Ancestral Diversity

Lynn B. Jorde Department of Human Genetics University of Utah School of Medicine 29 June 2012

Overview

Background on human genetic variation

How sequencing has changed things

How is genetic variation distributed among continental populations?

	60 STRs	30 RSPs	100 <i>Alu</i> s	75 L1s	250K SNP	
Between individuals, within continents	90%	87%	86%	88%	88%	
Between continents (F _{ST})	10%	13%	14%	12%	12%	

 F_{ST} : proportion of variation attributed to population subdivision

Jorde et al., 2000, Am. J. Hum. Genet. J. Xing et al., 2009, Genome Res.

How is genetic variation distributed among continental populations?

	60 STRs	30 RSPs	100 <i>Alu</i> s	75 L1s	250K SNP	Skin pigment- ation
Between individuals, within continents	90%	87%	86%	88%	88%	10%
Between continents (F _{ST})	10%	13%	14%	12%	12%	90%

Jorde *et al.*, 2000, *Am. J. Hum. Genet.* J. Xing *et al.*, 2009, *Genome Res.* % SNPs shared among four major regions (Africa, Europe, E. Asia, India): 250K chip results for ~1,000 samples

Minor allele present in:	
All 4 groups	78.6%
At least 3 groups	88.0%
At least 2 groups	92.1%
Africa only	7.4%
Any non-African group	0.5%

No SNPs were fixed present in one population, fixed absent in another J.

J. Xing et al., 2010, Genomics

40 populations, ~250K SNPs

Xing et al., 2010, Genomics

Population relationships in HGDP sample

Jakobsson et al., 2008, Nature 451: 998-1003

Human population relationships, based on 29 blood group and protein polymorphisms

(Nei and Roychoudhury, 1993, *Mol. Biol. Evol.*)

Haplotype diversity declines with distance from Africa

J. Xing et al., 2010, Genomics

Recent African origin of anatomically modern humans

Novembre J, Ramachandran S. 2011. Annu. Rev. Genomics Hum. Genet. 12:245–74

Principal components analysis displays **individual** genetic similarity in 2D: each dot = 1 individual

Microarray-based SNPs portray population relationships accurately but are biased

 Microarray SNPs are selected for higher frequency and diversity in Europeans

 Complete DNA sequences are unbiased and include information about rare variants

The effect of ascertainment bias on allele frequencies

Individual network based on CGI WGS data: 54 individuals

CHB: Chinese JPB: Japanese MXL: Mexican CEU: Utah CEPH TSI: Tuscan PUR: Puerto Rican GIH: Gujarati ASW: African-American LWK: Luhya YRI: Yoruban MKK: Maasai

Complete Genomics vs. 34 1000 Genomes sequences (Phase 1)

Average between-platform difference = 348,000 variants

Rare SNPs are much more likely to be population-specific

Allele age, t, as a function of frequency

We expect many novel variants with each whole-genome sequence

20 whole-genome sequences

Pelak et al., 2010, PLoS Genet.

Number of novel variants in 200 WGS samples

Marc Singleton

Novel variants in betweenpopulation comparisons

Novel variants in betweenpopulation comparisons

False-positive results increase dramatically with inaccurate case-control matching: WGS data

Genome Res.

LOD score needed for genome-wide significance for detection of GATA4 as a disease-causing mutation

LOD score needed for genome-wide significance for detection of GATA4 as a disease-causing mutation

Conclusions

 Because of population specificity of rare variants, more sequencing in more populations is needed

 We need to do experiments to determine how closely one needs to match control genomes to minimize false positive findings

Acknowledgments

University of Utah: Jinchuan Xing, Dave Witherspoon, Chad Huff, Tatum Simonson, Steve Guthery, Scott Watkins, Yuhua Zhang, Bob Weiss, Alan Rogers

LSU: Mark Batzer

Limited sampling produces high F_{ST} values HapMap II, 210 individuals, 4 populations Fst = 15.2% CEU п CHB D JPT YRI

J Novembre et al. 2008 Nature

Genetic distance analysis: 15 loci

McLellan, Jorde, and Skolnick, 1984, Am. J. Hum. Genet.

Proportion of shared alleles between pairs of individuals, relative to a single panmictic population

©2011 by National Academy of Sciences

Examples of genes in which elevated LD indicates recent natural selection

Gene	Phenotype
G6PD	Malaria protection
HFE (hemochromatosis)	Iron absorption
CYP3A5	Sodium retention
LCT (lactase enhancer)	Lactase persistence
SLC24A5	Skin pigmentation
Alcohol dehydrogenase	Ethanol metabolism
EPAS1, EGLN1	Hypoxia response

Voight et al., 2006, *PLOS Biology* 4: 446-458 Simonson et al., 2010, *Science*

503F Variant of OCTN1

Arose approximately 12,000 years ago; freq. 30-50% in Europe.
503F is a gain-of-function mutation that increases ergothioneine substrate efficiency by 300%.

Recent Positive Selection at IBD5

Sample	iHS	p-value
НарМар CEU	-3.1	0.0007
HGDP Russian	-2.75	0.0044
HGDP Sardinian	-2.76	0.0075
HGDP French	-2.64	0.0076
HGDP Basque	-2.37	0.0128

Huff et al., 2011, Mol. Biol. Evol.

The OCTN1 association could be explained by genetic hitchhiking

IRF1 is involved in innate immunity and clearance of intracelluar bacteria

Disease association in 1868 cases and 5540 controls

IRF1 is expressed 72% more highly in Crohn disease intestinal tissue than in control tissue; no other gene in *IBD5* region shows expression differences

Huff et al., 2011, Mol. Biol. Evol.

Linkage disequilibrium* increases with distance from Africa

Annu. Rev. Genomics Hum. Genet. 12:245–74

*We can think of linkage disequilibrium as a measure of multi-locus homozygosity.

Whole-genome sequence data give results congruent with array SNPs

B. Moore et al., 2011, Genetics in Medicine

But results vary by platform

Ancestral profiles: 250K SNPs Structure analysis

An inferred demographic model, with line width corresponding to population size and time flowing from left to right (1000 Genomes data)

Gravel S et al. PNAS 2011;108:11983-11988

The age, *t*, of a neutral allele can be estimated by its frequency

$$t = \frac{-4Np}{1-p}\ln(p)$$

(where *N* is effective population size)

Kimura and Ohta, 1973, Genetics

Allele sharing and allele frequency for 3,228 *Alu* insertion polymorphisms

Allele frequency, p:	0 < p < 0.05	0.05 < p < 0.10	p > 0.10
Probability of observing <i>Alu</i> outside Africa, given ascertainment in Africa	0.09	0.25	0.80
Probability of observing <i>Alu</i> in Africa, given ascertainment outside Africa	0.41	0.76	0.97

53 African samples (Bantu and Pygmy) 49 non-African samples (Tuscan and Brahmin)

David Witherspoon, PhD