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[1] This study evaluates three major Numerical-Weather-Prediction reanalyses
(ERA-Interim, NCEP/NCAR Reanalysis I, and NCEP/DOE Reanalysis II) in modeling
surface relative shortwave cloud forcing, cloud fraction, and cloud albedo. The observations
used for this evaluation are decade-long surface-based continuous measurements of the U.S.
Atmospheric Radiation Measurement (ARM) program from 03/25/1997 to 12/31/2008
over the Southern Great Plains site. These cloud properties from the reanalyses are evaluated
at multiple temporal scales. Like the observations, all the reanalyses show a strong annual
cycle, and relatively weak diurnal or inter-annual variations of the cloud properties. The
reanalyses exhibit significant underestimation on the cloud properties, and the model biases
in the cloud properties in general reveal a linear link to one another and are somewhat related
to cloud fraction magnitude. Further examination shows that the cloud properties are
strongly related to 2-m relative humidity, especially for the observations and ERA-Interim.
However, the relationship between the cloud properties and 2-m temperature and specific
humidity is much weaker. Also, the cloud fraction biases in the two NCEP reanalyses
increase (decrease) with the relative humidity (temperature and specific humidity), but the
cloud fraction biases in ERA-Interim show no (opposite) relationship with the relative
humidity (temperature and specific humidity). The relative humidity biases have a positive
(negative) linear relationship with the specific humidity (temperature) biases. A combined
statistical analysis using the technique of Taylor diagrams and a newly developed metric
“Relative Euclidean Distance” indicates that ERA-Interim and NCEP/NCAR reanalyses
have the best and worst overall performance in modeling the cloud and meteorological
properties examined, respectively, except that NCEP/DOE Reanalysis II ranks the best in
modeling the monthly temperature and specific humidity.
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1. Introduction

[2] Climate prediction depends on modeling, so there is
a pressing need to quantify model uncertainties and reduce
model biases. Among numerous model uncertainties, the
representation of clouds and associated radiative processes
has been recognized as one of the major factors in global
climate models (GCMs), which limit the accuracy of climate
prediction [Intergovernmental Panel on Climate Change
(IPCC), 2007]. As a consequence, model evaluations to
identify deficiencies in the parameterization of clouds and
associated processes remain a field of intensive research.

[3] To address this long-standing issue, the U.S. Depart-
ment of Energy’s (DOE’s) Earth System Modeling program
funded a new model evaluation project in 2009: the FAst-
physics System TEstbed and Research (FASTER) project.
The main objective of this multi-institutional project is to
utilize various long-term measurements collected by the
DOE’s Atmospheric Radiation Measurement (ARM) program
over the ARM sites [Stokes and Schwartz, 1994; Ackerman
and Stokes, 2003] to accelerate the evaluation and improve-
ment of the parameterizations of cloud-related fast processes
in large-scale climate models. This paper is an initial evalu-
ation of cloud and radiative properties and their links to
surface meteorology in three major Numerical-Weather-
Prediction (NWP) reanalyses.
[4] As representations of the state of the atmosphere,

reanalyses are generated via a state-of-art analysis and fore-
cast system assimilating data from a wide variety of obser-
vations including ships, satellites, ground stations and radar.
The long-term, consistent global distributions of reanalyses
make them particularly valuable in climate research, and
have been widely used as a base-line in studying global
climate change and climate modeling [Lu et al., 2005;
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Anderson et al., 2008; Haimberger et al., 2008; Betts et al.,
2009; Simmons et al., 2010; Rye et al., 2010]. Nonetheless,
reanalysis data may have time-varying biases, which limit
their value for characterizing long-term climate trends [e.g.,
Thorne and Vose, 2010; Dee et al., 2011a]. Furthermore,
cloud observations are not directly assimilated into current
reanalyses, and thus cloud-related properties of reanalyses
are expected to suffer from problems resulting from deficient
model parameterizations, similar to GCMs. Accordingly,
observationally based evaluations of widely used reanalyses
in modeling cloud and associated radiative properties are
crucial to both current climate research and future develop-
ment of reanalysis.
[5] Observationally based evaluations of reanalyses in

modeling cloud and radiative properties have been conducted
in previous studies [Jakob, 1999; Allan and Ringer, 2003;
Chevallier et al., 2005; Betts and Viterbo, 2005; Betts et al.,
2006; Bedacht et al., 2007; Betts, 2007; Weidle and Wernli,
2008; Betts et al., 2009; Xu, 2009]. Most of them are done
by using satellite-based observations. Evaluations using
ARM surface-based cloud and radiation measurements are
limited in both the number of studies and the scope of data
evaluated. For example, Walsh et al. [2009] evaluated four
reanalyses in modeling 1999–2006 monthly Arctic cloud
fraction and radiative fluxes by using the ARM surface-based
measurements at the North Slope of Alaska of cloud base
height from ceilometers and shortwave/longwave flux from
sky/ground radiometers. The four reanalyses were from
National Centers for Environmental Prediction National
Center for Atmospheric Research, 40-yr European Centre
for Medium-Range Weather Forecasts Reanalysis, North
American Regional Reanalysis, and the Japan Meteorological
Agency and Central Research Institute of Electric Power
Industry 25-yr Reanalysis. They found that the performance
of the reanalyses in modeling radiative fluxes mainly depends
on their performance in modeling cloud fraction, and the sys-
tematic errors of reanalysis cloud fractions are substantial.
For the purpose of investigating the applicability for forcing
single-column and cloud-resolving models, Kennedy et al.
[2011] evaluated reanalysis data over the ARM Southern
Great Plains (SGP) site from the Modern-Era Retrospective
analysis for Research and Applications (MERRA) and the
North American Regional Reanalysis (NARR) using 1999–
2001 ARM continuous forcing product and surface-based
sounding data from Climate Modeling Best Estimates
(CMBE) data [Xie et al., 2010]. They found that ARM con-
tinuous forcing and the reanalyses show good agreement with
the CMBE sounding data, with biases being 0.5 K, 0.5 m s�1,
and 5% for temperature, wind, and relative humidity. How-
ever, larger disagreements occur in the upper troposphere for
temperature, humidity, and zonal wind, in the boundary layer
for meridional wind and humidity. They also found that the
phase patterns of the seasonal cloud fraction from the 3-year
MERRA and NARR are similar to those from ARM radar–
lidar and Geostationary Operational Environmental Satellite,
and MERRA has better agreement with ARM observations
on surface shortwave and longwave fluxes than NARR.
[6] In this study we evaluate three major NWP reanalyses

in modeling surface relative shortwave cloud forcing (see
section 2.3.1 for the definition), cloud fraction, and cloud
albedo. Multiscale (diurnal, annual and inter-annual) mean
variations of the cloud properties are evaluated. We also

examine model-error propagation paths through the investi-
gation of the model biases and their links to one another, and
to the 2-m temperature and moisture (relative and specific
humidity) fields. Decade-long (1997 to 2008) surface-based
continuous ARM value-added products (VAP) over the
SGP Central Facility site are used as a standard for the
evaluation. The rest of the paper is organized as follows.
Section 2 briefly introduces the data and methods used.
Section 3 shows the multiscale mean variations of the cloud
properties and discusses potential uncertainties. Section 4
analyzes model biases and their links. Section 5 evaluates
the overall performance of the reanalyses in modeling the
cloud properties and 2-m temperature/humidity. Section 6
summarizes this study.

