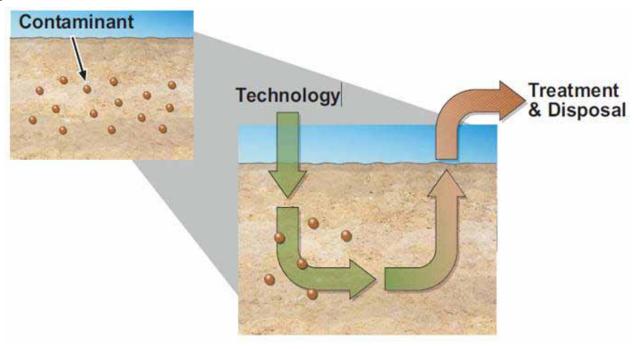


General Response Action – Ex Situ Treatment and Disposal

Presented by: T. A. DeBiase/J. R. Schneider

Location: Shilo Inn, Richland, Washington

Date: June 7, 2011

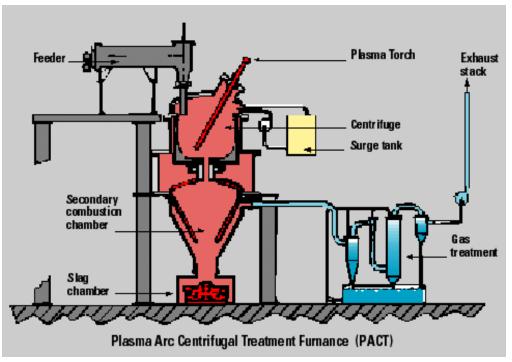


HNF-49888-VA CHPRC006-08C

General Response Action – Ex Situ Treatment and Disposal

General Description

- Apply a treatment to excavated contaminated soil that degrades or immobilizes the contaminants
- Dispose of the treated soil


Technology – Ex Situ Vitrification

General Description

- Apply electrical energy to melt and convert contaminated soil into glass
- Organic contaminants are destroyed; heavy metals and radionuclides are retained in the melt and immobilized in resulting product

Potential Contaminants:

• All

Plasma Arc Centrifugal Treatment Furnace (Retech Systems LLC)

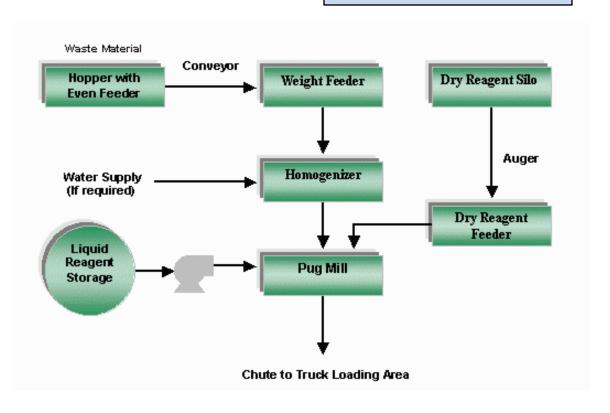
Technology – Ex Situ Vitrification

State of Development

 Tests, demonstrations, and commercial operations of the technology have been conducted, but generally with high level waste

- Energy intensive
- Large materials (e.g., cobbles) must be screened out of soil to be treated
- Contaminant and vitrification materials interaction must be well-understood
- Technology has complex equipment requirements and challenging implementation

Lab Testing Only Field Testing Only Limited Field Application	Remediation Ready (limited application)	Remediation Ready
---	--	-------------------


Technology – Solidification/Stabilization

General Description

- Eliminates or minimizes the mobility of contaminants by physical or chemical means.
- Contaminants are physically bound or enclosed within a stabilized mass, or chemical reactions are induced between the stabilizing agent and contaminants to reduce their mobility

Potential Contaminants:

• U, Tc-99, Cr(VI)

Ex Situ Solidification/Stabilization Process (http://www.frtr.gov/)

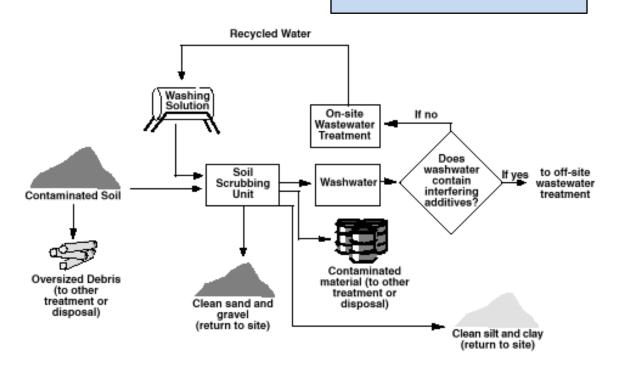
Technology – Solidification/Stabilization

State of Development

 Field demonstrations and full-scale applications have been completed for mobile and semi-mobile contaminants

- Long-term effectiveness is dependent on final waste form to sustain reduction in contaminant mobility
- Mixtures of contaminants with varying characteristics and heterogeneous soils require more complex solidification/stabilization formulations and treatment trains

