

Advances in the Development of Silicon Nitride and Other Materials

Environmental Barrier Coatings Workshop

November 6, 2002 - Nashville, TN

Mark van Roode

- Ceramics for Gas Turbines
- Evolution of Monolithics
- Critical Technical Issues
- Commercialization Issues
- Summary

Ceramics For Gas Turbines

Gas Turbine End User Buying Criteria

A Caterpillar Company

Solar Turbines

Superalloy Components

- Superior Ductility and Thermal Conductivity
- Operating Temperature Limitation: 900°C for Uncooled Components
- Turbine Inlet Temperatures (TITs) are increasing
- Emissions of NOx, CO Need to be Reduced
- Management of Air is Required
 - Sophisticated Cooling Schemes and Coatings for Higher TITs
 - Spatial Limitations to Cooling for Smaller Engines
 - Inconvenience of Steam Cooling for Larger Engines

- **Good Mechanical Properties up to 1300 1400°C**
- **Reduced Cooling Air Requirements**
- Increase Turbine Inlet Temperatures \rightarrow Increased Efficiency and Output Power
- More Air Available for NOx and CO Emissions Reduction
- Light Weight Important for Transportation Applications

- Anson et al., ASME 92-GT-393 (US data)
 - Potential annual fuel savings from more efficient small gas turbines incorporating ceramics:
 - US: 0.2 Quads by 2010 \$ 600M @ \$ 3/MBtu Nat.Gas
- Grondahl and Tsuchiya, ASME 98-GT-186
 - MS9001FA Gas Turbine
 - Ceramic transition piece, two stages of buckets, nozzles, shrouds
 - 2-3 Percentage points in combined cycle efficiency improvement compared to current metal engine
- Solar Turbines: Potential component cost savings
 - Silicon nitride blade: 30% of cost of cooled single crystal blade
 - Silicon nitride nozzle: 65% of cost of cooled superalloy nozzle

A Caterpillar Company

Monolithics vs. Ceramic Matrix Composite

Monolithics Ceramic Matrix Composites Si_3N_4 , SiC, Sialons SiC/SiC, Oxide/Oxide **Superior HT Strength** Lower HT Strength Lower $K_{1C} < ~9 \text{ MPa.m}^{\frac{1}{2}}$ Higher $K_{1C} < \sim 25$ MPa.m^{1/2} **Design Stress up to 200-300 MPa** Design Stress < 70-100 MPa **Limited to Small Components Can Be Used for Larger Components** Lower Cost **Higher Cost For Smaller Engines For Larger Engines**

Evolution of Monolithics

Evolution of Monolithics

Courtesy M.K. Ferber, ORNL

A Caterpillar Company

HIP Si₃N₄

A Caterpillar Company

SSN

Creep Resistance

Courtesy M.K. Ferber, ORNL

Critical Technical Issues

Issue 1. Ceramics vs. Metals

Ceramics have improved but so

have metals

Metal Design Options up to 1500°C

Complex Expensive Cooling Schemes

Example – TEPCO 20 MW Program

- Combined Cycle Power Plants
- Ceramic Nozzles, Blades, Combustor, Transition Piece
- 1984: Metal Components 1100°C Capability
 - Ceramic Components for 1300°C Class Gas Turbine
- 1990: Metal Components 1300°C Capability
 - New Ceramic Target: 1500°C Class Gas Turbine

Solar Turbines Incorporated

Issue 2. Ceramics Have Insufficient Impact Resistance

- Critical for Rotor Blades, Integral Rotors (Blisks)
- Stresses> 200 MPa Significant Mechanical Stress Component
- Foreign Object Damage (FOD), Domestic Object Damage (DOD)

- Rig test at Daimler-Benz
- HPSN (NC132) Gasifier Rotor
- Survived ~ 57 hrs at T up to 1060°C
- Failure at 42,000 rpm and 1000°C
- Cause FOD/DOD from piece of combustor metal, melted after overheating

Hagemeister et al., ASME 83-GT-305, 1983

Issue 3. Component Surface Condition

DOE/Solar Ceramic Stationary Gas Turbine (CSGT) Program

Solar Turbines

A Caterpillar Company

- SPSLIFE, NASA CARES/Life: Fast Fracture, Slow Crack Growth
 - SCG: Life Limiting -186 MPa Airfoil Stress -1121°C TRIT 30,000 hrs Life Target

•	Si ₃ N ₄	POS (Blade)	POS (Blade Set)
•	NT-164 (HIP-SN)	0.96355	0.10004 (GN-10 Similar)
•	AS-800 (SSN-SR)	0.99999	0.99976
•	SN-253 (SSN-SR)	0.99993	0.99567
•	SN-88 (SSN-SR)	0.99998	0.99908

