 903\ 110] \qquad [184\ 542\ 940]$ $7.29590^{\text{C}} \qquad 1 \qquad \qquad 2 \qquad [170\ 903\ 110] \qquad [184\ 609\ 430]$ $3.946071^{\text{C}} \qquad 1s2p^{-1}P_1^{\circ} \qquad 1s3s^{-1}S_0 \qquad [145\ 685\ 800] \qquad [171\ 027\ 460]$ $3.931270^{\text{C}} \qquad 1s2p^{-3}P_2^{\circ} \qquad 1s3s^{-3}S_1 \qquad [145\ 466\ 040] \qquad [170\ 903\ 110]$					7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_	[171 027 460]	[180 437 010]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	$1s5s$ $^{1}\mathrm{S}_{0}$	[171 398 130]	[184 542 600]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1s3p ³ P ₂ °	1s5s 3S1	[171 337 280]	[184 517 020]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.355846^{C}	$1s3s$ $^{1}\mathrm{S}_{0}$	$1s5p^{-1}P_{1}^{o}$	[171 027 460]	[184 622 090]					
7.29590 ^C 1 2 [170 903 110] [184 609 430] 3.946071 ^C 1s2p $^{1}P_{1}^{o}$ 1s3s $^{1}S_{0}$ [145 685 800] [171 027 460] 3.931270 ^C 1s2p $^{3}P_{2}^{o}$ 1s3s $^{3}S_{1}$ [145 466 040] [170 903 110]	7 221 470 C		_	•						
3.946071^{C} $1s2p ^{1}\text{P}_{1}^{\circ}$ $1s3s ^{1}\text{S}_{0}$ $[145 685 800]$ $[171 027 460]$ 3.931270^{C} $1s2p ^{3}\text{P}_{2}^{\circ}$ $1s3s ^{3}\text{S}_{1}$ $[145 466 040]$ $[170 903 110]$					•					
$3.931270^{\rm C}$ $1s2p~^3{ m P}_2^{\rm o}$ $1s3s~^3{ m S}_1$ [145 466 040] [170 903 110]		_	2	[170 903 110]	[184 609 430]	l				
	3.946071 ^C	$1s2p$ $^{1}P_{1}^{o}$	$1s3s$ ${}^{1}S_{0}$	[145 685 800]	[171 027 460					
0 mmono()	3 031270C	1.0. 3700	1.0.30	[145 400 040]	[180.000.00	,				
1 1 [144 429 730] [170 903 110]		_		1 :						
	3.111318	1	1	[144 429 730]	1170 903 110	J				

Mo XLI - Continued

Wave-	Classification		Energy Leve	els (cm^{-1}) Int.	$gf A \ (s^{-1})$	Acc. References
length (Å)	Lower	Upper				
3.85706 ^C	$1s2p$ $^3P_2^{\circ}$	$1s3d$ $^3\mathrm{D}_2$	[145 466 040]	[171 392 500]		
3.84180^{C}	2	2	[145 466 040]	[171 495 500]		
3.70882 ^C		3	•	•		
	1	2	[144 429 730]	[171 392 500]		
3.70814 ^C	1	1	[144 429 730]	[171 397 400]		
3.70656 ^C	0	1	[144 418 220]	[171 397 400]		
3.709635 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s3p\ ^{1}P_{1}^{o}$	[144 441 300]	[171 398 130]		
$3.695959^{\rm C}$	$1s2s$ $^3\mathrm{S}_1$	$1s3p^{3}P_{1}^{\circ}$	[143 972 040]	[171 028 620]		
$3.654271^{\rm C}$	1	2	[143 972 040]	[171 337 280]		
2.890589 ^C	$1s2p$ $^{1}P_{1}^{o}$	$1s4s$ $^{1}\mathrm{S}_{0}$	[145 685 800]	[180 280 820]		
2.876503^{C}	$1s2p$ $^3\mathrm{P}_2^{\mathrm{o}}$	1s4s ³ S ₁	[145 466 040]	[180 230 480]		
2.793238^{C}	1	1	[144 429 730]	[180 230 480]		
2.85967 ^C	$1s2p$ $^3\mathrm{P}_2^\circ$	$1s4d$ $^3\mathrm{D}_2$	[145 466 040]	[190 425 100]		
	$1s2p$ P_2		[145 466 040]	[180 435 100]		
2.85612 ^C	2	3	[145 466 040]	[180 478 600]		
2.77736 ^C	1	2	[144 429 730]	[180 435 100]		
2.77720 ^C	1	1	[144 429 730]	[180 437 200]		
2.77631^{C}	o	1	[144 418 220]	[180 437 200]		
2.778109 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$1s4p$ $^{1}\mathrm{P}_{1}^{\mathrm{o}}$	[144 441 300]	[180 437 010]		
2.754074 ^C	$1s2s\ ^{3}\mathrm{S}_{1}$	1.4 370	[143 972 040]	[190 991 990]		
2.744242 ^C	1525 51	$1s4p \ ^{3}P_{1}^{o}$	[143 972 040]	[180 281 880] [180 411 970]		
C						
2.573552 ^C	$1s2p^{-1}P_1^{\alpha}$	$1s5s$ $^{1}S_{0}$	[145 685 800]	[184 542 600]		
2.560755^{C}	$1s2p$ $^3P_2^{\circ}$	$1s5s {}^{3}S_{1}$	[145 466 040]	[184 517 020]		
2.494556 ^C	1	1	[144 429 730]	[184 517 020]		
2.488751 ^C	$1s2s\ ^{1}\mathrm{S}_{0}$	1s5p 1P1	[144 441 300]	[184 622 090]		
		•	,	•		
$2.464821^{C} \\ 2.460788^{C}$	1 s 2 s 3 S ₁	$1s5p$ $^3P_1^o$	[143 972 040] [143 972 040]	[184 542 940] [184 609 430]		
0.6945793 ^C	$1s^{2}$ $^{1}S_{0}$	$1s2s$ $^3\mathrm{S}_1$	0	[143 972 040]	M1	
0.6923782 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p$ $^3P_1^{\circ}$	0	[144 429 730]		103,110
0.6874457 ^C	0	2	0	[145 466 040]		103,110
0.6864087 ^C	$1s^{2} {}^{1}S_{0}$	$1s2p\ ^{1}\mathrm{P}_{1}^{o}$	0	[145 685 800]		103,110
0.68436 ^C	$1s2p^{-1}\mathrm{P}_{1}^{\mathrm{o}}$	$2s^2$ 1S_0	[145 685 800]	[291 776 000]		105
0.68139^{C}	$1s2p^{-1}P_{1}^{o}$	$2p^2 {}^3P_0$	[145 685 800]	[292 412 000]		105
0.67743 ^C	1	1	[145 685 800]	[293 271 000]		105
0.67209 ^C	1		[145 685 800]	[294 454 000]		105
0.67882 ^C	$1s2p$ $^3\mathrm{P}_1^\mathrm{o}$	$2s^{2}$ 1 S ₀	[144 429 730]	[291 776 000]		
	•			, ,		105
0.67785 ^C	$1s2s$ $^{1}\mathrm{S}_{0}$	$2s2p\ ^3\mathrm{P}_1^\mathrm{o}$	[144 441 300]	[291 964 000]		105
0.67696 ^C	$1s2p^{-1}\mathrm{P_1^o}$	$2p^{2-1}\mathrm{D}_2$	[145 685 800]	[293 384 000]		105°,110
0.67642^{C}	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^2 \ ^3P_1$	[145 466 040]	[293 271 000]		105
0.67591 ^C	+V-P - 2		•	I :		
0.67200 ^C	1	0	[144 429 730]	[292 412 000]		105
	1	1	[144 429 730]	[293 271 000]		105
0.67194 ^C	0	1	[144 418 220]	[293 271 000]		105
0.67110 ^C	2	2	[145 466 040]	[294 454 000]		105
0.66675 ^C	1	2	[144 429 730]	[294 454 000]		105
0.67629 ^C	$1s2s$ $^3\mathrm{S}_1$	$2s2p\ ^{3}P_{0}^{\circ}$	[143 972 040]	[291 839 000]		105
0.67572 ^C		_		• •		
0.67125 ^C	1	1	[143 972 040]	[291 964 000]		105
0.67125	1	2	[143 972 040]	[292 948 000]		105°,110
0.67595 ^C	. a 3ma	0.215	[1.45 400 0 103	[000 004 000]		
	$1s2p$ $^3\mathrm{P}_2^\mathrm{o}$	$2p^{2-1}D_2$	[145 466 040]	[293 384 000]		105
0.67154 ^C	1	2	[144 429 730]	[293 384 000]		105
0.67149 ^C	$1s2s$ 1 S $_{0}$	2s2p 1P1	[144 441 300]	[293 363 000]		105
		_				
0.67053^{C}	$1s2p^{-1}P_1^o$	$2p^{2} {}^{1}S_{0}$	[145 685 800]	[294 789 000]		105°,110

Mo XLI - Continued

Wave- length (Å)	Classific Lower	Upper	Energy Leve	els (cm ⁻¹)	Int. g	$f A (s^{-1})$	Acc.	References
0.66939 ^C	1s2s ³ S ₁	2s2p ¹ P ₁ °	[143 972 040]	[293 363 000]				105
$0.66522^{\rm C}$	$1s2p$ $^3\mathrm{P}_1^{\mathrm{o}}$	$2p^{2}$ ¹ S ₀	[144 429 730]	[294 789 000]				105
$0.5846975^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	1s3p 3P2	0	[171 028 620]				
0.5834369 ^C	$1s^{2}$ $^{1}S_{0}$	1s3p ¹ P ₁ °	0	[171 398 130]				
0.5546869^{C}	$1s^{2} {}^{1}S_{0}$	1s4p 3P1	0	[180 281 880]				
$0.5542100^{\rm C}$	$1s^{2}$ $^{1}S_{0}$	1s4p ¹ P ₁ °	. 0	[180 437 010]				
0.5418793 ^C	$1s^{2}$ $^{1}S_{0}$	1s5p 3P ₁ °	0	[184 542 940]				
0.5416470 ^C	$1s^{2}$ $^{1}S_{0}$	$1s5p\ ^{1}\mathrm{P}_{1}^{\mathrm{o}}$	0	[184 622 090]				

Mo XLII

Wave- length (Å)	Classification Lower	Upper	Energy Lev	els (cm ⁻¹)	Int. $gf A (s^{-1})$	Acc.	References
284.07 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$3p\ ^{2}P_{3/2}^{o}$	[176 157 810]	[176 509 840]			
279.03 ^C	$3p^2 P_{1/2}^{\circ}$	$3d^2\mathrm{D}_{3/2}$	[176 150 710]	[176 509 090]			
84.302^{C}	$2s$ $^2\mathrm{S}_{1/2}$	$2p^{-2}P_{3/2}^{\circ}$	[148 322 460]	[149 508 670]			
10.5838 ^C	$3d\ ^2\mathrm{D}_{5/2}$	$4f^{2}F_{7/2}^{\circ}$	[176 623 450]	[186 071 880]			
10.4841 ^C	$3p\ ^{2}\mathrm{P}_{3/2}^{\circ}$	$4d^2\mathrm{D}_{5/2}$	[176 509 840]	[186 048 050]			
10.1603 ^C	$3s$ $^2\mathrm{S}_{1/2}$	$4p^{-2}P_{3/2}^{\circ}$	[176 157 810]	[186 000 030]			
7.24266 ^C	$3d\ ^2\mathrm{D}_{5/2}$	$5f^{2}F_{7/2}^{\circ}$	[176 623 450]	[190 430 530]			
7.18986 ^C	$3p\ ^{2}\mathrm{P}_{3/2}^{\mathrm{o}}$	$5d^{2}D_{5/2}$	[176 509 840]	[190 418 320]			
7.02448 ^C	$3s\ ^{2}\mathrm{S}_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	[176 157 810]	[190 393 730]			
3.688025 ^C	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$3d$ $^2\mathrm{D}_{5/2}$	[149 508 670]	[176 623 450]			
3.547687 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$3p^{-2}P_{3/2}^{\circ}$	[148 322 460]	[176 509 840]			
2.736773 ^C	$2p$ $^2\mathrm{P}^{\circ}_{3/2}$	$4d~^2\mathrm{D}_{5/2}$	[149 508 670]	[186 048 050]			
2.654099 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$4p\ ^2{ m P}^{ m o}_{3/2}$	[148 322 460]	[186 000 030]			
2.444411 ^C	$2p$ $^2\mathrm{P}^{\mathrm{o}}_{3/2}$	$5d^{2}D_{5/2}$	[149 508 670]	[190 418 320]			
2.376919 ^C	$2s$ $^2\mathrm{S}_{1/2}$	$5p^{2}P_{3/2}^{\circ}$	[148 322 460]	[190 393 730]			
0.6743144 ^C	$1s^{2}S_{1/2}$	$2p^{2}P_{1/2}^{\circ}$	0	[148 298 780]			
0.6688575 ^C	1/2	3/2	. 0	[149 508 670]			110
0.5676957 ^C	$1s^{-2}S_{1/2}$	$3p^{2}P_{1/2}^{o}$	0	[176 150 710]			110
0.5665407 ^C	1/2	3/2	0	[176 509 840]			110
0.5376343 ^C	$1s$ $^2\mathrm{S}_{1/2}$	4p ² P _{3/2}	0	[186 000 030]			
0.5252274 ^C	$1s^{-2}S_{1/2}$	$5p^{-2}P_{3/2}^{\circ}$	0	[190 393 730]			

2.11.3. References for Comments and Tables for Mo Ions

- [1] M. W. Trawick, Phys. Rev. 46, 63 (1934).
- [2] G. W. Charles, Phys. Rev. 77, 120 (1950).
- [3] B. Edlén, K. Rahimullah, A. Tauheed, and M. S. Z. Chaghtai, Phys. Scr. 32, 215 (1985).
- [4] A. Tauheed, K. Rahimullah, and M. S. Z. Chaghtai, Phys. Rev. A 32, 237 (1985).
- [5] A. Kancerevicius, A. Ramonas, A. N. Ryabtsev, and S. S. Churilov, Lithuanian Phys. J. 31, 143 (1990).
- [6] M. S. Z. Chaghtai, Phys. Scr. 1, 31 (1970).
- [7] J. Reader, G. Epstein, and J. O. Ekberg, J. Opt. Soc. Am. 62, 273 (1972).
- [8] A. Tauheed and M. S. Z. Chaghtai, J. Phys. B 17, 179 (1984).
- [9] J. Reader and U. Feldman, J. Opt. Soc. Am. B 7, 253 (1990).
- [10] M. S. Z. Chaghtai, Phys. Scr. 1, 109 (1970).
- [11] J. O. Ekberg, J. E. Hansen, and J. Reader, J. Opt. Soc. Am. 62, 1143 (1972).
- [12] M. S. Z. Chaghtai, S. P. Singh, and S. Khatoon, J. Phys. B 8, 1831 (1975).
- [13] Z. A. Khan, M. S. Z. Chaghtai, and K. Rahimullah, Phys. Scr. 23, 837 (1981).
- [14] M. S. Z. Chaghtai, L. Rahimullah, and S. Khatoon, Phys. Scr. 14, 281 (1976).
- [15] J. Reader and N. Acquista, J. Opt. Soc. Am. 66, 896 (1976).
- [16] K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, Phys. Scr. 18, 96 (1978).
- [17] S. Khatoon, M. S. Z. Chaghtai, and K. Rahimullah, Phys. Scr. 19, 22 (1979).
- [18] K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, Phys. Scr. 14, 221 (1976).
- [19] J. Reader and N. Acquista, J. Opt. Soc. Am. 71, 434 (1981).
- [20] N. Ateqad, M. S. Z. Chaghtai, and K. Rahimullah, J. Phys. B 17, 4617 (1984).
- [21] U. Litzén and J. Reader, Phys. Scr. 39, 468 (1989).
- [22] R. D. Cowan, The Theory of Atomic Structure, (Univ. California Press, Berkeley, CA, 1981).
- [23] E. Alexander, M. Even-Zohar, B. S. Fraenkel, and S. Goldsmith, J. Opt. Soc. Am. 61, 508 (1971).
- [24] L. J. Curtis, J. Reader, S. Goldsmith, B. Denne, and E. Hinnov, Phys. Rev. A 29, 2248 (1984).
- [25] J. Reader, N. Acquista, and S. Goldsmith, J. Opt. Soc. Am. B 3, 874 (1986).
- [26] U. Litzén and J. Reader, Phys. Scr. 39, 73 (1989).
- [27] E. Träbert and E. H. Pinnington, Can. J. Phys. 71, 128 (1993).
- [28] E. Hinnov, L. C. Johnson, E. B. Meservey, and D. L. Dimock, Plasma Phys. 14, 755 (1972).
- [29] E. Hinnov, Phys. Rev. A 14, 1533 (1976).
- [30] J. Reader and N. Acquista, Phys. Rev. Lett. 39, 184 (1977).
- [31] M. Finkenthal, R. E. Bell, H. W. Moos, A. K. Bhatia, E. S. Marmar, J. L. Terry, and J. E. Rice, Phys. Lett. 82A, 123 (1981).
- [32] U. Litzén and K. Ando, Phys. Lett. 100A, 411 (1984).
- [33] J.-F. Wyart, P. Mandelbaum, M. Klapisch, J.-L. Schwob, and N. Schweizer, Phys. Scr. 36, 224 (1987).
- [34] U. Litzén and J. Reader, Phys. Rev. A 36, 5159 (1987).
- [35] U. Litzén and A. Hansson, Phys. Scr. 40, 468 (1989).
- [36] P. G. Burkhalter, J. Reader, and R. D. Cowan, J. Opt. Soc. Am. 70, 912 (1980).
- [37] J. F. Wyart, J. Reader, and A. Ryabtsev, J. Opt. Soc. Am. 71, 692 (1981).
- [38] L. J. Curtis, A. Lindgard, B. Edlén, I. Martinson, and S. E. Nielsen, Phys. Scr. 16, 72 (1977).
- [39] J. Reader, G. Luther, and N. Acquista, J. Opt. Soc. Am. 69, 144 (1979).
- [40] J. Reader, G. Luther, and N. Acquista, J. Opt. Soc. Am. 71, 204 (1981).
- [41] M. Klapisch, P. Mandelbaum, J. L. Schwob, A. Bar-Shalom, and N. Schweitzer, Phys. Lett. 84A, 177 (1981).

- [42] J. F. Wyart, Th. A. M. Van Kleef, A. N. Ryabtsev, and Y. N. Joshi, Phys. Scr. 29, 319 (1984).
- [43] J. Sugar, E. Träbert, G. Möller, P. H. Heckmann, J. H. Blanke, and I. Martinson, Phys. Scr. 43, 484 (1991).
- [44] J. L. Schwob, M. Klapisch, N. Schweitzer, M. Finkenthal, C. Breton, C. DeMichelis, and M. Mattioli, Phys. Lett. 62A, 85 (1977).
- [45] M. Klapisch, J. L. Schwob, M. Finkenthal, B. S. Fraenkel, S. Egert, A. Bar-Shalom, C. Breton, C. DeMichelis, and M. Mattioli, Phys. Rev. Lett. 41, 403 (1978).
- [46] M. W. D. Mansfield, N. J. Peacock, C. C. Smith, M. G. Hobby, and R. D. Cowan, J. Phys. B 11, 1521 (1978).
- [47] N. Schweitzer, M. Klapisch, J. L. Schwob, M. Finkenthal, A. Bar-Shalom, P. Mandelbaum, and B. S. Fraenkel, J. Opt. Soc. Am. 71, 219 (1981).
- [48] A. N. Ryabtsev, S. S. Churilov, and J. F. Wyart, Opt. Spectrosc. 62, 153 (1987).
- [49] T. Brage and U. Litzén, Phys. Scr. 35, 662 (1987).
- [50] J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 17, 155 (1988).
- [51] S. Suckewer, E. Hinnov, S. Cohen, M. Finkenthal, and K. Sato, Phys. Rev. A 26, 1161 (1982).
- [52] B. Edlén, Physica 13, 545 (1947).
- [53] K. Ando, J. Phys. Soc. Japan 51, 15 (1982).
- [54] J. F. Wyart, M. Klapisch, J. L. Schwob, and N. Schweitzer, Phys. Scr. 26, 141 (1982).
- [55] A. N. Ryabtsev and J. Reader, J. Opt. Soc. Am. 72, 710 (1982).
- [56] J.-F. Wyart, private communication (1986).
- [57] J. Sugar, J. Reader, and W. L. Rowan, Phys. Rev. A 51, 835 (1995).
- [58] K. Ando and K. Ishii, J. Phys. Soc. Japan 54, 3297 (1985).
- [59] T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, At. Data Nucl. Data Tables 2, 63 (1970).
- [60] M. I. Bogdanovichene, E. Ya. Kononov, G. V. Merkelis, A. A. Ramonas, A. N. Ryabtsev, and S. S. Churilov, Opt. Spectrosc. 49, 244 (1980).
- [61] J. Reader and A. Ryabtsev, J. Opt. Soc. Am. 71, 231 (1981).
- [62] J. Reader and A. Ryabtsev, J. Opt. Soc. Am. 73, 1207 (1983).
- [63] J. F. Wyart, M. Klapisch, J. L. Schwob, N. Schweizer, and P. Mandelbaum, Phys. Scr. 27, 275 (1983).
- [64] J. F. Wyart, M. Klapisch, J. L. Schwob, and P. Mandelbaum, Phys. Scr. 28, 381 (1983).
- [65] H. Kubo, K. Ishii, T. Sugie, M. Shiho, and H. Maeda, JAERI-M Report 86-081 (1986).
- [66] J. F. Wyart, A. J. J. Raassen, and P. H. M. Uylings, Phys. Scr. 32, 169 (1985).
- [67] M. Finkenthal, B. C. Stratton, H. W. Moos, W. L. Hodge, S. Suckewer, S. Cohen, P. Mandelbaum, and M. Klapisch, J. Phys. B 18, 4393 (1985).
- [68] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 142 (1989).
- [69] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1927 (1987).
- [70] B. Denne, E. Hinnov, S. Suckewer, and S. Cohen, Phys. Rev. A 28, 206 (1983).
- [71] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1444 (1989).
- [72] E. Hinnov, private communication (1985).
- [73] V. Kaufman, J. Sugar, and W. L. Rowan, J. Opt. Soc. Am. B 7, 1169 (1990).
- [74] B. Denne, E. Hinnov, S. Suckewer, and J. Timberlake, J. Opt. Soc. Am. B 1, 296 (1984).
- [75] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 8, 22 (1991).
- [76] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 7, 152 (1990).
- [77] E. Hinnov, F. Boody, S. Cohen, U. Feldman, J. Hosea, K. Sato, J. L. Schwob, S. Suckewer, and A. Wouters, J. Opt. Soc. Am. B 3, 1288 (1986).

- [78] P. G. Burkhalter, J. Reader, and R. D. Cowan, J. Opt. Soc. Am. 67, 1521 (1977).
- [79] J. Sugar, V. Kaufman, and W. L. Rowan, J. Opt. Soc. Am. B 5, 2183 (1988).
- [80] C. Jupén, B. Denne, and I. Martinson, Phys. Scr. 41 669, (1990).
- [81] V. Kaufman and J. Sugar, J. Phys. Chem. Ref. Data 15, 321 (1986).
- [82] J. Reader, J. Opt. Soc. Am. 73, 796 (1983).
- [83] J. Sugar, V. Kaufman, P. Indelicato, and W. L. Rowan, J. Opt. Soc. Am. B 6, 1437 (1989).
- [84] M. Finkenthal, E. Hinnov, S. Cohen, and S. Suckewer, Phys. Lett. 91, 284 (1982).
- [85] J. F. Seely, J. O. Ekberg, U. Feldman, J. L. Schwob, S. Suckewer, and A. Wouters, J. Opt. Soc. Am. B 5, 602 (1988).
- [86] J. O. Ekberg, U. Feldman, J. F. Seely, C. M. Brown, B. J. MacGowan, D. R. Kania, and C. J. Keane, Phys. Scr. 43, 19 (1991).
- [87] J. Reader, V. Kaufman, J. Sugar, J. O. Ekberg, U. Feldman, J. F. Seely, and W. L. Rowan, J. Opt. Soc. Am. B 4, 1821 (1987).
- [88] J. Reader, J. O. Ekberg, U. Feldman, C. M. Brown, and J. F. Seely, J. Opt. Soc. Am. B 7, 1176 (1990).
- [89] B. Edlén, Phys. Scr. 17, 565 (1978).
- [90] E. V. Aglitskii, V. A. Boiko, O. N. Krokhin, S. A. Pikuz, and A. Ya. Faenov, Soviet J. Quant. Electron. 4, 1152 (1975).
- [91] E. V. Aglitskii, E. Ya. Golts, Yu. A. Levykin, A. M. Lifshits, S. L. Mandelstam, and A. S. Safronova, Opt. Spectrosc. 46, 590 (1979).
- [92] H. Gordon, M. G. Hobby, N. J. Peacock, and R. D. Cowan, J. Phys. B 12, 881 (1979).
- [93] E. V. Aglitskii, E. P. Ivanova, S. A. Panin, U. I. Safronova, S. I. Ulityn, L. A. Vainshtein, and J. -F. Wyart, Phys. Scr. 40, 601 (1989).

- [94] P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, Phys. Rev. A 15, 700 (1977).
- [95] P. G. Burkhalter, R. Schneider, C. M. Dozier, and R. D. Cowan, Phys. Rev. A 18, 718 (1978).
- [96] V. A. Boiko, S. A. Pikuz, A. S. Safronova, and A. Ya. Faenov, J. Phys. B 11, 503 (1978).
- [97] J. Reader, C. M. Brown, J. O. Ekberg, U. Feldman, J. F. Seely, and W. E. Behring, J. Opt. Soc. Am. B, 3, 1609 (1986).
- [98] R. Myrnäs, C. Jupén, G. Mieczniak, I. Martinson, and B. Denne-Hinnov, Phys. Scr. 49, 429 (1994).
- [99] K. T. Cheng, unpublished material (1981).
- [100] W. C. Martin, unpublished material (1982).
- [101] U. Feldman, J. O. Ekberg, J. F. Seely, C. M. Brown, D. R. Kania, B. J. MacGowan, C. J. Keane, and W. E. Behring, J. Opt. Soc. Am. B 8, 531 (1991).
- [102] B. Denne, G. Magyar, and J. Jacquinot, Phys. Rev. A 40, 3702 (1989).
- [103] R. Beier and H. J. Kunze, Z. Physik A 285, 347 (1978).
- [104] Y. -K. Kim, D. H. Baik, P. Indelicato, and J. P. Desclaux, Phys. Rev. A 44, 148 (1991).
- [105] L. A. Vainshtein and U. I. Safronova, Reprint No. 2, Acad. Nauk USSR, Inst. Spectrosc. Moscow (1985).
- [106] M. H. Chen, K. T. Cheng, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 52, 266 (1995).
- [107] K. T. Cheng, private communication (1996).
- [108] Y.-K. Kim, private communication (1993).
- [109] P. Indelicato, Nucl. Instrum. Meth. B 31, 14 (1988); P. Indelicato, O. Gorceix, and J. P. Desclaux, J. Phys. B 20, 651 (1987).
- [110] J. J. Turechek and H. J. Kunze, Z. Physik A 273, 111 (1975).
- [111] G. A. Doschek and U. Feldman, J. Appl. Phys. 47, 3083 (1976).
- [112] U. Feldman and J. Reader, J. Opt. Soc. Am. B 6, 264 (1989).

3. FINDING LIST

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum
(Å)		(Å)		(Å)		(Å)	•
Vacuum		0.745699 ^C	Kr xxxv	1.204725 ^C	Cu xxix	1.4860 ^C	Cu xxvii
vacuum		0.745948 ^C	Kr xxxv	1.205873 ^C	Cu xxix	1.4866 ^C	Cu xxvii
$0.5252274^{ m C}$	Mo xlii	0.763012 ^C	Kr xxxv	1.213	Cu xxvii	1.4867 ^C	Cu xxvii
$0.5376343^{\rm C}$	Mo XLII	0.763521^{C}	Kr xxxv	1.226773 ^C	Ni xxvIII	$1.4889^{ m C}$	Cu xxvii
$0.5416470^{ m C}$	Mo xli	0.7765678 ^C	Kr xxxvi	1.25349 ^C	Ni xxvII	1.4910 ^C	Cu xxvii
$0.5418793^{ m C}$	Mo xli	0.7777188 ^C	Kr xxxvi	1.25380 ^C	Ni xxvii	1.4911 ^C	Cu xxvii
0.5542100°	Mo xli	0.803294 ^C	Kr xxxv	1.25574 ^C	Cu xxviii	1.4914 ^C	Cu xxvii
0.5546869 ^C	Mo xli	0.804637 ^C	Kr xxxv	1.25734 ^C	Cu xxviii	1.491750 ^C	Cu xxviii
0.5665407 ^C	Mo xlii	0.91448 ^C	Kr xxxv	1.272	Cu xxvii	1.4940 ^C	Cu xxvii
0.5676957 ^C	Mo XLII	0.91717 ^C	Kr xxxv	1.28252 ^C	Ni xxvii	1.4945 ^C	Cu xxvii
0.5834369 ^C	Mo XLI	0.9177942 ^C	Kr xxxvi	1.28316 ^C	Ni xxvII	1.49460 ^C	Fe xxv
0.5846975 ^C	Mo XLI	0.91852 ^C	Kr xxxv	1.289581 ^C	Co xxvii	1.4953 ^C	Cu xxvii
0.66522 ^C	Mo XLI	0.92027 ^C	Kr xxxv	1.293381 ^C	Ni xxviii	1.49531 ^C	Fe xxv
0.66675 ^C 0.6688575 ^C	Mo xli Mo xlii	0.92138 ^C 0.92160 ^C	Kr xxxv Kr xxxv	1.294528 ^C 1.303	Ni xxvIII Ni xxvI	1.4959 ^C 1.4963 ^C	Cu xxvii
0.66939 ^C	Mo XLII Mo XLI	0.92173 ^C	Kr xxxv Kr xxxv	1.320339 ^C	Co xxvii	1.4985 ^C	Cu xxvii
0.67053 ^C	Mo XLI	0.92173° 0.92198°C	Kr xxxv Kr xxxv	1.35006 ^C	Ni xxvii	1.502350 ^C	Cu xxvii Fe xxvi
0.67110 ^C	Mo XLI	0.92252 ^C	Kr xxxv	1.35125 ^C	Co xxvi	1.503496 ^C	Fe XXVI
0.67110	Mo XLI	0.92271 ^C	Kr xxxv	1.35158 ^C	Co xxvi	1.506305 ^C	Mn xxv
0.67149 ^C	Mo XLI	0.92300 ^C	Kr xxxv	1.35173 ^C	Ni xxvii	1.5090 ^C	Cu xxvii
0.67154 ^C	Mo XLI	0.9232377 ^C	Kr xxxvi	1.367	Ni xxvi	1.5136 ^C	Cu xxvii
0.67194 ^C	Mo XLI	0.92592 ^C	Kr xxxv	1.38252 ^C	Co xxvi	1.5272 ^C	Ni xxvii
$0.67200^{\rm C}$	Mo XLI	0.92621 ^C	Kr xxxv	1.38319 ^C	Co xxvi	1.530340 ^C	Ni xxviii
$0.67209^{\rm C}$	Mo XLI	$0.92623^{\rm C}$	Kr xxxv	1.391696 ^C	Fe xxvı	1.5313 ^C	Ni xxvii
$0.6743144^{\rm C}$	Mo xlii	0.92670 ^C	Kr xxxv	1.392065 ^C	Co xxvii	1.5340 ^C	Ni xxvii
$0.67572^{\rm C}$	Mo xli	$0.92697^{\rm C}$	Kr xxxv	1.393211 ^C	Co xxvii	1.5346 ^C	Ni xxvii
$0.67591^{\rm C}$	Mo xli	0.92787^{C}	Kr xxxv	1.4222 ^C	Cu xxviii	1.535769 ^C	Ni xxviii
0.67595 ^C	Mo XLI	0.92861 ^C	Kr xxxv	1.424905 ^C	Fe xxvi	1.5378 ^C	Ni xxvii
0.67629^{C}	Mo XLI	0.92919 ^C	Kr xxxv	1.425264 ^C	Cu xxix	1.5379 ^C	Ni xxvii
0.67642 ^C	Mo XLI	0.93042 ^C	Kr xxxv	1.4262 ^C	Cu xxviii	1.5384 ^C	Ni xxvii
0.67696 ^C	Mo xli	0.93215 ^C	Kr xxxv	1.4282 ^C	Cu xxviii	1.5390 ^C	Ni xxvii
0.67743 ^C	Mo XLI	0.93642 ^C	Kr xxxv	1.4293 ^C	Cu xxviii	1.5400 ^C	Ni xxvii
0.67785 ^C 0.67882 ^C	Mo XLI	0.94359 ^C 0.94511 ^C	Kr xxxiv	1.430694 ^C	Cu xxix	1.5404 ^C	Ni xxvii
0.68139 ^C	Mo xli Mo xli	0.945330	Kr xxxiv Kr xxxv	1.4320 ^C 1.4321 ^C	Cu xxviii Cu xxviii	1.5415 ^C 1.542265 ^C	Ni xxvii
0.68363 ^C	Mo XL	0.94705 ^C	Kr xxxv Kr xxxv	1.4321° 1.4326°	Cu xxviii Cu xxviii	1.542265° 1.5425°	Mn xxv
0.68436 ^C	Mo XLI	0.94746 ^C	Kr xxxiv	1.4320° 1.4331°C	Cu xxviii Cu xxviii	1.5429 ^C	Ni xxvii Ni xxvii
0.68446 ^C	Mo XL	0.94804 ^C	Kr xxxiv	1.4340 ^C	Cu xxviii	1.5429 1.5432 ^C	Ni xxvii
0.68559 ^C	Mo XL	0.94808 ^C	Kr xxxiv	1.4344 ^C	Cu xxviii	1.5436 ^C	Ni xxvii
0.6864087 ^C	Mo XLI	0.94961 ^C	Kr xxxiv	1.4353 ^C	Cu xxviii	1.5443 ^C	Ni xxvii
0.6874457^{C}	Mo xli	$0.94963^{\rm C}$	Kr xxxiv	1.4366 ^C	Cu xxviii	1.5466 ^C	Ni xxvii
$0.68763^{\rm C}$	Mo xL	0.94995 ^C	Kr xxxiv	1.4370 ^C	Cu xxviii	1.5480 ^C	Ni xxvii
0.68809^{C}	Mo xl	$0.95034^{\rm C}$	Kr xxxiv	1.4372 ^C	Cu xxviii	1.5491^{C}	Ni xxvii
$0.68814^{\rm C}$	Mo xl	$0.95137^{\rm C}$	Kr xxxiv	1.4377 ^C	Cu xxviii	1.5508 ^C	Ni xxvii
0.68898^{C}	Mo xL	0.951763	Kr xxxv	1.4383 ^C	Cu xxviii	1.5510 ^C	Ni xxvii
0.68913 ^C	Mo XL	0.95241 ^C	Kr xxxiv	1.4403 ^C	Cu xxviii	1.5587 ^C	Ni xxvii
0.68923 ^C	Mo xl	0.95288 ^C	Kr xxxiv	1.4416 ^C	Cu xxviii	1.57317 ^C	Fe xxv
0.68958 ^C	Mo xL	0.95451 ^C	Kr xxxiv	1.4426 ^C	Cu xxviii	1.57503 ^C	Fe xxv
0.69013 ^C	Mo XL	0.95491 ^C	Kr xxxiv	1.4444 ^C	Cu xxviii	1.58412 ^C	Mn xxiv
0.69072^{C} 0.6923782^{C}	Mo XL	0.95519 ^C	Kr xxxv	1.4445 ^C	Cu xxviii	1.58449 ^C	Mn xxiv
0.6923782° 0.69275°	Mo XLI	0.95566 ^C	Kr xxxiv	1.4518 ^C	Cu xxviii	1.588404 ^C	Ni xxvii
0.69275° 0.69381°	Mo XL Mo XL	0.95615 ^C 0.95652 ^C	Kr xxxiv	1.45528 ^C 1.45704 ^C	Co xxvi	1.5892 ^C	Ni xxvi
0.69381° 0.69417°	Mo XL Mo XL	0.95652° 0.95699°	Kr xxxiv Kr xxxiv	1.45704° 1.46082°	Co xxvi	1.592314 ^C 1.5931 ^C	Ni XXVII
0.69445 ^C	Mo XL	0.95725 ^C	Kr xxxiv Kr xxxiv	1.46116 ^C	Fe xxv Fe xxv	1.5931° 1.5933°	Ni xxvi
0.6945793 ^C	Mo XLI	0.96028 ^C	Kr xxxiv Kr xxxiv	1.477583 ^C	Cu xxviii	1.5933° 1.5936°C	Ni XXVI
0.69482 ^C	Mo XL	0.96415 ^C	Kr xxxiv	1.4779 ^C	Cu xxvii	1.5936 ⁻¹	Ni xxvi Ni xxvi
0.69501 ^C	Mo XL	0.96884 ^C	Kr xxxiv	1.481061 ^C	Cu xxviii	1.596563 ^C	Ni XXVI Ni XXVII
0.69533 ^C	Mo XL	1.116122 ^C	Cu xxix	1.481001 1.4811 ^C	Cu xxvii	1.5970 ^C	Ni xxvii Ni xxvi
0.69554 ^C	Mo XL	1.142716 ^C	Cu xxix	1.4815 ^C	Cu xxvii	1.5977 ^C	Ni xxvi
$0.69911^{\rm C}$	Mo XL	1.16587 ^C	Cu xxviii	1.4817 ^C	Cu xxvii	1.5984 ^C	Ni xxvi
$0.70014^{\rm C}$	Mo XL	1.16616 ^C	Cu xxviii	$1.4824^{\rm C}$	Cu xxvii	1.5984 ^C	Ni xxvi
		1 10000C	Cu xxviii	$1.4825^{ m C}$	Cu xxvii	1.5997 ^C	Ni xxvi
$0.70487^{\rm C}$	Mo XL	1.19288 ^C	Cu XXVIII		Ou AAVII	1.0001	INI YVVI
	Kr xxxvı	1.19288° 1.19349° 1.198208°	Cu xxviii Cu xxviii Ni xxviii	1.4853 ^C 1.485378 ^C	Cu xxvii	1.6009 ^C 1.6029 ^C	Ni xxvi

Finding List - Continued

1.6029C Ni xxvi	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
1.60969 N XXVI 1.7336		Ni vym	`	Carry		F- 1000		M
1.6999° Ni XXVI								
1.666836 Ni xxvi								
1.60886 Ni xxvi			1.7362 ^C		1.0714 1.9799C		1.9410 - 1.040046C	
1.6077° Ni xxvi			1.7302 1.7400 ^C					
1.66836 Ni xxvi			1.7544C					
1.60876 Ni xxvi			1.76334C					
1-6108 Ni xxvi								
1.62071C Mn XXIV								
1.62147° Mi XXIV								
1.62286								
1.626730° Mn xxv								
1.627276								
1.6274G								
1.635535 C C X V 1.7836 P E X V 1.87973 P E X V 1.647303 C C X V 1.7876 P E X V 1.8210 C X X V X								
1.6441G								
1.647303° Co XXVI								
1.6483	1.647303 ^C		1.7871 ^C					
1.6519							2.015816 ^C	
1.6519G CO XXVI					1			
1.652730							2.0194 ^C	
1.6556 C								
1.6556 Co xxv 1.7920 Fe xxv 1.8867 Fe xxiii 2.0236 Min xxiii 1.6570 Co xxv 1.7925 Fe xxv 1.8816 Fe xxii 2.0234 Min xxiii 1.6580 Co xxv 1.7930 Fe xxv 1.8916 Fe xxii 2.0243 Min xxiii 1.6580 Co xxv 1.7930 Fe xxv 1.8924 Fe xxii 2.0248 Min xxiii 1.6586 Co xxv 1.7932 Fe xxv 1.89359 Fe xxii 2.02512 Min xxiii 1.6698 Co xxv 1.7942 Fe xxv 1.8942 Fe xxii 2.026 Ti xxii 1.6697 Co xxv 1.7972 Fe xxv 1.8942 Fe xxii 2.026 Ti xxii 1.6607 Co xxv 1.7972 Fe xxv 1.8942 Fe xxii 2.026 Ti xxii 1.6610 Co xxv 1.8902 Fe xxv 1.8947 Fe xxii 2.02635 V xxiii 1.6615 Co xxv 1.8002 Fe xxv 1.8966 Fe xxii 2.0282 V xxiii 1.6632 Co xxv 1.8015 Fe xxv 1.8966 Fe xxii 2.02866 V xxiii 1.6639 Co xxv 1.8100 Fe xxv 1.8968 Fe xxii 2.02866 V xxiii 1.6649 Co xxv 1.8110 Fe xxv 1.89692 Fe xxii 2.0308 Min xxiii 1.6677 Co xxvi 1.8453 Fe xxiiv 1.9051 Fe xx 2.0320 Min xxiii 1.6691 Co xxvi 1.8453 Fe xxiiv 1.9051 Fe xx 2.0320 Min xxiii 1.6691 Co xxvi 1.850396 Fe xxii 1.9051 Fe xx 2.0331 Min xxiii 1.674576 Co xxvi 1.85248 Fe xxii 1.9075 Fe xx 2.0331 Min xxiii 1.6778 Co xxvi 1.85248 Fe xxiiv 1.9075 Fe xx 2.041 Ti xxi 1.70581 Min xxiii 1.85349 Fe xxiiv 1.9075 Fe xx 2.041 Ti xxi 1.70581 Min xxiii 1.85349 Fe xxiiv 1.9075 Fe xx 2.0637 Min xxiii 1.70781 Min xxiiv 1.85349 Fe xxiiv 1.9075 Fe xx 2.0637 Min xxiii 1.70781 Min xxiiv 1.85349 Fe xxiiv 1.9075 Fe xx 2.0637 Min xxiii 1.70781 Min xxiiv 1.85349 Fe xxiiv 1.9075 Fe xx 2.0637 Min xxiii 1.71194 Co xxvi 1.85549 Fe xxiiv 1.90845 Fe xxii 2.06387 Ti xxi 1.71194 Co xxvi 1.85549 Fe xxiiv 1.90845 Fe xxii 2.06360 Ti xxi 1.71194 Co xxvi 1.85549 Fe xxiiv 1.9046 Min xxiiv 2.06								
1.6563 ^C Co xxvi								
1.6570C Co xxvi								
1.6580C Co xxvi								
1.6585								
1.6598C Co xxvi					3			
1.6603° Co xxvi		Co xxvi			I.			
1.6601° C								
1.6611 C								
1.6615								
1.6623° Co xxvi			1.8015 ^C					
1.6649° Co xxvi	$1.6623^{\rm C}$	Co xxvi						
1.6664° Co xxv 1.824559° V xxiii 1.9051 Fe xx 2.0320° Mn xxiii 1.6677° Co xxv 1.8464 Fe xxiv 1.9051 Fe xx 2.0326° Mn xxiii 1.6697° Co xxv 1.8464 Fe xxiv 1.9051 Fe xx 2.0331° Mn xxiii 1.6697° Co xxv 1.850396° Fe xxv 1.90568 Fe xx 2.0348° Mn xxiii 1.674597° Cr xxiv 1.85248° Fe xxiv 1.9075 Fe xx 2.041 Ti xxi 1.70583° Mn xxiv 1.85249° Fe xxiv 1.9075 Fe xx 2.041 Ti xxi 1.70583° Mn xxiv 1.85349 Fe xxiv 1.9075 Fe xx 2.0527° Mn xxiii 1.70781° Mn xxiv 1.8540 Fe xxiv 1.91765 Fe xx 2.0572° Mn xxiii 1.71794° Co xxv 1.855405° Fe xxv 1.91765 Fe xx 2.0572° Mn xxiii 1.7134° Co xxv 1.855405° Fe xxiv 1.91765 Fe xxi 2.06387° Ti xxi 1.7134° Co xxv 1.855405° Fe xxiv 1.92164 Fe xviii 2.06387° Ti xxi 1.7172° Co xxv 1.85692 Fe xxiv 1.923864° V xxiii 2.0864° Cr xxiii 1.7177° Co xxv 1.85691 Fe xxiv 1.925409° V xxiii 2.09144° Cr xxiv 1.7181° Co xxv 1.85704 Fe xxiv 1.92548° V xxii 2.093567° Cr xxiii 1.720588° Co xxv 1.85704 Fe xxiv 1.92548° V xxii 2.09566° Cr xxiii 1.7215° Co xxv 1.85796° Cr xxiii 1.92666° V xxii 2.0966° Cr xxiii 1.7231° Co xxv 1.8588 Fe xxiii 1.930147° Mn xxiv 2.01016° Cr xxiii 1.7231° Co xxv 1.859511° Fe xxv 1.9314° Mn xxiv 2.10110° Cr xxiii 1.72356° Cr xxiii 1.8628° Fe xxiv 1.9314° Mn xxiv 2.1038° Cr xxiii 1.72396° Cr xxiii 1.8628° Fe xxiv 1.9361° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii 1.8628° Fe xxiv 1.9361° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii 1.86345 Fe xxiv 1.9361° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii 1.86345 Fe xxiv 1.9366° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii 1.86345 Fe xxiv 1.9366° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii 1.86345 Fe xxiv 1.9366° Mn xxiv 2.1036° Cr xxiii 1.72356° Cr xxiii			1.8110 ^C					
1.6677° Co xxvi	$1.6664^{\rm C}$	Co xxvi					$2.0320^{\rm C}$	
1.6691	$1.6677^{\rm C}$	Co xxvi	1.8453	Fe xxiv				
1.6697° Co xxv 1.850396° Fe xxv 1.90568 Fe xx 2.0348° Mn xxiii 1.674597° Cr xxiiv 1.85248° Fe xxiv 1.9075 Fe xx 2.041 Ti xxi 1.70583° Mn xxiv 1.85273 Fe xxiv 1.9075 Fe xx 2.041 Ti xxi 1.70583° Mn xxiv 1.85349 Fe xxiv 1.90845 Fe xx 2.0527° Mn xxiii 1.70781° Mn xxiv 1.8540 Fe xxiv 1.91765 Fe xx 2.0572° Mn xxiii 1.71194° Co xxv 1.855405° Fe xxv 1.9212° Mn xxiv 2.06340° Ti xxi 1.7134° Co xxv 1.85584° Cr xxiii 1.92164 Fe xviii 2.06387° Ti xxi 1.716409° Co xxv 1.85592 Fe xxiv 1.923864° V xxiii 2.0864° Cr xxiii 1.7172° Co xxv 1.85691 Fe xxiv 1.924723° Mn xxv 2.090144° Cr xxiv 1.7170° Co xxv 1.85691 Fe xxiv 1.924723° Mn xxv 2.090144° Cr xxiii 1.7181° Co xxv 1.85704 Fe xxiv 1.92586° Mn xxiv 2.095567° Cr xxiii 1.7215° Co xxv 1.85796° Fe xxiv 1.92586° Mn xxiv 2.0982° Cr xxiii 1.7215° Co xxv 1.85796° Cr xxiii 1.92586° Mn xxiv 2.0982° Cr xxiii 1.7225° Co xxv 1.8580 Fe xxiv 1.9301° Mn xxiv 2.1014° Cr xxiii 1.7231° Co xxv 1.8588 Fe xxiii 1.930147° Mn xxiv 2.1014° Cr xxiii 1.7235° Co xxv 1.8588 Fe xxiii 1.930147° Mn xxiv 2.1038° Cr xxiii 1.72356° Cr xxiii 1.86286° Fe xxiv 1.9316° Mn xxiv 2.1038° Cr xxiii 1.72396° Cr xxiii 1.86286° Fe xxiv 1.9368° Mn xxiv 2.1038° Cr xxiii 1.7259° Co xxv 1.86345 Fe xxiv 1.9368° Mn xxiv 2.10510° Cr xxiii 1.7259° Co xxv 1.86345 Fe xxiv 1.9366° Mn xxiv 2.10525° Ti xxii 1.7277° Co xxv 1.86345 Fe xxiv 1.9368° Mn xxiv 2.10510° Cr xxiii 1.7277° Co xxv 1.86796° Fe xxiv 1.9366° Mn xxiv 2.10500° Cr xxiii 1.7277° Co xxv 1.86796° Fe xxiv 1.9360° Mn xxiv 2.1069° Cr xxiii 1.7277° Co xxv 1.86396° Fe xxiv 1.9360° Mn xxiv 2.1069° Cr xxiii 1.727	$1.6691^{\rm C}$	Co xxvi	1.8464	Fe xxıv		Fe xx		
1.674597° Cr xxiv	$1.6697^{\rm C}$	Co xxvi	1.850396 ^C	Fe xxv				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.674597^{ m C}$	Cr xxiv		Fe xxiv	1.9075		2.041	
1.70583° Mn xxiv		Co xxvi	1.85273	Fe xxiv		Fe xx		
1.70781	$1.70583^{ m C}$	Mn xxiv	1.85349	Fe xxiv		Fe xx	2.0527 ^C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.70781^{ m C}$	Mn xxiv	1.8540	Fe xxiv		Fe xıx		
1.7134° Co xxv	$1.711994^{ m C}$	Co xxvi	1.855405 ^C		$1.9212^{\rm C}$	Mn xxiv		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.7134^{ m C}$	Co xxv	1.85584 ^C	Cr xxIII	1.92164	Fe xviii	2.06387 ^C	
1.7172C Co xxv 1.8563C Fe xxiv 1.924723C Mn xxv 2.090144C Cr xxiv 1.7177C Co xxv 1.85691 Fe xxiv 1.925009C V xxiii 2.0913C Cr xxivi 1.7180C Co xxv 1.85704 Fe xxiv 1.92548C V xxiii 2.095567C Cr xxivi 1.7181C Co xxv 1.85779C Fe xxiv 1.9258C Mn xxiv 2.0960C Cr xxiii 1.720588C Co xxvi 1.85796C Cr xxiii 1.92636C V xxiii 2.0982C Cr xxiii 1.7215C Co xxv 1.8580 Fe xxivi 1.9301C Mn xxiv 2.1014C Cr xxiii 1.7225C Co xxv 1.8588 Fe xxivi 1.93014T Mn xxiv 2.1017C Cr xxiii 1.7231C Co xxv 1.859511C Fe xxiv 1.9314C Mn xxiv 2.1030C Cr xxiii 1.7232C Co xxv 1.86108 Fe xxiv 1.9348C Mn xxiv 2.1038C Cr xxiii 1.7236C Cr xxiii 1.86224 Fe xxiv 1.9361C Mn xxiv 2.1051C Cr xxiii<	$1.716409^{\rm C}$	Co xxvi	1.85592	Fe xxiv	1.923864 ^C		$2.0864^{\rm C}$	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv	1.8563 ^C	Fe xxiv	1.924723 ^C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv	1.85691	Fe xxiv	1.925009 ^C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv		Fe xxiv		V xxII		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv				Mn xxiv	2.0960 ^C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxvi	1.85796 ^C	Cr xxiii	1.92636 ^C	V xxii	2.0982 ^C	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv	1.8580	Fe xxiv		Mn xxiv	2.1014 ^C	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv	1.8588	Fe xxIII	1.930147 ^C	Mn xxv	2.1017 ^C	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7231^{C}	Co xxv	1.859511 ^C	Fe xxv	1.9314 ^C	Mn xxiv	$2.1030^{\rm C}$	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.7232^{ m C}$	Co xxv	1.86108	Fe xxiv	1.9348 ^C	Mn xxiv	2.1038 ^C	Cr xxIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cr xxIII	1.86224		1.9351 ^C		2.104080 ^C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cr xxiii	$1.8628^{\rm C}$	Fe xxiv	1.9361 ^C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv		Fe xxiv			2.1051 ^C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.7259^{ m C}$				1.9381 ^C			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Co xxv	l .					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.7277^{\rm C}$		1.8672 ^C					
1.7293 ^C Co xxv 1.868190 ^C Fe xxv 1.9405 ^C Mn xxiv 2.1078 ^C Cr xxiii 1.7317 ^C Co xxv 1.8692 Fe xxiii 1.9411 ^C Mn xxiv 2.1081 ^C Cr xxiii								
1.7317 ^C Co xxv 1.8692 Fe xxiii 1.9411 ^C Mn xxiv 2.1081 ^C Cr xxiii		Co xxv			1.9405 ^C			
	1.7317^{C}		1		I			
	1.7322^{C}	Co xxv	1.8699 ^C	Fe xxiv	1.9412 ^C	Mn xxiv		

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum
(Å)		(Å)		(Å)	 	(Å)	
$2.1093^{ m C}$	Cr xxIII	2.255	Ti xx	2.5060 ^C	Ti xxı	2.876503 ^C	Mo xli
2.11088^{C}	Ti xxı	2.2736 ^C	V xxII	2.5079 ^C	Ti xxı	2.890589 ^C	Mo XLI
2.11185^{C}	Ti xxı	2.277603 ^C	V xxiii	2.5089 ^C	Ti xxı	2.912502 ^C	Mo XL
2.11289^{C}	Ti xxı	2.2788 ^C	V xxII	2.5105 ^C	Ti xxı	2.932594 ^C	Mo XL
$2.1135^{\rm C}$	Cr xxiii	2.283024 ^C	V xxIII	2.5111 ^C	Ti xxı	2.997674 ^C	Mo XL
$2.1154^{ m C}$	Cr xxIII	2.2839 ^C	V xxII	2.5116 ^C	Ti xxı	3.001242 ^C	Mo XL
$2.1171^{\rm C}$	Cr xxIII	$2.2872^{\rm C}$	V xxII	2.5124 ^C	Ti xxı	3.022582 ^C	Mo XL
2.1178^{C}	Cr xxIII	$2.2902^{\rm C}$	V xxII	2.5130 ^C	Ti xxı	3.09	Mo xxxiii
2.1197^{C}	Cr xxIII	$2.2907^{\rm C}$	V xxII	$2.5134^{\rm C}$	Ti xxı	3.18	Mo xxxiii
2.1296^{C}	Cr xxiii	$2.2922^{\rm C}$	V xxII	$2.5140^{\rm C}$	Ti xxı	3.18	Mo xxxiii
2.151	Ti xx	$2.2931^{\rm C}$	V xxii	$2.5146^{\rm C}$	Ti xxı	3.26	Mo xxxiii
$2.182033^{ m C}$	Cr xxIII	$2.2946^{\rm C}$	V xxii	$2.5204^{\rm C}$	Ti xxı	3.26579 ^C	Kr xxxvi
2.1834	Cr xxII	2.2952^{C}	V xxII	2.5227 ^C	Ti xxı	3.32	Mo xxxiii
2.1834	Cr xxii	2.2960 ^C	V xxII	$2.5248^{\rm C}$	Ti xxi	3.33275 ^C	Kr xxxvi
2.1834	Cr xxII	2.2966 ^C	V xxii	$2.5249^{ m C}$	Ti xxı	3.40060^{C}	Kr xxxv
2.1846	Cr xxII	2.2973 ^C	V xxII	2.5279 ^C	Ti xxı	3.40448^{C}	Kr xxxv
2.1846	Cr xxii	2.2975^{C}	V xxii	$2.5396^{\rm C}$	Ti xxı	3.42	Mo xxxIII
2.1846	Cr xxII	2.2976 ^C	V xxii	2.560755 ^C	Mo XLI	$3.44394^{\rm C}$	Kr xxxv
2.1846	Cr xxII	2.2987 ^C	V xxII	2.564275 ^C	Mo XL	3.45149 ^C	Kr xxxv
2.1846	Cr xxII	2.3036 ^C	V xxII	2.568532 ^C	Mo XL	3.51485 ^C	Kr xxxv
2.1854	Cr xxII	2.3057^{C}	V xxII	2.573552 ^C	Mo XLI	3.53583 ^C	Kr xxxv
2.1856 ^C	Cr xxII	2.3076 ^C	V xxII	2.609772 ^C	Mo xl	3.547687 ^C	Mo xlii
2.188576^{C}	Cr xxIII	$2.3080^{\rm C}$	V xxii	2.610398 ^C	Ti xxi	3.5676 ^C	Kr xxxiv
2.1896^{C}	Cr xxII	2.3105 ^C	V xxii	2.6160 ^C	Ti xx	3.5718 ^C	Kr xxxiv
2.1898^{C}	Cr xxII	2.3211 ^C	V xxii	2.617971 ^C	Mo XL	3.636	Mo xxxiii
2.1905^{C}	Cr xxii	2.376919 ^C	Mo xlii	2.619130 ^C	Ti xxı	$3.6404^{\rm C}$	Kr xxxiv
2.192532 ^C	Cr xxiii	2.381952 ^C	V xxII	2.6202 ^C	Ti xx	3.64964 ^C	Kr xxxvi
2.1929 ^C	Cr xxii	2.3864 ^C	V xxi	2.6204 ^C	Ti xx	3.6510 ^C	Kr xxxiv
2.1955 ^C	Cr xxII	2.389489 ^C	V xxii	2.6213 ^C	Ti xx	3.654271 ^C	Mo xli
2.1972 ^C	Cr xxII	2.3906 ^C	V xxi	2.622933 ^C	Ti xxi	3.684	Mo xxxiii
2.1976 ^C	Cr xxII	2.3907 ^C	V xxı	2.6260 ^C	Ti xx	3.688025 ^C	Mo XLII
2.1979 ^C	Cr xxII	2.3915 ^C	V xxi	2.6279 ^C	Ti xx	3.695959 ^C	Mo XLI
2.1984 ^C	Cr xxII	2.393369 ^C	V xxII	2.6302 ^C	Ti xx	3.70656 ^C	Mo XLI
2.2015 ^C	Cr xxII	2.394055 ^C	V xxii	2.6302 ^C	Ti xx	3.70814 ^C	Mo XLI
2.2020 ^C	Cr XXII	2.3950 ^C	V xxi	2.6306 ^C	Ti xx	3.70882 ^C	Mo XLI
2.2027 ^C	Cr xxii	2.3973 ^C	V xxi	2.6320 ^C	Ti xx	3.709635 ^C	Mo XLI
2.203414 ^C	Cr xxIII	2.3992 ^C	V xxi	2.6348 ^C	Ti xx	3.7097 ^C	Kr xxxiv
$\frac{2.2071^{\mathbf{C}}}{2.2079}$	Cr XXII	2.3996 ^C	V xxi	2.6354 ^C	Ti xx	3.7111 ^C	Kr xxxiv
2.2079 2.2093 ^C	Cr xxi	2.3996 ^C	V xxi	2.6363 ^C	Ti xx	3.7222 ^C	Kr xxxiv
2.2093 ⁻ 2.2097 ^C	Cr xxII	2.4007 ^C	V xxi	2.636861 ^C	Ti xxı	3.73172 ^C	Kr xxxvi
2.2103	Cr xxII	2.4039 ^C	V xxi	2.6434 ^C	Ti xx	3.763	Mo xxxiii
2.2103 2.2110 ^C	Cr xxi Cr xxii	$2.4040^{\mathrm{C}} \ 2.4050^{\mathrm{C}}$	V xxi	2.6454 ^C	Ti xx	3.777379 ^C	Mo XLI
2.2115	Cr xxii	2.405646 ^C	V xxi	2.6458 ^C	Ti xx	3.793814 ^C	Mo xL
2.2115^{C}			V xxII	2.6473 ^C	Ti xx	3.79461 ^C	Kr xxxv
2.2115° 2.2121°	Cr xxii Cr xxii	$2.4106^{C} \ 2.4127^{C}$	V xxi	$2.6477^{\rm C} \ 2.6484^{\rm C}$	Ti xx	3.80406 ^C	Kr xxxv
2.2121 ° 2.2137 ^C	Cr XXII Cr XXII	2.4127° 2.4131°C	V xxi	2.6484° 2.6497°	Ti xx	3.809	Mo xxxiii
2.2140	Cr xxii	2.4131° 2.4145°	V xxi V xxi	2.6497° 2.654099°	Ti xx	3.837556 ^C	Mo XL
$\frac{2.2140}{2.2173}$	Cr xxi	2.4145° 2.4150°	V XXI V XXI	2.654099° 2.6772°	Mo XLII	3.84180 ^C	Mo XLI
2.2173	Cr xxi	2.4150° 2.4156°		2.6772° 2.679338°	Ti xx	3.84356 ^C	Kr xxxv
2.2139 ^C	Tì xxi	2.4150° 2.4171°	V xxi V xxi	2.679338° 2.680798°	Mo XL	3.84667 ^C	Kr xxxv
2.2222	Cr xx	2.4171° 2.4408°C	V XXI V XXI	2.680798° 2.6816 ^C	Mo XL	3.84685 ^C	Kr xxxv
2.2233	Cr xx	2.4408 ⁻ 2.444411 ^C	V XXI Mo XLII	2.6816° 2.689450°	Ti xx	3.84708 ^C	Kr xxxv
2.22382 ^C	Ti xxi	2.44411 - 2.4452 ^C	V xxi	2.689450° 2.736773°	Mo xl Mo xlii	3.85706 ^C 3.86605 ^C	Mo XLI
2.2263	Cr xx	2.460788 ^C	Mo XLI	2.736773° 2.744242°		3.88605 ^C	Kr xxxv
2.22658 ^C	Ti xxı	2.464821 ^C	Mo XLI Mo XLI	2.754074 ^C			Mo XL
2.2343 ^C	Cr xxII	2.4868 ^C	Ti xxi	2.754074° 2.77631°	Mo XLI Mo XLI	3.92219 ^C 3.92572 ^C	Kr XXXV
2.2347	Cr xix	2.488751 ^C	Mo XLI	2.77720 ^C	Mo XLI Mo XLI	3.92572 ^C 3.931270 ^C	Kr xxxv
2.2371	Cr xix	2.491197 ^C	Ti xxii	2.77736 ^C	Mo XLI Mo XLI	3.931270° 3.94572°	Mo XLI
2.2386	Cr xix	2.491157 2.4924 ^C	Ti xxi	2.778109 ^C		3.94572° 3.946071°	Kr xxxv Mo xli
2.2387 ^C	Cr xxII	2.494556 ^C	Mo XLI	2.793238 ^C		3.95139 ^C	Kr XXXV
2.2414	Cr xix	2.496618 ^C	Ti xxii	2.85612 ^C	Mo XLI Mo XLI	3.96891 ^C	Kr xxxv Kr xxxv
2.243	Ti xx	2.4981 ^C	Ti xxi	2.857098 ^C	Mo XLI Mo XL	3.972630 ^C	Kr xxxv Mo xl
2.243	Ti xx	2.5026 ^C	Ti xxi	2.85967 ^C	Mo XLi	3.9766 ^C	MO XL Kr XXXIV
2.243	Ti xx	2.5053 ^C	Ti xxi	2.867462 ^C		3.9870°	Kr xxxiv Kr xxxiv
#:#3U	21 00	1 4.0000	* 1 ^ ^ 1	2.001402	MO YP	1 3.3010	IXI XXXIV

