




### General Response Action – Removal, Excavation Methods

### Presented by: J. R. Schneider/T. A. DeBiase

Location: Shilo Inn, Richland, Washington Date: June 7, 2011



### General Response Action – Removal, Excavation Methods

#### **General Description**

- Excavation is advanced by using earthmoving equipment
- Overlying clean soil is removed and stockpiled
- Contaminated soil is removed and disposed
- Clean stockpiled soil is replaced to extent possible
- Excavation sides are sloped or supported
- Methods can be combined to achieve greater excavation depths

Excavation U, Togg, I-129, CrVI, CCI4

• All

**Potential Contaminants:** 





### General Response Action - Removal, Excavation Methods

- Three primary methods for deep excavations:
  - 1. Open excavation using sloping or benching
  - 2. Drilling and soil replacement
  - 3. Excavation with braced sidewalls, such as
    - a. Sheet pile walls
    - b. Soldier piles wall
    - c. Diaphragm walls
    - d. Soil nail walls
    - e. Cast pile wall
    - f. Caisson wall
    - g. Other misc methods



Superior Foundation, Inc.





# Technology - Deep Excavation with Sloping and/or Benching (Open Pit Mining)

### **General Description**

- Excavation is advanced by using earthmoving equipment
- Excavation sides are sloped or benched
- Can be combined with shoring to achieve greater excavation depths







# Technology - Deep Excavation with Sloping and/or Benching (Open Pit Mining)

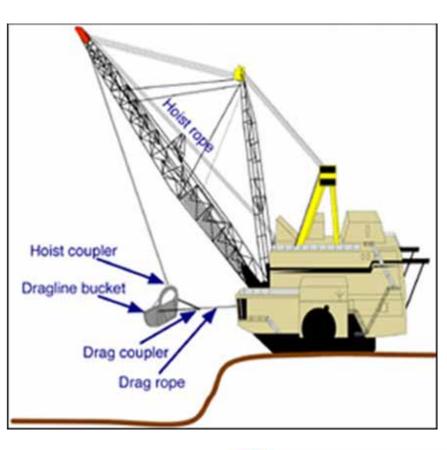
### State of Development

- Mature uses proven heavy equipment
- Depth is essentially unlimited Limitations/Development Needs
- Large surface area impacted because of sloped sides and may also impact surface features such as tanks, piping, structures, etc.
- Requires large stockpiles and separate disposal facility










### Technology - Deep Excavation using Dragline Excavators

### **General Description**

- Excavation is advanced by using large draglines
- Walls are sloped or benched

Potential Contaminants: • All







### Technology - Deep Excavation using Dragline Excavators

Limitations/Development Needs

- Sloped sides & dragline size may impact surface features
- Requires large stockpiles and separate disposal facility
- Cannot practically be combined with shoring
- Equipment availability



P&H Cranes/Harnishfeger Corp.

| Lab Testing OnlyField Testing OnlyLimited Field ApplicationRemediation Ready<br>(limited application)Remediation Ready |
|------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------|





# Technology - Deep Excavation using Drilling and Soil Replacement

#### **General Description**

- Large diameter holes are drilled to remove contamination
- Each hole is backfilled with a low strength soil-cement mixture that does not require compaction









**Bored-Piles.com** 





### Technology - Deep Excavation using Drilling and Soil Replacement

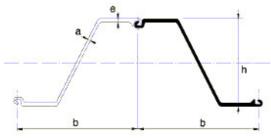
#### State of Development

- Mature uses proven heavy equipment
- Large diameter borings have been drilled to over 200 feet at sites that included large cobbles

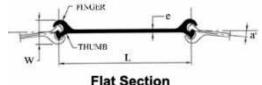
### Limitations/Development Needs

- Large equipment is required
- Large number of borings required to cover a large area or very accurate knowledge of contamination required
- Excavation control is more difficult with greater depth (e.g. achieving vertical borings)
- Requires re-excavation of some previously placed backfill if borings must overlap to remove entire target

