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In the high-temperature range, where the viscosity (η) ofmolten glass is b103 Pa s, the activation energy (B) is
virtually independent of temperature (T). Moreover, the coefficient A in the Arrhenius relationship, ln(η)=A+
B/T, is nearly independent of melt composition. Hence, the viscosity–composition relationship for ηb103 Pa s is
defined by B as a function of composition. Using a database encompassing over 1300 compositions of high-level
waste glasses with nearly 7000 viscosity data, we developedmathematical models for B(x), where x is the com-
position vector in terms of mass fractions of components. In this paper, we present 13 versions of B(x) as first-
and second-order polynomials with coefficients for 15 to 39 components, including Others, a component that
sums constituents having little effect on viscosity.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Under normal conditions, glass viscosity (η) is a function of temper-
ature (T) and composition, i.e., η=η(T,x), where x is the composition
vector (array of mass or mole fractions of glass components). Histor-
ically, viscosity–composition relationships were mostly restricted to
tables and diagrams [1–3], although various formulas were proposed
for limited composition regions. Only when large databases, such as
SciGlass [3], became available in electronic form, did serious attempts
begin to reduce large amounts of data to coefficients of polynomial
functions of mass or mole fractions of components [4]. Such functions
are often constructed in terms of isokoms, i.e., T= fη(x), that relate the
temperature to composition with η as a parameter. The isokom repre-
sentation leaves to the user the choice of the form of η = fx(T), i.e., the
viscosity–temperature function for a given composition, from among
dozens of relationships; among these, the Vogel–Fulcher–Tammann
equation and the Adams-Gibbs equation are the most popular (some
authors fit both these equations to their data [5]). However, the free-
dom to select an appropriate η= fx(T) function from the smorgasbord
of available choices is limited by the number of parameters of the T=
fη(x) relation, which is usually small—typically just three. On the other
hand, the number of η(T) data for glasses is usually large enough to
enable a satisfactory choice of a representative approximation func-
tion. Alternatively, viscosity can be expressed as η=fT(x), where T is
the parameter. Therefore, it is advantageous to preselect an analytical

form of η= fx(T) and then express its coefficients as functions of com-
position [6–8].

The task of selecting an adequate η= fx(T) function for a family of
glasses, such as borosilicate commercial glasses or nuclear waste glasses,
can be facilitated by the following assumptions [8] that rule out many,
if not most, η= fx(T) relationships proposed in the literature:

1. The viscosity at the glass transition temperature, Tg, is independent
of composition.

2. As T increases, the η= fx(T) function asymptotically approaches
the Arrhenius function, ln(η)=A+B/T, with the coefficient A in-
dependent of composition.

3. The η= fx(T) function approaches the Arrhenius function fast enough
to become virtually indistinguishable from it (within experimental
error) when the viscosity is below 102 to 103 Pa s, depending on
the glass family and measurement accuracy.

4. The number of temperature-independent coefficients should be as
low as possible.

Note: Some authors postulate that η→∞ only when T→0 [9,10].
However, this condition has no practical implications in glass tech-
nology and its theoretical justification is arguable. It can be met either
with more empirical coefficients [9] or by violating some of the con-
stitutive assumptions stated above.

By assumptions 2 and 3, high-temperature viscosity data (i.e., ηb
103 Pa s), both for commercial andwaste glasses, are satisfactorily fitted
by the Arrhenius function [6,7,11] with a temperature-independent
activation energy (B),

ln ηð Þ ¼ Aþ B xð Þ=T ð1Þ
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where A is a constant coefficient. This equation has a great advantage
in its simplicity, having only two coefficients, A and B, of which only B
depends on glass composition. Because viscosity is usually around
10 Pa s at glass-processing temperatures, it is suitable for formulating
glasses that meet melt-processing constraints.

The activation energy is usually expressed as a function of compo-
sition using the concept of partial properties [11,12]. Thus,

B ¼
XN
i¼1

Bixi ð2Þ

where xi is the ith component'smass fraction, Bi is the ith component's
partial specific activation energy, and N is the number of components.

Partial properties are themselves functions of composition, but Bis
can be approximated as constants for narrow ranges of mass fractions.
For highly interactive components, especially those with a wide range
of mass fractions, Bis can be approximated as linear functions of com-
position. Thus,

Bi ¼
XN
j¼1

�Bijxj ð3Þ

where�Bij is the ith and jth components' second-order coefficient.
Combining Eqs. (2) and (3) and rearranging, we obtain

B ¼
XN
i¼j

XN
j¼1

Bijxixj ð4Þ

where Bii ¼ �Bii and Bij ¼ �Bij þ �Bji (the �Bijmatrix is not necessarily
symmetrical). Hence, the number of terms in Eq. (4) is N2=(1/2)
N(N+1), corresponding to N2 second-order coefficients.

Compared to commercial glasses, high-level waste (HLW) glasses
have a large number of components with concentrations not encoun-
tered in commercial industry or in geology. Developing mathematical
models that relate viscosity to composition for these glasses is not
only important for waste glass formulation, but also interesting to
researchers who endeavor to relate empirical coefficients to the melt
structure.

Obtaining second-order coefficients for a large number of compo-
nents requires a large number of data. If each coefficient should be
supported by at least 4 independent data points, 220 data points are
needed for a mixture with just 10 components. Fortunately, a huge
viscosity database has been accumulated for HLW glasses at various
laboratories in the U.S. over the past decades. The database compiled
at Pacific Northwest National Laboratory [13] comprises over 1300
compositions with 83 components and nearly 7000 data for viscosities
b103 Pa s. The linear independence of the glass components was dem-
onstrated by the scatter-plot matrix as well as the correlation matrix
[13]. Using this database and Eqs. (1) to (4), we have developed several
versions of viscosity–composition relationships with various solutions
for first- and second-order coefficients.

Unlike viscosity–composition relationships based on limited num-
bers of glass compositions specifically tailored for the model develop-
ment [7,11], or on a broad composition region available from the
literature [4], we used a large amount of data collected from various
sources, but confined to nuclear waste glasses [13]. The model previ-
ously developed from this database preferred the Vogel–Fulcher–
Tammann equation fitted to 967 data points using 72 parameters
and 23 components (R2=0.96). Because viscosity data in this data-
base are within the Arrhenius range of the η= fx(T) relationships,
assumptions 2 and 3 stated above allowed us to develop models
based on Eq. (4) and representing 5900 to 6200 data with 25–60
parameters and up to 39 components (R2=0.98). Model fitting was
done with the solver of Excel. We have explored the effects of model
design on the model applicability to glass formulation and on the

response of melt viscosity to composition variability. Thus, apart
from providing collections of ready-made coefficients for viscosity
estimates, our work may open a discussion about the construction of
the viscosity–composition relationships.

2. Data preparation

The Pacific Northwest National Laboratory (PNNL) database [13]
reports both targeted and analytical compositions. Because analytical
data were not obtained for a substantial number of glasses, we chose
the targeted compositions for model development. Before fitting
model equations to data, we have simplified the database using the
redox state convention, restricting the composition region, and defin-
ing and imposing a data acceptability limit. These data arrangements
are described below.

