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Degree of Polarization at Simultaneous
Transmit: Theoretical Aspects

Michele Galletti and Dusan S. Zrnic

Abstract—We consider weather radar measurements at simul-
taneous transmission and simultaneous reception of horizontal
and vertical polarizations and show that the degree of polarization
at simultaneous transmit (ps) is related to differential reflectiv-
ity and copolar correlation coefficient at simultaneous transmit
(namely, Zs

DR and ρs
hv). We evaluate the potential of degree of

polarization at simultaneous transmit for weather radar appli-
cations. Ultimately, we explore the consequences of adjusting the
transmit polarization state of dual-polarization weather radars to
circular polarization.

Index Terms—Copolar correlation coefficient, degree of polar-
ization at simultaneous transmit, differential reflectivity, simulta-
neous transmission mode.

I. SIMULTANEOUS TRANSMISSION AND SIMULTANEOUS

RECEPTION OF H AND V (STSR MODE)

THE so-called simultaneous transmission–
simultaneous reception (STSR) mode (also known

as hybrid mode or ZDR mode) consists in transmitting a
polarization state (χ), lying on the circular/slant circle of the
Poincare sphere (1) and receiving the backscattered signal
in the horizontal (H) and vertical (V) polarimetric channels.
This mode of operation was chosen for the operational
implementation of polarimetry in the U.S. NEXRAD network,
so that not only spectral moments (reflectivity ZS

H , velocity
V , and spectrum width σv) but also polarimetric moments
(differential reflectivity ZS

DR, copolar correlation coefficient
ρShv , and differential phase ΦS

DP) can be made available, both
as real-time products and as archived data. The superscript
s stands for simultaneous transmission and reminds the
polarimetric mode used to retrieve the moments of interest.

The phase difference β between the signals injected in the H
and V ports is constant from pulse to pulse and is determined
by the radar architecture. This phase difference ultimately
establishes the actual radiated polarization state

χ =
1√
2

[
1

eiβ

]
. (1)

Since the signal is simultaneously received in the H and
V polarization channels, the coherency matrix JHV

χ (the su-
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perscript HV indicates that the receive polarization basis is
horizontal–vertical) is measured [2]–[4]

JHV
χ ≡

[ 〈
|shχ|2

〉 〈
shχs

∗
vχ

〉〈
svχs

∗
hχ

〉 〈
|svχ|2

〉
]
. (2)

For a general target with scattering matrix S

S =

[
shh shv
svh svv

]
. (3)

The entries of the coherency matrix at simultaneous trans-
mission can be expressed as follows:

JHV
χ ≡

[ 〈
|shχ|2

〉 〈
shχs

∗
vχ

〉〈
svχs

∗
hχ

〉 〈
|svχ|2

〉
]

=

[ 〈
|shh+shv|2

〉
〈|(shh+shv)(svv+svh)

∗〉
〈(svv+svh)(shh+shv)

∗〉
〈
|svv+svh|2

〉 ]
.

(4)

From the matrix JχHV , reflectivity (ZS
H), differential reflec-

tivity (ZS
DR), copolar correlation coefficient (ρShv), degree of

polarization at simultaneous transmission (pS), and differential
phase (ΦS

hv + δShv) can be evaluated for radars operating at
hybrid mode

ZS
H ∝

〈
|shχ|2

〉
(5)

ZS
DR ≡

〈
|shχ|2

〉
〈|svχ|2〉

(6)

ρshv ≡
∣∣〈shχs∗vχ〉∣∣√

〈|shχ|2〉 〈|svχ|2〉
(7)

(Φs
hv + δshv) ≡ arg

〈
shχs

∗
vχ

〉
(8)

ps =

√√√√1−
4 det

[
JHV
χ

]
(
trace

[
JHV
χ

])2 =
λ1 − λ2

λ1 + λ2
(9a)

trace
[
JHV
χ

]
≡

〈
|shχ|2

〉
+

〈
|svχ|2

〉
= λ1 + λ2 (9b)

det
[
JHV
χ

]
≡

〈
|shχ|2

〉 〈
|svχ|2

〉
−

∣∣〈shχs∗vχ〉∣∣2
=λ1 · λ2. (9c)

In (9), λ1 and λ2 are the eigenvalues of JHV
χ .

