Smart Grid: An Estimation of the Energy and CO₂ Benefits

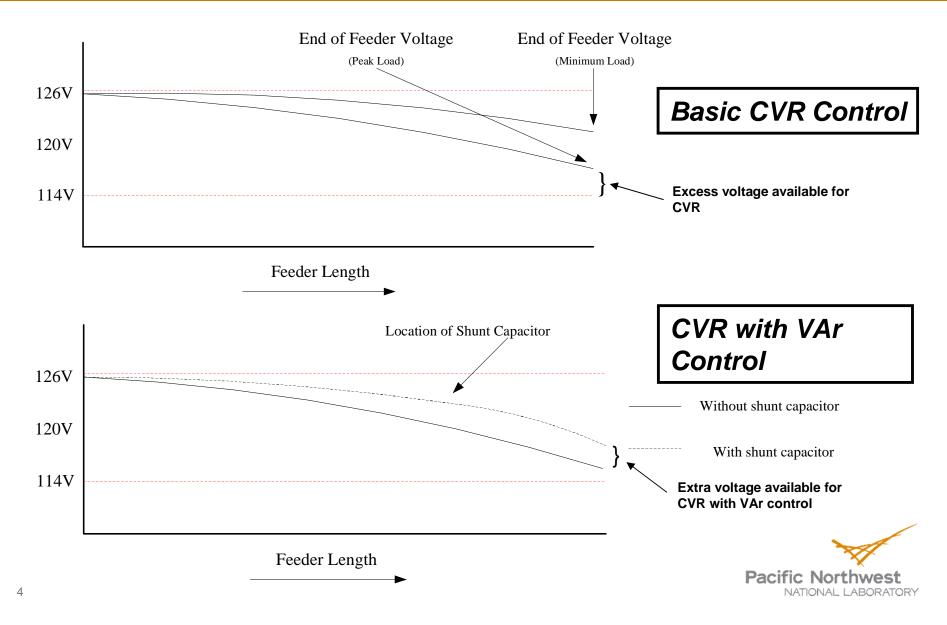
Rob Pratt Pacific Northwest National Laboratory robert.pratt@pnl.gov EPA Tech Forum Webinar March 2010

Scope and Methodology of the Study

- Question: Does a smart grid have a substantial role to play in the nation's carbon management agenda?
- Goal: Estimate the range of potential energy and carbon benefits attributable to a smart grid
- Nine mechanisms for a smart grid to help reduce energy and carbon were investigated
- Two classes of benefits reducing in energy consumption and emissions resulting ...
 - *directly* from smart grid applications
 - indirectly from reinvestment of cost savings for renewables or efficiency programs
- Other potential environmental benefits not examined (air emissions, land use, etc.) 2

Primary Results from Study by PNNL

M e c h a n i s m	Electric Sector Energy CO2 Reductions		
	Direct	Indirect	
Conservation Effect of Consumer Information and Feedback Systems	3%	-	
Joint M arketing of Efficiency and Demand Response Programs	-	0%	
Diagnostics in Residential and Small/Medium Commercial Buildings	3%	-	
M easurement and Verification for Efficiency Programs	1 %	0.5%	
Shifting Load to More Efficient Generation	< 0.1%	-	
Support Additional Electric Vehicles (EVs) / Plug-In Hybrid Electric Vehicles (PHEVs) -	3 %	-	
Conservation Voltage Reduction and Advanced Voltage Control	2 %	-	
Support Penetration of Solar Generation (RPS $> 25\%$)	(1)	(2)	
Support Penetration of W ind Generation (25% RPS)	< 0.1%	5 %	
Total, Share of U.S. Electric Sector Energy and CO ₂ Emissions	12%	6 %	


EPRI's *Green Grid Report* estimates (direct-only) reductions in range of <u>2% to 7%</u> at less than 100% smart grid penetration

* Assumes 100% penetration of smart grid in 2030; lower penetration produces proportionately smaller impacts

- Considerable uncertainty exists for each mechanism investigated: typically ~ <u>+</u>50%
- $_{3}$ > Note EPRI investigated somewhat different mechanisms, on a different basis

Mechanism G: Conservation Voltage Reduction and Advanced Voltage Control

Mechanism G (cont): Conservation Voltage Reduction and Advanced Voltage Control

- Optimizing voltage reduces consumption and lowers distribution losses
 - Precise control maintains voltage at end of feeder at minimum standard level
 - Lower supply voltage reduces some end-use consumption (e.g., lighting, motor winding losses)
 - Better reactive power (VAr) control reduces losses by lowering current, and raises voltage at end of feeder (more CVR potential)
 - Cost of implementation is low
- Potential (electric sector):