2.1. Redox state convention

Out of 83 components identified in the database, oxides of various
elements (As, Ce, Co, Fe, Mn, Mo, Pb, Pr, Re, Rh, Sb, Sn, Tc, Tl, and U)
are listed in more than one valence state in the database [13]. These
valence states do not necessarily correspond to their actual presence
in molten glass at the temperature of viscosity measurement. There-
fore, we followed an established convention of choosing a single
valency for each of these oxides: As2O3, Ce2O3, CoO, Fe2O3, MnO,
MoO3, PbO, Pr2O3, Re2O7, Rh2O3, Sb2O3, SnO, Tc2O7, Tl2O, and UO2.
Even though oxides in different oxidation states affect viscosity differ-
ently, their proportions are neither arbitrary nor fully determined by
the batch materials if we assume that the glasses were reasonably
close to equilibrium with air or oxygen bubbles at some specific tem-
perature. Thus, provided that the partial pressure of oxygen was sim-
ilar in glasses of different compositions, each Bi coefficient obtained
for a single oxide effectively represents the true redox state of the
element.

To make up for the changes in oxygen concentration caused by
application of the redox state convention, we renormalized glass
composition to component mass fractions that sum to 1, i.e.,

XN
i¼1

xi ¼ 1 ð5Þ

On applying the single redox state convention, the number of
components decreased to 56.

2.2. Minor components and SO3

After sorting data by viscosity, we have removed from the data-
base data with η>1050 Pa s. This reduced the number of data points
from 6884 to 6765. Then, using Eq. (1), we calculated the activation
energy for each data point, i.e., each (η, T) couple, as

B ¼ T ln η−Að Þ ð6Þ

where we initially used an estimated value of A=−11.35, but then
kept A as a fitting parameter to be eventually determined by least-
squares optimization. Thus, when fitting Eq. (2) to B(x) data, we
obtained values of both A and the first-order coefficients, Bis. For
this preliminary fit, the coefficient of determination was R2=0.9172.

The fit assigned unrealistically high Bi values for SO3 and some of
the 17 minor components for which the mass fraction did not exceed
1 mass% in any glass (Cs2O, Sb2O3, SeO2, Tl2O, Tc2O7, Ag2O, RuO2,
Pr2O3, WO3, As2O3, I, PdO, Re2O7, Rh2O3, Rb2O, Br, and Nb2O5).
Because components with xib0.01 generally have little impact on
viscosity, we removed the mass fractions of these 17 components
from the list of viscosity-affecting variables.
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To meet the mass-fraction constraint, Eq. (5), for the remaining
39 viscosity-affecting components, we examined two options: either
deleting the components with xib0.01 and renormalizing the mass
fractions of the remaining components, or summing the xis of the
removed components into a single component called “Others.” As
expected, the coefficient of determination was marginally lower with
thefirst option (R2=0.9172) thanwith the second (R2=0.9176). How-
ever, the main reason for choosing the second option for subsequent
calculations was that having the Others component appeared advanta-
geous for the subsequent model development (see Section 6).

Another component with an unrealistically high Bi, though with
xi>0.01 in several targeted compositions, was SO3. The BSO3 value
appeared to be the highest of all coefficients and remained extremely
high (BSO3=3.65×104 K) even after two glasses with >2.0 mass%
SO3 were deleted from the database. This impossible value was most
likely caused by SO3 segregation and evaporation from the melts as
a result of which the targeted content of SO3 was not retained in the
glass. The actual SO3 content would thus likely classify SO3 as a
minor component. Replacing targeted SO3 fractions with analytical
ones did not appear practicable. After some deliberations, we chose
to add the SO3 targeted fractions to Others while deleting glasses
with xSO3>0.02. As a result, the number of data decreased to 6755.

2.3. Acceptability limit

The R2=0.917 of the preliminary first-order model was rather
low, considering the size of the database. Sorting the data according
to the value of Δ2=(BM−BC)2, where the subscripts M and C denote
measured and calculated values, respectively, identified data with
extremely large deviations between model and measurement. If
such outliers were accepted for model generation, they would unduly
influence the outcome and increase the model uncertainty for the
majority of data.

To define outliers, we established an acceptability limit. Fig. 1 dis-
plays the plot of Δ2 versus n, where n is the cumulative number of
data sorted by Δ2 from smallest to largest. To obtain Δ2, we calculated
BM using Eq. (6) and BC using Eq. (2) in which Bis and A came from a
preliminary first-order model. The Δ2 values varied by 11 orders of
magnitude, from 5.4×10−4 K2 to 2.3×107 K2, i.e., from extremely
low values for data for which BCs happened, more or less accidentally,
to be nearly identical to BMs, to very large ones for erroneous data
not captured by the model. As Fig. 1 shows, the logarithms of Δ2

increased nearly linearly with n for n between 3000 and 6000 (Δ2

between 3.2×104 and 1.3×105 K2). The obvious candidates for out-
liers were data with Δ2>3.3×105 K2. Therefore, we selected Δ2=
3.3×105 K2 as the limit of acceptability (the horizontal line in Fig. 1)
and used this limit for all but two models.

For each model, we started computation with the full set of data
(original or reduced, see Section 3.2). After the first fitting, we repeat-
edly removed data exceeding the acceptability limit and refitted the
model until the selection of acceptable data stabilized. Model A is a
first-order model thus fitted to obtain Bi coefficients for 39 compo-
nents listed in Table 1. As Table 2 shows, the composition regions of
original data and acceptable data are nearly identical. Maximum
mass fractions decreased for only 6 components (SiO2, Fe2O3, K2O,
CaO, MgO, and NiO), and minimum mass fractions (0 for all compo-
nents but SiO2 and Na2O) increased only for SiO2 (from 0.194 to
0.214).

Fig. 2 displays all data points with ηb1050 Pa s on the (T−1, log η)
and (T−1, B) planes. The T spans the interval from 752 to 1806 °C and
log(η/Pa s) from−0.85 to 3.02. The T span of Model A acceptable data
shrank to the interval from 800 to 1632 °C and the span of log(η/Pa s)
ranged from −0.51 to 2.57. Fig. 2 compares acceptable data with all
data, and indicates that most of the 856 outliers lie inside the (T−1, B)
region of accepted data.

2.4. Composition region and fitting parameters

Model A encompasses all 39 components. Other models use 15 to
24 viscosity-affecting components. Components that are less likely to
influence viscosity for most glasses were identified by sorting compo-
nents according to three criteria, i.e., Bi−Ba, (Bi−Ba)xia and (Bi−Ba)
xiM, where subscripts a and M stand for average and maximum, re-
spectively. Components Ce2O3, CoO, Cr2O3, CuO, Eu2O3, Ga2O3, HfO2,
MoO3, Nd2O3, Sm2O3, SnO, ThO2, TiO2, UO2, Y2O3 had low values of
all the three criteria. After moving these components to Others, the
composition region shrank to N=24 components, including Others.
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Fig. 1. Deviation squared, Δ2=(BM−BC)2, versus n, the number of data sorted by Δ2.

