- 1. Genetic architecture of the most important diseases across the life course
 - Role of rare and common variants
 - b. Risk and protective alleles
 - c. Role of families (family studies)
 - d. Effect modification of environmental exposures (G x E) (susceptibility to infection and maternal environment)
 - e. Pleiotropy
 - f. Genetic modifiers of disease severity or complications or clinical outcomes

2. Novel drug targets

- a. Natures human XO experiment
- b. LOF protective alleles with no known side effects
- c. Novel pathways contributing to disease
- d. Will facilitate a focus on diseases where we have currently have poor treatment options

3. Pharmacogenetics

- a. Treatment response
- b. Drug dosing
- c. Adverse outcomes

4. Longitudinal change

- a. Normal change
- b. Incident disease
- c. Outcomes research
- d. Drug response
- e. Somatic variation over time

5. Health disparities

- a. Role of genetic factors
- b. Role of gene x environment interaction

- 6. Epigenetics and Somatic variation
 - a. Role in disease severity
 - b. Environmental interactions
 - c. Change across the life course
 - d. Difference among tissues
 - e. Change of somatic mosaicism throughout life

- 7. Annotation of the genome
 - a. Role of conserved regions
 - b. Role of hyper-variable regions
 - c. Distant regulatory regions (eQTL)
 - d. Role of transposon and virus insertion
 - e. Assigning function to unknown motifs