Relationship between age, size and reproduction in populations of American ginseng across a range of harvest pressures

2/24/2009

Emily H. Mooney, Ph.D. Massachusetts College of Liberal Arts

Overview

- Evolutionary implications of harvest
- Case studies from animal and plant species
- Evidence for selective harvest in American ginseng
- Study details
 - Methods
 - Results
 - Conclusions

Wild harvested species

All images from www.wikimedia.org

Harvest often targets specific phenotypes

Harvest can lead to evolutionary change in natural populations

Assuming portion of variation is genetically determined

CASE STUDY: declines in horn and body size linked to trophy hunting in bighorn rams, Ovis canadensis

CASE STUDY: Size selective harvest in fisheries can result in life history change

Fish Species

Lake whitefish, Coregonus clupeaformis Atlantic salmon, Salmo salar Pink salmon, Oncorhynchus gorbuscha Chinook salmon, O. tshawytscha European grayling, Thymallus thymallus Atlantic cod, Gadus morhua Orange roughy , Hoplostethus atlanticus European plaice, Pleuronectes platessa

Selection response

Smaller body size; slower growth Smaller size at maturity Smaller size at maturity Smaller size at maturity Earlier age at maturity Increased fecundity Earlier age at maturity

Hutchings, JA, Fraser, DJ. 2008. Mol Ecol. 17: 294-313

CASE STUDY: Decline in height of the harvested snow lotus, Saussurea laniceps

Law, W, Salick, J. 2005. PNAS. 102(29): 10218-10220.

Similar declines observed in ginseng from herbarium specimens

McGraw, JB. 2001. Biol Cons. 98(1): 25-32.

Order Analiscent Family Gunzeng Botanical Name Parant or arches gungestolig English Name Generation Words Habitat Ord Kinsten Words County Lougton Date

Ginseng collected in Lambton County, 1912. University of Guelph herbarium collection.

Harvest of ginseng is size selective

- Harvest often restricted to plants with 3 or more leaves
- 2. Harvesters are likely motivated to leave behind juvenile plants
 - a) Larger plants yield more valuable roots
 - b) Traditional conservation ethics
- 3. Larger plants are more apparent

Mooney, EH, McGraw, JB. 2007. Cons Gen. 8: 57-67. Price, ET. 1960. Geog Rev. 50: 1-20. Van der Voort, ME, McGraw, JB. 2006. Biol Cons. 130: 505-516.

Is variation in size genetically determined?

- Germplasm bank planted by Bob Beyfuss
- Plants collected from wild populations in eight states
- Differences in leaf area and sympodium height persisted

Research Question

Do life-history traits vary among populations with different harvest pressures?

How to assess harvest pressure?

Ask harvesters

...potential for bias

Monitor population

...harvest infrequent

Legal status of location

...poaching common

Stage-structure impacts

Bailey, B. 1999. Ph.D. Dissertation. WVU, Morgantown, WV Van der Voort, ME, McGraw, JB. 2006. *Biol Cons.* 130: 505-516. van Manen, FT et al. 2005. *Nat Areas J*, 25: 339-350.

Experimental harvest

Van der Voort, ME, et al. 2003. Am. Midl. Nat. 149: 282-292

Study populations

Data collection

- **2004-2006**
- Size
 - Sympodium (stem) height
 - Leaf area
- Reproductive data
 - Flowering (Y/N)
 - Seed production (Y/N)
 - Number of seeds
- 🗆 Age
- Frequency of deer browse

Aging plants using stem scars

Camera lucida drawings from www.fws.gov

Data analysis

- Regression with model effects:
 - Age
 - Harvest Index
 - Age X Harvest Index
- Correlation between deer browse and Harvest Index
- Statistical software: SAS JMP v. 6.0

Sokal, RA, Rohlf, FJ. 1995. Biometry. W.H. Freeman and Company, New York.

Population	Location	Ν	Harvest Index
VC Vermillion Co, IN		173	0.4122
EP	Lancaster Co, PA	99	0.4173
EB	Preston Co, WV	46	0.5057
HP	Albany Co, NY	280	0.5286
CC	Garrett Co, MD	154	0.6538
LK	Franklin Co, PA	349	0.6879
GB	Greenbrier Co, WV	123	0.7213
TP	Albany Co, NY	62	0.7235
TR	Parke Co, IN	133	0.7802
PO Bedford Co, VA		300	0.7829
AD	Mercer Co, WV	75	0.8486
RD	Pulaski Co, VA	129	0.9583

Table 1: Study populations, their locations by county, mean population sizes over 2004-2006, and harvest indices.

r = 0.2348, p = 0.4871

Table 2: Regression results for 2006

Deculto	Ν	Model Term	F ratio	p-value
Kesuits		Age	908.905	< 0.0001
	650	Harvest Index	6.756	0.010
		Age X Harvest Index	10.739	0.001

Age

Table 3: Regression results for 2006

Deculto	Ν	Model Term	F ratio	p-value
Kesuits		Age	300.699	<0.0001
	653	Harvest Index	0.262	0.609
		Age X Harvest Index	12.046	0.001

Table 4: Regression results describing the relationship between age and reproductive traits for plants in the 12 study populations. .

Year	Reproductive?	Produced Seeds?	Number of seeds
2004	χ²= 11.985, p=0.001	χ²= 2.510, p=0.113	<i>F</i> =3.293, p=0.074
2005	χ²= 44.953, p<0.0001	χ²= 13.630, p=0.0002	<i>F</i> =2.383, p=0.125
2006	χ²= 50.293, p <0.0001	χ²= 4.390, p=0.036	<i>F</i> =1.780, p=0.185
	Likelihood of inflorescence	Age did not consistently predict seed production	
	production consistently increased with age		

Table 5: Regression results describing the relationship between harvest index and reproductive traits for plants in the 12 study populations. .

Year	Reproductive?	Produced Seeds?	Number of seeds
2004	χ²= 3.259, p=0.071	χ²= 4.740, p=0.029	F=2.714, p=0.104
2005	χ ² = 2.582, p=0.108	χ²= 0.580, p=0.446	F=23.041, p<0.0001
2006	χ ² = 0.078, p=0.780	χ ² = 22.630, p<0.0001	F=23.594, p<0.0001
		Harvest index reduc seed production in s	ed likelihood of everal study years

Conclusions

- Populations with higher harvest indices had plants with smaller leaf areas and sympodium heights
 - Appears to be the product of slower growth
 - Consistent with the effects of size selective harvest

Conclusions

- Seed set and number of seeds was reduced in plants from populations with higher harvest indices
 - Not necessarily the product of size selective harvest
 - Allee effect
 - Similar density-dependent reductions in fecundity observed in fisheries

Hackney, EE, McGraw, JB. 2001. Cons Biol. 15: 129-136 Law, R. 2000. J Mar Sci.57: 659-668.

Acknowledgments

- Co-author: James B. McGraw
- Dissertation committee: Brent Bailey, Jonathan Cumming, Steve DiFazio and Donna Ford-Werntz
- □ Help in the field:
 - B. Beyfuss, P. Cox, L. Diloia, P. Henderson, A. Hanna, S. Hovatter, M. Kaproth, C. Kimball, C. Kindlin, A. Martin, M. Olive, R. Parsons, S. Souther, K. Wixted and R. Wyman

