

Science and Engineering Indicators: Outputs and Outcomes Measures

Derek Hill Senior Analyst NCSES

CENDI May 3, 2012

National Science Foundation National Center for Science and Engineering Statistics www.nsf.gov/statistics/

I. Overview of Science and Engineering Indicators (SEI)

Science & Engineering Indicators:

- Authoritative data on status and trends of U.S. science & engineering enterprise
- Set in international context.
- Factual analysis; policy neutral.

I. Overview of Science and Engineering Indicators (SEI)

•Coverage includes:

- K-12 and higher education
- R&D and innovation
- Employment
- Production and trade of knowledge intensive and high technology industries
- Public attitudes towards science
- State level S&E indicators
- Draws on a wide and diverse range of NCSES surveys and other data sources.

II. U.S. S&T global position

• The United States maintains its S&T leadership but faces a gradual erosion of its position in specific areas.

• Many developing nations seek to develop the capacity to generate new knowledge and translate it into economic and social benefit.

 Asia's rapid ascent as a major world S&T region is chiefly driven by developments in China and other Asian economies with which it forms a supplier-based trade zone.

• Other developing countries share this heightened focus on S&T as a means of economic growth, e.g, Brazil and South Africa

• EU is striving to boost its relative competitiveness in R&D, innovation, and high technology.

International trends in first S&E degree production

NOTES: Natural sciences include physical, biological, environmental, agricultural and computer sciences, and mathematics.

SOURCES: Organisation for Economic Co-operation and Development, Education On-line Database, <u>http://www.oecd.org/education;</u> and national statistical offices

Global trends in R&D

Global R&D expenditures for selected regions and countries: 1996-2009

\$ billions

NOTE: Asia 8 consists of India, Indonesia, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand.

SOURCES: National Science Foundation, National Center for Science and Engineering Statistics, Organisation for Economic Cooperation and Development, and United Nations Educational, Scientific, and Cultural Organization Institute for Statistics.

International trends in researchers

SOURCE: Organisation for Economic Co-operation and Development, Main Science and Technology Indicators

Scientific publishing in major regions and countries

NOTE: Asia 8 consists of India, Indonesia, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand.

Major producers in high technology manufacturing

NOTE: Asia 8 consists of India, Indonesia, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand.

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, special tabulation of IHS Global Insight, World Industry Service database.

III. U.S. Research Indicators US R&D performance by sector

U.S. R&D expenditures by performing sector: 1995-2009

\$ constant billions

Note: Federal performers of R&D include federal agencies and federally funded research and development centers.

Source: National Science Foundation, National Center for Science and Engineering Statistics, National Patterns of R&D Resources.

III. U.S. Research Indicators U.S. federal R&D performance

U.S. R&D performed by federal government : 1995-2009

\$ constant billions

FFFRDC=Federally funded research and development center

Notes: Federal performers of R&D include federal agencies and federally funded research and development centers.

Source: National Science Foundation, National Center for Science and Engineering Statistics, National Patterns of R&D Resources.

Industry is largest employer of S&E degree holders

Federal Share government 7,322 7,682 7,953 9,579 10,156 10,216 100% For-profit businesses 80% ■ Self-employed, unincorporated businesses State/local 60% government Nonprofit 40% organizations 2-year and 20% precollege institutions 4-year 0% institutions 1995 1997 1999 2003 2006 2008

Employed S&E highest degree holders, by sector: 1995-2008

NOTE: NOTE: Science and engineering highest degree holders refers to individuals whose highest degrees are in computer/math sciences, biological/agricultural/environmental life sciences, physical sciences, social sciences and engineering. Number of employed S&E degree holders for each years is shown above bars in thousands.

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and Engineers Statistical Data System (SESTAT) (1993-2008), special tabulations, http://sestat.nsf.gov.

Employment sector of S&E highest degree holders: 2008

Percent

	Education 2-year and 4-year precollege		Governme	ent	Busir	istry	
Highest degree field and level			FederalState/local €		Self- N employed pi		For-profit
All S&E highest degree holders	8.3	7.2	5.3	7.9	5.5	6.9	58.9
Computer/mathematical sciences	7.2	6.3	4.2	4.1	3.3	4.7	70.3
Biological/agricultural/environmental life sciences	15.2	7.0	6.2	8.9	6.5	9.5	46.6
Physical sciences	14.9	6.3	6.4	6.7	5.7	5.3	54.8
Social sciences	7.4	11.7	5.1	10.9	7.4	10.2	47.3
Engineering	4.1	1.0	5.4	5.7	3.5	1.8	78.5

NOTE: Scientists and engineers refers to all persons who work in an S&E occupation or who received a bachelor's degree or higher in an S&E degree field in 1993–99 or an S&E or S&E-related field in 2003–08.