Sector	Est.	Low	High
Total Electric Supply	2%	1%	4%

- *Basis:* Total distributed electricity
- Key Assumptions:
 - Measured effect of 0.8% per 1% drop in voltage applies to average U.S. feeder
 - Average U.S. feeder voltage can be lowered 2.5%
- Uncertainties:
 - Need to verify value of key assumptions
- Recommended Future Work: Analyze voltage management potential using statistical U.S. feeder prototypes, field test results from smart grid demonstrations

Mechanism I: Reduced Capital Investment for Reserve Generation Capacity Required for Integrating Wind

- Requirements for reserve generation capacity are estimated to increase (2%) as we integrate large amounts of wind generation into grid operations
 - Costs can be avoided by leveraging demand response and distributed generation & storage capabilities
- Potential (electric sector):

Sector		Low	High
1,111 GW Total Generation Capacity @ \$1000/kW	2%	1%	3%

Basis: 1,111 GW total U.S. generation capacity in 2030 at \$1000/kW

Key Assumptions:

- 20% RPS goal met with wind power
- Cost savings are re-invested in cost-effective efficiency/renewables, i.e., at average cost of electricity (\$0.088/kWh) [indirect savings mechanism]

Uncertainties:

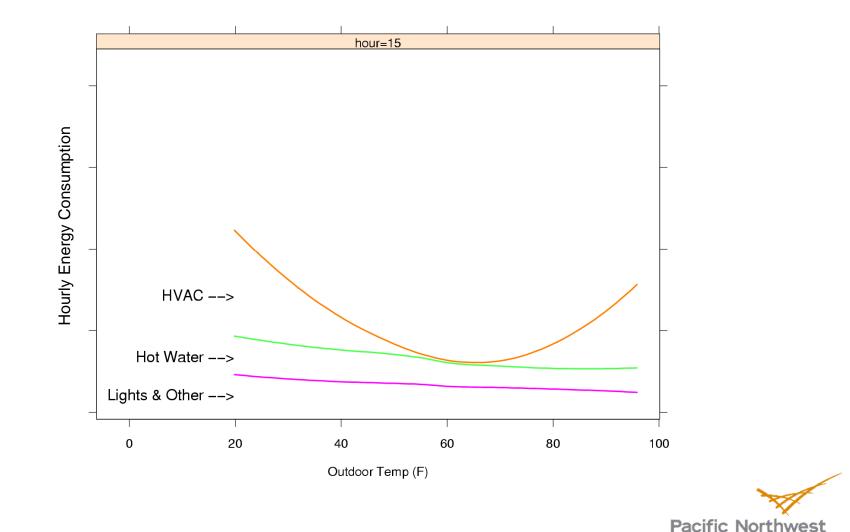
- Many predict wind penetrations >20%
- Actual reserve requirements may be higher
- Averaging over larger balancing areas may lower reserve requirements
- Recommended Future Work: Need to better understand ancillary service requirements of renewables (wind & solar)

Mechanism F: Support Additional Electric or Plug-In Hybrid Vehicles by Managing Charging

- Electric vehicle penetration will be limited by need to add peak generation capacity if charging is not managed by a smart grid
- Potential (light vehicle sector):

 Sector
 Est.
 Low
 High

 Light Vehicle Transportation (cars, vans, SUVs, light trucks)
 3%
 2%
 5%
- Basis: Total light-duty vehicle energy consumption
- *Key Assumptions:*
 - 9% increase in vehicle penetration supported without added capacity (64% vs. 73%)
 - 30% energy efficiency gain (today's vehicle fleet converted to electricity vs. today's marginal power plant mix)
 - 120-volt charging starts at return-to-home times (measured driving sample)


Uncertainties:

- 120-volt charging may not be practical (cannot complete charging of battery overnight on large vehicles)
- Savings <u>at 240-volt charging quintuple to 13%</u> (fraction of vehicle energy supportable without smart charging drops from 64% to 32%)

Recommended Future Work: Need to ensure grid can support charging of west electric vehicles as they penetrate

A Smart Grid's AMI and Demand Response Infrastructure Can Support <u>Detailed</u> Analysis of Energy Consumption

NATIONAL LABORATORY

8

Mechanism A: Conservation Effect of Consumer Feedback from Demand Response Programs