2. Data and Methods

[7] This section briefly introduces the data (e.g., observa-
tions and reanalyses) and methods used in this study. Note
that, to be consistent with shortwave radiation observations,
this study only evaluates daytime (6 am to 6 pm) cloud
properties and corresponding temperature/humidity.

2.1. Observations

[8] The observations used are the high-resolution ARM
VAP (15-min SIRS data) derived from the well-calibrated
surface-based Solar and Infrared Radiation System (SIRS)
over the SGP Central Facility (262.51�E, 36.61�N) from
03/25/1997 to 12/31/2008 (http://www.arm.gov/instruments/
sirs). Long and his coworkers [Long and Ackerman, 2000;
Long et al., 2006] produced a 15-min mean data set of all-
sky and clear-sky-fit surface downwelling shortwave (SW)
fluxes, and a fractional sky cover (“cloud fraction” hereafter)
derived from an analysis of surface measurements of down-
welling total and diffuse SW irradiance, carefully screened
and corrected for optically thicker overcast cases. Here, the
cloud fraction is retrieved based on clear-sky surface down-
welling SW total/diffuse irradiance and the effect of clouds
on the SW irradiance, estimated by using the methodology
developed by Long and Ackerman [2000].
[9] The observed cloud fraction represents 15-min averages

of 160� field-of-view (FOV) hemispheric fractional sky cover
from the surface. Long et al. [2006] found good agreement
(with root-mean square error <8%) between this estimate and
hemispheric sky imager data. By definition this cloud fraction
differs from the plane-parallel cloud fraction from a nadir
view or from a climate model. Liu et al. [2011, Figure 2]
found that the hourly averaged cloud fraction from the same
15-min hemispheric-view cloud fraction showed reasonable
agreement (with correlation coefficient 0.86) with the hourly
cloud fraction from the Geostationary Operational Environ-
mental Satellite (GOES) satellite. More discussion on cloud
fraction and associated uncertainty is deferred to Section 3.2.
[10] We then compute surface relative shortwave cloud

forcing (SRCF) from the all-sky and clear-sky-fit SW fluxes,
and cloud albedo is estimated using both SRCF and cloud
fraction. In addition, we also use the 30-min averaged data
streams of 2-m air temperature and relative humidity, and
barometric pressure from the Surface Meteorological Obser-
vation System instruments from 04/01/2001 to 12/31/2008
for analyzing the links of the model biases in cloud properties
to the 2-m meteorological conditions.
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2.2. Reanalyses

[11] Three NWP reanalyses are evaluated in this study:
ERA-Interim, NCEP/NCAR Reanalysis I (R1 hereafter), and
NCEP/DOE Reanalysis II (R2 hereafter). The abbreviations
“ERA,” “NCEP,” and “NCAR” denote “European Centre
for Medium-Range Weather Forecasts (ECMWF) global
atmospheric reanalysis,” “National Center for Environmental
Prediction,” and “National Center for Atmospheric Research”,
respectively. A brief introduction is given below.
2.2.1. ERA-Interim
[12] ERA-Interim is the latest version of ECMWF’s

global atmospheric reanalysis available from 1989 to present
[Dee et al., 2011b]. This reanalysis was archived in a hori-
zontal resolution of T255 spherical-harmonic representation
for the basic dynamical fields or N128 reduced Gaussian grid
with approximately uniform 79 km spacing for surface and
other grid point fields, with 60 vertical levels (P. Berrisford
et al., The ERA-Interim archive, August 2009, http://www.
ecmwf.int/publications/library/do/references/list/782009). The
global archive has 3-hourly (for surface parameters) or 6-hourly
(for upper-air parameters) time resolution, but for selected
points, including the ARM SGP site, hourly data were
archived and used in this study. The major improvements in
ERA-Interim include the representation of hydrological
cycle, the quality of stratospheric circulation, and the han-
dling of biases and changes in the observing system. One
advantage of this reanalysis is its high spatial and temporal
resolutions, better for studying regional diurnal variations.
Detailed description about this reanalysis can be found at the
ECMWF web site at http://www.ecmwf.int//research/era/do/
get/ERA-Interim. We use: 1) hourly averaged clear-sky sur-
face net SW flux, and all-sky surface net and surface down-
welling SW fluxes, and total cloud cover, 2) hourly interval
(i.e., instantaneous) 2-m air temperature and specific humidity,
and surface pressure, from 03/25/1997 to 12/31/2008. The
hourly data are the outputs from the first 0–12 h forecasts from
twice-daily analysis. All the data used are from aGaussian grid
centered at (262.50�E, 36.84�N) over the ARM SGP site.
[13] Note that, ERA-Interim hourly clear-sky surface

downwelling SW flux (SWdn
clear) is not available so it is cal-

culated from equation (1) using the available clear-sky sur-
face net SW flux (SWnet

clear), all-sky surface downwelling SW
flux (SWdn

all) and all-sky surface net SW flux (SWnet
all),

SW clear
dn ¼ SW clear

net � SW all
dn

SW all
net

: ð1Þ

[14] Equation (1) is derived based on equation (2) in Betts
et al. [2009] under the assumption that surface albedo is
the same for clear-sky and cloudy-sky conditions. A small
number of hourly data points were excluded from the
analysis (25 out of the 12-year record) for reasons such as
data truncation errors or unrealistically large derived surface
albedos.
[15] Note also that, ERA-Interim hourly 2-m relative

humidity is not available so it is calculated from the 2-m
specific humidity using equation (2) [i.e., Peixoto and Oort,
1992, equation (3.62)],

rh ¼ q

qs
¼ pq

0:622es
ð2Þ

where rh, q, qs, p, es, and T represent relative humidity,
specific humidity (kg/kg), saturation specific humidity
(kg/kg), pressure of moist air (hPa), saturation vapor pressure
(hPa), and temperature (K) of moist air. The saturation vapor
pressure es is calculated using equation (3) of saturation
vapor pressure, recommended by World Meteorological
Organization (http://cires.colorado.edu/�voemel/vp.html),

log10 esð Þ ¼ 10:79574� 1� 273:16

T

� �
� 5:02800

� log10
T

273:16

� �
þ 1:50475� 10�4

� 1� 10�8:2969� T
273:16�1ð Þ� �

þ 0:42873� 10�3

� 104:76955� 1�273:16
Tð Þ � 1

� �
þ 0:78614: ð3Þ

[16] Modeled pressure in the reanalyses is very tightly
constrained by the observations to about 1 hPa: the standard
deviation of the difference between the hourly ERA-Interim
and the observations equals 0.79 hPa, and that between the
6-hourly R1 (R2) and the observations equals 1.13 (1.28) hPa.
Hence the ratio of specific humidity and saturated specific
humidity accurately reflects the modeled relative humidity.
2.2.2. NCEP/NCAR Reanalysis I
[17] R1 [Kalnay et al., 1996; Kistler et al., 2001] provides