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
$4.030462^{\rm C}$	Mo xL	5.8458 ^C	Ni xxvII	6.5214 ^C	Ni xxvII	7.0690 ^C	Co xxvi
4.045765 ^C	Mo xl	5.870801 ^C	Co xxvii	6.53301 ^C	Cu xxvii	7.090077 ^C	Fe xxvı
4.0653 ^C	Kr xxxiv	5.87938 ^C	Cu xxvii	6.5504 ^C	Ni xxvii	7.09058 ^C	Ni xxvi
4.0913 ^C	Kr xxxiv	5.88082 ^C	Cu xxvii	6.567273 ^C	Co xxvii	7.09410 ^C	Ni xxvi
4.139580 ^C	Mo xL	5.89804 ^C	Cu xxvii	6.57650 ^C	Cu xxvii	7.1048 ^C	Co xxvi
4.1502 ^C	Kr xxxiv	5.9034 ^C	Ni xxvii	6.58003 ^C	Cu xxvii	7.1082 ^C	Co xxvi
4.1537 ^C	Kr xxxiv	5.937026 ^C	Co xxvii	6.5896 ^C	Ni xxvii	7.123	Kr xxviii
4.1809 ^C	Kr xxxiv	5.9522 ^C	Ni xxvii	6.5930 ^C	Ni xxvii	7.14006 ^C	Ni xxvi
4.4184	Mo xxxIII	5.9605 ^C	Cu xxviii	6.60643 ^C	Co xxv	7.1404 ^C	Co xxvi
4.4653	Mo xxxIII	5.9693 ^C	Cu xxviii	6.61066 ^C	Co xxv	7.162	Kr xxviii
$4.472 \\ 4.480$	Mo xxxiv	6.0511 ^C 6.0583 ^C	Cu xxviii	6.614	Kr xxviii	7.169	Fe XXIV
	Mo XXXIV		Cu xxviii	6.62237 ^C	Cu xxvii	7.169	Fe XXIV
4.493 4.503	Mo xxxiv Mo xxxiv	6.0585 ^C 6.0585 ^C	Cu xxviii Cu xxviii	6.6230 ^C	Ni xxvii	7.171209 ^C	Fe XXVI
4.506	Mo XXXIV Mo XXXIV	6.0859 ^C	Cu xxviii Cu xxviii	6.626 6.626	Kr xxviii Kr xxviii	7.1810 ^C 7.18986 ^C	Co xxvi
4.506	Mo XXXIV	6.099473 ^C	Ni xxviii	6.639	Kr XXVIII Kr XXVIII	1	Mo XLII
4.512	Mo XXXIV	6.11012 ^C	Ni xxvii	6.648503 ^C	Co xxvii	7.193 7.2025 ^C	Kr xxviii
4.521	Mo xxxiv	6.11436 ^C	Ni xxvi	6.6569 ^C	Ni xxvii	7.2025	Co xxvi
4.550	Mo xxxiv	6.1280 ^C	Cu xxviii	6.663	Kr xxviii	7.209	Kr xxviii
4.6325	Mo xxxiii	6.129	Kr xxviii	6.663	Kr xxviii Kr xxviii	7.24266 ^C	Kr xxviii Mo xlii
4.8044	Mo xxxiii	6.1314 ^C	Cu xxviii	6.6777 ^C	Ni xxvii	7.24266	Kr xxvii
4.8516	Mo xxxiii	6.145	Kr xxviii	6.678	Kr xxviii	7.2738 ^C	Mn xxiv
4.89156 ^C	Kr xxxvi	6.145	Kr xxviii	6.678	Kr xxviii	7.2771 ^C	Mn xxiv
4.9828	Mo xxxiii	6.145	Kr xxviii	6.694	Kr xxvii	7.29590 ^C	Mo XLI
$5.03120^{ m C}$	Kr xxxvi	6.1594 ^C	Cu xxviii	6.699	Kr xxviii	7.322	Kr xxvi
5.0631^{C}	Kr xxxv	6.166	Kr xxviii	6.7031 ^C	Fe xxv	7.331470 ^C	Mo XLI
5.077897 ^C	Cu xxix	6.171	Kr xxviii	6.7065 ^C	Fe xxv	7.355846 ^C	Mo XLI
$5.1033^{\rm C}$	Kr xxxv	6.171	Kr xxviii	6.715	Kr xxviii	7.36403 ^C	Co xxv
5.1429^{C}	Kr xxxv	6.180802 ^C	Ni xxviii	6.727	Kr xxviii	7.370	Fe xxiv
$5.144290^{\rm C}$	Cu xxix	6.185	Kr xxviii	6.74877 ^C	Fe xxiv	7.37431 ^C	Co xxv
$5.1484^{ m C}$	Kr xxxv	6.1878 ^C	Cu xxviii	6.78583 ^C	Co xxv	7.3891 ^C	Fe xxiv
5.1489^{C}	Kr xxxv	6.1961 ^C	Co xxvi	6.787	Fe xxiv	7.3994 ^C	Mn xxiv
$5.1492^{ m C}$	Kr xxxv	6.1996 ^C	Co xxvi	6.787	Fe xxiv	7.4128 ^C	Mn xxiv
5.2069	Mo xxxiii	$6.2079^{\rm C}$	Cu xxviii	6.80582 ^C	Co xxv	7.413778 ^C	Mo XLI
5.2320 ^C	Kr xxxv	6.214	Kr xxviii	6.808	Fe xxiv	7.438	Fe xxiv
5.2764^{C}	Kr xxxv	6.259	Kr xxviii	6.808	Fe xxiv	7.438	Fe xxiv
5.2879 ^C	Kr xxxiv	6.27005 ^C	Ni xxvi	6.81110 ^C	Ni xxvi	7.445	Fe xxiii
5.2915 ^C	Kr xxxv	6.28832 ^C	Ni xxvi	6.8150 ^C	Fe xxv	7.452203 ^C	Cr xxiv
5.3286 ^C	Kr xxxv	6.2962 ^C	Co xxvi	6.82139 ^C	Ni xxvi	7.4601 ^C	Fe xxiv
5.3316 ^C	Kr xxxiv	6.3082 ^C	Co xxvi	6.8277 ^C	Fe xxv	7.4678 ^C	Mn xxiv
5.3395 ^C	Cu xxviii	6.31740 ^C	Cu xxvii	6.85495 ^C	Co xxv	7.472	Fe xxIII
5.3430 ^C 5.3790 ^C	Cu xxviii	6.32771 ^C	Cu xxvii	6.85639 ^C	Co xxv	7.4833 ^C	Fe xxv
5.4045 ^C	Kr xxxv	6.333 6.337581 ^C	Kr xxvii	6.861473 ^C 6.87680 ^C	Mn xxv	7.4917 ^C	Fe xxv
5.4206 ^C	Kr xxxv	6.33917 ^C	Fe XXVI		Co xxv	7.504	Kr xxvii
5.4314 ^C	Cu xxviii Cu xxviii	6.34061 ^C	Ni xxvi Ni xxvi	6.878 6.881	Kr xxvii Kr xxviii	7.518186 ^C	Cr xxiv
5.4359 ^C	Kr xxxiv	6.35930 ^C	Ni XXVI	6.8836 ^C	Fe xxv	7.5398 ^C 7.570	Mn xxiv
5.453125 ^C	Ni xxviii	6.3650 ^C	Co xxvi	6.9171 ^C	Co XXVI	7.58253 ^C	Kr xxvi Co xxv
5.4899 ^C	Cu xxviii	6.383	Kr xxvii	6.9171° 6.9256°	Co xxvi	7.58253° 7.58740°	
5.519434 ^C	Ni xxviii	6.403725 ^C	Fe xxvii	6.927539 ^C	Mn xxv	7.58740° 7.607762°	Mo XLI
5.5332 ^C	Cu xxviii	6.4128 ^C	Ni xxvii	6.927539	Kr XXVIII	7.607762° 7.6078 ^C	Mo XLI
5.536	Mo xxxiv	6.418	Kr XXVII	6.9466 ^C	Fe xxv	7.6078° 7.6172°	Fe XXV
5.5482 ^C	Kr xxxiv	6.4203 ^C	Co xxvii	6.955	Kr XXVII	7.6172° 7.6174°	Fe xxv Fe xxv
5.5799 ^C	Kr xxxiv	6.4214 ^C	Ni xxvii	6.972	Fe xxiv	7.6174° 7.6183°C	Fe xxv
5.5951 ^C	Kr xxxiv	6.428	Kr xxviii	6.975	Kr xxviii	7.631409 ^C	Cu xxix
5.66707 ^C	Cu xxvii	6.428	Kr xxviii	6.997	Kr XXVIII	7.631409 - 7.63156 ^C	Cu xxix Co xxv
5.67131 ^C	Cu xxvii	6.466	Kr xxviii	7.00588 ^C	Ni xxvii	7.6515 ^C	Fe xxv
5.679217 ^C	Cu xxix	6.466	Kr xxviii	7.00388 7.02448 ^C	Mo XLII	7.66721 ^C	Co xxv
5.7143 ^C	Kr XXXIV	6.479	Kr xxviii	7.02448 T.0286 ^C	Co xxvi	7.66721° 7.67074°	Co xxv Co xxv
5.7443 ^C	Ni xxvii	6.49180 ^C	Cu XXVII	7.0280	Fe xxiv	7.676836 ^C	Mn xxv
	Ni xxvii	6.502	Kr xxviii	7.033	Fe XXIV	7.680	Fe xxiii
5.74790		L .				7.680	
5.7479 ^C 5.760641 ^C	Cu xxix	6.5130 ^C	N1 XXVII	7 113730			
5.760641^{C}	Cu xxix Cu xxvii	6.5130 ^C 6.519	Ni xxvii Kr xxviii	7.0373 ^C 7.0374 ^C	Co xxvi Co xxvi		Fe xxiii
	Cu xxix Cu xxvii Cu xxvii	6.5130 ^C 6.519 6.5210 ^C	NI XXVII Kr XXVIII Ni XXVII	7.0374 ^C 7.0379 ^C	Co xxvi Co xxvi	7.6837 ^C 7.6871 ^C	Fe xxn Fe xxv Fe xxv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
7.72092 ^C	Co xxv	8.338455 ^C	Cr xxiv	8.8151 ^C	V xxII	9.128	Ti xx
7.7218 ^C	Fe xxv	8.3390 ^C	Mn xxiv	8.826	V xxi	9.128	Ti xx
7.733	Fe xxiii	8.3499 ^C	Cu xxviii	8.8299 ^C	V xxII	9.139	Ni xix
7.755	Fe xxIII	8.3757	Fe xxiv	8.830318 ^C	Co xxvii	9.14	Fe xxII
7.757880 ^C	Mn xxv	$8.3769^{\rm C}$	Mn xxiv	8.83911 ^C	Cu xxvii	9.140	Ni xix
$7.7702^{ m C}$	Fe xxv	$8.3794^{ m C}$	Cu xxviii	8.8410 ^C	Cr xxIII	9.153	Ni xix
7.770237 ^C	Cu xxix	8.385	Cu xx	8.843	V xxi	9.163	Fe xx
7.778	Fe XXIII	8.400	Cu xx	8.843	V xxi	9.163	Fe xxII
$7.79197^{\rm C}$	Mo XL	$8.40415^{\rm C}$	Cu xxvii	8.84426 ^C	Cr xxII	$9.169071^{\rm C}$	V xxIII
7.7927^{C}	Fe xxv	$8.419401^{ m C}$	Cr xxiv	8.84570 ^C	Cr xxII	9.175	V xxi
$7.79643^{\rm C}$	Mn xxIII	8.4345^{C}	Mn xxiv	8.849	Ni xix	9.175	V xxi
7.80066^{C}	Mn xxIII	8.4372^{C}	Cu xxviii	8.8491 ^C	Cr xxiii	9.183	Fe xxII
7.826	Fe xxiii	8.447	Cu xx	8.85423 ^C	Cu xxvii	9.1850^{C}	Ni xxv
7.849	Fe xxiii	8.44757 ^C	Cu xxvii	8.855 ^C	Fe xxi	$9.1875^{ m C}$	Cr xxIII
7.854	Fe xxiii	$8.4580^{ m C}$	Mn xxiv	8.8630 ^C	Ni xxvii	9.199	Fe xx
7.883	Fe xxIII	8.487	Ni xix	8.87331 ^C	Cr xxII	9.200	Co xviii
$7.89041^{\rm C}$	Mo XL	8.512	Ni xix	8.87349 ^C	Cu xxvii	9.208	Fe xx
$7.90308^{ m C}$	Mo XL	8.51412^{C}	Cr xxII	8.8743 ^C	Ni xxvii	9.208	Fe xx
$7.9194^{\rm C}$	Сг ххии	8.51833^{C}	Cr xxII	8.8776 ^C	Ni xxvii	9.21	Fe xix
7.9227^{C}	Cr xxIII	8.521	Fe xxi	8.882	V xxi	$9.2121^{\rm C}$	Cr xxIII
7.9644^{C}	Cu xxviii	8.521	Fe xxi	8.882	V xxi	9.215	Fe xxII
7.972	Cu xx	8.529	Fe xxIII	8.8831 ^C	V xxii	9.220	Fe xx
7.97876^{C}	Mo XL	8.550	Fe xxIII	8.88442 ^C	Ti xxII	9.220	Fe xx
7.986	Fe xxiv	8.551^{C}	Fe xxIII	8.906	Fe xxiii	9.225	Co xviii
7.996	Fe XXIV	8.552 ^C	Fe xxi	8.95023 ^C	Ti xxII	9.237	Cu xx
8.0018 ^C	Cu xxviii	8.552 ^C	Fe xxi	8.960	Fe XXII	9.241	Fe XXII
8.02554 ^C	Mn xxiii	8.554 ^C	Fe xxIII	8.96839 ^C	Mn xxiii	9.246	Ti xx
8.04991 ^C	Mn xxIII	8.558	Fe xxi	8.968851 ^C	Co xxvii	9.246	Ti xx
8.0613 ^C	Cr xxIII	8.573	Fe xxi	8.976	Fe XXII	9.254	Ni xix
8.073	Cu xx	8.576	V xxi	8.977	Fe xxii	9.262	Ni xix
8.0754 ^C	Cr xxIII	8.576	V xxi	8.9788 ^C	V xxII	9.274	Cu xx
8.091	Fe xxII	$8.6064^{ m C}$	Ni xxvII	8.9840 ^C	Ni xxvii	9.2806 ^C	Co xxvi
$8.09466^{\rm C}$	Mn xxIII	8.614	Ni xix	8.992	Fe xxII	9.297	Ni xxv
8.09610^{C}	Mn xxIII	8.616	Fe xxIII	8.9987 ^C	Cr xxIII	9.297	Ni xxv
8.1118 ^C	Cu xxviii	8.618 ^C	Fe xxIII	9.006	Fe xxII	9.306	Ni xxv
8.1203 ^C	Mn xxiv	8.627^{C}	Fe xxi	9.006	Fe xxII	9.316	Ni xxv
8.12090 ^C	Mn xxIII	8.630	Fe ххиі	9.0079 ^C	Ni xxvii	9.33437 ^C	V xxi
8.121636 ^C	V xxiii	8.643	Fe xxi	9.0096 ^C	Cr xxIII	9.338	Ni xx
$8.1239^{\rm C}$	Cu xxviii	8.643	Fe ххии	9.0098 ^C	Cr xxiii	9.33857 ^C	V xxi
8.1249 ^C	Cu xxviii	8.643	V xxi	9.0120 ^C	Cr xxiii	9.34	Fe xix
8.1256^{C}	Cu xxviii	8.646 ^C	Fe xxi	9.02817 ^C	Mn xxiii	9.340	Ni xxv
8.1286^{C}	Mn xxiv	8.646 ^C	Fe xxi	9.03917 ^C	Cu xxvii	9.347	Co xviii
$8.1295^{ m C}$	Cr xxIII	8.6539 ^C	V xxII	9.0505 ^C	Cr xxIII	9.36	Fe xix
8.187534 ^C	V xxIII	8.6572 ^C	V xxII	9.05308 ^C	Mn XXIII	9.366	Ni xx
8.198784 ^C	Ni xxviii	8.664	Fe xxIII	9.05660 ^C	Mn XXIII	9.371	Co xviii
8.2122 ^C	Cr xxiii	8.672	Fe xxiii	9.06	Fe xxII	9.375	Cu xx
8.232	Fe xxiv	8.672	Fe xxIII	9.06028 ^C	Ni xxvi	9.385	Ni xx
8.2425 ^C	Cu xxviii	8.68938 ^C	Mn xxiii	9.065	Fe xx	9.385	Ni xx
$8.2439^{\rm C}$	Cu xxviii	8.69521 ^C	Cu xxvii	9.065	Fe xxII	9.385	Ni xx
8.2573 ^C	Cu xxviii	8.69963 ^C	Mn xxIII	9.070	Co xviii	9.38532 ^C	Ni xxvi
8.2602 ^C	Mn xxiv	8.703	V xxi	9.073	Fe xx	9.39	Ni xxv
8.2704 ^C	Mn xxiv	8.703	V xxi	9.073	Fe xxii	9.421	Fe xxi
8.2705 ^C	Mn xxiv	8.715	Fe xxii	9.073	Fe xxII	9.4258 ^C	Co xxvi
8.2719 ^C	Mn xxiv	8.722	Fe xxII	9.0739 ^C	Cr XXIII	9.4308 ^C	Ni xxv
8.273	Fe xxIII	8.731	Fe xxIII	9.0740 ^C	Ni xxvii	9.433	Fe xxi
8.2854	Fe XXIV	8.7328 ^C	Ni xxvii	9.0772 ^C	Cr XXIII	9.434	Ti xx
8.289	Fe xxIII	8.744	Ni XIX	9.088232 ^C	V xxiii	9.434	Ti xx
8.305	Fe xxIII	8.7461 ^C	Ni xxvii	9.10363 ^C	Ni xxvi	9.44	Fe xix
8.3077 ^C	Mn xxiv	8.7471 ^C	Ni xxvii	9.106	Cu xx	9.4404 ^C	Co xxvi
8.3160	Fe xxiv	8.7478 ^C	Ni xxvii	9.110	Fe xx	9.4414 ^C	Co xxvi
8.317	Fe XXIII	8.752	Fe XXIII	9.110	Fe xx	9.4421 ^C	Co xxvi
8.3205 ^C	Fe XXIII	8.763	Fe XXIII	9.110	Fe XX	9.4421	Ni xx
8.333	Cu xx	8.77513 ^C	Cr xxii	9.110	V XXI	9.455 9.460 ^C	Fe xxi
8.3359 ^C	Mn xxiv	8.80230 ^C	Cr xxii Cr xxii	9.117 9.11756 ^C	Mn XXIII	9.472 ^C	Fe xxi
8.337460 ^C	Ni XXVIII	8.815	Fe xxiii	9.11756 ⁻ 9.1185 ^C	Cr XXIII	9.472	
8.337400	MIXXXIII	0.019	Le vill	9.1189	OI AXIII	9.476	Fe xxı

Finding List - Continued

Wavelengtl (Å)	h Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
9.482	Fe xxi	9.705 ^C	Fe xxi	9.96234 ^C	Cr xxII	10.206	Co xix
$9.48840^{\rm C}$	Cr xxII	9.707	Ni xxv	9.9635 ^C	V xxII	10.207	Co xviii
$9.4945^{ m C}$	Ti xxı	9.707	Ni xxv	9.97	Ni xxv	10.220 ^C	Fe xxv
9.497	Ni xx	9.7099 ^C	Co xxvi	9.970	Co xx	10.221	Fe xvii
9.497	Ni xx	9.733	Ti xx	9.9712 ^C	Ni xxv	$10.221^{\rm C}$	Fe xxv
9.497	Ni xx	9.733	Ti xx	9.974	Co xxiv	10.222	Fe xx
9.4977 ^C	Ti xxı	9.733	Ti xx	9.974	Co xxiv	10.222 ^C	Fe xxv
9.49864^{C}	Cr xxII	9.7351 ^C	V xxi	9.974	Co xxiv	10.234	Cu xxi
9.501	Co xviii	9.742	Co xviii	9.977	Ni xix	10.241	Mo xxxii
9.518	Fe xxi	9.742	Co xx	9.98	Fe xvIII	10.250 ^C	Kr xxxv
9.52	Fe XIX	9.744	Ni xxv	9.98	Fe xvIII	10.260	Cu xxi
9.521	Cu xx	9.744 ^C	Fe xxi	9.991	Fe xx	10.265	Co xxiv
9.52922 ^C	Ni xxvi	9.74503 ^C	Ni xxvi	9.991	Fe xx	10.272	Мо хххи
9.534	Ti xx	9.7464 ^C	Ti xxı	9.991	Fe xx	10.275	Co xix
9.536097 ⁰		9.748	Co xviii	10.008	Fe xx	10.2782 ^C	Ti xx
9.542	Fe XXI	9.75	Ni xxv	10.008	Fe xx	10.282	Cu xxi
9.54432 ^C	Ni xxvi	9.753	Ni xxv	10.0233 ^C	Ti xxII	10.2824 ^C	Ti XX
9.548	Fe xxi	9.759	Ni xxv	10.025	Co xviii	10.283	Ni xix
9.5554 ^C	Co xxvi	9.759	Ni xxv	10.03	Fe XVIII	10.290	Co xix
9.558 9.5617 ^C	Ni xx	9.7613 ^C	Ni xxv	10.030	Co xviii	10.290	Co xix
	Ni xxv	9.776	Ni xxv	10.034	Fe xx	10.290	Co xix
9.5699 ^C 9.575 ^C	Co xxvi	9.78	Fe XIX	10.034	Fe xx	10.291	Cu xxi
9.5783 ^C	Fe xxi	9.784 9.7855 ^C	Co xx	10.034	Fe xx	10.3032 ^C	Co xxv
9.57934 ^C	Co xxvi		Co xxvi	10.037 ^C	Fe xxv	10.306	Cu xxi
9.581		9.788 9.788	Ti xx	10.046	Ti xx	10.316	Cu xxi
9.581	Fe xxı Ni xx	9.788 9.79469 ^C	Ti xx	10.046 ^C	V xxII	10.3183 ^C	Co xxv
9.587	Fe xxi	9.8037 ^C	Co xxv Ni xxv	10.053 10.053	Co xxiv	10.320	Fe XVII
9.587 ^C	Fe xxi	9.80624 ^C		10.053	Co xxiv	10.323 10.3282 ^C	Mo xxxii
9.591	Ti xx	9.80024	Cr xxii Fe xix	10.057	Cu xxı Fe xx	10.3282	Mn xxv
9.591	Ti xx	9.81	Fe XIX	10.066	Co xviii	10.33	Fe xviii Fe xviii
9.597 ^C	Fe xxi	9.81	Fe xix	10.066	Co xxiv	10.33°C	Fe xxv
9.601	Ni xxv	9.81322 ^C	Kr xxxvi	10.066	Co xxiv	10.338 ^C	Fe xxv
9.603	Co xx	9.82	Fe XIX	10.066	Co xxiv	10.354	Cu xxi
9.61	Fe xix	9.821	Ni xx	10.072 ^C	V xxII	10.369 ^C	Fe xxv
9.63	Ni xxv	9.822 ^C	Fe xxi	10.074	Cu xxi	10.3716 ^C	Co xxv
9.632	Fe xxi	9.828	Co xx	10.085 ^C	Co xxiv	10.373	Co xix
9.633	Co xviii	9.83798 ^C	Co xxv	10.085 ^C	Kr xxxv	10.386	Fe XVII
9.633	Co xx	9.8400 ^C	V xxII	10.109	Ti xx	10.389 ^C	Co xxiv
9.633	Ni xxv	9.8516 ^C	V xxII	10.109	Ti xx	10.389 ^C	Co xxiv
9.6335 ^C	V xxi	9.8517 ^C	V xxII	10.110	Ni xix	10.392	Cu xxi
9.64	Fe xix	$9.8549^{\rm C}$	V xxII	10.115	Co xxiv	10.4014 ^C	V xxi
$9.64949^{\rm C}$	Kr xxxvi	9.856	Co xx	10.115	Co xxiv	10.406	Co xix
9.6609 ^C	V xxII	9.856	Co xx	10.120 ^C	Kr xxxv	10.406	Co xix
9.661	Co xx	9.856	Co xx	10.121	Cu xxi	10.406	Co xix
$9.6641^{ m C}$	V xxi	9.856	Co xx	10.121	Fe xx	10.406	Co xix
$9.6688^{ m C}$	V xxii	9.856	Co xx	10.121	Fe xx	10.41	Fe xviii
9.674501	C Fe xxvi	9.8578 ^C	Ti xxı	10.123	Fe xvii	10.4116 ^C	V xxi
9.6786^{C}	Ti xxı	9.860	Ni xxv	10.123	Fe xvii	10.416 ^C	Kr xxxv
9.68	Fe xix	9.8603 ^C	Ni xxv	10.156	Co xxiv	10.428	Co xxiv
9.68	Fe xix	$9.86602^{\rm C}$	Kr xxxvi	10.157	Ni xix	10.433	Ni xix
9.68	Fe xix	9.87291 ^C	Cr xxII	10.159	Fe xx	10.44	Fe xviii
9.681	Co xx	9.873	Ni xxv	10.159	Fe xx	10.44	Fe xviii
9.681	Co xx	9.89096 ^C	Cr XXII	10.1593 ^C	Co xxv	10.443 ^C	Co xxiv
9.691	Ni xxv	9.89446 ^C	Cr xxII	$10.1603^{ m C}$	Mo XLII	10.445	Co xxiv
$9.6923^{\rm C}$	Co xxvi	9.8966 ^C	V xxII	10.177	Fe xx	10.445	Co xxiv
9.693	Ni xx	9.912	Cu xxi	10.177	Fe xx	10.450 ^C	Kr xxxv
9.694	Co xx	9.9126 ^C	Ni xxv	10.177	Fe xx	10.4665 ^C	Mn xxv
9.694	Co xx	9.9149 ^C	V xxII	10.179 ^C	Co xxiv	10.477	Co xix
9.694	Co xx	9.9180 ^C	V xxII	10.179 ^C	Kr xxxv	10.477	Co xix
9.694	Co xx	9.9237 ^C	Ni xxv	10.182	Co xxiv	10.48	Fe xviii
$9.694^{ m C}$	Fe xxi	9.924	Co xx	10.184	Co xviii	10.4841 ^C	Mo XLII
$9.6941^{\rm C}$	Ti xxı	9.9254 ^C	Ni xxv	10.197	Mo xxxii	10.489 ^C	Fe xxv
$9.7027^{\rm C}$	V xxi	9.938	Ni xxv	10.203	Cu xxi	10.499 ^C	Fe xxv
9.7041 ^C	7 71711	9.94255 ^C	TALLWAY	10.203	Ou AAI	10.499	re xxv

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectru
(Å)		(Å)		(Å)		(Å)	
10.503	Co xxiv	10.799 ^T	Со ххиі	11.011	Mo xxxII	11.264 ^C	Ni xxı
10.503	Co xxiv	10.800	Co xxiv	11.014	Cu xxi	11.272	Ni XXI
10.51	Fe XVIII	10.800	Cu xxi	11.018	Fe xxIII	11.282	Ni xx
10.5165 ^C	Mo xli	10.801	Cu xxi	11.018 ^C	Fe xxIII	11.287	Fe xvii
10.5373 ^C	Co xxv	10.803 ^C	Ti xxı	11.023	Fe xvII	11.298	Fe xxIII
10.543	Co xxiv	10.809^{T}	Co xxiii	11.030	Cr xx	11.302	Ni xxi
10.543	Co xxiv	10.811	Co xxiv	11.030	Fe xxiv	11.308	V xx
10.543	Co xxiv	10.811	Co xxiv	11.030 ^C	Ti xxı	11.318	Ni xxi
10.550	Fe xvII	10.813	Cu xxi	11.043	Fe xvii	11.318	Ni xxi
10.552	Co xxiv	10.813	Fe xix	11.046 ^C	Kr xxxiv	11.318	Ni xxi
10.564	Fe xix	10.813	Fe xix	11.048^{T}	Co xxiii	11.321	Co xvii
10.568	Co xix	10.813	Fe XIX	11.05 ^C	Fe xxIII	11.325	Fe XXIII
10.571	Co xxiv	10.813	Fe xix	11.058 ^C	Ti xxı	11.326	Fe XVIII
10.571	Co xxiv	10.813	Fe xix	11.064 ^T	Co xxiii	11.326	Fe xviii
10.5838 ^C	Mo XLII	10.816 ^C	Ti xxi	11.065	Cu xxi	11.326	Fe xvIII
10.586^{C}	Fe xxv	10.816 ^C	Ti xxı	11.070 ^T	Co xxiii	11.326	Fe xviii
10.587^{C}	Co xxiv	10.820 ^C	Ti xxı	11.080 ^C	Mn xxiv	11.34 ^C	Fe XXIII
10.593	Co xxiv	10.835^{T}	Co xxiii	11.087 ^C	Mo xli	11.352	Cu xxi
10.593	Co xxiv	10.838	V xx	11.097	Cu xxi	11.3596 ^C	Cr XXIV
10.593	Co xxiv	10.840	Cr xx	11.098 ^C	Mn xxiv	11.378	V xx
10.597	Cu xx	10.8405 ^C	V xxi	11.099 ^C	Mn xxiv	11.383	Cu xx
10.599^{C}	Ti xxı	10.847^{T}	Co xxiii	11.099 ^C	Mn xxiv	$11.387^{ m C}$	Mn xxi
10.607^{C}	Ti xxı	10.847^{T}	Co xxiii	11.1020 ^C	Mo xL	11.387 ^C	Mn xxi
10.617	Fe XIX	$10.8504^{ m C}$	V xxi	11.105^{T}	Со ххііі	11.398 ^C	Fe xxII
10.619	Fe XXIV	10.851	Fe xvii	$11.105^{\rm T}$	Co xxiii	11.420	Fe xvii
10.6234^{C}	Ti xx	$10.8539^{\rm C}$	V xxi	11.108	Co xviti	11.420	Fe xviii
10.625 ^C	Mo XLI	10.858	Cu xxi	11.114	Cu xxi	11.426	Fe xxiv
10.6275^{C}	Mo XLI	$10.860^{ m C}$	Kr xxxiv	11.133	Fe xvii	11.427	V xx
10.629 ^C	Mo XLI	10.863	Cu xxi	11.136	Cu xxi	11.427	V xx
10.6310 ^C	Mo xli	10.866 ^C	Ti xxı	11.138	Ni xx	11.427	V xx
10.635	Fe XIX	10.8674 ^C	Mo XL1	11.141	Co xxiv	11.430	Co xxr
10.635	Fe XIX	10.868 ^T	Co xxiii	11.141	Co xxiv	11.440	Fe xviii
10.644	Fe XIX	10.878 ^C	Ti xxı	11.1471 ^C	Mo xL	11.440	Fe xvii
10.645	Co xix	10.881 ^C	Ti xxi	11.155	Co xviii	11.442	Fe XVII
10.653	Cu xx	10.885 ^T	Со ххііі	11.158	Ni xx	11.442	Fe xxii
10.658	Fe XVII	10.888 ^C	Mn xxiv	11.159 ^C	Ni xxi	11.442	Fe xxII
10.658	Fe XIX	10.889 ^T	Со ххии	11.162	Cu xxi	11.4473 ^C	Mo XL
10.658	Fe xix	10.893	Cu xxi	11.166	Fe xxIII	11.45 ^C	Fe ххи
10.6580 ^C	Ti xx	10.901 ^T	Со ххии	11.171	Fe xxiv	11.4516 ^C	Ti xx
10.6624 ^C	Mo XLI	10.903	Fe XXIII	11.173^{T}	Со ххии	11.458	Fe xvii
10.663	Fe XXIV	10.907	Fe XIX	11.176	Ni xx	11.458	Fe xvii
10.674	Co XXIV	10.918	Ni xx	11.185	Cu xxi	11.459	Fe xx11
10.674	Co xxiv	10.927	Fe XXIII	11.187	Fe xxiv	11.459	Fe xx11
10.674	Co XXIV	10.9300 ^C	V xxi	11.197 ^T	Со ххііі	11.46 ^C	Fe xxII
10.685 10.6926 ^C	Fe XIX	10.931 ^C	Ti xxi	11.209 ^C	Mn xxiv	11.4618 ^C	Ti xx
10.6926 ^C	Ti xx	10.933	Co xxiv	11.215	V xx	11.478	Ni xxi
	Ti xx	10.933	Co xxiv	11.215 ^C	Mo xli	11.478	V xx
10.704	Co XIX	10.933	Fe XIX	11.2214 ^C	Cr xxiv	11.4808 ^C	Mo xL
10.709	Co xxiv	10.933 ^T	Co XXIII	11.223 ^C	Mn xxiv	11.486	Co xvi
10.712 10.7290 ^C	Cr xx	10.935	Fe XXIII	11.226	Ni xx	11.488 ^C	Mn xx
10.7290	Ti xx	10.936 10.936 ^C	Ni xx	11.226	Ni xx	11.49 ^C	Fe XXII
10.736	Fe xix Co xxiv	10.936 ^C	Kr xxxiv	11.226	Ni xx	11.493	Fe XXII
10.743	Co xxiv Co xxiv	10.939	Mo XLI	11.229	Ni xxi	11.517	Ni xxi
10.760	Co xxiv Co xxiv	10.940	Cr XX	11.239	Ni xxi	11.517	Ni xxi
10.764 ^C	Co XXIV	10.941 10.948 ^C	V XX	11.243	V xx	11.517	Ni xxi
10.765 ^C	Kr xxxiv	10.9483 ^C	Kr xxxiv Mo xl	11.2445 ^C	Mo XLI	11.517	Ni xxi
10.7656 ^C	V xxi	10.9483	Mo XL Cu XXI	11.249 ^C	Mo XLI	11.519	Fe XXII
10.767	Mo XXXII	10.971	Cu xxi Co xviii	11.25 ^C	Fe xxIII	11.519	Fe XXII
10.770	Fe XVII	10.975		11.253	Fe xvii	11.523	Vxx
	Fe XIX	10.981 ^C	Fe XXIII	11.253 11.256^{C}	Fe xviii	11.523	Vxx
			Fe XXIII		Mo XLI	11.525	Fe XXII
10.770							
10.772	Ni xx	10.982	Ni xx	11.257 ^C	Mo XLI	11.526	Fe xvii
	Ni XX Co XIX Fe XXIII	10.982 10.992 ^C 11.002	Mo XLI Cu XXI	11.2579 ^C 11.260 ^C	Mo XLI Mo XLI Mn XXIV	11.526 11.526 11.5334 ^C	Fe XVII Mo XL

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrun
11.539	Ni xxi	11.906	Mn XXII	12.186	Cu xxı	12.488	Mn xxII
11.551	Fe xvIII	11.906	Mn xxII	12.193	Co xix	12.488	Mn xxII
$11.5534^{ m C}$	Mn xxiii	11.920	Cu xxi	12.193	Fe xxII	12.502	Ni xxi
11.594	Cu xx	11.921	Fe xxII	12.193	Fe xxII	12.502	Ni xxi
11.594	Fe xxIII	11.935	Fe xxII	12.201 ^C	Cr xxIII	12.507	Mn xxii
11.594	Fe xxIII	11.954	Co xix	12.201 ^C	Fe xxi	12.510	Mn xvi
11.5965 ^C	Mn xxiii	11.956	Cu xxi	12.208	Ni xxi	12.512 ^C	Cr xxiii
11.597^{C}	Ni xxi	11.9566^{C}	Ti xx	12.209	Ni xxi	12.513	Co xx
11.599	Ni xix	11.9567 ^C	Ti xx	12.212	Co xix	12.521 ^C	Mn xxii
11.614	Fe XXIII	11.957	Mo xxxii	12.215 ^C	Cr xxIII	12.525	Fe xxi
11.614	Fe xxiii	11.958	Ti xıx	12.224	Co xix	12.526	Fe xvii
11.615	V xx	11.959 ^C	Mn xxII	12.230 ^C	Fe xxi	12.533 ^C	Ni xxi
11.640	Fe XVIII	11.9601 ^C	Ti xx	12.2336 ^C	V xxIII	12.55 ^C	Fe xx
11.650	Fe XXII	11.961	Ni xx	12.238	Co xix	12.551	Со хх
11.669	Fe XXII	11.971	Mn xvi	12.238	Co xx	12.551	Co xx
11.67 ^C	Fe xxIII	11.971	Mn xxII	12.245	Ni xxi	12.551	Co xx
11.68 ^C	Fe xxIII	11.972 ^C	Ni xx	12.264	Fe xvii	12.551	Co xx
11.692	Fe XXIII	11.974	Ni xx	12.269 ^C	Cr xxIII	12.553	Mn xxii
11.70 ^C	Fe xxIII	11.976	Fe xxII	12.271 ^C	Mn xxII	12.553	Mn xxii
$11.702^{\rm C}$	Fe xxiii	11.991	Ni xx	12.277	Ni xxi	12.553	Mn xxii
11.736	Cu xx	11.997	Mn xxII	12.2779 ^C	Mn xxIII	12.56 ^C	Mn xxII
11.736	Cu xxi	11.997	Mn xxII	12.281	Co xix	12.570	Cu xx
11.737	Fe XXIII	12.006	Ni xx	12.281	Co xx	12.578 ^C	Fe xxi
11.741	Fe xviii	12.010	Ti xıx	12.282 ^C	Co xx	12.580	Mn xxii
11.744	Co xix	12.015	Co xix	12.284	Mo xxxii	12.580^{C}	Ni xx
11.748	Fe xxII	12.017 ^C	Mn xxii	12.285	Fe xxi	12.592	Ni xxi
11.748	Fe xxII	12.0188 ^C	Mn xxiii	12.300	Co xix	12.592	Ni xxi
11.748	Fe xxII	12.027	Fe xxII	12.300	Co xx	12.592	Ti xıx
11.748	Fe xxII	12.029	Cu xxi	12.322	Fe xvII	12.606	Co xviii
11.748	Fe xxIII	12.042	Ni xx	12.325	Fe xxi	12.606	Co xx
11.767	Fe XXII	12.042	Ni xx	12.325	Fe xxi	12.6125 ^C	Cr xxII
11.774	Cu xviii	12.045	Fe xxII	12.325	Fe xxII	12.622	Ti xix
11.778	Fe XVIII	12.0462 ^C	Ti xx	12.331	Co xx	12.623	Fe xxı
11.779	Ni xx	12.053	Fe xxII	12.336	Mn xxII	12.63 ^C	Fe xx
11.787	Ni xx	12.057 ^C	Fe xxi	12.345	Ni xxi	12.63 ^C	Mn xxii
11.789	Fe xxII	12.061	Cu xxi	12.348	Co xx	12.64 ^C	Fe xx
11.789	Fe xxII	12.073 ^C	Cr xxiii	12.348	Co xx	12.65 ^C	Fe ххии
11.793	Mn xxII	12.077	Fe xxII	12.348	Co xx	12.6555 ^C	Cr xxII
11.793	Mn xxii	12.077	Fe XXII	12.368	Mn xxII	12.656	Mn xxii
11.797	Fe xxII	12.079	Mn xxII	12.370	Ni xxi	12.656	Mn xxii
11.823	Fe xxII	12.079	Ni xx	12.3716 ^C	V xxiii	12.656	Mn xxII
11.830	Cu xxi	12.079	Ni xxi	12.373	Mn xvi	12.656	Ni xix
11.832	Ni xx	12.092 ^C	Cr xxIII	12.379	Ti xıx	12.656	Ni xxi
11.837	Fe xxII	12.092 ^C	Cr xxIII	12.38	Fe xxı	12.667	Co xviii
11.837	Fe xxII	12.093^{C}	Cr xxiii	12.39 ^C	Mn xxII	12.670	Mn xxII
11.846	Ni xx	12.095	Fe xxii	12.393	Fe xxi	12.681	Fe xvii
11.851 ^C	Cr xxIII	12.095	Fe xxiii	12.394 ^C	Cr xxiii	12.688	Ti xix
11.853	Mn xvi	12.095	Fe XXIII	12.398	Fe xxı	12.706	Mn xxii
11.8550 ^C	Mo XL	12.112	Ni xx	12.40 ^C	Mn xxII	12.71 ^C	Fe xx
11.86 ^C	Fe xxIII	12.123	Fe xvii	12.405 ^C	Cr xxIII	12.72 ^C	Fe xx
11.865	Fe xviii	12.130	Ni xx	12.410	Ti xix	12.726	Ti xıx
11.870	Fe XXIII	12.140	Cu xxi	12.423 ^C	Fe xxı	12.728 ^C	Fe xxi
11.8719 ^C	Ti xx	12.155	Co xix	12.427	Fe xxIII	12.738	Mn xxi
11.874	Ni xx	12.155	Co xix	12.427	Mn xxII	12.738	Mn xxi
11.876	Mn xxII	12.157	Ni xx	12.435	Ni xix	12.75 ^C	Fe xx
11.876	Mn xxII	12.1627 ^C	Mn xxiii	12.435	Ni xxi	12.76 ^C	Mn xxi
11.876	Mn xxII	12.165	Cu xxi	12.4438 ^C	Mn xxIII	12.763	Fe xx
11.876	Mn xxII	12.165 ^C	Fe xxi	12.447	Mn xxII	12.77 ^C	Fe xx
11.880	Co xx	12.165 ^C	Ni xxi	12.462	Fe xxı	12.779	Cr xvii
11.886	Fe xxII	12.168	Co xix	12.465 ^C	Fe xxi	12.812	Ni xix
11.892	Co xix	12.172	Mn xxII	12.472	Ni xxi	12.812	Ni xx
11.898	Fe xxIII	12.177 ^C	Ni xxi	12.480	Ti xix	12.816	Mn xxi
11.898	Mo xxxII	12.1778 ^C	Mn xxiii	12.488	Mn xxII	12.816	Mn xxi
11.906	Co xix	12.181	Ni xx	12.488	Mn xxii	12.816	Mn xxi
11.906	Mn xxII	12.181	Ni xxi	12.488	Mn xxII	12.818	WY HELL

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrui
12.818	Fe xx	13.202 ^C	V xxii	13.661	Co xx	14.184	Co xix
12.827	Cu xx	13.203	Cr xxi	13.67 ^C	Cr xxi	14.197 ^C	Ti xxı
12.828	Co xix	13.223^{C}	V xxii	13.676	Co xx	14.203	Fe xviii
12.84^{C}	Fe xx	13.224 ^C	V xxii	13.679 ^C	V xxII	14.203	Fe xviii
12.847	Fe xvIII	$13.224^{\rm C}$	V xxII	13.684	Cr xxi	14.213	Cr xx
12.847	Fe xx	13.240	Co xix	13.684	Cr xxi	14.213	Cr xx
12.857	Fe xx	13.240	Co xx	13.684	Cr xxi	14.229	V xx
12.87 ^C	Cr xxi	13.246	Co xix	13.700	Fe xix	14.24 ^C	Cr xxi
12.873 ^C	Fe xxi	13.256	Ni xx	13.735	Fe XIX	14.256	Fe XVIII
12.876	Co xix	13.258	Co xix	13.735	Fe xix	14.279	V xx
	Fe xx	13.27 ^C	Fe xx				
12.888 12.890	Co xix	13.282	Ni xx	13.735	Fe XIX	14.279	V xx
		13.282 13.2866 ^C		13.735	Fe xix	14.303	Co xix
12.909	Cr xvII		Cr xxII	13.752	Cr xxi	14.3217 ^C	Kr xxx
12.916 ^C	Ni xx	13.289	Co xix	13.752	Cr xxi	14.323	Cr xx
12.92^{C}	Fe xx	13.294	Cr xv	13.752	Cr xxi	14.344	Fe xviii
12.924	Fe xx	13.298 ^C	Fe xx	13.775	Co xx	14.355	Co xix
12.927	Ni xx	13.3015 ^C	Cr xxii	13.779	Cr xxi	14.360	V xx
12.935	Mn xxII	13.307 ^C	Co xx	13.779	Ni xix	14.361	Fe xviii
12.942	Co xix	13.309	Ni xx	13.786	Co xx	14.366	Cr xx
12.942	Co xix	13.314	Co xix	13.795	Fe xix	14.37	Ni xviii
12.945 ^C	V xxII	13.314	Co xx	13.8216 ^C	V xxi	14.373	Fe XVIII
12.946	Fe xx	13.319	Fe xviii	13.823	Fe xvii	14.382	Mo xxx
12.978		13.319					
	Fe xx		Fe xvIII	13.825	Co xx	14.387 ^C	V xx
12.98 ^C	Fe xx	13.321 ^C	Co xx	13.84 ^C	Fe XIX	14.401	V xx
12.981	Cr xxi	13.330 ^C	V xxII	13.844	Cr xxi	14.402	Cr xx
12.981	Cr xxi	13.344 ^C	V xxII	13.844	Cr xxı	14.418	Fe xviii
12.981	Cr xxi	13.355	Fe xvIII	13.844	Cr xxi	14.4214 ^C	Kr xxx
12.981	Cr xxi	13.355	Fe xviii	13.862	Cr xv	14.423	Co xix
12.985	Co xix	13.356	Co xx	13.8645 ^C	V xxi	14.4290 ^C	V xxi
13.00^{C}	Mn xxII	13.356	Co xx	13.868	Co xviii	14.442	Cr xx
13.001	Fe xviii	13.372	Co xx	13.870	Cr xxi	14.453	Fe XVIII
13.01 ^C	Fe xxIII	13.374	Fe xvIII	13.891	Fe xvii	14.457 ^T	Cr xx
13.015	Fe xvIII	13.3870 ^C	Ti xxII	13.91 ^C	Cr xxi	14.466	Cr xx
13.018	Cr xxi	13.397	Fe xviii	13.919 ^C	Fe XVIII		
13.018	Cr xxi	13.397	Fe xviii	13.94 ^C		14.469	Fe xviii
13.018		t .			Cr xxi	14.486	Fe XVIII
	Cr XXI	13.397	Fe xix	13.950	Cr xxı	14.496 ^C	Ti xxi
13.02 ^C	Fe xx	13.416	Cr xv	13.954	Fe xvIII	14.508	Сг хх
13.032	Ni xx	13.418 ^C	V xxii	13.991	Cr xv	14.518 ^C	Ti xxı
13.049	Fe хvііі	13.424	Fe XIX	14.00 ^C	Cr xxi	14.519 ^C	Ti xxi
13.049	Fe xx	13.425	Co xx	14.0002 ^C	Kr xxxvi	14.520 ^C	Ti xxı
13.06^{C}	Fe xx	13.4316 ^C	Cr xxII	14.037	Cr xx	14.533	Cr xx
13.060	Cr xxi	13.44 ^C	Cr xxi	14.041	Co xviii	14.534	Co xix
13.075	Ni xx	13.46	Mn xvi	14.041	Co xix	14.534	Fe XVIII
13.082	Fe xx	13.46^{T}	Mn xx	14.041	Cr xxi	14.534	
13.082	Fe xx	13.464	Fe xviii	14.043	Ni xix	14.551	Fe XIX
13.082	Fe xx	13.464	Fe xix	14.066	Cr xx	14.557	
13.084	Co xix	13.496	Co xx	14.066	Cr xx	14.566	Co xix
13.084	Co xix	13.504	Fe xix				Mo xxx
13.097	Co xix	13.517		14.066	Cr xx	14.5729 ^C	V xxi
			Co xx	14.077	Ni xix	14.573 ^C	Kr xxx
13.11	Cu xix	13.520	Fe xix	14.080	Co xvi	14.581	Fe xvii
13.11 ^C	Fe xx	13.520	Fe XIX	14.098	Mn xvi	14.5879 ^C	V xxi
13.123	Co xix	13.5248 ^C	Ti xxII	14.098 ^T	Mn xix	14.594	Co xix
13.123	Cr xxi	13.541 ^C	V xxII	14.098^{T}	Mn xix	14.60 ^C	Fe xix
13.135	Ni xx	13.55	Cr xxi	14.10	Ni xviii	14.610	Fe xvII
13.1426 ^C	Cr XXII	13.566 ^C	V xxii	14.121	Cr xx	14.622 ^C	Ti xxı
13.151	Co xix	13.58 ^C	Mn xxII	14.121	Cr xx	14.63 ^C	Fe xix
13.157	Co xix	13.5977 ^C	Cr xxII	14.121	Cr xx	14.635	Cr xx
13.159	Fe xviii	13.60 ^C	Cr xxi	14.121	Fe XVIII	14.636	
13.159	Fe xx	13.60 ^C	Cr xxi	14.121 ^C			V xix
13.161	Ni xx	13.61			V xx	14.636 ^C	Ti xxı
13.101 13.17 ^C			Mn xvi	14.152	Cr xx	14.649	V xx
	Fe xx	13.634	Co xviii	14.152	Cr xx	14.660	Cr xx
13.176 ^C	Fe xx	13.634	Co xx	14.152	Fe XVIII	14.660	Cr xx
13.192	Co xix	13.634	Co xx	14.164 ^C	Ti xxi	14.668	Fe XIX
13.199	Mn xxII	13.634	Co xx	14.17 ^C	Cr xxi	14.668	Fe xix
13.199	Mn xxii	13.647	Cr xxi	14.172	Cr xx	14.67 ^C	Fe XVII

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
14.67^{C}	Fe xix	15.216	V xx	15.870	Fe xvIII	16.490	Мо ххх
14.685	Cr xx	15.229	V xx	15.871	Mn xvII	16.514	Ti xıx
14.698^{T}	Mn xvIII	15.238	Mn xvi	15.878 ^C	Cu xxviii	16.521	Mn xvii
14.70^{C}	Fe XIX	15.238^{T}	Mn xvIII	15.889	Mn xvii	16.540	Mn xvii
14.713 ^C	Kr xxxv	15.2541 ^C	Ti xx	15.9119 ^C	Ti xx	16.551 ^C	Ti xix
14.735	Fe xix	15.256 ^C	Kr xxxv	15.916 ^C	Kr xxxiv	16.558	V xviii
14.735 ^C	Ti xxı	15.262	Fe xvii	15.924	V xix	16.561	Ti xvIII
14.738^{C}	Kr xxxv	15.272 ^C	Kr xxxiv	15.926	Mn xvii	16.562 ^C	Ti xıx
14.745	Mo xxxi	15.272 ^C	V xx	15.946	Mn xvII	16.575 ^C	Ti xix
14.746 ^C	Kr xxxv	15.303 ^C	V xx	15.958	Mn xvii	16.577	Mn xvi
14.751 ^C	Kr xxxv	15.312	Mn xvi	15.969 ^C	Kr xxxiv	16.589 ^C	Mn xvi
14.752^{T}	Mn xvIII	15.332 ^C	V xx	15.972 ^C	Kr xxxiv	16.616	Mn xvi
14.753 ^C	Kr xxxv	15.333	V xix	15.987	Mn xvII	16.624	Ti xviii
14.7538 ^C	V xxi	15.336	V xx	16.005	Fe xviii	16.64	Cr xvii
14.759 ^C	V xx	15.342 ^C	Kr xxxv	16.007	V xix	16.642 ^C	Ti xix
14.772	Fe XVIII	15.365 ^C	Mn xvii	16.018 ^C	Cu xxviii	16.642 ^C	Ti xix
14.794	Co xix	15.383 ^C	Kr xxxv	16.026	Fe XVIII	16.663 ^C	
14.806	Fe XIX	15.400 ^C	Kr xxxv	16.020	Mn xvii	16.696	Mn xvi
14.823	Fe XIX	15.400 15.403 ^T	Mn XVIII	16.054	Mn XVII		Cr xvii
14.829	V xx	15.404	Mn XVII	16.0559 ^C		16.696	Fe XVI
14.856 ^C		15.404 15.410 ^C			Ti xx	16.70	Ti xix
14.870	Ti xxı		Kr xxxv	16.07	Kr xxvi	16.705 ^C	Mn xvi
	V xx	15.417 ^C	Kr xxxv	16.0708 ^C	Ti xx	16.719	Ti XIX
14.872 ^C	V xx	15.424 ^C	Kr xxxv	16.072	Fe xviii	16.719	Ti xix
14.877 ^T	Mn XVIII	15.424 ^C	Kr xxxv	16.087	Fe xvIII	16.719	Ti xix
14.897 ^C	Ti xxı	15.425 ^C	Kr xxxiv	16.090	Mn xvII	16.724	Mn xvi
14.9200^{C}	V xxi	15.427	V xx	$16.1087^{ m C}$	Ni xxvIII	16.736	Ti xıx
14.928	Mo xxxi	15.437	Co xviii	16.109	Fe xviii	16.777	Fe xvii
14.929	Fe XIX	15.450	Fe xvii	16.124 ^C	Cu xxviii	16.787	V xviii
14.929	Fe xix	15.450	Fe xvIII	16.138 ^C	Mn xviii	16.788 ^C	Ti xix
14.966	Fe XIX	15.457	Mo xxxii	16.165	Fe xvIII	16.795	Ti xıx
14.976	V xx	15.495	V xix	16.178	Ti xix	16.795	Ti xix
14.987 ^C	V xx	15.506	Mo xxxii	16.185	Mn xviii	16.811	Cr xvii
14.989^{C}	V xx	15.519	Cr xviii	16.197 ^C	Mn xviii	16.811	Ti xix
14.995	Fe XIX	15.519	Cr xviii	16.221	Cr xvii	16.839	Fe xvi
15.0006^{C}	Cu xxix	$15.526^{\rm C}$	V xx	16.234	Fe xvIII	16.84^{C}	Cr xvii
15.002	Mo xxxII	15.551	Co xvii	16.24 ^C	V xviii	$16.855^{ m C}$	Ti xix
15.015	Fe xvii	15.560	V xix	16.249	Cr xvII	16.876 ^C	Ti xix
15.015	Fe xix	15.570	Mn xvii	16.255	Mn xviii	16.880	Mn xv
$15.018^{\rm C}$	Ti xxı	15.584 ^C	Kr xxxiv	16.2707 ^C	Ni xxvIII	16.882	Mn xvi
15.039	V xix	15.60	Cr xvIII	16.272	Fe xviii	16.889	Cr xv
$15.04^{\rm C}$	Fe xıx	15.609	V xiv	16.278	Mn xvII	16.890	Fe xvi
$15.040^{\rm C}$	Kr xxxv	15.615	Mn xvii	16.278 ^C	Cu xxviii	16.890	Fe XVI
15.042 ^C	V xx	15.625	Fe xvIII	16.2801 ^C	Ti xx	16.90	Ti xvii
15.048 ^C	Kr xxxv	15.63	V xix	16.305	Fe xviii	16.914	
15.06	Cr xv	15.63	V XIX	16.31		16.933 ^C	V XVIII
15.100 ^C	Kr xxxv	15.639	V XIX V XX	16.31	Cr xvii Cr xvii	16.939	Ti xix Ti xvii
15.111	Fe XIX	15.670	Mn xvii	16.32 ^C			
15.111	V XX	15.671			V XVIII	16.939	V XIV
		l l	Ti xix	16.3235 ^C	Ni xxviii	16.952	Fe XVI
15.114	V xx	15.676 ^C	Mn xvii	16.328 ^C	Cr xvii	16.960 ^C	Ti xix
15.114	V xx	15.702	V xix	16.332 ^C	Mn xviii	16.965	Cr xv
15.138	Fe XIX	15.73 ^C	V XIX	16.337	Fe xvIII	16.993	Fe xvi
15.141	V xx	15.732	Mn xvii	16.34	Kr xxvi	17.018	V xviii
15.163 ^C	Kr xxxv	15.738	Ti XIX	16.349 ^C	Cu xxviii	17.025	Fe xvi
15.1630 ^C	Cu xxix	15.742	Ti xıx	16.377 ^C	Kr xxxiv	17.025	Fe xvi
15.169	Co xviii	15.742	Ti xıx	16.378	V xviii	17.028 ^C	Ti xix
15.172	Fe xix	15.742	Ti xıx	16.414	Ti xıx	$17.034^{ m C}$	Cr xvi
15.176^{C}	V xx	15.748	V xiv	16.425	Mn xvIII	17.042 ^S	Mo xx
15.187^{C}	V xx	15.766	Fe XVIII	16.440	Ti xıx	17.050 ^C	Ni xxv
$15.198^{ m C}$	V xx	15.826	Mn xvII	16.444 ^C	Mn xviii	17.054	Fe xvi
15.209^{C}	Fe xvIII	15.828	Co xvii	16.4465 ^C	Ti xx	17.073	Cr xvi
15.21	Cr xv	15.828	Fe XVIII	16.451	Mn xviii	17.076	Ti xix
15.21	Kr xxvi	15.846 ^C	Cu xxviii	16.458 ^C	Ti xix	17.076	Ti xix
15.21	Kr xxvi	15.847 ^C	Fe xviii	16.46	Cr xvii	17.081 ^C	Ni xxv
15.2113 ^C	Ti xx	15.849 ^C	Ti xix	16.467	V xviii	17.087	Fe xvi
15 21 132							

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
17.094	V xiv	17.449	Fe xvi	18.008	V xvi	18.939	Ti xvII
17.095	Mn xvi	17.465	Mn xvii	18.017	Cr xvi	18.970 ^C	Co xxv
17.097	Fe xvii	17.467	Fe xvi	18.020	Cr xvii	18.991 ^C	V xv
17.097	Mo xxxII	17.482	V xviii	18.056	Mo xxx	19.015	Cr xv
17.124	Fe xvi	17.490	V xvii	$18.089^{ m C}$	Cr xvii	19.028	V xv
17.124	Fe xvi	17.498	Fe xvi	18.12	V xvi	19.038	Cr xvi
17.124	Fe xvi	17.498	Fe xvi	18.12	V xvi	19.089	Ti xvi
17.131	Mn xvii	17.498	Fe xvi	18.12 ^C	Ti xvii	19.110	Ti xvı
17.149 ^C	Fe xxiv	17.500	Mo xxxi	18.123 ^C	V xvi	19.112	Ti xvı
17.149 ^S	Mo XXXII	17.5040 ^C	Co XXVII	18.141	Ti xvii	19.203	V xv
17.150	Ti xviii	17.506 ^C	Ni XXVII	18.141	Ti xvII	19.204	Ti XIII
17.158	V xvii	17.514	Cr xvi	18.154	Ti xvii	19.210	Ti xvi
	V XVII	17.5214 ^C					
17.158			Cu xxvii	18.176	Ti xvII	19.255	Cr xvi
17.16	V xvii	17.536	V xvii	18.218	Ti xvii	19.298	V xv
17.161	Fe xvi	17.541	Mn XVII	18.219	Cr xvII	19.366	Ті хіп
17.161	Fe xvi	17.545	V xviii	18.219	Cr xvii	19.366	V xv
17.161	Fe xvi	17.550	Mn XVII	18.227 ^C	Cr xvII	19.369	Ti xvII
17.172	Mo xxxii	17.555	Fe xv	18.26	V xvi	19.369 ^C	V xv
17.181	Ti xix	17.556	Mo xxxi	18.265	V xvi	19.370	Ti xvi
17.1877 ^C	Cu xxvii	17.5567 ^C	Co xxvii	18.265	V xvi	19.415	Ti xvii
17.201 ^C	Cr xvii	17.575	V xiv	18.269	Ti xvII	19.442	Cr xvi
$17.201^{\rm C}$	Ti xıx	17.578	Mo xxxi	18.336	Cr xvII	19.443	V xv
17.206	Fe xvi	17.587	Ti xviii	18.336	Cr xvii	19.45	Ti xvi
17.206	Fe xvi	17.587 ^C	Ni xxvii	18.350	Ti xvii	19.459	Ti xvii
17.206	Fe xvi	17.589	Cr xvi	18.387	Ti xvii	19.501	Ti xvii
17.22	Ti xviii	17.593	Fe xv	18.389	Cr xvii	19.511	
17.240 ^C							Cr xvi
	Ni xxvii	17.593	Fe xvi	18.394 ^C	Co xxvi	19.518	V xv
17.242	Cr xvi	17.603	Cr xvi	18.425 ^C	Co xxvi	19.538	Cr xvi
17.249	Fe xvi	17.620	Fe xv	18.431	Mo xxxii	19.551	Ti xvi
17.249	Fe xvi	17.630	Ti xviii	18.492	V xvi	19.589	V xv
17.249	Fe xvi	17.633	Cr xvi	18.497	Cr xv	19.645	V xv
17.259	V xvii	17.644	V xvII	18.500	Mo xxv	19.65	Ti xvi
17.264 ^C	Fe xxiv	17.656 ^C	Cr xvi	18.525	V xvi	19.651	Ti xvii
17.267^{C}	Fe xxiv	17.671	Cr xvi	18.531	Cr xvII	19.671	V xv
17.28	Ti xvIII	17.678	V xviii	18.531	Cr xvii	19.671	V xv
17.285	Fe xvi	17.704	Cr xvi	18.5484 ^C	Ni xxvi	19.71	Ti xvi
17.30	Ti xvIII	17.715	Ti xviii	18.581	Mo xxxii	19.714	Cr xvi
17.300	Fe xv	17.716	Mn xvII	18.605 ^C	Co xxvi	19.714	Cr xvi
17.300 ^C	Cr xvi	17.717	V xviii	18.623	Ti xvII	19.718	Ti xvii
17.301	Mn XVII	17.727	Ті хін	18.630	V xvi	19.725	V xv
17.323	Fe xvi	17.729	Mn xvii	18.651	Ti xvII	19.730	V XVI
17.3356 ^C	Cu xxvii	17.730	Cr xvi	18.654	Mn xvi	19.757	
17.337	Fe XVI	17.754	V xiv	18.668 ^C	Fe XXIV		V xv
17.3421 ^C	Co xxvii	17.785		10.000		19.782	V xv
17.355	Mo xxx	17.793	Cr xvi	18.68 ^C	V xvi	19.80	V xv
17.355 ^C			Cr xvi	18.689	V xvi	19.807	Cr xvi
17.356 ^C	Ni XXVII	17.794	Mn XVII	18.7093 ^C	Ni xxvi	19.807	Cr xvi
	Ti xix	17.807	Mn xvii	18.7185 ^C	Ni xxvi	19.807	Cr xvi
17.3577 ^C	Cu xxvii	17.833	Cr xvi	18.72	Mo xxxii	19.844	V xv
17.365	Ti xviii	17.856	Cr xvi	18.72 ^C	V xvi	19.844	V xv
17.366	Fe XVI	17.869	Ti xiii	18.7205 ^C	Fe xxvi	19.847	Cr xvi
17.370	Cr XVI	17.871	Mo xxxi	18.728 ^C	Co xxvi	19.888	V xv
17.3703 ^C	Cu xxvii	17.880	Fe xv	18.7310 ^C	Ni xxvi	19.902 ^C	Fe xxv
17.373	V xvii	17.893 ^C	Cr xvII	18.757	Ti xvII	19.903	V xv
17.373 ^C	Cr xvi	17.917	Fe xv	18.775	Cr xvi	19.92 ^C	V XVI
$17.39^{\rm C}$	Ti xvIII	17.920	Ti xvIII	18.782	Cr xv	19.933 ^C	Fe xxv
17.399	Fe xvi	17.931	Cr xvi	18.782	V xiv	19.943	Ti XIII
17.399	Fe xvi	17.94	Kr xxvi	18.789 ^C	Fe xxiv	19.943 19.95 ^C	
17.399	Fe XVI	17.957				1	V xvi
17.400		1	Cr XVII	18.804 ^C	Fe XXIV	19.951	Cr xvi
	V XVIII	17.964	Mo xxx	18.870	V xiv	19.97 ^C	Ti xv
17.413	Fe XVI	17.968	Cr xvii	18.878 ^C	Co xxvi	19.988	V xv
17.413	Fe xvi	17.979	Mo xxv	18.8822 ^C	Fe xxvi	19.995	Cr xvi
17.413	Fe xvi	17.987	Mn xvii	18.890	V xvi	20.017	V xvi
17.438	Cr xvi	17.99	Kr xxvi	18.8951 ^C	Ni xxvi	20.03 ^C	V xvi
17.442	V xviii	17.993	Cr xvi	18.9349 ^C	Fe xxvi	20.038	V xv
17.445	Mo xxxi	18.004	Mo xxx	18.935	Mn xvi	20.051	Ti xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
20.06 ^C	Ti xv	21.304	Ti xıv	22.518	Ti xv	24.2027 ^C	V xxiii
20.0749^{C}	Co xxv	21.341	Ti xıv	22.574 ^C	Ti xv	$24.262^{ m C}$	Cr XXIII
20.078	V xv	21.369	Kr xxvi	22.654 ^C	Ti xv	24.3019 ^C	Cu xxv
20.079	V xvi	21.467	Cr xiv	22.661	Cu xix	24.315	Ti xıv
20.101	Ti xvi	21.522	Ti xıv	22.722 ^C	Ti xv	24.3570 ^C	Mo xli
20.133	Ti xv	21.568	V xv	22.724	Ti xv	24.3602 ^C	Mo XLI
20.135	Ті хііі	21.601 ^C	Mn xxiv	22.739	Ti xv	24.38 ^C	V xxi
20.138^{C}	Fe xxv	21.631^{C}	Mn xxiv	22.743	Kr xxvi	24.4551 ^C	Cu xxv
20.15^{C}	V xvi	21.657	Ti xıv	22.936	Ti xv	24.51 ^C	V xxı
20.183	Ti xvii	21.684	Mo xxiv	$22.940^{\rm C}$	Cu xxviii	24.51 ^C	V xxi
20.21^{C}	V xvi	21.732	Ti xıv	22.966	Ti xv	24.517	V xIII
20.23	Ti xv	$21.737^{\rm C}$	Ti xıv	23.034	Ti xv	24.592	Ti xıv
20.23	Ti xv	21.770	Cr xiv	23.0347 ^C	Mo xli	24.592	Ti xiv
20.24^{C}	Ti xv	21.800	V xv	23.071 ^C	Cu xxvIII	24.688 ^C	Ni xxvi
$20.2450^{\rm C}$	Co xxv	$21.815^{ m C}$	Ti xıv	23.177	Ti xv	24.72 ^C	Ti xx
20.2509^{C}	Co xxv	21.82	Ti xıv	23.1886 ^C	Mo xli	24.728	Ti xıv
$20.2576^{\rm C}$	Co xxv	$21.823^{ m C}$	Fe xxiv	23.193	Ti xv	24.766	Kr xxv
$20.2676^{\rm C}$	Mn xxv	21.8281^{C}	Cu xxix	23.244 ^C	Cu xxviii	24.8031 ^C	Mo XL
20.271 ^C	Fe xxv	21.832	V xv	23.254 ^C	Cu xxviii	24.817 ^C	Ni xxv
20.278	V xvi	21.840	Kr xxv	23.274 ^C	Cu xxviii	24.83 ^C	Ti xx
20.278	V xvi	21.854	Mo xxiv	23.277 ^C	Cu xxviii	24.83 ^C	Ti xx
20.28 ^C	V xvi	21.865 ^C	Mn xxiv	23.356	Ті хи	24.881	Ni xvii
20.30^{C}	Ti xv	21.883	Ti xıv	23.4490 ^C	Ni xxviii	24.891	Ti xıv
20.312	Ti xv	21.909	V xv	23.49 ^C	Ti xx	24.907	Ti xiv
20.313	Ti xv	21.958	Ti xıv	23.490	V xiv	24.9287 ^C	Mo XL
20.364	Ti xv	21.987 ^C	Fe xxiv	23.503	Cu xix	24.9303 ^C	Cu xxv
20.37 ^C	Ti xv	21.991 ^C	Fe xxiv	23.522 ^C	Cr xxiii	25.025	Ti xiv
20.389	Ti xv	22.010 ^C	Fe xxiv	23.548 ^C	Cu xxviii	25.025	Ti XIV
20.418	Ti xv	22.010 ^C	Mn xxiv	23.552 ^C	Cr xxIII	25.025 ^C	Ni xxv
20.418	Ti xv	22.0121 ^C	Cr xxiv	23.599	Cu xix	25.035 ^C	Ni xxv
20.419 ^C	Fe xxv	22.047 ^C	Ti xıv	23.599 ^C	Cu xxviii	25.058 ^C	Ni XXV
20.4291 ^C	Mn xxv	22.066	Ti xıv	23.60°C	Ti xx	25.061 ^C	Ni xxv
20.4368 ^C	Co xxv	22.083	V xv	23.60 ^C	Ti xx	25.070	Ni xvii
20.444	V xvi	22.083	V XV	23.6120 ^C	Mo XLI	25.071	Ti XIV
20.444	V xvi	22.099	Ti xıv	23.621	Cu xix	25.071 ^C	Ni xvii
20.4818 ^C	Mn xxv	22.109	Ti xv	23.686 ^C	Cu xxviii	25.086	Ti XIV
20.513	V xvi	22.1477 ^C	Cu xxix	23.690	Ti xiv	25.142 ^T	Cu XIX
20.524 ^C	Fe xxv	22.155 ^C	Mn xxiv	23.698	Ti xiii	25.142 25.175 ^T	Cu XIX
20.538	Ti xv	22.162	Ti xıv	23.704	Cu xix	25.206	Ti xiv
20.55 ^C	Ti xv	22.1733 ^C	Cr xxiv	23.7439 ^C	Mn xxIII	25.2533 ^C	Co xxv
20.59 ^C	Ti xv	22.181 ^C	Fe XXIV	23.7680 ^C	Ni xxviii	25.260	Ti xıv
20.611	Ti xv	22.190	Ti xıv	23.783 ^C	Cu xxviii	25.2641 ^C	Cu xxv
20.659	V xvi	22.192	V xv	23.794	V xiv	25.297	Cu xix
20.659	V xvi	22.192	V xv	23.820 ^C	Cr xxiii	25.3163 ^C	Cu xix
20.70	Ti xv	22.214	V xv	23.820 23.8677 ^C	Ni xxviii	25.3103 25.327 ^C	Ni xxv
20.700	Ti xv	22.214	Ti xıv	23.908 ^C	Cu xxviii	25.378 ^C	Ni xxv
20.701	Ti xv	22.2261 ^C	Cr XXIV	23.9141 ^C	Mn xxiii	25.416	Kr xxv
20.716	V xiv	22.232	V xv	23.9141° 23.9267°	Mn XXIII	25.416 25.498 ^C	Ni xxv
20.823	Ti xv	22.232 22.2471 ^C	Cu xxix	23.9267° 23.944°C	Cu xxviii	25.498	Cu xix
20.863	Cr xv	22.2471	Ti xiv	23.9585 ^C	Mn xxiii	25.526	Cu xix
20.88 ^C	Ti xv	22.257	Kr xxvi	23.960	Ti xiv	25.543 25.5492 ^C	Cu xxv
20.897	Ti xv	22.276 ^C	Mn xxiv	23.979 ^C	Cr XXIII	25.5492° 25.5720°	
20.92 ^C	Ti xv	22.279	Ti xiv	23.9890 ^C	V xxiii	25.592 ^C	Co XXV
20.92 - 20.97 ^C	Ti xv	22.279	Ti XIV Ti XIV	23.9890	v xxiii Ti xiii		Ni xxv
21.018	V xiv	22.279 22.303 ^C	Ti XIV	23.991 24.020 ^C		25.621	Kr xxv
21.018	V XIV V XV	22.303	Ti XV Ti XIV	24.020° 24.033°	Cu xxviii	25.646	Cu xxv
21.019	v xv Ti xiii				Cu xxviii	25.6718 ^C	Co xxv
21.035 21.05 ^C		22.328	Ti xiv	24.050 ^C	Cu xxviii	25.710 ^C	V XXII
	Ti xv	22.375	V xv	24.056 ^C	Cu xxviii	25.723 ^C	Ni xxv
21.094	Ti xv	22.376 ^C	Ti xv	24.070 ^C	Cu xxviii	25.728	Kr xxv
21.127	Ti xiii	22.426	Ti xıv	24.084 ^C	Cu xxviii	25.739 ^C	V xxii
21.153	Cr xv	22.464	Ti xv	24.122 ^C	Cr xxIII	25.747 ^C	Ni xxv
21.185	Kr xxvi	22.475	Cu xix	24.1446 ^C	Mn xxIII	25.827 ^C	Ni xxv
21.213	Cr xv	22.482	Ti xv	24.1500 ^C	V xxiii	25.847 ^C	Ni xxv
21.285	V xv	22.486	Ti xıv	24.1666 ^C	Mo xL	25.863^{C}	Ni xxv
21.294	V xiv	22.518	Ti xiv	24.202	V xIII	25.869 ^C	Ni xxv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
25.8764 ^C	Cu xxvii	27.933 ^C	Co xxvi	30.188 ^C	Fe xxv	32.645 ^C	Kr xxxv
25.885 ^C	Ni xxvii	27.98	Ni xviii	30.219 ^C	Fe xxv	32.652	Fe xvi
$25.902^{ m C}$	Ni xxvii	27.982	Ni xviii	30.2727 ^C	Co xxv	32.655 ^C	Fe xvi
25.9547 ^C	Cu xxvii	27.9888 ^C	Ni xxvi	30.325	Cu xviii	32.674 ^C	Mn xxi
25.9630 ^C	Cr xxii	28.017 ^C	Ni xviii	30.33	Fe xvi	32.691	Mo xvi
26.02	Ni xviii	28.018	Ni xviii	30.743	Fe xxiv	32.718 ^C	Mn xxi
26.020	Ni xviii	28.214 ^C	Ti xxı	30.81	Mn xv	32.730 ^C	Mn xxi
26.046	Ni xviii	28.220	Ni xvIII	30.895	Fe xxiv	32.735 ^C	Mn xxi
$26.047^{ m C}$	V xxii	28.223 ^C	Ni xviii	30.91	Ni xvii	32.756 ^C	Mn xxi
26.1333 ^C	Cr xxII	28.242^{C}	Ti xxı	31.041	Fe xvi	32.794 ^C	Mn xxi
26.1458 ^C	Cr xxII	28.3417 ^C	Co xxv	31.142	Co xvii	32.816 ^C	Fe xxiv
26.2023^{C}	Cr xxII	28.4947 ^C	Co xxv	31.242	Fe xvi	32.84	Fe xvı
$26.2074^{\rm C}$	Ni xxvi	28.5049^{C}	V xxi	31.244 ^C	Fe xvi	32.860	Mo xvi
26.218	Ni xviii	28.598 ^C	Ti xxı	$31.287^{\rm C}$	Mn xxiv	32.910	Co xvii
26.222^{C}	V xxii	28.631	Cu xix	31.37	Mn xv	32.916	Mo xvi
26.228^{C}	Ni xviii	28.67	Fe xvi	31.38	Co xvii	$32.950^{ m C}$	Co xvii
26.2415^{C}	Ti xxii	28.674	Cu xix	31.386	Co xvii	32.951	Co xvii
26.3605 ^C	Ni xxvı	28.6754 ^C	V xxi	31.390 ^C	Со хин	32.981	Mo xvi
26.362^{C}	V xxii	28.6879 ^C	V xxi	31.410 ^C	Mn xxiv	32.995	Co xvii
26.3886 ^C	Cr xxii	28.7739 ^C	V xxi	$31.4357^{\rm C}$	Ti xx	33.04	Fe xvi
$26.4024^{\rm C}$	Ti xxII	28.792 ^C	Ti xxi	31.6063 ^C	Ti xx	33.046	Co xvii
26.416	Cu XIX	$28.825^{ m C}$	Fe xxv	31.6188 ^C	Ti xx	33.067	Mo xvi
26.452	Cu xix	28.85	Co xvii	31.637	Fe xxiv	33.100	Mo xvi
26.4550°	Ti xxII	28.874	Co xvii	31.7405 ^C	Ti xx	33.120	Mo xvi
26.525^{C}	V xxII	$28.930^{\rm C}$	Ti xxı	31.760 ^C	Mn xxiv	33.161	Mo xvi
26.636 ^C	Co xxvi	$28.950^{\rm C}$	Fe xxv	31.764 ^C	Mn xxiv	33.185	Mo xvi
26.641	Ti xIII	28.960	Co xvii	$31.802^{\rm C}$	Mn xxiv	33.211	Mo xvi
26.763 ^C	Co xxvi	28.9604 ^C	V xxi	31.804 ^C	Mn xxiv	33.235	Mo xvi
26.86°	Ti xx	28.987	Cu xix	31.845	Ni xvIII	33.249	Ni xvii
26.9095^{C}	Ni xxvi	29.121 ^C	Ti xxı	31.890	Ni xvIII	33.264	Mo XVI
26.960	Ti xiii	29.1293 ^C	Co xxv	31.893 ^C	Ni xviii	33.266	Cu xix
27.00 ^C	Ti xx	29.171	Co xvii	31.9272 ^C	Ti xx	33.293	Mo XVI
27.00^{C}	Ti xx	29.174 ^C	Co xvii	31.933 ^C	Kr xxxv	33.317	Cu xix
27.011 ^C	Co xxvi	29.242 ^C	Fe xxv	31.960 ^C	Kr xxxv	33.340	Ni xvii
27.013^{L}	Cu xxvi	29.252 ^C	Fe xxv	31.968	Fe xxiv	33.347	Mo xvi
27.020^{C}	Co xxvi	29.277	Cu xix	32.00	Fe xxiv	33.358 ^C	Kr xxx
27.032	Cu xix	29.283 ^C	Fe xxv	32.034	Ni xviii	33.363 ^C	Kr xxx
27.0405^{C}	Ti xiii	29.285 ^C	Fe xxv	32.0384 ^C	Ti xx	33.429	Mo xvi
$27.047^{\rm C}$	Co xxvi	29.383	Ni xviii	32.060 ^C	Mn xxiv	33.43 ^C	Fe xxII
27.050^{C}	Co xxvi	29.422	Ni xviii	32.061	Mo xvi	33.4571 ^C	Mn XXI
27.075	Cu xix	29.423 ^C	Ni xvIII	32.078	Mo xvi	33.479	Mo xvi
27.182	Cu xxvi	29.458	Mo xv	32.0792 ^C	Ti xx	33.543	Mo XVI
27.2434^{C}	Ni xxvi	29.4634 ^C	Co xxv	32.0848 ^C	Cr xxiv	33.55	Mn xv
27.2698^{C}	Fe xxvi	29.5155 ^C	Co xxv	32.0981 ^C	Ti xx	33.567	Ni XVII
27.28^{C}	Ti xx	29.5329 ^C	Mn xxv	32.105 ^C	Mn xxiv	33.591	Mo xvii
27.28 ^C	Ti xx	29.544 ^C	Fe xxv	32.166	Fe xvi	33.6096 ^C	Mn xxi
$27.2956^{\rm C}$	Ni xxvi	29.594 ^C	Fe xxv	32.192	Fe XVI	33.635	Mn xv
$27.313^{\rm C}$	Co xxvi	29.774	Mo xv	32.230	Mn xv	33.635	Mn xv
27.32^{C}	Ti xx	29.779	Ni xviii	32.230	Mn xv	33.680	Mn xv
27.363 ^C	Co xxvi	29.796 ^C	Fe xxv	32.323	Mo xvi	33.740	Mo xvi
27.395	Cu xxvi	29.829	Ni xviii	32.340	Ni xviii	33.750 ^C	Kr XXX
27.522 ^C	Co xxvi	29.8511 ^C	Mn xxv	32.350 ^C	Ni xviii	33.760	
27.5830 ^C	Ni xxvi	29.8665 ^C	Co xxv	32.360 ^C	Mn xxiv	33.800	Mo xv
27.5883 ^C	Fe XXVI	29.884 ^C	Fe xxv	32.377	Fe XXIV	33.812	Mo xvi
27.612 ^C	Co xxvi	29.93	Fe xvi	32.402 ^C	Fe xxiv	33.853	Mo XV
27.6879 ^C	Fe xxvi	29.9508 ^C	Mn xxv	32.4026 ^C	Cr xxiv	33.96	Mo XVI
27.749 ^C	Co xxvi	30.019	Cu XVIII	32.433	Fe xvi	33.982	Ni xvii
27.758 ^C	Co xxvi	30.020°	Fe xxv	32.444 ^C	Mn xxiv	33.982	Mo xv
27.846 ^C	Co xxvi	30.028 ^C	Fe XXV	32.444	Fe XXIV	N N	Mo xv
27.872 ^C	Co xxvi	30.028	Fe XXV	32.478 32.493 ^C	re xxiv Ni xviii	34.02 34.072 ^C	Mn xv
27.88	Fe xvi	30.104	Cu XVIII	32.493° 32.5024°			Cr xxi
27.887 ^C	Co XXVI	30.10 ⁴ 30.115 ^C		32.5024° 32.533°	Cr xxiv	34.193 ^C	Cr XXI
41.001			Fe xxv		Ni xviii	34.21	Fe xvi
or good							
27.892 ^C 27.902	Co xxvi Co xvii	30.150 ^C 30.164 ^C	Fe xxv Fe xxv	32.542 ^C 32.568 ^C	Ni xviii Mn xxiv	34.22 34.388 ^C	Mn xv Kr xxx