Simultaneous transmission implies that, in the presence
of cross-polarizing scatterers (shv > 0), differential reflectiv-
ity and copolar correlation coefficient will differ from the
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corresponding variables measured at alternate transmit and
simultaneous reception mode [2]

ρshv ≡ |(shh + shv)(svv + svh)
∗|√

〈|shh + shv|2〉 〈|svv + svh|2〉

�= |〈shhs∗vv〉|√
〈|shh|2〉 〈|svv|2〉

≡ ρhv (10)

Zs
DR ≡

〈
|shh + shv|2

〉
〈|svv + svh|2〉

�=
〈
|shh|2

〉
〈|svv|2〉

≡ ZDR. (11)

Interest in the degree of polarization at simultaneous trans-
mission [5]–[8] is motivated by the fact that it is not intrinsically
biased by cross-polarizing scatterers, i.e., its physical meaning
is preserved across the spectrum of all possible scatterers, both
with low and high linear depolarization ratio (LDR). We ma-
nipulate the definition in (9) to obtain an important theoretical
relationship, which is valid in general [3], [4]

(
1− p2S

)
=

4 · ZS
DR[

1 + ZS
DR

]2 (
1−

[
ρShv

]2)
. (12)

The relation in (12) shows that the degree of polarization
at simultaneous transmission (pS) can be obtained from dif-
ferential reflectivity ZS

DR and copolar correlation coefficient
ρShv . This identity is important for both theoretical and practical
reasons. The most prominent practical consequence of the
identity in (12) is that the degree of polarization at simultaneous
transmission can be computed from processed polarimetric
moments (ZS

DR and ρShv), i.e., access to the raw I and Q samples
is not strictly necessary. Furthermore, we have that

4 · ZS
DR[

1 + ZS
DR

]2 =

[√
〈|shχ|2〉 〈|svχ|2〉
〈|shχ|2〉+〈|svχ|2〉

2

]
≤ 1. (13)

Since the ratio of geometrical to arithmetical mean is always
less than or equal to one, it follows that, for any type of
scatterers (prolate, oblate, or isotropic), the following holds:

0 ≤ ρShv ≤ pS ≤ 1. (14)

The relation in (14) shows that the degree of polarization at
simultaneous transmit (pS) is always larger than the copolar
correlation coefficient at STSR mode (ρShv). For the specific
case of isotropic weather scatterers (light rain, hail, or graupel),
for which intrinsic ZDR is equal to one (linear units), differen-
tial reflectivity at simultaneous transmit is also one (ZS

DR = 1),
regardless of the intrinsic LDR value of the scatterers. So, for
the particular case of isotropic scatterers, we obtain that the
copolar correlation coefficient at simultaneous transmission is
equal to the degree of polarization

pS = ρShv. (15)

This theoretical result is relevant since it permits one to as-
sign a physical meaning to the copolar correlation coefficient at
simultaneous transmit in the presence of isotropic depolarizing
scatterers (shv > 0).

Fig. 1. Plots of the identity in (12). On the abscissa is the differential
reflectivity at STSR mode (logarithmic units), and on the ordinate is the
difference between the degree of polarization at simultaneous transmit (pS)
and the copolar correlation coefficient at simultaneous transmit (ρShv). The
different curves correspond to different numerical values of ρShv , indicated
on the right of each curve. For isotropic targets (ZDR = 0 dB), the degree
of polarization is equal to the copolar correlation coefficient. For high ρShv
scatterers (> 0.99), (A) the difference between pS and ρShv is, in practice,
negligible. (C) Differences between the degree of polarization and the copo-
lar correlation coefficient are to be expected for targets with low ρShv and
large ZS

DR.
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In Fig. 1, we report plots of the identity in (12). On the
abscissa is ZS

DR, the differential reflectivity in logarithmic units
(generally used in practical radar meteorological analysis), and
on the ordinate is the difference between the degree of po-
larization at simultaneous transmit and the copolar correlation
coefficient at simultaneous transmit. The different curves are
for different values of ρShv (copolar correlation coefficient at
simultaneous transmit), indicated on the right of the panels.
Fig. 1 confirms the result in (15), i.e., for isotropic targets
(ZDR = 0 dB), the copolar correlation coefficient at STSR
mode is equal to the degree of polarization.

