

Oxidation Resistance of Si3N⁴ Ceramics Modified with Boron and Transition Metal Compounds

I. Talmy and J. Zaykoski NSWCCD, West Bethesda, MD

Workshop: "New Developments in Silicon Nitride and Environmental Barrier Coatings for Microturbine and Industrial Gas Turbine Hot-Section Components"

> **November 6-7, 2002 Nashville, TN**

Acknowlegments

- Dr. Steven Fishman for funding of the project.
- Dr. Boris Varshal for valuable discussions of glass structural aspects.
- Jessica Walker (On rotational assignment) and Kathryn Hinton (SEAP student) for help in experimental work

Introduction

• Oxidation behavior of non-oxide ceramics highly depends on the properties of the oxidation product.

• NSWC Ceramics discovered a correlation between oxidation resistance of transition metal borides and the presence and extent of phase separation (immiscibility) in the surface protective glass formed during exposure to oxidizing atmosphere.

• Oxidation resistance of ZrB_2 , TiB_2 , TaB_2 , NbB_2 , and CrB_2 ceramics was significantly improved by their modification with SiC and in succession with each other as a result of the formation of phase-separated borosilicate glass containing transition metal oxides.

• Borate and silicate glasses containing Group IV-VI transition metal oxides show strong tendency to immiscibility. The systems exhibiting immiscibility have steeply rising liquidus temperatures and increased viscosity in the two-liquid composition range.

• The tendency to immiscibility is proportional to cation field strength, z/r^2 , where **z**=valence of element and **r**=ionic radius

• The concept of using surface glass immiscibility to improve oxidation resistance was applied to Si_3N_4 , ZrB_2/Si_3N_4 , and Ti_3SiC_2 ceramics.

Typical Patterns of Glass Immiscibility (SEM Images)

Phase Diagram of the System $Nb_2O_5 - B_2O_3$

Cation Field Strength

* The values of ionic radii are taken from R.D. Shannon, Acta Cryst. A32, 761-767,(1976)

TGA Oxidation of Modified ZrB² /SiC Ceramics at 1300^oC

SEM Micrograph of the Surface of Oxidized ZrB² /SiC Ceramics Modified with TaB_2 , CrB_2 , NbB_2 , and VB_2

ZrB² /SiC/NbB²

Objective

Improve the oxidation resistance of $Si₃N₄$ ceramics by modification of the bulk composition and, consequently, the composition of the in-situ formed protecting surface oxide (glass) layer, applying the immiscibility-based control of oxidation behavior.

Experimental Procedure

- **Sample Composition:**
	- **- Baseline material** $-Si_3N_4 + 2\%$ Al₂O₃ + 5% Y₂O₃ (wt.%)
	- Baseline Si_3N_4 ceramics were modified with 10 mole % CrB_2 , ZrB_2 , TaB_2 , 5 to 10 mole % Cr_2O_3 , ZrO_2 , and Ta_2O_5 , and 20 mole % BN.
- **Samples were hot-pressed at 1825^oC and 20MPa in He for 1 hour**
- **Oxidation Conditions:**

- Furnace heating in air at 1200 - 1600EC for 2 hours

• **Characterization:**

- Phase composition of the bulk and oxidized ceramics (XRD)
- SEM of the bulk and oxidized surface of the ceramics

Oxidation of Si $_{3}N_{4}$ Ceramics Modified with CrB $_{2}$, TaB $_{2}$, ZrB $_{2}$, and BN

Oxidation of Si $_{3}N_{4}$ Modified with Cr $_{2}O_{3}$, Ta $_{2}O_{5}$ and ZrO $_{2}$

Temperature $(°C)$

SEM of the Surface of the Modified Si3N⁴ /Y2O3+Al2O³ Ceramics after Oxidation at 1500oC for 2 Hours

Baseline CrB₂ **CrB**₂ **Cr2O**₃

Phase Diagram of the System $Y_2O_3 - SiO_2 - Al_2O_3$

SEM and EDX Images of the Surface of the Si3N⁴ /Y2O3+Al2O³ (Baseline) Ceramics after Oxidation at 1500oC for 2 Hours Showing Phase Separation in the Glass

SEM Micrographs of the Crystallized Surface of Si3N⁴ /Y2O3+Al2O³ Ceramics Modified with 10 mole % CrB² after Oxidation at 1500oC for 2 Hours

SEM and EDX of the Surface of Si3N⁴ /Y2O3+Al2O³ Ceramics Modified with 10 mole%CrB² after Oxidation at 1500oC for 2 Hours Showing Phase Separation in the Glass