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrui
34.507 ^C	Kr xxxiv	36.807 ^C	Mn xv	38.980 ^C	V xxII	41.446	Mo xvii
34.601^{C}	Cr xxIII	36.990	Ni xviii	39.045 ^C	V xxii	41.462	Co xvii
34.608^{C}	Cr xxIII	37.012	Mo xxxii	39.0995 ^C	Cr xxII	41.472 ^C	Co xvii
$34.648^{\rm C}$	Cr xxIII	$37.029^{\rm C}$	Fe xxiv	39.161	Mo xxxv	41.490	Mo XVII
$34.650^{\rm C}$	Cr xxIII	37.049	Ni xvIII	39.181	V XIII	41.51	Mn xiv
34.7975^{C}	Mn xxIII	$37.053^{\rm C}$	Ni xvIII	39.181	V xIII	41.553 ^C	Ti xxi
34.8495^{C}	Mn xxIII	37.070	Co xvi	39.183	Mo xxxii	41.554 ^C	Ti xxı
34.857	Fe xvi	37.096	Fe xvi	39.272	Mo xxxii	41.556	Cr xiv
34.900^{C}	Cr xxIII	37.12	Mn xv	39.287	Mn xv	41.559	Fe xv
34.948^{C}	Cr xxIII	37.136^{C}	Fe xvi	39.346	Ni xvii	41.576	Mo xvi
34.9769^{C}	V xxiii	37.138	Fe xvi	39.373	Ni xvii	41.596	V xIII
35.04	Mn xv	37.165	Co xvi	39.415	Ni xvii	41.596	V xIII
35.106	Fe xvi	37.239	Mo xxxii	39.547	Mn xv	41.607 ^C	Ti xxı
35.113 ^C	Fe xvi	37.241 ^C	V xxII	39.553 ^C	Mn xv	41.608 ^C	Ti xxi
35.190	Kr xviii	37.249 ^C	Fe xxiv	39.721	V XIII	41.663	Fe xv
35.229	Mn xv	37.262 ^C	Fe xxıv	39.721	V XIII	41.7159 ^C	V xxi
35.238	Cu xviii	37.293	Cu xix	39.725	Cu xix	41.72	Mn xiv
35.25^{C}	Mn xv	37.305	Mo xxxII	39.796	Cr xiv	41.767	Μο χνι
35.256	Cu xviii	$37.360^{\rm C}$	V xxII	39.827	Fe xvi	41.7676 ^C	V xxi
35.260^{C}	Cr xxIII	37.4	Mn xv	40.016 ^C	Cr xiv	41.788	Cr xiv
35.294	Cu xviii	37.401	Co xvi	40.018	Cr XIV	41.796 ^C	Cr xiv
35.2943^{C}	V xxIII	37.42	Mn xv	40.0673 ^C	V xxi	41.844	Mo xvi
35.333	Fe xvi	37.483	Mo xxxv	40.151	Mn xv	41.847 ^C	Ti xxı
$35.346^{\rm C}$	Cr xxIII	37.488	Cu xix	40.153	Fe xvi	41.896 ^C	Ti xxı
35.3629^{C}	Mn xxiii	37.60	Cr xiv	$40.162^{\rm C}$	Fe xvi	41.903	Fe xv
35.368	Fe xvı	37.661	Mo xxxiv	40.199	Fe xvi	41.908	Mo xvi
35.368	Mo xv	37.661	Mo xxxv	$40.2194^{\rm C}$	V xxi	41.91	Fe xvi
$35.370^{\rm C}$	Fe xvi	37.6878 ^C	Cr xxII	40.245	Fe xvi	41.954	Mo xvi
$35.3940^{\rm C}$	V xxiii	37.768	Co xvii	40.246 ^C	Fe xvi	42.014	Mo xxx
35.397	Kr xviii	$37.843^{\rm C}$	V xxii	40.263	Cu xix	42.061	Mo xvi
35.450	Cr xiv	37.845 ^C	V xxII	40.285	Mn xv	42.089	Mo xvi
35.450	Cr xiv	37.893 ^C	V xxii	40.298	Cu xix	42.116	Mo xvi
$35.454^{\rm C}$	Cr xxiii	37.895 ^C	V xxII	40.465 ^C	Mn xv	42.152	Mn xv
$35.506^{\rm C}$	Cr xxiii	38.02	Mn xv	40.465 ^C	Mn xv	42.163	Mo xvi
35.569^{C}	Cr xxiii	$38.0225^{\rm C}$	Cr xxII	40.477	V XIII	42.185	Mn xv
35.617	Co xvii	38.036	Cr xiv	40.477	V xIII	42.191 ^C	Mn xv
$35.626^{\rm C}$	Cr xxIII	38.036	Cr xiv	40.501 ^C	Mn xv	42.200	Mo xvi
$35.637^{\rm C}$	Cr xxIII	38.0744 ^C	Cr xxII	40.572	Mn xv	42.205 ^C	Cr xiv
35.642^{C}	Cr xxIII	38.1	Cr xiv	40.613	Cu xviii	42.245	Mo xvi
35.660	Co xvii	38.141 ^C	V xxII	40.650	Ni xix	42.290	Mo xvi
$35.664^{\rm C}$	Cr xxIII	38.187	Mo xxxv	40.731	Ni xix	42.30	Fe xvi
35.707	Co xvii	38.188 ^C	V xxII	40.749	Cu xviii	42.357 ^C	Ti xxı
35.707^{C}	Co xvii	38.2719 ^C	Ti xxII	40.769	Cu xviii	42.387	Mo xvi
35.71	Fe xvi	38.54	Mn xiv	40.782	Cr xiv	42.400	Mo xvi
$35.714^{\rm C}$	Cr xxIII	38.567 ^C	V xxii	40.800	Cr xiv	42.448 ^C	Ti xxı
35.7699^{C}	Mn xxiii	38.573 ^C	Ni xvIII	40.866	Mo xxxv	42.453	Cr xiv
35.932	Co xvii	38.5892 ^C	Ti xxII	40.867 ^C	Ti xxı	42.473	Mo xvi
35.942 ^C	Co xvii	38.643 ^C	Ni xviii	40.92	Cr XIII	42.489	Mo xvi
36.01	Fe xvi	38.654 ^C	V xxii	40.984 ^C	Ti xxi	42.5100 ^C	V xxi
36.060	Mo xv	38.658 ^C	Ni xviii	41.015	Ni xviii	42.511 ^C	Ti xxi
36.09 ^C	Fe xxIII	38.679	Cr xiv	41.040	Mo xvii	42.543	Mo xv
36.099	Mn xv	38.6888 ^C	Ti xxii	41.095 ^C	Fe xvi	42.564	Mo xvi
36.119	Mn xv	38.6919 ^C	Cr xxii	41.132	Ni xix	42.603	Mo xv
36.376	Mo xv	38.742 ^C	V xxii	41.134	Cu xviii	42.626 ^C	Ti XXI
36.417 ^C	Co xvii	38.824 ^C	V XXII	41.134 41.137 ^C	Fe xvi	42.647	Mo xv
36.455 ^C	Co xvii	38.84 ^T	Co xvi	41.17	Fe xvi	42.656 ^C	Ti XXI
36.466	Cr xiv	38.871 ^C	V xxii	41.17		42.656	
36.466	Cr xiv Cr xiv	38.876			Cu xviii	42.704 42.704 ^C	Mo xv
36.466 ^C	Cr xiv Co xvii	38.876	Cu xviii	41.185	Mn xv	42.704 ^C 42.704 ^C	Mn xv
36.5418 ^C		38.899	Mn xv	41.218	Ni xviii		Mn xv
36.5418° 36.577	Cr xxII	38.899 38.944 ^C	Cr xiv	41.221	Mo xxxv	42.745 ^C	Mn xv
	Mn xv		V xxII	41.243	Mn xv	42.745 ^C	Ti xxı
36.6942 ^C	Cr XXII	38.95	Fe xv	41.37	Fe xvii	42.754 ^C	Ti xxı
36.749	Fe xvi	38.952 ^C	V xxII	41.3808 ^C	V xxi	42.758 ^C	Ti xxi
36.803	Fe xvi	38.957 ^C	V xxii	41.385	Ni xix	42.767	Mo xv
36.803	Mn xv	38.96	Ni xvii	41.404	Co xvii	42.782 ^C	Ti xxi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
42.802	Mo xvii	44.869 ^L	Co xviii	46.291	Mo xvi	47.772	Ni xvi
42.81	Cu xvii	44.873 ^C	Cr XIV	46.352	Mo xvi	47.871	Mo xvi
42.817	Mo XVII	44.919	V XIII	46.378	Mo xvi	47.884	V XIII
42.846	Mo xvii	44.920 ^C	Fe XXIV	46.395	V XIII	47.889 ^C	V XIII
42.855	Ni xvii	44.959 ^L	Co xviii	46.415 ^C	Cr xiv	47.906	Ті хи
42.865 ^C	Ti XXI	44.98	Cu xvi	46.415 ^C	Cr xiv	47.906	Ti xii
42.891	Mo xvii	44.995	Ni xvii	46.433	Co xvi	47.91 ^C	Ti xx
42.909	V XIII	45.000	Mo xvi	46.452 ^C	Cr xiv	47.93	Mn xiv
42.9183 ^C	V xxi	45.018	Ni xvii	46.460	V xIII	47.959	Mo xvi
42.93	Fe xv	45.071	V XII	46.463	Mo xvi	48.09 ^C	Ti xx
42.939	Mo XVII	45.154	Mn xv	46.468	Cr xiv	48.09 ^C	Ti xx
42.980	Mo xvII	45.155 ^C	Fe XXIV	46.478	Mo xvi	48.11	Kr xxvi
43.00	Mn xiv	45.165 ^C	Mn xv	46.478	Mo xvi	48.30 ^C	V xxi
43.029	Mo xvii	45.167	Ti xII	46.482	V XIII	48.300	Cr XIV
43.103	V XIII	45.167	Ti xii	46.522	Co xvi	48.338	Cr XIV
43.105	Mo xvii	45.21	Cu xvi	46.527	Cr XIV	48.340 ^C	Cr XIV
43.144	Mo XVII	45.24	Cu xvi	46.570	Mo xxxviii	48.435	V XIII
43.198	Mo XVII	45.245 ^C	Fe XXIV	46.573	Mo XVI	48.497 ^C	Fe XVII
43.224	Mo XVII	45.250	Mo xvi	46.573	Mo xvi	48.52 ^C	V xxi
43.256	Mo xvii	45.290	Mo xvi	46.592	Mo xvi	48.52 ^C	V xxi
43.268	V XIII	45.312	Mo xxxviii	46.623	Mo xvi	48.564	Co xvii
43.279 ^C	Co xvii	45.319	Co xvii	46.641	Ti xii	48.59	Kr xxvi
43.285	Mo xvii	45.332	Cu xix	46.641	Ti xII	48.682	V xiii
43.31	Cu xvii	45.35 ^L	Co xviii	46.661	Fe xvi	48.876 ^C	Fe хvіі
43.324	Mo xvi	45.382	Ni xvii	46.69	Ti xx	48.884 ^C	Fe xvi
43.340	Mo XVII	45.424	Ni xvii	46.712	Mo xvi	48.885	Cu xviii
43.348 ^C	Co xvii	45.446	Mo xxxviii	46.718	Fe xvi	48.885	Cu xviii
43.358	V XII	45.454 ^L	Co xviii	46.725 ^C	Fe xvi	48.89	Cu XVII
43.362	Mo xvii	$45.454^{ m L}$	Co xviii	46.755 ^C	Mn xv	48.97	Fe xvı
43.367^{C}	Co xvii	45.483	Mo xvi	46.781	Cu xviii	48.980 ^C	Fe xvi
43.371	V XIII	45.527	Co xvii	46.781	Mo xvi	48.989 ^C	Cr xiv
43.371	V xIII	45.545	Mo xvi	46.79	Ti xx	48.989 ^C	Cr xiv
43.39	Fe xv	45.553	Mo xvi	46.790 ^C	Mn xv	49.010	Cu xviii
43.446	Mo xvii	45.6375 ^C	Ti xx	46.804 ^C	Mn xv	49.03	Cr xIII
43.510	Mo xvii	45.640 ^L	Co xviii	46.841	Mo xvi	49.030 ^C	Cr xiv
43.529	Mo xvII	45.645	V xiii	46.859	Mo xvi	49.133	Co xvii
43.553	Mo xvii	45.659	Mn xv	46.877	Mo xvi	49.171	Co xvii
43.60	Cr XIV	45.659	Mo xvi	46.913	V xII	49.226	V xII
43.65	Fe xv	45.700	Mn xv	46.9175 ^C	Ti xx	49.395	Cu xvii
43.74	Mn xiv	45.707 ^C	Mn xv	47.012	Cu xviii	49.42	Mn xiv
43.741	V xiii	45.756	Mo xvi	47.068	Mo xvi	49.44 ^C	Fe xvii
43.75	Cr XIII	45.783	Ті хи	47.0739 ^C	Ti xx	49.452	Cu xvii
43.802	Mo xvii	45.783	Ti xII	47.165	Mo xvi	49.49	Fe xv
43.814	Ni xviii	45.809	Mo xvi	47.184	Ni xvi	49.490	Cu xvii
43.837	Mo xvi	45.835	Cr xiv	47.186	Mo xvi	49.558	Cu xvii
43.992	Mo XVII	45.853	Mo xvi	47.2028 ^C	Ti xx	49.59	Cr xIII
44.013	V xIII	45.867	Mo xvi	47.2467 ^C	Ti xx	49.626	Ni xv
44.03	V XII	45.873	V XIII	47.26	Cr XIII	49.63	Mn xiv
44.045	Mo xvii	45.876 ^C	V XIII	47.262	Mo xvi	49.639	Cu xvii
44.1219 ^C	Ti xx	45.887	Mo xvi	47.270	Mn xv	49.639	Cu xvii
44.253	Co xvi	45.90	Cu xvi	47.302	Mo xvi	49.642	V xIII
44.2736^{C}	Ti xx	45.938	Mo xvi	47.3265 ^C	Ti xx	49.769	Cu xvii
44.365	Ni xviii	45.9728 ^C	Ti xx	47.335 ^S	Cu xix	49.787	Fe xvii
44.376	V XIII	46.024	Mo XVI	47.34	Cr XIII	49.808	Co xvi
44.405	Ni xviii	46.0244 ^C	Ti xx	47.38	Mn xiv	49.862	Cu xvii
44.47^{T}	Cu xvi	46.039	Cr xiv	47.382	Mo xvi	49.880	Fe xvii
44.509	Mo xvi	46.043	Mo xvi	47.442 ^S	Cu xix	49.90	Cu xvii
44.59	Cr XIV	46.043	Mo xvi	47.483	Co xvi	49.904	Mo xxx
44.594	V xIII	46.090	Cu xix	47.55	Cr XIII	49.912	Ті хи
44.597	Cr xiv	46.113	Mo xvi	47.553	Mo xxxviii	49.912	Ті хп
44.63^{T}	Cu xvi	46.118	V xIII	47.585	Cu xviii	49.914	Mo xv
44.67	Cu xvi	46.125	Cr XIV	47.637	V xIII	49.914	Ni xv
44.820	Mn xv	46.131	Mo xvi	47.663	Ni xvII	49.93	Kr xxv
44.850	Ni xvii	46.197	Mo xvi	47.666	Mn xv	49.958	Co xvi
44.869	Cr xiv	46.229	Mo xvi	47.67	Mn xiv	49.979	Co xvi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
50.03	Mn xiv	52.08 ^T	Cu xvi	53.640	Kr xxix	55.962	Mn xvi
50.056	V xII	52.147	Mn xvi	53.641 ^C	Cr xiv	55.967	V xiii
50.062	Fe xv	52.147	Mn xvi	53.643	Cu xix	55.974 ^C	V xiii
50.067	Cu xviii	52.18	Cu xvi	53.672 ^C	Cr xiv	56.005 ^C	Fe xvii
$50.08^{ m C}$	Cu xxviii	52.224	Ni xvii	53.690 ^C	Cr XIV	56.01 ^C	Ni xxvi
50.085	Fe xv	52.228	Mo xiv	53.729	Mo xiv	56.021	Co xiv
50.118	Cu xvIII	52.315	V xII	53.760	Cr xiv	56.021	Co xvii
50.120	Fe xv	52.321	Cr xiv	53.765	Cr XIII	56.032	Mn xvi
50.17	Cu xvii	52.344	Mn xvi	53.781 ^C	V xIII	56.06 ^T	Cu xvi
50.172	Ni xv	52.363	Cr xIV	53.781 ^C	V XIII	56.110	Mn xvi
50.249	Ni xv	52.367 ^C	Cr xiv	53.817 ^C	V XIII	56.115	Co xiv
50.253	Ni xvIII	52.41 ^T	Cu xvi	53.86 ^C	Ni xxvii	56.161	Ti XII
50.262	Fe xvii	52.420	Mo XIV	53.889	Cu xix	56.18	Ni XIII
50.33 ^C	Cu xxviii	52.460	Mo XIV Mo XIV	53.977	Kr xxix	56.200	
50.357	Co xvi	52.476	Mo XIV	53.986 ^C			Fe xv
50.359	Fe XVI	52.476			Cu xxvii	56.207	Mn xvi
50.393		52.476 52.493 ^C	Mo XIV	54.088	Mo xvi	56.207	Mn xvi
	Co xvi		Ni xvIII	54.101	Mo XIII	56.236	Fe xv
50.448	Mo xv	52.583	Co xv	54.127	Fe xvi	56.270	Mn xv
50.448	Ti xii	52.59	Cu xvii	54.164	Cr xiv	56.333	Cu XII
50.494	V xiii	52.590	V XIII	54.18 ^C	Ni xxvii	56.37	Cr XIII
50.565	Fe xvi	52.594	Kr xxviii	54.24	Cu xvi	56.39	Ni XIII
50.674	Ti xII	52.614 ^S	Ni xviii	54.322	Ti xı	56.431	Ti xII
50.788	Mo xiv	52.644	Mo xvi	54.348	Mo xvi	56.432	Mn xv
50.81 ^L	Cu xvii	52.645 ^C	Ti xii	54.48	Cu xvi	56.484	Mn xv
50.812	Cr xiv	52.690	Mo xiv	54.493	V xII	56.527	Mo xxx
50.86	Kr xxvi	52.721 ^S	Ni xviii	54.596	Kr xxx	56.53	V xII
50.928	Mo xv	$52.744^{ m C}$	Ni xviii	54.624 ^C	Cu xxvii	56.57	Ni xiii
50.94	Co xvi	52.75^{C}	Fe XVII	54.702	V xii	56.61	Mo xiv
50.956	Mo xiv	52.753	Mo xiv	54.710	Fe xvi	56.655	V xII
50.958	Ni xvii	52.76	Cu xvii	54.747	Fe xvi	56.700	Mn xv
50.98^{L}	Cu xvii	52.801	Ni xvii	54.748 ^C	Cu xxvii	56.786 ^C	V xIII
51.007	Co xvi	52.821 ^C	Ni xviii	54.832	Mn xvi	56.786 ^C	V XIII
51.042	Ni xviii	52.826 ^C	Ni xvIII	54.988	Mn xvi	56.826 ^C	V XIII
51.091	V XIII	52.85	Cu xvi	55.09	Mn xvi	56.83	Co xvi
51.16	Cu xvii	52.870	V xIII	55.10 ^T	Co xiv	56.833	Co xvi
51.16 ^L	Cu xvii	52.896	Ti xii	55.136	Ni xvii	56.900	
51.161	Mo xiv	52.897 ^C	V XIII				Co XIV
51.161	Cr xiv	52.911		55.181	Ti XII	56.915	Cu xi
51.171 ^C			Fe xv	55.186	Ni xvii	56.96	Cr XIII
	Cr xiv	52.928	V XIII	55.258	Ni xvii	56.976 ^T	Kr xxx
51.208	V XII	52.977	Mn xv	55.29 ^C	Ni xxvii	57.047	Cu xi
51.239	Co xvi	53.02	Cr XIII	55.42^{T}	Co xiv	57.137 ^L	Ni xvi
$51.24^{\rm C}$	Fe xvII	53.032	Mn xv	55.431	Co xiv	57.224	Mn xiv
51.279	Co xvi	53.040 ^C	Mn xv	55.443	Ti xII	57.24	Cr xIII
51.287	Cu xviii	53.043	Co xvi	55.444 ^C	Ti xII	57.24	Cr xIII
51.37^{C}	Cu xxviii	53.048	Mo XIV	55.46^{T}	Cu xvi	57.257^{L}	Ni xvi
51.376	V XIII	53.100	Mo xiv	55.466	Cu xii	57.300 ^C	Ni xvii
51.380^{C}	V xiii	53.139 ^C	Ti xII	55.472	Mn xvi	57.32	Fe xvii
51.398	Mo xiv	53.140	Ti xII	55.517	Mn xvi	57.349 ^L	Ni xvi
51.434	Mo XIV	53.173	Co xv	55.54 ^C	Fe xvii	57.362	Mo xx
51.446	Ti xII	53.228	Mo xiv	55.560	Mn xvi	57.369 ^C	Ni xvii
51.496 ^T	Cu xviii	53.281	V XIII	55.635	Fe xv	57.376 ^C	
51.531	Mo xiv	53.3 ^C		55.658 ^C			Ni xvi
51.620	V XIII	53.318	Ti xx		Mn xv	57.44 ^L	Cu xv
			V XIII	55.659	Mn xvi	57.52 ^L	Cu xv
51.668	Mo xiv	53.318 ^C	V xIII	55.71	Kr xxvi	57.579	Ni xvi
51.669	Ті хп	53.341	Mo xiv	55.72	Mn xv	57.65	Mo xiv
51.847	Mn xvi	53.341	Mo xiv	55.728	Mn xvi	57.71	Mn xiv
51.895	Mo xiv	53.39	Cr XIII	55.762	Co xiv	57.775	Cr xv
51.909	Mo xvi	53.433	Ti xII	55.766 ^C	Mn xv	57.81	Mn xi
51.999	Mn xvi	53.457	Ti xII	55.782	Co xiv	57.834 ^C	Ni xvi
52.00	Mo xiv	53.484	Mo xvi	55.793	Fe xv	57.891	Ti xı
52.000	Ni xvii	53.5^{C}	Ti xx	55.815	Fe xv	57.927	Mo xv
52.015	Mo xiv	53.5 ^C	Ti xx	55.842	Mo xxxv	57.97 ^T	Mn xiv
	Mo XIV	53.506	Cr XIII	55.93	Kr xxvi	58.008	Cr xv
52.024							
52.024 52.03 ^C	Cu xxviii	53.52	Cu xvi	55.932	V XIII	58.09 ^C	Co xx

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
58.116	V xIII	60.058 ^C	Ni xviii	62.467 ^C	Ti xII	64.60 ^C	Fe xxv
58.127	Co xvi	$60.065^{ m C}$	Ni xvIII	62.470	Ті хи	64.635	Ni xv
58.187^{C}	Ni xvIII	60.089 ^C	Ni xviii	62.485	Cr xv	64.651	Kr xxxii
58.19^{T}	Mn xiv	60.11	Co XIII	62.526	Mn xiv	64.7 ^C	Ti xx
58.194	Cr xv	60.212	Ni xvIII	62.694	Mn xiv	64.7 ^C	Ti xx
58.238 ^C	Ni xvIII	60.32 ^C	Co xxvi	62.699	Fe хии	64.773	Co xvi
58.270 ^C	Ni xxvi	60.332	Kr xxx	62.713	Mn xiv	64.780^{T}	Co xvi
58.350	Cr xv	60.40 ^C	Co xxvi	62.730	Ni xi	64.79 ^L	Ni xiv
58.350	Cr xv	60.596	V xIII	62.754	Cr xv	64.875 ^C	Co XVII
58.3512 ^C	Mo XLI	60.640	V XIII	62.805	Co xvi	64.876 ^C	Ni XVIII
58.365	Co XVI	60.645 ^C	V XIII	62.805	Co xvi	64.892 ^C	Co xvii
		60.699		62.83 ^C		64.920	
58.469	Cr xv	1	Cr XIV		Fe xxv	64.920 65.01 ^L	V XII
58.48	Kr XXIX	60.701	Ti xII	62.842	Cr xv		Ni XIV
58.48 ^C	Co xxvi	60.720	Mn xv	62.871	Fe xvi	65.036 ^C	Ni xviii
58.482	V xIII	60.732	Kr xxx	62.958	Cr xv	65.04	Cr XIII
58.490 ^C	V XIII	60.756	Cr xiv	62.963	Fe хии	65.067	Kr xxxii
58.4912 ^S	Mo XL	60.761 ^C	Cr xiv	63.017	Со х	65.13	Cr XIII
58.555	Cr xv	60.762	Ti xII	63.017^{T}	Co xvi	65.153	Mn xvi
58.62	Fe XVII	60.890 ^L	Ni xv	63.038	Cu xi	65.216	Mn xvi
58.62	Fe xvII	60.971	Ті хи	63.061	Cr xv	65.24 ^C	Fe xxv
58.700	Kr xxix	60.975	Mo xiv	63.061	Cr xv	65.24 ^L	Cu XIII
58.71	Ni xv	61.025	Co xvi	$63.072^{\rm C}$	Ti xII	65.330	V xiv
58.76	Fe XVII	61.025	Co xvi	$63.072^{\rm C}$	Ti xII	65.34 ^C	Fe xxv
58.76	Fe xvii	61.08 ^L	Cu xiv	63.074 ^C	Co xxv	65.352	Kr xxxi
58.832	Mo xv	61.152^{L}	Ni xv	63.103	Kr xxxi	65.370	Fe xv
58.838 ^S	Co xvii	61.200	Co xvi	63.107 ^C	Ti xII	65.39 ^T	Cr XIII
58.907 ^C	Ni xxvi	61.229	Mo XIV	63.109	Mn xiv	65.40 ^L	Ni XIV
58.91	Fe xvii	61.286	Ti xII	63.146	Mn xiv	65.403	Ti XI
58.911 ^C	Ti xu	61.319	Mn xv	63.188	Fe xiii	65.415 ^L	Ni xv
58.924 ^C	Ti XII	61.352	V XII	63.192			
58.945 ^S					Cu xi	65.43	Cu xxii
	Co xvii	61.361	Mn xv	63.23	Mn xiv	65.445	V XII
58.96	Co xvi	61.455	V XII	63.30 ^C	Fe xxv	65.470	Mn xvi
58.963	Fe XIV	61.460	Cr xv	63.324	Cr xiv	65.508	Mn xvi
58.967 ^C	Co xvii	61.621	Co xvi	63.45	Mn xiv	65.540	Ті хи
58.98	Fe xvii	61.639	Cr xv	63.45	Mo xiv	65.564	V xII
58.98	Fe XVII	61.70 ^L	Cu xiv	63.46	Mn xiv	65.571	V xiv
59.032 ^C	Ni xxvi	61.705	V xIII	63.47	Со хи	65.577	Ті хп
59.045 ^C	Ti xII	61.717	V xII	63.508 ^C	Ni xvIII	65.580 ^C	Ti xII
59.092	V XII	61.746	Cr xv	63.539	Cr xiv	65.585	Co xiv
59.133	Ті хи	61.809	Ni x	63.589 ^C	Ni xviii	65.612	Fe xv
59.217	Ni xvi	61.875	Co xvi	63.593 ^C	Ni xviii	65.712^{T}	Co xiv
59.26	Fe xvii	61.915	Ni x	63.60	Co XII	65.740 ^C	Fe xvi
59.26	Fe xvii	61.916	Co xvi	63.637	Cr xv	65.770	Mo xvii
59.325	Mn xiv	61.921	V xII	63.641	Ni xi	65.805	Fe XII
59.336	Ni xvi	61.982	Co xvi	63.671	Kr xxx	65.848	V xii
59.377	Kr xxvi	62.10	Fe XIII	63.70	Со хи	65.891	Mo xvii
59.404	Fe XV	62.131	Co xvi	63.711	Fe xvi	65.905	Fe XII
59.435	Ti xII	62.131	Co xvi	63.712 ^C	Co xxv	65.927	Mn xvi
59.436 ^C	Ti XII	62.132	V XIII	63.80	Co XII	65.927	Mn xvi
59.459	Kr xxvi	62.135	Mo xxxv	63.837 ^C	Co xxv	ì	
59.53	Co XIII	62.201 ^C	V XIII	63.931 ^C	Co xxv Cr xiv	65.933	Mo xxx
59.579	Fe XIV	62.201				65.968	Cr XIII
59.579 59.58			Mo XIV	63.96	Fe xv	66.036	Mn xvi
	Ni xv	62.233	Cr xv	64.005	Cr xiv	66.047	Fe хи
59.59	Fe XVII	62.239 ^C	V XIII	64.03	Mn xiv	66.050	Co xiv
59.590	Mo xxxv	62.249 ^C	V xIII	64.042^{C}	Cr xiv	66.079 ^C	Fe xvi
59.625	Co xvi	62.318	Cr xv	64.139	Fe хии	66.087 ^C	Fe xvi
59.68 ^C	Co xxvi	62.332	Co x	64.14	Kr xxxi	66.100	Mo xvii
59.714	Kr xxix	62.334	Co xvi	64.224	Mn xvi	66.129	Mn xvi
59.748	Kr xxxı	62.353	Fe xIII	64.229	Co xv	66.146	Mo xvi
59.791^{C}	Ni xviii	62.369 ^L	Ni xv	64.23	Mn xiv	66.18 ^L	Cu xiii
59.86	Co XIII	62.378	Cr xv	64.356	Co xv	66.19	Co xi
59.947^{L}	Ni xv	62.411	Kr xxxi	64.4 ^C	Ti xx	66.195 ^T	Co xiv
59.950	Ni xviii	62.412	Co xvi	64.470 ^C	Co xvii	66.209	Mn xvi
59.99	Co XIII	62.433	Ti xii	64.480	Co xvii	66.225	Fe XII
60.02	Ni xii	62.46	Fe XIII	64.537	Co xvi	66.238	Fe xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrur
				` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `			
66.249 ^S	Fe xvi	68.733	Kr xxvIII	70.625	Ti x	71.750	Mo XVII
66.293 ^C	Ti xii	68.74 ^C	Mn XXIV	70.656 ^L	Cu XII	71.799	V xIII
66.297	Fe XII	68.807 ^L	Co xiv	70.677	V xiv	71.84	Со хін
66.356 ^S	Fe xvi	68.849	Fe xv	70.68	Co XIII	71.845	Cr xv
66.377^{C}	Fe xvi	68.883	Fe xv	70.698	Co xiv	71.86	Cr XIII
66.393	Mn xvi	68.890 ^C	Fe XXIV	70.72	Mn XII	71.875	Kr xxx
66.43	Fe xII	69.017 ^L	Co xiv	70.726	Mo xxiv	71.927	Mn xv
66.49	Co xi	69.036	Fe xv	70.728	Cr xv	71.948 ^L	Cu xii
66.503	Mn xvi	69.061 ^C	Ni xviii	70.78 ^C	Mn xxiv	71.975	Cr xv
66.526	Fe xii	69.080 ^C	Ni xvIII	70.792	Cr XIII	71.987	Ti xII
66.536	Mo XVIII	69.088	Mo xvii	70.796 ^C	Ni xxIII	72.02	Co XIII
66.538	Kr xxxii	69.124	Mn xvi	70.804 ^L	Cu XII	72.025	V XIII
66.542	Ni x	69.128	Cu XII	70.89	Mn XII	72.048	Co IX
66.574	Mn XIII	69.176	Fe xiv	70.90 ^C	Mn xxiv	72.050	Mo XXIV
66.595 ^C	Ti XII	69.212	Mo XVIII	70.926	Mo xviii	72.089	
66.595 ^C	Ti xii	69.213					Mo xviii
			Cr xiv	70.928	Co ix	72.092	Mo XVII
66.634 ^C	Ti xII	69.247	Cr xiv	70.973	Cr XIII	72.116 ^C	Co xvii
66.676 ^C	Ti XII	69.25 ^L	Ni xiii	70.973	Cr XIII	72.13	Cr XIII
66.676 ^C	Ti xII	69.37 ^L	Ni xiii	70.986	Ті хп	72.157	Cr xv
66.687	Ni x	69.386	Fe xıv	71.022	V xiv	72.166	Fe xı
66.706	Mn xvi	69.414	Kr xxix	71.031	Ті хи	72.17	Ni xII
66.773	Mn xvi	69.425 ^C	Fe xxiv	71.031 ^C	Ti xII	72.171	Mo xvii
66.806	V xII	$69.490^{\rm C}$	Ti xu	71.033^{L}	Cu xii	72.177	Co ix
66.819	Co xv	69.5	Mo xiv	71.038	Mn xv	72.211	Mo XVII
66.913	Co xv	69.534	Fe xv	71.04	Mn XII	72.267 ^C	Co xvii
66.9344 ^C	Mo xli	69.596	Mo XVI	71.053	Co ix	72.27	Cr XIII
66.960	Fe XII	69.609	V xiv	71.062	Fe xv	72.310	Fe XI
66.983	Cr XIII	69.62		1			
			Ni xxi	71.062	Fe xv	72.314 ^C	Fe xvi
67.02	Mn xiv	69.657 ^C	Fe xxiv	71.089	Mo xviii	72.369	Cu xi
67.069	Co xiv	69.66	Fe xiv	71.169 ^C	Co xvii	72.373 ^L	Cu XII
67.093^{C}	Ni xviii	69.66	Fe xv	71.175	Mo xxiv	72.412^{C}	Fe xvi
67.099	Mn xvi	69.667	Fe xiv	71.187	V xiv	72.45	Mn XIV
67.132^{C}	Ni xviii	69.675	Мо хуш	71.196	Mo xviii	72.454	Co x
67.141	Mo xvIII	69.726	V XIV	71.201	Ti xı	72.472 ^C	Fe xvi
67.149	Mn xvi	69.83	Со хии	71.223	Mo xxxv	72.477 ^C	Fe xvi
67.161^{C}	Ni xviii	69.910 ^C	Ti xıı	71.248 ^C	Co xvii	72.50	Mo XIV
67.164	Fe xII	69.929	Mo xviii	71.248 ^C	Co xvii	72.511	Cr xv
67.171	Ti xii	69.945	Fe xv	71.267	Fe xv	72.52	Ni xxii
67.215	Mn XIII	69.957	Kr xxxii	71.290	V XIV	72.56 ^L	Co XIII
67.278 ^C	Co xvii	69.987	Fe xv	71.3	Mo xiv	72.57	Cr XIII
67.291		69.994 ^C					
	Fe XII		Ti xii	71.317	V xiv	72.57	Ni XII
67.302	Mo xvii	70.05	Ti xiii	71.32	Mn XII	72.572 ^L	Cu XII
67.314	Mn xvi	70.054	Fe xv	71.323	Ti xı	72.580	Cu xi
$67.446^{\rm C}$	Co xvii	70.07 ^L	Ni xiii	71.323	Ti xı	72.580	Cu XI
67.555	Ti xII	70.073	Cu XXIII	71.359	Mo xvii	72.635	Fe xı
67.564^{C}	Ti XII	70.121	Mo xviii	71.377	Fe xıv	72.66	Kr xxx
67.648	Mo xvIII	70.16 ^C	Mn xxiv	71.398	Cr XIII	72.66 ^L	Co XIII
67.702	Fe хи	70.224	Fe xv	71.4	Ni xii	72.679	Mo xvi
67.737 ^C	Co xvii	70.224	Fe xv	71.435	Cr XIII	72.692	Cr xv
67.759	Cu xxiii	70.251	Fe xiv	71.461	Mo xviii	72.719 ^C	Fe xvi
67.821	Fe XII	70.262	V XIII	71.48	Ni xxii	72.735 ^C	Fe xvi
67.845	Mo xviii	70.265	Ti x	71.488	Co x	72.756	Kr xxx
67.882	Cu xii	70.323	V XIII	71.493 ^T			
67.97		70.323 70.327 ^C		I	Co xiv	72.77	Ni XII
	Co xi	E .	V xIII	71.523	Mo xviii	72.792	Cu xi
67.972	Fe хи	70.367	Mo xvii	71.530^{L}	Cu XII	72.8 ^C	Ni xxII
67.984	Mo xviii	70.386	Mo xvii	71.54	Ni xxii	72.80	Fe XIV
68.128	Mo xviii	70.428	Cr xv	71.545	Ti xii	72.821 ^L	Cu XII
68.16^{C}	Mn xxiv	70.487	V xiv	71.589	V xiv	72.849	Cr xv
68.188	Mo xvII	70.494	Mo xvii	71.603	Ti xı	72.85	Fe IX
68.382	Fe хи	70.519	Fe xv	71.603	Ti xı	72.88	Cr XIII
68.390	Mo xvii	70.551 ^L	Cu xii	71.609 ^L	Cu xii	72.891	Fe ix
68.512 ^C	Ni xvIII	70.573	V xiv	71.69	Mn xii		
68.594	Cr xiv	70.596	Mo xxiv			72.941	Cr xv
				71.700 ^L	Cu XII	72.95	Fe XIV
68.662	Mn xvi	70.601	Fe xv	71.705	Mo xvii	72.956	Cu xi
68.727	Μο χνιιι	70.613	Fe xiv	71.744	Cr VII	72.971	Cr xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
72.990	Mo xvii	74.43	Ni xxi	75.866	Cu xı	77.369	Mo xxvi
$73.019^{\rm C}$	Ti xii	74.43 ^C	Mn xv	75.869	Mo xvi	77.393	Ni xı
$73.065^{\rm C}$	Ti xu	74.44	Ni xii	75.87	Co xxi	77.396	Mo xvii
$73.066^{\rm C}$	Ti xii	74.49	Ni xxii	75.879	Mn xi	77.402	Mn XI
73.08	Fe xiv	74.59	Ті хіп	75.886	Cr xv	77.410	Mo xvii
73.122	Mo xvii	74.600	Mo xvii	75.892	Fe хии	77.415	Mo xviii
73.199	Fe xv	74.619 ^C	Mn xxiii	75.90	Со ххі	77.456	Mo xvi
73.286	Cr xv	74.633	Cu xı	75.94	Mn xiv	77.512	Cu xxii
73.289	Mo xvii	74.663	Kr xxix	76.006	Fe x	77.552	Mo xviii
73.31	Cr XIII	74.695	Cr xv	76.022	Cu xı	77.556	Mn xı
73.380	Mo xviii	74.71 ^C	Mn xv	76.022	Fe xiv	77.627	Fe x
73.402	Co xiv	74.738	Cr xv	76.076	Cu xxiii	77.666	Mo xvii
73.446	Mo xviii	74.74	Ті хиі	76.101 ^C	Fe xvi	77.69	Co xxi
73.471	Fe xv	74.775 ^C	Fe xvi	76.113 ^C	Fe xvi	77.706	Mo xvii
73.473	Fe xv	74.80 ^C	Mn xv	76.117	Fe xIII	77.727	Mo xvii
73.474	V xII	74.813	Cr xv	76.125	Cr xv	77.728	Fe x
73.516	Cu xi	74.845	Fe xiii	76.127 ^C	Fe xvi	77.812	Fe x
73.576	V XII	74.856	Cu xi	76.152	Fe xiv	77.865	Fe x
73.58^{L}	Co XIII	74.875	Cr vII	76.160	Co ix	77.874	Cr xv
73.627	Cr xv	74.89 ^C	Cr xxIII	76.162	Cr xv	77.875	Mo xviii
73.63	Fe IX	74.961	Mn xiv	76.17	Cr xIII	77.898	Mo xvii
73.66^{L}	Co XIII	74.975	Cr xv	76.216	Mo xiv	78.019	Mo xvii
73.665	Co ix	75.003 ^C	Ni xxiv	76.254 ^C	Ni xviii	78.053	Mo xviii
73.676	Mo xvIII	75.054	Cr xv	76.256	Cu xi	78.056	Mn xı
73.734^{L}	Cu xii	75.059	Mn xi	76.269	Mo xvii	78.056	Mo xxvi
73.735	Cu xi	75.084	Cr xv	76.296	Kr IX	78.101	V xiii
73.747	Mo xviii	75.14 ^C	Co xxii	76.305	Со іх	78.151	Fe x
73.798	Co ix	75.141	Mo xxiv	76.307	V xII	78.21	Ni xxiii
73.812	Mo xviii	75.174 ^S	Mn xv	76.327 ^C	Fe xvi	78.255	Mo xviii
73.856	V xII	75.227	Mn xi	76.359 ^C	Ni xviii	78.268	Mo xxvii
73.86^{L}	Со хии	75.241	Cr xv	76.371	Cr xv	78.28	Ni xxi
73.884	Cr xv	75.257 ^C	Mn xxIII	76.377 ^C	Ni xviii	78.35	Mn XIV
73.944	Mo xviii	75.280 ^S	Mn xv	76.380	Mn xi	78.384	Cu xxi
73.978	V xII	75.289 ^C	Co xvii	76.383 ^C	Co xvii	78.42	Mn XIV
73.982	Cu xi	75.297	Cr xv	76.403	Ti xı	78.462 ^L	Fe XIII
74.020	Mo xvIII	75.303 ^C	Mn xv	76.45	Ni xxi	78.54	Mn XIV
74.03^{L}	Со хи	75.309	Mo xviii	76.45 ^C	Cr xxiii	78.542	Cu xi
74.063	Mn xiv	75.312 ^C	Co xvii	76.488	Cr xII	78.56 ^L	Fe XIII
74.07	Ni xxiii	75.324 ^C	Co xvii	76.495	Fe x	78.625	Cr xv
74.097	Ni x	75.325	Cu xi	76.502	Fe xvi	78.650	Ti x
74.10	Co xx	75.382 ^C	Mn xxIII	76.529	Mo xviii	78.71	Co xxi
74.108	Ті хііі	75.415	Ti xı	76.610	Kr xxxi	78.735	Mo xviii
74.170 ^S	Mo xxv	75.446	Cr xv	76.624	Mo xxvi	78.744	Ni xi
74.173	Cr xv	75.455	Kr IX	76.647	Mo xviii	78.746	V xiii
74.209	Cr xv	75.472	Cu xi	76.731	Ti xı	78.749 ^C	Ni xxIII
74.21^{C}	Cr xxIII	75.477	Mn xi	76.763	Mn xi	78.769	Fe x
$74.254^{ m C}$	V XIII	75.548 ^C	Ni xxiv	76.789	Kr IX	78.77 ^L	Ге хии
74.257	V xII	75.580	Mo xvii	76.796	Fe xvi	78.783	V XIII
74.266	Ni x	75.605	Cr xv	76.812	Mo xviii	78.786	Cu xi
74.280	Mo xviii	75.62	Ni xII	76.822	Fe x	78.888	Fe xix
74.303	Mo xviii	75.650 ^C	Ті хи	76.858	Mn xi	78.90	Co xxi
74.306	Mo xvii	75.66	Kr xxxiii	76.863	Mo xvii	78.90	Kr xxxii
74.32	V xII	75.66	Kr xxxiii	76.870	Mo xviii	78.98	Co xxii
74.321	V xIII	75.670	Cr xv	76.951 ^C	Co xvii	79.004	Ti xiii
74.327	Fe хііі	75.677 ^C	Ті хи	76.960	V XII	79.01	Co xx
74.327	Mn xiv	75.685	Fe x	76.975 ^C	Co xvii	79.027	Ti xı
74.330^{C}	Fe xvi	75.69	Ni xu	76.992	Mo xviii	79.027	Ti xı
74.368^{C}	V xiii	75.698	Mo xxvi	77.055 ^C	Ni xxiii	79.062	Mo xvii
74.37	Ni xxii	75.712	Mo xviii	77.07 ^C	Cr xxiii	79.076	Ti xı
74.379	Co xiv	75.743	Cr xv	77.10	Kr xxxiii	79.10	Mn xiv
74.38 ^L	Co xiii	75.815	Cr XII	77.21 ^C	Cr xxiii	79.105	Ti x
74.383	Cu xxii	75.816	Mo xvii	77.270	Mn xi	79.105 79.112 ^C	Ni xxiv
1 1.000		i i					
74 407	Mo yviii	75 X10	Mnvi	77 900			
74.407 74.42	Mo xviii Ti xiii	75.819 75.83	Mn xi Ni xii	77.29 ^C 77.32	Co xxı Ni xıx	79.16 79.186	Mn xiii Mo xvii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
79.235	Ti xm	81.05	Mn xiv	82.530	Ni xi	84.302 ^C	Mo XLII
79.31^{L}	Со хи	81.05	Mn xiv	82.556	Mo xvii	84.31 ^C	Co XXIII
79.359	Mo xvii	81.077	V XII	82.625	Ni xi	84.321	Ti XI
79.45	Kr xxxi	81.08 ^C	V xxII	82.744	Fe xII	84.418	Ni x
79.457	Mo xviii	81.080	Mo xvii	82.759	Co xi	84.42 ^C	V xxII
79.488	Fe XII	81.098	V xII	82.79	Cr XIII	84.420	V xiv
79.532	Mo xvii	81.119	Ti xı	82.828	Mn x	84.433	Ti xı
79.557	Kr xxxi	81.138	Ni xi	82.837	Fe хи	84.454	Kr xxxii
79.613	Mo xxvii	81.153	Ti XIII	82.844	V xII	84.48 ^L	Fe XII
79.615	Cu xxIII	81.154	Fe XIII	82.892	Ni x	84.48 ^L	Fe XII
79.653	Mo xviii	81.161	Fe XIII	82.971	Mo xiv	84.52 ^L	Fe хи
79.664	Cu xxiii	81.18	Cr xi	83.068	Mn x	84.52 ^L	Fe XII
79.711	Mo xvii	81.213	Ni xı	83.079	Mo xvii	84.525	Ti xı
79.720	Mn xiv	81.23	Cr xi	83.084	Cu xxiv	84.56 ^C	Mn xv
79.761	Mn xiv	81.258	Ti xIII	83.108	Ni x	84.616	Cr XIII
79.773 ^C	Fe xxi	81.261	Mo xvii	83.108	Ni x	84.627 ^C	Cr XIV
79.826	Mn xiv	81.322	Ті хіп	83.134	V XII	84.659	Ni x
79.947	Kr xxix	81.378	Ni xi	83.139	Ni xi	84.67	Co xi
79.99	Ni xxIII	81.382	Mo xvii	83.183	Cu xxII	84.703 ^C	Mn xx
80.022	Fe XII	81.468	Ni xi	83.185	Ni xx	84.703 ^C	Ni xxiii
80.057	Cu xxiii	81.491	Cr vii	83.190	Со хі	84.711	Ti x
80.06 80.06	Mn xiv	81.507	Co xi	83.23	Fe xx	84.711	Ti xı
80.06 80.077 ^C	Mn xiv	81.513	V XII	83.23	Mn XIII	84.72 ^L	Co XI
80.14 ^L	Ni xviii Co xii	81.55	Cr XI	83.235	Fe xx	84.757	V xiv
80.14		81.550 81.599 ^C	V XII	83.308	Mo xxviii	84.768 ^L	Fe XII
80.160	Ni xxII Fe xII		Cr xxII	83.31	Cr xi	84.835	Ti xı
80.19 ^L		81.611	Ті хіп	83.326	Ni x	84.85 ^L	Fe хи
80.201	Co xii Mo xviii	81.651 81.69	Fe XII	83.340	Cu xxiii	84.86	Fe xII
80.212 ^C	Ni xviii	81.732	Ni xxi	83.340	Cu xxiv	84.874	Fe XIX
80.212 80.22^{C}	Co xxiii	81.732 ^C	Ni xi	83.41 ^L	Mn XIII	84.876	Ti xı
80.225 ^C	Fe xvi	81.8 ^C	Mn xv	83.428	Mo xviii	84.898	Cr XIII
80.27	Mn XIV	81.838	Ni xxii Cr xiv	83.457 83.518	Fe ix	85.011 ^C	Cr XIV
80.305 ^C	Fe XVI	81.859	Mo xviii	83.518 83.52 ^L	Mn x	85.02 85.020 ^C	Ni xxII
80.314 ^C	Fe XVI	81.89 ^C	V xxii	83.546	Mn xiii Ni xi	85.020° 85.04°	Cr XIV
80.321 ^C	Ni xviii	81.943	Fe XII	83.619 ^C	Mn xv	85.04 ^C	Mn xv
80.3536 ^C	Mo XLI	81.976 ^C	Ni xviii	83.619 ^C	Mn xv Mn xv	85.046° 85.067°	Fe xvi
80.364	Mo XVIII	81.980	Cr VII	83.62 ^C	V xxii	85.071	Fe XVI
80.388	Co ix	81.988	Mo xviii	83.669 ^C	Ti xii	85.071 85.078 ^C	V vi
80.400	Cu xxiii	82.00 ^C	Fe xx	83.676	Ni x	85.114	Fe XVI
80.403	Mo xxvii	82.003 ^C	Ni xviii	83.677	V xii	85.14	Ti xı
80.46	Mn xiv	82.010	Fe XIII	83.689 ^C	Mn xv	85.14 85.14 ^L	Fe XII
80.492	Mo xviii	82.024	V XII	83.69	Fe xx	85.19	Fe xii Mn xii
80.5	Fe xii	82.034 ^C	Ni xviii	83.691 ^C	Ni xxiii	85.226	Cu xxiv
80.5	Fe XII	82.05	Cr XI	83.70 ^C	Co xxii	85.226	Ni xi
80.502	Ti xiii	82.06 ^C	Co xxii	83.706 ^C	Ti xii	85.262	Ti x
80.51	Co xx	82.11 ^C	Co xxii	83.732	Ti xi	85.290	Ti xı
80.51	Fe xx	82.121	Ti XII	83.756	Mo xxviii	85.290	Ti XI
80.544	Co ix	82.163 ^C	Mn xv	83.78	Mn xiv	85.290	
80.55	Ni xxII	82.183 ^C	Mn xv	83.798	Ni xi	85.360	Ti xı V xıv
80.570 ^C	Fe xvi	82.195	Cu xxiv	83.861	Co xi	85.40	Co xxi
80.59	Fe xx	82.226	Fe XII	83.870	Fe XIX	85.41	Mn xix
80.61 ^C	Co xxiii	82.238 ^C	Cr xxii	83.890	Mo xiv	85.411 ^C	
80.610	Ті хііі	82.307	Ti XII	84.03	Co xxi	85.43	Co xvii Co xxii
80.666	Cu xii	82.317	Mo XVII	84.039	Co XI	85.461	Fe xiii
80.686	Mo XVIII	82.344	Ti xii	84.05	Mn xviii	85.477 ^L	Fe xiii
80.732 ^C	Fe xvi	82.348 ^T	V xII	84.06	Ni xxii	85.482	re xii V xiv
80.734	Mo xvii	82.363 ^C	Cr XXII	84.09	Mn xiv	85.523	
80.75	Kr xxxiii	82.368	Ti xii	84.092	Ni xi	85.525 ^C	Ni x
80.896	V XII	82.372 ^C	Ti XII	84.194	Ni x	85.525 ^C	Co xvii
80.91	Ni xix	82.417	Ni xi	84.194 84.22 ^C	V xxii	85.525° 85.566	Co xvii
80.916	Cr xiv	82.430	Fe IX	84.24		85.570 ^C	Cr XIII
80.927	Ti xiii	82.48	Co xx		Ni xxii		Mn xix
81.02	Cr xi	82.514	V XII	84.26	Fe xxi	85.586 ^C	Fe xvi
81.04	Ni xxii	82.527		84.275	Fe XIII	85.597	Mo xiv
01.04	INI AAII	02.321	Со хі	84.292	Mn x	85.651 ^C	Fe xxII