For scatterers with high copolar correlation coefficient
(> 0.99; rain and ice crystals), the difference between pS
and ρShv is, in practice, negligible [Fig. 1(a)]. The differences
between pS and ρShv are expected only for large (absolute value)
differential reflectivity and low copolar correlation coefficient,
like in the case of heavy rain mixed with irregularly shaped hail,
melting band, or biological scatterers (birds, bugs, and bats).
The analysis of the identity in (12) suggests that the degree
of polarization and copolar correlation coefficient will often
display similar patterns, consistently with what is reported in
[5] and [6], where rain and ice crystals are analyzed. Note,
however, that the degree of polarization (pS) always adheres
to its physical meaning (ratio of polarized to total power),
whereas the copolar correlation coefficient (ρShv), in the pres-
ence of cross-polarizing scatterers (LDR > 0), departs from
its intended physical meaning (degree of coherence between the
copolar return at horizontal polarization and the copolar return
at vertical polarization).

II. CIRCULAR POLARIZATION TRANSMIT

In the rest of this letter, we discuss the effects of the system
transmit differential phase [parameter β in (1)] on polarimetric
measurements. In order to minimize the bias in ρShv and ZS

DR,
this phase should be chosen to be either 0◦ or 180◦, i.e.,
transmission of slant linear polarization is preferable [11]–
[15]. For example, this choice will minimize the appearance of
radial stripes in ZS

DR due to coherent forward scattering from
aligned ice crystals [14]. Also, the system transmit differential
phase (combined with the propagation differential phase) has a
significant impact on the degree of polarization at simultaneous
transmission [5], [6]. Adjusting the system differential phase
to a desired value is generally achievable with phased array
antennas but is more challenging with parabolic reflectors.
Even though transmission of slant linear polarization (β = 0◦

and 180◦) is preferable to minimize the bias in polarimetric
variables, in the following, we consider the particular case
of circular polarization transmission (β = ±90◦). Such im-
plementation of dual-polarization technology is found in both
weather radars (circular transmit; H and V receive) and air traf-
fic control radars [circular transmit; right-hand circular (RHC)
and left-hand circular (LHC) receive].

A. Dual-Polarization Radar at Circular Transmit

We consider a dual-polarization radar transmitting circular
polarization, with simultaneous reception of LHC and RHC
polarizations. Such radars were used in the early days of radar

meteorology [17], [18] and are operationally used nowadays for
airport and air route surveillance by the ASR-9 and the ARSR-4
radars. This polarimetric mode permits the measurement of the
coherency matrix at circular polarization [2]

JRHC−LHC
C =

[ 〈
|sll|2

〉
〈slls∗rl〉

〈srls∗ll〉
〈
|srl|2

〉 ]
→

{
ZC

CDR,ORTT, pc
ALD

.

(16)

From the coherency matrix, reflectivity at circular polar-
ization (ZC), circular depolarization ratio (CDR), orientation
parameter (ORTT), alignment direction (ALD) and degree of
polarization at circular transmit (pC) can be evaluated [2]

ZC ∝
〈
|srl|2

〉
(17)

CDR ≡
〈
|sll|2

〉
〈|srl|2〉

(18)

ORTT ≡ |〈slls∗rl〉|√
〈|sll|2〉 〈|srl|2〉

(19)

ALD ≡ 1

2
(arg 〈slls∗rl〉 − π) (20)

pC =

√√√√1−
4 det

[
JRHC−LHC
C

]
(
trace

[
JRHC−LHC
C

])2
=

λ1 − λ2

λ1 + λ2
(21a)

trace
[
JRHC−LHC
C

]
=

〈
|sll|2

〉
+

〈
|srl|2

〉
=λ1 + λ2 (21b)

det
[
JRHC−LHC
C

]
=

〈
|sll|2

〉 〈
|srl|2

〉
− |〈slls∗rl〉|2

=λ1 · λ2. (21c)

In (21), λ1 and λ2 are the eigenvalues of JRHC−LHC
C .