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|







### Technology - Deep Excavation using Sheet Piling

### **General Description**

- Steel sheet piling with interlocking grooves at the sides are inserted into soil by hammering or vibrating
- Excavation uses conventional equipment



Z Section



Flat Section



Potential Contaminants: • All



University of Syracuse, NY



### Technology - Deep Excavation using Sheet Piling

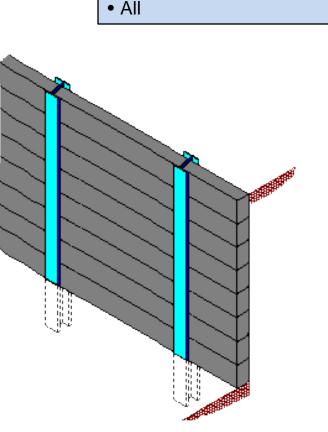
#### State of Development

- Mature uses proven equipment and materials
- Maximum depth is about 50 feet
- Walls can be supported or excavation can be stepped to achieve greater depths
- Limitations/Development Needs
- Boulders and cobbles can prevent sheet pile insertion
- Wall support may be impractical at great depths



Dywidag Systems International/DSIAmerica

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | <b>Remediation Ready</b> |
|------------------|--------------------|---------------------------|--------------------------------------------|--------------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|--------------------------|






### Technology - Deep Excavation using Soldier Pile and Lagging Wall

#### **General Description**

- Steel H-piles are inserted into soil at regular intervals by driving or by placing in drilled holes
- Timber or steel "lagging" is placed between the piles to support the ground as the excavation is advanced
- Excavation inside wall uses conventional equipment



www.retainingwalldesign.com

**Potential Contaminants:** 





# Technology - Deep Excavation using Soldier Pile and Lagging Wall

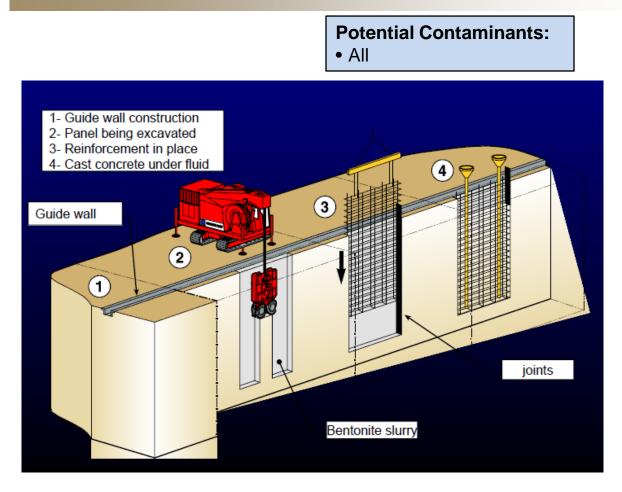
#### State of Development

- Mature uses proven equipment and materials
- Maximum depth is about 100 feet
- H-piles usually supported by anchors
- Excavation can be stepped to achieve greater depths
- Limitations/Development Needs
- Boulders and cobbles can make vertical control difficult
- Loose material can make lagging insertion difficult



Neo Samwoo Vietnam Co., Ltd.

| Lab Testing | ) Only | Field Testing Only | Limited Field Application | Remediation Ready (limited application) | Remediation Ready |
|-------------|--------|--------------------|---------------------------|-----------------------------------------|-------------------|
|-------------|--------|--------------------|---------------------------|-----------------------------------------|-------------------|






### Technology - Deep Excavation using Diaphragm Walls

#### **General Description**

- Reinforced concrete wall constructed in panels
- Bentonite slurry is used to support each panel excavation
- Excavation inside wall uses conventional equipment







### Technology - Deep Excavation using Diaphragm Walls

#### State of Development

- Mature uses proven heavy equipment
- Maximum depth is about 200 feet
- Wall is usually supported by anchors Limitations/Development Needs
- Uses highly specialized equipment
- Slurry makes the work somewhat "sloppy"
- Wide corridor (75 100 feet) required along wall alignment