Table 1
Model A component coefficients and the maximum (xim) and average (xia) component
mass fractions.

10−4 Bi(K) xim xia 10−4Bi (K) xim xia

SiO2 3.001 0.6413 0.4606 Gd2O3 1.485 0.0772 0.0028
Na2O −0.031 0.3505 0.1294 Ce2O3 1.824 0.0712 0.0039
Fe2O3 1.565 0.2639 0.0527 F −0.437 0.0600 0.0035
Al2O3 3.506 0.2663 0.0734 V2O5 1.417 0.0599 0.0009
SrO 0.969 0.2990 0.0057 La2O3 0.681 0.0500 0.0023
K2O 0.877 0.1000 0.0142 BaO 0.601 0.0471 0.0018
B2O3 0.352 0.2019 0.0837 Eu2O3 1.526 0.0436 0.0001
CaO 0.558 0.1500 0.0303 Sm2O3 1.607 0.0436 0.0001
Bi2O3 1.361 0.1618 0.0015 CdO 0.983 0.0400 0.0018
ZrO2 2.712 0.1581 0.0322 SnO 2.034 0.0346 0.0002
UO2 2.096 0.1462 0.0033 NiO 0.397 0.0212 0.0033
MnO 0.544 0.1360 0.0053 HfO2 2.093 0.0311 0.0000
P2O5 2.631 0.1311 0.0085 Ga2O3 2.061 0.0302 0.0001
TiO2 1.318 0.0535 0.0036 Y2O3 1.636 0.0302 0.0001
ZnO 1.179 0.0986 0.0095 CuO 1.288 0.0299 0.0004
PbO 1.036 0.0967 0.0014 Cr2O3 1.003 0.0297 0.0016
MgO 1.184 0.0821 0.0094 CoO 2.005 0.0223 0.0001
Li2O −3.937 0.0899 0.0303 MoO3 1.902 0.0201 0.0013
Nd2O3 2.083 0.0838 0.0050 Others 1.627 0.1075 0.0131
ThO2 1.568 0.0781 0.0028

Table 2
Comparison of maximum component mass fractions for all data with η>1050 Pa⋅s and
data with Δ2b3.3×105 K2.

Component All data Selected data

SiO2 0.716 0.641
Fe2O3 0.345 0.264
K2O 0.210 0.100
CaO 0.182 0.150
MgO 0.096 0.082
NiO 0.030 0.021
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Model B is a first-order model fitted to the 24 components. The
standard procedure of repeated fitting and Δ2-sorting until the num-
ber of outliers stabilized resulted in 5893 acceptable data points, only
marginally less than the number for Model A (5909). Both the T
span and log(η/Pa s) interval remained unaffected and the composi-
tion region was unchanged except for the maximum mass fraction
of SiO2, which decreased to 0.628. The component coefficients are
listed in Table 3.

The composition region is a domain in the (N-1)-dimensional
composition space (by Eq. (5), only N-1 composition variables are
independent). Here we consider the composition region as an (N-1)-
dimensional box defined by the ranges of mass fractions of compo-
nents, i.e., the minimum and maximum values of xi for each compo-
nent, even though the measured data are not distributed within the
multidimensional box with a representative uniformity. By Eqs. (2)
and (4), the number of components limits the number of component
coefficients, Bi and Bij, of the first- and second-order polynomial
terms. The number of nonzero first- and second-order component

coefficients, plus 1 for A as an additional fitting parameter, constitutes
the number of model parameters, p.

3. Second-order models

3.1. First-order model augmented with second-order terms

For the computation of second-order effects, we selected 8 major
components with the highest values of (Bi−Ba)xia (based on first-
order coefficients), namely, SiO2, Na2O, Li2O, B2O3, Al2O3, CaO, ZrO2,
and Fe2O3. Thus, the full second-order Bij matrix has N2=36 coeffi-
cients. In the baseline Model C, we added these second-order terms
to the first-order terms of Model B. Thus, the activation energy for
viscosity in second-order models was expressed by the formula

B ¼
XN1

i¼1

Bixi þ
XNM

i¼j

XNM

j¼1

Bijxixj ð7Þ
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Fig. 2. Positions of all data points with ηb1050 Pa⋅s and data points with Δ2b3.3×105 K2 (selected data, Model A) on the (T1, log η) surface (left) and (T1, B) surface (right).

Table 3
Summary of first-order coefficients, Bi, in 104 K. Also included are the number of data selected (ns), the Arrhenius A coefficient, the coefficient of determination (R2), the number
of model parameters (p), the average activation energy (Ba), and the activation energy standard deviation (S).

Model A(a) B C D E F G H I J K L M

ns 5909 5893 6239 5969 5950 5867 3589 1471 5839 5313 6129 5764 5910
A −11.23 −11.19 −11.42 −11.44 −11.43 −11.37 −11.29 −11.24 −11.49 −11.06 −11.37 −11.39 −11.429
R2 0.9712 0.9710 0.9804 0.9811 0.9807 0.9795 0.9960 0.9995 0.9803 0.9728 0.9781 0.9784 0.9804
p 40 25 61 61 55 52 52 52 53 31 45 44 38
10−4Ba(K) 1.8711 1.8660 1.8956 1.8981 1.8969 1.8890 1.8810 1.8697 1.9057 1.8469 1.7898 1.8923 1.8966
10−4 S(K) 0.1460 0.1613 0.1523 0.1539 0.1539 0.1537 0.1500 0.1461 0.1534 0.1486 0.1527 0.1527 0.1535
SiO2 3.00 3.00 3.09 3.05 3.05 3.15 3.15 3.15 4.03
Na2O −0.03 −0.04 −0.34 −0.26 −0.20 −0.22 −0.22 −0.22 1.05
B2O3 0.35 0.32 0.29 0.40 0.45 0.37 0.37 0.37 1.24
Al2O3 3.51 3.50 3.48 3.43 3.36 3.27 3.27 3.27 3.87
Fe2O3 1.57 1.55 0.81 0.78 0.80 0.53 0.53 0.53 1.62
ZrO2 2.71 2.71 1.86 1.77 1.68 1.54 1.54 1.54 2.00
Li2O −3.94 −3.91 −4.52 −4.43 −4.37 −4.38 −4.38 −4.38 −3.88
CaO 0.56 0.53 0.08 0.07 −0.01 0.17 0.17 0.17 0.92
SrO 0.97 1.01 1.04 1.03 1.02 0.74 0.74 0.74 2.48 2.33 2.32 2.04 0.37
K2O 0.88 0.80 0.99 1.02 1.00 1.03 1.03 1.03 2.54 2.49 2.53 2.51 0.26
Bi2O3 1.36 1.43 1.46 1.57 2.85 1.07
MnO 0.54 0.46 0.77 0.77 0.79 2.17 1.75 2.15 0.07
P2O5 2.63 2.64 2.67 2.69 2.70 2.64 2.64 2.64 4.26 4.13 4.20 4.23 1.99
ZnO 1.18 1.03 1.59 1.54 1.66 1.59 1.59 1.59 3.10 3.65 3.26 3.24 0.78
PbO 1.04 0.98 1.29 1.13 0.61 0.14
MgO 1.18 1.15 1.23 1.28 1.28 1.37 1.37 1.37 2.78 2.91 2.76 2.82 0.54
Gd2O3 1.49 1.27 1.64 1.60 2.94 3.13 1.21
F −0.44 −0.47 0.21 0.24 0.08 −0.01 −0.01 −0.01 1.63 2.34 1.72 1.93 −0.47
V2O5 1.42 1.40 1.85 1.78 1.28
La2O3 0.68 0.66 1.19 1.22 2.70 3.03 0.39
BaO 0.60 0.66 1.22 1.30 2.76 2.66 0.57
CdO 0.98 0.74 1.18 1.15 0.70 2.06 2.43 0.26
NiO 0.40 0.79 1.17 1.14 1.19 3.64 3.01 0.60
Others 1.63 1.77 1.84 1.87 1.77 1.65 1.65 1.65 3.27 2.97 3.02 3.04 1.18