Manipulation of the definition in (21) yields the following
result [3], [4]:

(
1− p2C

)
=

4 · CDR

[1 + CDR]2
(1−ORTT 2). (22)

For the particular case of isotropic scatterers (for which
intrinsic ZDR = 0 dB), we have that ORTT = 0, and we
obtain the following result:

pC =
1− CDR

1 + CDR
. (23)

In particular, if CDR is small (quasi-spherical scatterers), a
Taylor expansion yields the following relation:

pC = 1− 2CDR. (24)

B. STSR Mode With Circular Polarization Transmit

For dual-polarization weather radars operating at STSR
mode, the actual transmit polarization state can be chosen
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between slant linear or circular. In general, slant linear polar-
ization is recommended to minimize the bias in polarimetric
variables, sometimes visible as radial stripes of positive and
negative differential reflectivity [14]. However, if, for some
reason, the transmit polarization state is adjusted to circular,
a unitary transformation applied to the coherency matrix at H
and V receive bases (JHV

C ; STSR mode with circular transmit)
yields a coherency matrix as measured by a circular polarization
radar (JRHC−LHC

C circular transmit; dual-polarization circular
receive) (see [2])

JRHC−LHC
C = U JHV

C U−1. (25)

The equation in (25) has two consequences.

1) If the transmit polarization state of radars operating at
STSR mode can be adjusted to circular, polarimetric
variables at circular polarization (ZC , CDR, ORTT, and
ALD) are also available, provided that we effect a unitary
transformation on the retrieved coherency matrix at H–V
receive.

2) The eigenvalues of JRHC−LHC
C and JHV

C are the same,
and consequently, the degrees of polarization pC are also
the same. The degree of polarization only depends on the
transmit polarization state (indicated by the subscript c)
but not on the polarization basis used in the receiver.
Therefore, the degrees of polarization obtained by sys-
tems with different receive polarization bases are then
directly comparable, with no need to effect a unitary
transformation on the measured coherency matrix.

For the particular case of circular polarization transmit and
isotropic scatterers (ZS

DR = 1 (0 dB) and ORTT = 0), from
the combination of (12) and (22), we obtain that

pC = ρshv =
1− CDR

1 + CDR
. (26)

If, in addition, CDR is small (quasi-spherical scatterers), a
Taylor expansion yields the following relation:

pC = ρshv = 1− 2CDR. (27)

Eigenvalue-derived variables obtained at circular polariza-
tion transmit (trace of the coherency matrix and degree of
polarization) are the same regardless of the polarization basis
used in the receiver. For such polarimetric variables, no unitary
transformation is needed to obtain comparable quantities from
systems with different receive polarization bases (linear or
circular).

III. CONCLUSION

For weather radars operating at simultaneous transmission,
we have shown that the degree of polarization is a function of
differential reflectivity and copolar correlation coefficient. In
particular, in the case of isotropic weather scatterers (ZS

DR =
0 dB), we have shown that the degree of polarization and the
copolar correlation coefficient are equal.

If the transmit polarization state of the radar can be adjusted
to circular polarization, then, besides polarimetric variables
at STSR mode (ZS

H , ZS
DR, ρShv, and ΦDP), polarimetric

variables at circular polarization (ZC , CDR, ORTT, and ALD)
are also available after a change of polarization basis. Fur-
thermore, since eigenvalue-derived variables are polarization
basis invariant, the trace of the coherency matrix and the
degree of polarization are the same for weather radars (circular
transmit; H and V receive) and air traffic control radars (circular
transmit; RHC and LHC receive) and are therefore directly
comparable.

The degree of polarization can be expressed as a function
of ZS

DR and ρShv when the linear receive basis is used and of
CDR and ORTT when the circular receive basis is used. For the
particular case of circular polarization transmit and isotropic
scatterers (ZDR = 0 dB and ORTT = 0), we show that the
copolar correlation coefficient at simultaneous transmit is not
only equal to the degree of polarization but is also one-to-one
related to the CDR.

This study highlights some theoretical aspects leading to a
better understanding of the physical meaning of polarimetric
weather radar variables at simultaneous transmission. We show
that, often, the degree of polarization possesses the same dis-
crimination capabilities of the copolar correlation coefficient.
However, with respect to the copolar correlation coefficient, the
degree of polarization has two advantages.

1) The degree of polarization preserves its physical meaning
for every type of scatterers, including cross-polarizing
scatterers with LDR > 0.

2) If the transmit polarization state of a weather radar
operating at STSR mode can be adjusted to circular,
then eigenvalue-derived variables (trace of the coherency
matrix and degree of polarization) are the same as those
evaluated from a dual-polarization air traffic control radar
(circular polarization transmit; RHC and LHC receive).
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