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and Engineers Statistical Data System (SESTAT) (1993–2008), http://sestat.nsf.gov.

Most S&E doctorate holders are employed in education and industry

Employed S&E doctorate holders, by U.S. employment sector: 1995-2008

NOTE: Science and engineering doctorates refers to individuals who have earned doctorates in computer/math sciences, biological/agricultural/environmental life sciences, physical sciences, social sciences and engineering. Number of total employed SE doctorates for each years is shown above bars in thousands.

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and Engineers Statistical Data System (SESTAT) (1993–2008), special tabulations, http://sestat.nsf.gov.

Employment Sector of S&E doctorate holders: 2008

_	Education		Government		Business/in		Istry
	2-ye	ear and	S	State	Self-	Non-	
Highest degree field and level	4-year pre	college	Federal /	local	employed	profit	For-profit
S&E doctorate holders	40.5	3.1	6.3	2.9	6.2	6.2	34.8
Computer/mathematical sciences	49.0	2.6	3.7	0.8	3.4	3.3	37.3
Biological/agricultural/environment al life sciences	46.3	3.1	8.2	2.8	3.5	8.3	27.7
Physical sciences	34.7	3.2	6.8	2.3	3.7	4.9	44.3
Social sciences	46.5	4.8	5.3	4.7	12.9	8.2	17.7
Engineering	25.7	0.9	5.5	1.9	4.4	2.9	58.7

NOTE: Scientists and engineers refers to all persons who work in an S&E occupation or who received a bachelor's degree or higher in an S&E degree field in 1993–99 or an S&E or S&E-related field in 2003–08.

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and Engineers Statistical Data System (SESTAT) (1993–2008), http://sestat.nsf.gov.

US scientific publishing dominated by academic sector

U.S. S&E publications by sector: 1995-2010

FFFRDC=Federally funded research and development center

Scientific publishing outside of academic sector

20 Non-profit 15 Federal government intramural Industry 10 FFRDCs 5 State/local government 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

FFFRDC=Federally funded research and development center

U.S. academic and government authored publications by research field

FFFRDC=Federally funded research and development center

Publication data shows increasing collaboration between US and foreign institutions.

US S&E articles coauthored domestically and internationally: 1995-2010

SOURCES: National Science Foundation, National Center for Science and Engineering Statistics, special tabulations of Thomson-Reuters, Science and Social Sciences Citation Indexes, and The Patent Board.

U.S. sectors have increased their collaboration internationally and with other U.S. sectors

U.S. academic collaboration, by sector: 2000 and 2010

SOURCES: National Science Foundation, National Center for Science and Engineering Statistics, special tabulations of Thomson-Reuters, Science and Social Sciences Citation Indexes, and The Patent Board.

Share (percent)

U.S. federal government collaboration, by sector: 2000 and 2010

FFRDC=Federally funded research and development center NOTE: U.S. federal government authored papers exclude those authored by FFRDCs

FFRDC=Federally funded research and development centers

Trends for USPTO patents

USPTO patents granted to U.S. and foreign inventor: 1995-2011

USPTO patents credited to U.S. inventors

USPTO patents granted to U.S. inventors, by sector: 1995-2011 thousands

classified as private and non-profit corporations.

SOURCE: U.S. Patent and Trademark Office, Patent Statistics, http://www.uspto.gov/patents/stats/index.jsp

U.S. ownership of USPTO patents

NOTES: Patents on whole-count basis, that is, each assignee on patent is credited one count. Patents assigned to federally funded research and development centers are classified as private and non-profit corporations.

SOURCES: National Science Foundation, National Center for Science and Engineering Statistics, and The Patent BoardTM, special tabulations (2011) from U.S. Patent and Trademark Office (USPTO), Patent Grant Bibliographic Data.

Thank you

Information and data available at http://www.nsf.gov/statistics/

Derek Hill

Email: dhill@nsf.gov

Tel: 703-292-7805