(a) See Table 2 for additional coefficients.
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where NM is the number of major components, N1=NM1+Nm is the
number of the nonzero first-order coefficients, NM1 is the number of
first-order terms for major components, and Nm is the number
of viscosity-affecting minor components, including Others. Since N2=
(1/2)N(N+1), while some second-order terms can be zero (as in
Model J described below), N2 includes both nonzero terms and terms
with Bij=0. The second-order coefficients are listed in Table 4.

In Model C, we kept all the first-order terms of Model B, including
those of the 8 major components (see Table 3). These terms would be,
by Eq. (3), redundant in the full second-order model. However, be-
cause 16 components (SrO, K2O, Bi2O3, MnO, P2O5, ZnO, PbO, MgO,
Gd2O3, F, V2O5, La2O3, BaO, CdO, NiO, and Others) are represented
solely by first-order terms, we reasoned that the lack of missing inter-
actions of these components with the main components can be miti-
gated by retaining the first-order terms for the main components.

Clearly, if an ith component does not interact with any other com-
ponent, then �Bij ¼ Bi for j=1, 2, …, N and, by Eq. (5), Eq. (3) reduces
to identity. However, if only some components are non-interacting
(N>Nm>0), then, for the interacting components, the number of
terms in Eq. (3) does not decrease to only those of the double sum
in Eq. (7) even in the simple case of a symmetrical �Bij matrix. Thus,
if (j=1,2,…,NM) components are interacting and (j=NM+1, NM+
2,…N) components are non-interacting, then, in the case of a sym-

metrical �Bij matrix, i.e., �Bij ¼ �Bji, Eq. (3) becomes Bi ¼
PNM

j¼1

�Bijxjþ

�Bi
PN

j¼NMþ1
xj. Hence, the non-interacting components influence the

interacting ones by their very presence in the mixture. Obviously,
introducing this expression into Eq. (2) will not lead to Eq. (7).

Consequently, the empirical coefficients, Bij, of Eq. (7) are not equiva-
lent to the averaged partial specific activation energies, �Bij, defined by
Eq. (3). A better understanding of Eq. (7) is viewing it as a first-order
model augmented with second-order terms.

3.2. Description of models

The baseline Model C has 61 coefficients. After fitting it to data, the
number of outliers stabilized at Δ2>3.3 × 105 K2 with 6239 data
points accepted. Thus, Model C fitted 346 more data than the first-
order Model B and 330 more than Model A, indicating that some
first-order model outliers (~5% of the database) were excluded be-
cause first-order models do not take into account component interac-
tions. The xi ranges of Model C remained the same as for the first-
order models, indicating that first-order-model outliers accepted as
valid by the second-order model lay within the inner composition
region.

Ten versions of the second-order model were subsequently devel-
oped. These models are versions of Model C truncated by various
means—see Tables 3 and 4. Only one model (Model K) was fitted to
the original base of 6755 data. The other nine models were fitted to
a reduced base. This was done in two steps. First, we removed 516
outliers of Model C from the original database. Then, we removed
glasses with excessive content of otherwise minor components, be-
cause large fractions of these components can bring about nonlinear
effects on viscosity while typical HLW glasses do not contain exces-
sive fractions of these components. As seen in Table 5, the maximum
fraction (xiM) of Bi2O3, V2O5, PbO, SrO, Gd2O3, BaO, MnO, and La2O3

exceeded the average fraction (xia) by more than 20 times. Thus, we
proceeded by removing compositions with xiM/xia>20, one component

Table 4
Summary of second-order coefficients, Bij, in 104 K.