data from 1948 to the present with 6-h temporal resolution.
The spatial resolution archived in this reanalysis is T62
Gaussian grid (�210 km), or 2.5� latitude � 2.5� longitude
non-Gaussian grid, with 28 vertical levels. This reanalysis
was generated by the analysis and forecast system perform-
ing data assimilation using a wide variety of weather obser-
vations including ships, satellites, ground stations and radar.
In this paper, we use: 1) 6-hourly averaged clear-sky and
all-sky surface downwelling SW flux, and total cloud cover,
2) 6-hourly interval forecasted 2-m air temperature and
specific humidity, and surface pressure from 03/25/1997
to 12/31/2008. Detailed description about the data can
be found at http://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis.other_flux.html. All the data used are from
a Gaussian grid centered at (262.50�E, 37.14�N) over the
ARM SGP site. Note that the reanalysis forecasted data of
2-m air temperature (or specific humidity) and surface pres-
sure are strongly impacted by the reanalysis model as stated
in Kalnay et al. [1996]. These data are downloaded from the
NOAA’s Physical Science Division web site at http://www.
esrl.noaa.gov/psd/data/gridded/reanalysis/. Note also that R1
6-hourly 2-m relative humidity is not available so it is calcu-
lated using equations (2) and (3).
2.2.3. NCEP/DOE Reanalysis II
[18] R2 is the second version of R1. It covers data from

1979 to present, available at the same web site as R1. R2 is
believed to be an improved version of R1, with a number of
errors fixed, updated parameterizations of physical processes
(including a new SW radiation scheme which significantly
reduced surface insolation by about 8%), and the addition of
more observations [Kanamitsu et al., 2002]. Similar to R1,
we use: 1) R2 6-hourly averaged all-sky surface downwelling
SW flux, and total cloud cover, 2) R2 6-hourly interval
forecasted 2-m air temperature and specific humidity, and
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surface pressure from 03/25/1997 to 12/31/2008 over the
same Gaussian grid. Because R2 6-hourly 2-m relative
humidity is not available, we calculated it using equations (2)
and (3). Since the archive does not provide R2 clear-sky
surface downwelling SW flux, we estimate it by using R1
clear-sky surface downwelling SW flux and the following
expressions for the best curve fit to the upper envelop of the
available R2 all-sky surface downwelling SW flux,

SW clear
dn t; d; R2ð Þ ¼ SW clear

dn t; d;R1ð Þ � 0:85þ 0:92� 0:85ð Þd
60

� �
for d ≤ 60ð Þ ð4aÞ

SW clear
dn t; d; R2ð Þ ¼ SW clear

dn t; d;R1ð Þ � 0:92

for 60 < d < 120 or 220 < d < 280ð Þ ð4bÞ

SW clear
dn t; d; R2ð Þ ¼ SW clear

dn t; d;R1ð Þ

� 0:92þ 0:02� sin
p d � 120ð Þ

100

� �
for 120 ≤ d ≤ 220ÞÞ ð4cÞð

SW clear
dn t; d; R2ð Þ ¼ SW clear

dn t; d;R1ð Þ

� 0:92� 0:92� 0:85ð Þ d � 280ð Þ
86

� �
for 280 < d ≤ 366ð Þ ð4dÞ

where SWdn
clear(t, d; R1) and SWdn

clear(t, d; R2) denote R1 and
R2 6-hourly averaged clear-sky surface downwelling SW
fluxes, t denotes 6-hourly time of a day, and d denotes cal-
endar day of a year. We found that the 8% surface insolation
reduction [Kanamitsu et al., 2002, Figure 8] was only valid
over some calendar day ranges (4b), so we adjusted the

correction coefficient over calendar day ranges as given
by the expressions: (4a) to (4d). This estimated R2 6-hourly
averaged clear-sky surface downwelling SW flux is shown
in Figure 1, together with the all-sky surface downwelling
SW flux.

2.3. Methods

[19] The methods used in this study are detailed in this
section. We first briefly introduce the calculations of SRCF
and cloud albedo, and then give a detailed description of the
procedures used in this study.
2.3.1. SRCF
[20] SRCF (also called “effective cloud albedo”) was first

proposed by Betts and Viterbo [2005] to quantify the impact
of the cloud field on the surface radiative budget over a
southwest basin of the Amazon. It is a non-dimensional
measure of surface SW cloud forcing (SWcld = SWdn

all� SWdn
clear,

an upward flux), defined as

aSRF
cld ¼ � SWcld

SW clear
dn

¼ 1� SW all
dn

SW clear
dn

: ð5Þ

[21] Here, a positive value of the SW fluxes indicates
a downward flux. Based on equation (5), we can calculate
SRCF if all-sky and clear-sky surface downwelling SW
fluxes are available.
[22] Furthermore, equation (5) indicates that SRCF rep-

resents the fraction of clear-sky incoming downward SW
flux which is reflected and absorbed by clouds. This non-
dimensional quantity offers an effective measure of surface
SW cloud forcing and minimizes the influence from solar
zenith angle and other non-cloud factors. More discussions
and applications of SRCF can be found in previous studies
[Betts et al., 2006, Betts, 2009; Betts et al., 2009; Betts and
Chiu, 2010; Liu et al., 2011].

Figure 1. Annual distribution of R2 6-hourly (a) 6 am–12 pm LST and (b) 12 pm-6 pm LST surface
downwelling shortwave flux over the ARM SGP Central Facility site from 03/25/1997 to 12/31/2008.
The red cross represents R2 clear-sky surface downwelling shortwave flux, estimated by using R1 clear-
sky surface downwelling shortwave flux. The blue circle represents available R2 all-sky surface down-
welling shortwave flux.
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2.3.2. Cloud Albedo
[23] Liu et al. [2011] derived an analytical expression that

quantifies the relationship between SRCF, cloud fraction,
and cloud albedo,

aSRF
cld ¼ arf ð6Þ

Where f and ar denote cloud fraction, and cloud albedo,
respectively. Liu et al. [2011] demonstrated that the esti-
mated cloud albedo by using the surface-based radiation and
cloud fraction shows reasonable agreement (correlation
coefficient 0.69) with that from satellite measurements. In
this study, cloud albedo is estimated using the same proce-
dure, and the same surface-based observations as in Liu et al.
[2011]. Note that ar implicitly includes cloud absorptance
when cloud absorption cannot be ignored, esp., for strongly
absorbing clouds.
2.3.3. Procedures of Evaluation
[24] Detailed procedures of the evaluation are described

below. First, the 15-min all-sky/clear-sky surface down-
welling SW flux and cloud fraction observations are aver-
aged into hourly data. Here, only those with 4 valid 15-min
data points within one hour are used. The valid 15-min data
points refer to those with 15-min all-sky/clear-sky surface
downwelling SW flux greater than zero and 15-min cloud
fraction between 0 and 1. We use the hourly data (for
example, xi(d,m, y), i, d,m, y represent hour, day, month, and
year respectively) to calculate the mean variations of hourly
all-sky/clear-sky surface downwelling SW flux and cloud
fraction. Considering that the valid hourly observational data
points are not evenly distributed temporally, we first calcu-
late each-year seasonal mean values of each-hour variables
(�xi s; yð Þ ¼ xi d;m; yð Þs, s represents season, the line on the top
of the function represents mean, and the line with “s” repre-
sents seasonal mean), and then average into the overall mean
values of each-hour variables. Those valid hourly all-sky/
clear-sky surface downwelling SW flux and cloud fraction
between 6 am and 6 pm (local standard time: LST) are further
averaged into daytime-mean data. Daytime-mean (6 am–6 pm
LST) SRCF is calculated using daytime-mean all-sky and
clear-sky surface downwelling SW flux. Those daytime-mean
SRCF (>�0.05) and cloud fraction are further averaged into
monthly data.
[25] The mean value of overall hourly cloud albedo is