Lab Testing Only Field Testing Only Limited Field Application	Remediation Ready (limited application)	Remediation Ready
---	--	-------------------


Technology – Soil Washing

General Description

- Water-based technology where excavated soils are scrubbed to remove contaminants
- Process removes
 contaminant from soil
 by dissolving or
 suspending the
 contaminants in the
 wash solution or by
 concentrating them by
 particle size

Potential Contaminants:

• U, Tc-99, I-129, nitrate, CCl₄

Generic Soil Washing Process (http://www.p2pays.org/)

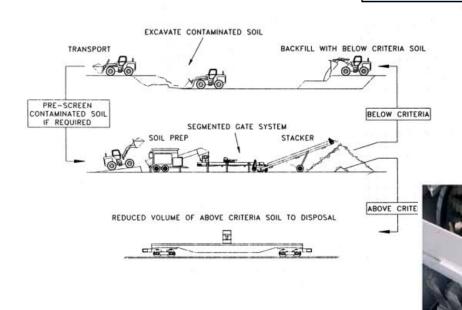
Technology – Soil Washing

State of Development

- Technology has been demonstrated; driven by binding process between the contaminants and soil particles (adsorbed or precipitated)
- Pilot tests conducted at 100 Area at Hanford, with moderate mass reduction

- Mixtures of contaminants with varying characteristics and heterogeneous soils require complex soil washing formulations and treatment trains
- Some of the contaminants at Hanford appear to be strongly bound to the surfaces of all particle sizes, which require more aggressive approaches to be effective

Lab Testing Only Field Testing	nly Limited Field Application	Remediation Ready (limited application)	Remediation Ready
--------------------------------	-------------------------------	--	-------------------


Technology – Soil Sorting/Screening

General Description

- Clean soil fractions are separated from the contaminated based upon radioactive energy emissions from the soil
- Soil passes under an array of radiation detectors that are used to determine the radioactivity present.
 Soil exceeding defined criteria is mechanically separated from the clean soil

Potential Contaminants:

• U, I-129

Segmented Gate System (http:\www.clu-in.org\)

Technology – Soil Sorting/Screening

State of Development

- Fully functional prototype has been developed and deployed
- Effective for gamma-emitting radionuclides, possibly beta-emitters

- Site-specific testing of soils would be required
- Hanford soils will need pre-screening (remove large cobbles and boulders) to make amendable to processing on a conveyor at 1-2 inches thick
- Technology works better when contaminant is present at higher activity levels and heterogeneously distributed

Lab resting only Field resting only Elimited Field Application (limited application) Remediation Ready
--

Technology – Disposal: Backfill Treated Soil

General Description

- Backfill is natural or engineered material that is used to fill in voids left after excavation efforts
- Treated soil meeting specification can be used as backfill

Potential Contaminants:

• All

Soil Distribution over Site in Preparation for Backfill and Compaction

Technology – Disposal: Backfill Treated Soil

State of Development

- Fully mature technology that is a well-proven, highly effective approach for restoring site surface conditions
- Backfilling of soils have been extensively used in remediation projects where soil
 excavation was conducted

Limitations/Development Needs

Backfill must meet the specifications established for the restoration of the site

Lab Testing Only	Field Testing Only	Limited Field Application	Remediation Ready (limited application)	Remediation Ready
------------------	--------------------	---------------------------	--	-------------------

Technology – Disposal: On-site Landfill

General Description

- Waste and material generated during remediation activities are disposed of within the site boundaries
- Disposal of excavated soil at onsite engineered landfill [Environmental Restoration Disposal Facility (ERDF)]

Potential Contaminants:

• All

The Environmental Restoration Disposal Facility (ERDF)

Technology – Disposal: On-site Landfill

State of Development

- On-site disposal of waste is a fully mature technology
- On-site waste disposal in the ERDF is a common practice at Hanford. The ERDF continues to provide an effective on-site disposal option for waste.

- Limits on waste volumes and contaminant concentrations and radioactivity must be considered
- Current on-site disposal availability must be evaluated to determine capacity and waste acceptability

Lab Testing Only	Field Testing Only	Limited Field Application	Remediation Ready (limited application)	Remediation Ready
------------------	--------------------	---------------------------	--	-------------------

Technology – Disposal: Off-site Landfill/Repository

General Description

- Waste and material generated during remediation activities are disposed of off-site, outside the site boundaries
- Required for contaminated soil that onsite disposal is not acceptable or adequate

Potential Contaminants:

•All

Energy Solutions Clive Utah Facility (http:\www.energysolutions.com\)

Technology – Disposal: Off-site Landfill/Repository

State of Development

Off-site disposal of waste is a fully mature technology

- Landfill limits on waste volumes and contaminant concentrations and radioactivity must be considered
- Significant transportation would be required to move waste off-site

Lab Testing Only	Field Testing Only	Limited Field Application	Remediation Ready (limited application)	Remediation Ready
------------------	--------------------	---------------------------	--	-------------------