Finding List - Continued

85.979 Mo XIV 86.059S Cr XIV 86.125 V XIV 86.131C Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.160 Fe XVI 86.116C Fe XVI 86.1176C Fe XVI 86.119 Co XX 86.204 Cu X 86.26 Fe XXI 86.26 Fe XXI 86.300 Ni X 86.336 Cu X 86.336 Ni XIX 86.336 Ni XIX 86.356 V XIV 86.356 V XIV 86.36 Ni XIX 86.422 Cu X 86.644 Ni X 86.6513 Fe XI 86.609 V XIV 86.66 Co XX 86.66C Mn XV 86.66C Mn XV 86.684 V XIV 86.672 Cu X 86.772 Fe XI 86.772 Fe XI 86.772 Fe XI 86.776 Cu X 86.78 Cr XIX 86.792 Cu X 86.792 Cu X 86.865 Ni X 86.89C Mn XV 86.865 Ni X 86.89C Ti XII 86.86T Mo XX 86.865 Ni X 86.89C Cu X 86.89C Cu X 86.89C Ti XII 86.89T Co XI 86.89F Co XI 86.89F Co XI 86.89F Co XI 86.999 Fe XIX 87.018 Cu X 87.018 Cu X 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX 87.010	gth Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrur
85.72 Mn XII 85.74 ^C Co XXI 85.753 Ni X 85.758 V XIV 85.831 ^C Fe XXII 85.86 Ni XXII 85.89 V XIV 85.90 Cu XIX 85.979 Mo XIX 86.059 ^S Cr XIV 86.125 V XIV 86.131 ^C Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.164 Cr XIV 86.176 ^C Fe XVI 86.183 ^C Cr XIV 86.19 Co XX 86.26 Fe XXII 86.26 Kr XXII 86.300 Ni X 86.336 Cu X 86.339 Mo XX 86.336 V XIV 86.36 Ni XIX 86.36.36 Ni XIX 86.36.422 Cu X 86.422 Cu X 86.642 Cu X 86.666 Co XX 86.666 Co XX 86.666 Co XX 86.667 Mn XV 86.671 Mn XII 86.720 Cu X 86.772 Fe XII 86.770 Cu X 86.772 Fe XII 86.770 Cu X 86.770 Cu X 86.867 Mn XX 86.867 Mn XX 86.868 Ti XIII 86.792 Cu X 86.770 Cu X 86.770 Cu X 86.770 Cu X 86.770 Cu X 86.867 Mn XX 86.867 Co XI 86.867 Co XI 86.907 Cu X	Fe хи	87.283 ^C	Mn xv	89.059	Mo xxix	91.02	Ni xix
85.74°C Co xxi 85.753 Ni x 85.758 V xiv 85.831°C Fe xxii 85.86 Ni xxii 85.899 V xiv 85.990 Cu xix 85.932 Mo xxi 86.059°S Cr xiv 86.125 V xiv 86.125 V xiv 86.131°C Fe xvii 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.160°C Fe xvii 86.176°C Fe xvii 86.19 Co xx 86.204 Cu x 86.26 Fe xxii 86.204 Cu x 86.33°C Cr xiv 86.34°C Cu x 86.35°C Mr xxi 86.35°C Xiv 86.36°C Xiv 86.36°C Xiv 86.66°C Mr xxi 86.70°C Cu x 86.71°C Cu x 86.71°C Cu x 86.72°C Cu x 86.70°C Cu x 86.80°C Ti xii 86.86°C Mr xxi 86.90°C Cu x		87.297 ^C	Ti xII	89.103	V xiv	91.046 ^C	Fe xvi
85.753 Ni x 85.758 V xiv 85.831° Fe xxii 85.86 Ni xxii 85.899 V xiv 85.90 Cu xix 85.932 Mo xx 85.979 Mo xiv 86.059° Cr xiv 86.125 V xiv 86.125 Fe xvii 86.131° Fe xvii 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.160 Cu x 86.164° Cr xiv 86.19 Co xx 86.204 Cu x 86.26 Fe xxii 86.204 Cu x 86.330 Ni x 86.336 Cu x 86.339 Mo xx 86.336 Ni xix 86.336 Ni xix 86.339 Mo xx 86.356 V xiv 86.660 V xiv 86.664 Ni x 86.6422 Cu x 86.666° Mn xv 86.666 Co xx 86.666° Mn xv 86.671 Mn xi 86.720 Cu x 86.672 Fe xi 86.772 Fe xi 86.775 Cu x 86.867 Mn xv 86.867 Mn xv 86.867 Cu x 86.870 Cu x 86.867 Cu x 86.868 Ti xii 86.870 Cu x 86.865 Ni x 86.865 Ni x 86.867 Co xi 86.964 Cu x 86.99 Fe xix 87.018 Cu x 87.018 Cu x 87.015 Cu xx 87.016 V vii 87.128 Cu xx 87.010		87.30	Fe xvii	89.104	Fe xi	91.050 ^S	Kr xxxi
85.758 85.831° 85.861° 85.86 Ni xxii 85.899 V xiv 85.90 Cu xix 85.932 Mo xxi 86.059° Cr xiv 86.125 V xiv 86.131° Fe xvii 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.164° Cr xiv 86.160 Cu x 86.164° Fe xvii 86.19 Co xx 86.204 Cu x 86.204 Cu x 86.330 Ni x 86.336 Cu x 86.339 Mo xxi 86.336 Ni xix 86.336 Ni xix 86.339 Mo xx 86.356 V xiv 86.366 Cu x 86.422 Cu x 86.424 Ni x 86.425 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.666 Co xx 86.66° Mn xv 86.66° Mn xv 86.684 V xiv 86.69° Mn xv 86.71 Mn xi 86.720 Cu x 86.72 Fe xi 86.72 Fe xi 86.73 Cr xii 86.720 Cu x 86.72 Fe xi 86.72 Fe xi 86.73 Cu x 86.74 Cu x 86.75 Cu x 86.76 Cu x 86.77 Cu x 86.78 Cr xii 86.79 Cu x 86.86 Ni x 86.86 Ni x 86.87 Cu x 86.86 Cu x 86.87 Cu x 86.86 Cu x 86.86 Cu x 86.86 Cu x 86.87 Cu x 86.87 Cu x 86.89 Cu x 86.99 Fe xix 87.018 Cu x 87.055 Cu xx 87.055 Cu xx 87.055 Cu xx 87.057 Ni x 87.106 V vi 87.128 Cu xx 87.106 V vi 87.128 Cu xx		87.30	Mn XIII	89.17 ^C	Co xxii	91.06	Mn ix
85.831° Fe xxii 85.86 Ni xxii 85.899 V xiv 85.90 Cu xix 85.932 Mo xx 85.979 Mo xiv 86.125 V xiv 86.125 Fe xvii 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.160 Cu x 86.164° Fe xvii 86.176° Fe xvii 86.19 Co xx 86.26 Fe xxii 86.26 Fe xxii 86.26 Fe xxii 86.300 Ni x 86.336 Ni xix 86.330 Mo xx 86.336 Ni xix 86.336 Ni xix 86.356 V xiv 86.366 Cu x 86.660 V xiv 86.661 Mn xv 86.662 Mn xxii 86.690 V xiv 86.666 Co xx 86.666 Mn xxii 86.690 V xiv 86.720 Cu x 86.720 Cu x 86.772 Fe xi 86.772 Fe xi 86.776 Cu x 86.780 Mn xv 86.792 Cu x 86.781 Mn xii 86.792 Cu x 86.782 Cr xiii 86.8674 Co xii 86.793 Cr xiii 86.8675 Cu xx 86.8686 Ni xiii 86.8676 Cu x 86.8697 Cu x 86.780 Cr xiii 86.86770 Cu x 86.780 Cr xiii 86.8678 Cr xiii 86.86792 Cu x 86.868792 Cu x 86.86899 Fe xix 86.999 Fe xix 87.018 Cu xx 87.018 Cu xx 87.018 Cu xx 87.055 Cu xx 87.077 Ni x 87.106 V vii 87.128 Cu xx 87.106 V vii		87.317	Ni x	89.185 ^L	Fe XI	91.097 ^C	Ni xxiii
85.86 Ni xxii 85.899 V xiv 85.90 Cu xix 85.932 Mo xx 85.979 Mo xiv 86.125 V xiv 86.125 Fe xvi 86.131 Fe xvi 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.164 Cr xiv 86.176 Fe xvi 86.19 Co xx 86.26 Fe xxii 86.26 Fe xxii 86.26 Fe xxii 86.30 Ni x 86.336 Cu x 86.330 Ni x 86.336 Ni xix 86.356 Ni xix 86.422 Cu x 86.644 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.69 Co xx 86.71 Mn xii 86.720 Cu x 86.72 Fe xii 86.720 Cu x 86.73 Cr xiv 86.74 Cu x 86.78 Cr xiix 86.792 Cu x 86.865 Ni x 86.865 Ni x 86.897 Cu x 86.897 Cu x 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.018 Cu x 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx 87.012		87.35 ^L	Co xi	89.25	Co xxi	91.158 ^C	
85.899 V XIV 85.90 Cu XIX 85.932 Mo XX 85.979 Mo XIV 86.059S Cr XIV 86.125 V XIV 86.131° Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.164S Cr XIV 86.19 Co XX 86.204 Cu X 86.26 Fe XXI 86.26 Fe XXI 86.300 Ni X 86.336 Cu X 86.339 Mo XX 86.336 Ni XIX 86.356 V XIV 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66° Mn XX 86.684 V XIV 86.71 Mn XI 86.720 Cu X 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.776 Cu X 86.78° Mn XX 86.792 Cu X 86.86° Mn XX 86.86° Mn XX 86.86° Mn XX 86.86° Mn XX 86.790 Cu X 86.791 Cu X 86.792 Cu X 86.86° Mn XX 86.89° Fe XII 86.80° Mn XX 86.80° Ti XII 86.86° Mn XX 86.80° Ti XII 86.86° Mn XX 86.89° Cu X 86.89° Fe XII 86.90° Cu X 86.89° Fe XII 86.90° Cu X 86.99° Fe XII 86.99° Fe XII 87.018 Cu X 87.018 Cu X 87.025 Fe XII 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX 87.106 V VI							Mn xv
85.90		87.363	V XII	89.26	Mn xix	91.187	Mo XIII
85.932 Mo xx 85.979 Mo xiv 86.059 ^S Cr xiv 86.125 V xiv 86.131 ^C Fe xvi 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.160 Fe xvi 86.176 Fe xvi 86.19 Co xx 86.204 Cu x 86.26 Fe xxi 86.26 Fe xxi 86.300 Ni x 86.336 Cu x 86.336 Cu x 86.339 Mo xx 86.336 Ni xix 86.356 Ni xix 86.422 Cu x 86.6613 Fe xi 86.609 V xiv 86.661 Co xx 86.662 Mn xv 86.664 V xiv 86.6684 V xiv 86.672 Cu x 86.772 Fe xi 86.772 Fe xi 86.776 Cu x 86.78 Cr xii 86.792 Cu x 86.792 Cu x 86.865 Ni xi 86.865 Ni xi 86.866 Co xi 86.867 Co xi 86.866 Cu x 86.867 Cu x 86.867 Cu x 86.867 Cu x 86.8697 Cu x 86.8699 Fe xix 86.999 Fe xix 87.018 Cu xx 87.018 Cu xx 87.018 Cu xx 87.018 Cu xx 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx 87.077 Ni x		87.364	Ті хп	89.31 ^L	Со хі	91.20	Ni xxii
85.979 Mo XIV 86.059S Cr XIV 86.125 V XIV 86.131° Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.160 Fe XVI 86.176° Fe XVI 86.183° Cr XIV 86.19 Co XX 86.204 Cu X 86.26 Fe XXI 86.26 Fe XXI 86.39 Mo XX 86.336 Cu X 86.336 Ni XIX 86.336 Ni XIX 86.356 V XIV 86.356 V XIV 86.356 V XIV 86.636 Ni XIX 86.422 Cu X 86.644 Ni X 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66° Mn XV 86.66 Co XX 86.66° Mn XV 86.684 V XIV 86.720 Cu X 86.772 Fe XI 86.770 Cu X 86.772 Fe XI 86.770 Cu X 86.78° Ti XII 86.792 Cu X 86.86° Mn XV 86.86° Mn XV 86.86° Mn XV 86.86° Mn XV 86.86° Cu X 86.78° Cu X 86.792 Cu X 86.792 Cu X 86.792 Cu X 86.808° Ti XII 86.809° Cu X 86.809° Fe XIX 86.907 Cu X 86.909 Fe XIX 87.018 Cu X 87.018 Cu X 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.40	Mn xIII	89.448	Mn ix	91.216 ^C	Mn xv
86.059 ^S Cr xiv 86.125 V xiv 86.131 ^C Fe xvi 86.148 V xiv 86.150 Mo xx 86.160 Cu x 86.164 ^S Cr xiv 86.176 ^C Fe xvi 86.183 ^C Cr xiv 86.19 Co xx 86.26 Fe xxi 86.26 Fe xxi 86.26 Kr xx 86.300 Ni x 86.336 Cu x 86.336 V xiv 86.356 V xiv 86.356 V xiv 86.36.36 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66 ^C Mn xv 86.664 V xiv 86.671 Mn xi 86.720 Cu x 86.772 Fe xi 86.772 Fe xi 86.776 Cu x 86.78 Cr xiii 86.792 Cu x 86.792 Cu x 86.865 Ni x 86.865 Ni x 86.865 Ni x 86.866 Co xi 86.861 Co xi 86.862 Cu x 86.78 Cr xiii 86.792 Cu x 86.792 Cu x 86.792 Cu x 86.792 Cu x 86.865 Ni x 86.865 Ni x 86.861 Mo xx 86.865 Ni x 86.865 Ni x 86.865 Ni x 86.865 Ni x 86.869 Fe xix 87.018 Cu x 87.018 Cu x 87.025 Fe xi 87.025 Fe xi 87.036 Ni x 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx 87.128 Cu xx 87.106 V vi 87.128 Cu xx	Mo xxviii	87.426	Ті хи	89.59	Mn xviii	91.241 ^C	Mn xv
86.125 V XIV 86.131 ^C Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.164 ^S Cr XIV 86.176 ^C Fe XVI 86.19 Co XX 86.26 Fe XXI 86.26 Kr XX 86.300 Ni X 86.336 Cu X 86.336 V XIV 86.356 V XIV 86.356 V XIV 86.422 Cu X 86.422 Cu X 86.642 Cu X 86.666 Co XX 86.660 Wn XV 86.661 Mn XV 86.662 Mn XV 86.667 Mn XV 86.671 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.770 Cu X 86.780 Mn XV 86.792 Cu X 86.792 Cu X 86.865 Ni X 86.890 Ti XII 86.867 Mo XX 86.891 Co XI 86.891 Co XI 86.891 Co XI 86.891 Co XI 86.892 Cu X 86.895 Cu X 86.899 Fe XIX 87.018 Cu X 87.010 V VI 87.128 Cu XX 87.010 V VI 87.128 Cu XX	Mo xiv	87.429 ^C	Fe xxi	$89.594^{\rm C}$	V xxi	91.269	Fe xxi
86.125 V XIV 86.131 ^C Fe XVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.164 ^S Cr XIV 86.176 ^C Fe XVI 86.19 Co XX 86.26 Fe XXI 86.26 Kr XX 86.300 Ni X 86.336 Cu X 86.336 V XIV 86.356 V XIV 86.356 V XIV 86.422 Cu X 86.422 Cu X 86.642 Cu X 86.666 Co XX 86.660 Wn XV 86.661 Mn XV 86.662 Mn XV 86.667 Mn XV 86.671 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.770 Cu X 86.780 Mn XV 86.792 Cu X 86.792 Cu X 86.865 Ni X 86.890 Ti XII 86.867 Mo XX 86.891 Co XI 86.891 Co XI 86.891 Co XI 86.891 Co XI 86.892 Cu X 86.895 Cu X 86.899 Fe XIX 87.018 Cu X 87.010 V VI 87.128 Cu XX 87.010 V VI 87.128 Cu XX	Cr xiv	87.454 ^C	Ті хп	$89.599^{\rm C}$	Cr xvii	91.27	Mo xxx
86.131°C Fe xVI 86.148 V XIV 86.150 Mo XX 86.160 Cu X 86.164°S Cr XIV 86.176°C Fe xVI 86.183°C Cr XIV 86.19 Co XX 86.204 Cu X 86.26 Fe XXI 86.26 Kr XXX 86.300 Ni X 86.336 Cu X 86.339 Mo XX 86.336 V XIV 86.356 V XIV 86.422 Cu X 86.422 Cu X 86.642 Cu X 86.642 Cu X 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66°C Mn XV 86.66°C Mn XV 86.671 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.772 Cu X 86.772 Fe XI 86.775 Cu X 86.78°C Mn XV 86.86°C Mn XV 86.71 Mn XI 86.720 Cu X 86.720 Cu X 86.720 Cu X 86.721 Fe XI 86.720 Cu X 86.720 Cu X 86.730 Cu X 86.730 Cu X 86.86°C Mn XV 86.74 Cu X 86.86°C Mn XV 86.86°C Mn XV 86.75 Cu X 86.86°C Mn XV		87.465 ^C	Ti xII	89.730 ^C	Fe xxII	91.273	Fe XIV
86.148		87.47	Mn xv	89.783	Mn IX	91.30	Cr XIII
86.150 Mo xx 86.160 Cu x 86.164 Cr xiv 86.176 Fe xvi 86.183 Cr xiv 86.19 Co xx 86.204 Cu x 86.26 Fe xxii 86.36 Ni x 86.339 Mo xx 86.336 V xiv 86.36 Ni xix 86.356 V xiv 86.36 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66° Mn xv 86.684 V xiv 86.69° Mn xv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.774 Cu x 86.78 Cr xii 86.867 Mn xv 86.867 Mn xv 86.868 Cr xii 86.867 Cu x 86.868 Cr xii 86.867 Cu x 86.899 Cu x 86.8907 Cu x 86.891 Co xi 86.991 Cu x 86.999 Fe xix 87.018 Cu x 87.019 Cu x 87.019 Cu x 87.019 Cu x 87.018 Cu x 87.018 Cu x 87.018 Cu x 87.018 Cu x 87.019 Cu x 87.019 Cu x 87.019 Cu x		87.49 ^L	Co xi	89.844	Ti xii	91.301	
86.160 Cu x 86.164 ^S Cr xiv 86.176 ^C Fe xvi 86.183 ^C Cr xiv 86.19 Co xx 86.204 Cu x 86.26 Fe xxi 86.26 Kr xx. 86.3300 Ni x 86.336 Cu x 86.339 Mo xx 86.339 Mo xx 86.356 V xiv 86.36 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66° Mn xv 86.66° Mn xv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.772 Fe xi 86.772 Fe xi 86.78 Cr xii 86.78 Cr xii 86.78 Cr xii 86.792 Cu x 86.78 Cr xii 86.792 Cu x 86.808° Ti xii 86.86° Mo xx 86.792 Cu x 86.808° Ti xii 86.86° Mo xx 86.792 Cu x 86.8090 Fe xix 87.018 Cu x 87.025 Fe xi 87.055 Cu xx 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx							Mo xxv
86.164 ^S		87.50	Ni xxiii	89.85	Mn xx	91.328 ^S	Mo xxv
86.176 ^C Fe xVI 86.183 ^C Cr xIV 86.19 Co xx 86.204 Cu x 86.206 Fe xXI 86.26 Kr xXI 86.300 Ni x 86.3339 Mo xX 86.3356 V xIV 86.36 Ni xIX 86.422 Cu x 86.464 Ni x 86.513 Fe xI 86.609 V xIV 86.66 Co xx 86.66° Mn xX 86.684 V xIV 86.69° Mn xX 86.71 Mn xI 86.720 Cu x 86.772 Fe xI 86.770 Cu x 86.78 Cr xII 86.792 Cu x 86.78 Cr xII 86.792 Cu x 86.78 Cr xII 86.792 Cu x 86.808° Ti xII 86.86° Mo xX 86.890 Cu x 86.890 Cu x 86.891 Co xI 86.991 Cu x 86.999 Fe xIX 87.018 Cu x 87.025 Fe xI 87.055 Cu xx 87.077 Ni x 87.106 V vI 87.128 Cu xx 87.012		87.50	Ni xxiv	89.8614 ^C	Fe хі	91.391	Kr xviii
86.183°C Cr XIV 86.19 Co XX 86.204 Cu X 86.26 Fe XXI 86.26 Kr XXX 86.300 Ni X 86.336 Cu X 86.339 Mo XX 86.356 V XIV 86.36.402 Cu X 86.404 Ni X 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66° Mn XX 86.684 V XIV 86.69° Mn XX 86.71 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.772 Fe XI 86.772 Fe XI 86.78° Cu X 86.78 Cr XII 86.792 Cu X 86.78 Cr XII 86.792 Cu X 86.792 Cu X 86.792 Cu X 86.792 Cu X 86.808° Ti XII 86.86° Mo XX 86.865 Ni X 86.890 Cu X 86.891 Co XI 86.907 Cu X 86.909 Fe XIX 87.018 Cu X 87.025 Fe XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.516	Cu x	89.887 ^C	Co xvii	91.394^{L}	Fe xı
86.19	Fe xvi	87.552	Mn ix	89.914	Mn ix	91.472 ^L	Fe xı
86.19	Cr xiv	87.66	Ni xxiii	89.92 ^C	Ti xxı	91.475 ^C	V xvii
86.204	Со хх	87.680	Ni x	89.94 ^C	Fe xx	91.487 ^C	Mn xxi
86.26 Fe xxi 86.26 Kr xxi 86.300 Ni x 86.336 Cu x 86.339 Mo xx 86.356 V xiv 86.356 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66C Mn xv 86.684 V xiv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.772 Fe xi 86.776 Cu x 86.78 Cr xii 86.792 Cu x 86.865 Ni x 86.89 Cu x 86.89 Cu x 86.89 Cu x 86.89 Cu x 86.99 Fe xix 86.99 Fe xix 87.018 Cu x 87.025 Fe xi 87.025 Fe xi 87.025 Fe xi 87.025 Fe xi 88.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.025 Cu x 87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu x		87.703	Cu x	89.99	Cr XIII	91.527	Ni x
86.26 Kr xx. 86.300 Ni x 86.336 Cu x 86.339 Mo xx 86.356 V xiv 86.36 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66C Mn xv 86.684 V xiv 86.69C Mn xv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.776 Cu x 86.78 Cr xix 86.78 Cr xix 86.792 Cu x 86.865 Ni x 86.865 Ni x 86.865 Ni x 86.890 Cu x 86.891 Co xi 86.991 Cu x 86.992 Fe xix 87.018 Cu x		87.725	Ti xı	90.013 ^C	Co xvii	91.539 ^C	
86.300 Ni x 86.336 Cu x 86.339 Mo xx 86.356 V xiv 86.36 Ni xix 86.422 Cu x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Co xx 86.66C Mn xv 86.684 V xiv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.776 Cu x 86.78 Cr xix 86.78 Cr xix 86.792 Cu x 86.865 Ni x 86.808 Ti xii 86.865 Ni x 86.890 Cu x 86.891 Co xi 86.907 Cu x 87.008 Cu x 87.008 Cu x 88.909 Fe xix 87.008 Cu x 87.005 Cu x 87.007 Ni x							Mn xxi
86.336		87.77	Ni xxIII	90.02	Cr XIII	91.63 ^L	Fe XI
86.339 Mo XX 86.356 V XIV 86.36 Ni XIX 86.422 Cu X 86.464 Ni X 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66C Mn XV 86.684 V XIV 86.71 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.776 Cu X 86.78 Cr XII 86.78 Cr XII 86.792 Cu X 86.78 Ti XII 86.86T Mo XX 86.86S Ni X 86.86S Ni X 86.86S Ni X 86.86S Ni X 86.89C Co XI 86.907 Cu X 86.908 Kr XX 86.999 Fe XIX 87.018 Cu X 87.025 Fe XI 87.053 Mn XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.770	Мо хии	90.029 ^C	Cr xix	91.63 ^L	Fe xı
86.356 V XIV 86.36 Ni XIX 86.422 Cu X 86.464 Ni X 86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66C Mn XV 86.684 V XIV 86.71 Mn XI 86.720 Cu X 86.772 Fe XI 86.772 Fe XI 86.772 Fe XI 86.772 Cu X 86.78 Cr XII 86.78 Cr XII 86.792 Cu X 86.78 Ti XII 86.86T Mo XX 86.892 Cu X 86.865 Ni X 86.891 Co XI 86.907 Cu X 86.908 Kr XX 86.999 Fe XIX 87.018 Cu X 87.025 Fe XI 87.053 Mn XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.78 ^L	Со хі	90.034	Mn IX	91.63 ^L	Fe xı
86.36 Ni xix 86.422 Cu x 86.464 Ni x 86.464 Ni x 86.464 Ni x 86.513 Fe xi 86.609 V xiv 86.66 Mn xv 86.66 Mn xv 86.68 V xiv 86.69° Mn xv 86.71 Mn xv 86.72 Fe xi 86.77 Cu x 86.78 Cr xii 86.79 Cu x 86.80 Ti xii 86.86 Ni x 86.87 Co xi 86.87 Co xi 86.90 Cu x 86.95 Co xi 86.96 Cu x 86.99 Fe xix 87.018 Cu x 87.025 Fe xi 87.055 Cu xx 87.106 V vi 87.128 Cu xx	Mo xxix	87.79	Mn IX	90.122^{C}	Co xvii	91.63 ^L	Fe xı
86.422 Cu x 86.464 Ni x 86.513 Fe xI 86.609 V xIV 86.666 Co xx 86.666 Mn xV 86.684 V xIV 86.69C Mn xV 86.71 Mn xV 86.772 Fe xI 86.772 Fe xI 86.776 Cu x 86.78 Cr xII 86.78C Mn xV 86.792 Cu x 86.78 Ti xII 86.86T Mo xX 86.89C Ti xII 86.86T Co xI 86.89C Cu x 86.89C Ti xII 86.89T Co xI 86.907 Cu x 86.907 Cu x 86.907 Cu x 86.907 Cu x 86.908 Kr xx 86.999 Fe xIX 87.018 Cu x 87.025 Fe xI 87.053 Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V VI 87.128 Cu xX	V xiv	87.80	Mn xv	90.134	Mn ix	91.646	Mn xı
86.422 Cu x 86.464 Ni x 86.513 Fe xI 86.609 V xIV 86.66 Co xx 86.66C Mn xV 86.684 V xIV 86.69C Mn xV 86.71 Mn xV 86.772 Fe xI 86.772 Fe xI 86.776 Cu x 86.78 Cr xII 86.78 Cr xII 86.78 Mn xV 86.792 Cu x 86.78 Ti xII 86.86T Mo xX 86.89C Ti xII 86.86T Co xI 86.89C Cu x 86.907 Cu x 86.907 Cu x 86.907 Cu x 86.907 Cu x 86.908 Kr xx 87.018 Cu x 87.025 Fe xI 87.053 Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V VI 87.128 Cu xX	Ni xix	87.868	V xı	90.17	Cr XIII	91.70 ^C	Kr xxx
86.464 Ni x 86.513 Fe xI 86.609 V xIV 86.66 Co xx 86.66C Mn xV 86.684 V xIV 86.69C Mn xV 86.71 Mn xI 86.720 Cu x 86.772 Fe xI 86.776 Cu x 86.78 Cr xII 86.78C Mn xV 86.792 Cu x 86.86S Ni x 86.86S Ni x 86.89C Co xI 86.99C Cu x 86.990 Fe xIX 87.018 Cu x 87.025 Fe xI 87.055 Cu xx 87.077 Ni x 87.106 V VI 87.128 Cu xX		87.932	Cu x	90.205 ^L	Fe XI	91.714 ^C	Fe xvi
86.513 Fe XI 86.609 V XIV 86.66 Co XX 86.66C Mn XV 86.684 V XIV 86.69C Mn XV 86.71 Mn XI 86.720 Cu X 86.772 Fe XI 86.776 Cu X 86.78 Cr XII 86.792 Cu X 86.78 Cr XII 86.86T Mo XX 86.89C Ti XII 86.86T Mo XX 86.89T Co XI 86.907 Cu X 86.907 Cu X 86.999 Fe XIX 87.018 Cu X 87.025 Fe XI 87.053 Mn XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.958	Mn IX	90.21 ^C	Co xxii	91.733 ^L	
86.609 V XIV 86.66 Co XX 86.66C Mn XX 86.684 V XIV 86.69C Mn XX 86.71 Mn XI 86.720 Cu X 86.772 Fe XI 86.776 Cu X 86.78 Cr XII 86.792 Cu X 86.78C Mn XX 86.792 Cu X 86.88C Ti XII 86.86T Mo XX 86.865 Ni X 86.89T Co XI 86.907 Cu X 86.907 Cu X 86.999 Fe XIX 87.018 Cu X 87.025 Fe XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		87.983 ^L					Fe XI
86.66 Co xx 86.66C Mn xx 86.684 V xiv 86.69C Mn xx 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.78C Mn xx 86.792 Cu x 86.808C Ti xii 86.865 Ni x 86.897 Cu x 86.997 Cu x 86.998 Kr xx 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.055 Cu xx 87.077 Ni x 87.128 Cu xx		1	Cu x	90.227	V xiv	91.749	Cr XIII
86.66 ^C Mn xv 86.684 V xiv 86.69 ^C Mn xv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.78 Cr xii 86.78 ^C Mn xv 86.86 ^T Mn xi 86.865 Ni x 86.865 Ni x 86.897 Cu x 86.907 Cu x 86.907 Cu x 86.999 Fe xix 87.018 Cu x 87.018 Cu x 87.025 Fe xi 87.055 Cu xx 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		87.995	Fe xı	90.234 ^C	V xxi	91.752	Mo XIII
86.684 V XIV 86.69° Mn XV 86.71 Mn XI 86.720 Cu X 86.770 Cu X 86.776 Cu X 86.78° Mn XV 86.79° Cu X 86.86° Ti XII 86.86° Ti XII 86.86° Ni X 86.865 Ni X 86.907 Cu X 86.95L Co XI 86.96 Cu X 86.99 Fe XIX 87.018 Cu X 87.025 Fe XI 87.053° Mn XI 87.055 Cu XX 87.077 Ni X 87.128 Cu XX		88.00	Ni xxII	90.276	Cu xxii	91.76	Co xxi
86.69°C Mn xv 86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.78 Cr xii 86.78°C Mn xv 86.792 Cu x 86.808°C Ti xii 86.86°T Mo xv 86.865 Ni x 86.8907 Cu x 86.995°L Co xi 86.9964 Cu x 86.998 Kr xx 86.999 Fe xii 87.018 Cu x 87.025 Fe xi 87.053°C Mn xi 87.055°C Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.000	Mo xiv	90.31	Co xxi	91.768	Kr x
86.71 Mn xi 86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.776 Cu x 86.78 Cr xii 86.78 Mn xi 86.792 Cu x 86.808 ^C Ti xii 86.86 ^T Mo xi 86.865 Ni x 86.87 ^L Co xi 86.997 Cu x 86.994 Cu x 86.998 Kr xi 86.999 Fe xii 87.018 Cu x 87.025 Fe xi 87.053 ^C Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu x		88.020 ^L	Cu x	90.319	Mo xiv	91.790	Ni x
86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.776 Cu x 86.78 Cr xiii 86.78 Mn xi 86.792 Cu x 86.808 Ti xii 86.86 ^T Mo xi 86.865 Ni x 86.89 ^L Co xi 86.907 Cu x 86.99 ^L Co xi 86.994 Cu x 86.998 Kr xx 86.999 Fe xiix 87.018 Cu x 87.025 Fe xi 87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu x	Mn xv	88.029	Fe xı	90.341	Cu xxi	91.792	Cr XIII
86.720 Cu x 86.772 Fe xi 86.776 Cu x 86.776 Cu x 86.78 Cr xiii 86.78 Mn xi 86.792 Cu x 86.808 Ti xii 86.865 Ni x 86.891 Co xi 86.907 Cu x 86.904 Cu x 86.998 Kr xx 86.999 Fe xiix 87.018 Cu x 87.025 Fe xi 87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu x	Mn xII	88.032	Cu x	90.345 ^L	Fe xı	91.806	Ti x
86.772 Fe xi 86.776 Cu x 86.778 Cr xii 86.78° Mn xi 86.792 Cu x 86.808° Ti xii 86.86° Mo xi 86.865 Ni x 86.87° Co xi 86.907 Cu x 86.95° Co xi 86.964 Cu x 86.998 Kr xi 86.999 Fe xii 87.018 Cu x 87.025 Fe xi 87.053° Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.07 ^L	Со хі	90.358 ^C	V xxi	91.834	
86.776 Cu x 86.78 Cr xii 86.78 Cr xii 86.78 Cr xii 86.792 Cu x 86.808 Ti xii 86.86T Mo xx 86.865 Ni x 86.87L Co xi 86.907 Cu x 86.995 Co xi 86.964 Cu x 86.998 Kr xx 86.999 Fe xii 87.018 Cu x 87.025 Fe xi 87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.08	Mn xix	90.373 ^L	Mn XII		Mo XIII
86.78						91.84 ^C	Ti xxi
86.78° Mn xx 86.792 Cu x 86.808° Ti xII 86.865 Ni x 86.87° Co xI 86.907 Cu x 86.95° Co xI 86.964 Cu x 86.99 Fe xIX 87.018 Cu x 87.025 Fe xI 87.053° Mn xI 87.055° Cu xx 87.077 Ni x 87.106 V vI 87.128 Cu xx		88.11	Ni xxiii	90.461 ^C	Fe XVII	91.855	Cr XIII
86.792 Cu x 86.808 ^C Ti xII 86.86 ^T Mo xX 86.865 Ni x 86.87 ^L Co xI 86.907 Cu x 86.95 ^L Co xI 86.964 Cu x 86.998 Kr xx 86.999 Fe xIX 87.018 Cu x 87.025 Fe xI 87.053 ^C Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V VI 87.128 Cu xx		88.167	Fe XI	90.474 ^L	Со х	91.855	Ti x
86.808 ^C Ti XII 86.86 ^T Mo XX 86.865 Ni X 86.87 ^L Co XI 86.907 Cu X 86.991 Co XI 86.964 Cu X 86.98 Kr XX 86.999 Fe XIX 87.018 Cu X 87.025 Fe XI 87.053 ^C Mn XI 87.055 Cu XX 87.077 Ni X 87.106 V VI 87.128 Cu XX		88.173	Mo xxix	90.49	Ni xxiii	91.865	Ni xxII
86.86 ^T Mo xx 86.865 Ni x 86.87 ^L Co xI 86.907 Cu x 86.95 ^L Co xI 86.964 Cu x 86.999 Fe xIx 87.018 Cu x 87.025 Fe xI 87.053 ^C Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V vI 87.128 Cu xx	Cu x	88.20 ^L	Co xi	90.512	Ti XII	91.90	Mn xvi
86.86 ^T Mo xx 86.865 Ni x 86.87 ^L Co xi 86.907 Cu x 86.95 ^L Co xi 86.964 Cu x 86.99 Fe xix 87.018 Cu x 87.025 Fe xi 87.053 ^C Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx	Ті хп	88.24	Fe xx	90.519	Mo xiv	92.005	Kr xvii
86.865 Ni x 86.87 ^L Co xI 86.907 Cu x 86.95 ^L Co xI 86.964 Cu x 86.98 Kr xx 86.999 Fe xIx 87.018 Cu x 87.025 Fe xI 87.053 ^C Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V vI 87.128 Cu xx	Mo xxx	88.258	Mn IX	90.547	Ti XII	92.01	Cr XIII
86.87 ^L Co xi 86.907 Cu x 86.95 ^L Co xi 86.964 Cu x 86.98 Kr xx 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.053 ^C Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.35	Co xix	90.595	Fe xx	92.040 ^C	Ni xxiv
86.907 Cu x 86.95 ^L Co xI 86.964 Cu x 86.98 Kr xx 86.999 Fe xIX 87.018 Cu x 87.025 Fe xI 87.053 ^C Mn xI 87.055 Cu xx 87.077 Ni x 87.106 V vI 87.128 Cu xx		88.395	Cu xxii	90.599	Mn ix	92.040° 92.055°	
86.95 ^L Co xi 86.964 Cu x 86.98 Kr xx 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.053 ^C Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.423		ł			Co xvii
86.964 Cu x 86.98 Kr xx 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.053° Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		i i	Mn ix	90.63	Cr xvIII	92.089 ^C	Co xvii
86.98 Kr xx 86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.053° Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.446	Со іх	90.683 ^C	Mn xx	92.107 ^C	Co xvi
86.999 Fe xix 87.018 Cu x 87.025 Fe xi 87.053° Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.48	V ix	90.686 ^C	Mn xv	92.128	Cr VII
87.018	Kr xxix	88.52 ^L	Co xi	90.700	V vi	92.16	Cr XIII
87.025 Fe xi 87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx	Fe xix	88.54	Ni xxiv	90.701 ^L	Mn xII	92.211	Kr xvii
87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx	Cu x	88.636	Со іх	90.818 ^C	Mn xv	92.240	Mn xi
87.053 Mn xi 87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx	Fe xi	88.75	Mn xix	90.85	Cr XIII	92.32	Ni xxii
87.055 Cu xx 87.077 Ni x 87.106 V vi 87.128 Cu xx		88.756	Mo XIII	90.86	Cr XII	92.37	
87.077 Ni x 87.106 V vi 87.128 Cu xx	Cu xxiv	88.77	Co xxi				Cr XIII
87.106 V vi 87.128 Cu xx				90.864	Cu XXII	92.43 ^C	Ti xxı
87.128 Cu xx		88.773	Mn ix	90.908	Ti xı	92.463 ^C	Cr xvii
		88.826	Ni xxi	90.927	Ti xı	92.546 ^S	Mo xxx
	Cu xxiv	88.923	Mn 1X	90.96	Ni xxiii	92.61	Co xxi
87.135 Cu x	Cu x	88.932 ^C	Ni xxiv	90.966	Ti XI	92.61	Cr XIII
87.141 V xiv	V xiv	88.95 ^C	Ti xxı	90.990	Cu xix	92.63	Fe xx
87.166 V xi		88.994	Co x	91.000	Cu XXIII	92.67 ^C	Ti xxi
	Mn ix	89.025 ^C	Fe xxi	91.009	Fe XIV		
_	Co xi	89.03	Mn XVIII	91.009	re xiv Fe xix	92.71 92.721	Mn xix Kr xvi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
92.728	Cu XXIII	94.638	Fe xx	96.301 ^C	Fe xvi	97.635	Mo IX
92.75	Mn xi	94.67 ^C	Ni xvIII	96.305	Co ix	97.639	Cu xxiv
92.75	Mn xi	94.69	Cr xvii	$96.320^{ m C}$	Cr xiv	97.642	V xII
92.75	Ni xxiii	94.690 ^C	Mn xx	96.332	Mn viii	97.67 ^C	Co xxii
92.8^{L}	Fe xı	94.692 ^L	Co x	96.35 ^L	Cr XII	97.683 ^C	V xIII
92.81^{L}	Fe xı	94.737	Mo xxxi	96.36	Co xxi	97.702 ^C	V XIII
92.87^{L}	Fe xı	94.737	Mo xxxi	96.411 ^C	Fe xvi	97.710	Mo IX
92.87^{L}	Fe xı	94.756	Mo IX	96.416 ^C	Fe xvi	97.737 ^C	Cr xx
92.899	Мо іх	94.788	Ti xiii	96.429	Ti xiii	97.758	Ti xiii
92.9 ^L	Fe xi	94.789 ^L	Co x	96.458	Mo IX	97.76 ^C	Co XXII
92.949	Kr xviii	94.81 ^C	Co xxiii	96.471	Mo xxxi		
92.969	Cr vii	94.888	Cu xxiii			97.838	Fe x
93.00	Co xxi	94.888		96.48	Cr IX	97.854	Co ix
			Cu xxiv	96.485	Cu xxiii	97.863	Fe xxi
93.00	Co xxii	94.932 ^C	Fe XXI	96.50^{L}	Cr xII	97.87	Cr xv
93.002 ^C	Cr xiv	94.94	Co xx	96.541	Со іх	97.885	Mo ix
93.018^{L}	Fe XI	94.96	V x	96.546	Mo ix	$97.924^{ m L}$	Co x
93.02	Co xxii	95.057	Kr xxxi	96.55	Cr ix	97.932	V vi
93.025	V xiii	95.109 ^L	Co x	96.563	Mo xxxi	97.938	V xII
93.117^{C}	Mn xx	95.16	Co xxiii	96.628 ^C	Mn xv	97.964	Mo xxx
93.12	Co xxii	95.18 ^C	Ni xvIII	96.660	Мо іх	97.97	Cr IX
93.302	Cu xxii	95.222	Cu XXII	96.690	Kr x	97.991 ^C	Ti xvi
93.349	Kr xviii	95.29	Fe XVII	96.731 ^T	Ti xı	98.023 ^L	Mn XI
93.36	Cr xvIII	95.338	Fe X	96.760	Cr vii	98.064 ^L	
93.395	Ti xı	95.339	re x Mo ix	96.788	Fe x	98.064	Mn xi
93.42	Cr XIII	95.358					Co xxi
			Mo xxxi	96.803	Ni xxi	98.075	Fe xx
93.427 ^C	Cr xiv	95.374	Fe x	96.818 ^C	Cr xiv	98.077	Мо іх
93.433 ^L	Fe XI	95.390	Mn XI	96.839	Mo xxxi	98.08	Cr 1X
$93.467^{\rm C}$	Cr xiv	95.464	Mo IX	96.839	Mo xxxi	98.087	Mo ix
93.469	Fe VIII	95.497	Mo xxix	96.843 ^C	Mn xv	98.097	Mo ix
93.493	Mo XIII	95.535^{C}	Mn xxi	96.845	Cu xxiii	98.128 ^L	Fe хии
93.569	Kr xviii	95.536 ^C	Cr xix	96.845	Cu xxiv	98.180	Cu xxi
93.589	Ti xı	95.58	V xII	96.86	Cr XIII	98.185	Ni xxII
93.616	Fe vIII	95.624^{C}	Ni xxII	96.871 ^C	Mn xv	98.187	Kr x
93.626	Ti xı	95.640	V xvi	96.88	Co xxii	98.19	Kr xxx
93.667	Cu xxIII	95.703	Mo IX	96.880 ^C	Mn xv	98.217	Moix
93.696	Mo XIII	95.77	Cr xviii				
				96.93	Со ххи	98.224	Mo xx
93.75	Kr xxxII	95.811	Mo IX	96.930	Cu xxiv	98.224	Mo xx
93.763	Mo IX	95.852	Со іх	96.964	Mo IX	98.261 ^L	Со х
93.782	Fe xx	95.866	Ni xxi	97.012	Kr x	98.319	V vi
93.782 ^C	Mn xv	95.88	Cr xix	97.122	Fe x	98.345	Mo ix
$93.782^{ m C}$	Mn xv	95.917	Cr VII	97.123 ^L	Co x	98.358	Fe xx
93.85	Ni xi	95.929	Ti xı	97.13	Ni xxi	98.369	Fe xxi
93.870^{C}	Mn xv	95.95	Fe xx	97.16	Co xxii	98.371	Fe viii
93.90	Co xxiii	$95.952^{\rm C}$	Ni xxiv	97.17	Ni xxiv	98.375 ^C	V xvii
93.909	Ti xı	$95.993^{\rm C}$	Cr xiv	97.19	Cr IX	98.387	Fe XIII
93.926	Fe xvIII	95.993 ^C	Cr XIV	97.20	Cr xvii	98.39	Ni xxr
93.926	Ni xxi	95.995	Ni xxu	97.206	Mo ix	98.410	Kr x
93.994	V XIII	96.047 ^L	Co x	97.206	Mo ix	98.444	
94.008	Mo IX	96.047- 96.065 ^C					Cu xxi
		96.065	Cr XIV	97.220 ^C	Mn xv	98.460	Mo ix
94.012	Fe x		Co IX	97.25	Cr XIII	98.47	Cr XI
94.053	Ti xı	96.076	Co 1X	97.257 ^C	Mn xv	98.490	Ti xiii
94.085	Ti xı	96.11 ^L	Cr XII	97.272	Cu xxv	98.5030 ^C	Mo xL
94.120	Mo 1X	96.122	Fe x	97.287 ^C	V XIII	98.513	Kr x
94.151	Mo ix	96.145	Mo ix	97.355	Co ix	98.513	Kr x
94.16	Cr xvIII	96.17	Cr 1X	97.358	Ті хін	98.523 ^L	Fe хии
94.172	Mo ix	96.176 ^C	Fe xxi	97.411	Mn vIII	98.548	Fe VIII
94.216	Mo ix	96.215 ^L	Co x	97.416	Mo ix	98.561	Mo ix
94.23	V x	96.23	Mn xviii	97.416	Mo ix	98.576	Cu xxi
94.327	Mn xi	96.232 ^S	Kr xix	97.494	Mo IX Mo IX	98.58	
94.33	Cr IX	96.232				l l	Ni xxi
94.431 ^L		•	Mn xix	97.507 ^C	Cr xx	98.630	V xII
	Сох	96.246	Ti xı	97.51	Mn xx	98.69	Fe xxı
94.456 ^C	Mn XIX	96.270	V XVII	97.575 ^L	Co x	98.750	Мо іх
94.49	Cr xvii	96.288	Ti XI	97.587	Co ix	98.76	Ti xiii
94.492	Ni xx	96.295	Mo IX	97.591	Fe x	98.795	Mo ix
$94.517^{ m L}$	Co x	96.300 ^L	Co x	97.628 ^C	Cr xvIII	$98.809^{\rm C}$	Ti xx

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrun
98.826^{L}	Fe xIII	100.111	Kr x	101.367	Kr x	102.393	Ti xvı
98.848	Cu xxiii	100.12	Ni xxii	101.39	Co xx	102.410	V xviii
98.910	Kr x	100.13	Cr XI	101.39	Cr xII	102.439	Co viii
98.94	Cr xi	100.13	V XII	101.410	Co ix	102.45	Cr VIII
98.977	Mo IX	100.133	Ті хін	101.42	Cr xiv	102.480	Co viii
99.01	Mn xix	100.14	Co xxii	101.435	Fe x	102.480	Ni IX
99.017	Fe xxi	100.173	Mn x	101.46	Cr xII	102.50	Ni xxiii
99.02	Co xix	100.200	Ті хііі	101.543	Mo xiv	102.50 ^C	Mn xx
99.02^{L}	Mn xi	100.210	Co ix	101.550	Fe xix	102.539	Ni IX
99.02 ^L	Mn xı	100.241	Ni xxi	101.565	Cr VII	102.602	Ni IX
99.037	Kr x	100.246	Mo IX	101.61 ^C	Fe xvi	102.687	Kr x
99.042	Co IX	100.246	Mo ix Mo ix	101.64 ^C	Cr xx	102.087 102.71 ^C	Cr XIV
99.042	Ti xiii	100.254	Kr xx		Ni ix	102.710	
99.074 99.077 ^C				101.657			Ni IX
	Ti xII	100.261	Kr x	101.668	Kr x	102.75 ^C	Ni XVIII
99.10	Cr xı	100.266 ^C	Ti xII	101.675	Мо іх	102.750	Kr x
99.111 ^C	V XVII	100.297	Kr x	101.691	Kr x	102.77 ^C	Ni xviii
99.13^{T}	Cr XI	100.3 ^C	Ni xxii	101.699	Mo xiv	102.78 ^C	Ni xxiv
99.156	Kr xx	100.336 ^C	V xvi	101.701	Ni IX	102.829	Fe x
99.17	Mn xix	$100.35^{\rm C}$	Ni xviii	101.719	Kr x	102.83 ^C	Cr xiv
99.193 ^C	Mn xxII	100.37	V XII	101.733	Fe x	102.837	Kr x
99.194	Mo IX	100.370	Mo IX	101.74 ^C	Fe xvi	102.854	V XVII
99.196	Kr x	100.42	Ni xxIII	101.744	Mo ix	102.9°C	Mn xv
99.243	Cu xxiii	100.42	Mo xxxi	101.744 101.77 ^C	Ti xx		
99.243	Cu xxiii Cu xxiv					102.914	Kr x
		100.437	Mo IX	101.808	Mn x	102.960	Cu xix
99.246	Kr x	100.44 ^C	Ni xviii	101.816	Fe xx	102.964	Ті хін
99.25 ^C	Ni xvIII	100.440	V xvi	101.823	Mo viii	102.985	Mo ix
99.262	Kr x	100.50	Mn xix	101.846	Fe x	103.021	Kr xx
99.284	Co ix	100.50	Ni xxIII	101.846	Ni IX	103.03	Cr vIII
99.330	Kr xviii	100.585	Mn x	101.854	Mn x	103.043	V xvi
$99.339^{\rm C}$	Cr xviii	100.591	Ti xı	101.87 ^C	Fe xvi	103.059	Ti v
99.356^{L}	Mn xi	100.593	Cr VII	101.88	Co xx	103.06 ^C	V xvii
$99.436^{\rm C}$	Cr xiv	100.612	Ni xxII	101.904	Co viii	103.07	Ni xxiii
99.448 ^C	Cr XIV	100.620	Mo xxxi	101.904	Co viii	103.110	Mo IX
99.450 ^C	Ti xx	100.636	Co ix	101.92	Mn xix	1	
99.473 ^C	Cr XIV	100.637	Cu xxiv	101.92 ^C		103.16	Co xx
99.48	Cr xi	100.653		ſ	Co xxi	103.164	Fe x
99.530			Kr x	101.926	Cr xvii	103.179	Cu xix
	Kr x	100.662	Kr x	101.932	Ni IX	103.244	Ni xxiii
99.530	Kr x	100.69 ^C	Cr xix	101.985	Kr x	103.251	Kr x
99.531 ^S	V xIII	100.742	Mo IX	102.001	Kr xviii	103.268	Kr xxi
99.543 ^C	V xIII	100.753	Ti xiii	102.03 ^C	Ti xx	103.269	Mn x
99.545	Mo ix	100.773	Fe xxII	102.030	Mn x	103.30 ^C	Cr xv
99.566	Mo ix	100.787	Mn x	102.033	Co viii	103.31 ^C	Mn xxii
99.572	Ti xiii	100.835	Ti xı	102.041	Ni xxIII	103.319 ^L	Fe x
99.572	Ті хіп	100.85 ^C	Fe xxII	102.056	Mo IX	103.326	
99.574 ^C	Ti xx	100.856	Co ix	102.086	Co viii	103.36	Ni XXII
99.596 ^L	Co x	100.830 100.87 ^C	Cr xiv	102.086	Fe x		Cr VIII
99.634 ^S	V xiii	100.876	Kr x	I.		103.40	Ni xxı
99.648	Kr x			102.106	Ti x	103.415	Mo 1X
99.655 ^C		100.90	Cr XI	102.115	Ni xxiv	103.428	Ni 1x
	V XIII	100.967	Mo ix	102.151	Kr x	103.43	Ni xxiv
99.660	Kr xx	101.004	Mo xiv	102.152	Mo IX	103.451 ^C	Ni xxII
99.67	Cr xi	101.05	Cr XIV	102.18 ^C	Ni xvIII	103.48	Cr VIII
99.776^{C}	Ni xxIII	101.065	Kr x	102.19 ^C	Ti xx	103.48 ^C	Fe ххи
99.831	Kr x	101.069	Mo 1X	102.192	Fe x	103.493	Kr x
99.834	Ti xın	101.08 ^C	Mn xx	102.216	Fe xxi	103.500	Mo xiv
99.852	Mo IX	101.081	Mo xxxi	102.216	Fe xxII	103.500	Mo XIV
99.89	Co xx	101.107	Co ix	102.247	Ti xv	103.500	Mo xiv
99.921	Со іх	101.13	Ni xxiv	102.249	Co VIII	103.521	Mn x
99.934^{C}	Ті хп	101.162	Kr x	102.243	Kr x		
99.978 ^C	V XIII	101.162		•		103.53	Mn xx
100.00	Mn XVII		Mo ix	102.283	Ni ix	103.546	Ni xxiv
		101.181	Kr x	102.299	Kr x	103.566	Fe 1X
100.02 ^C	V xvII	101.224	Kr x	102.32	Cr xvIII	103.572	Kr x
100.026	Fe x	101.30	Co xxi	102.340	Ni ix	103.6 ^C	Mn xv
100.075	Kr x	101.31	Ni xxII	102.348	Fe x	103.620	Ni IX
100.09^{T}	Cr XI	101.31 ^C	Co xxiii	102.364	Ni ix	103.67	Ni xxiii
100.099	Mo ix	101.353	Ti x	102.367	Co viii	103.684	Kr xxii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
103.696	Mo xxxviii	104.838	Fe VII	107.25	V XII	108.648	Mo viii
103.699	Co VIII	104.90	Mn xix	107.27 ^C	V XIII	108.667	Co ix
103.702	Cu xxiv	104.972	Fe VII	107.29	V xII	108.714	Mo XXIX
103.724	Fe x	104.98 ^C	Fe xxi	107.31 ^C	V XIII	108.73 ^C	Fe xx
103.733	Ti v	104.980	Cr xviii	107.34 ^L	Mn x	108.76	Mn XVIII
103.754	Ti v	105.03	V xi	107.34 ^L	Mn x	108.796	Mo viii
103.77	Fe xxi	105.125 ^C	Co xvii	107.36 ^L	Mn x	108.803	Fe xx
103.796	Kr x	105.139	Cr vII	107.380	Mo viii	108.84	Co xxii
103.80^{T}	Со ххии	105.208	Fe IX	107.384	Fe xiii	108.854	Kr xxi
103.809	Co viii	105.24	Mn xx	107.39 ^L	Mn x	108.862 ^L	Fe xII
103.83	Fe XXI	105.256	Mn IX	107.45	Cr x	108.878	Cu xi
103.871	Ni IX	105.26 ^L	Cr XI	107.472 ^L	Mn x	108.93	V xII
103.92	Cr VIII	105.34	V xi	107.49	Со ххи	108.93 ^L	Mn x
103.926 ^L	Ni 1X	105.423	Mo viii	107.57	V xı	108.93 ^L	Mn x
103.93	Со ххі	105.43 ^C	Ti xvi	107.57 ^C	Co xxi	108.952	V xvii
103.939	Fe XVIII	105.49	V XII	107.58	Со ххи	108.966	Mo IX
103.981 ^L	Ni IX	105.594	Co viii	107.652	Mo viii	108.97 ^L	Mn x
103.993	Ni IX	105.618 ^S	Mo xxx	107.659	Cu xxv	108.97 ^L	Mn x
104.023	Kr x	105.647 ^C	Co xvii	107.68	Mn xix	108.977	Kr XXII
104.028	Kr xxi	105.65 ^L	Cr XI	107.69 ^C	Cr XIV	109.015 ^L	Fe XII
104.028 104.1 ^C	V XIX	105.69	Cr VIII	107.69 ^C	Cr xiv	109.03	Ni XXIV
104.127	Cr vii	105.69 ^C	Co xxii	107.70	Cr x	109.03 ^C	Ti xvi
104.13	Mn xix	105.72	Co xx	107.709	Kr xxi	109.06	Ni xxiii
104.13	Mn xx	105.74	V XII	107.74 ^C	Cr xix	109.095	Mo VIII
104.13 ^C	Ni xxv	105.760	Cu XXIV	107.79 ^C	Cr XIV	109.107	Ti xii
104.14	Co xxi	105.859	Cu xxiv	107.797	Mo VIII	109.14	Co xx
104.14	Cr xix	105.88	Ni xxii	107.80	Cr x	109.14	Co XXII
104.180	Co VIII	105.92	Cr xviii	107.83	V xII	109.14 109.22 ^C	V XIII
104.180	Co viii	106.00	V xi	107.868	Fe VIII	109.227	Mo IX
104.248	Fe x	106.064	Ni xxII	107.876	Mo IX	109.287	Mo IX
104.27	Co xxi	106.064	Ni xxiii	107.89	Mn xx	109.29 ^C	V XIII
104.29	Fe XXI	106.080	Mo ix	107.91	Co XXIII	109.29 ^C	V XIII
104.291 ^S	Mo xxxii	106.107	Fe XIX	107.92 ^C	Co xxiii	109.25 109.3 ^C	Mn xv
104.291	Cu xxiv	106.154	Ti v	107.947	Fe vii	109.303	Ni XXI
104.252	Mo viii	106.16	Ni xxII	108.002	Cu XI	109.35	Mn XVII
104.310	Mn x	106.23	Co xxi	108.002 108.01 ^C	Ni xxiii	109.35 ^C	Cr xix
104.369	Kr X	106.23	Co xxii	108.03	Co xxiii	109.4 ^C	Mn xv
104.372 ^S	Mo xxx	106.259	Mo viii	108.077	Fe VIII	109.4 ^C	Mn xv
104.42^{C}	Cr xiv	106.285	Fe VII	108.086	Ti xII	109.432	Ti xvII
104.45	Co xxiii	106.308	Ti v	108.114	Fe xxi	109.44	Ni xxi
104.45	V XII	106.318	Fe xıx	108.14	Mn xxi	109.444	Mo IX
104.5^{C}	V xix	106.418	Fe VII	108.16	Со ххи	109.463	Fe VII
104.50^{C}	Cr xiv	106.42	V xı	108.160	V xvi	109.48 ^C	Ti xv
104.50 ^C	Cr XIV	106.49	Cr x	108.210	Mo VIII	109.509 ^L	Fe XII
104.516	Ti x	106.525 ^C	Ti xv	108.255	Mo viii	109.53	Fe xxII
104.568	Ti x	106.633	Cr xvi	108.27	Ni xxiii	109.552	Mo ix
104.58	V xII	106.68	Cr vIII	108.3 ^C	V xix	109.600	Mo IX
104.59	Cr xv	106.68	Ni xxiv	108.355	Fe xix	109.648	Kr xxII
104.593	Ti xiii	106.76	Co xxi	108.362	Kr xxii	109.650	Mo IX
104.608	Mn x	106.781	V XII	108.37	Cr xviii	109.657	Fe xx
104.618	Kr x	106.80 ^C	V XIII	108.381	Fe vii	109.67 ^C	V xiv
104.620	Cu xxii	106.820	V XII	108.390	Co ix	109.676	Cr XIX
104.626	Ni xxiv	106.84	Cr xvIII	108.440 ^L	Fe XII	109.70	Co xxiii
104.638	Fe x	106.85 ^C	Fe xxII	108.443	Ti v	109.712 ^L	Fe XII
104.66	V xII	106.874	Ti xv	108.479	Cu xi	109.742	Fe VII
104.67	Mn xx	106.885	V XII	108.475	Fe VII	109.75 ^C	Cr XIV
104.70	Ni xxiii	106.955	Fe xx	108.493	Cu xxiii	109.760	Mo viii
104.711	Ti v	107.00	Ni xxiii	108.519	Fe vii	109.78	Mn XXI
104.711 104.72 ^C	V xvii	107.005	Mo vii	108.533	Fe vii	109.78	Mn ix
104.72	Ti v	107.024	Mo viii	108.57 ^C	Ni xxiii	109.790	Mo vii
104.74	V XI	107.024	Cr x	108.571	Mo viii	109.790	Cr x
104.752	Mo IX	107.173	Kr xxi	108.584	Fe vii	109.864	Mo VIII
104.80 ^C	Ti xvi	107.19 ^C	V xviii	108.605 ^L	Fe XII	109.904	Mo VIII
104.801	Co viii	107.203	Mo viii	108.611	Ti v	109.952	Fe XIX
104.806	Mn x	107.231	Kr xxiii	108.620	Fe vii	110.019	Ti XI
101.000	1	101.201	TT AAIII	1 100.020	10 411	1 110.019	11 71

 ${\bf Finding\ List\ -\ Continued}$

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrur
110.063	Kr xxII	111.555 ^C	Co xvii	113.04	Mn xix	114.412	Fe xxII
110.08	Co xxi	111.586	Fe xx	113.06 ^C	Ti xII	114.45	Ni xxii
110.103	Fe vii	111.604	Fe vII	113.080	Mn IX	114.46	Ni xviii
110.14	Co xxii	111.638	Fe vII	113.081	Fe VIII	114.472	Mn ix
110.189	Mo viii	111.65	Kr xxxiii	113.14	Cu xxvi	114.490	Fe VII
110.205	Fe vII	111.654 ^C	Co xvii	113.14	Ni xxiv	114.564	Fe VIII
110.23	Co xxIII	111.663	Fe vII	113.17	Co xxIII	114.59	V vIII
110.242	Kr xxv	111.664	Ti xı	113.205	Mo VIII	114.6 ^C	Ni xviii
110.283	Ti ıx	111.669	Kr xxii	113.24	Co xxII	114.72	Fe xx
110.304	Mo viii	111.691	Fe vii	113.27	V viii	114.74	Ni xviii
110.37	Cr x	111.695	Fe xix	113.27 ^C	Fe xxii	114.742	Kr VIII
110.37 ^C	Cr xiv	111.713	Fe ix	113.297	Fe XXI	114.742	
110.38	V viii						Mo ix
		111.739	Mo ix	113.30	Mn xvIII	114.88 ^C	V xviii
110.386	Cr xviii	111.742	Fe VII	113.31	Cr x	114.920	Mo ix
110.386	Cr xix	111.767	Fe vII	113.315	Fe VIII	114.921	Kr xxiii
110.39 ^C	Ni xvIII	111.78	Ni xxIII	113.349	Fe xx	114.935	Mo ix
110.391	Mo IX	111.79 ^C	Ti xviii	113.37	Со ххи	114.948	Kr ix
110.40 ^C	Cr XIV	111.791	Fe IX	113.39	V xII	114.974	Cu xxii
110.412 ^C	Co xvii	111.812	Fe vII	113.406	V xvii	115.01	Fe xxi
110.50 ^C	Ni xvIII	111.849	Fe vII	113.463	Fe VIII	115.015	Ti xı
$110.52^{ m C}$	Ni xviii	111.85	Mo xxxviii	113.48 ^C	Ti xII	115.031	Ti xv
110.55	V vIII	111.86	Ni xxIII	113.48 ^C	Ti xII	115.033	Fe vII
110.561	Ti xvı	111.88	Cr xix	113.523	Mo IX	115.08	Fe xxi
110.573	Mo viii	111.889	Mn vII	113.60	V viii	115.09	Vx
110.591 ^L	Fe XII	112.012	Fe vII	113.627	Mn IX	115.109	Mo viii
110.593	Fe vii	112.017	Fe ix	113.663	Мо іх	115.13	Cr xi
110.62	Kr xxx	112.030	Fe vII	113.70	Co xxi	115.15	Fe XXI
$110.62^{\rm C}$	Ti xvi	112.060	Mn vII	113.70	Cr x	115.164	Fe VII
110.626	Fe xx	112.096	Fe IX	113.75	Mn xix	115.19	Fe XXII
110.71	Co xxi	112.1°C	Fe xxi	113.76	Co xxi	115.19	Kr VIII
110.71	Со ххии	112.110	Mo viii	113.763	Fe VIII	115.246	
110.71 110.732 ^L	Fe XII	112.110 112.16 ^T	Mo xxx	113.78	V XII		Fe VII
110.732 110.87 ^C	V xiii	112.10 ^T	Mo xxx Mo xxx			115.29 ^L	Cr x
111.00	Mn xx	112.17		113.785	V xvii	115.33 ^C	V xIII
111.00			Fe xxII	113.793	Fe IX	115.35 ^C	V XIII
	Mn xx	112.252	Fe viii	113.861	Fe vii	115.353	Fe IX
111.012	Mo VIII	112.254	Mo viii	113.861	Fe VIII	115.355	Cr xvi
111.02	Cr x	112.27	Cr xviii	113.897	Mo xxxi	115.36 ^C	Со ххи
111.04	Mn xx	112.300	Mo xiv	113.92	V VIII	115.36 ^C	V xIII
111.071	Cu xxiii	112.34 ^L	V XI	113.93	Co xxii	115.36 ^C	V xvii
111.11	Kr xxxv	112.375	Fe IX	113.930	V xv	115.38	Mn xvi
111.11	V viii	112.411	Mo ix	113.932	Mo ix	115.38 ^C	Fe xx
111.16	Cr x	112.415	Mn IX	113.940	Ti xı	115.396	Fe xix
111.18	Cr xix	112.466	Fe xxı	113.963	Fe VIII	115.407	Cr vII
111.186	Cu xxvi	112.472	Fe vііі	113.964	Fe vii	115.41 ^C	Fe xx
111.23	Ni xxiii	112.486	Fe viii	114.005	Kr xxii	115.42	V vIII
111.26^{C}	Ti xviii	112.495	Ti v	114.005	Kr xxiii	115.471	Mo IX
111.262	Mn ix	112.53 ^C	Co xxii	114.012	Cr xvIII	115.472	Fe VII
111.274	Cu xix	112.55	Ni xxIII	114.012	Cr xix	115.555	Mo xxx
111.286	Mo ix	112.586	Kr xxIII	114.023	Mn IX	115.58	V x
111.299	V xvii	112.586	Kr xxIII	114.024	Fe IX	115.58	V X V VIII
111.33 ^C	V XIII	112.63 ^L	V xi	114.042	Mo ix	115.69 ^T	
111.33^{C}	V XIII	112.640	Mo xxxi	114.05	Fe VIII	115.738	Mn xxi
111.345	Ti ıx	112.68 ^C	Mn xx	114.087 ^S	Mo xxx		Kr IX
111.347	Mo VII	112.704	Fe VIII	i i		115.78	Vx
111.353	Cu xix	112.73 ^C		114.111	Fe ix	115.8 ^C	Mn xv
111.383	Mo VIII	112.73 ^C	Ti xii	114.168 ^C	Ti xvII	115.84	Mn xix
111.383	Mo VIII Mn XVIII		Ti xii	114.205	Mn vii	115.902	Mo viii
111.39 111.41 ^C		112.746	Mo VIII	114.212	Mo ix	115.988	Mo xxx
	V XIII	112.76 ^L	V xı	114.235	Cr VII	115.996	Fe 1X
111.41 ^C	V XIII	112.828	Mo xxxiv	114.272	Ti xı	115.999	Mo xxx
111.44	V viii	112.88 ^C	Mn xxi	114.286	Mo vii	116.0 ^C	Mn xv
111.442	V xviii	112.896	Ti v	114.295	Fe VIII	116.0 ^C	Mn xv
111.461	Mo viii	112.916	Mo IX	114.30	Fe xxi	116.028	Ti xı
111.47	Co xxii	112.932	Fe vIII	114.356	Fe vII	116.047	Kr viii
111.500	Mn IX	112.952	Mo xiv	114.380	Mn vII	116.077	Cr xx
111.542	Co x	112.973	Mo xiv	114.40	Co xx	116.088	Mo ix