- HIP-SN Materials Have Low POS because of Surface Condition
 - NT-164,GN-10: 1st Gen. Si₃N₄ Short Term Tests Only
- SSN-SR: AS-800,SN-253/281,SN-88 2nd Gen. Si₃N₄ Long Term (Engine) Testing

A Caterpillar Company

Issue 4. Ceramics Suffer Contact Stress Damage at Metal Interface

- Critical for Inserted Rotor Blades
- Use Compliant Layer to Mitigate Contact Stresses at Blade Root
- Source of Failure in Rotor Blade Tests
- Long Term Durability of Compliant Layer Interface Uncertain

Hagemeister et al., ASME 83-GT-305, 1983

Dovetail Blade Failure, Trappman And Rottenkolber, 1978

VP130-001

A Caterpillar Company

Compliant Layer and Impact Failure

(a) Rotor with AS-800 blade residues

(c) Attachment test failure Ni-alloy+Pt compliant layer

(b) Failed blade root: Ni-alloy+Pt compliant layer

- In-house engine test 1996
- 58 hrs at 1010°C TRIT
- AS800 Si₃N₄ Blade Honeywell Ceramic Components
- Failure initiated as a result of compliant layer Failure
- Ni-alloy/PT CL failed in the root
- Ni-alloy/Pt/BN failed above th platform
- Secondary Impact Failure
- Attachment Test
 - •Ni-alloy/Pt CL: 2 cycles
 - •N-alloy/Pt/BN: 5000 cycle

A Caterpillar Company

Integral Rotor

- SN252 Si₃N₄ Rotor
- 1000 hr Durability Test
- T > 1427°C
- Blade Tip Rubs
- C Particle Impact
- Molten Superalloy Debris

P.Khandelwal & P. Heitman, Rolls-Royce, in Ceramic Gas Turbine Design and Test Experience ASME Press, 2002

INTEGRAL ROTORS

- No Compliant Layer with Disk
- Attachment Ceramic Rotor to Metal Shaft
- Primarily Small Parts
- Ability to Fabricate Larger Parts Has Improved
- Integral Rotors are Replacing Metal Disks with Inserted Blades

Honeywell Rotor Operating for > 6000 hrs In Industrial Facility in Utah

Courtesy Honeywell Engines, Systems & Services

Issue 5. Ceramics Need Rub Tolerance

- Durability to Withstand Rubs: Critical For Optimizing Efficiency Gains
- Rotating Parts: Inserted Blades, Integral Rotors

Solar Turbines

A Caterpillar Company

Important for Small Engines: Example IHI CGT301 300 kW Program

Clearance	Turbine Efficiency	Cycle Efficiency	ТІТ	Comments
0.2 mm	87.5%	42%	1350°C	Design Point – Engine Failure
0.8 mm (Cold) 0.5 mm (Hot)	76% 79%	35%	1350°C	Eff. Loss Primarily from Excess Clearance

Data courtesy IHI

- Need Abradable (Rub Tolerant) Tip Shroud for Clearance Control
 - Dense Silicon Nitride Base Low-Density Surface

Solar Turbines Abradable Shroud Contributes to Efficiency

A Caterpillar Company

KHI CGT302 Engine Achieved 42.1% Efficiency and 322 kW Output Power at 1396°C TIT (Courtesy of KHI)

Courtesy of KHI

Abradable Si₃N₄ Power **Turbine Shroud** (Fabricated by Kyocera Corp.)

Abradable Si₃N₄ Shroud Fabricated By Technologhia (Russia)

A Caterpillar Company

Issue 6. Environmental Degradation

- Silicon-Based Ceramics Degrade in the Gas Turbine Environment
- Solar CSGT Centaur 50S Surface Recession (30,000 hrs)
 - TRIT = 1121°C
 - Nozzle
 - Hot Spot 1300°C: 24 mm
 - Nominal 1150°C: 12 mm
 - Combustor Liner
 - Hot Spot 1250°C: 5 mm
 - Cold Spot 1000°C: 1 mm

A Caterpillar Company

Solar's Early "EBC" Experience

- Corrosion Resistant Coatings for Ceramic Heat Exchanger Tubes (GRI Contract to Solar)
 - M. van Roode et al. ASME 91-GT-38
- Aluminum Remelt Processing Corrosive Attack by Alkali Chlorides, Cryolite on Heat Exchanger Tubes
- Ceramic Oxide-Based Coatings (0.5 1.3 mm thick)
 - Mullite, Zircon, Hafnia, Alumina, Zirconia, mullite-alumina-zirconia
 - Single-Layer, Multi-Layer, Graded
 - a-SiC (Hexoloy SA, Si-SiC (Coors SCRB 210), Nextel/SiC (Syconex), SiC/alumina Substrates
 - Coatings Applied by Air Plasma Spray
 - Alkali Etch to Roughen Substrate Surface

Tubes Exposed for 4000+ hrs In Aluminum Remelt Heat Exchanger Test, Reynolds Aluminum, Mussel Shoals, AL