StroyInject, Bulgaria







### Technology - Deep Excavation using Soil Nail Walls

### **General Description**

- A shallow cut is made, and steel reinforcing bars are inserted into the cut face at regular intervals
- Wire mesh and sprayed-on concrete are applied to protect and support the face (other materials can be used)
- The process is repeated until target depth is reached

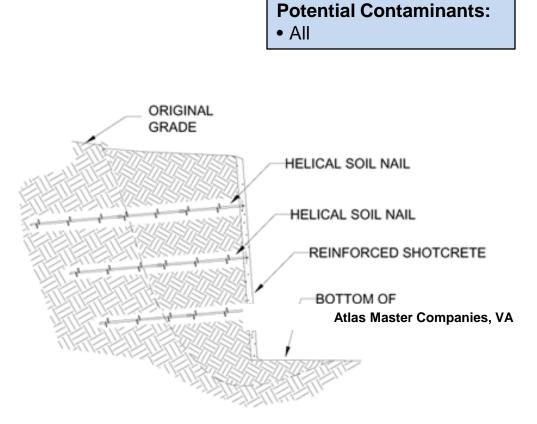



Figure 4





# Technology - Deep Excavation using Soil Nail Walls

#### State of Development

- Mature uses proven equipment
- Limited to about 30-40 feet
- Excavation can be stepped to achieve greater depths

Limitations/Development Needs

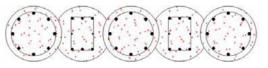
 Requires cohesive soil and unsaturated or minimal water flow conditions



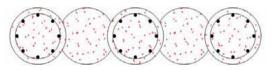







### Technology - Deep Excavation using Secant Pile Wall

Augering of Secondary Borehole


#### **General Description**

- Secant pile walls are formed by constructing intersecting drilled reinforced concrete piles
- Piles reinforced with steel reinforcing bars or Hpiles
   Piles
   Piles

Potential Contaminants: • All



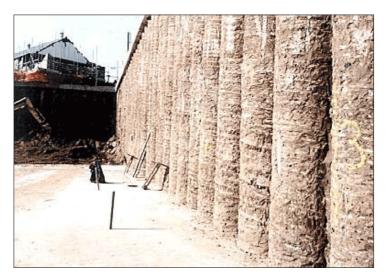
#### "Hard/Hard" Wall



"Hard/Soft" Wall






### Technology - Deep Excavation using Secant Pile Wall

#### State of Development

- Mature uses proven heavy equipment
- Maximum depth for single stage is about 50 feet; walls often anchored
- Excavation can be stepped to achieve greater depths

**Limitations/Development Needs** 

 Vertical alignment control is critical and becomes more difficult with increasing depth and rocky ground

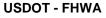


**USDOT - FHWA** 








### Technology - Deep Excavation using Tangent Pile Wall

#### **General Description**

- Same as secant pile walls, except that piles touch but do not intersect
- State of Development
- Mature uses proven heavy equipment
- Maximum depth for single stage is about 50 feet; walls often anchored
- Excavation can be stepped to achieve greater depths
- Limitations/Development Needs
- Vertical alignment control is critical and becomes more difficult with increasing depth and rocky ground
- More potential for gaps between piles than with secant pile wall

Potential Contaminants:All

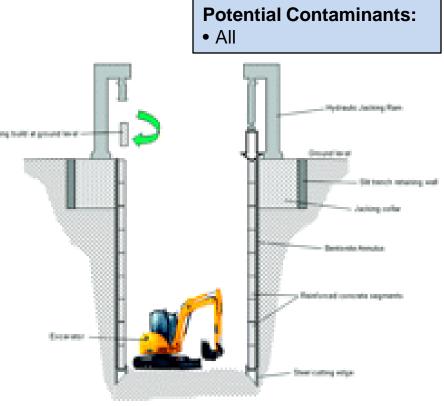
DDDDDDD





**USDOT - FHWA** 

| Lab Tes | sting Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|---------|------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|---------|------------|--------------------|---------------------------|--------------------------------------------|-------------------|