Finding List - Continued

116.10° Mp. NIX	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
116.196 Fe viii	116 17 ^C	Mn yıy	117 52 ^C	V viii	119 21	Cr xvIII	120.824	Tiv
116.198								
116.22 Co xxii								
116.248 Mo N 117.709 Kr N 119.284 Ti xvii 120.906 Kr Viii 116.265 V xviii 117.74 Kr xxxxiii 119.306 Cr xx 120.915 Fe Vii 116.365 V xviii 117.74 Mn xi 119.302 Cr xx 120.915 Fe Vii 116.365 V xviii 117.74 Mn xi 119.302 Cr xx 120.915 Fe Vii 116.408 Fe xx 117.762 V vii 119.36 V xii 120.985 V xiii 116.408 Fe xx 117.775 Mo xx 119.360 Fe Viii 120.965 V xiii 116.405 Ti xiii 117.793 Mn vii 119.432 Fe viii 121.005 Mo viii 116.505 Ti xiii 117.793 Mn vii 119.422 Fe vii 121.005 Mo viii 116.507 Ti xiii 117.914 X xx xx xx xx xx xx xx								
116.385		Mo ix		Kr IX		V xı		
116.4387 TX xi				Fe xvi		Ti xvII	120.91	Co xxi
116.408 Fe K					1			
116.442								
116.4935								
116.59 2							121.02 ^C	
116.6494								
116.61 T. XII					1			
116.654					1			
116.70 Mn xx					I			
116.75 Pe VII			•		1			
116.75 ^L Cr x								
116.76°								
116.797 Kr xxIII 118.08 V xIII 119.561 Pe VII 121.183 Pe VXII 116.809 Pe VII 118.178 Kr VIII 119.572 Cu xXIV 121.207 Pe xXII 116.836 Pe VII 118.18 V x 119.587 Pe VII 121.203 Cr IX 116.85 V x 118.21 Ni XXII 116.603 Kr VIII 121.303 Kr VIII 116.85 Fe VII 118.215 Ti XVI 119.603 Kr VIII 121.303 Kr VIII 116.852 Pe VII 118.215 Ti XVI 119.603 Kr VIII 121.304 Pe VII 116.891 Pe VII 118.22 Ma XVIII 119.622 Pe VII 121.331 Pe VII 116.991 Ti XI 118.27 Pe IX 119.686 Pe VII 121.331 Pe VII 116.991 Pe VII 118.307 Cr XV 119.715 Pe VII 121.331 Ma IX 116.997 Co XXII 118.300 Pe VIII 118.307 Cr XV 119.76 Ma IX X 121.332 Ti XVI 116.993 Pe VII 118.300 Pe VIII 119.785 Pe VII 121.408 Pe VII 117.004 Pe VII 118.31 Cr XX 119.813 Pe VII 121.419 Pe XI 117.104 Pe VII 118.373 Mo IX 119.822 Ti X 121.449 Ma IX 117.135 Pe VII 118.468 Kr XXIII 119.880 Kr VIII 121.490 Re VII 117.135 Pe VII 118.537 Mo IX 119.896 Pe VII 121.577 Mo IX 117.144 Pe VII 118.537 Mo IX 119.896 Pe VII 121.578 Mr XX 117.144 Pe VII 118.500 Mr XX 119.996 Pe VII 121.577 Mo IX 117.144 Pe VII 118.560 Mo XXXI 119.996 Pe VII 121.577 Mo IX 117.144 Pe VII 118.668 Kr XXIII 119.996 Pe VII 121.577 Mo IX 117.144 Pe VII 118.668 Kr XXIII 119.903 Pe VII 121.577 Mo IX 117.144 Pe VII 118.669 Kr XXII 119.903 Pe VII 121.577 Mo IX 117.144 Pe VII 118.669 Pe VII 118.507 Mo IX 117.147 Pe VII 118.669 Pe VII 118					· · · · · · · · · · · · · · · · · · ·			
116.803 Fe ix					ī,			
116.809 Fe vii								
116.836 Fe vii 118.21 Ni xxii 119.603 Kr viii 121.293 Cr ix 116.853 Fe vii 118.21 Ni xxii 119.603 Kr viii 121.303 Kr viii 116.883 Fe vii 118.215 Ti xvi 119.623 Fe vii 121.304 Fe vii 116.883 Fe vii 118.22 Fi xvi 119.623 Fe vii 121.331 Fe vii 116.910 Ti xi 118.27 Fe ix 119.686 Fe vii 121.351 Min ix 116.951 Fe vii 118.27 Mo ix 119.692 Fe vii 121.351 Min ix 116.97 Co xxii 118.29 Mo ix 119.692 Fe vii 121.373 Mo xxii 116.970 Fe vii 118.300 Cr xiv 119.715 Fe vii 121.373 Mo xxii 116.970 Fe vii 118.300 Fe vii 119.765 Fe vii 121.408 Fe vii 117.034 Fe vii 118.31 Co xxii 119.815 Fe vii 121.408 Fe vii 117.034 Fe vii 118.31 Co xxii 119.813 Fe vii 121.449 Fe xi 117.04 Fe vii 118.373 Mo ix 119.822 Ti x 121.4492 Min ix 117.104 Fe vii 118.373 Mo ix 119.880 Kr viii 121.490 Fe vii 117.13 Cr xi 118.500 V xiii 119.880 Kr viii 121.490 Fe vii 117.13 Cr xi 118.510 V xiii 119.880 Kr viii 121.490 Fe vii 117.144 Fe xxii 118.5137 Mo ix 119.896 Fe vii 121.517 Mo ix 117.144 Fe xxii 118.537 Mo ix 119.993 Mo ix 121.538 Ti xvii 117.144 Fe xxii 118.537 Mo ix 119.913 Mo ix 121.535 Fe vii 117.147 Ti xi 118.666 Kr xxiii 119.978 Fe xii 121.557 Kr viii 117.147 Fe vii 118.666 Kr xxiii 119.978 Fe vii 121.557 Kr viii 117.147 Fe vii 118.667 Kr xix 120.030 Fe vii 121.557 Kr viii 117.149 Fe xii 118.667 Kr xix 120.030 Fe vii 121.557 Kr viii 117.149 Fe xii 118.667 Kr xix 120.030 Fe vii 121.557 Kr viii 117.20 Cr xviii 118.667 Kr xix 120.030 Fe vii 121.557 Kr viii 117.20 Cr xviii 118.667 Kr xix 120.030 Fe vii 121.557 Kr viii 117.20 Cr xviii 118.667 Kr xix 120.186 Mo ix 121.474 Fe xi 121.274 Fe xi 121.274 Fe xi 121.274 Fe xi 121.280 Kr v	116.809		1					
116.85	116.836	Fe vII	118.18	V x		Fe VII	121.293	
116.882				Ni xxII	119.603	Kr VIII		Kr viii
116.910 Ti xi				Ti xvı		Cr xviii	121.304	Fe vII
116.95 Fe vii					119.623			Fe VII
116.97								Mn ix
116.970 Fe VII 118.30C Cr XIV 119.76 Mn XIX 121.382 Ti XVI 116.993 Fe VII 118.300 Fe VII 119.785 Fe VII 121.408 Fe VII 117.034 Fe VII 118.31 Co XXII 119.813 Fe VII 121.419\frac{1}{2} Fe XI 117.09\frac{1}{2} Cr X 118.31 Cr XIX 119.822 Ti X 121.442\frac{1}{2} Mn IX 117.104 Fe VII 118.373 Mo IX 119.822 Ti X 121.442\frac{1}{2} Mn IX 117.12\frac{1}{2} Ti XII 118.468 Kr XXIII 119.880 Kr VIII 121.490 Fe VII 117.13 Cr XI 118.50\frac{1}{2} Mn IX 119.890 Kr VIII 121.493 Kr VIII 117.135 Fe VII 118.510\frac{1}{2} Mn IX 119.896 Fe VII 121.538 Ti XVI 117.144 Fe XXII 118.537 Mo IX 119.913 Mo IX 121.538 Ti XVI 117.144 Fe XXII 118.556 Mo XXXI 119.913 Mo IX 121.538 Ti XVI 117.149 Mo XIV 118.560 Mo XXXI 119.978 Fe VII 121.555 Fe VII 117.163 V XVIII 118.608 Kr XIXI 119.983 Fe XIX 121.577 Kr VIII 117.171 Ti XI 118.648 Fe VIII 120.03 Fe XXII 121.577 Mo IX 117.187 Fe VII 118.667 Kr XIX 120.030 Fe VII 121.595 Kr VIII 117.197 Fe VII 118.68 Co XXIII 120.030 Fe VII 121.595 Kr VIII 117.197 Fe VII 118.697 Fe XX 120.170 Ti XIII 121.471 Fe XI 117.20 Cr XVII 118.697 Fe XX 120.170 Ti XIII 121.471 Fe XI 117.25 Mn XVIII 118.797 Mo XXXI 120.181 Fe VII 121.781 Cr IX 117.254 Fe VII 118.797 Mo XXXI 120.304 V XVII 121.870 Mo XXXI 117.296 V XVII 118.895 Mo IX 120.304 V XVII 121.890 Kr VIII 117.305 Fe VII 118.850 Kr XXIII 120.304 V XVII 121.890 Kr VIII 117.335 Fe VII 118.850 Kr XXIII 120.406 Mn XIX 121.890 Kr VIII 117.335 Fe VII 118.850 Kr XXIII 120.406 Mn XIX 121.890 Kr VIII 117.335 Fe VII 118.895 Mo IX 120.606 Mo IX 120.607 Ti XII 117.400 Fe XXI 119.015 Mo IX 120.606 Fe VII 121.890 Ti XII 117.41 Mn XIX 119.02 Mn XX 120.606 Fe VII 120.606 Ti X								
116.993 Fe VII								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					 			
117.104 Fe vii					 			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
117.13					1			
117.135								
117.144 Fe xxii								
117.144 Fe vii 118.553 Ni xxiv 119.92 Co xxii 121.55 Mn xx 117.149 Mo xiv 118.560 Mo xxxi 119.978 Fe vii 121.555 Fe vii 117.163 V xviii 118.6265 Kr xxiv 119.983 Fe xix 121.577 Kr viii 117.171 Ti xi 118.648 Fe viii 120.03 Fe xxii 121.577 Mo ix 117.174 Fe vii 118.6675 Kr xix 120.030 Fe vii 121.595 Kr viii 117.18° Fe vvii 118.667 Cr xix 120.131 Fe vii 121.597 Mo xiii 117.197 Fe viii 118.68 Co xxiii 120.156 Mo ix 121.633 Mn ix 117.2 V vii 118.697 Fe xx 120.17° Ti xiii 121.647 Mo xiv 117.25 Mn xviii 118.797 Fe xxi 120.18° Ti xiii 121.747 Fe xi 117.25 Mn xviii 118.71 Fe xxi 120.181 Fe vii 121.870 Mo xxxi 117.276 V xvii 118.797 Mo xxxi 120.304 V xvii 121.870 Mo xxxi 117.310 Fe vii 118.85 Cr xix 120.33 Ni xxi 121.89 V vii 117.32° Ti xiii 118.850 Kr xxiii 120.442 Cu xxiv 121.890 Kr viii 117.32° Ti xiii 118.850 Kr xxiii 120.46° Ni xxiii 121.95 Fe vii 117.355 Kr viii 118.907 Fe viii 120.46° Ni xxiii 121.95 Fe vii 117.355 Kr viii 118.907 Fe viii 120.46° Ni xxiii 121.950 Fe xx 117.432 Fe vii 118.959 Mo ix 120.478 Mo ix 121.986 Ti xii 117.432 Fe vii 119.00 Cu xxvi 120.528 Mo ix 121.986 Ti xii 117.435 Cr ix 119.007 Mn xxi 120.528 Mo ix 122.005 V xv 117.435 Cr ix 119.007 Mn xxi 120.560 Cu xxvi 122.008 Ti xii 117.459 Fe vii 119.14 Mo vii 120.663 Fe vii 122.16° Mn xix 117.507 Cu xxv 119.14 Mo vii 120.663 Mo ix 122.16° Ti xii 117.507 Cu xxv 119.14 Mo vii 120.666 Mo ix 122.16° Ti xii 117.512 Fe vii 119.14 Mo vii 120.789 Fe vii 122.168 Mn viii 122.168 Mn viii 120.789 Fe vii 122.168 Mn viii 120.160 Fe vii 122.168 Mn viii 120.160 Fe vii 122.168 Mn viii 120.160 Fe vii 122.166 Ti xiii 117.501 Ti xiii 117.501 Ti xiii								
117.149 Mo XIV								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1					
117.174 Fe vii 118.667\$ Kr xix 120.030 Fe vii 121.595 Kr viii 117.18\$ Fe xvi 118.67 Cr xix 120.131 Fe vii 121.597 Mo xiii 117.197 Fe viii 118.68 Co xxiii 120.156 Mo ix 121.633\$ Mn ix 117.2 V vii 118.697 Fe xx 120.17\$ Ti xiii 121.647 Mo xiv 117.20 Cr xvii 118.697 Fe xxi 120.18\$ Fe vii 121.747\$ Fe xi 117.25 Mn xviii 118.71 Fe xxi 120.18\$ Fe vii 121.78\$ Cr ix 117.254 Fe viii 118.767 V vi 120.214 Fe vii 121.870 Mo xxxi 117.276 V xvii 118.797 Mo xxxi 120.304 V xvii 121.870 Mo xxxi 117.28\$ Fe vii 118.83 Cr xix 120.33 Ni xxi 121.89 V vii 117.310 Fe vii 118.85\$ Kr xxiii 120.401 Fe vii 121.890 Kr viii 117.32\$ Fe vii 118.850 Kr xxiii 120.442 Cu xxiv 121.941 Mo ix 117.335 Fe vii 118.907 Fe viii 120.46\$ Mn xix 121.95 V vii 117.355 Kr viii 118.959 Mo ix 120.46\$ Ni xxiii 121.952 Fe vii 117.38\$ Fe vii 118.959 Mo ix 120.46\$ Ni xxiii 121.96\$ Ti xiiv 117.432 Fe vii 119.00 Cu xxvi 120.478 Mo ix 121.986 Ti xiv 117.432 Fe vii 119.05 V xviii 120.50 Mn xxi 122.00 Fe xx 117.435 Cr ix 119.087 Mo ix 120.528 Mo ix 122.03\$ Ti xii 117.459 Fe vii 119.114 Mo vii 120.56 Cu xxvi 122.03\$ Ti xii 117.49\$ Fe xxi 119.114 Mo ix 120.667 V xviii 122.09\$ Ti xii 117.507 Cu xxv 119.141 Mo vii 120.636 Fe vii 122.16\$ Mn xii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.16\$ Mn viii 120.16\$ Ti xii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.16\$ Mn viii 120.16\$ Ti xiii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.16\$ Mn viii 120.16\$ Ti xiii 117.512 Ti xiii 119.141 Mo vii 120.789 Fe vii 122.16\$ Mn viii 120.16\$ Ti xiii 117.512 Ti xiii 119.141 Mo viii 120.789 Fe viii 122.16\$ Ti xiii 117.512 Ti xiii 119.141 Mo viii 120.789 Fe viii	117.163	V xviii	118.626 ^S	Kr xxiv	119.983	Fe xix	121.577	
117.18° Fe xvi	117.171	Ti xı	118.648	Fe VIII	120.03	Fe xxII	121.577	Mo IX
117.197 Fe VIII 118.68 Co XXIII 120.156 Mo IX 121.633 ^L Mn IX 117.2 V VII 118.697 Fe XX 120.17 ^C Ti XIII 121.647 Mo XIV 117.20 Cr XVII 118.697 Fe XXI 120.18 ^C Ti XIII 121.747 ^L Fe XI 117.25 Mn XVIII 118.71 Fe XXI 120.181 Fe VII 121.781 Cr IX 117.254 Fe VIII 118.767 V VI 120.214 Fe VII 121.858 Fe XX 117.276 V XVII 118.797 Mo XXXI 120.304 V XVII 121.870 Mo XXXI 117.281 Fe VII 118.83 Cr XIX 120.33 Ni XXI 121.89 V VII 117.310 Fe VII 118.85 ^C Mn XX 120.401 Fe VII 121.890 Kr VIII 117.32 ^C Ti XIII 118.850 Kr XXIII 120.442 Cu XXIV 121.941 Mo IX 117.335 Fe VII 118.907 Fe VIII 120.46 Mn XIX 121.95 V VII 117.38 ^C V XIII 118.959 Mo IX 120.46 ^C Ni XXIII 121.952 Fe VII 117.38 ^C V XIII 119.00 Cu XXVI 120.478 Mo IX 121.986 Ti XIV 117.41 Mn XIX 119.015 V XVIII 120.50 Mn XXI 122.00 Fe XX 117.435 Cr IX 119.087 Mo IX 120.53 Ni XXV 122.03 ^C Ti XII 117.459 Fe VII 119.14 Mo VII 120.666 Fe VII 122.168 Mn XIX 117.507 Cu XXV 119.12 Mn XX 120.663 Mo IX 122.16 ^C Ti XII 117.507 Cu XXV 119.12 Mn XX 120.663 Mo IX 122.166 Mn VIII 117.512 Fe VII 119.141 Mo VII 120.789 Fe VII 122.168 Mn VIII				Kr xix	120.030	Fe vii	121.595	Kr viii
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Fe vII		Mo xIII
117.20							121.633 ^L	Mn ix
117.25			i i					
117.254 Fe viii 118.767 V vi 120.214 Fe vii 121.858 Fe xx 117.276 V xvii 118.797 Mo xxxi 120.304 V xvii 121.870 Mo xxxi 117.281 Fe vii 118.83 Cr xix 120.33 Ni xxi 121.89 V vii 117.310 Fe vii 118.85° Mn xx 120.401 Fe vii 121.890 Kr viii 117.32° Ti xiii 118.850 Kr xxiii 120.442 Cu xxiv 121.941 Mo ix 117.335 Fe vii 118.907 Fe viii 120.46 Mn xix 121.95 V vii 117.355 Kr viii 118.959 Mo ix 120.46° Ni xxiii 121.952 Fe vii 117.38° V xiii 119.00 Cu xxvi 120.478 Mo ix 121.986 Ti xiv 117.41 Mn xix 119.015 V xviii 120.50 Mn xxi 122.00 Fe xx 117.432 Fe vii 119.02° Mn xxi 120.528 Mo ix 122.005 V xv 117.435 Cr ix 119.087 Mo ix 120.53 Ni xxv 122.03° Ti xii 117.459 Fe vii 119.114 Mo viii 120.56 Cu xxvi 122.084 Mo ix 117.49° Fe xxi 119.114 Mo ix 120.607 V xviii 122.09° Ti xii 117.501 Fe xxi 119.12 Co xxiii 120.636 Fe vii 122.14° Mn xix 117.507 Cu xxv 119.12 Mn xx 120.663 Mo ix 122.16° Ti xii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.168 Mn viii								
117.276)		1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			i i		1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			I					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1		l l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ſ					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					i			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					I			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
117.501 Fe xxi 119.12 Co xxiii 120.636 Fe vii 122.14° Mn xix 117.507 Cu xxv 119.12 Mn xx 120.663 Mo ix 122.16° Ti xii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.168 Mn viii					1			
117.507 Cu xxv 119.12 Mn xx 120.663 Mo ix 122.16 ^C Ti xii 117.512 Fe vii 119.141 Mo vii 120.789 Fe vii 122.168 Mn viii			1					
117.512 Fe VII 119.141 Mo VII 120.789 Fe VII 122.168 Mn VIII								
	117.512				,			
·	117.52	Fe xxII	119.144	Fe vii	120.82			Co VIII

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum
(Å)		(Å)		(Å)		(Å)	
122.29	Mn xvIII	123.570	Kr viii	124.586	Fe vіі	125.821	Co viii
$122.29^{\rm T}$	Cr xx	123.572 ^L	Fe xı	124.60 ^C	V xix	125.846	Fe VII
122.320	Co viii	123.654	Ti xvII	124.63 ^C	Fe xvi	125.88 ^C	V xIII
122.335	Fe VII	123.657	Ti x	124.648	Fe VII	125.922	Fe vII
122.370	Fe vii	123.660	Mo IX	124.649	Co VIII	125.93	Cr xix
122.392	Fe VII	123.667	Fe vII	124.67	Co xxi	125.940	Ti xı
$122.420^{\rm S}$	Mo xxx	123.703	Ti x	124.725 ^L	Fe xi	125.979	Ti xı
122.472	Co viii	123.709	Fe vII	124.759	Kr viii	126.00	V vII
122.487	Mo vii	123.738	Мо іх	124.779	Fe vii	126.004	Ti xvii
122.488	Co viii	123.753	Co viii	124.782 ^C	Ti xvii	126.032	Fe VII
122.520	Fe VII	123.776	Kr viii	124.795	Co VIII	126.042	Ti xı
122.56	Cr xvIII	123.778	Mo IX	124.805	Ti xvi	126.088	Fe VII
122.577	Co VIII	123.780	V xvi	124.823	Kr viii	126.09	Mn xviii
122.577	Mo XIII	123.790	Mn vii	124.830	Co VIII	126.100	Мо іх
122.58	Cu xxvi	123.82 ^C	Mn xix	124.871	Co viii	126.152	Vix
122.60	V vII	123.822	Fe vii	124.878	Co VIII	126.166	Fe VII
122.61 ^C	Fe xxi	123.822 ^L	Fe xı	124.914	Mo ix	126.187	Mo IX
122.63 ^C	Ti xvii	123.834	Fe XXI	124.979	Fe VII	126.21 ^C	Cr XIX
122.72	Ni xxiv	123.85 ^L	Mn ix	125.00	Cr xvii	126.22	Co xx
122.720	Cr IX	123.87	Cr xviii	125.014	Kr viii	126.258	Mo XIII
122.746	Мо хии	123.891	Kr vIII	125.03 ^C	V XIII	126.29 ^C	Ni xxiv
122.897	Mo IX	123.902	Mo xiv	125.03 ^C	V XIII	126.296	Mo VIII
122.905	Ti xı	123.902	Mo xiv	125.071	Co VIII	126.30	Cr xix
122.914	Kr viii	123.902	Mo xiv	125.12 ^C	V XIII	126.32	Ni xxII
122.956	Co VIII	123.946	Ti xı	125.15	Co xxi	126.330	Ti VI
122.96 ^C	Mn xx	123.96	Ni xviii	125.15	Co xxiv	126.358	Cr XIX
122.96 ^C	Ti xii	123.973	Mo viii	125.155	Co viii	126.4 ^C	V xix
122.964	Cr IX	123.993	Mn VII	125.155	Co VIII	126.411	V xviii
122.97	Mn XXI	124.03 ^C	Ti XII	125.173	V xvi	126.453	Fe VII
$122.974 \\ 122.984$	Cr xvii Mo ix	124.030 124.04	Fe vii	125.191	Mo VIII	126.46	Mn xx
	Co VIII		Ni xviii	125.22 ^C	Cr XIV	126.54	Ni xxiii
$123.022 \\ 123.029$	Fe VII	124.055	Mn VIII	125.22 ^C	Ni xviii	126.55 ^C	V xiii
123.029	V VII	124.058 124.08	Fe VII	125.266	Fe VII	126.559	Fe VII
123.036	Ti x	124.120	Mn xxı Fe vii	125.268 125.278	Co viii V xvii	126.58 ^C	V XIII
123.045	Co viii	124.138	Ti xı	125.278	Fe XXI	126.631 126.634	Mo VII
123.07	V vii	124.143	Ti x	125.301	Kr VIII	126.651	Mo VIII Ti x
123.070	Ti XI	124.184	Cr VIII	125.32 ^C	Cr XIV	126.676	Ti xvii
123.076	Kr VIII	124.221	Mo IX	125.340	Co VIII	126.692	Kr viii
123.10	Kr xxxiii	124.236	Mo xxxi	125.35	Cr xvii	126.705	Fe VII
123.108	Mo VIII	124.24	V vii	125.35	Mn xxi	126.73	Ni XXV
123.130	Fe vii	124.24 ^C	Ti xix	125.35 ^C	Cr XIV	126.732	Vix
123.173	Co VIII	124.250	Fe VII	125.350	Co VIII	126.743	Fe vii
123.178	Mo IX	124.266	Mo IX	125.350	Co viii	126.747	Mo VIII
123.182	Mo XIII	124.31	Ni xxII	125.42	Mn xx	126.765	Vix
123.226	Cr IX	124.322	Kr xxiii	125.420	Vix	126.768	Fe VII
123.23	Mn xxi	124.369	Mo IX	125.431	Fe VII	126.810	Vix
123.239	Co VIII	124.384	Fe vII	125.437	Kr viii	126.813	Kr VIII
123.30	Mn xx	124.391	Ti x	125.438	Cr xviii	126.82	Co xxiii
123.307	Co VIII	$124.40^{\rm L}$	Vx	125.447	Fe vii	126.832	V xvii
123.33	Fe xxı	124.408	Mo ix	125.45 ^C	Ni xviii	126.855	Fe VII
123.331	Ti x	124.415	Fe VII	125.456	Ti x	126.875	Fe VII
123.38	Mo xxxi	124.425	Fe vII	125.456	Ti vi	126.886	Kr xxv
123.394	Mo viii	124.48	Ni xxii	125.508	Fe VII	126.898	Fe vii
$123.40^{ m C}$	Fe xvi	124.481	Kr viii	125.524	Cr xvIII	126.913	Fe vii
123.415 ^C	Ni xxii	124.54	Mo xxxi	125.524	Fe vII	126.930	Мо хии
123.46^{C}	Ті хп	124.54 ^C	Fe xvi	125.565	Fe VII	126.979 ^S	Mo xxx
123.485	Mo ix	124.54 ^C	Ті хи	125.566	Co VIII	127.026	Fe VII
123.489	Co viii	124.54 ^C	Ti xII	125.596	Fe vII	127.04	Fe xxi
123.49^{L}	Fe xı	124.541	Mo XIII	125.640	Fe VII	127.058	Mo VIII
$123.49^{ m L}$	Fe xı	124.547	Fe VII	125.689	Ti vi	127.068	Vix
123.495	Kr vIII	124.553	Ti xvii	125.704	Mo vii	127.069	Fe VII
123.496	Fe VII	124.56	Mn xx	125.71	Fe xxII	127.079	V xviii
123.545	Mo IX	124.56 ^C	Ni xviii	125.728	Cr vIII	127.08	V vii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
127.118	Fe VII	128.379	V vi	129.980	Fe VII	131.531	Fe VII
127.13 ^C	Ni xxiii	128.397	Co VIII	129.99 ^L	Cr ix	131.532	Cr xx
127.169	Fe VII	128.417	Fe vii	129.996	Fe vii	131.60	Ni xxiii
127.21	Ni xxIII	128.43	Cr xix	129.998	Cr vIII	131.638	Cr VIII
127.230	Fe vII	128.448	Cr xx	130.017	Fe VII	131.687	V xvII
127.258	Fe VII	128.449	Fe vII	130.02	Co xxi	131.70	Fe xx
127.268	Ti xı	128.450	Ti vı	130.050	Fe vII	131.713	Fe VII
127.27	V xviii	128.538	Fe VII	130.06	Co xxiii	131.730	Мо VIII
127.278	Fe VII	128.56 ^C	Fe xvi	130.111	Mo viii	131.782	Fe VII
127.28	Mn xix	128.59 ^C	Fe xvi	130.112	Fe VII	131.789	Kr xxv
127.31^{L}	Cr IX	128.63	Cr xix	130.15 ^C	Ni xvIII	131.795 ^S	Kr xxiv
127.324	Fe vII	128.638	Fe vII	130.221	Fe VII	131.88 ^C	Mn xx
127.341^{C}	Ni xxii	128.659	Fe VII	130.226	Fe VII	131.9 ^C	Ni xviii
127.36	Mn xxi	128.682	Fe vII	130.248	Fe vII	131.905	Mo xxxı
127.388	Fe vII	128.688	Mo viii	130.257	Fe VII	132.022	Ti xvi
$127.42^{ m L}$	Cr IX	128.740	Mo IX	130.277	Fe vII	132.077	Mo ix
127.429	Fe vII	128.753	Fe vII	130.29 ^C	Ni xvIII	132.093	Ti VII
127.46	Ni xxiii	128.755	Fe xxi	$130.30^{\rm C}$	Ni xviii	132.1 ^C	Mn xv
127.48	Cu xxvi	$128.76^{\rm C}$	Ti xIII	130.32	V ix	132.11	Cr xix
$127.53^{ m L}$	Cr IX	128.796	Ni x	130.336	Fe VII	132.120	Fe VII
127.559	Fe vII	128.85	Ni xxv	130.374	Fe vII	132.149	Ti VII
127.575	Mo XIII	128.852	Fe vII	130.38	Mn xx	132.24 ^C	Co xxi
127.604	Fe vII	128.87	Ni xxIII	130.419	Fe VII	132.240	Cu x
127.636	Fe vII	128.878	Mo IX	$130.42^{\rm C}$	Mn xx	132.321	Cr VIII
127.645	Fe vII	128.879 ^C	Ni xxII	130.467	Fe vII	132.322	Ti VII
127.653	Kr xxiii	128.93 ^C	V XIII	130.481	Fe VII	132.351	Ti vii
127.662	Mo VIII	128.97 ^C	V XIII	130.54 ^C	Ті хи	132.355	Fe vII
127.694	Fe VII	$128.98^{\rm C}$	V xIII	130.54 ^C	Ti xII	132.407	Fe VII
127.738	Kr viii	$129.04^{ m C}$	Cr xix	130.56 ^C	Ті хи	132.44	Kr xxiv
127.763	Fe VII	129.055	Ti xı	$130.56^{\rm C}$	Ті хи	132.46 ^C	Со ххи
127.78	Ni xxiv	129.075	Ti xvi	130.59	Mn xix	132.478	Cu x
127.782	Ti xvii	129.10 ^C	Ti xII	$130.60^{\rm C}$	Mn xxii	132.522	Ti vII
127.83^{C}	Ti XII	129.148	Ti vı	130.608	Fe VII	132.593	Fe vII
127.84	Ti xii	129.17	Fe xxII	130.623	Fe VII	132.63	Co xxII
127.852	Fe vii	129.195	V xvi	130.63 ^C	Ti xii	132.63	Fe xıx
127.86	Fe xx	129.249	Ti vi	130.702 ^S	Kr xxiv	132.667	Fe VII
127.867	Fe vII	129.258	Ni x	130.703	Kr xxiii	132.677 ^C	Ni xxIII
127.868^{S}	Mo xxxII	129.26	Cr xx	130.758	Mo viii	132.733	Ti vII
$127.88^{ m L}$	Cr ix	129.278	Fe vII	130.779	Fe vII	132.756	Co VIII
127.91^{C}	Ті хп	129.31	Mn xx	130.789	Cr xx	132.76	Cr xvii
$127.91^{ m C}$	Ті хи	129.330	Fe VII	130.838	Fe VII	132.79	Mn xx
127.916	Co viii	129.420	Kr xxv	130.9 ^C	Ni xviii	132.792	Fe VII
$127.94^{ m C}$	Fe XVI	129.440	Ti xıv	130.90 ^C	Co xxiii	132.850	Fe xx
127.95	Cr xix	129.55	Mn xx	130.941	Fe VIII	132.90	Mn xxi
$127.95^{ m L}$	Cr IX	129.55 ^C	Cr xviii	130.941	V xvii	132.906	Fe xxIII
127.96	Co xvii	129.579	Fe VII	130.97	Mn xix	132.908	Мо іх
127.983	Mo XIII	129.580	V vi	130.99	Cr xix	132.982	Ti VII
127.983	Mo xiii	129.6 ^C	V xix	130.99	Ni xxv	133.00 ^C	V xvii
128.028	Mo XIII	129.603	Ti vII	131.059	Mo viii	133.01 ^C	Cr xvIII
128.076	Mo IX	129.65 ^C	Ti xII	131.08	Cr IX	133.034	Cu x
128.141	Mo VII	129.66	V ix	131.09	Co xxi	133.055	Fe vII
128.145	Cr xvIII	129.668 ^C	Co xvii	131.13	V ix	133.06	Co xxi
128.147	Fe VII	129.71 ^C	V xvIII	131.146	Ti xv	133.06 ^C	Cr xiv
128.187^{C}	Ni xxiii	129.722	Ti VII	131.193	Fe vii	133.123	Fe VII
128.20	Co xvii	129.730	Fe vII	131.22	V ix	133.165	Fe VII
128.200	Mo IX	129.77 ^L	Cr IX	131.240	Fe VIII	133.168	Mo viii
$128.21^{\rm C}$	Co xvii	129.777	Fe vII	131.245	Mo viii	$133.20^{\rm C}$	Cr xiv
128.24	Co xxiv	129.78	Cr xvII	131.255	Fe vIII	133.210	Mo xxxi
128.240	Fe VII	129.789	Fe VII	131.263	V xvi	133.24	Kr xxv
128.25	Ti vII	129.806	Mo VIII	131.3 ^C	Ni xvIII	133.26 ^C	Cr xiv
128.273	Ni x	129.822	Fe VII	131.31	Cr xx	133.274	Fe VII
128.30	Ni xxIII	129.872	Fe vII	131.318	Fe VII	133.338	V xvi
128.368	Fe vII	129.895	Kr xxv	131.385 ^C	Co xvii	133.395	Cr VIII
128.37	Co xxiii	129.895 ^S					
120.31	CO AAIII	129.895	Kr xxv	131.394	Mo xii	133.417	Mn vii

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectru
(Å)		(Å)		(Å)		(Å)	
133.424	Fe vII	135.33	Mn xix	136.97	Kr xxv	139.188	V VIII
133.525	V xvi	135.362	Mn vII	137.01	Ni xxiv	139.34 ^C	Fe xvı
133.54	Ni xxIII	135.378	Mo viii	137.027	Fe x	139.353	Mo xi
133.633	Ti vII	135.39 ^C	V xIII	137.036 ^L	Cu x	139.36	Mn xix
133.636	Mn vii	135.394	Mn vii	137.153	Ti IX	139.43 ^C	Fe xvi
$133.64^{ m C}$	Со ххі	135.42 ^C	Co xxii	137.194	V vIII	139.431 ^C	Co xvii
133.655	Mn vii	135.47	Ni xxiv	137.316	V viii	139.45 ^C	Fe xvi
133.661	Mo vIII	135.475	Mn vii	137.37 ^C	Ti xviii	139.50 ^C	Со ххи
133.670	Fe vii	135.48 ^T	Mn viii	137.377	Ti IX	139.509 ^C	Co xvii
133.691	Fe vII	135.488	Fe vII	137.384	Fe vii	139.518	V vi
133.778	V xviii	135.5 ^C	Ni xxiii	137.425	Mo VIII	139.59	V xix
133.82	Cr xx	135.53 ^C	Ti xII	137.491	V vIII	139.595	Mn vii
133.842	Fe vii	135.532	Mn vII	137.50	Mn viii	139.64	Fe xxII
133.852	Ti xvIII	135.609	Mn vII	137.55	Ni xxIII	139.65	Mn xvii
133.854	Mo vIII	135.655	Cu xi	137.62 ^C	V xvII	139.71 ^C	Ti xII
133.874	Fe vII	135.69 ^C	Ті хи	137.640	Fe VII	139.730	V viii
133.875	Mn vII	135.69 ^C	V xviii	137.661	Ti VII	139.771	Cu x
133.899	Fe vII	135.734	Cu xı	137.73	Co xxiv	139.80	Co xxiv
133.985	Co viii	135.751	V vIII	137.743	Ti ıx	139.862	Mn vII
133.99	V ix	135.801	Ti vII	137.787	Mo xxxix	139.868	Cu x
134.056	V xvII	135.812	Fe xxII	137.802	Fe VII	139.868	Fe x
134.063	Fe vII	135.892	Cr vIII	137.813	Ti vı	139.884	Ti xII
134.066	Cr xix	135.900	Mn vii	137.82	Mn viii	139.9 ^C	Mn xv
134.076	Cr vIII	135.902	Mo viii	137.83 ^L	V ix	139.911	Ti vi
134.097 ^S	Kr xxiv	135.95	Ni xxv	137.833	Fe VII	139.93	Mn viii
134.1	V xviii	136.00	V xviii	137.89	Cr XIX	139.977	Cr xvIII
134.11 ^C	Ti xviii	136.00 ^C	Ni xviii	137.907	Fe vii	139.98 ^L	Vix
134.128	Fe vII	136.01	Fe xxII	137.92	Mn viii	140.071	Cu x
134.13	Co xxii	136.034	Cu xi	137.991	Ti IX	140.1 ^C	Mn xv
134.190	Mn vII	136.04	Kr xxv	138.020	Ti xvi	140.177	Kr viii
134.203	Mo VIII	136.052	Fe xx	138.065	Cu xiii	140.25	V xix
134.24 ^C	V xvIII	136.066	Mo xxxi	138.15	Cr XIX	140.277	V xvi
134.362	Mo viii	136.078	V vIII	138.168	V xvi	140.296	Fe x
134.428	Mo xIII	136.08 ^C	V xviii	138.168	V xviii	140.31 ^L	Vix
134.428	Mo VIII	136.12	Co xxiii	138.18 ^C	Fe xxi	140.323	Mn vii
134.53	Ni xxiv	136.15 ^C	Ni xviii	138.191	Fe vii	140.357	Mo xi
134.54	V 1x	136.160	Ti xvII	138.235	V vi	140.361	Ti xii
134.57	Co xxii	136.17 ^C	Ni xvIII	138.30	Mn xx	140.395	Ti xv
134.609	Ti xv	136.177	Mn vii	138.357	Ti xv	140.44	Fe xx
134.615 ^S	Mo xxxII	$136.20^{\rm C}$	V xIII	138.422	Kr viii	140.443	Ti vi
134.628	Mn vII	136.25	V xix	138.441	Mn vII	140.443	Ti ix
134.65	Fe xxII	136.267	Ti vII	138.49	Fe xx	140.451	V viii
134.69	Mn vIII	136.280	Ti xviii	138.519	Cr xix	140.51	Cr xix
134.704	Ti xı	$136.30^{\rm C}$	V xviii	138.520	Mo viii	140.542	Ni IX
134.724	Ti xvı	136.343 ^C	Ni xxii	138.548	Ti VII	140.55	Mn xxi
134.73	Ni xxiv	136.357	Mo VIII	138.548	Ti IX	140.580	Cu xiv
134.763	Мо хии	136.386	Cu xi	138.600 ^C	Co xvii	140.665	V VIII
134.79	Mn vIII	136.393	Ti xvII	138.61	Fe XXI	140.678	Fe x
134.852	Mo VIII	136.49	Co xxii	138.697	Mn vii	140.71 ^C	Cr xxi
134.914	Cu xi	136.499	Mo XII	138.760	Ti xvi	140.73	Mn viii
134.940	Fe vii	136.507	Mo vii	138.78	V XIX	140.75	Cr xx
134.942	Cr vIII	136.511	V xvii	138.780	Kr viii	140.77 ^T	Mo xxx
134.949	Cr xix	136.52 ^C	Co xxi	138.8 ^C	Mn xv	140.81 ^C	Cr xvii
134.972	Mn vii	136.53	Fe xxIII	138.80	Ni xxiv	140.833	Mo vii
134.989	Cu xi	136.56	Co xxii	138.800	Ti xvi	140.891	Kr xxv
135.06	Mn xx	136.595	Ti ıx	138.814	Ti vII	140.917	Ni IX
135.06	Mn viii	136.6 ^C	Ni ххні	138.84	V xix	140.917	Ni ix
135.148	Mn vII	136.602	Cr xvIII	138.841	Fe vii	140.92	Cr XIX
135.15	Mn vIII	136.671	Fe vII	138.86	Cr xix	140.92	V viii
135.179	Ti xı	136.714	Ti vi	138.97	Co xvii	140.934 141.0 ^C	
135.185	Cr vIII	136.75	Co xxii	139.04	Co xvii	141.002	Kr xxx
	Ti xvII	136.782	Mo viii	139.04 ^C	Fe xx	141.002	Ni ix Mn xix
	11 AVII						
135.202						 	
	Co xxiv Cr xx	136.815	Ti vii V viii	139.07 ^C 139.175 ^S	Ni XXI Cu XII	141.030 141.044	Mn XIX Mo XI Mn VII

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum
(Å)	Spectrum	(Å)	Spectrum	(Å)	Spectrum	(Å)	Spectrum
141.10	Mn xxII	143.997 ^S	Mo XL	145.75	Kr xxvii	148.104	Ti vı
141.113	Ti vi	144.06	Fe xvi	145.75 ^C	Ni xviii	148.113	V xvIII
141.119	Mn vi	144.111	V xvIII	145.79	Ti v	148.273	Mn vi
141.193	Mn vi	144.194 ^C	Ti xvII	145.96 ^C	Ті хи	148.303	Ti vi
141.231	Mo xi	144.216	Ni x	146. ^C	Mn xv	148.318	Cu xiv
141.238	V vi	144.25	Fe xvi	146.016	Mo XI	148.318	Cu xiv
141.277	Mn vi	144.31 ^C	Ti xII	146.067	Ti xvii	148.377	Ni xi
141.287	Mo VIII	144.31 ^C	Ti xii	146.081	Ni x	148.438	Ti xviii
141.29	Mn viii	144.323	Ni x	146.1 ^C	Fe xvi	148.47 ^C	Cr xiv
141.356	Ni IX	144.328	Fe x	146.118	Mn vi	148.476	Mn vi
141.49	Mn xxi	144.36	Fe xxIII	146.15	Kr xxv	148.48	Mn xix
141.59 ^C	Ті хи	144.370	Mo x	146.15	Kr xxv	148.588	Ti xv
141.664 ^S	Kr xxv	144.4 ^C	Fe xvi	146.368 ^C	Co xvii	148.61	Kr xxv
141.68 ^C	Ti XII	144.40	Kr xxv	146.37	Cr vIII	148.681	Cr xix
141.68 ^C	Ti xII	144.405	Ti xvii	146.40	Co XXII	148.714	Cr VII
141.73	V xviii	144.42 ^C	Mn xx	146.497	Cr VII	148.719 ^C	Co xvii
141.757	Mn VII	144.551	Ti v	146.501 ^C	Co xvii	148.83	Ti xviii
141.76	Mn VIII	144.616	Mo XI	146.539 ^C	Co xvii	148.846	Mn vi
141.864	V vIII	144.653 144.661 ^C	V VIII	146.57	Mn xix	148.903	V vii
141.924	V viii		Ti xvii	146.57	Ti xvi	148.909	Mn vi
141.948 141.988	Ti xvii Ti vi	144.666 144.720	Kr XXIII	146.60 ^C 146.60 ^C	Ti XII	148.99	Cr xx
142.028	Mn VII	144.720	Cu xiii Ti xviii	146.613	Ti XII V VIII	148.998 149.010	Mn vi
142.05	Co xxiii	144.81	Cr VI	146.63 ^C	Fe XX	149.010 149.07 ^C	Ti vi Cr xiv
142.05	Fe XXI	144.83	Co xxiv	146.63 ^L	Cr VIII	149.07	Fe XXIII
142.07 ^C	Fe XX	144.843 ^C	Ni xxii	146.641	Mo XI	149.392	Ti vi
142.123	Kr viii	144.85	Fe xxii	146.66 ^C	Ti xii	149.42	V xix
142.130	Ti xv	144.880	Ni x	146.66 ^C	Ті хп	149.455	Cu xi
142.148	Fe XXI	144.92 ^C	Co xx	146.70 ^C	Ti xii	149.462	Mo VII
142.247	V vIII	144.96 ^C	Fe xxi	146.719	V xvii	149.560	Ti VI
142.278	Fe xxi	144.961	Cr vi	146.776	Cr vi	149.560 ^L	Ti IX
142.57	Ti xvi	144.973	Mo VII	146.789	V viii	149.618	Mo x
142.589	Ti xvii	144.988	Ni x	146.856	Ti xvII	149.653	Ti VIII
142.595	Ti x	145. ^C	Mn xv	146.86	Co xxiii	149.706	Cr VI
142.615	Mn VII	145. ^C	Mn xv	146.897	Ti v	149.71	Ti x
142.68	Mn xix	145.009	Mo XI	146.91 ^C	V xvIII	149.718	Co viii
142.687	Ti x	145.05 ^C	Mn xix	$146.942^{\rm S}$	Kr xxv	149.743	Mo x
142.750	Ti xv	145.061	Ni x	146.955	Mo xi	149.75	Kr xxvii
142.963	Cu xiii	145.117	Mn vi	146.97 ^C	Fe xvi	149.765 ^S	Kr xxiv
$142.984^{ m C}$	Ti xvii	145.14 ^C	V xIII	146.98 ^C	Fe xxi	149.768	Kr xxv
143.10	Mo xxxi	145.16	Mn xx	146.980	Cr VI	149.86	V xviii
143.13	V xix	145.169	Mn vi	147.013	Ni IX	149.86	V xviii
143.17^{L}	Cr vIII	145.22 ^C	V XIII	147.02 ^C	Fe XVI	149.87	Fe ххи
143.176	Ti vi	145.257	Mn vi	147.04 ^C	Fe xvi	149.88	Co xxiii
143.21 ^C	V xvii	145.26 ^C	V XIII	147.09	Со ххии	149.907	Cr xvIII
143.26 ^C	Co xxii	145.27	Mn xxII	147.126	V viii	149.907	Cr xxi
143.266	Kr XXXII	145.280	Mn vi	147.157	Ti IX	149.918	Cr VI
143.29 ^C	Fe XXI	145.304	Mn vi	147.20 ^L	Cr VIII	149.94	Cr xviii
143.30	Co xxiii	145.35	Kr xxvii Co xxi	147.24	Fe xxIII	149.981	Ti viii
143.30 143.377	Ni xxiv V xviii	145.35 ^C 145.354	Ti v	147.30	Cr viii V xviii	150.039 150.103	Ti VIII
143.459	Ti XVI	145.334		147.30		l .	V XVII
143.512	Kr VIII	145.43 ^C	Mn VI	147.40	Cr xvii Ti xv	150.15	Ti xviii
143.53	Cr XVIII	145.45	Ni xviii Mn xxi	147.436 147.49 ^L	Cr VIII	150.186 150.201	Fe VII
143.57	Cr xix	145.452	Mn VI	147.49 ^T		1	Mo x
143.62^{C}	Ti XII	145.498	Kr XXV	147.607	Kr xxvii Ti xviii	150.213 150.282	Ti vi Fe vii
143.62	Mo x	145.498	Mo xxx	147.607 147.62 ^T	Cr xx	150.282	re vii Ti vi
143.756	Cu XIII	145.50 ^C	Ni xviii	147.62°	Co xvii	150.315	Ni IX
143.76 ^C	Co xxii	145.507	V viii	147.742	Cu xi	150.324	Mn vi
143.82	V xix	145.508	V VIII Kr XXV	147.742	Cu Xi Cr XVIII	150.324 150.328 ^C	Ni XXII
143.87	Co XXII	145.516	Kr xxv Kr viii	147.79	Ni xii	150.328	Cu xi
143.89	Со ххи	145.665	Ti xvi	147.847 147.9 ^C	Fe XVI	150.369	Fe VII
143.9 ^C	Ni xxiii	145.70	Cu XXVI	147.9 148.028 ^C	Co xvii	150.403	re vii Kr xxv
143.90	Kr xxv	145.732	Fe XXI	148.07 ^C	V xviii	150.42	Fe VII
143.90	Kr xxv Kr xxv	145.732	Ni x	148.10	Mn xx	150.521	re vii Fe vii
1 10.00	IXI AAV	1.40.100	111 A	1 140.10	14111 VV	100.000	Le vii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
150.544	Мо х	152.175	Мо х	154.34 ^C	Ti xvı	156.060	V xvi
150.574	Ni 1X	152.182	Mn vi	154.363	Cu x	156.21	Fe xxi
150.625	V vII	152.200	Co viii	154.363	Fe VII	156.257	Mo x
150.638	Cu XIII	152.29	Cu xxvi	154.418	Cr vı	156.34 ^C	Fe xvi
150.701	Co viii	152.300 ^C	Co xvii	$154.42^{ m L}$	V viii	156.41 ^C	Fe xvi
150.71	Mn xx	152.338	Ti vi	154.43	Mn xxi	156.444	Ti viii
150.80	Mn xx	152.38	Kr xxvii	154.447	Fe VII	156.494	Mo x
150.807	Fe vII	152.38	Kr xxvii	154.55 ^L	V viii	156.536 ^C	Ti xvii
150.836	Cu xiv	152.42	Cr xix	154.565	Fe VII	156.602 ^C	Ni xxii
150.836	Ni IX	152.466	Cu xiv	154.591	Cu x	156.608	V vII
150.852	Fe vII	152.486 ^C	Co xvii	154.61	Cr xxi	156.8 ^C	Ni xxiv
150.867	Ti vIII	152.486 ^C	Co xvii	154.650	Fe VII	156.80	Fe xvi
150.89	Kr xxvii	152.534	Co viii	154.68 ^C	Ni XIII	156.808	Fe VII
150.958	Co viii	152.566	V xvII	154.68 ^C	V xIII	156.88	Fe xvi
151.022	Ni ix	152.597	Co viii	154.68 ^L	V vIII	156.958	Co VIII
151.023	Fe vII	152.597	Co viii	154.705	Fe vii	157.01 ^C	Cr XIV
151.046	Fe vII	152.683	Mo x	154.713	Cu xv	157.03	Fe xxII
151.121	Kr xxxii	152.723	Mo xı	154.768	Ti vi	157.070	V xvii
151.145	Fe vii	152.733	Со іх	154.82^{C}	V xIII	157.112	Fe VII
151.281	Ni IX	152.818	Mo xi	154.848	Fe VII	157.112	Ti viii
$151.34^{ m C}$	Cr XIX	152.86	Cr xx	154.888	Fe vii	157.17	V xix
151.432	Fe vII	152.896	Co viii	154.92	Cr XIX	157.266	Co viii
151.44 ^C	Ti xii	152.93 ^C	Mn xix	154.92 ^C	V xIII	157.301	Mn vi
$151.44^{ m C}$	Ti xII	152.933	V xvIII	154.921	Fe VII	157.37	Fe xxII
151.48 ^C	Ті хи	152.960	Ti vi	154.941	Fe vii	157.40	Cr xvIII
151.484	Ti vIII	153.0 ^C	Ni xxii	154.942	Co ix	157.40 ^C	Co xxi
151.488	Fe vII	153.005	Co viii	154.949	Fe vII	157.416	Co viii
151.5 ^C	V xx	153.05 ^C	Co xxii	154.994	Mn vi	157.472	Ti VIII
151.503^{C}	Ni xvi	153.15	Ti xvIII	155.06	Fe xxı	157.522 ^C	Ti xvII
151.51	Fe xxi	153.17 ^C	Ті хи	155.076	Со іх	157.528	Ti viii
151.512	Fe vII	153.174	Ni xII	155.09	Kr xxv	157.53 ^L	V vIII
151.54	Fe xxII	153.187	Kr viii	155.1	Cu xv	157.532	Ni xiii
151.575	Mo x	153.242	Мо х	155.119	Mn vi	157.58	Mn xxII
151.61^{C}	Fe xix	153.255	Ti vı	155.12	Ni XIII	157.62 ^C	Ni xiv
151.617	Mn vi	153.308	Co ix	155.124	Fe vii	157.624	Mo x
151.656	V xvii	153.346 ^C	Ti xviii	155.13 ^C	Mn xx	157.66 ^C	Ti xII
151.67^{C}	Fe xxı	153.37 ^C	Co xxi	155.150	Fe vii	157.687	Co viii
151.675	Fe vII	153.384	Ti vı	155.16 ^C	Fe xx	157.689	Fe VII
151.700	Ni IX	153.5 ^C	Ni xxiv	155.21	Mn xx	157.706	Mo x
151.736	Mn vi	153.513 ^S	Cu xxvii	155.246	Mo IX	157.73 ^C	Mn xix
151.747	Mo vii	153.550	Ti vı	155.247	Fe vII	157.732	Ni xiii
151.754	Fe vII	153.554	Ti xvii	155.317	Mn vi	157.773	Co viii
151.769	Mn vi	153.663	Fe vii	155.339	Mo xxxi	157.795	Ni xu
151.782	Fe vи	153.711 ^L	Cu x	155.38^{L}	V viii	157.812	Ti xvi
151.864	Ti viii	153.747	Fe vII	155.38 ^L	V viii	157.82 ^C	Mn xv
151.897	Ti vı	153.767	Cu x	155.414	Fe VII	157.83 ^C	V xIII
151.899	Mn vi	153.803	Со іх	155.44 ^C	Fe xvi	157.88 ^C	V xiii
151.90	Ni xxv	153.926	Co vIII	155.45 ^L	V viii	157.88 ^C	V xIII
151.90 ^C	Mn xx	153.96	Fe xxII	155.46	Cr xvIII	157.9	Cu xv
151.915	Ti viii	153.98	Mn xx	155.506	Mo x	157.908	Mn vi
151.920	Mn vi	154.03 ^C	Со ххии	155.518	Kr viii	157.984	Co VIII
$151.93^{ m C}$	Cr xviii	154.039 ^C	Ni xvi	155.530	Co ix	158.04^{L}	V viii
151.938	Cu xiv	154.042	Fe vII	155.549	Fe vII	158.066	Co VIII
151.944	Co viii	154.080	Cu xıv	155.59 ^C	Cu xxviii	158.135 ^C	Ti xvii
151.949	Mn vi	154.133	Ti xvII	155.619	Fe VII	158.139	Mn vi
151.971	Fe vII	154.161	Ti vı	155.632	Fe vII	158.143	V xvii
152.016 ^S	Kr xxiv	154.171	Ni xII	155.669	Со іх	158.168	Fe vII
152.046	Mn vi	154.197	Cr vi	155.675	Ti viii	158.181 ^S	Kr xxv
152.072	Fe VII	154.216	Fe vII	155.747	Mn vi	158.25 ^C	Cr xiv
152.093	Mn vi	154.27	Fe xxIII	155.789	Mn vi	158.278	Co XI
152.111 ^S	Kr xxiv	154.271	Cu xvi	155.813	Mn vi	158.32 ^C	Ti XII
152.151	Ni xII	154.271	Fe VII	155.914	Mn vi	158.34 ^C	Cr xiv
152.153	Ni xii	154.28	Mn xxII	155.994	Fe vи	158.377	Ni x
152.164	Ti viii	154.307	Fe vii	156.019	Cr xx	158.38 ^C	Mn xv
152.174	Ti xvii	154.335	Fe vii	156.019	Fe xxII	158.45 ^T	Kr xxv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
158.467	V vII	161.442	Мох	163.514	Cr VI	165.106	Мо х
158.469	Ti xvII	161.479	Co viii	163.557	Mn vı	165.160	Kr xxvi
158.481	Fe vII	161.547	Ni xiii	163.6	Cu xx	165.191	Co viii
158.49^{C}	Ті хіі	161.659	Cr vi	163.6 ^C	Mn xv	165.3 ^C	Mn xv
158.51	Mn xxi	161.687	Cr VI	163.610	Ti xvi	165.322	V xvii
158.54 ^C	Ti xii	161.687	Cr vi	163.63	Mn xv	165.34	Mn xxi
158.641	Mo ix	161.733	Co viii	163.639 ^C	Ni xvi	165.349	Cu xviii
158.70	Cu xxvi	161.74	Fe xxII	163.64 ^C	Ni xv	165.36	Ni xxv
158.77 158.783	Ni xiii Co viii	161.752 161.836	Ni xIII Cr vi	163.663 163.7 ^C	Mn vi Mn xv	165.403	Ti VII
158.84	Ni xxv	161.836	V vii	163.740	Mn XV Mn Vi	165.406 ^S 165.436	Ni xxvi
158.873	Co x	161.852	Cu xv	163.801	Cr vi	165.436	Ni IX Ni IX
158.944	Cu xv	161.908	Cr vi	163.939	Mn vi	165.444	Fe VII
158.953	Co ix	161.917	Co viii	163.94	Cr xix	165.488	Cr xix
159.00	Co xxiv	161.930	Cr vi	163.974	Fe VII	165.490	Fe vii
159.00	Ti xvIII	162.016	Ti vIII	163.986	Mo ix	165.504	Cu xvi
159.049	Mo x	162.08	Kr xxvii	164.051	Mn vi	165.630	Fe VII
159.06	Kr xxvii	162.093 ^C	Ni xvi	164.051	Mn vi	165.658	Fe VII
$159.11^{ m C}$	Kr xxxvi	162.095	Co viii	164.144	Mo ix	165.66 ^C	Fe xvi
$159.15^{\mathbf{C}}$	V xviii	162.1 ^C	Ni xxiii	164.146	Ni xiv	165.690	Ti xv
159.219	Mo x	162.336	Mn vII	164.159	Cr vi	165.71 ^C	Cr xiv
159.24	V vIII	162.337	Co viii	164.17 ^C	Cr xix	165.716	Ti VII
159.33	Mn xxII	162.401	Ti vIII	164.172	Ni XIII	165.724	Fe vII
159.347	V xvii	162.416	Kr VIII	164.173	Ti vn	165.74 ^C	Cr xiv
159.355 ^P	V xx	162.503	Ti xvi	164.188	Mn vi	165.75	Co xxiv
159.38 ^C	Mn xviii	162.53	V xviii	164.203	Fe VII	165.764	Fe VII
159.575 159.617 ^C	Co ix	162.565	Со хі	164.224	Mn vi	165.78 ^C	Fe xvi
159.65 ^C	Ti xvII	162.565	Cr VI	164.228	Cu xvi	165.81 ^C	Fe xvi
159.677	V xvii Cu xv	162.57 162.62^{C}	Co VIII	164.249	Mn vi	165.836	Ti vii
159.69	Ni xxiv	162.656	Ni xiv Mn vii	164.289 ^C 164.300	Ni xvi	165.86	Co XII
159.855	V vii	162.689	Mn vii	164.301	Mn vi Cr vi	165.919 165.996	Fe vii Fe vii
159.920	Kr xxvi	162.698	Mo x	164.302	V VII	166.010	re vii Fe vii
159.948	Kr viii	162.7°	Ni xxiii	164.355	Mo ix	166.025	Cu xvi
159.955	Ti xvII	162.708	Co viii	164.365	Mn vi	166.079	Ni ix
159.970	Ni xII	162.764	Cr vi	164.378	Mn vi	166.083 ^S	Kr xxv
159.970	Ni xiii	162.79^{C}	Fe xx	164.421	Mn vi	166.087	Ti VII
159.972	Со іх	162.8 ^C	Ni xxIII	164.446	Ti v	166.115	Mn vi
159.977	Ni x	$162.84^{\rm C}$	Fe xx	164.454	Mo IX	166.16 ^C	Fe xvi
159.991	V xviii	162.918	Mo IX	164.478	Ti vII	166.19	V xix
159.997	Cu xiv	162.984	Ti v	164.48	Mn xxii	166.201	Mo ix
160.01	Cr xix	162.998	Со хі	164.523	V vII	166.256	Co viii
160.075	Мо х	163.014	Cr VI	164.564	Cr vi	166.306	Ni IX
160.14 ^C	Mn xx	163.033	Mo IX	164.566	Mn vi	166.35	Ti xviii
160.143	Cu xv	163.049	Ti xvii	164.59	V xx	166.365	Fe VII
160.188 160.331	Mo XI	163.06 ^C 163.135	Fe XXI	164.61 ^C	Co xxi	166.488	Cr VII
160.331	Cr xix Mo ix	163.135 163.14 ^C	V vii	164.629	Mn vi	166.560	Cr VII
160.40	Mo ix V xviii	163.14	Ti xıx Mo xxx	164.63 164.639	Cr xx Mn vi	166.74 166.831	Fe xxIII
160.42	Mn xxi	163.176 ^C	Ni xvi	164.70 ^C	Co xxiii	166.88	Mo x Ni xii
160.51 ^C	Co xxi	163.182	V vii	164.71 ^C	Ni xiv	166.887	Cu XVI
160.556	Ni XII	163.183	Fe VII	164.721	Co viii	166.936	Cu xvi Cr vii
160.745	Mo x	163.185 ^C	Co xvii	164.80	Ni xiv	167.016	Co viii
160.794	Ni x	163.192 ^C	Ni xvi	164.815	Mn vi	167.020	Cr vii
160.90^{T}	Kr xxx	163.212 ^C	Co xvii	164.83	Mn xxi	167.047	Fe VII
160.914	Ti viii	163.274	Cu xv	164.833	Cr vi	167.12	Mn xx
160.97	Co xxiii	$163.292^{\rm C}$	Co xvii	164.87	Mn xxi	167.152	Co viii
161.1 ^C	Ni xxIII	163.32	Kr xxv	164.892	Mn vi	167.19	Mn xx
161.122	V vii	163.323	Со хі	164.913	Со хі	167.2 ^C	Mn xv
161.168	Ti xvı	163.35 ^C	Co XIV	164.955	Fe vII	167.242	Ti xvi
161.290	Ti viii	163.369	Mo x	164.96 ^C	Cr xiv	167.279	V xvii
161.31	Kr xxv	163.41	Mn xv	$165.02^{\rm C}$	Cr xvIII	167.297	Ti xvi
161.33	Cr xx	163.436	Mo ix	165.03	Cr xxi	167.34	V xix
161.35^{C}	Cr XIX	163.5 ^C	Mn xv	165.06 ^C	Fe xvi	167.486	Fe VIII
161.381	Cu xv	163.5 ^C	Mn xv	165.087	Fe vII	167.496	Cr VII