A Caterpillar Company

Early "EBC" Durability

Chemical compatibility, Expansion Match with Substrate, Low Modulus

ORNL: Thermal Cycling in Air (50 cycles/300-1300°C/2 hrs) – Coatings showed no degradation

Corrosion Rig: 1000-3000 hrs

- Coatings Were Protective
- Long Term: Cracking Debonding

C-Ring Testing at Penn State CAM D. P. Butt et al. J.Am.Ceram.Soc., 73[9],2690-6(1990)

Early "EBC" Durability

As Coated Coors SCRB 210Tubes

After 1000 hrs Exposure at 871°C

CMC/EBC Combustor Liners

- DOE/Solar CSGT and Advanced Materials Contracts 1996 Current
- SiC/SiC CMCs (DuPont Lanxide/AS-ACI/HACI/PSC and Goodrich Corp.)
- GC, Hi-Nicalon, Tyranno ZM Fibers CVI and MI Matrices Multi-Layer EBC (UTC)
- 50,000 hrs of Engine Testing 13,937 Hrs and 15,144 Hrs
- EBC Extends Life of CMC 2-3 Fold

ChevronTexaco

Bakersfield, CA

Malden Mills Lawrence, MA

Si₃N₄ Nozzle EBC

Initial EBC Coating Trials with Solar Centaur 50S Nozzle (SN88) Promising

No Spallation Observed

As-Coated

After Thermal Cycling and Burner Rig Testing

- Solar SN88 nozzle coated with 3 layer EPM/DOE EBC
- * Thermal cycled 50X RT to 1300°C in air, 1 hour cycles
- 457 m.s⁻¹/1250°C burner rig testing 5 hrs/5 cycles

A Caterpillar Company

Si₃N₄ Nozzle EBC

- Limited Study for CSGT Program
- One SN88 and two SN282 Si₃N₄ Nozzles
- Test in Gradient Temperature Rig
 - RT-> 1190°C in 18s
 - 113% of Max. SS Stress
- Nozzles that Had Passed the Proof Test were Coated with UTRC EBC

Data Courtesy M.K. Ferber, ORNL

SN88/EBC Nozzle Survived Intact 2 SN282/EBC Nozzles Failed 1 SN282/EBC Nozzle Not Tested

Commercialization Issues

- Gas Turbine Applications are a Small Niche Market for Ceramics
- Large Scale Applications Have Not Materialized To-Date
- Insufficient Durability in Industrial Gas Turbine Environment
 - Impact Resistance, Environmental Degradation
- Component Cost Needs to be Competitive with Cost of Metal Parts
 - CMC Components: Cost Substantially Greater
 - Volume Cost of Monolithic Parts is Competitive
- Need a Strong Supplier Base
 - Suppliers Have Exited the Gas Turbine Component Arena
 - Suppliers Have Reduced Development Efforts
 - Suppliers Have Restricted Sale of Materials
- Less Funding for Ceramic R&D Programs

- Next Generation of Monolithics
 - Further Improvements in Strength and Toughness
 - Improved Impact Resistance
 - Fundamental Research in Processing
 - Highly Aligned Elongated Reinforcing Grains (Seeding of Powders)
 - Tailoring of Sintering Additives
 - NG SR Ceramics:
 ß-Silicon Nitrides, a-Sialons, SiC

W.D. Carruthers et al., ASME GT-2002-30504

- Less Mature than SiC/SiC EBCs
- Chemical Stability/Inhibit Oxidation in Gas Turbine Environment
- Adherence to Substrate
- Thermal Expansion Match with Substrate
 - EBC on Si₃N₄ EBC Lower CTE than EBC on SiC/SiC CMC
- Not Adversely Affect Mechanical Properties of Substrate
- Minimize Surface Damage During Application
- Combine Environmental and Impact Resistance
- Thinner EBC (compared to CMC EBC) to Retain Favorable Aerodynamics
- Mechanical Property and Oxidation/Recession Testing
- NDE Methodology to Establish EBC Integrity
- EBC Life Prediction Methodology

Summary

- Ceramics are Enabling Materials for Improving Performance and Emissions Reduction in Gas Turbines
- Properties and Processing of Monolithic Ceramics and CMCs Have Significantly Improved over the Past 40 Years
- Ceramic Components Have Been Demonstrated for Thousands of Hours in Test Rigs and Gas Turbines - Need 30,000+ Hrs of Life
- Critical Issues for Monolithics to be Competitive with Metals
 - Impact Resistance, Surface Condition, Contact Stress Resistance (Slow Crack Growth Resistance), Rub Tolerance, Environmental Resistance
- Durable High Performance Component Designs
- Develop EBCs for Long Service Life
- Cost Goal: Competitive with Cost of Metal Components
- Fundamental Research to Resolve Barriers to Commercialization