# Technology - Deep Excavation using Caissons

#### **General Description**

- A reinforced concrete box open at the top and bottom is "sunk" into the ground by excavating inside
- More sections can be added on top to go deeper



#### qjegh.lyellcollection.org

| Lab Testing Only Field Testing | ly Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|--------------------------------|------------------------------|--------------------------------------------|-------------------|
|--------------------------------|------------------------------|--------------------------------------------|-------------------|





### Technology - Deep Excavation using Caissons

#### State of Development

- Mature uses proven heavy equipment
- Can be used where soil contains large boulders that obstruct penetration of driven or bored piles
- Maximum practical depth is about 80 feet Limitations/Development Needs
- Complex construction; requires large equipment
- Caisson remains in place; area my be limited
- Caissons can hang on cobbles, boulders, dense soil, etc.
- Goes straight down only

#### Example 1 Acre Site, 200 ft deep:

• The required depth cannot be achieved.



#### Ward & Burke, Ireland

| Lab Testing Only Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|-------------------------------------|---------------------------|--------------------------------------------|-------------------|
|-------------------------------------|---------------------------|--------------------------------------------|-------------------|





### Technology - Deep Excavation using Jet Grout Walls

#### **General Description**

- One to three rows of grouted columns are formed by jetting grout horizontally under high pressure to form a wall
- Reinforcing may be placed in the center of each columns





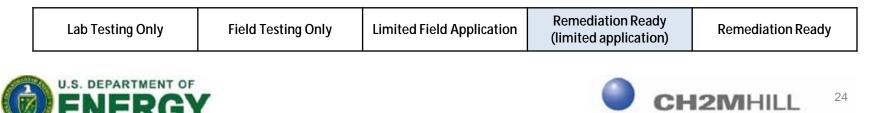
**Potential Contaminants:** • All

Hayward Baker

**Portland Cement Association** 



### Technology - Deep Excavation using Jet Grout Walls

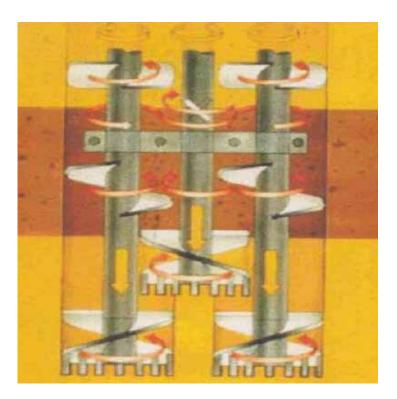

#### State of Development

- Mature uses proven heavy equipment
- Wall may be laterally supported
- Maximum depth for single stage is about 50 feet; walls often anchored
- Excavation can be stepped to achieve greater depths
- Limitations/Development Needs
- Vertical control is critical and becomes more difficult with increasing depth and rocky ground
- Complete mixing may not be achieved, and thus wall many not have required strength



Spie Fondation, France

Plateau Remediation Company




### Technology - Deep Excavation using Deep Mixed Walls

#### **General Description**

- Multi-auger mixers are used to mix Portland cement grout with inplace soils in panels; panels overlap
- H-piles can be inserted for reinforcement

Potential Contaminants: • All







## Technology - Deep Excavation using Deep Mixed Walls

### State of Development

- Mature uses proven heavy equipment
- Wall may be laterally supported
- Practical limit is about 50 feet
- Excavation can be stepped to achieve greater depths

Limitations/Development Needs

- Generates substantial volumes of excess excavated material due to bulk swell and fluid injection
- Vertical control and panel overlap can be difficult



| Lab Testing Only   Field Testing Only   Limited Field Application | Remediation Ready<br>(limited application) | <b>Remediation Ready</b> |
|-------------------------------------------------------------------|--------------------------------------------|--------------------------|
|-------------------------------------------------------------------|--------------------------------------------|--------------------------|





### Technology - Deep Excavation using Reinforced Concrete Walls

#### **General Description**

- Excavation is temporarily supported using methods such as sheet piles, soils nails, soldier piles, etc.
- Reinforced concrete wall is constructed to support the ground; wall may be anchored into the ground
- Method usually used for permanent construction