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
167.496	Cr VII	169.435	Cr VI	171.37	Ni xiv	173.742	Co VIII
67.61 ^C	Ni xxvii	169.46 ^C	Cr XIX	171.392^{L}	Ti viii	173.8 ^C	Ni xxIII
67.656	Fe VIII	169.537	Co VIII	171.400	Cr VI	173.84 ^C	Co XIII
67.66 ^C	Fe xvi	169.551	Mn vi	171.432	Fe vII	173.851 ^C	Fe XIV
67.738	Co VIII	169.580	Ti XIX	171.460	Co VIII	173.921	Cu xvi
.67.74 ^C	Ti xvII	169.61	Kr xxv	171.48 ^C	Fe xvi	173.973	Cr VI
67.765	Mn vi	169.61 ^C	Ni xiii	171.49 ^C	Co xxii	173.98 ^C	Mn xx
67.833	Mo VIII	169.63 ^C	Cr xiv	171.50	Со ххии	174.01	Kr xxv
67.957	Mn vi	169.69	Ni xiv	171.522	Co VIII	174.019	Mo ix
67.97	Cr xx	169.71 ^C	Ті хи	171.529	Fe VII	174.04 ^C	Co xiv
68.002	Fe VIII	169.711	Co viii	171.541 ^C	Ni xvi	174.040 ^S	Kr xxx
$68.01^{ m C}$	Fe XVI	169.73	Cr XIX	171.633	Mn vi	174.06 ^C	V xviii
.68.019	Cu xvi	169.740	Ti xvı	$171.64^{\rm C}$	Fe xvi	174.069	Fe VII
68.024	Fe vIII	169.81	Ті хи	171.668	Со хі	174.070	Cr VII
68.084	Co VIII	169.819	Co viii	171.680	Fe VII	174.10	Kr xxv
168.088	Cr vi	169.82 ^C	V XIII	171.69 ^C	Fe xvi	174.168 ^S	Cu xvii
168.12	Ni xıv	169.84 ^C	Ti XII	171.69 ^C	V xviii	174.175	Cr VI
68.144	Mo IX	169.84 ^C	Ti xII	171.713	Mo IX	174.286	Cr vII
68.147	Mn vi	169.842	Cr VII	171.723 ^L	Ti vIII	174.346	Mo IX
.68.15 ^C	Cr xvII	169.845	Kr xxxiii	171.76 ^C	Fe xx	174.505	Cu xvi
68.162 ^L	Ti VIII	169.87	Cr xx	171.779	Fe VII	174.534	Fe x
68.172	Fe vIII	169.88 ^C	Ni xiv	171.79	Co xxII	174.656	Mo viii
168.192^{L}	Ti vIII	169.91	Co xii	171.822 ^C	Fe xıv	174.669 ^C	Ni xvi
68.282	Mn vi	169.97	Kr xxvii	171.862	Mo IX	174.739 ^S	Cu xii
168.29 ^C	Со хін	169.97 ^C	Cr xvIII	171.875	Cu xi	174.82	Co XIII
168.295	Cu xvi	170.02 ^C	Mn xxi	171.888	Ti vII	174.852	V xviii
168.321	Mn vi	170.086	Cr VII	171.952	Ti vII	174.86	Kr xxv
168.327	Со хі	170.09	Со ххи	172.069	Fe VII	174.887	Mo 1x
168.34	Со хи	170.12 ^C	Cr xiv	172.083	Mo ix	174.99	Ni xv
168.353	Mn vi	170.139	Cr VII	172.16	Ni xiv	175.18	Mn xxi
168.355	Cr vi	170.16	Cr XXI	172.190	Co IX	175.199 ^C	Ni xvii
168.37	Ni xiv	170.16 ^C	Со ххи	172.204	Cr vi	175.23 ^C	Fe XIII
168.40 ^C	Ti xvı	170.169	Co viii	172.3 ^C	Ni xxiv	175.266	Fe x
168.515	Mn vı	170.303	Mn vi	172.33	Со хи	175.315	Cr VII
168.523	Cr VII	170.33	Co XII	172.353	Ti vii	175.33	Ti xix
168.545	Fe VIII	170.33 ^C	V xviii	172.38	Kr xxv	175.399	Ni xvii
168.549	Mn vi	170.337	Co xi	172.380	Ti xvii	175.404	Cr xx
168.55	Kr xxv	170.358	Ti vII	172.402	Co viii	175.44	Co XII
168.55	Kr xxv	170.376 ^C	Ni xvi	172.41	Со хи	175.45	Cr xxi
168.62	Cr xxi	170.393	Cr VII	172.42	Co XXIV	175.474	Fe x
168.652	Ti VII	170.417	Fe VII	172.471 ^S	Kr xxiv	175.55	Kr xxv
168.664 168.68	Mn vi	170.464 ^C	Ni xvi	172.487	Cr vi	175.6 ^C	Ni xxii
	Co xii	170.50	Ni xiv	172.767	Co viii	175.69 ^C	Co XIII
168.683 168.691	Mo ix	170.55 ^T	Kr xxvii	172.776	Co viii	175.7 ^C	Mn xv
168.72	Mn vi Mn xxi	170.559	Ti VII	172.80 ^C	Ni xiv	175.756	Cr vi
168.740	Mn vi	170.565 170.569	Fe VII	172.829 ^C	Ni xvi	175.77	Co XIII
168.79 ^C	Fe xvi		Cr VI	172.831	Fe VII	175.77	Kr xxv
168.84 ^C	Mn xix	170.58	Fe x	172.841	Cr vi	175.785	Cu xvi
168.879	Cu xvi	170.589 170.664	Co viii Fe vii	172.917	Co ix	175.812	Cr VII
168.888	Mn vi	170.664	re vii Mo ix	172.948	Fe VII	175.812	Ti VII
168.9	Kr xxv	170.674	V XVIII	173.05	Kr xxvii	175.9 ^C	V xix
168.9	Kr xxv Kr xxv	170.678	V XVIII Co ix	173.091 173.203	Mo ix	175.98 ^C	Cr XVII
168.921	Co viii	170.850	Cr VII		Fe VII	176.01	Ni xix
168.929	Fe viii	170.830	Mn vi	173.21	Fe XXII	176.037	Cr VI
168.967 ^C	Ni xvii	170.938	Ti vii	173.22 ^C 173.31	Mn xix	176.053	Cr VII
169.04	Co xii	170.982	Cr VII		Fe XXIII	176.10	Ni xv
169.051	Co viii	170.982	Mn vi	173.34	Cu xxvi	176.15	Kr xxv
169.08	Fe xxII	170.990 171.057 ^C		173.373	Co VIII	176.267	Ti xvi
169.084	Cr vii	1	Ti xvii	173.42	Cr xx	176.295	Cr VII
169.064 169.179 ^C	Ni xvi	171.073	Fe ix	173.43 ^C	Fe xx	176.345	Fe VII
169.179~ 169.196		171.107	Co viii	173.441	Fe VII	176.42	Cr xx
169.196 169.22 ^C	Co viii	171.14	Kr xxv	173.561	Co VIII	176.432	Mo ix
	V XIII	171.166	Fe vii	173.60	Kr xxvii	176.440	V xviii
169.301 169.357 ^C	Ti vii	171.279	Fe VII	173.724	Ni xv	176.599	Fe vii
IN4 357	Ti xvII	171.348	Mn vi	173.74 ^C	Ni xiv	176.6 ^C	Mn xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
176.613	Cr VII	179.656	Fe VII	182.048	Mn vi	184.35 ^C	Fe xxII
176.620	Fe xı	179.682	Cr VII	182.050	V vi	184.356	Co VIII
176.648 ^S	Mo xxxii	179.720	Fe VII	182.071	Fe VII	184.384 ^C	Ni xvi
176.68	V xx	179.731	Co VIII	182.072	Ti xvii	184.41	Co XIV
176.682	Mo IX	179.762	Fe xı	182.09	Со хііі	184.41	Fe xı
$176.7^{ m C}$	Mn xv	179.776	Cr VII	182.09 ^C	Ti xii	184.43 ^C	Fe xvi
176.741	Ni xv	179.87 ^C	Fe xxi	182.14 ^C	Ni xiv	184.438 ^C	Fe xIV
176.744	Fe VII	179.902	Ti xvIII	182.151	Ti vı	184.48	Cr xxi
176.750	Mo IX	179.949	Co viii	182.173	Fe xı	184.481	Mo xiv
176.86^{L}	Cr IX	179.96 ^C	V xviii	182.175	Mo viii	184.538	Mn vII
176.904	Fe vII	180.001	Cu xi	182.221	Fe vII	184.54 ^C	Fe xvi
176.916	Cr VII	180.059	Fe vii	182.222	Kr viii	184.54 ^C	Fe xvi
176.928	Fe vII	180.06	Ni xv	$182.27^{\rm L}$	V vii	184.542	Fe x
176.98	Cu xvii	180.07	V xix	182.286	Mn vi	184.613	Cu xvi
177.172	Fe VII	180.087	Mo xiv	182.310	Fe x	184.661 ^C	Fe xiv
$177.20^{ m L}$	V vII	180.10	Fe xxIII	182.355	Co VIII	184.752	Fe VII
177.235	Fe VII	180.31 ^C	Fe xII	182.43 ^L	V vII	184.80	Mn ix
177.238	Ti vII	180.36 ^C	Co xxii	182.48	Mn xxi	184.800	Fe xi
177.243	Fe x	180.37	Cr xix	182.499	Mn VII	184.84 ^C	Cr XVIII
177.28	Ni xiv	180.407	Fe x	182.52	Со хии	184.850	Co viii
177.329	Fe VII	180.407	Fe xi	182.6 ^C	V xix	184.855 ^S	Cu xvii
177.33 ^C	Ti xII	180.422	Co viii	182.686	Co VIII	184.861	Co VIII
177.45 ^C	Ti xii	180.45	Co XII	182.686	Co viii	184.884	Ni xv
177.503	Fe VII	180.474	Mn VI	182.692	Mn VII	184.886	Fe VII
177.555	Fe vii	180.477	Fe vII	182.740	Fe vII	184.937	Ni x
177.56	Ni xiv	180.49 ^C	Co xxvi	182.76 ^C	Ni xiv	184.976 ^C	Ni XVI
177.586	Co xi	180.52	Ti xviii	182.922	Kr viii	185.03 ^C	Co xxii
177.65	Kr xxvii	180.57 ^L	Cr ix	182.94 ^C	Mn xix	185.041	Co XXII
177.694	Cr VII	180.58	V xx	182.945	Mn VII	185.099 ^C	Fe xiv
177.895	Cr VII	180.60 ^C	V XIII	183.00 ^L	V VII	185.10 ^C	re xiv Ti xvii
177.99	Mn xxi	180.600	Fe XI	183.003 ^C	Ni xvi	185.176	
178.010	Mo ix	180.626	Mn vi	183.11 ^C	Ti xvII		Fe VII
178.060	Fe XI	180.68 ^C	V XIII	183.12 ^L	V vii	185.213	Fe VIII
178.191 ^C	V xvi	180.70	Cu XVII	183.141	Mn VII	185.251	Ni xvi
178.221 ^S	Co xxv	180.70	Cu xvii	183.167		185.283	Ni xxiv
178.240	Ti xvi	180.760	Fe VII	183.17 ^C	Co viii	185.29 ^C	Ni xxIII
178.32	V XIX	180.817			V XIII	185.3 ^C	Ni xxiv
178.36 ^C	V XIX V XVII	180.85	Mn vi Cr xx	183.266 183.39 ^C	Co viii	185.389	Ni xvii
178.515	Mn vi	180.85 ^C	Fe xxi		V xvii	185.39	Co XIII
178.572	Ti VII	180.87		183.46 ^L	V vii	185.423 ^C	Fe XIV
178.6 ^C	Ni xxiii		Co XIII	183.485 ^S	Cu xvii	185.455	Mn viii
178.61	Mn xv	181.104	Fe VII Fe XI	183.539	Fe VII	185.461	Co VIII
178.634	Mo viii	181.140 181.15 ^C		183.59 ^C	V xIII	185.525	Kr viii
			Co xxii	183.65	Со хии	185.547	Fe VII
178.673 178.69	Ti vII	181.28	Ті хи	183.684 ^C	Fe XIV	185.594	Cu xviii
	Mn xv	181.357	Mn vi	183.686	Co viii	185.621	Mo VIII
178.779	Ni xv	181.57	Fe xxi	183.708	Mn VII	185.65	Kr xxvii
178.851 178.890	Cr VII Ni xv	181.602 181.617	Mn vi	183.825	Fe VII	185.729 ^C	Mn XIII
			Mn VI	183.90	Kr xxvii	185.77 ^C	Fe XIII
178.898	Fe xxi	181.64 ^C	Co xiii	183.937 ^C	Mn XIII	185.835	Co VIII
178.951	Mo VIII	181.646 181.67 ^C	Fe VII	183.939	Co VIII	185.87 ^C	Cr XIX
178.959	Cu xvi	1	Ti xvII	183.949	Mo xiv	185.94 ^C	Ni xiv
178.98	Co XIII	181.673	Kr viii	183.949	Mo xiv	185.96 ^C	Ni xiv
178.994	Kr xxvi	181.69	Mn xxII	183.97 ^C	Mn xix	186.22 ^T	Mo xxx
179.068	Co VIII	181.708	Mn vi	184.001	Mn vi	186.228 ^C	Ni xvi
179.107	Ti VII	181.74 ^C	Co xxiii	184.047	Mo VIII	186.32	V xix
179.147	Co viii	181.78	V xx	184.05 ^C	V xvii	186.377	Mo viii
179.18	Cr XIX	181.786	Co viii	184.106	Ti vı	186.455	Co xvi
179.21	Cr xx	181.80 ^C	Ti xII	184.11 ^C	Со хии	186.51 ^C	Fe XII
179.265	Fe XII	181.817	Mo xiv	184.114	Fe VII	186.545	Mn vi
179.27 ^C	V XIII	181.849	Mn vi	184.161	Mn vII	186.601	Fe VIII
179.273	Ni xv	181.897	Mn vi	184.203	Co viii	186.657	Fe VII
179.330	V vi	181.90	Kr xxv	184.255 ^C	Ni xxii	186.66 ^C	Ni xiv
179.572	Mn vi	181.96 ^C	Ti xii	184.265	Co viii	186.69 ^C	Ni xiv
$179.58^{ m C}$	V xviii	181.980	Mn vi	184.265	Co viii	186.70	Kr xxvii
179.59	Co XIII	182.043 ^C	Co xvi	184.320	Cu xi	186.79	Co xiv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrui
186.79	Kr xxv	188.69 ^C	Ni xiv	191.045	Fe хи	193.43	Mn x
186.805	Mn vi	188.748	Mn vi	191.055	Ni xvi	193.501 ^L	Ti VII
186.856	Fe xII	188.8 ^C	Mn xv	191.059	Mn vi	193.509	Fe хи
186.863	Ti xvII	188.862	Mn vi	191.083	Cu xviii	193.534 ^L	Ti vII
186.880	Fe хи	188.89	Co XIII	191.091	Mn vi	193.54	Ti xix
186.942	Mn VI	188.9 ^C	Mn xv	191.130	Mn vi	193.585 ^L	Ti vii
186.96	Ti x	188.953	Cu XVIII	191.15 ^C	Ti xvii	193.668 ^L	Ti vii
186.976	Ni xi	189. ^C	Mn xv	191.227	Mn vi	193.70 ^C	Cr XVIII
187.02	Cr xiv	189.017	Fe xı	191.23	Ti xviii	193.706	Mn vi
187.092	Co viii	189.04 ^C	V XIX	191.24	Fe XIII	193.752 ^C	
187.17	V xx	189.040	Co viii				Fe xiv
				191.262	Co viii	193.93	V xix
187.235	Fe VII	189.06 ^C	Cr xiv	191.41 ^C	Fe xv	193.967	Fe viii
187.237	Fe VIII	189.078	Mn vi	191.486	Ni xvi	194.01 ^C	Mn xi
187.27 ^C	Cr XIV	189.129	Fe XI	191.60	Mn ix	194.046	Ni xvi
187.278	Mn vi	189.129	Mn vi	191.645	Co vIII	$194.067^{\rm C}$	Fe xv
187.30	Cr xiv	189.16	Mn IX	$191.654^{\rm C}$	Ni xvi	194.28 ^C	Fe xxv
187.35	Ti x	189.21	Ni xv	191.723	Cu xviii	194.30	Mn x
187.375	Co viii	189.39 ^C	Ni xvIII	191.757	Co viii	194.37	Mn x
187.398	Mn vi	189.460	Mn vi	191.76	Co xiv	194.37	Ti xix
187.404	Ni xvi	189.47	Ti xıx	191.769	Mo viii	194.420 ^S	Kr XXIV
187.446	Fe XI	189.472	Co viii	191.8 ^C	Mn xv	194.60 ^C	Ti XII
187.495	Mn vi	189.54 ^C	Ni xviii	191.806 ^C	Fe xiv	194.61	Fe XII
187.51 ^C	Ni xviii	189.561	Fe xii	192.004	Fe XIV	194.61	Mn IX
187.55	Ti xviii	189.569	Mn vi	192.004	Fe VII		
187.692	Fe VII	189.573	Fe VII	l l	Fe XI	194.662	Fe vIII
187.695	Mn vi	189.614	Mo viii	192.020		194.668	Ni xvii
187.70 ^C	Fe xxi	189.628 ^C		192.028	Fe XXIV	194.74	V xx
187.756			Ti xv	192.050	Mn vi	194.76 ^C	V xviii
	Mn vi	189.66	Ti xvIII	192.08	Mn x	194.79 ^C	Co xiii
187.79	Cr xx	189.735	Fe xı	192.101	Mn vi	194.857	Mn vi
187.89	Co xiv	189.756	Fe VII	192.102 ^L	Ti vII	194.87 ^C	Со хи
187.909	Co VIII	189.77 ^C	V XIII	192.12 ^C	Co xxi	194.900	Ti vi
187.92 ^C	Fe xxi	189.837	Mn vi	192.187	Ni xvi	194.920	Fe xII
187.955	Mn vi	189.940	Fe xı	192.2 ^C	Mn xv	195.0 ^C	Mn xv
187.990	Fe vii	189.98	Mn ix	192.20	Mn xx	195.03	Mn x
188.054	Со vін	190.044	Fe x	192.225	Mn vi	195.119	Fe XII
188.09^{C}	Fe хи	190.06	Fe XII	192.272^{L}	Ti vii	195.119	Fe XII
188.097	Mn vi	190.14	Kr xxvii	192.286	Mo VIII	195.2 ^C	Mn xv
188.125	Fe vII	190.174	Cu xviii	192.327	Mn vi	195.25 ^C	Ті хи
188.13	Ni xxv	190.23	Mn xx	192.332	Co viii	195.266	Ni xvi
188.13 ^C	Cr xiv	190.241	Mo viii	192.394	Fe xII	195.3 ^C	Mn xv
188.13 ^C	Cr xiv	190.342	Co viii	192.441	Mn vi	195.391	Fe VII
188.137	Mn vi	190.365	Mn vi	192.461	Cu xvi	195.391	
188.160	Mn vi	190.45 ^C	V xIII	192.474 ^L	Ti vii	i i	Ni xvi
188.165	Co viii	190.459	Fe XII	192.474 192.53 ^C		195.399	Fe x
188.19	Cu xvii	190.466			Fe xxii	195.52	Ni xv
188.215	Cu xviii Cu xviii	190.480	Mo xxxi	192.599	Ni x	195.63	Kr xxv
188.216	Fe XII	1	Mn vi	192.619	Co VIII	195.66	Co xiv
		190.515	Kr xxix	192.629 ^C	Fe XIV	195.76 ^C	Mn xx
188.219	Fe xı	190.52 ^C	V XIII	192.641	Fe xı	195.766	Cu xvi
188.233	Mn vi	190.565	Mn vi	192.66 ^C	Fe xxı	195.802	Mn vi
188.241	Co viii	190.574	Co viii	192.675	Mn vi	195.85	Mn x
188.25 ^C	Cr xiv	190.574	Co viii	192.705	Ti vı	195.91 ^C	Mn xx
188.312	Ti xvii	190.625	Mn vi	192.754	Ti vi	195.972	Fe VIII
188.345	Co vIII	190.65	Co xiv	192.76 ^C	V xvIII	196.046	Fe VII
188.38	Kr xxvii	190.689	Cu xviii	192.819	Fe xı	196.092 ^C	Ni xvi
188.38	Kr xxvii	190.70 ^C	Ti xvII	192.82	Cr xx	196.111	Mn VI
188.396	Fe vII	190.700	Mn vi	192.92	Kr xxv	196.20 ^C	Ni xiv
188.42	Со хии	190.75	Co xiv	192.92	Kr xxv	196.233	Mo vi
188.438	Mn vi	190.753	Mn vi	192.954	Cu xviii	196.30	
188.44 ^C	Mn xx	190.82	Co xiv	193.1 ^C	Mn xv		Kr xxv
188.45	Fe xii	190.890	Mn vi	193.19 ^C		196.379	Cu xvi
188.45	Mn xxii	190.890 190.91 ^C			Ti xvi	196.38	Mn ix
			Mn xx	193.264 ^C	Fe xiv	196.423	Fe vii
188.48	Mn IX	190.965	Cu xviii	193.36 ^C	Ti xvi	196.48	Co xiv
188.6 ^C	Mn xv	190.98	Cr xxi	193.4 ^C	Ti xvIII	196.525	Fe xiii
188.60	Co xiv	190.99^{C}	Cr xiv	193.412	Ni xvi	196.531	Mn vi
188.674	Co viii	191. ^C	Mn xv	193.421	Fe VII	196.59 ^C	Co xxi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
196.640	Fe XII	199.345 ^C	Cr XII	202.06 ^C	Cr xix	205.01	Cr XIV
196.650	Fe vIII	199.37 ^C	V xiii	202.086	Cu xviii	205.01	Cr VIII
$196.74^{ m C}$	Fe xv	199.509	Mn vi	202.090	Fe xII	205.08	Ni xvii
196.809	Mn vi	199.558	Co xv	202.378	Fe vII	205.084	Cr VI
196.917	Fe vII	199.612	Mn vi	202.38	Mn xi	205.084	Cr VI
196.923	Fe xII	199.759	Ti vı	$202.39^{\rm C}$	Mn xı	205.21 ^C	V xvii
197.01	Co XIV	199.768	Mn vi	202.424	Fe хии	205.229	Co xv
197.070	Mn vi	199.799	Vv	202.442	Cr vi	205.247	Kr xxx
197.163	Mo vi	199.835	Mo vi	202.557	Ni xvi	205.350	Mn xiii
197.304	Ni xvii	199.873	Ni xvii	202.635	Cu xviii	205.37 ^C	Cr XIX
197.362	Fe VIII	199.89	Ti xix	202.678	Mn vi	205.375	Co xv
197.38 ^C	V xvII	199.911 ^C	Ni xvi	202.739	Cr vi	205.492	Mn VI
197.405	Ni x	199.955	V v	202.828	Cr vII	205.492 205.5 ^C	
197.423		200.021		1			Ni xvi
	Mn Vi		Fe xIII	202.840	Mn VII	205.62 ^C	Mn xix
197.434	Fe XIII	200.050	V v	202.90	Ni xvii	205.65	Cr VIII
197.460	Ti vi	200.08 ^C	Cr XIV	202.93	Mn x	205.691	Mo vi
197.515	Ni xvi	200.100	Co ix	202.962	Cu xviii	205.848	Co xv
197.554	Co xv	200.15 ^C	Ti xviii	$202.97^{\rm C}$	Ni xiv	206.040 ^C	Mn xiii
197.61	Cr xxi	200.202	V v	203.021	Kr xxxii	206.096	Fe VII
197.614	Ni xvi	200.35 ^C	Ті хп	203.086	Co xv	206.10	Ti xix
197.62^{C}	Co XIII	200.35^{C}	Ті хп	203.12	Mn x	206.368	Fe хи
197.620	Kr xxv	200.356	Fe XII	203.12	Ni xvii	206.70 ^C	Cu xxviii
197.635	Mn vi	200.40	Cu xvii	203.155	Cu xvi	206.708	Co xvi
197.647	Cu xviii	$200.497^{\rm C}$	Ni xvi	203.194	V v	206.895 ^C	Mn xiii
197.68^{C}	Cr xviii	200.546	Ni xvii	203.198	Mn vi	206.924	Co xv
$197.771^{\rm C}$	Cr XII	200.602 ^C	Co xvii	203.200	Ti vı	206.930 ^S	Mn xxiii
197.838	Ti xviii	200.67	Mn xi	203.272	Fe XII	207.02	Mn xi
197.856	Mn vi	200.72 ^C	Со хии	203.28	Ni xvii	207.031	Vv
197.909	Ni x	200.73 ^C	Ni xiv	203.300	Ni xvii	207.07	Cr viii
197.939 ^C	Mn XIII	200.75	Co xiv	203.34 ^C	Co xiv	207.1 ^C	Ni xxiv
198.04	Mn xxi	200.794	Mo vi	203.428	V v		
198.15 ^C	Co XIII	200.794 200.893 ^P				207.130	Mn XIII
198.224			Сох	203.434	Ti vi	207.15	Mn x
	Cu xviii	200.9	Kr vii	203.468	Co xv	207.16 ^C	Ті хи
198.32 ^C	Co XIII	201.00 ^C	Cr xiv	203.627	Co xv	207.179	Mo xı
198.367	Mo VIII	201.007	Cr vi	203.793	Fe хии	207.180	Со іх
198.391	Ni xvII	201.02	V xx	203.826	Fe XIII	207.291	Vν
198.42	Mn x	201.04^{C}	Mn xi	203.881 ^S	Cu xvii	207.312 ^S	Cu xix
198.451	Co xv	201.061	Kr viii	203.91 ^C	Cr XIX	207.435	Mo vii
198.51	V xix	201.086	Со іх	$203.94^{\rm C}$	Cr xi	207.458	Co xv
198.549	Fe хі	201.09 ^C	Fe xx	204.0^{C}	V xix	207.489	Cr vi
198.55^{C}	V xIII	201.121	Fe XII	$204.017^{\rm L}$	Mo XIII	207.5 ^C	Mn xv
198.555	Fe xII	201.121	Fe xIII	204.059 ^L	Мо хііі	207.5 ^C	Mn xv
198.56	Cu xviii	201.18 ^C	Cr XIV	204.067	Mn vi	207.51	V xx
198.629 ^C	Ni xvi	201.224	Cr vi	204.072	Cu xviii	207.518	Ni xvii
198.718	Cu xviii	201.235	V v	204.10	Co xxiv	207.519	
198.73 ^C	Co XIII	201.24 ^C	Mn xx	204.110	Cu xviii	207.521 ^C	Ni xvii
198.792	Mn vi	201.311	Ti vi	204.117		207.571	Ni xvii
198.817	Mo vi	1			Mn vii	ŧ	Mo vi
198.834		201.388	Cr vi	204.13 ^C	Mn xxi	207.651	Cr vi
	Mo VII	201.457	Mn vi	204.137 ^L	Mo xiii	207.7 ^C	Mn xv
198.844	Ni xvi	201.493	Fe xII	204.263	Fe xIII	207.712	Fe VII
198.867	Fe xv	201.493	V v	204.29	Mn xi	207.727 ^C	Ti xvii
198.933	Mn vi	201.54	Cr vIII	204.394	Co xv	207.745	Mo vi
198.947	Mn vi	201.556	Fe x	204.418	Мо VII	207.767 ^C	Ті хіп
198.977	Ti vi	201.575	Fe xı	204.43	Mn IX	207.776	Mo vii
$199.03^{\rm C}$	Ті хп	201.606	Cr vi	204.578	Fe vII	207.831	Fe vII
199.06^{C}	Mn XII	201.733	Mo vi	204.6	Fe xvII	207.85	Co xiv
$199.06^{ m C}$	V xviii	201.737	Fe xı	204.620	Mo vi	207.892	Cr vi
199.08	Mn x	201.746	Vv	204.675	Mn vii	207.93	Ni xi
199.15 ^C	Cr xix	201.776 ^C	Со хуп	204.682	Cr vi	208.02	Mn xi
199.210	Ni xvi	201.82	Cr xix	204.743	Fe xii	208.029	Co xv
199.213	Mn vi	201.865	Ti VI	204.743			
199.220 ^C	Ni xvi	201.949		,	Kr viii	208.034	Fe xv
			Mn vi	204.91	Cr xiv	208.07	Ti xviii
199.246	Mn vi	202.044	Fe xiii	204.93 ^C	Cr xix	208.118	Ni xvii
199.297	Mn vi	202.046	Ni xvii	204.942	Fe хии	208.167	Fe vіі
199.32	Mn ix	202.057	Cr vi	204.98	Mn xı	208.242 ^C	Ni xvi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
208.318	Fe XII	211.32	Cr ix	214.079	Ni xvii	217.30	Fe xxII
208.328	Cu xvii	211.331	Fe xiv	214.196	Mo vi	$217.38^{\rm C}$	Cr xiv
208.410	Fe хи	211.37 ^C	Ti xvi	214.266	Mo IX	217.39	Mn xII
208.45	Ті хп	211.42	Cr vIII	214.31 ^C	Cr xi	217.395	Mo vi
$208.507^{ m C}$	Co xvii	211.428	Ni xi	214.39 ^C	Fe хи	217.432	Mo vii
208.53	Cr IX	211.54	Mn XI	214.40 ^C	V xviii	217.597	V vi
208.59^{C}	Ti xII	211.580	Co xvi	214.409	Mo vi	217.691	Fe VIII
208.6^{C}	Fe xxi	211.64 ^C	Mn xi	214.495	V vi	217.71 ^C	Cr x
208.63	Cr VIII	211.710	Ni xvii	214.524	Mo vii	217.838	Mo vii
208.653	Ni xvii	211.715	Ni xvi	214.63 ^C	V XVIII	217.88	Mn x
208.679	Fe хии	211.738	Fe XII	214.721 ^C	Ti xiii	217.892	Mo vi
208.691	Mo vi	211.8 ^C	Ni xviii	214.890	Mo vi	218.048	Mo vII
$208.784^{ m C}$	Fe xiv	211.846	Co xv	214.942	Mo vi	218.091	V vi
208.958	V v	211.870	Mn vi	215.014	Ni xvii	218.11	Mn x
209.008	Ni xvi	211.879	Co xv	215.03	Mn xii	218.14 ^C	Ti xvi
209.04 ^C	Mn xxiv	211.97	Cr IX	215.04	Cr ix	218.169	Fe xiv
209.12^{C}	Fe хи	212.1 ^C	Ni xviii	215.145	Co xvi	218.238	Mo vi
209.160	Cu xvi	212.145	Fe xIV	$215.19^{\rm C}$	Со хии	218.25 ^C	Co xxiii
209.18	Ni xv	212.146 ^C	Ni xvi	215.30	Cu xx	218.376	Ni xvi
209.230	V v	212.154	Fe xIV	215.413	Ni xvii	218.40 ^C	V XIII
209.337	Ni xvii	212.168	Mo IX	215.46 ^C	V xvIII	218.40 ^C	V xIII
209.388^{C}	Ni xvii	212.2 ^C	Ni xviii	215.600	Mo vi	218.49 ^C	Mo xli
209.44	Cr IX	212.22	Ti xix	215.600	Mo vi	218.49 ^C	V xIII
$209.49^{\rm C}$	Со хии	212.234 ^C	Ni xvi	215.642	Mo VII	218.50	Ti xıx
209.57	Mn xı	212.34 ^C	Fe XII	215.86	Mn xı	218.51	Co xvi
209.6^{C}	Ni xxiii	212.345	Fe xiv	215.905	Ni xvii	218.53 ^C	V xIII
209.617	Fe xiii	212.47 ^C	Fe XII	215.925	Ni xv	218.56	Mn xII
209.620	Co xv	212.509	Fe VII	215.97	Cr ix	218.562	Fe хи
209.776	Fe x	212.551	Cu xviii	216.007	Co xv	218.564	Fe VIII
$209.78^{ m C} \ 209.861^{ m C}$	Cr x	212.663 ^C	Cr XII	216.01 ^C	V XVIII	218.578	Fe xiv
209.861	Ni xvı Co xv	212.664	Fe VII	216.09 ^C	Cr xiv	218.608	Ni xxiv
209.873		212.69 ^C	V xvii	216.117	Co xvi	218.636	V vi
210.048 ^C	Fe xiii Fe xiv	212.75	Cu xx	216.12	Mn XII	218.675	Mo vii
210.048 210.06 ^C	Mn XI	212.77	Mn xiv	216.182	Mo vi	218.70	Mn XII
210.16	Mn XI	212.778 212.81	Co xvi	216.384	Co xvi	218.716 ^S	Cu xvii
210.13	Co xvi	212.901	Mn xII	216.46 ^C	V xIII	218.83 ^C	Cr x
210.239	Ni xvi	212.907	V v Co ix	216.57 ^C	Mn XIX	218.88	Cr x
210.375	Cu xvi	212.939	Cu xviii	216.576 216.59	Fe XIV	218.935	Fe IX
210.387 ^C	Ti xiii	213.017	Mo vi	216.591	Co xvi	218.954	Mo vi
210.393 ^C	Co xvii	213.03	Cr VIII	216.6 ^C	Fe VII	218.994	V vi
210.4°	Mn xv	213.044	V vi	216.60	Ti xviii	219.062	Mo vi
210.41 ^C	V XIII	213.056	Mo vii	216.60 216.623 ^C	Mn xı Ni xvı	219.062	Mo vii
210.43	Mn XII	213.087	Cu xviii	216.623		219.125	Mo VI
210.51	Ti xviii	213.10	Cr xx	216.68 ^C	Cr viii V xiii	219.136	Fe XIV
210.53^{C}	V xIII	213.176	Fe XIV	216.69	V XIII V XVIII	$219.157 \ 219.284^{\mathrm{C}}$	Mo vii
210.53^{C}	V XIII	213.178	V v	216.72	Cr x	219.284	Ni XVI
210.553 ^C	Ti xvII	213.313	V vi	216.73 ^C	V xiii	219.289	Fe XIV
210.568	Vν	213.370	Co xvi	216.74	Co xvi	219.391	Mo VI
210.571	Mo VII	213.38 ^C	Со хи	216.742 ^C	Fe xiv	219.410	Cu xviii
$210.571^{\rm C}$	Co xvii	213.397	Mo XIII	216.786 ^C	Ni XVI	219.438	Fe XII
210.6^{C}	Mn xv	213.574	Co IX	216.8 ^C	Ni xvi	219.474	Fe xiv Mo vi
210.6^{C}	Mn xv	213.58	Ni xvii	216.80 ^C	Cr xiv	219.476	Mo vi Mo xi
210.6^{C}	Ni xvi	213.6°C	Ni xxiv	216.88	Fe XIII	219.54	Mn XII
210.61	Cr IX	213.604	V vi	216.88	Fe XIII	219.690	Fe xiv
$210.615^{ m C}$	Fe xiv	213.611 ^C	Ti xvii	216.92°	Cr xiv	219.710 ^C	Fe xiv
210.70	Cu xix	213.75	Mn XI	216.928	Fe xiv	219.846	Mo vi
210.704	Ni xvii	213.756	Mo VI	216.928	Mo vii	219.857	Ni xvi
210.797	Fe xıv	213.767 ^C	V xı	216.97 [°] C	Cr XIV	219.915	Co xvi
210.861	Co xv	213.770	Fe XIII	216.97 ^C	Cr xx	220.00 ^L	Ni xviii
210.932	Fe XII	213.871	V vi	217.03	Kr xxv	220.00	Cr IX
210.95^{C}	V xviii	213.893	Fe VII	217.03	Kr xxv	220.02	Kr xxvi
$210.96^{\rm C}$	Mn XIX	213.906	Fe XIV	217.100	Fe ix	220.076	Fe XIV
		213.916		N .			
210.97^{C}	Cr xix	213.910	Mo vii	217.110	Fe xiv	220.137	Mo vii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength	Spectrum	Wavelength (Å)	Spectrum	Wavelength	Spectru
<u>`</u>		(Å)		- 		(Å)	
220.22	Fe xv	$223.256^{\rm C}$	Fe XIV	226.23 ^C	Ni xxvii	229.037	Co xvi
220.385	Mo vii	223.280	Mo VIII	226.24	Cr x	229.128	Ni xvi
220.42	Cr x	223.294 ^C	Ni xxII	226.241	Cr vi	229.24 ^C	Fe xII
220.424 ^S	Ni xviii	223.458	Mo ix	226.31	Fe x	229.266	Mo vi
220.446	Co xvi	223.47 ^C	Cr xiv	226.31 ^C	Mn xı	229.341	Fe XIV
220.530	Mo x	223.556	Mo VII	226.38	Co xvi	229.355	Mn XIII
220.59 ^C	V XIII	223.56	Mn XII	226.406	Mo xi	229.38	V vii
220.632	Mo vII	223.61 ^C	Cr xiv	226.42^{C}	Mn xi	229.38 ^C	Ti xvi
220.641	Mo vi	223.618	Fe XIV	226.45	Cr xi	229.41 ^C	Co xxiv
$220.67^{ m C}$	Ti XII	223.65^{C}	Cr xiv	226.471	Mo vi	229.538	Mo vii
220.697	Co xv	223.823	Cu xvii	226.561 ^L	Ti vi	229.606	V vi
220.734	Mo vii	223.83	Cu xx	226.656	V vi	229.607	Mo IX
220.882	Fe x	223.86	Cr x	226.747	Mo ix	229.62 ^C	Co xxii
220.890	Cr XII	223.87	Cr ix	226.772	Co xvi	$229.63^{\rm C}$	Co xxii
220.902	Fe XIV	223.878	Mo vii	226.905	Mn XIII	229.653 ^C	V xı
220.921	Co xvi	223.928	Co xvi	226.913	Ni xvi	229.680	Mo vi
221.08	Co xvi	223.992	Co xv	227.001 ^C	Co xvi	$229.71^{\rm C}$	V xIII
221.1^{C}	Ni xxiv	223.995	Kr xxviii	227.172	V vi	229.726	Mo vi
221.124	Fe xiv	224.052	V vi	227.188	Co xvi	229.744	Fe xv
221.127	Мо іх	224.057	Ni xv	227.202	Cr vi	229.808	Mo vii
221.18	Cr x	224.08 ^C	Mn XI	227.206	Fe xv	229.828	Fe VII
221.319	Mo vi	224.12 ^C	Mo XLI	227.25 ^C	Co xxi	229.856	V vi
221.33	Fe xxIII	224.13	Co xiv	227.42	Cr x	229.919	Mo vii
221.361	Mo x	224.16 ^C	Ti xvii	227.436	Mo x	229.99	Fe x
221.369 ^S	Cu xix	224.222 ^C	Ni xvii	227.49 ^C	Cr x	230.00	V VIII
221.39	Co xvi	224.237 ^S	Cu xix	227.56 ^C	Ti xvii		
221.4	Kr vii	224.305	Fe VIII	227.561	V v	230.089 230.12	Fe x
221.41	Cr VIII	224.340					V viii
221.41 221.447 ^C	Cr XII	224.354	Mo VII	227.576	Mo vii	230.17 ^C	Mn XI
221.447 C			Fe XIV	227.689	Cr vi	230.268	Mo VII
	Cr XIV	224.39 ^C	Fe XII	227.704	Mn XIII	230.28 ^C	Fe xxii
221.50 ^C	Ті хи	224.483	Mo vi	227.73	Mn XIII	230.29	Cr xi
221.50 ^C	Ti xii	224.500	V vi	227.734	Fe xv	230.32 ^C	Mo xli
221.574 ^C	Co xvi	224.62	Mn XII	227.804	Mo vi	230.34	Co xiv
221.65	Mn xiv	224.712	Ni xxiv	227.808	Cu xxvi	230.352	Mo vi
221.69 ^C	Mn xx	224.738 ^C	Co xvi	227.85	Cu xx	230.398	V vi
221.702	Co xvi	224.74	Cr x	227.88	V vii	230.437	Mo vi
221.738^{C}	Fe XIV	224.754	Fe xv	227.885	V v	230.463	Fe xv
221.822	Fe хии	224.789 ^S	Cu xxvii	227.918	Fe vII	230.633	Mo vi
221.88 ^C	Cr xiv	224.83 ^C	V viii	227.93^{C}	Ti xvII	$230.64^{\rm C}$	V xiii
221.946	Mo vII	224.841	Cu xvii	227.955	Co xvi	230.675	Cu xvii
221.95	V vII	$224.851^{\rm C}$	Mn xIII	227.98	Mn xIII	230.708	Mo ix
222.041	Co xv	$224.86^{\rm C}$	Cr xxIII	$228.0^{\rm C}$	Ni xxiv	230.79	Fe xII
222.043	Mo vii	224.913	V v	228.15	V vIII	230.8 ^C	V xix
222.08^{C}	V xviii	225.083	Co xv	228.16	Cu xviii	230.80 ^C	V xiii
222.29 ^C	Cr xvIII	225.092 ^C	Fe xiv	228.19 ^C	Ti xvii	230.82	V VIII
222.29 ^C	Mn xx	225.146	V v	228.27 ^C	Vix	230.841	V VII
222.48 ^C	Mn xx	225.146	V VII	228.276	Co xvi	230.854	Mo vi
222.491	Cr xII	225.21 ^C	Co xxii	228.301	V v	230.854 230.92 ^C	
222.491 ^C	Cr XII	225.225	V v	228.370		230.92° 230.926°	Ti xii
222.533	V v	225.327	V V Fe XIV	228.370	Mo vi Mo xiii		Ti xvii
222.593	Mo vi	225.34				231.044	Fe VII
222.593 222.685			Ni xix	228.42 ^C	Mn xi	231.097	Fe VIII
	Мо ун	225.347	Ti v	228.50	Kr xxvii	231.110	Mo x
222.818	V v	225.40 ^C	Mn xı	228.52	Mn xı	231.21	Cr x
222.84 ^C	Cr xiv	225.411	Fe VII	228.584	Fe vII	231.33	V viii
222.842	Vv	225.465	V v	228.61	Mn XII	231.367	Ni xvi
222.91 ^C	V XIII	225.481 ^C	Fe xiv	228.62	Cr XIII	231.47	Fe xv
222.911 ^C	Сг хии	225.505	Fe vII	228.63	Mn xIII	231.522	Мо х
222.96 ^C	V XIII	225.744 ^C	Fe xiv	228.64 ^C	Cr x	231.589 ^C	Ті хііі
223.01^{C}	V xIII	225.79	V vII	228.67	V vIII	231.646	V vi
223.018 ^S	Cr xxii	225.886 ^C	Mn XIII	228.71	Cr x	231.68	Fe xv
223.117	Ni xvi	226.040	Fe xiv	228.721 ^C	Ni xvi	231.693	Fe VII
223.134	Mo XI	226.093	Ni xvii	228.76	Ni xix	231.72 ^C	Co xxi
223.170	Cu xvii	226.093	Ni xvii	228.909	Ti v	231.728	Fe VII
	~ ~		*** ****	220.303	4 A V	1 201.120	T.C. AII
223.170	Cu xviii	226.163	Mo vii	228.943 ^C	Ti xvii	231.731	Mo vi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
							
231.751	Mo ix	234.472	Mo vi	237.248 ^C	Co xvii	239.504	Mo vii
231.842	Mo vII	234.610	Cu xviii	237.248 ^C	Co xvii	239.508	Ni xvi
231.868	Mn xIII	234.610 ^C	Ti xvii	237.28 ^C	Vix	239.61 ^C	Mn xix
231.87	Fe xv	234.722	Mo vii	237.31 ^C	Co xxiii	239.680	Mn XIII
231.884	Fe VIII	234.744	Mo x	237.369	Mn XIII	239.734	Fe VII
231.893	V vi	234.757	Fe VII	237.470	Ni xvi	239.765	V v
231.99	V vII	234.782	Fe xv	237.50	V vII	239.778	Mo xi
231.991	Mo IX	234.90	Ni xix	237.52	Ni xix	239.8 ^C	Ni xviii
232.040	Mo viii	234.90	Ni xix	237.560	Mo IX	239.860	Fe VII
232.047	Fe VII	234.90	Ni xix	237.57	Cu xx	239.87	Mn XXII
232.056	Mo IX	234.90 ^C	V xvii	237.57	Cu xx	239.886	Mo IX
232.158 232.18	Mn XIII	234.918 ^S	Co xvii	237.612 ^C	Ni xvi	239.904	Ni xvi
232.18 232.20 ^C	Cr xi	234.962	Mo vii	237.685	Mo XIII	239.953	Mo IX
	Vx	235.007	Mo vii	237.716	Mo VI	239.998	Мох
232.239	Mo vi	235.01 ^C	Fe xvi	237.765	Mo XI	240.0 ^C	Ni xvIII
232.256	Fe VII	235.03	Cr xı	237.78	Mn xII	240.0 ^C	Ni xviii
232.34 ^C	Mn XII	235.054	Mn xIII	237.83 ^C	Co xxiii	240.028	Cu xviii
232.442	Fe VII	235.066 ^L	Ti vi	237.843	Mo IX	240.053	Fe vII
232.484	Ni xvi	235.081	Fe VII	237.843	Mo IX	240.083	Fe VII
232.5 ^C	Ni xxIII	235.221	Fe VII	237.864	Ni xvi	240.159	Fe XIV
232.516	Ni xvii	235.3 ^C	Ni xxIII	237.909	Mo x	240.2	Cr xv
232.542 ^C	Ti x	235.310 ^L	Ti vi	237.928 ^C	Fe XIV	240.22	V vIII
232.558	Mo vii	235.32 ^C	Fe xv	238.048	Fe VII	240.223	Fe vII
232.592	Co xv	235.34 ^C	Fe xvi	238.064	Mo x	240.243	Fe x
232.613	Fe vII	235.408 ^L	Ti vi	$238.078^{\rm C}$	Ni xvi	240.30	V ix
232.70°	Ti xII	235.48	Kr xxxiii	238.1	Cu xv	240.333	V xı
232.726	Мо х	235.486	Мо VII	$238.114^{\rm C}$	Fe xv	240.344	Mo vi
232.84	Cu xx	235.510	Mo viii	238.167 ^C	Mn xiii	240.370	Mo x
232.876	Fe vIII	235.520	Mn xiv	238.19 ^C	V ix	240.40	Ni xix
232.89°	Fe xx	235.53	Cr xi	238.393	Fe vII	240.42 ^S	V xxi
232.946	Fe vII	235.55	Mn xı	238.459	Mo x	240.512 ^C	V xII
232.96	Cr x	235.629	Mo xi	238.52	Cu xx	240.572	Fe vII
233.015	Fe vII	235.638	Fe xv	238.591	Mo IX	240.572	V v
233.117	Mo vi	235.656 ^C	Ni xvi	$238.60^{\rm C}$	Fe x	$240.586^{\rm C}$	V xı
233.15^{C}	Fe xvi	235.662	Fe vII	238.617	Mn vII	$240.607^{\rm C}$	Mn xiii
233.234	Fe xIII	235.694	Mo vii	238.675	Mn XIII	240.688	Co xvi
233.26	Cr xi	235.694	Mo vii	238.699	Ni xvi	240.713	Fe xIII
233.308	Fe vII	235.72	V IX	238.708	Fe xv	240.719	V v
233.453	Mo vii	235.74	Cr xi	238.72	Fe x	240.76	Cr xı
233.46	Fe xv	235.776	Ni xvi	238.737	Мо хііі	240.81	Fe xv
233.47	V vII	235.800 ^C	Fe xıv	238.82	Ni xxv	240.858	Co xvi
233.510 ^C	Mo vii	235.802	Mo xi	238.890 ^C	Fe xiv	240.90	Ni xvii
233.62^{C}	Ti xII	235.836 ^L	Ti vı	238.892	V xı	240.933	V v
233.684	Mo xi	235.847	Mo XII	238.929	Fe vII	240.958	Mo ix
233.759 ^S	Ni xviii	235.850	Mo 1X	239.017	Mo x	241.047	Mo vi
233.762	Fe vII	235.900	Mo vi	239.03 ^C	Cr xiv	241.066	Fe xv
233.767	Mn xiii	235.941	Ni xvii	239.03 ^C	Cr xiv	241.10	Mn xiv
233.767	Mn XIII	235.95	Kr xxix	239.05 ^C	Co xxii	241.157	Co xvi
233.780	Mo xi	235.965^{C}	Co xvi	239.055	Ni xvi	241.193 ^C	V xı
233.80	Cr x	236.01	V viii	$239.082^{\rm C}$	Fe xv	241.228	Mo xı
233.807	Co xv	236.11	Co xiv	239.121	Mo xi	241.25	Cu xx
233.865	Fe xv	236.12 ^C	Cr XIX	239.185	Mo vi	241.289 ^C	Fe xv
233.91 ^C	Mn xx	236.180	Fe VII	239.23 ^C	Cr xiv	241.37	Kr xxvii
233.957	Mo x	236.218	Mn vIII	239.231	Fe xiv	241.384 ^C	Mn XIII
234.152 ^S	Ni xxvi	236.334 ^S	Ni xviii	239.253	Mo xı	241.393	Cr vII
234.18	Kr xxvii	236.492	Mo x	239.255	Mn XIII	241.41 ^C	Cr xiv
234.192	Mo vi	236.723	Mn xIII	239.33	Co xiv	241.467	Fe VII
234.199	Cu xviii	236.778	Fe vII	239.365 ^C	V xı	241.49 ^C	Cr xiv
234.228	Mo ix	236.798 ^C	Co xvii	239.37 ^C	Fe xxII	241.609	Mo xiv
234.235	Mn xIII	236.872	Fe vII	239.376	Co xv	241.64 ^C	Mn xx
234.314	Mo vIII	236.88	V xI	239.381	Mn vii	241.67 ^C	Cr xiv
234.337	Fe vII	237.020	Mo vii	239.407	V v	241.671	Co xv
234.356	Fe x	237.023	Mo x	239.411	Mo vi	241.739	Fe ix
	Co xv	237.215				241.84 ^C	
234.385	COAV	231.213	Mo viii	239.462	Cu xvii	241.84	V xxii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
241.853	Fe VII	245.153	Mo VI	248.391	Мо іх	251.949	Co xv
241.87	Cr xı	245.276	Mo viii	248.41	Mn xiv	251.949	Ni xvii
241.91	V vii	245.35	V x	$248.41^{\rm C}$	Cr x	251.953	Fe хии
241.966	Mo vi	245.40	Cu xxi	248.42 ^C	Cr xvIII	251.954	Cu xvi
241.969	Mo x	245.431	Cr vII	248.63	Mn xiv	251.97 ^C	V xIII
242.066	Mn XIII	245.469	Cr XII	248.69 ^C	V ix	252.00 ^C	V xIII
242.07	Fe xxi	245.469	Cr XII	248.73^{C}	Fe xxII	252.001	Kr xxxi
242.100	Fe xv	245.488	Fe VII	248.743	Fe vii	252.077	Мо іх
242.20^{C}	Cr X	245.602	Mo x	248.803 ^C	Fe XIV	252.162	Ti vii
242.211	Мо іх	245.65	Ni xix	248.87	Mn xiv	252.17	V x
242.246	Mo VI	245.650	Ni xiv	248.91	V ix	252.188	Fe XIV
242.25	Kr xxvii	245.671	Ni xvi	248.996 ^L	Ni xvi	252.20 ^C	Co xxii
242.258	Mo x	245.70	Cr xı	249.189	Ni xvii	252.275	Ti vii
242.284	Fe VII	245.739	Mn vII	249.24 ^C	Ti xvı	252.276	Cr XII
242.30	Cu xxi	245.817	Mo XI	249.306	Mo XIII	252.294	Mo vi
242.354^{C}	Fe XIV	245.87	Cr XII	249.336 ^C	Fe xv	252.30 ^C	V xviii
242.36^{C}	Fe x	245.97 ^C	Ті хп	249.35 ^C	V xIII	252.418	Mo ix
242.390	Mo xi	246.000	Fe VII	249.374	Cr XII	252.440	Vv
242.461	Cr VII	246.14	Mn XIV	249.467	Cu xviii	252.515 ^C	Mn XIII
242.548 ^S	Kr xxv	246.2 ^C	Ti xvIII	249.572	Cr XII	252.571	Ti vii
242.56	Kr xxiv	246.20 ^C	Ti XII	249.627	Fe xiv	252.638	Mo ix
242.579	Cr VII	246.20 ^C	Ti xII	249.641 ^C	Ti x	252.71 ^C	Co xxii
242.620	Fe xv	246.208	Fe хии	249.66	Mn xiv	252.74	Cu xxi
242.646	Mn xiv	246.27	Cr XII	249.668	Mo x	252.75	Cr x
242.817	Mo ix	246.499	Мо іх	249.769	Mo ix	252.760	Mn vii
242.825^{C}	Ti IX	246.5^{C}	Ni xviii	249.80 ^C	Co xxiv	252.819	Мо хи
242.85	Kr xxvii	246.548	Co xv	249.834 ^S	Co xvii	252.837	Cr VII
242.953	Cr vII	246.599	Cr VII	249.906	Mo ix	252.838	VV
243.006	Mo viii	246.633	Mn xiv	250.112	Мо хи	252.89^{C}	Ti xii
243.025 ^C	Cr XII	246.713	Mo vi	250.127	Mn VII	252.936	Мо іх
243.071	Mo x	246.718	Mo ix	250.224	Co xvi	252.958	Ti v
243.235	Fe xv	246.859	Fe VII	250.28 ^C	Cr XI	252.981	Cu xviii
243.362^{C}	Cr XII	246.86	V xII	250.311	Cr VII	252.983	Cr XIII
243.379	Fe VII	246.91^{C}	Ni xxIII	250.33	Mn xiv	252.985	Mn vII
243.46	Mn xiv	246.924	Mo x	250.39	Ni xix	253.07	Ті хи
243.487	Mo vi	246.943	Fe VII	250.39	Ni xix	253.155 ^C	Ni xvi
243.545 ^C	Fe XIV	246.97 ^C	Cr x	250.429	Cu xiv	253.168	Cr XII
243.58	V ix	246.973	Mo viii	250.45	Mn xiv	253.17	Fe xxII
243.69	Mn xxi	246.991	Cu xviii	250.48 ^L	Cu xxi	253.19 ^C	Ti xii
243.69	V vIII	247.00	Cu xx	250.482	Ti vi	253.19 ^C	Ti xii
243.705	Fe VII	247.065	Cr XII	250.53	Vx	253.2 ^C	Mn xv
243.772	Mo VI	247.09 ^C	Fe xxi	250.6 ^C	Ni xvi	253.21	Vx
243.794	Fe xv	247.098	Fe VII	$250.65^{ m C}$	V XIII	253.21	V ix
243.93	Mn xiv	247.19	Fe xxII	250.912	Mo IX	253.219 ^C	Ni xvi
243.983	Mo XIII	247.199	Co xvi	250.913	Ti VII	253.239	Co xv
244.030	Fe VII	247.304	Mo IX	250.969	Mn VII	253.326	Co xv
244.098	Fe VII	247.441	Mo x	251.061 ^S	Fe xvi	253.457	Mo VIII
244.10 ^C	Cr x	247.450	Ti vi	251.071	Ti VI	253.492 ^C	Ti IX
$244.14^{ m C} \ 244.19^{ m C}$	Cr x	247.458	Fe VII	251.085	Mo VIII	253.654	Mn vii
244.19° 244.2°	Cr X	247.473	Mn vii	251.088	Ni xvi	253.681	Ni xiv
	Ni xviii	247.540 ^S	Co xvii	251.124	Cr VII	253.731	Мо х
244.233 ^S	Co xxv	247.65 ^C	Co xxvi	251.223	Cr XII	253.770	Mo vi
244.274	Co xv	247.65 ^C	Fe xxII	251.250	Mo xi	253.811	Ti VII
244.46	V IX	247.67	Cr x	251.30	Ni xix	254.022	Ti VII
244.480	Co xv	247.70	V ix	251.351	Mo xi	254.10	Ni xix
244.541	Fe VII	247.740	Co xv	251.361	Mn xiv	254.10	Ni xix
$244.565 \ 244.7^{\mathrm{C}}$	Cr VII	247.92 ^C	V ix	251.405	Mo ix	254.139	Ni xvi
	Ni xviii	248.037	Ti vii	251.530	Mo x	254.15	Cr x
244.708	Cr XII	248.060	Mo vi	251.578	Cr XII	254.17	V IX
244.766	Mn VII	248.07	Kr xxiv	251.609	Ni xvi	254.177	Cr VII
244.89	V ix	248.117	Fe XIV	251.655	V v	254.2 ^C	Mn xv
244.911	Fe IX	248.125 ^C	Fe XIV	251.725	Mo xi	254.201	Mo x
244.935	Mn VII	248.134	Mo XI	251.744	Cr XII	254.474	Мо х
244.959 245.153	Mo X Fe vii	248.282 248.36 ^L	Mo X Fe xvi	251.82 251.83 ^C	V ix V xiii	254.48	Fe xvii
			L.)- 202 CT	0.51.001	37	254.517	Mn vii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
		T				· · · · · · · · · · · · · · · · · · ·	
254.628	Ni xvi	257.503	Мо іх	261.247	Cu xvi	265.324	V xı
254.687	Ti vII	257.597	Mo viii	261.274	Fe XIV	265.36 ^C	V ix
254.702	Mo ix	257.676	Cr VII	261.359	Cr XIII	265.36 ^L	Ni xx
254.75	Fe xvii	257.842	Ni xvi	261.450	Fe XIV	265.597	Мо х
254.768	Cr XII	257.854	Mo x	261.494	Ti x	265.649 ^C	Ni xvi
254.798 ^C	Ni xvi	257.855	Ti vı	261.544	Mo xiv	265.697	Fe VII
254.821	Mo x	257.993	Mo xiv	261.552 ^C	Ti VIII	265.70	V x
254.851	Ni xvii	258.049 ^C	Cr XII	261.557	Mo x	265.72	Cu xx
255.076	Ti vii	258.088	Fe xv	261.598	Cr VII	265.729	Co xvi
255.113	Co xv	258.10	Mn xiv	261.725	Ti VIII	265.83	Mn XIII
255.113	Fe xxiv	258.18	Cu xx	261.820	Cu xviii	265.860	Mo IX
255.156	Mo x	258.227	Fe xiv	261.851	Ti VII	265.951	Ti VII
255.164	Ni xvi	258.24	Ті хп	261.890 ^C	Ti x	265.988	V xi
255.210	Cr VII	258.28 258.36 ^C	Vx	261.95	Cr XIII	265.990	Co xv
255.24	Vx	258.36	V xvii	262.04	V x	266.062	Ni xvii
255.25 ^C	Ті хи	258.410	Mo XI	262.087	Cu xvIII	266.1 ^C	Ni XXIV
255.279 ^C	Mn XIII	258.48 ^C	Cr xx	262.103	Mo IX	266.172	Cr VII
255.355	Mo x	258.610	Ti viii	262.12	Cu xxi	266.181	Mn viii
255.36	Mn xiv	258.610	Ti viii	262.249	Co xv	266.19	Ni xx
255.365 ^C	Cr XII	258.87 ^C	V xIII	262.36	Cr XIII	266.202	V xı
255.375	Ti vi	258.89 ^C	V XIII	262.413	Мо іх	266.258	Cu xviii
255.443	Mo vi	258.95 ^T	Mn xxi	262.7^{C}	Mn xv	266.365	Mo XI
255.447	Cr VII	259.07 ^C	V XIII	262.718	Ti VIII	266.37 ^C	Mn xxii
255.456	Cr XII	259.181	Cr vII	262.894	Mo ix	266.377	Fe xv
255.50	V XII	259.232	Ti vı	262.976 ^S	Fe xvi	266.41	Cr XII
255.54	Vx	259.292 ^S	Ti xx	263.246	Ti VI	266.416	Co xv
255.54	V x	259.33	Mn xII	263.363 ^C	Ni xvi	266.429 ^C	Mn xiii
255.545	Cr vII	259.360	Cr vII	263.39 ^C	Mn xxi	266.43	Fe xvii
255.741	Ni xvi	259.38 ^C	V xIII	263.41	Со хии	266.502	Ti VII
255.762^{T}	Co xv	259.432	Cr vII	263.507 ^C	V xi	266.583 ^C	Mn xiii
255.828	Co xv	259.467 ^C	Cr XII	263.564	Ti VIII	266.61 ^C	Fe xvi
255.852	Co xv	259.47	Ni xx	263.579	Ni xvii	266.656	V xı
256.015	Mo xi	259.569	Mo IX	263.58 ^C	V ix	266.72 ^C	Ti xII
256.202	Cu xviii	259.6	Fe xvii	263.685	Fe xv	266.762	V xi
256.21 ^C	Ti xii	259.6 ^C	Fe xxi	263.70	Fe xiv	266.913 ^S	Mn xxiii
256.21 ^C	Tì xii	259.60	Cu xxi	263.765	Fe XXIII	266.97 ^C	Fe xvi
256.32	Cr XI	259.636	Cr vii	263.88	Cu xxi	267.01 ^C	Fe xvi
256.370	Cr XII	259.66	Cr XIII	263.944	Ti VII	267.085	Mo x
256.38	Fe x	259.667	Mo ix	264.028 ^C	V xi	267.136	Ti VII
256.40 ^C	Mn xx	259.742 ^C	Ni xvi	264.043	Mo xiv	267.303	Fe xv
256.42	Fe XIII	259.77 ^C	V xIII	264.078	Cr vi	267.343	Ti vı
256.45^{C}	Ti xII	259.807	Kr xxx	264.126	Mo xiv	267.401	Ti VIII
256.497	Mn xIII	259.857	Cu xvi	264.151	Mo vi	267.468	Ni xiii
256.566 ^C	Ni xvi	259.857	Cu xviii	264.26	Mn xII	267.54 ^C	Cr xix
256.612	Cu xviii	259.898	Мох	264.306 ^C	Fe xvII	$267.64^{ m C}$	V ix
256.749	Mo XI	259.950 ^C	Mn xiii	264.403	Mo x	267.658	V xı
256.841 ^C	Mn XIII	259.97	Cr xxi	264.512	Mo x	267.66	Mn xIII
256.86	Co xvi	260.11 ^C	Ti xxi	264.6 ^C	Kr xxxv	267.74	Cr xnı
256.989	Mo x	260.13	Cr XII	264.71	Mn xiv	267.896	Mo x
257.112	Cr XII	260.142	Ti x	264.729	Co xv	267.93 ^C	Mn xx
257.127	Fe xv	260.429	Cr XII	264.73	Cr XIII	267.93 ^C	Ti xII
257.178 ^C	Fe xiv	260.45	Mn xiv	264.732	Cr VI	267.93 ^C	Ті хп
257.202	Mo IX	260.501	Mo XIV	264.785	Fe XIV	267.941	Ti IX
257.234	Mn XIII	260.510 ^C	Ti x	264.8 ^C	Mn xv	267.95	Cr XIII
257.24	Mn xiv	260.52	Ni xx	264.823	Ti VII	268.035	Ti vII
257.24	Mn xiv	260.704	Ti vii	264.997	Ti VII	268.106	Ti VII
257.262	Fe x	260.77 ^P	Mn xx	265.003 ^S	Fe xvi	268.13	Ті хі
257.282	Cr XII	260.777	Mo x	265.042	Cr XIII	268.178	Ti viii
257.377	Fe XIV	260.78 ^C	V XIII	265.059	Ti vII	268.38	Cr XIII
257.384	Fe xv	260.792	Mo IX	265.096	Mo vII	268.402	Mo x
257.418	Mo XI	260.825 ^C	Ti vIII	265.1 ^C	Mn xv	268.424	Co xv
257.422	Cr VII	260.916	Ti 1X	265.11 ^C	V ix	268.493	Ti vII
$257.43^{ m C}$	Ti xii	260.923	Mo XIII	265.145	Cu xviii	268.647	Cu xvii
055 404	Characteristics	260.926°	M	1	3.4		
$257.464 \\ 257.50$	Cu xviii Cu xxi	261.027 ^C	Mn xiii Ti xi	265.157	Mo x	268.702	Ni xvii

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrun
268.771	Мо іх	271.572	Мо іх	275.330 ^C	Co xvII	278.55 ^C	Co xxi
268.79 ^C	V ix	271.572	V xı	275.353 ^C	Ni xvii	278.68 ^C	Fe xvi
268.81 ^C	Cr XIII	271.591	Ti viii	275.361	Co xv	278.713	Ti IX
268.852	Cr VII	271.638	Ni xvi	275.448 ^C	V xı	278.806	Ti VIII
269.038	Cr VII	271.72	Cr xx	275.55	Ni xx	278.824	V xi
269.05 ^C	Ni xv	271.773	V xı	275.563	Cr vII	278.86	Cr XIII
269.070 ^C	Ni xvii	$271.820^{ m C}$	Cr XII	275.572	Mo xi	278.936 ^C	Cr XII
$269.118^{ m L}$	Ni xvi	271.83 ^C	Co xv	275.6	Fe xvii	279.03	Ti xii
269.189 ^S	Mn xv	272.037	Ti vIII	275.635	Cr VII	279.03 ^C	Mo xlii
269.294	Mo viii	272.1	Fe xıv	275.71	Mn xiv	279.074	Ti IX
269.32 ^C	Mn xxi	272.10	Ni xix	275.756	Cr VII	279.1	Fe xvii
269.352	Mo VIII	272.120	Cu xviii	275.77	Cr XIII	279.12	Ni xvii
269.357 ^C	Fe xiv	272.154	Mn XIII	275.78	Mn XII	279.154	Cr vi
269.397	Cr vii	272.159	Co xv	275.792	Cr vii	279.163	Ni xvii
269.41	Fe xvii	272.30	Cu xvIII				
269.411 269.411	Cr XIII	272.30		275.813	Cu xviii	279.40	Cu xx
			Cu xx	275.851	Mo vi	279.40	Cu xxi
269.417	Ni xvii	272.332	V xı	275.867	Ti IX	279.477	Mo VIII
269.47	Cr XIII	272.36	Cr XII	275.869	V xı	279.48	Cr XIII
269.533	Ti VIII	272.369	Ti viii	275.926	Cr vII	279.516	Ti vii
269.614 ^C	Co xvii	272.389	Co xv	276.00	Cr XIII	279.739 ^S	Cr xxii
269.645 ^L	Ni xvi	272.54	Kr xxiv	276.032	Mo IX	279.778	V xi
269.687 ^C	Co xvii	272.543	Mo ix	276.08	V ix	279.8	Kr xxx
269.690	Co xv	272.568	V xı	276.131	Mn xiv	279.84	Cr xIII
269.718	V xı	272.61	Cr XIII	276.191	Cr XII	279.90	Mn XIII
269.759	Ti vII	272.70	Fe xv	276.213	Mo vi	279.940	Ti viii
269.776	Cr vi	272.740	V xi	276.364 ^C	Fe xı	280.02 ^C	V xIII
269.78 ^C	Mo xli	272.843	Ti vIII	276.44	Cr XIII	280.10 ^C	V XIII
269.82	Mn xII	272.855	Co xv	276.517	Mo vi	280.133	Mo IX
269.828	V XI	273.000	Fe xiv	276.541	V xı	280.141	Ti IX
269.88	Fe xvii	273.093	Ni xvii	276.701	Ti viii	280.141	Cr VI
269.906 ^C	Co xvii	273.10	Ni xx	276.785	Ti ıx	280.20	
269.926							Fe XVII
	Fe xiv	273.116	Co xv	276.818	Cr XII	280.20	Fe xvii
270.251	V xı	273.178	Ti VIII	276.821	Cu xvi	280.25 ^C	V xiii
270.262	Mo IX	273.215	V xII	276.932 ^C	Co xvii	280.253	Мо х
270.295 ^C	Ni xvii	273.23	Cr XII	276.963	V xi	280.269	Мо х
270.316	Cu xviii	273.23	Cr XIII	276.978	Mo ix	280.411 ^S	Mn xv
270.35 ^C	Ti xvi	273.269	Cr VII	277.02 ^C	Mn xix	280.466	Мо х
270.363	Fe vii	273.354 ^S	Cu xix	277.09	Mn XIII	280.488 ^C	V xı
270.378	Co xv	273.48	Cr xII	277.103	Mo xi	280.571	Cr VII
270.38	V ix	273.511	Mo vi	277.11	Mn xiv	280.572	Cr xı
270.413	Мо х	273.538	Fe xiv	277.145 ^C	Ni xvii	280.739	Fe xiv
270.431 ^C	Ti xvii	273.74	Cr XIII	277.168	Mo x	280.823	Cr VII
270.497	Mo XI	273.741	Co xv	277.347	Mo IX	280.87 ^C	V xviii
270.511	Fe xiv	273.888	V xi	277.38	Ni xx	280.879	
				1			Cr VI
270.52 270.530	Fe XXI Ti VIII	273.898	Mo vi	277.469	Mn XIII	281.07	Mn XIII
270.530		273.952	Cr VII	277.593	Mo x	281.09	V XII
270.707	Mo x	274.01	Cu xviii	277.6 ^C	Ni xxv	281.11	Fe XVII
270.748	Ti vii	274.08	Ni xvii	277.775	Ni xv	281.33 ^C	Cr xix
270.765	Fe xiv	274.203	Fe XIV	277.778	V xı	281.344	Mo vi
270.897	Cr VII	274.27 ^C	Ti xvii	277.778	V xi	281.446	Ті іх
270.954	Mo x	274.303 ^C	Cr XII	277.79 ^C	Со ххии	281.468	Ni XVII
271.057	Co xvi	274.34	Cr XIII	277.80	Mn xxII	281.472 ^C	Mn xv
271.070	Cr VII	274.351	V xı	277.813	Ti vIII	281.485	V xi
271.088	Mo vi	$274.376^{\rm C}$	Ni xvii	277.914	Mo ix	281.62	V xx
271.11	Ni xx	274.411	Ti IX	277.964	Co xv	281.635	Fe xiv
271.12 ^C	Fe xxv	274.546 ^C	Mn XIII	278.019	Mo ix	281.668	V XI
271.126	Co xv	274.725 ^C	Co xvii	278.148 ^C	Cr XII	281.67 ^L	Cr XIV
271.120	Co XIII	274.743	Mo x	278.146 ⁻ 278.18 ^C			
271.16 271.22 ^C					Cr xix	281.82 ^C	Fe XVI
	V x	274.779	Cu xviii	278.19 ^C	V xIII	281.898	Ti vii
271.267	Co xv	274.797	Fe xiv	278.19 ^C	V xIII	281.902	Co xvi
271.27	Fe xv	274.883	V xi	278.386	Ni xv	281.905 ^C	Cr XII
271.404^{C}	Fe xiv	274.885	Мо іх	278.40 ^C	V xIII	282.03 ^C	Cr xx
	Mn xxII	274.967	Ni xvii	278.411 ^C	V xi	282.038	Cu xiv
271.41^{C}	WIII AAII	1 274.307					
271.41 ^C 271.437	Co xvi	275.1°	V xix	278.458	Mo vii	282.184 ^S	Mn xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
282.230	Fe XIV	286.8395	V v	290.36 ^P	Mn xx	295.251	V xı
282.444	Mn xiv	286.998 ^C	Mn xvi	290.443	Mo vi	295.321	Ni XII
282.613	Ti ıx	287.003 ^C	Cr XII	290.45 ^C	V xvIII	295.366	Mo xiv
282.728	Мо хі	287.09	Cu xx	290.528	Ті х	295.405	V xII
282.728	Mo IX	287.156	Co xv	290.539	Mn xIII	295.518	Co xv
282.84	Cr XIII	287.19 ^C	Cr xiv	290.574	Ni xiii	295.55 ^C	Ni xiv
282.880	V xII	287.2	Ti x	290.63	V xII	295.556	Ti X
282.898	Ti VII	287.291	Mo IX	290.747	Fe xiv	295.668 ^C	Ti x
283.122	Ni xvii	287.417	Mo x	$290.91^{\rm C}$	Cr xxi	295.841	V xII
283.167	Mo VIII	287.440	V vi	290.93	Ti x	295.910	Mo viii
283.169	Mo IX	287.537	Mo IX	290.971	Ti VIII	295.92^{C}	Ti XVII
283.19^{C}	Ti xvii	287.564	Co xv	291.010	Fe xII	295.934	V xı
283.20^{C}	Cu xxviii	287.564	Co xvi	291.037	Ti x	295.993 ^C	Fe XIV
283.24	Mn XIII	287.62^{C}	Cr xx	291.32^{C}	Ti xu	296.040	Ti x
283.30	Ni xix	287.756	Mo xi	291.450	Mo vi	296.056	Ti VII
283.30	V XII	287.859	Fe xiv	291.492	Fe xiv	296.07	Cu xx
283.403	Mo vi	288.003	Mn xvi	291.576	Мо х	$296.072^{\rm C}$	Ti VIII
283.586	Ti VI	288.145 ^C	Kr viii	291.60	V xII	296.073	Mn xIII
283.64	Fe XII	288.149	Ni xvi	291.652	Fe xiv	296.184 ^C	Co xvi
283.64	V xII	288.18	Cr xII	291.697	Ni xvii	296.28	V xII
283.795	Fe xıv	288.279	Mo vi	291.705	Cu xvi	296.280 ^C	Ti ix
283.984	Mn XIII	288.355	Ti vi	291.735	Co xvi	296.3	Fe xvii
284.01	Fe xvII	288.44	Cr XII	291.738	Cr vII	296.339	Ti x
284.07^{C}	Мо хы	288.512	Fe xiv	291.913 ^C	Ni xvii	296.6	Cu xv
284.075	Vν	288.585 ^C	Kr viii	291.920	Mo vi	296.62 ^C	Ti xII
284.164	Fe xv	288.65	V xII	291.938	Ti x	296.634 ^C	V xi
284.35	Cr XII	288.650 ^C	Ti x	291.985	Ni xviii	296.66	Co xiv
284.357^{C}	Fe xvII	288.684	Kr viii	292.036	Fe xiv	296.677	Mo vi
284.434	Co xvi	288.838	Mo viii	292.275	Fe xv	296.677	Mo vi
284.494	V v	288.878 ^C	Fe XIV	292.399	Ni xiv	296.724	V v
284.581	V v	288.887	Mo VI	292.46	Fe xxII	296.728	V XII
284.627	Fe XIV	288.894	Ni xiv	292.5 ^C	Ti xvIII	296.743	Mo vi
284.70	Cu xx	288.921	Mo VI	292.644	Mo vii	296.75 ^C	Ті хп
284.752	Mn XIV	288.94	Cu xx	292.748	Mo x	296.786	Мо VIII
284.988	Cr xı	288.94	Fe XVII	292.77 ^C	Ті хп	296.83 ^C	Mn xxiv
285.08	Ti xiii	289.123	Fe XIV	292.943	Mo viii	296.89	Cr XIII
285.128	Ti ix	289.140	Mo IX	293.15	Cr xxi	296.95 ^C	Ti xII
285.317 285.346	Co xv	289.175	Co xv	293.268	Mn xIII	297.055	Ti xı
285.375	Mo IX	289.22	V xII	293.270	Mn xvi	297.077	Kr viii
285.4 ^C	Cr xv	289.255	Mo x	293.321	Fe XIV	297.138	Ti x
285.477	V xix Fe xiv	289.285 ^C	Mn XIII	293.336 ^C	Ti x	297.197	Ti viii
285.492	Mn xiv	289.375	Ti VIII	293.374	Mo xiv	297.22	V xII
285.534	Mn xiv Mo x	289.495	Mo x	293.44	Co xvi	297.23	Ni xx
285.619		289.520 ^C	Fe XIV	293.448 ^C	V xı	297.276	V v
285.698	Ni xvii Fe xiv	289.56	Mn xiv	293.58	Cu xxi	297.631	Cr XIII
285.755 ^C	Fe XVII	289.576 289.577 ^C	Ti x	293.581	Mn XIII	297.698	Mn xvi
285.77	Co xvi		V XII	293.627	Mo VI	297.698	Mn xvi
285.877	Fe xiv	289.579 289.697	Ti IX	293.643 ^C	Ti x	297.73	V xII
285.88 ^C	Ni xiv	289.697 289.742 ^S	Fe XIV	293.662	Mo vi	297.73	V XII
285.933	Mo x	289.742	Cr xiv	293.665	Ti x	297.89 ^C	Cr xiv
285.9791	V v	289.743	Ni XVII	293.721 ^C	Co xvi	297.897 ^C	V xi
286.05	V XII	289.85	Mn xiii V xii	293.74 ^S	V xxi	297.90	Ni XIX
286.112	Ti IX	289.977	v xii Fe xiv	293.956	Ti x	297.918	Mo viii
286.13	Cr XII	290.004	re xiv Ni xvii	294.139	Mo VI	297.972	Ti x
286.287	V XII	290.004	Mo ix	294.185	Co xvi	298.037	Co xvi
286.30 ^C	Cr XIV	290.114	Mn XIII	294.271	Mo x	298.059	Cr XI
286.302	Mo vi	290.114		294.328	Ti x	298.11	Cr xv
286.49 ^C	Cr xxi	290.18	Cr xv	294.412 ^C	V xi	298.11	Cr xv
286.490	V v		V XII	294.526	Mo viii	298.15	Ni xv
286.6		290.226	Ti x	294.575 ^C	Co xvi	298.162	Cu xvi
	Ti x	290.232	Ni xvii	294.655 ^C	Cr XII	298.242	Mo xı
286.64	Co xii	290.239	Cu xvii	294.758	Cr XII	298.30	Co xvi
286.670	Mo viii	290.239	Fe xv	294.90 ^C	Co xxiv	298.303	Ti x
286.70 ^C	Mn xxII	290.31	V xII	294.985	Mn XIII	298.42	Co xiv
286.748	Mo x	290.323	Cr XI	295.141 ^C	Ti viii	298.42	Ni xix

SHIRAI ET AL.