- Demand response programs noted to result in reduced energy consumption
 - Presumed from increased energy awareness from feedback on consumption provided by information provided by data from AMI + DR systems (usually webbased)
 - Some additional direct savings, e.g. water heater setbacks

Potential	Sector	Est.	Low	High
(electric sector):	Residential	6%	1%	10%
	Sm./Med. Commercial	6%	1%	10%

- Basis: Total residential and small commercial electricity consumption (large commercial likely already has feedback)
- *Key Assumption:* Average 6% effect measured in consumer feedback technology studies also pertains to smart grid

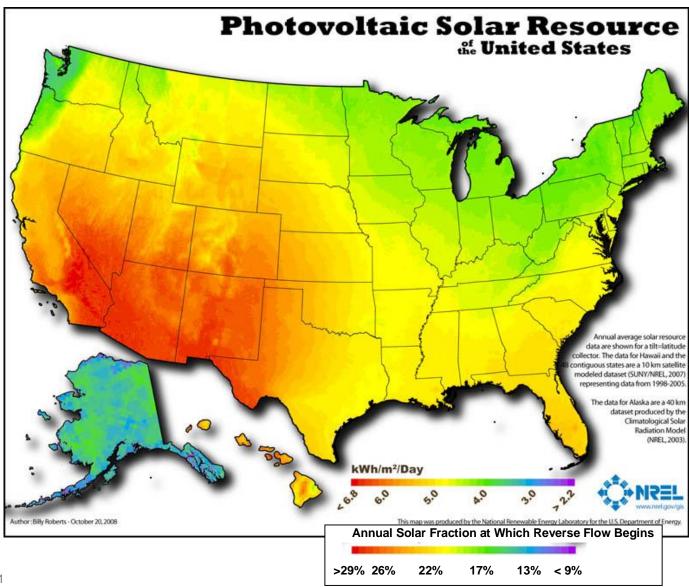
Uncertainties:

- Self-selection bias in EE and DR studies
- Will effects persist? feedback continual or behavior adopted (studies all ~1-year)
- *Recommended Future Work:* Leverage data from smart grid demonstrations to identify and quantify effect

Mechanism C: Smart Grid-Enabled Diagnostics of Energy System Performance

- Provide remote energy system diagnostics using smart grid sensors & communications
 - Disaggregate time-series consumption using AMI & end-use on/off signals from demand response controllers as basis for simple performance diagnostics
 - Also can be used for data mining for savings opportunities, ensuring persistence

Potential (electric sector):


Sector	Est.	Low	High
Residential (Heat Pump & AC)	15%	10%	20%
Sm./Med. Commercial (HVAC + Lighting)	20%	10%	30%

- Basis: Residential cooling & heat pump heating; small commercial HVAC electricity & lighting
 - Residential & small/medium commercial building systems are relatively uniform
 - Diagnostics for large commercial buildings unlikely to be provided by smart grid (site-specific set-up required)
- *Key Assumption:* Residential potential similar to commercial
- *Uncertainties:*
 - Will customers allow data to be used? (privacy issues)
 - Will identified problems get fixed? (programmatic mechanism may be required)

Recommended Future Work: Need to develop & test simple, smart-grid-

10 based diagnostics

Annual Solar Energy Fraction in a Residential Neighborhood at Which Reverse Power Flow Begins: 17%-28%

Clear spring/fall days (K_T = 0.75)

- 1 kW residential load at noon
- 1 kW PV array (~6 m² @ 17% efficiency) on <u>every</u> house
- Power flow on feeder reverses when PV output exceeds load
 - Voltage control (at head of feeder) becomes ineffective
 - Short circuit protection may become inadequate
 - Smart grid can help

Pacific Northwest NATIONAL LABORATORY

A Smart Grid Will Make a Significant Contribution

- Full implementation of smart grid functionality will provide substantial reductions in U.S. energy consumption and carbon emissions:
 - 9% direct reductions (without electric vehicles)
 - 3% additional direct reductions by supporting additional EVs & PHEVs* at very high penetrations (> 60%) by smart charging
 - 5% indirect reductions from reinvestment of avoided costs for adding extra capacity for regulation and reserves required to support a 25% renewable portfolio standard
- The smart grid may be essential to achieving levels of renewables >> 25%, particularly for customer solar PV**
 - * electric vehicles and plug-in hybrid electric vehicles
 - ** photovoltaic solar generation by customers

Contact Information:

Rob Pratt Pacific Northwest National Laboratory <u>robert.pratt@pnl.gov</u> 509 375-3648