Potential Contaminants:All



| Lab Testing OnlyField Testing OnlyLimited Field ApplicationRemediation Ready<br>(limited application)Remediation F |
|--------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------|





### Technology - Deep Excavation using Reinforced Concrete Walls

### State of Development

- Mature uses proven heavy equipment
- Can remove impacted materials that can be reached
- Limitations/Development Needs
- Intended for permanent support









### Technology - Deep Excavation using Cofferdams

#### **General Description**

- Sheet-pile, tangent pile, secant pile, or diaphragm walls are constructed in circular or rectangular shapes to enclose an earth mass
- Internal bracing or anchoring may be used
- Use to support heavy vertical and horizontal loads (normally used near water bodies)

WATER ZONE Double Layer or Cellular EARTH or ROCK FILLS DRY WORKING AREA

• All

SheetPilesPiling.com

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|





**Potential Contaminants:** 

### Technology - Deep Excavation using Cofferdams

#### State of Development

- Mature uses proven heavy equipment
- Limited to about 40 feet
- Excavation can be stepped to achieve greater depths
- Limitations/Development Needs
- Wall is much thicker since it relies on gravity instead of anchors to prevent overturning



CJ Mahan Construction Company

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | <b>Remediation Ready</b> |
|------------------|--------------------|---------------------------|--------------------------------------------|--------------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|--------------------------|





### Technology - Deep Excavation using Tunneling

### **General Description**

- Tunnel is created by full-face excavation, boring machine, pipe jacking, or other conventional tunneling technique
- Completely enclosed tunnel except for access openings

Potential Contaminants: • All



TunnelTalk.com

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|





### Technology - Deep Excavation using Tunneling

### State of Development

- Mature uses proven heavy equipment
- Access shafts will be required, or tunnels must be sloped
- Can remove impacted materials that can be reached

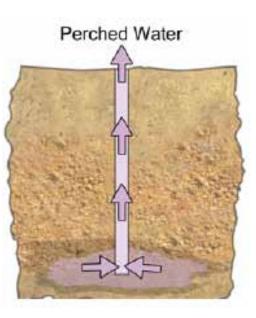
### Limitations/Development Needs

- Large cobbles and boulders will impact the selection of tunneling equipment/techniques
- Excavation of unconsolidated materials can be difficult since material is not selfsupporting



TunnelTalk.com

| Lab Testing Only F | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|--------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|--------------------|--------------------|---------------------------|--------------------------------------------|-------------------|






### Technology – Perched Water Removal

### **General Description**

- Water perched above low-permeability areas within the vadose zone is pumped before it migrates to groundwater
- Wells must be correctly placed to adequately capture the extent of the perched water



Potential Contaminants:U, Tc-99, Cr(VI)



Perched Water Extraction Pilot Test at B Complex





### Technology – Perched Water Removal

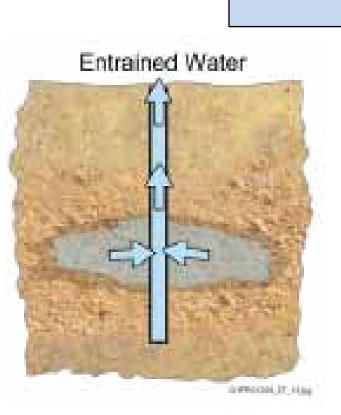
State of Development

• Technology is well proven; currently being deployed in the B Complex

Limitations/Development Needs

- Low flow rates and delays to allow recharge can extend remediation time
- Perched water is ephemeral (transitory)

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|






### **Technology – Pore Water Extraction**

### **General Description**

- Subsurface water within the unsaturated zone containing mobile contaminants is extracted
- Soil gas with entrained water is extracted from the subsurface through a well using high vacuum to induce high vapor extraction rates



Plasma Arc Centrifugal Treatment Furnace (Retech Systems LLC)