Finding List - Continued

Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectru
(Å)		(Å)		(Å)		(Å)	
298.444	Co xvi	302.844	Ni xiii	307.300	Co xvi	311.587	Cr xII
298.64	Cr XII	302.86 ^C	Ti xII	307.35	Cr XII	311.639	Mn xiv
298.648	Mn xvi	302.86 ^C	Ті хи	307.403	Fe xiv	311.67 ^C	Fe xvi
298.649	Ti x	302.9 ^C	Mn xv	307.467	Mo x	311.676	V xiv
298.839	Mo xı	302.94	Co xvi	307.73	Fe XIV	311.71 ^C	Cr xix
298.853	Cr XIII	303.066	Mo x	307.730	Fe xv	311.748	Mn vi
298.960	V xı	303.148	Mo ix	307.739	Mo vi	311.756	Ni xv
298.968	Mo VI	303.150	Mo vi	307.842	Mn vi	311.8 ^C	V xx
299.081	Mo x	303.17	Mn xiii	307.89 ^C	Co xxii	311.875 ^C	Cr XII
299.122	Mo x	303.2 ^C	Mn xv	307.90	Ni xix	$312.03^{ m C}$	Ni xv
299.13	Ti x	303.355 ^C	Fe XIII	307.996	Ti xı	312.090	Mo vii
299.223	Ti x	303.549 ^S	Cu xix	307.999	Mn vi	312.164	Fe хии
299.500 ^C	Fe XIV	303.573	Fe xiv	308.049	Ni xiii	312.22 ^C	Fe xvi
299.505	Mo x	303.75	Cr XII	308.07 ^C	Со хии	312.261	V xi
299.548	V xı	303.80	Ni xix	308.24	Ti xı	312.394	V v
299.840	Ti x	303.853	Mo vi	308.3 ^C	V xx	312.556	Fe xv
300.11 ^L	Mn xIII	303.960	Cr XIII	308.32 ^C	Ti XII	312.559 ^S	Co xvii
300.120	Cr XII	304.03 ^C	V xviii	308.53	Ti xı	312.66	Ni xx
300.13 ^C	Cr xiv	304.211	V xiv	308.542	Ni xiii	312.692	Mn vi
300.287 ^S	Cr XIV	304.233	Ti x	308.544	Fe xı	312.722	Mo vii
300.30	Cr xv	304.3 ^C	Ni xvi	308.560	Mn vi	312.782	V xi
300.33 ^C	Cr XIV	304.303	Mo vi	308.568	Ti IX	312.802	Mn XIII
300.417	Cu XVIII	304.436 ^C	Ni xvi	308.599 ^C	Co xvi	312.949	Cr XII
300.488	Mo vii	304.498	Ti IX	308.770	Mo vii	312.949	Cr XII
300.746	Мо х	304.81 ^C	Fe xvi	308.853	Mn vi	313.04 ^C	Ti xvi
301.0 ^C	V xix	304.84	Mn XIV	308.895	Cr xv	313.19 ^C	Fe xxII
301.028	Ti x	304.867	Ti x	308.895	Mn XIII	313.213 ^C	Ni xvi
301.170	Мо хи	304.894	Fe xv	308.903	V x	313.22	Ti xı
301.180 ^C	V xı	304.93	Fe xvII	308.922 ^C	Mn XIII	313.22^{C}	Ni xxv
301.19	Cr XII	304.974	Vx	308.998	Fe XIV	313.234	Fe IX
301.254	Ti x	304.990 ^C	Ti xvII	309.099 ^S	Ti xx	313.305 ^S	V XIII
301.283	V x	304.995 ^C	Fe xv	309.196	Ni xvi	313.319	Cr xv
301.286 ^C	Fe xiv	305.01	Ti xix	309.26	Fe xx	313.337	Mn XII
301.297	Ti VIII	305.09 ^C	Fe xvi	309.440	Mn vi	313.34	Mn XII
301.4 ^C	Ti xviii	305.149	Mo VII	309.52 ^C	Mn xviii	313.376	Vν
301.45	V xII	305.15	Fe xv	309.579	Mn vi	313.432	Mo vii
301.46^{T}	V xII	305.205	Cr xv	309.680 ^C	Ni xvi	313.69	Ti xı
301.487	Mo vi	305.37 ^C	Fe xvi	309.849	Co xv	313.724	Ni xvi
301.513	Mn xvi	305.429 ^C	Ti x	309.85	Co xvi	313.777	Mn xi
301.525	Mn XIII	305.44	Cu xxi	309.857	Mn xiii	313.801	Mn XII
301.589 ^C	Ti x	305.544	Mo VI	310.0^{C}	V xx	313.91	Co XIII
301.604	V v	305.634	Mo IX	310.016	Ni xvi	313.92	Kr vii
301.680	V XII	305.730	Ti vii	310.058	Mn vi	313.950	Mo vi
301.680	V xII	305.816	Cr XII	310.182	Mn vi	$313.985^{\rm C}$	Ti xı
301.763 ^C	Ni xvi	305.83	Cr xv	310.324	Co xvi	313.990	V x
301.819 ^S	Cr xiv	305.84	Cr XII	310.324	Co xvi	313.993	Vv
301.913	Ti vi	305.87 ^T	Cr XIII	310.547	Mn xi	314.049	Мо х
301.939	Mo IX	305.940 ^C	Fe xv	310.55	Cr XIII	314.12 ^C	Fe xvi
302.024	Ti x	305.945 ^C	V xı	310.67	Со хін	314.19	Co XII
302.024	Ti x	306.14	Ti xı	310.68	Mn XIII	314.379	Mo vii
302.080	V XII	306.182	Mo 1X	$310.747^{\rm C}$	V xı	314.446	Mo ix
302.080	V XII	306.30	Ni xix	310.774	Mo x	314.656	Mo vii
302.264	Ni xiv	306.448	Cr XIII	310.807	Mo VII	314.805	Ti xı
302.272	Ti viii	306.458	Mn xi	310.85	Ti xı	314.961	Mo vi
302.334	Fe xv	306.59 ^C	Mn xx	310.908	Mn vi	314.979^{T}	Mn vi
302.406	Cu xiv	306.637	Mo xi	310.908	Mn vi	314.99	Fe xv
302.406	Cu xviii	306.71 ^C	Ti XII	310.908	Mn vi	315.01	Ni xix
302.500 ^C	V XI	306.758	Ti x	311.144	Ti xı	315.1 ^C	Mn xv
302.509^{C}	Mn xvi	306.79 ^C	Cr xxi	311.209	Mo x	315.162	Mo x
302.519 ^C	Ti x	306.8 ^C	V xix	311.236 ^C	Mn XIII	315.300	Mo VII
302.52^{C}	Ті хи	307.109	Mn vi	311.26	Kr vii	315.341 ^C	Fe xv
302.56	Cu xxi	307.15 ^C	Ti xII	311.312 ^C	Mn XIII	315.458	Mo XI
$302.584^{\rm C}$	Ni xvi	307.166	Mo vIII	311.53	Cu xx	315.51	Cr xv
302.659	Co xvi	307.202	Мо хи	311.552	Fe XIII	315.559	Fe xv
302.7 ^C	Mn xv	307.241	V xi	311.563	Fe ix	010.003	TCVA

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength	Spectrum	Wavelength	Spectrum	Wavelength	Spectru
		(Å)		(Å)		(Å)	
315.98	Mn xiv	320.598	Mn vi	324.975	Fe xv	328.714	Mo vi
$315.998^{ m C}$	Fe xv	320.626	V xı	324.98^{C}	Cr xxiii	328.838	Mo vii
316.113	Ni xiv	320.681	Mn vi	325.146^{T}	Mn vi	$328.844^{\rm C}$	Fe xv
316.210	Mo viii	320.800	Fe хии	325.176	Mo viii	328.872	Mo vi
316.23	Ti xı	320.874^{T}	Mn vi	325.177	Cr XII	328.92	Ti xı
316.466	Cr XII	320.915	V vi	325.188	Mo IX	328.954	V xII
316.466	Cr XII	320.94	Ті хи	325.22	Mn xiv	329.043	Mn vi
$316.62^{\rm C}$	Co XIII	320.979	Mn vi	325.220	Mo xi	$329.12^{\rm C}$	Ті хп
316.666	Mo vi	321.141 ^C	Mn XIII	325.328	Mo vi	329.12 ^C	Ti XII
316.772	Mo VII	321.176	Mn vi	325.697	V vi	329.12 ^C	Ti xii
316.79 ^C	Mn XX	321.244	Cr xv	325.70	Co xiii	329.12	
316.811	Ni xvi	321.30	V xII	325.743	Ti x	329.177	Ti IX
316.87	Ti XI	321.425	V XII V VI	1			Mn VI
317.006	V vi			325.9	Cr xv	329.28	Mn XII
317.006		321.455 ^C	Fe XIII	325.904 ^C	Ni xvi	329.294	Mo VII
	Fe x	321.541	Mn vi	325.945	V xı	329.320	Mn vi
317.194	Fe IX	321.661	Mo vii	325.946	Mo VI	329.414	Мо хи
317.308	Mo VI	321.766	Fe x	325.946	Mo VI	329.810	V vi
317.393 ^C	Fe xv	321.766	Fe x	$325.96^{\rm C}$	Ni xiv	329.832	Mo vi
317.404	Cr xv	321.771	Fe xv	325.97	Cu xxi	329.861	Mo vii
317.43	Ti XI	321.810	V vi	325.97	Ni xx	329.890	Fe IX
317.475	Ni XII	321.881	Ni xIII	$326.0^{\rm C}$	Ni xxv	329.94	Fe xv
317.514	Mo vi	321.96	Ti xiii	326.12	Co xII	330.027	V vi
317.563	Cu XVIII	322.00	Ti xı	326.255	Mo x	330.247	Co xv
317.597	Fe xv	322.033	Ni xvii	326.263	Mo vII	330.25 ^C	Mn xx
317.63	Cu xx	322.158	Mo xi	326.285	Ti x	330.314	V xi
317.682	Cr xv	322.393^{T}	Ti xı	326.29	Ti xiii	330.41	Mn xiv
317.704	Mo ix	322.40	Ti xı	326.3 ^P	Mo xxix	330.43 ^L	Mn XIII
317.709	Mo x	322.427	Mn xi	326.33 ^C	Ті хн	330.44	Cu xx
317.798	Mo vII	322.469 ^C	Ni xvi	326.33 ^C	Ti xii	330.486	
317.992	Ti viii	322.513	V XII	326.48 ^C	V xiii	330.62	V XII
318.09	V xi	322.6	Ti xviii	326.571			Со хи
318.209 ^C	V XI	322.645	Mo viii		Mn vi	330.67 ^C	Mn xx
318.21	Fe XIII	322.67		326.571	Mn vi	330.703	Ti vi
318.265	V vi	322.69	Ni xx	326.616	Mo vii	330.78	V XII
318.439	Cr xv	322.690 ^C	Ti xı	326.72 ^C	Ті хи	330.797 ^C	Ti x
318.584			Mn XIII	326.741	Mo XIII	330.913	V xi
	Mo vi	322.698	Ті VІІІ	327.024	Fe xv	331.072	Mo x
318.586	Fe ix	322.96 ^C	Cr xv	327.131	Mn vi	331.083	Fe xv
318.599	Fe x	323.001	Mo vi	327.131	Mn vi	331.14 ^C	Mn xx
318.599	Fe x	323.189 ^S	V xiii	327.18	Ti xı	331.43	Mn xiii
318.6 ^C	Mn xv	323.209	V vi	327.266	Mo vii	331.444	Mo VII
318.722	Cr XII	$323.219^{\rm C}$	Ti x	327.267	Cr IX	331.511	Mo VII
318.822	Mo viii	323.221	Mo vii	327.288	Mn xi	331.623	Mo vii
318.85	Со хі	323.225	Mo vi	327.288	Mn xiv	331.65	Kr vi
319.047	Fe xv	323.365	Ti v	327.322	V vi	331.67 ^C	Ti XIX
319.063	Ni xv	323.47	Ti xı	327.39	Cr xII	331.683	
319.149	V vi	323.556	Co xv	327.55 ^C	V xiii	331.687	Mo x
319.426	Fe IX	323.571	Ti xı	327.55 ^C	V XIII V XIV		Cr XII
319.463	Ti VIII	323.633	V xi	327.634 ^C	Ti x	331.689	Mo vi
319.473	Mo vii	323.65	Fe xvii	327.85		331.767	Ti vi
319.630	Mo x	323.782	Mn viii	327.85 328.0 ^C	Mn xiv	331.812	Co xv
319.70	Fe xv	323.811	V x		V xx	331.876 ^C	Cr XII
319.76	Mn xIII	323.85 ^C	v x V xiv	328.043	Ti xı	332.01	Со хи
319.933	Mo vi	323.940		328.129	Mn vi	332.02	Cu xxi
319.936	Fe x	324.014	Mo viii	328.232	Mn vi	332.081	Ti vii
319.938	Mo vii	324.014	V xn	328.24	Ni xix	332.126	Cr XII
320.13	Cr xv		V vi	328.253	Ti xı	332.358	V xı
320.13	V vi	324.207	Ti viii	328.267	Cr XIII	332.373	V xiv
320.134		324.35 ^C	Ni xv	328.278	Ti xıx	332.570	Mo vi
	Mo vi	324.496 ^S	V XIII	328.342	V xiv	332.604	Mo vii
320.146	Mn vi	324.575	V vi	328.40	Ti xı	332.66^{T}	Co XII
320.191	Cr XII	324.638	Mo vii	328.431	Mn vi	332.673	Mo vi
320.40	Co xIII	324.65 ^C	Ni xv	328.543	Ti xı	332.83	Kr vi
320.41	Kr vii	324.712	Ti ıx	328.558	Mn vi	332.83	Krvi
	Ti x	324.726	Fe x	328.577	Mo vii		
320.410 ^C							
320.410 ^C 320.416	Mo ix	324.748 ^C	Ti x	328.611	Mo vii	332.854 332.878	Fe xv V vi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
333.035	Cr x	338.264	Мо іх	342.705	Mo vii	347.404	Mn xi
333.069	Mo vii	338.309 ^C	Ti vi	342.73	Cr XIII	347.55	Ti xıv
333.18^{C}	Fe XII	338.392	V vi	342.78 ^C	Mn xix	347.563	Ті хии
333.385	Ti IX	338.420	Mo vii	342.783 ^C	V xiv	347.602	Mn viii
333.62^{C}	Co xv	338.504	Mo vii	$342.97^{\rm C}$	V xIII	347.683	Mo x
333.652	Mo vII	338.65 ^C	Ni xiv	342.982	V xI	347.74 ^C	Cu xxv
333.687	Mo vii	338.681	V xı	342.982	V xi	347.787	V xi
333.798	Mn x	338.689	Cr XII	343.007	Mo x	347.911	V XI V VI
333.943 ^C	Ti x	338.745 ^C	Ti x	343.21 ^C	V XIII	347.96	Fe XVII
334.002	Cu xviii	338.80	Со хии	343.3 ^C	Ni xvi		
334.03 ^C	Mn xxII	338.831	Mo vi			348.024	V vi
334.080	Mo vi			343.43	Mn xiv	348.05	Ni xix
334.14 ^C		338.899	Mo vii	343.646	V vi	348.124	Fe IX
	Ti xix	338.971	V xi	343.659	Mo vII	348.135	Mo vi
334.171	Fe xiv	339.10	Mn xiv	343.715	V xiv	348.184	Fe XIII
334.21	Co xiv	339.187	V vi	343.84	Mn xiv	348.356	Cr xv
334.255	Ti x	339.23	Cr XII	343.84	Ті хиі	348.45	Kr vi
334.3	Ni xix	339.25	Mn xiv	343.86	Со хи	348.547	Fe xiv
334.457	Ti vı	339.351	Mo VII	343.998	Mo vii	348.8 ^C	Mn xv
334.52 ^C	Ni xiv	339.38	Cr XII	344.093	Мо хи	349.046	Fe XI
334.64	Cr xII	339.446	Cr XI	344.493	Mn viii	349.077	Mo XI
334.740	Co xv	339.516 ^S	Co xvii	344.569	Mo x	349.128	Mo xi
334.81 ^C	V xvIII	339.60	Mn xiv	344.65 ^C			
334.852	Co xv				Co xxiv	349.2 ^C	Mn xv
		339.664	Mo VII	344.723 ^C	Cr XII	349.217	Mo vii
334.97	V xII	339.81	Co xi	345.03 ^C	Co xxiv	349.220	Mo vi
335.017	Cr XII	339.838	Fe IX	345.113 ^C	Fe xiv	349.3	Fe xx11
335.06	Fe XII	339.852	V xiv	345.40	Cr XII	$349.3^{\rm C}$	Mn xv
335.123	Cr vi	339.9^{C}	Ni xxiv	345.405	V vi	349.365	Mo vi
335.142	Mo vii	340.114	Mn viii	345.478	Mo vi	349.426	Mo x
335.294	Fe IX	340.12	Fe xvii	345.542	Cu xviii	349.44	Mn XIV
335.409 ^S	Fe xvi	340.181	Cr x	345.57	Cr XII	349.56 ^C	Co XIII
335.449	Mo vi	340.20 ^C	Fe XII	345.617	Mn viii	349.574	Ti vi
335.516	Mo vii	340.234	Mn viii	345.63 ^C			
335.6 ^C	Ni xvi	340.392			Mn xx	349.67	Mn xiv
335.737			V xiv	345.723	Fe x	349.82	Ti xı
	Mo VII	340.47	Fe xvii	345.882 ^C	Cr XII	349.917 ^S	Ті хп
335.831	V vi	340.622	V vi	345.996	Co xvi	350.58	Fe xvii
335.98	Mn xiv	340.668 ^S	Ti xII	346.04	Mn XII	350.610	Ti x
335.995	Mo vii	340.7 ^C	Ni xxiv	346.102	Mo vi	350.659	V vi
336.029	Ті хіп	340.77	Cu xx	346.123	V xı	350.781	V vi
336.177	V xiv	340.79 ^C	V XIII	$346.161^{ m C}$	V xiv	$350.79^{\rm C}$	Ti xıx
336.184	Cr vi	340.909	Mo XIII	346.163	Ti xiii	351.012 ^S	Ti xii
336.246°	Cr XII	340.953	V vi	346.181 ^C	Ti x	351.092	Cr X
336.308	Cr XIII	340.954	V xiv	346.189	Cr xv	351.143	Mo VII
336.459 ^C	Cr xII	340.955	Mo vii	346.222	Mo vii		
336.520	Mo vii	341.087				351.15	Cr XIII
			Ti x	346.25	Cu xxi	351.290	Mo vi
336.580	V xi	341.109	Ti vi	346.34 ^C	Co xxvi	351.356 ^C	Fe XIV
336.584	Mo VII	341.113	Fe xı	346.40 ^C	Mn xII	351.58	Ti xm
336.639	Мо хи	341.150	Fe IX	346.43	Ni xix	351.69	Fe xvII
336.639	Mo XII	341.23	Ni xvii	346.44	Cu xviii	351.782	Ti xı
336.895	Ti ıx	341.36	Cr XII	346.50	Ni xx	351.93	Kr vi
336.94 ^C	Mn xii	341.390	Fe IX	346.647	Mo vii	351.944	Mo vii
336.995	Mn xı	341.400	Mo XI	346.69	Kr vi	352.028	Mo XII
337.185	Cr VI	341.494	Mo vii	346.728	Ti vi	352.072	Fe IX
337.29	Mn XII	341.524	Mo VII	346.77 ^C	Cr xiv	352.107	Fe XII
337.450	Mo vi	341.691	Ti ıx	346.84	Mn XIII	352.334	
337.467	Co xv	341.770	Mn viii	346.842		1	V XI
337.490	Cr x	341.929		1	Mn viii	352.541	Mo vi
			Mn XI	346.852	Fe XII	352.661	Fe xı
337.53	V xiv	342.102	Mo vii	347.0 ^C	Ni xvi	352.70 ^C	Mn xix
337.674	Mo XII	342.131	Mo vii	347.01 ^C	Cr xiv	352.73	Mn xıv
337.772	Cr XII	342.15 ^C	Co xxiii	347.12	Mn xvi	352.736	Cr XIII
337.790 ^C	V xı	342.21	Co xiv	347.17	Cr xII	352.738	Mo XII
337.946	Mo vII	342.501	Mn viii	347.19 ^C	Cr xiv	352.868	Мо хи
338.061	Mo xII	342.58	Mn xiv	347.204 ^C	Cr XII	352.994	
338.116	Cr xII	342.595	Ti VI				Mo XIII
338.205	Ni xvii	342.67		347.265	V vi	353.026	Ti x
338.263	Fe XII	342.67	Mn XII Cu XVII	347.339 347.34 ^C	Mo xv	353.234	Mo vii
					Со ххии	353.421	Mo xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrui
353.483	Мо х	359.311	Ті хіп	364.468	Fe хи	369.064	V ix
353.484	Ti xı	359.342	Fe xiv	364.589	Fe x	369.09	Ті хін
353.494	Mo vii	359.454	V viii	364.639	V xi	$369.10^{\rm C}$	Mn xix
353.773	Ni xvii	359.500	Mo xv	364.666	Mo vii	369.154	Fe XI
353.777	Mo vii	359.511	Ti xı	365.097^{C}	V xi	369.22	Cr XIII
353.82	Ni xx	359.526	Ti xı	365.134	V xII	369.260	Fe IX
353.829	Fe xiv	359.63	Fe xm	365.144	Fe x	369.37	Ti xiii
353.84	Cr XIII	359.643	Мо хііі	365.154	V vi	369.384	V xı
353.877	Ti vi	359.79 ^C	Ni xv	365.169	Mn xvi	369.531	Ti XIII
353.942	Ti IX	359.8	Ti xvII	365.23 ^C	Co xxiii	369.58 ^C	Ni XIV
353.945	Mo VII	359.837	Fe XIII	365.333 ^C	V xi	369.612	Vx
354.100	Mo xv	360.003	Mo vii	365.518	VXI	369.93 ^C	
354.29	Mn XIV	360.133	Ti x	365.543		369.96	Mn xvii
354.474	Mo VII	360.15			Fe x		Ті хіп
354.594	Mo XII	360.208 ^C	Ti xiv	365.628	Ti x	370.063	Mo vii
			Fe XIV	365.63	Ni xx	370.314	V vi
354.788	Ti XIII	360.250	V vi	365.63 ^C	Mn xx	370.351	Μο νιι
354.824	Fe x	360.373	Mn viii	365.659	Mo vii	370.52 ^C	Ті хін
354.892	Mo xv	360.4 ^C	Mn xv	365.680	Mo xv	370.696 ^C	Fe xıv
355.012	Cr VII	360.54 ^C	Со хии	365.718	Cr x	370.722	Mn viii
355.054	Mo xv	360.56 ^C	Fe xxII	365.74	Ті хііі	370.808 ^C	Mn xIII
355.07	V xII	360.635	Mo VII	365.779	Mn viii	370.936	V vi
355.1 ^C	Ni xvi	360.741	V vi	365.924	Mo xv	370.959	Cr XI
355.112	Cr x	360.758 ^S	Fe xvi	366.028	V xi	370.989 ^C	
355.119	Ti x	360.827	Fe xiv	366.060	Mn xi		Fe xvii
355.132	Mo vii	360.833	Fe X			371.086	Cr x
355.494	V XI	360.987 ^S	Mn xv	366.085	Cr XI	371.090	Mn vIII
355.78 ^C	V XII			366.17	Kr vi	371.244	Мо хи
		361.1	Ti xviii	366.197	V xı	371.271	V ix
355.815	Ti x	361.15	Cr XII	366.403	V xı	371.30	Cr XIII
355.837	Fe xi	361.16	Cu xvii	366.48	Cr XIII	371.523	V vi
355.883 ^C	Fe xiv	361.223	Co xvi	366.491	Cr xı	371.586	Mn viii
355.886	Ni xvii	361.249	V xı	366.569	Ti XIII	371.695	Mn viii
356.10	Cr XIII	361.32	Ni xix	366.579	V xi	371.905	Mn x
356.11	Cr XII	361.409	Fe x	366.667	Fe x	371.979	Mo xi
356.232^{C}	Fe xiv	361.659	Mn xIII	366.734	Mo vii	372.03 ^C	Fe XIII
356.28	Cr XII	$361.668^{\rm C}$	Mn xi	366.77	Cr xIII	372.240 ^C	Fe XIII
356.3 ^C	Ni xxiv	361.956	Ti x	366.80	Ni xvii	372.702	
356.505	Fe XIV	362.0	Kr vii	366.910	Ti xiii	372.702	Mo VII
356.519	Fe xı	362.356	V xi	366.942	Cr xi		Fe xv
356.60	Fe xiv	362.518	Ti XIII	367.04 ^C		372.833	Ni xvii
356.729	Mo xi	362.547	Fe x		Cr xiv	372.87 ^C	Ti xiii
356.76 ^C	Mn xxi	362.66		367.126	V xı	373.17	V XII
356.8 ^C	Co xxi		Cr xIII	367.173	V vi	373.3	Ti x
356.80	Cr XII	362.717	V vi	367.366	Mo vii	373.3	Ti xiv
357.04 ^C		362.86	Ti xiii	367.37	Fe xvII	373.41	Fe xvii
	Со хііі	362.87	Cr XII	367.404	V vi	$373.45^{\rm C}$	Cu xxv
357.10 ^C	Mn xx	362.889	Мо хііі	367.516	V xi	373.455	Mo vii
357.12	Cr XII	363.077	Mo VII	367.526	Mo VII	373.487	Cr xv
357.14 ^C	Cr xxi	363.145	Ti v	367.543	V vi	373.525	Mn xvi
357.175	Mo vii	363.153	V vi	367.61	Ti xiii	373.647	Mo xiv
357.59 ^C	Mn xx	363.2	Kr vi	367.683	V vi	373.69	
357.824	Mo vII	363.271	Cr IX	367.813	V xi	374.031	Ti xiii
357.884	V xı	363.285	V vi	367.819 ^C	Ti x		Ti x
357.99	Kr vi	363.40 ^C	Cr xiv	367.877	Mn xi	374.031	Ti x
358.144	V xı	363.510	Mn Xi	367.89		374.2	Kr vi
358.3 ^C	Mn xv	363.68	Ti Xi	367.89 367.98 ^C	Ti xiii	374.463	Mo vi
358.31	Mn xiv	363.764	Mo ix		Cr XIII	374.504 ^C	V xı
358.32	Fe xvii	363.78 ^C		367.996 ^C	Fe xiv	374.605	Fe 1x
358.386	Ti xı		Ni xxvii	368.10	Cr xIII	374.69	Mn xIII
		363.91 ^C	Fe XXIII	368.12	Fe XIII	374.705	V vi
358.414	Fe x	363.918	Mn xvi	368.19 ^C	Cr xx	374.74	Kr vi
358.621	Fe XI	363.943	Ti x	368.36 ^C	Mn xxII	374.747	V vi
358.681	Fe XIV	363.98	Co xvi	368.457	V xi	374.85	Ті хіп
358.846	V xi	364.00	Cr XIII	368.482	Ti IX	374.851	V VI
358.867	Fe x	364.073	V xi	368.540 ^C	Ni xvi		
$359.1^{\rm C}$	Mn xv	364.296	Vix	368.564	Ti x	374.927	Cr XI
359.203 ^C	Cr XI	364.427	Mn VIII			375.11	Cr xIII
359.234 ^C	Ni xvii	I		368.869	Mo x	375.243	Mo xiii
550.20 I	THE WALL	364.45	Cu xvii	369.038	Ti x	375.356 ^C	Cr xi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
375.391	V xı	380.23	Ti xiii	386.683	Mo vii	394.87	Ti xıv
375.425	Cr vII	380.48	Kr vi	386.722	V xi	395.273 ^C	Mn XIII
375.464	Mo xi	380.501	Mn xIII	387.0	Cu xvii	395.400	Мо хии
375.563 ^C	V xı	380.537	V iv	387.01	Ti xıv	395.473	Mn IX
375.584	Cr x	380.70	Cr xIII	387.086	Fe xv	395.67	Cu xviii
375.715	Mo vII	380.70	Ti xıv	387.17	Kr vi	395.69 ^C	Mn xxi
375.773	Fe IX	380.759 ^C	Co xvi	387.36	Fe xvII	395.984	Cr x
375.886	Co xvi	380.78	V xII	387.40	Cr XIII	396.0 ^C	V xx
376.03	Ti xıv	380.897	Cr VII	387.56	Cu xvi	396.264	Mo vi
376.07 ^C	Fe xII	381.005	Mo VII	387.585	Mn XIII	396.288	Cr VII
376.073 376.202	Cr vii Mn xvi	381.005 381.125	Mo vii Mo xii	387.585 387.657	Mo vii V ix	396.402	Mn xvi
376.23	Kr vi	381.24 ^C	Co xxvi	387.7	v ix Mo xxviii	396.53	V XII
376.281 ^C	Ti xv	381.284	Mo XI	387.72	Kr VI	396.628 396.68 ^C	Mo vi Ti xii
376.341	Mo VII	381.526	V xi	388.24	Ni xix	396.68 ^C	Ti xii Ti xii
376.513	Mo vii	381.59 ^C	Cr XXI	388.414	Ti x	396.734	Mo vii
376.778	Mn IX	381.7	Ti xıv	388.51	Ti xıv	396.991	Viv
376.873	Mo vi	382.01	Kr vi	388.51	Ti xiv	397.016	Mo vii
376.913	Mo xi	382.01	Kr vi	388.58	Mn XII	397.093 ^L	Ti X
376.96^{C}	Ti xII	382.049	V vi	388.70	Ti xıv	397.097	V IV
377.154	Mn XI	382.142	Mn xi	388.820 ^C	Ni xvi	397.122	V IV
377.217	Mo vII	382.185	V vi	388.988	Mn x	397.2	Mo xxvii
377.330	Mo vii	382.33	Ti xıv	389.237	Ti x	397.397	Ti x
377.414	Mn xvi	382.462	V xII	389.25	Fe xvII	397.42	Ti xiv
377.443	Fe 1X	382.666	Mn vIII	389.29	Kr vi	397.450	Mo xv
377.534	Mo vi	382.76 ^C	Fe xxv	389.36	Ti xıv	397.46	Mn xII
377.65	Cr XIII	382.83	Fe XII	389.50 ^C	Ti xxı	397.622 ^C	Mn XIII
377.687	Cr vII	382.845 ^C	Mn XIII	389.54	Fe xv	397.72	V XII
377.779	Co xvi	383.0 ^C	V xx	389.657 ^C	Mn XIII	397.72	V XII
377.934	Mo VII	383.036	Mn x	389.862 ^S	Cr xiv	398.150	Cr x
378.0 378.081	Cr xviii V vi	383.12 383.486 ^C	Ti xıv Mn xııı	389.9	Mo xxvIII	398.174	Ti x
378.117	Mo vi	383.486	Mn XIII V XII	389.929 390.016	Мо хии Ті х	398.204	V viii
378.117	Ti x	383.575	Cr vi	390.44 ^C	Ni xxvii	398.322 398.4	Mn x
378.20 ^C	Ti xu	383.913	Ti x	390.533 ^C	Co xvi	398.498 ^C	Cr xix V xii
378.366	Mo VII	384.015	Mo vi	390.70	Kr vi	398.624 ^C	V XII
378.482	Mn VIII	384.219	Mo vii	390.837	Mo xv	398.994	Ti x
378.629	Fe 1X	384.255	Mo vii	390.9 ^C	Co xx	399.025 ^C	Ti x
378.678	V IV	384.382	Vix	390.959	Cr xv	399.12	Ti x
378.679	Mo vii	384.68 ^C	Co xiv	391.362	V IV	399.218	Ti xı
378.687	V vi	384.691	Mo ix	391.552	Мо хии	399.406	Mo xi
378.79	Cr XIII	384.743 ^S	Mn xv	392.012	Ti x	399.54	Kr vi
378.834	V vi	384.827	Mn x	392.16^{T}	Ті хии	399.63	Ті хін
378.929	V IV	384.939	Mo vii	392.26	Ti xıv	399.70	V xII
378.993	V iv	385.015	Cr vi	392.26	Ti xiv	399.707	Cr x
379.093	Vıv	385.06 ^C	Cu xxix	392.359	Mo VII	399.719	Vx
379.133	Mo xv	385.2 ^C	Kr xxxv	392.37	Ti xıv	399.719	Vix
379.153	Cr VII	385.298	Mo VII	392.428	V IV	399.797	Ti x
379.20 379.353	Ti xiii	385.35 ^C	Fe XII	392.53	V XII	399.797	Ti x
379.368 379.368	V IV Mn x	385.373 ^C 385.42	Ni xvi	392.546	Mo vii	400.041	Ti IX
379.378 379.372	Wn X V IV	385.42 385.47	Ti xiv V xii	392.602 392.81	V IV Cr xv	400.056	V X Mr. vari
379.393 ^C	Mn XIII	385.51	V XII Kr VII	392.81	V vi	400.075 400.14 ^C	Mn viii Cr xiv
379.395	V iv	385.816	Mo x	393.028	Cr XII	400.14° 400.30°	Fe xxv
379.512	V IV	385.827	Mn XIII	393.217	V IV	400.30° 400.37°	Cr XIV
379.613	V IV	385.83 ^C	Mn xxII	393.30	V XII	400.390	V x
379.68 ^C	Fe xxii	385.935	V xi	393.469	Vx	400.452	Cr VII
379.682	V iv	386.06	Ti xiii	393.743	Mn xı	400.49 ^C	Cr XIV
379.694	V xiv	386.067	V xi	393.790	V IV	400.502	Mo x
379.780	Ti x	386.14	Ti xı	393.793	Ti x	400.74 ^C	Mn XII
379.959	Mo xv	386.27	Mn XII	394.011 ^C	Fe xiv	400.781	Mn viii
380.070	Mo x	386.316	Mn x	394.03 ^C	Ti XII	400.851	Fe xv
380.079	Fe 1X	386.370	V xı	394.383	Ti x	400.965	Ti x
380.101	V IV	386.405 ^C	Mn xiii	394.441	V IV	401.07	Ti xıv
	Cr VII	386.442	Mo vii	394.473 ^C	Cr x	1	

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
401.543	Mo VII	409.64	V xII	416.92	Ni xv	425.16	Ti xıv
401.658	Cr VII	409.797	Mo vii	417.006	Cr XII	425.242 ^C	Ti xv
401.739	Ti vIII	409.84 ^C	Cr xxi	417.258	Fe xv	425.26	Cr XII
401.773^{C}	Fe xiv	409.91	Fe xvii	417.373	Mo xv	425.78	Ti xı
402.14^{C}	V XIII	410.220	Ті х	417.734	Ti xı	426.258	Ti viii
402.171	Co xvi	410.374	Mn viii	417.828	Mo vii	$426.532^{\rm C}$	Cr XII
402.25 ^C	V xIII	410.46	Cu xvi	417.89	Ti xı	426.939	Mo vii
402.346	Cr xv	410.542 ^C	Ni xvi	418.041	V vi	427.11	Ti xıv
402.446	Mn viii	410.59	Kr vi	418.227	Mo vii	427.551	Cr x
402.48	Fe xv	410.6	Cu xvii	418.290	Cr IX	427.611	Mo vii
$402.58^{ m C}$	V xIII	410.880	Ti x	418.406	Cr XII	427.660	Mo VIII
402.7	Ti xıv	410.989	Cr XII	418.51	Mn xiv	427.785	Mo xi
402.885	V IV	410.994	Mo vii	418.925	Cr IX	428.14 ^C	Mn xvii
402.90	V XII	411.05	V xII	419.104	Cr VII	428.23 ^C	Fe xxv
402.96	Mn xiv	411.28	Cr xv	419.42	Kr vi	428.544 ^C	
403.239	V xiv	411.430 ^C	Cr XII	1	V VI		Cr XII
403.273	Ti X	411.473		419.458		428.56	Kr vi
403.419	Mo x		Mn VIII	419.49	Ti xı	428.94	Ti xı
		411.655	Cr x	419.92 ^C	Fe XIII	428.959	Mo ix
103.43	Kr vi	412.00 ^C	Ti xix	420.0	Cu xxii	429.13	Mn xiv
103.497	Mn viii	412.047 ^S	Cr xiv	420.270	Mo xv	429.232	V xı
103.608	Mo vII	412.340	Mo vII	420.352 ^C	Cr XII	429.62	Ti xı
403.963	Мо VII	412.363 ^C	Ni xvII	420.370	V vi	429.873	Mo vii
404.106	V x	412.49 ^C	Ti xix	420.396 ^C	Cr x11	429.98	Kr vii
104.357	Mo XIII	412.623	Mo vii	420.499	Cr vi	430.44	Cu xvii
104.51	Ti xıv	412.629	Cr XI	420.737	Ti x	430.46	Kr vi
104.79	V xII	412.662^{C}	Mn xi	420.80 ^C	V XIII	430.61	Mn xiv
105.035	Cr xv	412.679	Mo vii	420.82	Ti x	430.713	Cr vIII
105.035	Cr xv	412.859	V xı	420.940	V vi	431.154	Cr xi
$105.145^{ m C}$	Fe xv	$412.938^{ m C}$	Cr XII	421.02	V xn	431.539 ^C	Ni xvi
105.272	Ti ıx	412.98 ^C	Fe хии	421.020	Ni xvii	431.956	Mo VII
105.46	Cr XII	$413.04^{\rm C}$	Mn xix	421.025	Tix	432.429	Mo vii Mo xi
105.461	V ix	413.112	Cr vIII	421.057	Cr IX	432.440	Cr IX
106.319	Mo ix	413.382	Mn xvi	421.1°	Mn xxiv	432.663 ^C	Vix
106.369	Cr VII	413.582	Mn vIII	421.352	Ti x	432.003 433.0422 ^C	
406.480	Мо х	414.1	Cu xxiv	421.581	Mo xv	433.119	Ti IV
106.756	Ti viii	414.273	V vi	422.083	Cr XI		Cr v
106.811 ^C	Fe xı	414.30	Fe xvii	422.232	Mo vii	433.202	Ti v
106.838 ^C	Fe xiv	414.37 ^C	Cr xiv			433.49	Ti xıv
107.138	Cr vII	414.582	Cr vii	422.282	Cr XI	433.52	Ti xı
107.188 ^C	Mn xi	414.602	Cr IX	422.33	Cr xv	433.567	Ti 1X
107.198	Ti x	414.764		422.465	Mo VII	433.6346 ^C	Ti IV
107.393	Mo vii		Mo XII	422.69 ^C	Mn xxiv	433.7599 ^C	Ti IV
107.515		414.97 ^C	Cr xiv	422.784 ^S	V XIII	433.79	Kr vi
	Mo vii	414.972 ^C	Mn xi	422.899 ^C	Cr XII	433.83	Ті хі
107.637	Cr ix	415.041^{C}	Cr XII	423.259	Mo vii	433.885 ^C	Cr xı
107.677 ^C	Ni xvi	415.08	Ti xi	423.478	Mo vii	433.930	Vix
107.905 ^C	Ni xvi	415.348	Mn viii	423.4860 ^C	Ti IV	$434.016^{\rm C}$	Тіхі
107.918	Cr VII	415.44	Ті хиі	423.559	Cr vi	434.081 ^C	Mn XIII
107.957 ^C	Ti x	415.458	Mo XII	423.576	Mo xiv	434.092 ^C	Cr xi
108.019	Cr vii	415.504	Mo vii	423.601	Mo VII	434.124	Kr viii
108.206	Mn viii	415.80 ^C	V xvii	423.634	Mo vii	434.140	Kr vii
108.29	Ti xı	415.861	V vi	423.649	Ti VIII	434.156	Mo vii
108.304	V x	415.932	Ti x	423.677	Mo vii	434.180	
108.40 ^C	Cr xv	415.994	Mo xv	423.800	Mo IX	434.180 434.2 ^T	Cr v
108.528	Ti vIII	416.031	Мо хии	423.856	Mo IX Mo VII	l .	V xviii
108.630	V x	416.064	Mo vii	423.92	V xiv	434.306	Cr v
108.65	V xII	416.08 ^C	Cr xx	424.146		434.312 ^C	Ni xvi
108.65 ^C	Co xxvi	416.179	Mo VII	424.146 424.1598 ^C	Cr IX	434.377	Mo vii
108.685	Mn VIII	416.23 ^C			Ti IV	434.55	Kr v
108.864 ^C	Ti x		Cr xiv	424.1724 ^C	Ti IV	434.754	Mo vii
108.89		416.35	Mn XIV	424.184	Mo xv	434.8	Cu xxii
	Cr XII	416.418	V vi	424.26	Fe XIX	434.835	Mo vii
108.943	Mo xv	416.59	Cr xv	424.50 ^C	V xIII	434.881	Mo vii
109.070	Mo x	416.69	Ti x	424.782	V v	434.887	V xiv
409.097	V IX	416.690	Cr x	424.901	Ti x	434.90	Тіхі
409.172	Ti x	416.805	Mo vii	424.91	Kr vi	434.91 ^C	V xiv
409.270	Mn vIII	416.856	Мо х	425.038	Mn xIII	434.98	Fe xv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrui
435.018	Kr VII	444.087	Mo VII	451.516 ^C	V xı	461.94	Kr vi
435.042^{C}	Ti xı	444.19 ^C	Ni xxviii	451.585	Mo XIII	461.955	V xı
435.143	Cr v	444.25	Fe xiv	451.607	Cr v	462.112	V viii
435.636	Cr v	444.288	Mo vi	451.61	Ti xıv	462.31	Kr vi
435.684	Mo ix	444.56	Ti xıv	451.69	Cr XIII	462.565	Ti v
435.699	V ix	444.565	Mo x	451.865	V xiv	462.63	Kr vii
435.856	Mo vii	444.634	V vi	451.890	V vi	462.675	Mo vii
435.9 ^C	V xx	444.643	Ti v	452.132	V ix	462.77	Kr v
436.351	Cr v	445.0	Kr vi	452.43	Ti xiv	462.830^{C}	V xı
436.388	Mo vii	445.309	Kr vII	452.522	V x	462.95	Cr XIII
436.601	Cr v	445.450	Mo XIII	452.64	Mo XII	462.982	Ti v
436.786	Mo vii	445.49 ^C	Mn XII	452.660	V vi	$463.004^{\rm C}$	Ti xv
436.839	Ti v	445.751	Cr v	452.800	Mo vi	463.105	Mo vii
436.978	V xiv	446.015	V xı	452.972	Kr vi	463.418	V vi
437.005	V ix	446.248	Mo vii	453.006	Ti v	463.553	Mo vii
437.212	Ті хиі	446.265	V xı	453.09	Мо хии	464.015	Cr v
437.30	Fe xvii	446.30	Ti xı	453.162	V xi	464.143	Ti v
437.32	Cr XIII	446.493	Ti v	453.183	Cr VII	464.25 ^C	Mn xix
437.420	Cr v	446.672	Cr v	453.360	Kr viii	464.449 ^C	V xı
437.516	V xiv	446.700	Kr vii	453.502 ^C	Ni xvi	464.562	Ti v
437.655	Cr v	446.71	Ti xı	453.641	Ti x	464.67	Ti xıv
438.0 ^C	V xix	446.790	Mo VII	454.195	V xi	464.69 ^C	Ti xix
438.052	Mo vii	446.9	Mo xxix	454.325	V XI	464.86 ^C	V XIII
438.189 ^C	Mn xiii	447.36	Fe XIV	455.355	Ti xiii	464.92 ^C	Cr XIII
438.46 ^C	Ti xvi	447.484	Ti IX	455.419	Ti v	465.09 ^C	V XIII
438.577	Mn xvi	447.529	Cr X	455.554	V XI	465.1 ^C	Ti xviii
438.618	Cr V	447.606	Kr vii	455.852			
438.618	Cr v	447.701	Ti IX	455.852 456.040 ^C	Mo vii V xi	465.11 465.27	Kr v
438.618	Cr v						Kr vi
438.976	Mo vii	447.792	Cr VII	456.10 ^C	Ti xvi	465.29 ^C	V XIII
439.15	Cr xv	447.881 447.882	V xı Cr vii	456.134	V VIII	465.4	Ni xxii
439.302	Ti IX			456.272	Cr v	465.493	V viii
	V vi	447.983	Mo VII	456.284	V vii	466.181 ^C	Ni xvi
439.344		448.411	Mo VII	456.357	Cr v	466.198	Mo VII
439.513	Ti IX	448.445 ^C	V xi	456.637	Cr v	466.224	Ti v
439.54	Ti xı	448.502	Kr VI	456.743	Cr v	466.290	Mo vii
439.745	Ti ix	448.668	Kr vi	457.010	V ix	466.37 ^C	Cr xxii
439.75	Ti xı	448.729	Cr VII	457.028	Cr v	466.43	Kr v
439.86	Ni xv	448.754	Mo vi	457.15	Kr v	466.749	Ti v
440.038	Kr vi	448.822	Ti v	457.223	Mo vii	467.143	V ix
440.121	Cr vii	448.95	Kr vi	457.321	Ti v	467.25	Kr vı
440.192	Kr vi	448.956	Mo IX	457.504	Cr v	467.40	Fe xiv
440.244	Cr VII	449.063	Ti v	457.6	Kr vII	467.45	Kr v
440.361	Ti vii	449.129	V vi	457.781 ^C	Cr XII	467.9	Ti xiv
440.687	Ti VIII	449.15	Kr VI	457.81 ^C	Mn xviii	468.257	Ti v
440.722	Cr xv	$449.3^{ m C}$	Mn xxiv	457.84 ^C	Ті хін	468.30 ^C	Ti XII
440.84^{C}	Mn xix	449.386	Cr VII	457.963	Mo vi	468.533	Mo vi
440.840	Kr vi	449.391	Co xvi	458.487	V vi	468.78	Ті хи
441.056	Cr v	449.479 ^C	Cr x	458.5	Kr vii	469.00 ^C	V xxii
441.289	Ni xvii	449.541	Ti v	458.6	Mo xxvii	469.11 ^C	Ti xu
441.44	Kr v	449.629	V vIII	458.861	Ti v	469.11 ^C	Ti xII
441.466	Mo vii	449.633	Ti VIII	459.177 ^C	V xı	469.20	Kr v
441.584	Cr VII	449.795	V vi	459.35	Ti xIII	469.311	Cr v
441.680	Cr VII	449.83	Cr XIII	459.47	Kr vi	469.634	Cr v
442.1	Cr xvIII	450.00	Ti xıv	459.647	V vIII	469.711	Mo vii
442.243	Cr v	450.20	Kr vi	459.799	V viii	469.808	Ti v
442.28	Kr vi	450.314	Cr VII	460.37	Ti xıv	469.893	Cr v
442.779	V xiv	450.321	Mo VII	460.39	Ti xı	470.0	Mo xx
443.062	Cr x	450.397	Ti v	460.746 ^S	Ti xII	470.166 ^C	Fe xv
443.388	Mo ix	450.581	Kr Vi	460.775	Cr XII	470.173	Mo VII
443.427 ^S	V xIII	450.649	Kr viii	461.059	V x	470.183	V x
443.51	Ti xı	450.74	Ti xıv	461.146 ^C	V X V XI	470.183	
443.512	Titx	450.742	Mo vii		V XI V X		Kr vi
443.601	V vi	450.742		461.245		470.20	Kr v
443.858	Kr vi	,	Mo vii	461.414	Ti v	470.484	Mo ix
443.656 443.95 ^C		451.141	Cr v	461.515	Ni xvii	470.487	Mo XII
440.30	Cr xxIII	451.429	Ti v	461.69	Cr XIII	470.54 ^C	Ti xvii

 ${\bf Finding\ List-Continued}$

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
470.567	Cr v	482.55	Mn xiii	495.138	V vi	506.824 ^C	Ті х
470.697	Cr v	482.702	Kr vi	495.46	Kr vi	507.023	Mo vii
470.719	Mo vii	482.917	Mo VII	495.671	Ti x	507.174	Ti IX
470.868	Cr XII	483.0098	V v	495.940	V vi	507.23	Kr ν
470.976	Cr v	483.166	Mo vii	496.06 ^C	Mn xxII	507.382 ^C	Ti IX
471.15	Ni xxi	483.274 ^C	Cr xı	496.180	V vi	507.630	Mo vii
471.21	Kr v	483.992	Ti v	496.23	Ті хш	507.64	Ti xiii
471.30	Cr xv	484.090	Mo vii	496.237	Kr vi	507.683	Ti v
471.574	Ti x	484.142 ^C	Cu xxvii	496.32	Ti xiv	507.740	Mo vii
471.622 ^C	Ni xvi	484.2 ^C	Mn xxi	496.543	Co xvi	507.82	Kr vi
471.64	Ti xıv	484.5108	Vv	496.57 ^C	Ti xxı	508.29 ^C	Ti XVI
471.8 ^C	Co xxi	484.553	Mo vi	496.647	Ti x	508.3	
171.884	V xiv	484.581	Mo VII	496.89 ^C	V xxII	1	Cr XII
471.94	Mn xiv	484.60	Fe XIV			508.575	Ti VI
172.088	Ti xiii	484.64		496.92	Ti xıv	508.625	V xiv
172.14 ^C	Cr xxIII	485.04 ^C	Kr v	496.97	Ті хп	508.80	Мо хи
172.19	Kr v		V XIII	496.985	V vi	509.127	Ti VII
172.19 172.476 ^C		485.110	Vix	497.009	Mo vii	509.260	V vi
	Vx	485.175	Ti v	497.999	Ti x	509.511	Ti vii
172.672 ^C	Vx	485.511	Mo VI	498.01	Ti x	509.697	V v
172.828	V vii	485.58 ^C	Mn xII	498.050	Tí v	510.1	Ti xiv
172.839	V viii	485.623	Ti xIII	498.061	Kr vi	510.12	Fe XIII
172.99 ^C	V xvII	485.67 ^C	V xIII	498.099	Mo vII	510.798	Mo xII
173.381	Ti xiii	487.08	Fe XIII	498.2	Mo xxviii	511.442	Ti vII
173.59	Kr v	487.115	Ti v	498.2 ^C	Ni xxv	511.54 ^C	Mn xix
173.955	Mo X	487.217	V vi	498.260	Ti v	511.61	Ti xıv
$174.030^{ m C}$	Cr XII	487.4	Kr vii	498.286	Mo vii	511.79	Kr vi
174.124	Ti v	487.40 ^C	V XIII	498.398	Мо ун	512.64	Ti xII
74.209	Kr vi	487.654	Ti x	498.56	Ti xıv	513.260	Mo vii
74.45	Ti xiii	487.845	Ti v	498.623	Mo vii	513.315	V XI
174.5	Ti xıv	488.050	Mo vii	499.38	V xII	513.374	Ti v
174.611	Ті хиі	488.120	V vi	499.479	Ti IX	513.395	Mo vii
174.619	Мо хиі	488.462	V vi	499.75	Kr v	514.0 ^C	
74.690	Ti v	488.47	V xII	499.853	Ti VII	514.01	V XXII
174.941	Mo VIII	488.582	Ti v	500.116	Ti VIII		Cr XIII
75.197	Mo IX	488.735	Vix	500.265 ^C	V xi	514.206	Ti viii
75.62	Kr vi	488.971	Tí x	500.203 500.448 ^C	V XII	515.008	Ti VII
175.75	Kr v	489.197	Ti x	500.644		515.04 ^C	Co xxvi
76.181	Mo VII	489.231	Mo vii		V vi	515.35	Kr v
76.78	V xII	489.360	V vi	500.84	Kr v	515.518	Mo vii
77.3 ^C	Kr xxxv	489.731		501.20	Mn XIII	515.796 ^C	V xı
77.6	Ni xxii	489.738	Mo VII	501.23	Ti xiv	516.215	Ti 1X
77.82	Kr v	490.08	Kr vi	501.631	Ti v	516.96	Kr vi
77.930 ^C	Ti viii	490.08	V xn	501.944	Mo vi	517.26	Ti xII
78.016	Kr vi	I .	Mo xxx	502.077	Ti v	517.56	Mn xiii
78.455		490.496	Vv	502.147 ^C	V XII	518.05	Mn xiv
78.70	Ti v	490.680	Mo vi	502.23	Ti xiv	518.100	Ti IX
78.971	Ti xiii	490.763	Mo vi	502.45	Kr v	518.331 ^C	Ti IX
	Ti viii	490.81	Kr v	502.602	V xı	518.92	Мо хии
79.264	Kr vii	490.9 ^C	Fe xxiii	502.711	Ti v	519.12 ^C	Cr xi
79.27	Mn xIII	491.314	Mo vi	503.031	Ti v	519.18 ^C	Ti xvi
79.497	Ti v	491.358	Ti v	503.73	Kr v	519.2 ^C	V xx
79.883 ^S	Ti XII	491.608 ^C	Cr xi	503.845	Mo vII	519.508 ^C	Fe xiv
80.376	Ti VIII	491.746	V v	504.19	Ti x	519.575	Ti v
80.63	Kr vi	491.981	Ti v	504.23	Ti xiv	520.83	
80.63	Ті хііі	492.0	Ti x	504.665	Ti v	520.89 ^C	Cr XII
80.820	Мо хии	492.225	Mo vII	504.801	Ti viii		Mn xx
81.428	Ti vIII	492.51	Ті хіп	505.431 ^C	Ti x	521.561	Ti VII
81.493	Fe xv	492.61 ^C	Co xxiv	505.571	Mo xii	521.87	Kr v
81.5564	V v	492.731	Mo VII	505.82 ^C		522.1 ^C	Co xxi
81.72	Kr v	492.80	Ti xii	1	Ti xvi	522.30	Kr vi
81.818	Ti v	493.552 ^C		505.899	Ti VII	522.4	V xII
82.11 ^C	Ti xvi	493.783	Fe xv	505.94 ^C	Cr xxi	522.67	Ti xı
82.17	Cr XIII		Ti v	506.0	Ti x	522.8	Cu xxv
		493.783	Ti v	506.18	Ті хін	523.050	Ti v
82.19	Kr VII	493.8	Cr xvii	506.429	V v	523.26	Cr xII
82.302	Ti x	494.286 ^C	Ti x	506.462	Mo ix	523.3 ^C	Co xxii
182.447	Ti v	494.909	V vi	506.468	Ti v	523.9 ^C	Ti xxi

SHIRAI ET AL.

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
524.113	Ti vı	544.183	Mo vii	565.221 ^C	Ti x	598.864 ^C	Cr v
524.578	Ti v	544.304 ^C	Fe xiv	565.317	Mo vi	598.990 ^C	Cr v
525.04	Kr vi	544.38	Ti xı	565.627	Ti v	599.26	Kr vi
525.1	Ti xıv	545.448	Mo vii	565.9 ^C	Ti xxi	599.60	Mo vii
525.435	Mo VII	545.801 ^C	Ti xı	566.461	Ti v	599.79	Kr vi
525.49	Kr v	546.062	Ti v	566.620	Mo vi	599.994 ^C	Cr v
$525.7^{ m C}$	Kr xxxvi	546.081	Мо хи	567.408 ^C	Ti xv	600.320	Mo VII
526.076	Ti v	547.426	Mo vii	567.76	Fe xx	600.42 ^C	Fe XXVI
526.266	Ti v	547.642	Ti v	568.98	Ti xı	600.7	Cr Xi
526.570	Ti v	548.107	Kr vi	569.13	Kr vi	601.145 ^C	Cr V
527.26 ^C	Mn xix	548.229	Mo vi	569.354	Kr vi	602.011	Cr VI
527.439	V x	548.343	Mo vii	569.8	Mo xxvii	602.4 ^C	
528.3 ^C	Co xx	548.4 ^C					Fe XXIII
528.457			Mn xxi	570.87 ^C	Mn xx	604.880	Fe IX
	Kr vi	548.470	Mo vii	571.095	Ti v	605.400 ^C	Cr XII
528.92	Ti xıv	548.533	Ti v	571.190	V vi	605.79 ^C	Ti IX
529.315	Ti v	549.083	Ti v	571.203	Kr viii	606.726	Kr vi
529.635	Ti v	549.553	Mo vii	573.62	Ti xII	607.239	Cr vi
529.742	Cr v	550.485 ^C	Ti x	573.67	Kr v	609.20	V xII
529.79	Mn XII	551.0 ^C	Mo xli	574.85	Ti xII	609.8	Mo xxxi
529.893	Kr vIII	551.410	Ti v	576.50	Ті хп	609.9	Ni xxiv
529.9	V xvi	551.51	Kr v	577.272	Mo IX	610.828	Kr vi
530.04	Ti xiv	551.60	Ti xiii	577.5	Mo xxxi	611.36 ^C	Ti xvı
530.167	Ti v	551.922	Mo vii	577.68	Kr vi	612.4	Kr vi
530.3	Mo xxix	552.079	Ti v	578.0	Cr XI	612.8	Ti x
532.935	Ti v	552.090	Ti x	578.800	Mo vii	614.028	Cr vi
533.28	Ti XIV	552.185	Ti v	578.905	Ti v	614.05	Kr vi
533.457	Ti v	552.84	Mn XII	579.246	Kr viii	614.8	Ni xxiii
533.54	Ti xı	553.122	Ti v	579.518	Ti v	614.9	Kr vi
533.651	Kr viii	553.514	Мо ун	579.896	Ti IX	615.002	Mo vii
533.753	Kr viii	553.857	Ti v	580.616	Mo vi	615.07	Kr vi
533.809	Mo vi	554.135	Mo vii	580.63	Kr vi	615.57 ^C	
534.297	Ti v	554.3					Mn xix
	Ti xı	i e	Kr vii	581.214	V vi	617.18	Kr VI
534.89		554.51	Kr vi	582.12	Mn xiv	617.189	Kr vii
534.9	Mo xxvi	554.582	Mo vii	583.723	Mo vii	617.315	Мо VII
535.381	Ti VIII	554.650	Mo vii	584.958	Kr vi	617.379	Kr vi
535.836	Ti v	555.0	Cr XII	585.0	Cu XXIII	617.573	Mo VII
535.888	Ti v	555.164	Ti v	585.14	Kr vi	618.0 ^C	Mn xxi
536.34	Kr v	555.2	Kr vii	585.361	Kr vii	618.44	Ті хі
536.406	Ti v	555.224	Mo vii	585.8	Fe xxi	618.5	Mo xxix
536.418	Fe xv	555.742	Mo vii	586.969	Kr viii	618.664	Kr vii
537.29 ^C	Ti xıx	556.5	Kr vii	587.121	Kr viii	620.324	Mo VII
$537.3^{ m C}$	Kr xxxvi	556.562	Ti v	587.147	Mo vii	622.020	Mo VII
537.34	Ti xıv	556.855	Kr vii	587.94	Kr vi	622.187	Mo vii
537.990	Mo VII	557.052	Mo vii	588.31	Kr vi	622.8	Kr vi
538.241	Ti viii	557.115	Ti v	590.563	Mo XII	623.6	Ti x
538.511	Ti v	557.3	Kr vII	590.650	Mo vii	624.069	Mo vii
540.0	Cu xxiv	557.35 ^C	Ti xvi	592.234	Fe xix	625.16 ^C	Mn xix
540.12	Ti xıv	558.221	Kr vii	592.28	Kr vi	625.8	Ti x
540.145	Ti v	558.329 ^C	Vx	592.3	Cu xxi	626.220	Kr vi
540.35	Kr v	559.323	Ti v	592.68	Kr vi	626.486	Kr VII
540.587	Kr vi	559.431 ^C	Mn xiii	593.08 ^C	Mn xx	627.20 ^C	Ti xvi
541.0	Cr XII	559.569	Mo VII	593.56	Kr vi	627.627	
541.181	Ti V	560.056		594.2 ^C		t .	V vi
		l .	Ti V		Ni xvIII	627.668	Kr vii
541.286	Mo vi	560.157	Mo VII	594.618	Kr vi	629.572 ^C	Ті ІІІ
541.35	Fe xx	560.18	Cr XIII	594.899	Kr vII	629.957 ^C	Ti III
541.374	Mo vii	560.85 ^C	Mn xx	594.921 ^C	Cr v	630.086 ^C	Ті ш
541.459	Ti v	561.10 ^C	Mn xix	595.932	Mo vii	630.199 ^C	Ті пі
541.711	Ti v	561.221	Мо VII	595.970	Kr vi	630.685 ^C	Ті ІІІ
543.103	Ti v	561.297	V vi	596.7	Kr vi	630.692 ^C	Ti III
543.339	Ti v	562.25	V xII	596.725 ^C	Cr v	630.769 ^C	Ті пі
543.50	Ti xı	562.572	Cr vi	596.947	V vi	630.875 ^C	Cr v
543.522	Mo VII	563.358	Ti x	597.024	Mo vii	630.891 ^C	Ti III
543.689	Kr vi	563.383 ^C	Ni xxvi	597.047 ^C	Cr v	630.982 ^C	Ti III Ti III
543.858	Ti v	563.44		597.1°C			
		1	Kr vi		Co xxi	631.135 ^C	Ті ш
544.02	Kr vi	563.49	Kr v	598.171 ^C	Cr v	631.164	V vi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
631.3 ^C	Ni xvIII	672.220 ^C	Ti m	704.057 ^C	Kr viii	758.90 ^C	Mn xix
631.421^{C}	Ті ш	672.631^{C}	Co xvii	705.85	Kr vi	761.020	Mo vi
631.830^{C}	Ti m	674.36	Kr v	708.85	Kr v	763.8420 ^C	Ti IV
632.084	V vi	674.419	Mo vii	710.73 ^C	Cr xxi	764.151	Cr v
632.509	V vi	674.944	Mo vii	710.77	Kr v	765.1 ^C	Mn xv
632.509^{C}	Ті ш	675.033	Kr vi	711.911	V IV	765.995	Μο νιι
634.08^{C}	Mn xxII	675.469	V IV	712.71 ^C	Fe xvi	766.72	Kr vi
634.78	Cr XIII	675.722 ^C	Ті ш	712.96 ^C	V xvii	766.847	Mo vii
634.8	Ni xxII	675.982 ^C	Ті ш	714.754	Mo vii	767.595	Mo vi
636.173 ^C	Co xvii	675.989^{C}	Ті ш	717.9 ^C	Co xxiii	768.251	Cr v
637.1	Mo xxviii	676.013 ^C	Ті ш	719.06 ^C	Fe xvi	768.4181 ^C	Ti IV
638.68	Kr vi	676.27 ^C	Mn xx	720.456 ^C	V xiv	768.468 ^C	Ti xı
638.922	Mo vii	677.345	V iv	720.5 ^C	Ti xvIII	768.6461 ^C	Ti ıv
639. ^C	Mo XLI	677.667 ^C	Ті ш	720.771	Cr vi	769.2 ^C	Ti xviii
639.8 ^C	Ni xvIII	677.681 ^C	Ті пі	722.1	Cr xvIII	771.0 ^C	Mn xv
640.135	V vi	677.709	Mo vii	722.912	V IV	771.25	Kr v
640.25^{C}	Mo xli	677.878 ^C	Ті ш	723.045	V IV	773.223	Cr vi
641.7	Ti x	678.01 ^C	Mn xx	723.537	V IV	773.51 ^C	Mn xix
641.88	Kr v	678.740	V iv	723.652	V IV	774.079	Cr v
642.394	Mo vii	679.24 ^P	Fe xx	723.675	Cr VI	774.2	Ti x
643.0	Mo xxviii	679.647	V iv	724.068	V IV	775.308	Cr v
643.603	Vν	679.763 ^C	Co xvii	724.42	Ti tx	775.53	Kr v
644. ^C	Mo xli	679.95°	Fe xvi	724.677	Mo vii	776.554 ^C	Fe xxiv
645.417	Mo vii	679.99 ^C	Mn xx	724.809	V IV	776.743	Cr v
$645.45^{ m C}$	Mn xx	680.1 ^C	Co xxi	725.C	Cu xxviii	776.762	Ti IV
645.847	Kr vII	680.632	V IV	725.0261 ^C	Ti ıv	777.147	Mo vii
645.85	Kr v	681.145	V iv	729.3529 ^C	Ti ıv	777.82	Kr v
645.925	Mo vii	682.455	V iv	729.4	Kr vi	777.873	Cr v
647.484	Mo vii	682.586	Mo vii	730.614	Mo vii	778.253	Cr v
648.0	Cu xxvi	682.923	V iv	731.1	Cr xix	778.433	Viv
648.934	Mo vii	684.368	V IV	733.1 ^C	Mn xv	778.670	Mo vi
651.566	Kr viii	684.368	V iv	733.2	Kr vi	778.946	Mo vii
652.905	Kr VII	684.450	V IV	733.7 ^C	Ni xvIII	779.074	Ti ıv
653. ^C	Mo xlı	684.748	Mo vii	734.344	V IV	779.209	Cr v
653.037	Mo vii	685.879 ^C	Kr viii	735.1	Kr vi	779.5	Ni xxi
654.189	Kr vII	686.543 ^C	Ti III	735.316	Kr vi	780.2	Tí x
654.2	Ti x	686.76	Kr vii	737.854	V IV	780.37	Ti xii
654.96 ^C	Mn xx	686.8 ^C	V xx	738.9	Kr vi	780.428	Cr v
655.174	Mo VII	688.89	Kr vii	739.096	Kr vi	780.429	Mo vi
655.78 ^C	Mn xx	690.01	Kr v	739.327 ^C	Ті ш	780.92	Kr vi
656.112 ^C	Cr v	691.530	V iv	740.75	Cr xvii	781.730	Ti IV
657.20	Kr vi	691.84	Kr v	741.889	Cr VII	782.912	Mo vi
657.685 ^C	Cr v	692.22	Kr vii	742.83	Kr vi	783.45 ^C	Mn xx
657.7	Cu xxii	693.128	V IV	744.3	Kr vi	784.690	Mo vi
657.898 ^C	Cr v	693.169	Mo VII	744.575	Mo vII	785.85 ^C	Mn xx
659.39 ^C 660.067 ^C	Co xxv	693.57	Kr v	745.12 ^C	Ti xiii	786.1	Fe xxi
	Cr v	694.64	Ni xx	745.165	V IV	786.210	Cr v
560.284 ^C	Cr v	694.986 ^C	Ti III	747.33 ^C	Mn xx	787.216 ^C	Co xvii
660.477	Мо VII	695.027	Mo vii	748.70	Kr vi	789.27 ^C	Cr XIV
662.43	Kr vii	695.170	Mo vii	749.641	V iv	789.492	Cr v
563.1 563.541 ^C	Cr xvIII	695.918	Kr viii	750.110	V IV	790.659	Mo vi
563.789 ^C	Ti m	696.07	Kr v	750.277	Kr vi	791.872	Cr v
563.789°	Тіш	696.083 ^C	V xII	750.522	Mo vi	792.282	Mo VII
664.2954 ^C	Mn xviii	696.5 ^C	Co xxii	750.6 ^C	Co xxi	792.948	Ti v
665.6905 ^C	Ti IV	697.088 ^C	Mn xvi	750.809	V IV	793.4	Cr xvIII
565.6905° 566.191	Ti IV	697.9	Kr VII	751.10	Kr vi	793.43	Kr v
	Mo VII	699.497	V IV	751.908	V IV	794.19	Kr v
667.08	Ti xı	700.06	Kr vi	752.038	V iv	795.5 ^C	Vxx
668.097 ^C	Cr v	700.1	Kr vII	752.568	V iv	795.621	Mo VII
668.288	Mn vIII	700.1	Kr vii	754.521	Cr v	796.75 ^C	Mo XLI
669.926 ^C	Ті п	702.035	V iv	755.586	Mo VII	797.77 ^C	Mn XIX
670.13	Ti XII	702.96 ^C	Cr xv	755.74	Ti x	799.714	Ti v
671.6 ^C	Ti xviii	703.04 ^C	Fe xvII	756.786	Cr vi	799.8	Kr VI
671.788 ^C	Ті ш	703.68	Ti IX	756.9	Cu xxiv	801.182	Mn vi
672.042 ^C	Ті ш	704.027 ^C	Mn xxv	757.396	Mo vi	801.277	TATIL AT

SHIRAI ET AL.