SEM and EDX of the Surface of $\text{Si}_3\text{N}_4\text{/}\text{Y}_2\text{O}_3 + \text{Al}_2\text{O}_3$ Ceramics Modified with 5 mole % Cr_2O_3 **after Oxidation at 1500oC for 2 Hours**

$Cr_2O_3 - SiO_2^2$ Diagram of the System $Cr_2O_3 - SiO_2$

From data of E. N. Bunting, J. Research, Natl. Bur. Standards 5 [2] 325-27 (1930), RP 203; and ibid., 6 [6] 947-49 (1931), RP 317. M. L. Keith, J. Am. Ceram. $Soc., 37$ [10] 490 (1954).

Relationship between Crystallization Parameters of Melt and Surface Tension Rate of Nucleation, *I*

$$
I = nv \exp\left[-\left(N / RT\right)\left(16\pi \bullet \sigma^3 / 3\Delta H_f^2\right)\left(T_m / \Delta T\right)^2\right] \exp\left[-\Delta E_D / RT\right]
$$

where

 $I = nuclei / (cm³·s)$ $n =$ number of atoms / cm³ $v =$ atomic vibration frequency (s⁻¹) $N = Avogadro's number (mole^{-1})$ $R =$ Universal gas constant $(J/(mole K))$ σ = surface tension (J/cm²) ΔH_f = heat of fusion (J/cm³) T_m = melting temperature (K) ΔT = undercooling (K) ΔE_D = activation energy for atom to cross the "liquid-nucleus" interface (J/mole)

Critical Size of Nuclei, *r**

$$
r^* = \frac{2 \bullet \sigma}{\Delta G_v}
$$

where

 r^* = critical radius (cm) σ = surface tension (J/cm²) ΔG _v = free energy of crystallization (J/cm³)

Arun K. Varshneya, "Fundamentals of inorganic Glasses", Academic Press, Inc., 1994, 45-48

The Role of Cr2O³ in the Formation of the Surface Structure of CrB2 and Cr2O³ -Modified Si3N⁴ /Y2O3+Al2O³ Ceramics

Step 1: Phase separation in the surface melt

Thickness of the Oxidized Layer of the Modified Si3N⁴ /Y2O3+Al2O³ Ceramics

Baseline

Effect of CrB² Content 2, 3.5, 5, and 10 volume %

SEM Micrographs of the Si3N⁴ /Y2O3+Al2O³ Ceramics Modified with 2 - 10 vol. % CrB²

Oxidation of Si₃ N_4 (Y_2O_3/Al_2O_3) Ceramics

As a Function of CrB² Content (in vol. %) and Temperature (2 h hold)

SEM Micrographs of the Surface of Si3N⁴ Ceramics

Containing 0 – 10 vol.% CrB2 After Oxidation at 1400^oC for 2 hours

SEM Micrographs of the Surface of Si3N⁴ Ceramics Containing 0 – 10 vol.% CrB2 After Oxidation at 1400^oC for 10 hours

SEM Micrographs of the Surface of Si3N⁴ Ceramics

Containing 0 –5vol.% CrB2 After Oxidation at 1550^oC for 2 hours

SEM Micrographs of the Oxidized Surface of

the Baseline Si3N⁴ Ceramics

SEM Micrographs of the Oxidized Surface of Si3N⁴ Ceramics

Containing 5 vol.% CrB²

EDX of the Bulk and Oxidized Surface of Si3N⁴ Ceramics Containing 5 vol.% CrB²

Summary

• The oxidation resistance of $Si_3N_4/2$ wt.% Al_2O_3+5 wt.% Y_2O_3 modified with Cr, Ta, and Zr diborides and oxides and BN was studied as a function of the composition and structure of the oxidized surface layer.

• Baseline ceramics exhibited phase separation in the surface melt with the formation of yttria-rich matrix phase and silica-rich droplets.

• Only the introduction of CrB_2 or Cr_2O_3 led to an increase in the oxidation resistance of $Si₃N₄$ ceramics in air up to 1550 °C.

• A change in the CrB_2 content affected significantly the structure the protective layer. The highest oxidation resistance was shown by the ceramics containing below 5 vol. % CrB_2 .

• The presence of Cr_2O_3 in the surface melt induced its extensive immiscibility and catalyzed in-situ crystallization of Y_2O_3 \cdot 2SiO₂ with melting (decomposition) temperature of 1775ºC, which provided effective oxidation protection.