calculated using the mean values of overall hourly SRCF and
cloud fraction. The daytime-mean cloud albedo is calculated
using daytime-mean SRCF and cloud fraction for those with
daytime-mean cloud fraction greater than 0.05. We use this
filter because cloud albedo is not well described by
equation (6) when cloud fraction is small [Liu et al., 2011].
The monthly cloud albedo is calculated by using monthly
SRCF and cloud fraction. The mean variations of monthly/
yearly cloud properties are the averages of the monthly cloud
properties.
[26] Next, the cloud properties from hourly ERA-Interim

and 6-hourly R1 and R2 are used to calculate the mean values
of daytime hourly and 6-hourly cloud properties. The calcu-
lation procedures are the same as for the observations. Here,
only those hourly/6-hourly reanalysis data concurrent to
those valid hourly observations are used. The concurrent 6-
hourly reanalysis data refer to those: within those concurrent
6 h the hourly observations have valid data. Further, those

concurrent hourly/6-hourly reanalyses are averaged into
daytime-mean, and then those daytime-mean reanalysis data
concurrent to those valid daytime-mean observations are
averaged into monthly data. The yearly data are the averages
of monthly data. The diurnal/annual/interannual cloud prop-
erties from the reanalyses are then evaluated based on the
observations.
[27] After that, for diagnosing the path of model-error

propagation, the model biases (model minus observation) in
the cloud properties and their relationships are analyzed.
Further examined are the relationship between the cloud
properties and 2-m temperature/humidity. To do so, we first
aggregate the observed 30-min averaged 2-m air tempera-
ture, relative humidity and surface pressure into hourly
data, and then use hourly temperature, relative humidity and
surface pressure to calculate hourly specific humidity by
equations (2) and (3). After that, using the same method
as for the cloud properties, we use concurrent valid hourly
data to generate daytime-mean, monthly, yearly temperature/
humidity. And, the three reanalyses’ hourly/6-hourly cloud
properties and the meteorological variables with concurrency
to the valid hourly observations are averaged into daytime-
mean and then monthly data. The relationship between the
daytime-mean/monthly cloud properties and temperature/
humidity from all the data sets are first examined. Then, we
compare the multiscale mean variations of 2-m temperature/
humidity and corresponding model biases. After that, the
relationship between relative humidity (or cloud fraction)
biases and the temperature/humidity is examined.
[28] It is noted that R1 and R2 6-hourly 2-m temperature

and relative/specific humidity have three daytime data points
at 6 A.M., 12 P.M. and 6 P.M. (LST). Thus, the calculation of
the daytime mean is not as straight-forward as the hourly/6-
hourly averaged data or the hourly interval data (considering
that variations within one hour are small). We examine three
common ways to obtain the daytime mean from the three data
points using the hourly ERA-Interim data: [(6 am + 12 pm)/2
+ (12 pm + 6 pm)/2]/2, [(6 am + 12 pm + 6 pm)/3], and [6 am
+ 4 � (12 pm) + 6 pm]/6. The last formula is from the
Simpson’s rule for parabolas. The daytime mean from the
three methods are compared to that from the mean of the 13
daytime hourly points. The results are shown in Figure 2,
indicating that the first method has the smallest difference
(standard deviation) from the 13-point averaged value. Based
on this analysis, we chose the first method to calculate R1
and R2 daytime-mean temperature/humidity.
[29] Finally, for evaluating the overall performance of the

reanalyses in modeling the cloud properties and the meteo-
rological variables, we employ the widely used technique of
the Taylor diagram [Taylor, 2001], and also develop a new
metric “Relative Euclidean Distance” as a supplement to the
Taylor diagram. The Taylor diagram reveals concise and
easy-to-visualize second-order statistical differences between
two (or more) different time series. It is especially useful for
evaluating a model’s performance in phase and amplitude of
variations (as measured by the correlation coefficient r and
standard deviation s, respectively), and a model’s “centered
root-mean-square error” E (“RMS error” hereafter). This
technique has been widely used in climate researches and
IPCC assessment [e.g., IPCC, 2001; Anderson et al., 2004;
Martin et al., 2006; Miller et al., 2006; Bosilovich et al.,
2008; Gleckler et al., 2008; Pincus et al., 2008]. Briefly,
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the expressions for calculating r, s, and E are shown below
[Taylor, 2001],

r ¼

1

N

XN
n¼1

Mn � �Mð Þ On � �Oð Þ

sMsO
ð7Þ

E2 ¼ 1

N

XN
n¼1

Mn � �Mð Þ � On � �Oð Þ½ �2 ð8Þ

s2
M ¼ 1

N

XN
n¼1

Mn � �Mð Þ2 ð9Þ

s2
O ¼ 1

N

XN
n¼1

On � �Oð Þ2 ð10Þ

with

�M ¼ 1

N

XN
n¼1

Mn ð11Þ

�O ¼ 1

N

XN
n¼1

On ð12Þ

where “Mn” or “On” denote a modeled or observed variable,
defined at N discrete temporal (or spatial) points; and the
subscript “M” or “O” denote “model” or “observation.” Note
that, the correlation coefficient r, standard deviation s and
RMS error E are calculated without removing the periodic
signals of the time series.
[30] As a supplement to the Taylor diagram, we develop

a new metric “Relative Euclidean Distance” (D), based on
Euclidean-Distance technique [e.g., Elmore and Richman,
2001] and first- and second -order statistics,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�M � �Oð Þ
�O

� �2
þ sM � sOð Þ

sO

� �2
þ 1� rð Þ2

s
: ð13Þ

[31] As can be seen from the expression (13), D measures
the overall model performance. A perfect agreement corre-
sponds to D = 0, and the overall model performance degrades
as D increases.

3. Evaluation of Multiscale Cloud Properties
and a Discussion on Potential Uncertainty

[32] This section first evaluates the cloud properties (i.e.,
SRCF, cloud fraction, and cloud albedo) from the reanalyses
at diurnal, annual, and inter-annual temporal scales. Then,
cloud fraction and potential uncertainty are further discussed.

