

Oxidation Resistance of Si₃N₄ Ceramics Modified with Boron and Transition Metal Compounds

I. Talmy and J. Zaykoski NSWCCD, West Bethesda, MD

Workshop: "New Developments in Silicon Nitride and Environmental Barrier Coatings for Microturbine and Industrial Gas Turbine Hot-Section Components"

> November 6-7, 2002 Nashville, TN

Acknowlegments

- Dr. Steven Fishman for funding of the project.
- Dr. Boris Varshal for valuable discussions of glass structural aspects.
- Jessica Walker (On rotational assignment) and Kathryn Hinton (SEAP student) for help in experimental work

Introduction

• Oxidation behavior of non-oxide ceramics highly depends on the properties of the oxidation product.

• NSWC Ceramics discovered a correlation between oxidation resistance of transition metal borides and the presence and extent of phase separation (immiscibility) in the surface protective glass formed during exposure to oxidizing atmosphere.

• Oxidation resistance of ZrB₂, TiB₂, TaB₂, NbB₂, and CrB₂ ceramics was significantly improved by their modification with SiC and in succession with each other as a result of the formation of phase-separated borosilicate glass containing transition metal oxides.

• Borate and silicate glasses containing Group IV-VI transition metal oxides show strong tendency to immiscibility. The systems exhibiting immiscibility have steeply rising liquidus temperatures and increased viscosity in the two-liquid composition range.

• The tendency to immiscibility is proportional to cation field strength, \mathbf{z}/\mathbf{r}^2 , where \mathbf{z} =valence of element and \mathbf{r} =ionic radius

• The concept of using surface glass immiscibility to improve oxidation resistance was applied to Si_3N_4 , ZrB_2/Si_3N_4 , and Ti_3SiC_2 ceramics.

Typical Patterns of Glass Immiscibility (SEM Images)

Phase Diagram of the System $Nb_2O_5 - B_2O_3$

Cation Field Strength

Cation/Valence (Z)	Radius r, (nm)*	Cation Field Strength Z/r ² , (nm ⁻²)
Zr ⁺⁴	0.072	772
Cr ⁺³	0.0615	793
Cr ⁺⁴	0.055	1,322
Nb ⁺⁴	0.068	865
Nb ⁺⁵	0.064	1,220
Ta ⁺⁵	0.064	1,220
Ti ⁺³	0.067	668
Ti ⁺⁴	0.0605	1,093
V+3	0.064	732
V+4	0.058	1,189
V+5	0.054	1,715

* The values of ionic radii are taken from R.D. Shannon, Acta Cryst. A32, 761-767,(1976)

TGA Oxidation of Modified ZrB₂/SiC Ceramics at 1300°C

SEM Micrograph of the Surface of Oxidized ZrB₂/SiC Ceramics Modified with TaB₂, CrB₂, NbB₂, and VB₂

ZrB₂/SiC/NbB₂

ZrB₂/SiC/VB₂

Objective

Improve the oxidation resistance of Si_3N_4 ceramics by modification of the bulk composition and, consequently, the composition of the in-situ formed protecting surface oxide (glass) layer, applying the immiscibility-based control of oxidation behavior.

Experimental Procedure

- Sample Composition:
 - **Baseline material** $Si_3N_4 + 2\% Al_2O_3 + 5\% Y_2O_3$ (wt.%)
 - Baseline Si₃N₄ ceramics were modified with 10 mole % CrB₂, ZrB₂, TaB₂,
 5 to 10 mole % Cr₂O₃, ZrO₂, and Ta₂O₅, and 20 mole % BN.
- Samples were hot-pressed at 1825°C and 20MPa in He for 1 hour
- Oxidation Conditions:

- Furnace heating in air at 1200 - 1600EC for 2 hours

• Characterization:

- Phase composition of the bulk and oxidized ceramics (XRD)
- SEM of the bulk and oxidized surface of the ceramics

Oxidation of Si ₃N₄ Ceramics Modified with CrB ₂, TaB ₂, ZrB ₂, and BN

Oxidation of Si $_{3}N_{4}$ Modified with Cr $_{2}O_{3}$, Ta $_{2}O_{5}$ and ZrO $_{2}$

Temperature (°C)

SEM of the Surface of the Modified $Si_3N_4/Y_2O_3+Al_2O_3$ Ceramics after Oxidation at 1500°C for 2 Hours