Finding List - Continued

Wavelength $({ m \AA})$	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
804.233	Mo vi	848.517	Cr VII	881.960	Mo vII	934.50	Ті хи
804.5^{C}	Ni xvIII	849.54	Ti xu	882.083	Mo vii	936.183	Mn vi
806.573	Mo vii	849.687	Mo vii	883.472	Mo vii	936.492	Cr vII
807.347	Ti v	850.388	Mo VII	884.02 ^C	V xiii	936.557	V vi
810.23	Kr v	850.92 ^C	Mn xxII	884.146	V iv	939.329	Mn vi
810.65	Kr vi	851.14 ^C	V XIII	884.982	Ti v	942.610	Cr VI
812.564	Mo VII	851.705	Mn vi	884.994	Mo VII	944.05	Kr vi
813.34^{C}	V XVIII	852.120	Kr vII	885.438	Mo VII	944.410	Mo vi
814.148	Cr v	852.996	Mn vi	886.537	Mo VII	944.6	Cu xv
814.580	Mn vi	853.8	Kr xxIII	887.370	Mo vii	945.665	Mo vi
815.474	Cr VII	855.056	Mn vi	887.39 ^C	Ti xix	950.335	Mo vi
817.246	Cr v	855.066 ^C	Co xvii	887.930	Mo VII	950.816	Mo vi
818.43	Kr v	856.531	Mo VII	892.597	Mo VII	951.753	V vi
818.73^{C}	Cr xiv	856.935	Mn vi	892.709	Mo VII	952.684	Мо ун
818.803	Cr v	857.136	Ti v	893.798	Mo vii	952.8	Cu xvi
818.803	Cr v	857.55	Ti XII	897.124	V v	952.8 ^C	Mn xxi
819.019	Mo vII	858.073	Ti v	898.030	Mo vii	954.576	Mo vii
819.153	Cr v	858.43	Ti xII	898.53	Kr v	955.11 ^C	Cr xxi
819.25	Kr v	859.396	Mn vi	899.171	Ti v	956.615	Kr vi
$819.9^{ extbf{C}}$	Co xix	859.65	Kr vi	899.4	Kr vi	957.009	Cr vi
820.239	Cr VII	859.956	Mo vii	899.560	Mo vii	958.156	V vi
820.859	V v	860.274	Mo vii	901.404	Mo vii	958.716	V vi
821.202	V v	861.681	Mn vi	901.692	Ti v	959.093	Cr vi
821.788	Cr VII	861.85 ^C	Ti xvı	905.06 ^C	Co xxiv	959.316	Mo vii
822.176	Vν	862.786	Ti v	906.29 ^C	Mn xix	959.945	Ti XII
822.668	Vν	863.043	Cr VII	908.536	Mo vii	960.638	Kr vii
822.8	Kr vi	863.763	Mo vii	908.63	Kr v	961.376	Ti V
822.927	V v	865.060	Mn vi	908.740	Ti v	961.41	Ti xII
823.84	Kr vi	865.79	Ті ш	909.405	Mo VII	962. ^C	Cu xxviii
823.99 ^C	Cr xiv	865.800	Cr VII	909.63	Kr v	962.°C	Kr xxxv
824.826	Mo vii	865.806	Ti v	909.84 ^C	Fe xvi	962.031	V v
825.600	Cr v	865.967	Mo vii	910.47	Kr vi	964.039	V V Mo VII
825.891	Vv	866.662	Mn vi	911.0	Ni xxiii	964.341	V vi
825.98	Kr vi	866.676	Ti v	912.0	Kr XXII	964.35	V VI Ti XII
826.180 ^C	V xvi	867.030	Mo vii	912.4 ^C	Mn XV	965.093	
826.458	V VI	867.236	Mn vi	914.461	Mo VII		Kr vi
826.546	Mo vii	868.96	Kr vi	914.507	Mo VII	968.436	Mo VII
826.92 ^C	V xvii	869.615	Cr VII		Mn VI	968.703	Cr v
828.791	V V	870.980	Cr VII	915.050 916.099		968.80 ^C	Ti xvi
829.483	V V V v	871.085	Ti v		Mo VII	968.986	Mo VII
830.11	v v Kr vi			917. ^C	Kr xxxv	970.2	Kr vi
830.841 ^C		871.118	Mn vi	917.506	Mo VII	971.700	V vi
	Cr xxiv	871.296	Cr vII	918.14	Kr vi	971.8 ^C	Mn xv
832.309	Cr v	872.130	Mo vii	918.446	Kr vii	972.188	Ti v
832.682	Kr vii	872.240	Mn vi	919.73	Ti xv	972.930	Mo VI
834.17	Kr VI	873.618	Ti v	919.934	Kr vi	973.357	Ti v
834.199	Ti v	874.485	Мо ун	$920.802^{\rm C}$	Mn xxiii	974.86	Fe xvIII
836.33 ^C	V xvii	875.489	Ti v	920.983	Kr vn	976.767	V vi
836.644	Cr VII	876.064	Mo vii	921.600	Mn vi	978.064	Cr v
836.656	Ti v	876.378	Mo vii	921.920	Mo VII	978.166	Vν
837.157	Cr v	876.405	Mo vii	922.955	Mo vii	978.985	Mo vii
837.429	Mo vii	876.686	Ti v	923.400	Mn vi	979.1	Cr xix
838.315	Ti v	877.057	Mo vii	923.560	Mo VII	979.547	Vν
839.451	Mo vii	877.817	Mo vII	926.520	Cr VII	979.590	Cr v
839.655	Mo vi	878.257	Mn vi	927.4	Kr vi	979.934	Cr v
839.926	Ti v	879.268	Ti v	927.614	Mn vi	980.411	Kr vi
841.691	Ti v	879.28 ^C	Cr xvIII	928.507	Ti v	981.585	Ti v
841.747	Cr VII	879.332	Mo vII	929.485	Mo vii	982.736	Cr v
841.9^{C}	Mn xxi	879.51 ^C	V xIII	930.9 ^C	Co xx	983.632	V vi
842.195	Cr v	879.819	Mo vii	931.4	Kr vi	984.111	Mn vi
844.198	Mo vII	880.20 ^C	Mn xx	931.652	Ti v	984.419	V vi
844.989	Cr VII	880.244	Mo vii	932.162	Mo vii	984.462	Mo vii
845.5	Kr vII	880.275	Mo vii	932.476	Mn vi	984.530	Ti v
845.55	Fe xxII	880.555	Mo vii	933.125	Mo vi	985.951	Mn vi
$848.10^{\rm C}$	Fe xvi	881.012	Cr vII	933.176	Mo vii	986.035	Cr v
848.282	Mo vii	881.379	Ti v	933.785	Mn vi	986.681	V vi

Finding List - Continued

987.36 ^C 992.330 995.800				(Å)		(Å)	
992.330	V xxiii	1057.438	V vi	1123.288	Ti v	1182. ^C	Ti xxII
	V v	1058.298	Cr v	1126.090	Cr v	1182.14	Mo VI
	Mo vi	1059.41	Kr viii	1127.631	Cr v	1183.323	Mo VII
996.521	Vv	1060. ^C	Ni xxvii	1127.836	Viv	1183.635 ^C	Ti IV
997.61 ^C	V xvii	1060.651	Cr v	1128.546	Ti v	1184.130	V vi
997.7 ^C	Cr XI	1061.069	Kr vi	1129.2	Ti xvi	1184.130	
997.709	Cr v	1062.933	Cr v	1129.2 1130.C		i i	Cr VII
998.8 ^C	Cr xviii	1062.933 1064. ^C	V xx		Kr xxxv	1188.159	V vi
1000.019				1131.255	V IV	1188.161	V v
1000.019 1001. ^C	Mo vii	1071.054	V IV	1132.237	Ti v	1188.7 ^C	Ті хи
	Cr XI	1073.367	Cr v	1134.17 ^C	Со хии	1188.796	Ti v
.001.237	Mo VII	1073.953	Fe VII	1134.768	Cr v	1189.640	Cr vII
.001.714	V VI	1077.236	Ti m	1136.041	Ti m	1189.952	Mo vii
002.024	Cr v	1078.2	V XVIII	1136.050	Ti v	1190.4	Cu xiv
.002.371	Ті п	1079.3	Fe ххии	1137.529	Cr v	1190.867	Cr VII
.002.8	Kr vi	1080.637	Fe vII	1138.177	Cr v	1191.1	Ni xxi
004.361	V vi	1080.736	Fe VII	1139.275	Ti v	1191.195	Ti v
004.669	Ti III	1081.204	Ti III	1140.489	Cr v	1191.59	Kr viii
005.797	Ti III	1082. ^C	Mo xli	1141.435	Fe vII	1192.353	Ti v
.006.4 ^C	Mn xxi	1082.896	Ti III	1142.737	Vv	1193.492	Cr VII
.007.163	Ті пі	1083.917	V VI	1143.395	Vv	1193.492	Cr VII
008.119	Ті ш	1085.742	V vi	1145.256	Ti v	1193.950	Cr v
.008.709	V vi	1086.382	V IV	1146.668	Cr v	1194.462	Viv
.009.758	V vi	1086.681	Cr vi	1147.571	Ti v	1194.950	V vi
.010.260	Fe VII	1087.861	Fe vII	1150. ^C	Kr xxxv	1195.208 ^C	Ti IV
011.14	Kr vi	1089.079	Cr v	1152.509	Ti v	1195.208	
.011.20	Mo vi	1092.00	Vν	1153.20	Fe xvII	1190.042	Cr v
.014.565	V vi	1094.583	Ti v	1153.274	Ti v		Kr VII
.015.77	Kr vi	1094.583	Ti v	1153.274	Ti v	1197.598	Ti v
016.072	Fe vII	1095.343	Fe vii			1198.481	Cr VII
.016.204	V vi	1096.375	V IV	1154.992	Fe vii	1198.659	Ti v
019.216	Mo VII	1096.77	Kr viii	1157.575	Vv	1199.22	Kr viii
.019.249	V vi	1097.585	Ti v	1157.60	Kr viii	1200.834	Cr v
019.257	Mo vii	1097.383	V v	1159.516	Vv	1201.556	Cr v
019.76	Mo vi	1100.0 ^C		1163.516	Cr VII	1202.7	Kr vii
.024.663	V vi		Cr xxII	1163.520	Ti v	1203.011	Ti v
.027.219		1102.2 ^C	Со ххи	1163.879	Fe vII	1204.126	Cr v
029.044	V vi	1103.390	Cr v	1163.947	Cr vII	1205.9	Cr xx
	V VI	1103.926	Cr VI	1164.146	Cr vi	1207.866	Cr vII
029.842	Cr v	1104.225	Ті ш	1164.634	Ti v	1208.375	Fe vii
031.105	Cr v	1104.296	Cr v	1165.508	Mo vii	1210.290	Ti v
033.452	Cr v	1104.300	V vi	1166.183	Fe vII	1210.499	Cr v
035.037	Cr v	1105. ^C	V xvii	1166.6	Kr vII	1214.000	Ti v
037.905	Mo vii	1106.250	Cr v	1166.982	Ti v	1215.373	Ti v
038.64	Mo vi	1106.646	Ti m	1167.222	Cr vi	1215.38	Mo vi
038.953	V vi	1107.225	Cr vi	1168.043	Ti v	1215.483	Mo vii
039.125	Ti v	1108.322	Cr v	1168.8	Kr vii	1216.43	Fe XIII
039.543 ^C	V IV	1109.731	Cr v	1168.927	Ti v	1217.779	Ti v
039.690	Mn vi	1110.720	V IV	1169.3	Kr vii	1218.134	Mo vii
040.980^{C}	V IV	1111. ^C	Mn xix	1169.9 ^C	Ti ıx	1210.134 1221.C	
041.121	Mn vı	1112.199	V iv	1170.C	Kr xxxv		Co xx
042.544	Cr v	1112.436	V IV	1170.°C	Mn xvii	1222.352 ^C	V iv
042.544	Cr v	1112.452	Cr v	1170.143		1222.359	Ti v
045.044	Cr v	1113.952	Ti v	1170.143 1171.4 ^C	Cr VII	1224.1	Ti xvi
045.23	Kr vi	1114.114	Cr Vi	1171.40	Ti IX	1224.469	Ti v
045.711	V v	1114.350	Cr v		Ti v	1225.05	Ni xii
045.733	Cr v	1116.478	Cr v Cr v	1172.8	Kr vii	1225.178	V vi
046.294	Cr v	1117.559		1173.915	Fe vii	1226.523	V IV
046.364	Cr v	1	Cr v	1174.1 ^C	Ti xix	1226.588	Ti v
046.542	Cr v	1117.580	Fe VII	1174.72	Ni xiv	1226.653	Fe vII
047.18		1118.060	Fe xix	1177.469	Cr vi	1227.07	Mo vi
	Mo vi	1118.157	Cr v	1177.719	Ti v	1230. ^C	Mn xix
047.494	Cr v	1118.518	Cr v	1179.541	Ti v	1230.361	Ti v
048.236	Cr v	1119.037	Mo vii	1180. ^C	Co xxvi	1233.387	Ti v
050.901	Cr v	1120. ^C	Kr xxxv	1180.823	Fe vii	1235.461	Ti III
052.591	V vi	1120.6 ^P	Co xiv	1181.192	Ti v	1236.230	
053.3	Kr vı .	1121.066	Cr v	1181.192	Ti v		Mn vi
054.991	Cr v	1122.255	Cr v	1181.192	Cr VII	1237.028 1237.4 ^C	Ti III Ti XII

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
1239.690	Fe vII	1293.483	V vi	1354.08	Fe xxi	1426.335	V vi
1239.958	Ti v	1293.710	Ti v	1355.131	Viv	1426.644	Cr VII
1239.958	Ti v	1294.698	Ті ш	1356.529	Vıv	1426.654	V IV
$1241.^{ extbf{C}}$	Ti xvı	1294.698	Ті ш	1356.724	Ti v	1427.755	Mo VII
1241.671	Ti v	1295.883	Ti m	1356.852	Mn vi	1429.114	V IV
1241.671	Ti v	1296.225	Mo vii	1359. ^C	Mn xviii	1429.222	Ti v
1242.00	Fe XII	1298. ^C	Mn xviii	1359.59	Mn xi	1432.593	V vi
1242.248	V IV	1298.659	Ті ш	1360.504	Cr VI	1433.189	V vi
1243.718	V iv	1298.659	Ті ш	1361.923	VvI	1433.276	V IV
1244.287	V IV	1298.970	Ti III	1363. ^C	Ti xviii	1434.092	V IV
1244.405 1244.442	Ti v Fe vii	1300. ^C 1300. ^C	Cu xxix	1363.148	Ti v	1434.842	Viv
1246.131	Ti v	1302.551	Fe xxv Cr vii	1365.021 1367.797	Ті ш Ti v	1439.834 1440. ^C	V IV
1247.069	Vıv	1302.331	V iv	1367.797	Mo VII	1440.01	Mn xxiv Cr xi
1250.918	V IV	1304.173	Mo vii	1368.442	Ті ш	1440.01	Ti xv
1253.079	Ti v	1305.018	Ti v	1368.7 ^C	Со хи	1441.426	Ti v
1255.186	Mo vii	1305.420	V IV	1370.52	Ni xII	1441.713	Ti v
1255.766	Mn vi	1306.108	Ti v	1378.552	Ti v	1447.120	Vıv
1255.832	Cr vi	1307.696	Cr vII	1379.960	Ті ш	1448.457	Cr VII
1257.442	Ti v	1308.061	V IV	1380. ^C	Co xxvi	1449.681	V IV
1258. ^C	Mo XLI	1308.42	Ti xII	1380.105	V vi	1450. ^C	Fe xxv
1258.413	Mn vi	1309.502	V IV	1380.935	Ti v	1450.358	Ti III
1258.5 ^C	Со хии	1312.307	Cr VII	1386.9 ^C	V xvi	1450.49	Mn xı
1259.986 $1260.^{\mathbf{C}}$	Cr v	1312.717	V IV	1391.105	V IV	1451.042	Viv
1260.278	Cu xxviii V v	1313.339 1315.712	Mo vii Ti v	1391.173 1391.218	Mn vi	1451.496	Viv
1261.128	Cr vi	1317.566	V IV	1391.218	Mn vi Cr vii	1451.517	V vi
1263.501	Cr v	1317.500	Cr vII	1395.001	V iv	1451.736 1454.000	Ti IV V IV
1263.844	Fe VII	1320. ^C	Ni xxvii	1396.708	Mn vi	1455.194	Ti III
1264.04	Mo vi	1320.33	Mo vi	1400.416	V IV	1455.282	Cr VI
1264.101	Mn vi	1321.08	Ti xii	1403.280	Ti v	1455.734	Ti III
1264.659	Ti v	1321.719	V IV	1403.562	Ti v	1457.6	V xix
1264.746	Cr vi	1321.917	V IV	1403.618	V IV	1458.660	Mn vi
1265.138 ^C	Ti IV	1322.23	Mn XII	1404.376	V vi	1460.723	Ti v
1266.272 ^C	Ti IV	1322.58	Ti XII	1405.156	Mn vi	1460.991	V vi
1267.68	Kr viii	1322.58	Ti xii	1405.911	Ti v	1462.65	Kr xxIII
1268.490 1268.51	Ti v Mo vi	1324.5 ^C 1326.279	V xxı Ti v	1408.312	Mn vi	1463. ^C	Ni xxviii
1268.7	Kr xxi	1326.279	V IV	1408.381 1408.639	V vi V iv	1463.49 1465.683	Fe x Ti v
1269. ^C	Cu xxix	1326.807	V IV V IV	1410.018	VIV	1465.861	Cr v
1270. ^C	Co xxi	1327.592	Ti III	1410.054	V VI	1466.460	V vi
1271.153	Viv	1328.572	Ti v	1410.60	Cr xvi	1467.06	Fe XI
1272.444	Mn vi	1329.288	V iv	1411.309	Ti v	1467.338	Ti IV
1272.972	V IV	1329.837	Ti m	1412.686	V IV	1467.588	Mo vii
1273.529	V IV	1329.968	V IV	1414.409	V IV	1469.188	Ti IV
1276.94	Kr viii	1330.355	V IV	1414.842	V iv	1476.458	Mo VII
1277.23	Ni XIII	1331.665	V IV	1416.416	V vi	1477.769	Cr v
1281.091	Ti v	1332.381	Fe VII	1417.659	Cr vi	1479.17	Mo vi
1281.439 1281.439	Cr VI Cr VI	1332.459 1333.874	VIV	1418.533	Viv	1481.651	Cr v
1281.439	Cr vi	1334.039	Mn vi V vi	1418.921 1419.580	V iv V iv	1482.757	Cr v
1281.541	Ti v	1334.493	V IV	1420.036	Ti III	1484.666 1488.755	Cr v Mn vi
1282.195 ^C	Ti IV	1336. ^C	Cr XVIII	1420.440	Тіш	1489.04	Cr x
1282.484	Ti III	1336.317	Mo vii	1421.413	Mo vii	1489.711	Cr v
$1283.334^{\rm C}$	Ti IV	1338.494	Mo vii	1421.631	Тіш	1490.107	V v
1283.463	Ti v	1339.335	V IV	1421.767	Ті ш	1491.978	Ti III
$1285.^{\mathrm{C}}$	Mn xx	1339.691	Ті ш	1422.278	Mo vii	1496.597	Ті п
1285.102	Mn vi	1340. ^C	Mn xx	1422.405	Ті ш	1497.421	Mo VII
1286.036	Ti v	1340.7	Cr xvII	1423.100	V vi	1497.966	Cr v
1286.238	Ti III	1341.162	Mo VII	1423.420	V IV	1498.697	Ті ш
1286.365	Ti III	1342.741	Cr vi	1423.719	V IV	1499.173	Ті ш
1289.299	Ti III	1344.493	Vıv	1424.140	Ті п	1499.596	V v
1291.622	Ti III	1345.494	Mn vi	1424.197	V IV	1500. ^C	Mo XLI
1293.2 ^C 1293.228	Mn xxii	1347.030	V IV	1424.916	V IV	1500.C	Ni xxviii
1430.446	Ті ш	1349.40	Fe XII	1425.525	V vi	1502.311	Ті ш

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectru
1504.621	Ті ш	1661.22	Mo vi	1799.082	Ti v	1933.955	Cr vi
1504.974	Ті ш	1665. ^C	Ti xviii	1800. ^C	Kr xxxv	1935.306 ^C	Ті ш
506.084	Ті ш	1673.99	Mo vi	1800. ^C	Ti xxı	1939.065	V IV
510.51	Ni xi	1675.150	Ti v	1803.080 ^C	Ті ш	1940.009 ^C	Ti III
512.655	V vi	1678. ^C	Mn xx	1806.184	V IV	1940.909 ^C	Ti III
515.020	V vi	1680.204	Vv	1809.854	V IV	1941.510 ^C	Ti III
516.104	V vi	1684.647 ^C	Ti m	1810.566	VIV	1943.978 ^C	Tim
517.931	V vi	1686.74	Ni xII	1811.185 ^C	Ti m	1944.271 ^C	Tim
518.181	Ti v	1687.165	Ti v	1811.425	Vv	1944.271° 1946.C	
519.030	Cr v	1689.501 ^C	Ті ш	1813.050			Mo XLI
$520.^{ m C}$	Mn xxiv	1691.0	Cu xxiii	1	V IV	1946.322 ^C	Ті пі
520. 520.142	V IV	1691.0 1693.9 ^C		1817.45	Kr vi	1946.434	Ti v
		1694.1 ^C	Cr IX	1817.676	Vıv	1946.563	Мо уп
522.493	V IV		V ix	1820.76	Mo vi	1946.772	V IV
525.756	V IV	1695.2 ^C	Co xxvii	1825.406 ^C	Ti III	1947.540 ^C	Ti III
527.223	V IV	1696.031	Ti v	1825.836	V iv	1948.508	Ті ш
527.721	V iv	1696.29	Mo vi	1827.899	Ti v	1948.909 ^C	Ті пі
536.373	V vi	1700. ^C	V xxii	1828.252 ^C	Ti m	1950.20	Kr vi
538.546	Ti v	1705.629	Cr v	1828.292	Ti v	1950.612 ^C	Ті п
548.430	Mn vi	1705.968	Cr v	1829.415 ^C	Ti III	1950.640 ^C	Тіш
550.435	Mo vii	1711.331 ^C	Ті ш	1829.605 ^C	Ті п	1951.432	Viv
564.10	Cr x	1715.352 ^C	Тіш	1830.4 ^C	V viii	1956.009 ^C	
$564.685^{ m C}$	Ti IV	1716.725	V v	1831.426 ^C	Ti III		Ti 111
564.850 ^C	Ti IV	1717.396	Ti v		Ti III Ti v	1956.108 ^C	Тіш
565. ^C	Cr xxi	1717.42		1831.875		1957.172 ^C	Ті пі
569.423	Ti v		Ni xi	1832.274 ^C	Ti m	1960.154	Mo vii
573.0 ^C	V x	1718.07	Mo vi	1832.5 ^T	Kr VII	1962.154	V v
574.2 ^C		1719.4	V xv	1833.550 ^C	Ті ш	1962.969 ^C	Ті ш
	Mn x	1720. ^C	Cu xxviii	1834.721	Mo vii	1963.103	V IV
579.696	Cr v	1720.712	V v	1837.436	Ti v	1963.730	Mo vii
582.56	Fe x	1724.7 ^C	Ti ıx	1837.442	Cr v	1965.298 ^C	Ті ш
584.942	V vi	1724.994	V v	1841.490	Ti v	1966.244	Vıv
590. ^C	Cr xxIII	1728.497	Cr v	1841.57	Fe 1X	1969.475	Mo vii
590.506	V vi	1731.73	Mo vi	1845.4 ^C	Ti VIII	1970.017 ^C	Ti III
590.568	Mo vii	1736.182	V v	1847.5 ^T	Kr VII	1971.471	Viv
591.721	Cr v	1736.4 ^C	Mn xxII	1849.961 ^C	Ti III	1975.1 ^C	
595.45	Mo VI	1740. ^C	Co xxvii	1855.765	Ti V	i	Fe xxv
598.697	Ti v	1747.639	Ti v	1861.558	V IV	1978.981 ^C	Ti III
600. ^C	Cr xxIII	1748.671	Tiv	1864.451	Ti v	1979.814	Mo vii
600.353	Ti v	1756.36	Kr vii		11 V	1982.422	V IV
600.726	Ti v	1757.523 ^C	Ti III	1866.75	Ni xiv	1985.5	Kr vii
601.915	V IV	1758.994 ^C	Тіш	1871.3	Cu xvi	1988.750	Ti v
603.191	Cr v	1759.561 ^C		1877.911 ^C	Ті пі	1989.4 ^C	Ti vII
603.21	Fe x	1759.757	Ti m	1878.458	Ti v	1990.712	V iv
605.93	Ni xi		Ti v	1878.894 ^C	Ті п	1991.915	Mo vii
607.035		1760. ^C	V xxII	1881.886	Ti v	1993. ^C	Ti xvi
609.1 ^C	Cr v	1764. ^C	Mn xix	1884.638 ^C	Ті пі	1997.722	Vıv
	Ti xx	1764.5 ^C	Cr xv	1890. ^C	Ni xxvii	1999.320	V iv
611.330	Cr v	1766.99	Kr vIII	1895. ^C	Mn xvIII		- ••
611.70	Fe x	1770.644 ^C	Ті ш	1901.417 ^C	Ті ш	Air	
611.879	V IV	1771.452	Ti v	1907.462	Cr VI	1111	
622.607	Cr v	1776.0	Cu xxiv	1908.C	V xx	2000.4	NI:
$624.^{ m C}$	V xvii	1777.672 ^C	Ti III	1910.062	VV	2000.4	Ni xi
629.786	V vi	1778.1	Ti xvIII	1916.7	Kr vIII		Viv
630.613	Ti v	1778.651 ^C	Тіш	1917.21	Fe IX	2003.14	Mo vi
630.989	Cr v	1782.007 ^C	Ti III	1917.21		2007.360	Ti III
633.3^{C}	Vix	1783.644°	Ti m		Ni xxIII	2007.604	Ті ш
633.780	Ti v	1784.450 ^C	Ti III	1917.686	V v	2010.800	Ti III
538.495	Cr v	1785.88		1918.25	Fe x	2011.180	V IV
639.403	Cr v	1787.418 ^C	Mo vi	1920.163	Ti v	2014.199	V IV
640.158			Ti III	1921.915	V v	2015. ^C	Mn xix
	Mo vii	1788.979 ^C	Ті ш	1924.089	Cr vi	2016.880	Mo vii
644.053	Cr v	1792.589 ^C	Ті пі	1925.823 ^C	Ti m	2017.614	Ti v
652.256 ^C	Ті ш	1792.672 ^C	Ті ш	1928.88	Ni xxII	2027.C	Fe xxv
652.595	Cr v	1792.992	V v	1929.10	Kr viii	2027.144	Viv
655.639	Cr v	1797.159 ^C	Ті ш	1929.138	V v	2033.572	
656.3	Cr xvII	1797.5 ^C	Ti viii	1929.448 ^C	Ti III		Mo vii
656.78	Kr viii	1797.646	V v	1929.448° 1930.°C		2042.35	Fe IX
660.935 ^C	Тіш	1797.765 ^C	Ti III		Ti xxı	2042.454	Viv
	T 1 111	1191.100	1 1 111	1932.783	Cr vi	2042.7	V xvi

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
2044.777	Cr vi	2176.648	Cr vi	2356.369	V iv	2544.7	Cu xvi
2044.777	Cr vi	2179.154	Mo vii	2356.624	V IV	2545.08	Ti xv
2044.777	Cr vi	2184.26	Ni xıv	2359.142	Ti IV	2546.228	V IV
2045.858	Ti v	2186.394	V iv	2359.499	Ti IV	2546.880	Ti IV
2049.8	Kr vii	2187.562	Viv	2364.512	V IV	2547.314	Ti IV
2051.06	Kr vi	2188.0 ^C	Mn xxi	2370.260	V v	2548.01	Ті ІІІ
2055.376	Mo vii	2192.39	Ті ш	2373.4 ^C	Co XII	2548.588	Ti III
2056.8	Kr vII	2193.25	Mo VI	2373.458	V v	2548.765	Ті ш
2060.113	V IV	2193.60	Ті ш	2374.986	Ti m	2550.971	VIV
2063.563	Viv	2195.388	Vıv	2377. ^C	Mn xxv	2556.567	Тіш
2067.564	Ti IV	2199.223	Ті пі	2378.290	V IV	2556.915	Viv
2068.3	Kr VII	2200. ^C	Kr xxxv	2381.712	Vıv	2557.897	V IV
2068.7	Kr vIII	2200.862	Mo vii	2384.634	Ti v	2559. ^C	Mn xx
2070. ^C	Co xxvi	2204.859	Mo VII	2384.729	V IV	2563.436	Ті пп
2073.3	Kr vII	2205.8 ^C	Mn xxi	2387.663	V IV	2565.423	Ti III
2076.3	Kr VII	2214.740	Ti v	2395.450	Viv	2565.93	Fe XII
2078.973	Mo vii	2219.9	Kr vIII	2402.855	V IV	2567.556	Тіш
2079.300	V iv V iv	2225.59 2236.4 ^C	Ti III Mn xxi	2405.68	Fe XII	2569.812	V IV
2084.433 2085.3	V IV Cu xv	2236.40	Mn XXI Ti III	2410. ^C 2413.256	Cu xxviii V iv	2570.724	V IV
2085.51	Cu xv Ni xv	2236.90	II III Kr viii	2413.256	V IV V IV	2576.470	Ti III
2086.073	V IV	2237.2	Ti III	2413.524 2413.989	V IV Ti III	2577.127 2578.77	V v Fe xiii
2088.737	VIV	2237.773	Ti III	2416.552	Viv	2580.456	Ti III
2090.9	Cr xix	2245.5 ^C	Co xiii	2410.332 2418.3 ^L	Kr viii	2584.636	Viv
2091.104	Ti v	2247.C	Co xxi	2421.317	Viv	2587.258	VIV
2097.299	Ті ш	2248.554	Mo VII	2421.317 2425.3 ^L	Kr viii	2592.747	V IV V IV
2098.042	Ti v	2268.C	Mn xix	2425.3	V iv	2595.858	VIV
2099.862	Ti III	2268.298	V IV	2432.518	V IV	2596.761	VIV
2103.106	Ti IV	2270. ^C	Cu xxviii	2433.530	V IV V IV	2598.C	Co XIII
2103.60	Ті ш	2270.C	Fe xxv	2433.550 2440. ^C	Cu xxviii	2598.287	V iv
2104. ^C	Co xxII	2273.28	Mo vi	2446.017	V iv	2599.983	VIV
2104.857	Ti III	2273.428	Mo VII	2446.802	V IV	2603.213	VIV
2105.092	Ті ш	2276.5	Kr VIII	2449.404	VIV	2605.523	V IV V v
2105.709	V IV	2280.C	Cu xxviii	2449.723	V IV	2606.4	Cr xviii
2106.560	V IV	2280.C	Ti xvi	2450.329	V IV	2607.633	Viv
2114.018	Mo vii	2285.4	Mo xxviii	2450.869	V IV	2610.098	V V
2117.15	Ti xıv	2290.2 ^C	Co XIII	2463.796	V IV	2610.323	V V V IV
2120.052	V IV	2292.2	Kr VIII	2464.720	Viv	2614.154	V IV
2125.50	Ni xiii	2293.43	Mo vi	2467.287	Viv	2620.320	V IV
2129.58	Ті ш	2295.7^{T}	Kr viii	2478.119	V IV	2620.5	VV
2129.934	V IV	2298.0	Fe xxi	2480.C	Mn xxiv	2623.483	V IV
2136.330	V IV	2300.°C	Kr xxxv	2480.739	V IV	2624.213	V IV
2136.433	Cr vi	2313.236	V iv	2487.4 ^C	Mn xxII	2628.090	VIV
2137.741	V IV	2314. ^C	Mn xxv	2494.351	V IV	2634.C	V XVIII
2137.8	Kr viii	2318.95	Vv	2495.708	Cr vi	2636.401	V IV
2138.90	Ті ш	2320.°C	Kr xxxv	2497.049	Vıv	2636.936	VIV
2141.199	V IV	2320.4 ^P	Co xiv	2497.5	Fe IX	2644.946	VIV
2146.828	V IV	2321.962	V iv	2506.969	V IV	2645.541	VIV
2149.852	V IV	2322.259	V iv	2509.606	V iv	2648.71	Fe xı
2150.231	V IV	2326.291	V iv	2510. ^C	Ni xxvii	2650.613	V IV
2150.231	V IV	2326.749	Vv	2511.377	V iv	2655.408	VIV
2150.819	Mo vii	2327.019	Ti III	2512.242	V IV	2656.868	V IV
2151.039	Mo vii	2331.352	Ті п	2516.053	Ті ш	2665.1	Fe xx
2151.087	V IV	2331.66	Ті ш	2519.803	V IV	2667.837	Viv
2152.3^{T}	Kr viii	2334.340	Ті п	2527.8	Kr viii	2669.483	VIV
2155.336	V iv	2338.032	V IV	2527.840	Ті ш	2674.C	Mn xii
2157. ^C	Cr xxi	2339.000	Ті пі	2529.9	Kr vIII	2686.5	Mo xxiv
2159.055	V IV	2339.548	V iv	2530.520	V IV	2688.32	Ti IV
2160.222	V IV	2340.140	VIV	2532.982	VIV	2689.39	Ti IV
2162.498	V IV	2340.704	V IV	2535.C	Mn xii	2690. ^C	Ni xxvii
2167.200	V IV	2344.6	Ti xıx	2538.3 ^C	Mn xi	2692.158	Ti III
2169.08	Fe хи	2346.786	Ti III	2540. ^C	Ni xxvii	2694.4 ^C	
2170.384	V IV	2350.8	Mo xxvii	2540.057	Ti III	2701.956	Cr x
2173.893	V IV	2351.934	V IV	2540.057	Ti IV	2701.956	Ti III V IV
2173.893							

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
2716.594	V IV	2957.306	Ti IV	3240.71	Ті ш	3380. ^C	Cu xxvii
2717. ^C	V xx	2970.4	Kr viii	3241.460	V IV	3381.7 ^L	Kr vi
2718.64	Ti III	2973.5	Kr viii	3245.589	Ті пт	3381.9 ^C	Mn xi
2718.722	V IV	2984.747	Ті ш	3246.628	Ті ш	3382.714	Ті ш
2720. ^C	Mn xviii	2992.0	V v	3254.881	Ті п	3385.336	V iv
2720. ^C	Ni xxvii	3000. ^C	Cu xxviii	3259. ^C	Mn xix	3386.98	Mo vi
2722.C	Ti xvr	3000. ^C	V xxII	3263.426	Ti III	3388.5	Fe XIII
2727.780	V IV	3000.	Fe IX	3267.1 ^C	Ti xv	3390. ^C	Fe xxv
2728. ^C	Cr xxiv	3004.2	Vν	3268.077	V iv	3390.222	Ті ш
2730. ^C	Cr xxIII	3005.3 ^C	V x	3272.50	Ti IV	3392.945	Ті ш
2740.545	V IV	3007.6	Cu xvii	3272.773	Ti IV	3394.7 ^L	Kr vi
2740.669	V v	3010. ^C	Co xxvi	3274.931	V iv	3395.387	Ті ш
2740.966	V IV	3014.5 ^C	V x	3278.31 ^C	Ti III	3395.981	Ті ІІІ
2743.523	V IV	3020.1	Fe x	3278.754	Ті ш	3396.432	Ті ш
2751.528	V IV	3033.8 ^C	Vx	3280. ^C	Co xxvi	3397.235	Ті ш
2758.4 ^C	Cr XI	3034.27	Viv	3284.560	V IV	3400. ^C	Mn xxiv
2763.860	V IV	3040.C	Co xxvi	3284.6 ^C	Ti 1X	3400.891	Ti III
2764.219 2773.3 ^C	V IV	3040.513	Тіпі	3290. ^C	Ti XXI	3404.462	Ті ш
2773.3° 2773.72	Cr XI Ti III	3052.346	V iv	3293.00	Mo vi	3408.60	Mo vi
2774.0 ^C	Ті Ш	3055.864	V iv	3293.29	Mo vi	3411.404	Ті ш
2774.0° 2774.997	V v	3060.146 3066.51 ^C	V IV	3294.259	V IV	3417.621	Ті пі
2777. ^C	V V Cr XXI	3066.51	Ti III	3295.501	Viv	3421.161	Ті ш
2780.C	Co xxvi	3067.85 3070.C	V IV	3295.764	Ті ш	3433.52	V IV
2780.139	V v	3072.0	Fe xxv	3297.7 ^C	Ti IX	3438. ^C	Ti xix
2786.01	Ti III	3077.476	Fe XII	3298.371	V IV	3438. ^C	V xvii
2791.7 ^C	Со хи	3084.36	V iv V iv	3301.1 ^C	Cr IX	3448.410	V IV
2798.72	Ti III	3092.641	V IV V v	3303.719	V IV	3450. ^C	Fe xxv
2798.910	Ті ш	3096.226	V V V IV	3307.C	V xviii	3452.741	V IV
2799.3 ^C	Cr XI	3099.2 ^P	Co xiv	3310.904	Ті п	3454.2	Fe x
2802.94	Ti III	3101.5 ^C	V x	3313.008	Ті ш	3455.325	V iv
2803.15	Ti III	3110.416	V X V IV	3314.175	V iv	3459.40	V IV
2806. ^C	Cr xxiv	3113.022	VIV	3315.742	Тіш	3471.6	Fe IX
2807.20	Ti III	3121.304	V IV V IV	3316.470 3318.788	V v	3471.989	V IV
2809. ^C	Co xxiv	3122.43	Mo vi	3320.943	V IV Ti III	3473.458	V IV
2812.57	Ті ш	3124.0	Fe IX	3323.74	Mo vi	3476.60	Mo vi
2818.52	Ni xxi	3133.32	Mo vi	3326.4 ^C	Cr x	3483.5	Kr vIII
2818.992	Ti III	3135.192	Viv	3328.527	V IV	3484.77	Mo vi
2820. ^C	Co xxvi	3139.94	Vv	3331.105	Ti III	3486.9	Kr viii
2820.78	Ті ш	3140. ^C	Fe xxv	3332.252	Ti III	3487.63 3487.669	V IV
2821.69	Ті пі	3140. ^C	Ni xxvii	3333.457	Ti III	1	Ti III
2824.131	V IV	3150.317	Ti III	3333.986	Viv	3488.773 3489.51	Ti III V IV
2824.45	Ті ш	3154. ^C	V xx	3334.79	Viv	3490.913	
2825.90	Ті ш	3154.518	Ti III	3337.4	Kr viii	3496.419	Viv
2834.089	Vıv	3156.718	Ti IV	3338.5	Ni xi	3500.4	V IV Cu XIII
2836.972	Ti IV	3167.0	Ni xII	3340. ^C	V xxIII	3500.57	V iv
2841.1	Mo xxix	3167.828	Ті ш	3340.202	Ti III	3504.10	V IV V IV
2847.26	Ti III	3170.955	Ti IV	3343.20	Mo vi	3505.70	VIV
2850.160 2861. ^C	V IV	3177.9 ^C	Cr XI	3346.182	Ti III	3506.2	Kr viii
2861. 2862.596	Mn XII	3184.839	Ti III	3346.82	Ті ш	3514.25	Viv
2862.596 2874.2 ^C	Ti tv	3189.4	Kr viii	3350. ^C	Fe xxv	3525.89	V IV
2874.2° 2885.4	Cr XI	3190.580	Ti III	3354.71	Ті ш	3533.6	Fe x
2888.14	Cr xix	3191. ^C	Ti xvi	3355.1	Fe ix	3541.361	Tiıv
889.36	Ti III	3193.771	Ti III	3357.922	Ti m	3545.98	Viv
2899.575	Ti IV	3200.888	Ti m	3358.101	Ті ш	3550.C	Mn xxiv
925.9 ^C	V IV	3227.507	Viv	3359.9 ^C	Ti IX	3550.718	VIV
2927.2	Mn xı V v	3227.945	Ті п	3363.517	V v	3553.3	Mo XXIII
		3228.887	Ti III	3370.625	Ti III	3558.8 ^T	Kr viii
2929.961	Ti IV	3229.92	V iv	3370.8	Ti xvII	3576.438	Ti IV
2930.490	Тіш	3230.047	Ti III	3371.089	Vν	3576.70	Tim
2931.2	V v	3234.251	V IV	3371.623	Ti m	3577.1	Fe x
2937.328	Ti IV	3235.282	Ti III	3371.971	Ti III	3581.392	Ti IV
2949.2	Kr vIII	3239.77	Ti III	3376.007	Ті ш	3590.0	Kr VIII
2950.134	V v	3240. ^C	V xxIII	3377.686	Ti III	3597.C	Ti xviii
$2956.0^{ m C}$	Mn x	3240.6 ^C	Mn xi	3377.896	Ti m	3600. ^C	Mn xxiv

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
3601.23	Ni xvi	3948.365	Ti m	4218.518	Ті ш	4320. ^C	Mo XLI
$3608.2^{\rm C}$	Cr x	3966.156	Ti IV	4220. ^C	Cr xxIII	4321.91	Ті ш
3609.269	V v	3966.598	V v	4220.282	Ті ш	4325.93	Ті ш
3615.039	V v	3970.204	Ti III	4221.357	Ti III	4326.824	Ti 111
3617.966	V v	3979.12	Ti III	4222.98	Ti III	4326.824	Ti III
3633. ^C	Ti XIX	3986.400	Ті ш	4224.127	Ti III	4327.62	Ті ІІІ
3642.7	Fe IX	3986.8	Fe хı	4224.575	Ti III	4328.25	Ti III
3642.887	Vv	3989.471	V v	4231.070	Ті ш	4329.496	Ti III
3648.724	V v	3991. ^C	Ti xxII	4231.2	Ni xII	4330. ^C	Cr xxi
3677.8^{T}	Kr VIII	3995.525	Ti m	4232.04	Mo vi	4330.0 ^C	V x
3681.04	V IV	3996.8	Cr XI	4234.415	Ті ІІІ	4332.7 ^L	Kr viii
3684.1	Kr VIII	4011.047	Ті ш	4240. ^C	Ni XXVII	4333.542	Ti III
3685.5	Mn XII	4012.631	Ті ш	4241.29	Ті ш	4335.81	Ті ш
3690. ^C	Ni xxvii	4014.1 ^C	Vix	4241.29	Ті ш	4337.7	Kr viii
3691.236	Viv	4030. ^C	V xxII	4243.89	Ti m	4338.1	Kr viii
3692.8 ^C	V VIII	4038.6	Cr xviii	4243.89	Ті пі	4338.22	Ті ш
3702.9^{T}	Kr vIII	4047.538	Ті ш	4246.24	Ті п	4338.712	Ті пі
3708.1	Mo xvi	4060. ^C	Co xxvi	4247.147	Тіш	4338.712	Ті ш
3710.5	Kr viii	4060.208	Ti III	4247.615	Ti III	4343.246	Ti III
3712.7	Kr viii	4062.04	Mo vi	4248.540	Ті ш	4348.04	Ті ш
3725.8 ^C	Cr x	4066.169	Ti III	4249.C	Co xx	4348.40	Ті ш
3727.4	Kr viii	4069.538	Ti m	4250.086	Ti III	4350.6	Co xv
3735.32	Mo vi	4069.538	Ti III	4252.121	Ті ш	4352.282	Ti III
3746.36	Vv	4069.992	Ti III	4254.114	Ti III	4357.27	Ti III
3755.5 ^C	Mn xxII	4079.958	Ti III	4257.045	Ті ш	4358.89	Ті п
3759.0 3760. ^C	Kr vIII	4098.879	Ti III	4258.472	Ti III	4359.4	Fe IX
3760.° 3770.°C	Cr xxIII	4100.050 4110.7 ^C	Ті п	4259.009	Ті п	4361.15	Ті ш
	Mn xxiv		V ix	4260.763	Ti III	4362.34	Ti III
3770.2 ^C	Vix	4119.140 4123.5	Ті п	4261.904	Ti m	4363.740	Ті ш
3770.7 3779.793	Kr viii Ti iii	4123.5 4130.C	Mo xvii	4262.441	Ti III	4363.740	Ti III
3800. ^C			V XXII	4262.93 4264.4 ^C	Ti III	4365.33	Ti 111
	Mn xxiv	4131.215 4133.779	Ti ıv		Ti viii	4365.33	Ti 111
3800.8 3801.2	Fe іх Со хіі	4133.779 4133.96 ^C	Ti IV Ti III	4269.84 4270. ^C	Ti m	4367.68	Ti III
3816.178	Ті ш	4134.5 ^C			Ti xxı	4368.56	Ti III
3820. ^C	Cr xxIII	4134.5	Mn xxi	4270.95	Ті ш	4375.1	V v
3828.735	Ti III	4130.72	V IV Ti III	4271.86	Ti III	4376.93	Ti III
3833.74	V IV	4139.424 4144.772	Ti m	4272.95 4275.528	Mo vi Ti iii	4377.77 4378.08	Ti 111 Ti 111
3834.4	Ti xvii	4145.050	Ti 111	4275.823	Ti m	4378.938	Ti III
3836.42	Ті пі	4145.630	Тіш	4276.35	Тіш	4378.938 4380.C	V xxii
3840.9	Kr xxiii	4160.42	Ti III	4270.33	Ti III	4380.734	Ti III
3849.043	Ti III	4165.721	Тіш	4284.090	Тіш	4395.92	Ti IV
3857. ^C	Mo xli	4176.540	Ti m	4284.67	Ti m	4397.327	Ti IV
3872.495	Ti III	4180. ^C	Cr xxIII	4285.61	Ti III	4398.729	Ti III
3873.491	Ti III	4180.02	Ті ш	4286.516	Ti III	4400.570	Ti 111
3876. ^C	Ti xxII	4180.02	Ті ш	4288.66	Ti m	4400.570	Ti III Ti III
3881.212	Ti III	4180.22	Cu xiv	4289.25	Ті ш	4403.451	Ti IV
3893.629	Ti III	4183.58	Ti III	4291.925	Ti III	4406.197	Ti 111
3896.330	Тіш	4191.091	Тіш	4291.923	Ті п	4407.31	Ti III
3897.250	Ti III	4191.091	Тіш	4293.735	V v	4414.489	Ti III
3910. ^C	Cr xxiii	4200.061	Тіш	4295.03	Ті пт	4414.489	Ti III
3915.253	Ti III	4200.301	V v	4295.03	Ti III	4424.399	Ti III
3915.472	Ті ш	4200.522	Ti III	4295.42	Ti III	4428.298	Ti III
3921.384	Ті ш	4203.410	Тіш	4296.702	Ті пі	4430.635	Ti III
3921.611	Ті ш	4203.410	Ті пі	4290.702 4299.5 ^L	Kr viii	4433.912	Тіш
3922.953	Ti III	4204.916	Ti III	4304.505	Ti III	4439.23	Ti III
3924.092	Ті ш	4207.491	Ті пі	4304.303	Ті ш	4439.23 4440. ^C	Cu xxviii
3924.860	Ті ш	4210.133	Ti m	4309.40	Ti m	4440. ^C	Fe xxv
3929.2 ^L	Kr viii	4210.133	Ti III	4309.40	Тіш	4440.657 ^T	ге хху Ті ш
3938.456	Ti III	4212.95	Ti III	4311. ^C	Ti xviii	4440.657	Ti III
3940. ^C	Cu xxviii	4213.257	Ti III	4311.8	Fe x	4442.25	Ti 111
3940.570	Ti III	4213.237	Тіш	4312.163	Ti III	4450.75	V IV
3941.6	Cu xviii	4214.23	Тіш	4317.98	Ti m Ti m	4450.75	V IV Ti III
3941.0	Ou AVIII	1 3413.040	7 1 111	1 4011.30	T I 111	ı 440∠.ƏƏō	11111
3943.559	Ті ш	4215.525	Ті ш	4318.44	Ti III	4466.078	Ti III

Finding List - Continued

Wavelength $(Å)$	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
4479.195	V IV	4731.11	Ті ш	4974.79	Ті ш	5278.70	Ti III
4479.969	Ті ш	4744. ^T	Ni xvii	4976.04	Ti III	5282.14	Ti III
4480.359	Ті ш	4760.11	Ті ш	4976.8	V v	5290. ^C	Ti xviii
4484.8	Vν	4763.58	Ті ш	4985.653	V iv	5293.60	Ті ш
4496.510	Ті ш	4767.36	Ті пі	4988.36	Ti III	5293.95	Ti III
4505.17	V iv	4768.29	Ті ш	5005.16	Ti III	5294.115	V v
4507.112	Ті ш	4769.064	Vν	5008.80	Ti III	5298.43	Ti 111
4508.67	V iv	4771.46	Ті ш	5008.80	Ті ш	5300. ^C	Cr xxIII
4510.4	V v	4774.35	Ті ш	5010.14	Ті ш	5301.20	Ti m
4511.579	Тіш	4780.787	V v	5018.92	Ti III	5302.86	Fe xiv
4514.697	Ті ш	4784.09	Ті ш	5020.43	Ti III	5306.88	Ті ш
4515.9	V v	4791.035	Ti III	5021. ^C	Mn xix	5310.77	V iv
4518.363	Ті п	4793.17	Ті ш	5024.52	Ті ш	5323.53	Ті ш
4518.58	V IV	4793.503	Ті ш	5035.460	V iv	5328.40	Ті пі
4519.42	Ті ш	4800.273	Ті ш	5042.77	Mo vi	5349.91	Ті ш
4520. ^C	Kr xxxv	4801.54	V IV	5043.55	Mo vi	5352.320	V IV
4520.375	Ti III	4802.32	Ті п	5049.98	Ті ш	5352.39	Ті ш
4521.146	Ti III	4810.61	Ti III	5064.00	Ti m	5353.090	V IV
4533.26 ^C	Ti III	4821.80	Ti III	5068.22	Ті ш	5355.75	Ті ш
4540.216	Ti III	4824.531	Ti m	5069.39	Ті ш	5356.070	V v
4544.314	Ti m	4828.990	V IV	5074.90	V IV	5356.51	Ті ш
4545.976	Ti III	4831.33	Ti III	5079.413	Vv	5358.53	Ті ш
4549.842 4555.456	Ті пі	4838.25	Ті ш	5080.0	Vv	5366.750	V v
	Ti III	4841.26	V iv	5083.80	Ti III	5367.17	Ті ш
4555.777 4560. ^C	Ti m	4845.21	Vıv	5097.25	Ті ш	5375.8	Cu xvi
	Ti xxi	4849.658	Ті ш	5109.81	Ті ш	5387.210	V iv
4565.63	V IV	4854.49	Ti III	5115.8	Ni xiii	5389.05	Ті пі
4572.204	Ti III	4855.05	V IV	5119.08	Ті ш	5395.69	Ті ш
4572.204	Ti III	4856.22	Ti III	5121.31	Ti III	5398.93	Ti IV
4572.85	Ti III	4858.129	Ті пт	5127. ^C	V xx	5400. ^C	Co xxvi
4576.532	Ti III	4865.938	Ti III	5127.35	Ti m	5400. ^C	Mn xxrv
4578.521	Ті п	4873.995	Ті ш	5128.06	Ti m	5404.94	Ті ш
4579.642	Ti m	4880. ^C	Ti xxı	5130.67	Ті ш	5404.94	Ti III
4581.730 4585.3	Тіш	4884.321	Ті пі	5130.78	V iv	5416.76	Ті пі
4590. ^C	Fe ix Co xxvi	4885.299	Vv	5136.66	Ti III	5442.704	V v
4601.51	Ti III	4886.36	V IV	5146.502	V IV	5448.82	Mo vi
4608.15	V iv	4891.52	V iv	5147.31	Ті ш	5468.98	Ті пі
4609.506	V IV Ti 111	4892.840	Ti III	5147.52 ^C	Ti III	5470.98	Ti IV
4610.477	Ti III	4897.69 4899.56	Ti m	5155.04	Ті пі	5481.31	Ті ш
4611.041	Ti III	4999.56 4900.C	V IV	5161.19	Ti III	5492.51	Ti IV
4615.931	Тіш	4900.°C	Mn xxiv	5162.55	Ті ш	5496.67	V IV
4616.57	V iv	4906.280	Ni xxvii	5168. ^C	Co XI	5509.19	vi V
4618.114	Ti IV	4906.280	V IV	5172. ^C	V xvii	5517.72	Ti IV
4619.782	Ti III		Ti III	5175.48	Ti III	5520.63	V IV
4628.067	Ti III	4908.395 4913.083	Ті п	5175.950	V iv	5533.01	Ті пі
1634.166	Тіш	4913.083	V IV	5193.42	Ті ні	5539.1	Fe x
1639. ^C	Ti xvi	4914.315	Тіш	5200. ^C	Ti xxı	5566.58	Ti III
1643.985	V iv	4916.94	V IV	5200. ^C	Ti xxı	5608.71	V iv
1649.00	Тіш	4930.533	Тіш	5205.96	Ті ш	5710.10	V IV
4649.452	Ti m	4930.535	V v	5212.6 ^C	Ti xv	5800. ^C	Cr xxiii
1652.861	Ті ш	4932.674	Ti m	5218.43	Ti III	5817.44	Ті ш
1663.462	Ti m	4942. ^C	Ті ІІІ	5222.93	VIV	5848.8 ^T	Kr viii
1667.9	Kr VIII	4944.040	Mn xx Ti III	5226.28	Ti m	5877.79	Ti IV
1671.816	Ti III	4946.000	Ti m	5227.89	VIV	5885.96	Ti IV
1673.396	Ti III	4950.°C	Fe xxv	5240.84	Ti III	5891.15	Ti IV
1677.58	Ti IV	4950.104	ге хху Ті ш	5245.06	Ti m	5900.C	Cu xxvii
1680.580	Ті ш	4954.408	V IV	5247.45	Mo vi	5900.C	V xxII
1690. ^C	V xxii	4960.10		5247.49	Ti III	5940.12	V IV
1695.44	Ti III	4961.36	Ti III	5256.77	Ti m	6000. ^C	Fe xxv
1701.59	Ti III	4963.65	Ti III	5257.33	Ті п	6004.3 ^C	Mn xxi
4703.18	Тіш		Ti III	5262.164	V IV	6020.741	V v
4718.98	Ti 111	4970. ^C	Kr xxxv	5267.045	Vıv	6035.62	Mo vi
4720. ^C		4970.348	V IV	5276.86	Mo VI	6056.3	Kr viii
4720.9 4720.90	V xxII Ti III	4971.194 4971.941	Ti III V IV	5278.12	Ti III	6065.5	Kr viii
			3/ 737	$5278.33^{\rm C}$	Ti III	6066.620	V v

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrun
6085. ^C	Ti xix	7072.64	Ті ш	7552.05	Ті ш	8238.57	Ті ш
6100. ^C	Ni xxvii	7084.57	Ті ш	7554.86	Ті ІІІ	8241.10	Ti III
6135.907	V v	7100. ^C	Mn xxiv	7566.25	Ti III	8252.85	Ті ш
6188.67	Mo vi	7100. ^C	Mn xxiv	7578.26	Ті ш	8263.67	Ті пі
6188.907	V v	7124.13	Ті ш	7579. ^C	Ti xvi	8267.32	Ті ш
6200. ^C	Cu xxviii	7141.76	Ті ш	7595.511	V v	8267.32	Ti III
6231.62	Ti IV	7141.9^{T}	Ni IX	7595.75	Ti III	8267.32	Ті ш
6246.65	Ti IV	7171.79	Ti III	7625.26	Ti III	8267.32	Ті ш
6247.74	Ti IV	7175.92	Ті ш	7652.12	Ti IV	8267.32	Ті пі
6262.86	Ti IV	7203.66	Ti III	7687.67	Ti III	8276.20	Ti 111
6292.41	Ti IV	7205.90	Ti III	7704.80	Ti m	8278.69	Ті пі
6300. ^C	V xxII	7211.94	Ті ш	7706.85	Ti IV	8300. ^C	Ti xxı
6319. ^C	Со хи	7217.50	Ті ш	7720.39	Ti III	8301.8 ^C	Ti III
6336.04	Mo vi	7225.55	Ti III	7742.64	Ti III	8305.41	Ti III
6374.51	Fe x	7228.40	Ti III	7773.19	Ti III	8305.41	Ті ш
6385.56	Ті ш	7228.7 ^C	Mn xxi	7775.95	Ti III	8305.41	Ті пі
6400. ^C	Co xxvi	7234.39	Ti III	7794.49	Ti III	8311.38	Ті ш
6400. ^C	Ni xxvii	7243.29	Ti III	7797.34	Ті ш	8316.71	Ti III
6400. ^C	Ti xxı	7252.88	Ті ш	7805.03	Ti III	8338.54	Ті ш
6447.73	Ti III	7270.67	Ti m	7809.53	Ti III	8358.45	Ті ш
6462.734	Vv	7288.98	Ті ш	7842.22	Ti III	8394.20	Ті ш
6478.300	V v	7292.86	Ті пі	7867.90	Тіш	8400. ^C	Ti xxı
6490.14	Ti III	7306.02	Ті ш	7874.28	Ті пі	8406.15	Ti m
6499.86	Ті ш	7308. ^C	Mn xx	7875.79	Ti III	8439.19 ^C	Ті ш
6504.60	Ti III	7315.14	Ti III	7881.83	Ti III	8440.8 ^P	Co XIV
6536.3	Mn XIII	7316.30	Ti m	7891.8	Fe xi	8457.555	V v
6541.429	Vv	7316.68	Ті ш	7895.57	Ti III	8466.87	Ті ш
6547.75	Ti III	7320.63	Ti III	7899.90	Ті ні	8504.05	Ті ш
6575.78	Ті ш	7335.41	Ti III	7900. ^C	V xxII	8505.88	Ti m
6600. ^C	Co xxvi	7347.59	Ті ш	7900. ^C	V xxII	8516.40	Ті ш
6611.38	Ti III	7370.14	Ti III	7955.11	Ti 111	8527.03	Ti m
6621.58	Ті ш	7371.34	Ti III	7968.5 ^C	Mn IX	8532.26	Ті п
6628.796	V v	7376.27	Ті п	7975.94	Ті п	8544.89	Ті пі
6629.37	Ті ш	7379.96	Ті п	7981.09	Ті ш	8563.50	Ті ш
6635.164	V v	7397.27	Ті ш	8024.1	Ni xv	8566.24	Ti III
6644.51	Ti III	7400.C	Cr xxIII	8030.70	Ті пп	8573.53	Ti III
6647.47	Ti III	7408.13	Ті пі	8098.47	Ті пі	8584.05	Ti III
6667.99	Ті ІІІ	7417.60	Ti III	8100. ^C	V XXII	8605.75	Ti III
6674.19	Ті ш	7419.24	Ti III	8117.53	Ті ш	8611.06	Ti III
6700. ^C	Mn xxiv	7432.20	Ti III	8153.8	Cr XII	8618.79	Ti III
6700. ^C	Ti xxı	7439.94	Ti III	8161.84	Ті п	8625.35	Ti III
6701.7	Ni xv	7441.72	Ті пі	8161.84	Ті ш	8662.79	Ті ш
6707.76	Ti III	7450.45	Ti III	8161.84	Ti m	8699.85	Ті ш
6724.80	Ti III	7457.85	Ті ш	8163.09	Ті ш	8703.30	Ti III
6734.10 6782.37	Ті ш	7460.04	Ti III	8164.06	Ti m	8731.24	Ti III
6785.90	Тіш	7473.32	Ti III	8165.85	Ti III	8739.C	Mn xix
6785.90	Ti III	7475.35	Ті пі	8166.96	Ti III	8745.99	Ti 111
6800. ^C	Тіш	7483.07	Ti IV	8172.21	Ті пт	8795.28	Ті пі
6805. ^C	Fe xxv	7484.58	Ti III	8173.37	Ti III	8801.25	Ti 111
	Ti xvi	7491.37	Ti IV	8178.00	Ti III	8801.25	Ti III
6807.96 6862.26	Ti III	7491.92	Ti III	8179.13	Ti III	8887.71	Ti III
6874.35	Тіш	7494.77	Ti IV	8182.42	Ti III	8916.95	Ti III
6896.12	Ті пі	7495.18	Ti III	8187.79	Ti III	8931.21	Ti III
	Ті ш	7500. ^C	Cr xxIII	8189.78	Ті пі	8938.06	Ti III
6900. ^C	Fe xxv	7500. ^C	Cr xxIII	8190.57	Ті ш	8938.06	Ті ш
6913.85	Ti IV	7505. ^C	Ti xviii	8192.68	Ti III	9000. ^C	Ti xxı
6932.44	Ti m	7506.87	Ті п	8194.75	Ti III	9017.10	Ті пі
6968.54	Ti IV	7507.68	Ті ш	8198.30	Ті ш	9024.05	Ti III
6978.51	Ti IV	7508.65	Ti III	8199.17	Ti III	9081.40	Ті п
6988.74	Ti IV	7511.59	Ті ш	8200.10	Ті ш	9193.52	Ті ІІІ
7015.38	Ті ш	7515.98	Ті пі	8202.13	Ti III	9242.2 ^P	Co xiv
7017.31	Ti III	7523.85	Ti III	8212.60	Ti III	9271.12	Ті ш
7031.40	Ті ш	7531.15	Ті пт	8213.35	Ті ш	9303.06 ^C	Ті ш
7058.6	Fe xv	7540.99	Ті пі	8229.26	Ti III	9898. ^C	Ti xviii
7071.93	Ti III	7544.29	Ti III	8235.58	Ti m	9978.3 ^C	Mn x

Finding List - Continued

Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum	Wavelength (Å)	Spectrum
10746.8	Fe хііі	10797.9	Fe xiii				

C Wavelength calculated from energy level data using the Ritz combination principle.

T Wavelength tentatively identified.

P Wavelength predicted along an isoelectronic sequence.

S Wavelength smoothed along an isoelectronic sequence.

L Wavelength identified from isoelectronic study. The levels generating this line are not known.

4. SAMPLE GROTRIAN DIAGRAM

4.1. Explanation of Grotrian Diagrams

Notations on the Diagrams generally have the same meanings as for the Tables (see Explanation of Tables).

Abscissa.

Energy of the levels in cm^{-1} .

Short vertical lines

Energy levels are indicated as the vertical lines. The electronic configuration (with the parentage in parentheses) and the level energy in cm⁻¹ are given to the right of the

vertical line, and above is the J value. Energy levels with the same LS label for the upper term are grouped together. The term designation is given at the right of the diagram; the ordering is by increasing multiplicity and orbital angular momentum. For the lower level, the term is adjacent to the configuration.

Horizontal lines

Transitions between levels. The number below each line gives the transition wavelength in Angstroms (10^{-8} cm). The numbers above are the J values of the upper and lower states. Heavier dashed lines indicate resonance transitions with absorption oscillator strengths $f \geq 0.01$.

Limit

Principal ionization limit in cm⁻¹ and eV.

4.2. Grotrian Diagrams for Fe VII

J. Phys. Chem. Ref. Data, Monograph 8