Model C D E F G H I J K L M

SiO2×SiO2 0.33 0.40 0.43 0.27 0.58 0.69 3.89 4.13 3.90 3.85 −0.59
SiO2×Na2O −1.26 −1.43 −1.58 −1.66 −1.86 −1.54 −0.12 −2.37 −0.25 −0.02 −3.63
SiO2×B2O3 −0.97 −1.10 −1.29 −1.28 −1.23 −1.22 1.95 1.58 1.60 −2.75
SiO2×Al2O3 0.51 0.66 0.74 0.88 0.90 0.92 7.68 9.47 7.87 7.70 −1.06
SiO2×Fe2O3 0.45 0.56 0.56 0.62 1.31 1.42 4.80 5.15 4.94 4.80 −1.44
SiO2×ZrO2 1.62 1.79 1.97 2.29 3.15 3.08 7.25 9.79 7.73 7.59
SiO2×Li2O −4.59 −4.78 −4.95 −5.11 −5.74 −5.81 −8.98 −10.99 −9.17 −8.65 −7.07
SiO2×CaO −0.49 −0.44 −0.38 −0.56 −1.17 −1.40 1.72 1.46 1.73 −2.00
Na2O×Na2O 1.87 1.92 1.95 1.99 1.93 1.89 2.76 4.42 2.93 2.71
Na2O×B2O3 −1.90 −2.02 −2.03 −1.95 −2.42 −2.70 −0.84 5.10 −0.88 −0.93 −4.19
Na2O×Al2O3 0.29 0.19 0.10 0.14 0.21 0.54 2.74 2.17 2.59
Na2O×Fe2O3 1.81 1.80 1.77 1.96 2.28 2.33 2.80 2.53 2.23
Na2O×ZrO2 1.86 1.95 1.95 1.96 2.10 2.15 3.65 2.52 2.79
Na2O×Li2O 12.05 12.12 12.10 11.97 11.81 11.73 11.75 18.86 13.21 11.56 9.58
Na2O×CaO 2.96 2.99 3.14 2.96 2.81 2.55 4.36 12.93 5.140 4.57
B2O3×B2O3 4.35 4.17 4.28 4.33 4.00 3.83 4.15 6.93 4.76 4.97 2.87
B2O3×Al2O3 −1.13 −1.28 −1.31 −1.27 −2.08 −2.26 2.41 2.55 2.45 −2.61
B2O3×Fe2O3 1.86 1.87 1.83 2.20 3.02 3.13 2.83 2.74 2.77
B2O3×ZrO2 0.62 0.67 0.68 0.53 0.50 0.65 3.10 2.40 2.23
B2O3×Li2O 1.16 1.29 1.43 1.45 2.18 2.32 −0.96 −0.40 −1.29
B2O3×CaO 1.02 1.06 1.04 0.93 0.68 0.71 2.26 2.13 2.30
Al2O3×Al2O3 0.81 0.89 1.10 0.98 1.02 1.13 4.66 3.00 4.36 4.46
Al2O3×Fe2O3 1.69 1.73 1.67 1.91 1.97 1.93 6.53 7.54 5.80 6.31
Al2O3×ZrO2 0.46 0.44 0.45 0.46 0.39 0.42 5.02 5.83 6.38
Al2O3×Li2O −8.76 −8.83 −8.87 −8.81 −9.12 −9.16 −10.94 −9.44 −11.40 −11.73 −7.78
Al2O3×CaO −0.65 −0.84 −0.91 −1.12 −1.45 −1.56 1.24 0.71 0.85 −2.24
Fe2O3×Fe2O3 1.17 1.12 1.02 1.43 1.25 0.98 0.31 0.94 0.60 0.84
Fe2O3×ZrO2 0.27 0.02 0.02 −0.09 0.16 0.34 0.35 1.58 1.55
Fe2O3×Li2O −1.62 −1.52 −1.47 −1.49 −0.91 −0.82 −5.25 −6.93 −7.44
Fe2O3×CaO 1.23 1.27 1.35 1.60 1.77 1.93 2.07 1.59 2.03
ZrO2×ZrO2 −0.92 −0.91 −1.00 −1.17 −1.16 −1.21 −0.50 −0.16 −0.20
ZrO2×Li2O −2.63 −2.76 −2.82 −2.79 −3.16 −3.20 −6.39 −13.23 −8.98 −8.80
ZrO2×CaO 1.03 1.09 0.98 0.85 0.48 0.39 2.34 0.58 0.94
Li2O×Li2O 27.68 27.70 27.79 27.82 28.26 28.36 25.49 23.26 24.77 26.46 30.30
Li2O×CaO 5.81 5.89 5.90 6.08 6.19 6.15 5.45 7.12 5.82
CaO×CaO 0.38 0.47 0.61 0.38 1.14 1.42 1.67 2.02 1.68
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at a time, until the xiMs decreased to values listed in Table 5. The maxi-
mum fractions of all other components except for K2O and ZnO
remained unaffected. The final number of data was 5969. Fig. 3 com-
pares the reduced database with the original one. The reduced database
made it possible to further decrease the number of viscosity-affecting
components in some models.

To decrease the number of model parameters, we added less-
influential components to Others in Models E, F, G, H, K, and L and
removed the first-order terms of major components in Models I, J,
K, and L. Also, we removed selected second-order terms in Models J
and M. Finally, we fitted Models G and H to severely restricted ranges
of data by reducing the acceptability limit. The 10 model variations
are briefly characterized below.

Model D. Thismodel is a version ofModel Cwith respect to the kind
and number of component coefficients except that it was fitted to
the reduced database.
Model E. Here we added to Others minor components V2O5, Bi2O3,
PbO, Gd2O3, BaO, and La2O3, for which the value of xa|Bi−Ba|/Ba was
smaller than that for Others (8.0).
Model F. In this model, we added to Others all minor components
except SrO, K2O, P2O5, ZnO, MgO, and F.
Model G. With the same set of data and coefficients as in Model F,
we restricted the model to data using a lower acceptability limit of
Δ2b3.3×104 K2.

Model H. In this model, we further reduced the acceptability limit
to Δ2b3.3×103 K2.
Model I. To examine the influence of the first-order terms of the
main components in a second-order model, we removed these
terms from Model D while keeping the list of minor components
unchanged.
Model J. In this version of Model I, we removed less-influential
second-order terms, those with xiMxjM(Bij−Ba)/Bab0.399. Also, we
added to Others three minor components, Bi2O3, PbO, and V2O5.
Model K. This is the only second-order model other than Model C
fitted to the original database. In addition to removing first-order
terms of the main components, we also removed several minor
components and added them to Others.
Model L. Herewe removed fromModel F the first-order coefficients
of the major components.
Model M. This model is based on Model D except that, like Model J,
it does not have Bij coefficients for less-influential terms (those
with xiMxjM(Bij−Ba)/Bab0.07) and V2O5 was added to Others.

The component coefficients for all models are listed in Tables 3
and 4. Table 3 also lists values of A, R2, p, and other parameters.

4. Component effects

4.1. Component replacement and component addition

To determine the kth component effect, we first single this compo-
nent out, rewriting Eq. (7) as

B ¼ Bkxk þ∑
i≠k

Bixi þ Bkkx
2
k þ xk ∑

i≠k
Bikxi þ

XNM

i≠k

XNM

j≠k

Bijxixj ð8Þ

where the first-order terms Bixi are summed from i=1 to i=N1 (i≠ k)
and the terms Bikxi are summed from i=1 to i=NM (i≠ k). Second, we
obtain the derivative with respect to xk as follows

∂B
∂xk

¼ Bk þ∑
i≠k

Bi
∂xi
∂xk

þ 2Bkkxk þ∑
i≠k

Bikxi þ xk ∑
i≠k

Bik
∂xi
∂xk

þ
XNM

i≠k

XNM

j≠k

Bij
∂xi
∂xk

xj þ
∂xj
∂xk

xi

 !
ð9Þ

As Eq. (9) indicates, a component affects B depending on according
to which other components it replaces, i.e., ∂B/∂xk is a function ∂xi/∂xk
(i≠k). Here we will consider two simple cases.

1) Component replacement. In the simplest case, an increase in xi is
compensated by a decrease of another component, for example,
increasing the K2O content at the expense of Na2O while the con-
tents of all remaining N-2 components remain unchanged.

2) Component addition. Alternatively, a component is added to the
mixture, while fractions of all other components are decreased
in equal proportions.

Note that composition changes that increase B also increase η,
provided that T=constant. This follows from Eqs. (1) and (2). Com-

bining these equations and using Eq. (5), we can write ln η¼PN
i¼1

f ixi,

where fi=A+Bi/T. Thus, at any temperature at which ηb103 Pa s,
the ith component for ln(η), fi, is proportional to the corresponding
ith component for B.

The following two sections deal with the two cases, component
replacement and component addition.

Table 5
Maximum and average mass fractions of minor components.