3.1. Evaluation of Multiscale Cloud Properties

[33] Figure 3 shows the multiscale mean variations of
SRCF from the reanalyses and the observations (Figures 3a,
3b, and 3c), and corresponding relative model biases
[i.e., (model minus observation) divided by observation]
(Figures 3d, 3e, and 3f). The daytime each-hour standard
deviation is calculated for each specific hour using seasonal-
mean hourly SRCF after removing seasonal cycles (i.e.,
each-season mean value). The SRCF standard deviation in
early morning (or late afternoon) shows slightly larger value
than those at other daytime hours. The each-month standard
deviations are calculated for each specific month using
monthly SRCF. The SRCF shows larger standard deviation
in fall/winter months than in other months. The standard
deviation for annually averaged SRCF is calculated using
monthly SRCF after removing seasonal cycles (i.e., each-
month mean value). The cause of the large standard deviation
in early morning (or late afternoon) or in fall/winter months
is probably associated with the accuracy of the measure-
ment and retrieval methods.
[34] It is evident that the SRCF from the observations and

ERA-Interim has a strong annual cycle, with amplitude about
0.16 for the observations and about 0.10 for ERA-Interim.
The SRCF peaks in March and reaches its lowest value in
July. R2 exhibits a similar phase pattern with weaker ampli-
tude of 0.05. It is noteworthy that despite having a variation
amplitude (0.06) comparable to R2, R1 shows an opposite
phase pattern, suggesting that R1 is the most problematic
in modeling the observed phase of SRCF annual cycle,
although it shows the smallest biases fromApril to September.
The diurnal (inter-annual) variations of SRCF are weaker
than the annual cycle, with amplitude ranging from 0.01 to
0.05 (from 0.04 to 0.07). For the diurnal cycle, the obser-
vations and R2 show larger (smaller) SRCF in the morning

Figure 2. Comparison of the differences between the day-
time-mean values from 3 daytime 6-hourly data points using
the three methods (red, green, and blue) and those from 13
daytime hourly data points (from 6 am to 6 pm), based on
the hourly ERA-Interim data. Red: [(6 am + 12 pm)/2 +
(12 pm + 6 pm)/2]/2, green: [6 am + 4 � (12 pm) + 6 pm]/6,
and blue: [(6 am + 12 pm + 6 pm)/3]. T, RH, and SH represent
2-m temperature, relative humidity, and specific humidity.
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(afternoon); but ERA-Interim and R1 show an opposite phase
pattern. This suggests that ERA-Interim and R1 do not model
the observed phase of the SRCF diurnal cycle correctly.
For the inter-annual variations, the observed SRCF reveals
an increase of 0.04 from 1999 to 2004 followed by a drop of
0.06 until 2006, and the three reanalyses show similar phase
pattern. One notable phenomenon is that the observed SRCF
is systematically much larger than the reanalyses at all the
temporal scales, suggesting that the reanalyses significantly
underestimate the observed SRCF. This fact can also be seen
from Figures 3d, 3e, and 3f, where the relative biases reaches
up to �50% (�60%) for the diurnal/interannual (annual)
variations.
[35] Similarly, Figures 4 and 5 show the comparisons of

the multiscale mean variations of cloud fraction and cloud
albedo, respectively. Variations of the standard deviations
from the observations in general follow those of SRCF. As
shown in Figure 4, the multiscale mean variations of cloud
fraction look remarkably similar to those of SRCF, with a
strong annual cycle (amplitude up to 0.22) and relatively
weak diurnal/inter-annual variations (amplitude up to
0.06/0.10). The phase patterns of the multiscale mean varia-
tions of cloud fraction look similar to those of SRCF, sug-
gesting that large cloud fraction in general corresponds to
large SRCF. Similar to SRCF, ERA-Interim and R1 do not
capture diurnal-cycle phase pattern of the cloud-fraction
observations, and R1 suffers from evident deficiency in
modeling the annual-cycle variations. The modeled CF bia-
ses are the largest in summer for ERA-Interim, similar to the
results from 3-year MERRA and NARR by Kennedy et al.
[2011]. But, this is not the case for R1 and R2. The under-
estimation of the modeled cloud fraction is also significant at

all the temporal scales, ranging from �20% to �40% for the
majority. Figure 5 reveals a strong annual cycle (amplitude
up to 0.22) and slightly weak diurnal/inter-annual variations
(amplitude up to 0.16/0.12) for the modeled and observed
cloud albedo. The phase patterns of the multiscale mean
variations of cloud albedo mainly follow those of SRCF or
cloud fraction, except for the annual cycle of the modeled
cloud albedo which has the lowest value in winter season,
opposite to other annual-cycle patterns. Similar to SRCF
and cloud fraction, ERA-Interim and R1 show a problem in
modeling the phase pattern of the observed cloud-albedo
diurnal cycle. It is noted that the phase pattern of R1 cloud-
albedo annual cycle agrees with the observations better than
that of SRCF and cloud fraction. Note also that, cloud frac-
tion is only one of the many variables (e.g., cloud thickness
and liquid water path) affecting SRCF and cloud albedo. The
differences in the phase patterns may imply different cloud
types, although more research is needed to ascertain this. For
all the models the underestimation of cloud albedo is small
from May to September, but increases to �25% to �33% in
the cold season.

3.2. Further Discussion on Cloud Fraction
and Potential Uncertainty

[36] The observed cloud fraction shown in Section 3.1
represents 15-min averages of 160�FOV hemispheric
fractional sky cover from the surface [Long et al., 2006].
Although the hemispheric fractional sky cover is consistent
with the surface radiation measurements evaluated in this
paper and the hemispheric fractional cover has been shown to
agree with the GOES satellite measurements reasonably well
[Liu et al., 2011], it is desirable to examine the effect of

Figure 3. (a, b, and c) Multiscale mean variations of surface relative shortwave cloud fraction (SRCF) and
(d, e, and f) corresponding relative model biases, defined as [(model minus observation) divided by obser-
vation]. Red, blue, green, and purple represent the observations, ERA-Interim, R1, and R2, respectively.
The data used are daytime (6 am to 6 pm LST) data from 03/25/1997 to 12/31/2008 over ARM SGP Central
Facility site. The red bar represents� one standard deviation of the observations. The relative model biases
show the significance of the model biases compared to the observations.
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different FOV angles on cloud fraction. Kassianov et al.
[2005], using Monte Carlo simulations of surface-based
hemispherical measurements based on four-dimensional cloud
fields produced by a large-eddy simulation model, analyzed
the differences in hemispheric cloud fraction estimates
depending on averaging time, FOV and cloud spatial struc-
ture. They found that 15 min is an appropriate averaging
time and that hemispheric-view cloud fractions are almost
unbiased for FOV ≤ 100�. However, for the same cloud field,
hemispheric-view cloud fractions increase as FOV increases,

and the difference between the hemispheric-view cloud frac-
tions corresponding to different FOVs increases as cloud frac-
tion decreases. Kassianov et al. [2005] further provided the
following linear fit between the 160�FOV hemispheric frac-
tional sky cover, CF(160�), and the 60�FOV value, CF(60�),

CF 160�ð Þ ¼ 0:17þ 0:815� CF 60�ð Þ ð14Þ

Because CF(60�) appears to be more representative of the
plane-parallel cloud fraction of the reanalyses, here we explore

Figure 5. The same as Figures 4 but for cloud albedo instead of cloud fraction.