HNF-49890-VA

Potential Contaminants: • All

### **Technology – Pore Water Extraction**

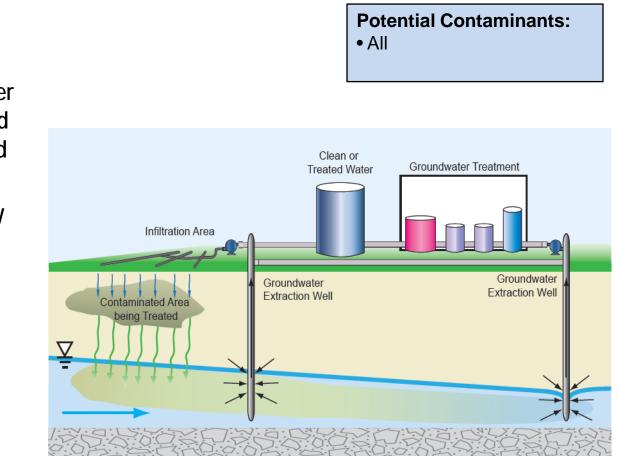
#### State of Development

 Pore water extraction is being evaluated in a pilot test planned for the 200 East Area of the Hanford Site

### Limitations/Development Needs

- Pore water is difficult to completely remove; some contaminants will adsorb to the soil and not move freely with the pore water
- Need to optimize recovery rates and determine the effectiveness in removing pore water held in tighter formations

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready (limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|-----------------------------------------|-------------------|
|------------------|--------------------|---------------------------|-----------------------------------------|-------------------|






### **Technology – Soil Flushing**

### **General Description**

- Mobilization of contaminants with water so they can be removed and treated or disposed
- Surfactants or other chemical additives may be used to enhance solubilization of contaminants



In-Situ Soil Flushing using Treated Water (http://www.epa.gov/





### **Technology – Soil Flushing**

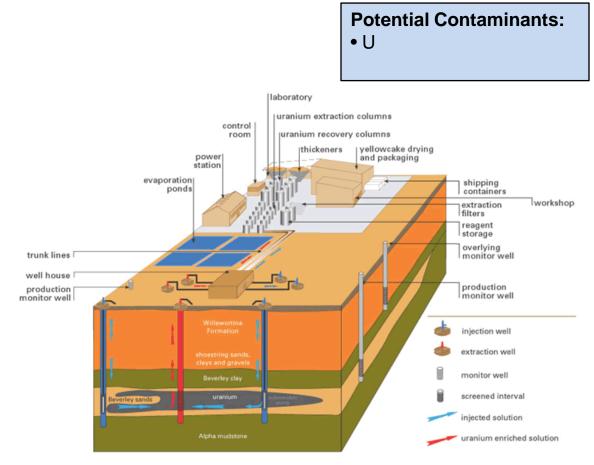
#### State of Development

• Mature technology for shallow applications

#### Limitations/Development Needs

- Can only be applied where soil has sufficient permeability to allow circulation and recovery of flushing solution
- Soil heterogeneity can prevent optimum contact and decrease reliability
- Requires flushing through thick vadose zone with effective capture of contaminants in groundwater

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready (limited application) | <b>Remediation Ready</b> |
|------------------|--------------------|---------------------------|-----------------------------------------|--------------------------|
|------------------|--------------------|---------------------------|-----------------------------------------|--------------------------|






### Technology – In Situ Uranium Recovery

#### **General Description**

 Recovers uranium by dissolving it with a solution and pumping the solution to the surface for removal. This technology is most widely used for uranium mining in saturated conditions.



In Situ Uranium Recovery Process (http:\www.world-nuclear.org\)





### Technology – In Situ Uranium Recovery

#### State of Development

- Proven technology for in situ uranium mining
- No known applications for to remedy uranium contamination

#### Limitations/Development Needs

- Technology has not been known to be applied successfully in vadose zone strata above a water table
- Spatial heterogeneity in the subsurface makes complete recovery and control of leachate very difficult using extraction wells

| Lab Testing Only | Field Testing Only | Limited Field Application | Remediation Ready<br>(limited application) | Remediation Ready |
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|
|------------------|--------------------|---------------------------|--------------------------------------------|-------------------|