Original database Reduced database

xiM xia xiM/xia xiM xia

Bi2O3 0.1618 0.0015 108.6 0.0240 0.0009
V2O5 0.0599 0.0008 72.3 0.0036 0.00003
PbO 0.0967 0.0015 65.4 0.0106 0.0010
SrO 0.2990 0.0061 49.3 0.1010 0.0056
Gd2O3 0.0772 0.0024 31.7 0.0476 0.0024
BaO 0.0471 0.0019 25.0 0.0391 0.0017
MnO 0.1360 0.0056 24.4 0.0702 0.0051
La2O3 0.0500 0.0025 20.4 0.0500 0.0026
CdO 0.0400 0.0020 20.0 0.0400 0.0020
F 0.0600 0.0037 16.4 0.0600 0.0035
P2O5 0.1311 0.0086 15.2 0.1311 0.0087
K2O 0.2099 0.0145 14.5 0.1000 0.0142
ZnO 0.0986 0.0092 10.7 0.0821 0.0091
MgO 0.0963 0.0096 10.0 0.0986 0.0092
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Fig. 3. Positions of all data points with ηb1050 Pa⋅s and Δ2b3.3×105 K2 of original
database and reduced database on the (T1, B) surface.
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4.2. Component replacement: Changing xk for xj

In the case of changing xk for xj, we have dxj/dxk=−1 and dxi/
dxk=0 for all i ≠ j and i ≠ k. Thus, Eq. (9) yields

∂B
∂xk

¼ Bk−Bj þ Bkkxk−Bjjxj þ
XNM

i¼1

Bikxi−
XNM

i¼1

Bijxi ð10Þ

The second derivative is

∂2B
∂x2

k

¼ 2 Bkk−Bkj þ Bjj

� �
ð11Þ

For the first-order model, Eq. (10) reduces to a simple relation, ∂B/
∂xk=Bk−Bj, whereas for the second-order model, the component ef-
fect consists of multiple terms even in the simple case of exchanging
one component with another. This is because each major component
affects each other.

4.3. Component addition: adding xk to mixture

In the case of the kth component added to the mixture, concentra-
tions of all other components remain in the same proportions as in
the reference mixture. Hence,

∂xi
∂xk

¼ − xiR
1−xkR

ð12Þ

where the subscript R denotes the reference mixture. Then Eq. (9)
becomes

∂B
∂xk

¼ Bk þ 2Bkkxk þ∑
i≠k

Bikxi

−
∑
i≠k

BixiR þ xk ∑
i≠k

BikxiR þ
XNM

i≠k

XNM

j≠k

Bij xiRxj þ xjRxi
� �

1−xkR

ð13Þ

Combining Eqs. (8) and (13), we obtain for the component effect
at the reference mixture the expression

∂B
∂xk

R

¼
Bk−BR þ BkkxkR−

PNM

i≠k

PNM

j≠k
BijxiRxjR

1−xkR
þ
XNM

i¼1

BkixiR

����������
ð14Þ

This rather complicated expression simplifies for first-order models
to βi=∂B/∂xi=(Bi−Ba)/(1−xia), where the centroid or average com-
position was chosen as reference (Ba and xia are averages of Bs and xis
for all compositions within the model composition region— the formu-
las are given in Sections 4.6 and 6). Table 6 lists βi values for Models A
and B.

4.4. First-order mixture component classification

Denoting Bm and BM as the smallest and the largest experimental
values of B in the composition region, it follows that components
with BibBm=1.4×104 K decrease and components with Bi>BM=
2.4×104 K increase the value of B when added to any glass with a
composition within the composition region.

The βi values of first-order models allow classification of glass
components into the following groups:

• Components that strongly decrease B are Li2O (βLi2O=−6.0×104 K),
F, Na2O, and B2O3.

• Components that moderately decrease B (βi≤−1.2×104 K) are
NiO, CaO, MnO, BaO, and La2O3.

• Components that slightly decrease B (βi≤−0.84×104 K) are K2O,
SrO, CdO, Cr2O3, and PbO.

• Components that marginally decrease B (βi≤−0.35×104 K) are
ZnO, MgO, CuO, TiO2, Bi2O3, V2O5, and Gd2O3.

• Components that strongly increase B are SiO2 (βSiO2=2.1×104 K),
Al2O3, ZrO2, and P2O5.

• All other components listed (Eu2O3, Fe2O3, ThO2, Sm2O3, Y2O3, Ce2O3,
MoO3, CoO, SnO, Ga2O3, Nd2O3, HfO2, UO2, and those in Others) have
a miniscule impact and may increase or decrease B depending on
the composition to which they are added (−0.35×104Kbβib

0.25×104 K).

Note that out of all minor components (by concentration), only F
and P2O5 have a strong effect on viscosity.

4.5. Model-to-model variations of component coefficients

Numerous observations can be made based on the component
coefficients and component effects as listed below.

• The influence of Others is lower inModel B (βOthers=−0.10×104 K)
than in Model A, (βOthers=−0.25×104 K), even though Others in
Model B contain 15 more components than Others in Model A. The
cause of this is a mutual compensation of the effects of components
within Others.

• Based on the component effects, alkali oxides affect B in the order
Li2ObNa2ObK2O. No such correlation exists between Bi and the
atomic mass in other groups of oxides, such as MgO–CaO–SrO–
BaO, or TiO2–ZrO2–HfO2–ThO2.

• Note that Li2O exhibits a stronger nonlinear behavior than other
components. It interacts mainly with SiO2, Al2O3, and Na2O (see
the large Bij values with i≡SiO2, Al2O3, Na2O, and Li2O and j≡Li2O).

• As the comparison between the Model C and D coefficients indi-
cates (see Table 3) and as Fig. 4 illustrates, removing 270 data
with extreme compositions of otherwise minor components (called
semiminor in Fig. 4 legend) had little impact on the model while the
R2 marginally increased.

• When only influential second-order components were selected in
Models J and M, some second-order coefficients changed signifi-
cantly, as can be seen by comparing the Bij values of Models I and
J and Models M and D (see Tables 3 and 4).

• Reducing the number of linear terms had a noticeable effect on
some first-order coefficients—compare BF (F stands for fluorine)
and BCaO of Models E and F versus Model D. However, no such strik-
ing difference appears between Models K and L versus Model I.

Table 6
Summary of component effects expressed as (Bi-Ba)/(1-xa) in 104 K.

Model A B Model A B

SiO2 2.094 2.101 Gd2O3 −0.387 −0.596
Na2O −2.185 −2.185 Ce2O3 −0.047
Fe2O3 −0.323 −0.330 F −2.316 −2.343
Al2O3 1.764 1.764 V2O5 −0.454 −0.470
SrO −0.907 −0.863 La2O3 −1.193 −1.213
K2O −1.008 −1.079 BaO −1.272 −1.206
B2O3 −1.658 −1.688 Eu2O3 −0.345
CaO −1.354 −1.374 Sm2O3 −0.264
Bi2O3 −0.511 −0.442 CdO −0.890 −1.128
ZrO2 0.869 0.869 SnO 0.163
UO2 0.226 NiO −1.479 −1.084
MnO −1.334 −1.415 HfO2 0.222
P2O5 0.766 0.785 Ga2O3 0.190
TiO2 −0.555 Y2O3 −0.235
ZnO −0.699 −0.840 CuO −0.583
PbO −0.836 −0.889 Cr2O3 −0.870
MgO −0.694 −0.722 CoO 0.134
Li2O −5.990 −5.955 MoO3 0.031
Nd2O3 0.213 Others −0.247 −0.098
ThO2 −0.304

1824 P. Hrma, S-S. Han / Journal of Non-Crystalline Solids 358 (2012) 1818–1829



Author's personal copy

• Removing the first-order terms of major coefficients that are repre-
sented by the full set of second-order terms affects both Bi and Bij
coefficients.