Figure 4. The same as Figure 3 but for cloud fraction instead of surface relative shortwave cloud fraction
(SRCF). The black curves represent the multiscale mean variations of the cloud fraction generated by using
the FOV-adjusted hourly cloud fraction CF(60�) instead of CF(160�).
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the correction of the CF(160�) data based on the inverse of
equation (14),

CF 60�ð Þ ¼ 1:227� CF 160�ð Þ � 0:2086: ð15Þ

[37] Equation (15) is used as a correction for 0.25 < =
CF(160�) < = 0.918. The upper limit is chosen where the
correction goes to zero, and for CF(160�) > 0.918 we set
CF(60�) = CF(160�). For CF(160�) < 0.25, we reduced the
correction linearly to zero, as CF(60�) = (1� 0.1519/0.25)�
CF(160�).
[38] The black curves in Figures 4 and 5 represent the

multiscale mean variations of the cloud fraction and cloud
albedo generated by using the hourly cloud fractions CF(60�)
instead of CF(160�). As can be seen, the cloud fractions from
CF(60�) are systematically lower than those from CF(160�)
in a range from 0.02 to 0.06. The corresponding cloud albedo
from CF(60�) are systematically higher than those derived
from CF(160�) in a range from 0.03 to 0.07.
[39] From Figure 4, we see that using as a reference the

derived cloud fraction, CF(60�), would reduce but not remove
the low bias of the reanalyses. From Figure 5 we see that
using as a reference cloud albedo derived from CF(60�) would
increase the low bias of the reanalyses. However, there are
other measurement comparison issues here which need further
study. For example, correction (15) is based on Kassianov
et al. [2005] for cloud fraction. However, our observed
SRCF is also derived from hemispheric radiometers which
see the cloud field over all viewing angles and solar zenith
angles. This is not the same geometry as the plane-parallel
assumption of the reanalyses, averaged over a horizontal grid-
cell. The geometry-induced difference in SRCF may make
the difference in cloud albedo spuriously larger. An ultimate
solution requires considering SRCF, cloud fraction and cloud

albedo simultaneously and consistently; however, it is beyond
the scope of this paper. Nevertheless, the comparison of the
results from CF(60�) and CF(160�) gives an estimate of pos-
sible uncertainties resulting from different FOV angles.

4. Model Biases and Their Links

[40] The previous section shows that, except for warm
season cloud albedo, the three reanalyses in general sig-
nificantly underestimate all the three cloud properties. To
further explore the model-error propagation path, this section
examines the range of the model biases in the cloud proper-
ties, their mutual relationships, and the relationship of the
cloud properties to 2-m temperature and relative/specific
humidity. The analysis has been performed for both daytime-
mean and monthly data; but only the monthly results are
presented below. The daytime-mean results are similar
except for a larger range of their biases.

4.1. Model Biases in the Cloud Properties
and Their Mutual Relationships

[41] Figure 6 are the contour plots showing the range and
relationship of the monthly model biases in the cloud prop-
erties. As can be seen, the model biases of the cloud prop-
erties in the reanalyses mainly fall within a centered region,
ranging from �0.20 to 0 for SRCF, from �0.25 to 0 for
cloud fraction, and from �0.20 to 0.10 for cloud albedo. The
points within the centered regions exhibit a positive linear
relationship to one another, except for the model biases of
ERA-Interim cloud fraction and SRCF. The strong posi-
tive correlation is evident in the corresponding scatterplots
(Figure 7) as well, where the overlapped relationships from
different reanalyses and the strength of the relationships are
clearly shown.

Figure 6. Contour plots showing the range and relationship of the monthly model biases between the
cloud properties in each of the three reanalyses.
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[42] The relationship between the model biases in the
cloud properties and the observed (a, b, and c) or modeled
(d, e, and f) cloud fraction are shown in Figure 8. It is evident
that the model biases in the cloud properties are large when
observed cloud fractions are large, except for ERA-interim

with small correlation coefficients for cloud fraction biases
(�0.25) and cloud albedo biases (�0.18). There is no clear
relationship between cloud fraction biases and the modeled
cloud fraction. The model biases in SRCF (or cloud albedo)

Figure 7. Scatterplots showing the overlapped relationships from different reanalyses and the correlations
(the strength of the relationships). Blue, green, and purple represent ERA-Interim, R1, and R2, respectively.
The colored numbers represent correlation coefficients from the same colored dots.

Figure 8. Scatterplots showing the relationship between (a, b, and c) observed or (d, e, and f) modeled
cloud fraction and the model biases in the cloud properties. Blue, green, and purple represent ERA-Interim,
R1, and R2, respectively. The colored numbers represent correlation coefficients from the same colored
dots.

WU ET AL.: EVALUATION OF NWP REANALYSES D12202D12202

10 of 18



are large when modeled cloud fraction is large, except for R1
with small correlation coefficients.

4.2. Relationship of Cloud Fraction Biases to 2-m
Temperature and Humidity

[43] It is expected that cloud properties are related to 2-m
meteorological variables, especially for relative humidity, at
least for clouds with roots in the boundary layer. Further-
more, the modeled 2-m air temperature/humidity are strongly
impacted by the model used in the reanalysis [Kalnay et al.,
1996]. This section examines the relationship between the
cloud properties and the temperature/humidity, the multi-
scale mean variations of the temperature/humidity from all
the data sets and the corresponding model biases, and the
relationship between the model biases in the relative humid-
ity (or cloud fraction) and the temperature/humidity. Results
from concurrent monthly data are presented.
[44] Figure 9 shows the cloud properties as a function of

temperature and humidity. The cloud properties are strongly
related to the relative humidity for all the data sets, especially
for the observations and ERA-Interim with correlation coef-
ficients between 0.62 and 0.80. There is some relation-
ship between the cloud properties and the temperature (or
specific humidity), but the relationship is not as strong as
that with the relative humidity. The ERA-Interim appears to
describe the observed relationships better than the two NCEP
reanalyses in general. One exception is that cloud albedo
decreases with temperature (and specific humidity) in the
observations but not in the reanalyses. These relationships
are likely related to the processes that couple boundary layer
clouds with the land surface, and to the parameterizations

used in the models. The parameterization details and their
effects on the results warrant further investigation.
[45] Figure 10 shows the multiscale mean variations of 2-m

temperature from all the data sets and corresponding model
biases. In general, the model biases are small, ranging from
�2.10�C to 1.65�C, which is comparable to the standard
deviation of the observations. ERA-Interim (R1) shows slightly
warmer (colder) than the observations at all the temporal scales,
except that R1 has warm biases in April/May. Relatively,
R2 shows the smallest overall biases, as evident by the annual
cycle and interannual variations. The phase patterns of the
multiscale mean variations from the reanalyses agree with
the observations for the three temporal scales. The diurnal
(annual) cycle peaks at 3pm (July) and shows the coldest
temperature at 6 am (January).
[46] Figure 11 shows the multiscale mean variations of 2-m

specific humidity from all the data sets and corresponding
model biases. Like the temperature, the model biases in the
specific humidity are small (from �0.94 to 1.47 g/kg),
comparable to the standard deviations of the observations.
The specific humidity in ERA-Interim/R2 (R1) is smaller
(larger) than the observations, except for R2 monthly specific
humidity in January/August and annually averaged specific
humidity in 2007/2008 with an opposite behavior. The mul-
tiscale mean specific-humidity variations from all the data
sets have similar phase patterns, indicating that the reanalyses
are capable of modeling the observed phase patterns.
[47] Figure 12 shows the multiscale mean variations of 2-m

relative humidity from all the data sets and corresponding
model biases. The model biases in relative humidity range
from �12.52% to 14.93%, slightly larger than the standard