Regarding the model-to-model differences of the coefficients, one
can think about two contributing factors:

1) Insufficient coverage of certain components by data canmake their
coefficients sensitive to experimental errors that mimic the effect
of composition. This can also be an unintentional consequence of
changes caused by removing outliers.

2) Coefficients in amixed first and second-ordermodel are not uniquely
determined. Let Q be an arbitrary number and

B ¼
XN
i¼1

Bixi þ
XN
i¼1

XN
j¼1

�Bijxixj ð7aÞ

Eq. (7a) yields an identical B value if Bi is replaced with Bi+Q and

�Bij with �Bij−Q . This follows from the identity
PN
i¼1

PN
j¼1

xixj ¼ 1. The lack

of uniqueness of Bi and �Bij values in Eq. (7a) can lead to substantial
differences in coefficient values without affecting the model outcome.

Both first- and second-order coefficients significantly differ be-
tween Models D and M. As Fig. 5 shows, first-order coefficients of
major components of Model M are all larger than the corresponding
coefficients of Model D, whereas the values of all but two second-
order coefficients are lower. On the other hand, the first-order coeffi-
cients of minor components of Model M are all larger than the
corresponding coefficients of Model D. The differences between the
corresponding coefficients are similar, though not exactly equal, but
an exact equality is not expected because the coefficients do not
make a complete set as in Eq. (7a) and Model M has a lower number
of parameters (38) than Model D (61). Yet the outcome of these two
models is close (see Fig. 5c), only the outliers are estimated some-
what differently.

4.6. Spider plots

Finally, Fig. 6 displays the effects of several glass components in
terms of B versus the mass fractions of various components added
to the average composition. The ith component mass fraction in the
average glass is xia ¼ n−1

s ∑xi, where the summation is over all
glasses on which the model is based (e.g., ns=5867 for Model F).
With the kth component added in the amount Δxk=xk−xka, the
ith component mass fraction in the new glass is xi=xia(1−xk)/
(1−xka). Fig. 6 displays the B values as a function of Δxk. The slopes
of the lines at Δxk=0 (the average glass) are given by Eq. (14). The

diagram in Fig. 6, also called a spider plot, is based on Model F coeffi-
cients. Note that the effects of B2O3, CaO, and SrO are similar.

4.7. Glass length

According to the traditional glassmakers' parlance, glass is called
“long” if its viscosity decreases slowly with time during which a
glass blob is workable on the glassblower's pipe. Thus, the less the
viscosity increases with decreasing temperature as the glass blob
cools, the “longer” is the glass. Hence, we can define the glass length
as λ=∂ln(η)/∂(1/T). Extending this term from the glass-forming
temperature interval to the glass-making one, or disregarding the
change of B with T when η>103 Pa s, it follows from Eq. (1) that
λ=B(x).

To demonstrate how the glass length depends on glass composi-
tion, we need to express the derivative of λ with respect to the ith
component fraction. Replacing nth component with ith components
and using the first-order model, we obtain

∂λ
∂xi

¼ Bi−Bn ð15Þ

Thus, glass length will increase if Bi>Bn. According to Table 3 data,
Al2O3 makes the glass longer and LiO2 makes it shorter when replac-
ing any of the remaining 38 components of Model A.

5. Number of parameters and number of data accepted

The number of model parameters, p=N1+N02+1, where N02 is
the number of nonzero second-order coefficients, is listed in Table 3
together with the number of data accepted, ns (the number of data
minus the number of outliers). For models with the reduced database
(Models D, E, F, I, J, and L), ns increases as p increases. The lower line
in Fig. 7 was fitted with the equation

ns ¼ nR 1−Ap exp −p=p1ð Þ
h i

ð16Þ

where nR=5969 is the number of all data in the reduced database,
and Ap and p1 are coefficients whose values are Ap=1.863 and
p1=10.85. The number of parameters at which no data would be ac-
cepted, provided that Eq. (16) can be extrapolated, is p0=p1ln(Ap)=
6.75. Models fitted to the original database (A, C, and K) and Model M
fall on a similar line (using the same vales of Ap and p1 while setting
nR=6266), but Model B covers nearly as many data as Model A.

Regarding individual models, one can make the following
observations.

Two second-order models, C and K, fit the highest number of data
with ηb1050 Pa s (92% and 91%, respectively), even though Model K
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Fig. 4. Component coefficients based on reduced (Model D) versus original (Model C) database.
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has no first-order coefficients for major components and has only 45
parameters (compared to 61 of Model C). Similarly, both first-order
models, A and B, cover 87% of all data in spite of the difference in
the number of components evaluated (39 versus 24).

Model D, with an equal number of parameters to Model C (61),
but fitted to a truncated composition region (the reduced database,
Table 5), covers a significantly smaller number of data (88% of all
data), though only 1% more than Model B with an equal number of
components, but only 25 parameters, or Model M with 38 parame-
ters. Similarly, Model L with a p value close to that of Model K (44
and 45, respectively), but fitted to the reduced database, covers a sub-
stantially smaller number of data than Model K. Model E with 18
components covers only slightly less data then Model D (by 0.2%),

but the number of model-covered data drops with a further decrease
of components (Model F, 15 components). Even less data are covered
by Models I and L (86 and 85%, respectively), which have no first-
order coefficients for major components. Model J, with an incomplete
set of second-order coefficients (17 versus 36) and no first-order major
coefficients, covers just 79% of the original data, whereas Model Mwith
only 14 second-order coefficients, but a complete set of first-order
major coefficients, covers 87% of the data.

As can be seen in Table 7, decreasing Δ2 by orders of magnitude
(below the limit of genuine outliers) affects ns strongly by preferring
data that accidentally happen to be close to calculated values. Note
that the outcome of Models G and H, in terms of component coeffi-
cients, though fitted to only 53% and 21% of all data, is nearly identical
to that of Model F, which represents 87% of all data.

6. Compensation effect, coefficient of determination,
and Others component

The average activation energy,Ba ¼ n−1
s ∑B, where the summation

is over all glasses on which the models is based, varies slightly from
model to model (see Table 3) depending on which glasses were
removed from the original database and which sets of viscosity-
affecting components and their representation by first and second-
order coefficients were chosen for different models. As Fig. 8 illus-
trates, the A coefficient correlates neatly with Ba. This is a result of
the compensation effect. By Eq. (1), each B value is affected by A, and
so is Ba as the least-squares optimization adjusts A to minimize the
sum of Δ2 values. We would prefer to postulate that A is a constant
independent of glass composition. However, not knowing its correct
value, we had no choice but to include A as a fitting parameter and
allow the least-squares optimization to determine its value. Disre-
garding Model J, the average value for all other models is A=
−11.36±0.10, corresponding to η∞=eA=1.17×10−5 Pa·s.

Except for Models A and M, R2 roughly correlates with p (Fig. 9)
for models with Δ2b3.3×105 K2. As expected, R2 is higher, though
only marginally, in Model A than in Model B (Table 3). Surprisingly,
R2 of Model M is nearly as high as that of Model D, even though
it has much fewer second-order coefficients. In Models G and H,
where Δ2 was low, R2 was artificially increased without any differ-
ence in the model outcome.

Others coefficients are high in four models with no Bis for major
components (Models I, J, K, and L); see Table 3. This is a sign of a
potential model uncertainty because the actual influence of Others
depends on the Others composition, which is likely to vary from glass
to glass, depending on the waste treated.

7. Deviation frequency distribution

To characterize the database, we used the relative deviation for
viscosity, defined as D=(ηM−ηC)/ηM, where the subscripts M and C
denote measured and calculated, respectively. After sorting data by
D, from smallest to largest, we determined the deviation frequency
to be f100=100/(D100+ i−Di), where i=1,2,…, nt−100 is the data
sequence number and nt is the number of data points including
outliers. The left panel of Fig. 10 shows the frequency for Model B
plotted against D. The line represents the Gaussian distribution,
f100= fMexp(−(D/D0)2) with fM=12555 and D0=0.284 (fitted with
the least-squares optimization; 57 data with D>0.685 were excluded).

While most of the data are more or less randomly distributed, the
number of outliers is higher than the normal distribution at approxi-
mately −0.3bDb0.3 would suggest, especially on the negative
branch. Note that defining outliers as data for which the Δ2 exceeds
a more or less arbitrary limit removes deviant data, as indicated in
Fig. 1, but also omits low-probability data that are valid based on
the normal (Gaussian) distribution. By setting Δ2=3.3×105 K2 as
the acceptability limit, we attempted to remove data that do not
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support the model. Apart from erroneous “bad” data, outliers include
correct data located in highly nonlinear pockets of the composition
region.

The right panel of Fig. 10 shows the frequency plotted against D
for Model D. The line represents the Gaussian distribution, f100, with
fM=17517 and D0=0.194 (fitted with the least-squares optimization
while 76 data with D >0.685 were excluded). Here fM is higher than
that for the first-order Model B and D0 is smaller, both indicating a
better fit of the second-order model. Interestingly, the two branches
(negative and positive) of the distribution curve are not symmetrical,
which is probably caused by fitting the model to B rather than to η.
The frequency of outliers is higher than the normal distribution at
−0.25bDb0.25 would suggest. Such a fat-tailed distribution is en-
countered in economics (a source of underestimated risk). The fact
that the number of outliers is higher in second-order Model D (76)
than that in first-order Model B (57) indicates that most outliers
were caused by measurement errors rather than the lack of fit. Mea-
surement errors include volatilization, redox variations, crystalliza-
tion and phase separation; errors in data recording and copying are
also conceivable.

Fig. 11 compares calculated-versus-measured viscosity data of
Models B and D. Interestingly, the first-order Model B underpredicted
more data points than it overpredicted. The frequency of highly devi-
ating data, Fig. 10, shows this in a different way.

8. Discussion

8.1. Effects of components and their interactions

Generally, the ionic charge, ionic radius, coordination number, etc.,
of glass constituents influence the macroscopic properties. However,
attempts to correlate these properties, such as viscosity, with the
atomic characteristic of glass components are only partially successful.
Modeling the viscosity–composition function based on the “first prin-
ciples” is unlikely to succeed until the actual molecular mechanism
of viscous flow of multicomponent melts with complex component
interactions is well understood. Component interactions have been
discussed in the literature in terms of charge compensation effects,
mixed-alkaline effect, association of species into larger structural units,
etc. Our present work belongs to the category of empirical studies that
provide data for glass structure researchers to match with theoretical
predictions.

8.2. Model ranking

Models can be judged according to the number of data accepted by
fitting the models (ns), the number of components they cover (N), the
number of parameters (p), the coefficient of determination (R2), the
value of the Others coefficient, etc. Another criterion is D0, the width
of the deviation frequency distribution. This we obtained for only
two models (see Section 7) and it clearly favors the second-order
model.

Models with high ns, low p, high R2, and a low BOthers are generally
preferable. Based on average ranking of models according to these
four criteria, the models with Δ2b3.3×105 K2 (i.e., excluding Models
G and H) rank, from highest to lowest, as M>E>D>C>A>F=
B=K>J>L>I.
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Table 7
Effect of Δ2 on data ranges and the number of data selected (ns).

Model Δ2 (K2) Tmax Tmin ηmax ηmin ns Δns

F 3.3×105 1747 800 375 0.27 5867
G 3.3×104 1747 820 296 0.31 3589 2278
H 3.3×103 1503 850 200 0.51 1471 2118
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The high-ranking Model M keeps first-order coefficients of major
components while using only selected second-order terms, thus affir-
ming the common practice [13].

The ranking would change if different weights were ascribed to
the evaluating criteria or additional criteria were used. Thus, Models
C and K rank highest in ns, Models B and J have the lowest p, Models
D and E rank highest in R2, and Model M has the lowest BOthers. On the
other hand, Model J ranks worst in ns, Models C and D have the
highest p (a disadvantage for some applications), Models A and B
have the lowest R2, and Model I has the highest BOthers.

Regardless of ranking, first-order models (Models A and B) are
favored for their small number of parameters per component (1.0)
and the ease of handling in applications, such as formulation of glasses
with constrained properties using the matrix calculus. On the other
hand, some second-order models may be selected because they
cover a large number of compositions, or have high R2, even though
they have a high number of parameters per component (ranking
from the lowest in Models J and M to the highest in Models E and F).

Some correlations mentioned in previous sections may bias the
ranking. For example, low R2 is generally associated with the lack
of second-order terms (Models A, B, and J), the lack of first-order
terms of major components (Models J, K, and L), a low number of
parameters (Models B, J, A, L, and K), and a low number of compo-
nents recognized as viscosity-influential (Models L and K).

Generally, models should be validated by data that were obtained
independently of those used to fit the model equations. In this study,
where we used a database containing thousands of data from multi-
ple sources, the model is “validating itself” by the “law of large
numbers”.

9. Conclusions

The treasure trove of waste-glass property data compiled at PNNL
[13] allowed us to perform numerical experiments with property-
composition models in which we took advantage of the dependence
of molten-glass viscosity on temperature via the activation energy

y = -6.7496x + 1.3821
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as a sole composition-affected parameter. The simplicity of computa-
tion made it possible to reduce arbitrariness in eliminating outliers,
thus minimizing the difference between measured and calculated
values for the maximum number of data. The outlier-free data exhibit
a near-Gaussian distribution with respect to the frequency of the
deviation between measured and calculated values.

Both first‐ and second-order models were developed for the orig-
inal database, as well as several second-order models for a database
from which extreme compositions were removed. Various sets of
components were tested. Two first-order models, one for 39 and the
other for 24 components, are easy to use in applications and represent
the database with the smallest number of parameters per component.
The second-ordermodels have a higher number of parameters to repre-
sent binary interactions ofmajor components, and consequently cover a
larger database. The R2 value was between 0.97 and 0.98 for all regular
models.

The compensation effect between A and B in the Arrhenius Eq. (1)
is evident even in the very large database and merits further study.
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