Figure 9. Relationship between the cloud properties and the 2-m temperature/humidity.
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deviations of the observations. It is evident that ERA-Interim
(R1) relative humidity is systematically smaller (larger) than
the observations at all the temporal scales. The underesti-
mation (overestimation) in ERA-Interim (R1) is especially
large, up to �12.52% in early morning (late afternoon) or
from late Fall to early Spring. R2 relative humidity matches
the observations the best among the three reanalyses,

although smaller than the observations at 6 am (�7.69%) or
in April and May (�7.01%). The phase pattern from all the
reanalyses agrees well with the observations, with a peak in
early morning, then decreases until 3pm, and then increases
again (note that the 6-hourly R1 and R2 cannot show the
detailed hourly pattern). The relative humidity reaches the
smallest value in July, and then increases from July to

Figure 10. (a, b, and c) Multiscale mean variations of 2-m air temperature and (d, e, and f) corresponding
model biases, defined as (model minus observation). Red, blue, green, and purple represent the observa-
tions, ERA-Interim, R1, and R2, respectively. The data used are daytime (6 am to 6 pm LST) data from
04/01/2001 to 12/31/2008 over ARMSGPCentral Facility site. The red bar represents� one standard devi-
ation of the observations.

Figure 11. The same as Figure 10 but for 2-m specific humidity instead of 2-m air temperature.
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December, followed by a decrease until April, and then an
increase from April to May (from April to June for R1 and
R2), then a drop to July. A notable phenomenon of the
annually averaged relative humidity is the large drop
(�12.51%) from 2004 to the hot year 2006, followed by the

large increase (20.04%) to 2007, and then a drop about
�13.54% to 2008.
[48] The relationship between the relative humidity biases

and the temperature/humidity is shown in Figure 13. As
shown in Figures 13a and 13b, the relative humidity biases in

Figure 12. The same as Figure 10 but for 2-m relative humidity instead of 2-m air temperature.

Figure 13. Scatterplots showing the relationships between 2-m relative humidity (RH) biases and 2-m
temperature (T) [or specific humidity (SH), or relative humidity (RH)]. Blue, green, and purple represent
ERA-Interim, R1, and R2, respectively. The colored numbers represent correlation coefficients from the
same colored dots.
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R1 and R2 are strongly positively related to the modeled
relative humidity, with correlation coefficients greater than
0.66. The relationship between ERA-Interim relative humidity
and its biases is much weaker, with correlation coefficient
only 0.18. The dependence of relative humidity biases on the
observed relative humidity, observed/modeled temperature
and specific humidity is also weak, with correlation coeffi-
cient smaller than 0.42. Figure 13 further shows that the
relative humidity biases have a positive (negative) linear
relationship with the specific humidity (temperature) biases,
suggesting that an overestimated (underestimated) relative
humidity results from combined effects of an overestimated
(underestimated) specific humidity and underestimated
(overestimated) temperature.
[49] Figure 14 shows the relationship between cloud fraction

biases and the temperature/humidity. From Figures 14a, 14b,
and 14c, the cloud fraction biases in R1 and R2 increase with
observed and modeled relative humidity, except that ERA-
Interim cloud fraction biases show no clear relationship with
relative humidity. Figures 14d–14i also shows that the cloud
fraction biases in R1 and R2 decrease with observed and mod-
eled temperature/specific humidity, while ERA-Interim has
an opposite behavior. There is no clear relationship between
cloud fraction biases and the temperature/humidity biases.

5. Evaluation on the Overall Performance
of the Reanalyses

[50] This section evaluates the overall performance of
the reanalyses in modeling the cloud properties and the

meteorological variables. The evaluation is conducted using
concurrent daytime-mean and monthly data.
[51] Figure 15 shows the Taylor diagrams of the cloud

properties from daytime-mean (a) and monthly (b) data. The
radial distance represents the amplitude of the variations,
normalized by the amplitude of the observationally based
variations. The cosine of azimuthal angle of each point gives
the correlation between the reanalyses and the observations.
The distance between each point and the reference point
“Obs” represents the RMS error, normalized by the ampli-
tude of the observationally based variations. As this distance
approaches to zero, the modeled variations approach the
observations.
[52] For daytime-mean cloud properties, ERA-Interim

exhibits the best performance in modeling the phase of the
cloud properties and the magnitude of the SRCF variations,
although it slightly overestimates the magnitude of the cloud-
fraction and cloud-albedo variations. R2 exhibits the best
performance in modeling the magnitude of the cloud-fraction
and cloud-albedo variations, although it significantly under-
estimates the magnitude of the SRCF variations. R2 shows
slightly better phase pattern of the cloud properties than R1.
R1 significantly underestimates the magnitude of the cloud
properties and also shows the worst phase similarity to the
observations. ERA-Interim has the smallest RMS errors of
all the cloud properties while R1 (or R2) exhibits the largest
RMS errors of SRCF (or cloud fraction and cloud albedo).
[53] For daytime-mean meteorological variables, ERA-

Interim exhibits the best performance in modeling the
phase of the temperature/humidity and the magnitude of the

Figure 14. Scatterplots showing the relationships between cloud fraction biases and 2-m temperature (T)
[or specific humidity (SH), or relative humidity (RH)]. Blue, green, and purple represent ERA-Interim, R1,
and R2, respectively. The colored numbers represent correlation coefficients from the same colored dots.
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temperature variations, although it slightly underestimates
the magnitude of the relative/specific humidity variations. R1
(R2) exhibits the best performance in modeling the magni-
tude of the relative (specific) humidity variations, and both
overestimate the magnitude of all the daytime-mean meteo-
rological variables. R1 shows slightly better phase pattern
than R2 for specific humidity whereas the opposite is true for
temperature and relative humidity.
[54] For monthly cloud properties, ERA-Interim exhibits

the best performance in modeling the phase and magnitude
and the smallest RMS error of the cloud properties, even

though ERA-Interim significantly underestimates the observed
monthly SRCF. R2 significantly overestimates (under-
estimates) the magnitude of the cloud-albedo (SRCF/cloud
fraction) variations, with the largest RMS error of cloud
albedo. R1 significantly underestimates all the cloud prop-
erties, showing the worst in modeling the phase and magni-
tude and the largest RMS errors of cloud fraction and SRCF.
[55] For monthly meteorological variables, ERA-Interim

exhibits the best performance in modeling the phase and
magnitude and the smallest RMS error of the temperature/
humidity variations, except for R2 showing the best in

Figure 15. Taylor diagrams of the cloud properties and the 2-m temperature/humidity from (left) daytime-
mean or (right) monthly data. Red, blue, green, and purple represent the observations, ERA-Interim, R1,
and R2, respectively. The symbols “circle,” “triangle,” “square,” “x-mark,” “plus,” and “star” denote surface
relative shortwave cloud fraction (SRCF), cloud fraction, cloud albedo, temperature, relative humidity, and
specific humidity, respectively.

Figure 16. “Relative Euclidean Distance” of the cloud properties and the 2-m temperature/humidity from
(a) daytime-mean and (b) monthly data. The shorter the Euclidean distance, the better the model perfor-
mance is.
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modeling the magnitude of specific humidity variations. R1
(R2) shows slightly better performance in simulating the
phase pattern of the specific humidity (temperature and rel-
ative humidity). R1 significantly (slightly) overestimates the
magnitude of the observed monthly relative humidity (tem-
perature, and specific humidity) variations. R2 significantly
(slightly) overestimates the magnitude of the observed
monthly relative humidity (temperature), with a slightly
small RMS error than R1 for all the meteorological variables.
[56] Figure 16 further compares the “Relative Euclidean

Distance” D values of the reanalyses in modeling the
daytime-mean (Figure 16a) or monthly (Figure 16b) cloud
properties and the meteorological variables. As can be seen,
ERA-Interim (R1) has the smallest (largest) D values for
all the cloud properties and the meteorological variables at
both daytime-mean and monthly temporal scales. The only
exception is that R2 has the best overall performance in
modeling the monthly temperature and specific humidity.
This suggests that ERA-Interim (R1) ranks the best (worst)
overall performance in modeling the cloud properties and the
meteorological variables among the three reanalyses, except
that R2 ranks the best in modeling the monthly temperature
and specific humidity.

6. Summary

[57] This study evaluates three major reanalyses (ERA-
Interim, NCEP/NCARReanalysis I, NCEP/DOEReanalysis II)
in modeling surface relative shortwave cloud forcing (SRCF),
cloud fraction, and cloud albedo. The cloud properties at
diurnal, annual, and inter-annual temporal scales from all the
reanalyses are first evaluated. Then, the model biases are
quantified and their links to one another or to 2-m temperature/
humidity are examined. The overall performance of the rea-
nalyses in modeling the cloud properties and the 2-m tem-
perature/humidity is evaluated using a combined statistical
method (i.e., the technique of Taylor diagrams and a newly
developed metric “Relative Euclidean Distance”). Decade-
long (1997 to 2008) surface-based continuous ARM measure-
ments over the Southern Great Plains (SGP) Central Facility
site are used as a standard for this evaluation.
[58] Results show that the reanalyses significantly under-

estimate the cloud properties, with relative biases ranging
mainly from �60% to �30% for SRCF, from �40% to
�20% for cloud fraction, and from �30% to 10% for cloud
albedo. The annual cycle of the models’ relative biases is
substantial. For SRCF, ERA-Interim has a uniform negative
bias throughout the year whereas NCEP/NCAR Reanalysis I
and NCEP/DOE Reanalysis II have much reduced biases
in summer than in winter/spring. The annual cycles of the
cloud-fraction relative biases differ between the three reana-
lyses. But for the derived cloud albedo, all the models show a
small bias from May to September, increasing in the cold
season to a large negative bias of �25% to �33%. NCEP/
DOE Reanalysis II is the only reanalysis having similar
diurnal phase pattern to the observed cloud properties, and
NCEP/NCAR Reanalysis I is the only reanalysis showing an
opposite phase pattern to the observed annual-cycle cloud
fraction or SRCF.
[59] The model biases of the cloud properties predomi-

nantly range from �0.20 to 0 for SRCF, from �0.25 to 0 for
cloud fraction, and from �0.20 to 0.10 for cloud albedo. The

model biases in general exhibit a positive linear relation-
ship to one another. The model biases in the cloud proper-
ties increase with the cloud fraction observations, except
for ERA-interim model biases in cloud fraction (or cloud
albedo).
[60] In analyzing the relationship between cloud fraction

and 2-m temperature/humidity, we found that the cloud
fraction biases in the two NCEP reanalyses increase
(decrease) with their relative humidity (temperature and
specific humidity), but the cloud fraction biases in
ERA-Interim show no (opposite) relationship with relative
humidity (temperature and specific humidity). There is no
clear relationship between cloud fraction biases and the
temperature (or specific humidity) biases. We also found that
the reanalyses have small (large) biases in modeling 2-m
temperature/specific humidity (relative humidity), and the
relative humidity biases have a positive (negative) linear
relationship with the specific humidity (temperature) biases.
These findings suggest that the model biases in the cloud
properties are closely linked to the near-surface temperature/
humidity fields, likely through the parameterizations used to
couple boundary layer clouds with the land surface.
[61] A combined analysis of the Taylor diagram and the

relative Euclidean distance, based on first- and second- order
statistics, indicates that ERA-Interim and NCEP/NCAR
Reanalysis I have the best and worst overall performance in
modeling the cloud properties and the meteorological vari-
ables, respectively, except that R2 ranks the best in modeling
the monthly temperature and specific humidity. The findings
from this study highlight the significant underestimation of
the cloud properties over the ARM SGP site in the three
major NWP reanalyses, and the model biases of the cloud
properties are closely linked to one another, and also linked
to 2-m temperature/humidity. This suggests that caution must
be taken when using the reanalyses as a standard (e.g., a
substitute of observations) for evaluating climate models,
especially considering the large biases in the forecasted 2-m
relative humidity. Furthermore, the underestimation of the
cloud properties is a crucial issue in climate modeling, since
it could substantially influence the estimation of the Earth’s
surface and atmospheric energy budget, hydrological cycle
and general circulation.
[62] Several points are noteworthy. First, we have shown

that there is a potential uncertainty in comparing the ARM
hemispheric observations with the spatially averaged model
data from the reanalyses which use a plane-parallel assump-
tion. A systematic investigation to quantify the uncertainty of
cloud fraction observations and to develop new approaches
to reduce the observational uncertainty [e.g.,Min et al., 2008;
Hogan et al., 2009] is needed to further assess observational
effects discussed briefly in Section 3.2. Second, the ARM
measurements and three reanalyses have different spatial and
temporal resolutions, which could partially impact the ana-
lyzed results. Although aggregating large number of data
points as done in this study tends to minimize the resolution
effect, more work is needed to pin down the causes of the
model biases shown in this study. Third, as pointed out in Liu
et al. [2011], the current observational data of cloud fraction
and cloud albedo are derived separately from surface-based
radiation measurements. Such a separate treatment could lead
to potentially compensating errors, especially when different
FOVs are involved (Section 3.2). A retrieval approach to

WU ET AL.: EVALUATION OF NWP REANALYSES D12202D12202

16 of 18



simultaneously obtain cloud fraction and cloud albedo is
desirable. Fourth, in this study we examined the relationships
between the model biases in the cloud properties and the 2-m
temperature/humidity. Detailed vertical profiles of tempera-
ture, humidity, vertical velocity and wind are crucial to
examining the cause of the large model biases found in this
study and further investigation along this line is under way.
Finally, it is expected that the identified cloud-property
biases in the reanalyses, their connections to near-surface
meteorological variables, and the disparities between the
three reanalyses arise largely from inadequate and differ-
ent parameterizations of related processes/quantities in the
models used to generate the corresponding reanalyses. Fur-
ther relating the identified biases to specific parameterization
deficiencies and improving the parameterizations call for
in-depth investigation of model parameterizations, which are
the challenges to the climate and NWP community in gen-
eral, and to the reanalysis community in particular.
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