Baseline

CrB₂

 Cr_2O_3

Phase Diagram of the System Y₂O₃ – SiO₂ - Al₂O₃

SEM and EDX Images of the Surface of the Si₃N₄/Y₂O₃+Al₂O₃ (Baseline) Ceramics after Oxidation at 1500°C for 2 Hours Showing Phase Separation in the Glass

SEM Micrographs of the Crystallized Surface of Si₃N₄/Y₂O₃+Al₂O₃ Ceramics Modified with 10 mole % CrB₂ after Oxidation at 1500°C for 2 Hours

SEM and EDX of the Surface of Si₃N₄/Y₂O₃+Al₂O₃ Ceramics Modified with 10 mole% CrB₂ after Oxidation at 1500°C for 2 Hours Showing Phase Separation in the Glass

SEM and EDX of the Surface of Si₃N₄/Y₂O₃+Al₂O₃ Ceramics Modified with 5 mole % Cr₂O₃ after Oxidation at 1500°C for 2 Hours

Phase Diagram of the System Cr_2O_3 – SiO_2

From data of E. N. Bunting, J. Research, Natl. Bur. Standards 5 [2] 325-27 (1930), RP 203; and *ibid.*, 6 [6] 947-49 (1931), RP 317. M. L. Keith, J. Am. Ceram. Soc., 37 [10] 490 (1954).

Relationship between Crystallization Parameters of Melt and Surface Tension

Rate of Nucleation, I

$$I = nv \exp\left[-\left(N / RT\right)\left(16\pi \bullet \sigma^{3} / 3\Delta H_{f}^{2}\right)\left(T_{m} / \Delta T\right)^{2}\right] \exp\left[-\Delta E_{D} / RT\right]$$

where

I = nuclei / (cm³ ·s) n = number of atoms / cm³ v = atomic vibration frequency (s⁻¹) N = Avogadro's number (mole⁻¹) R = Universal gas constant (J/(mole·K)) $\sigma =$ surface tension (J/cm²) $\Delta H_f =$ heat of fusion (J/cm³) $T_m =$ melting temperature (K) $\Delta T =$ undercooling (K) $\Delta E_D =$ activation energy for atom to cross the "liquid-nucleus" interface (J/mole)

Critical Size of Nuclei, r*

$$r^* = \frac{2 \bullet \sigma}{\Delta G_v}$$

where

 $r^* = \text{critical radius (cm)}$ $\sigma = \text{surface tension (J/cm^2)}$ $\Delta G_v = \text{free energy of crystallization (J/cm^3)}$ Arun K. Varshneya, "Fundamentals of inorganic Glasses", Academic Press, Inc., 1994, 45-48

The Role of Cr_2O_3 in the Formation of the Surface Structure of CrB_2 - and Cr_2O_3 - Modified Si_3N_4/Y_2O_3 + Al_2O_3 Ceramics

Step 1: Phase separation in the surface melt

Thickness of the Oxidized Layer of the Modified $Si_3N_4/Y_2O_3+Al_2O_3$ Ceramics

Baseline

CrB₂

Effect of CrB₂ Content 2, 3.5, 5, and 10 volume %

XRD of Si_3N_4 (5 wt.% Y_2O_3 , 2 wt. % Al_2O_3) Ceramics Containing 0 – 10 vol. % CrB_2

SEM Micrographs of the $Si_3N_4/Y_2O_3+Al_2O_3$ Ceramics Modified with 2 - 10 vol. % CrB₂

Oxidation of Si_3N_4 (Y_2O_3/Al_2O_3) Ceramics

As a Function of CrB₂ Content (in vol. %) and Temperature (2 h hold)

SEM Micrographs of the Surface of Si₃N₄ Ceramics

Containing 0 – 10 vol.% CrB₂ After Oxidation at 1400°C for 2 hours

SEM Micrographs of the Surface of Si₃N₄ Ceramics Containing 0 – 10 vol.% CrB₂ After Oxidation at 1400°C for 10 hours

SEM Micrographs of the Surface of Si₃N₄ Ceramics

Containing 0 –5vol.% CrB₂ After Oxidation at 1550°C for 2 hours

SEM Micrographs of the Oxidized Surface of

the Baseline Si₃N₄ Ceramics

SEM Micrographs of the Oxidized Surface of $\rm Si_3N_4$ Ceramics

Containing 5 vol.% CrB₂

EDX of the Bulk and Oxidized Surface of Si₃N₄ Ceramics Containing 5 vol.% CrB₂

Summary

• The oxidation resistance of $Si_3N_4/2$ wt.% Al_2O_3+5 wt.% Y_2O_3 modified with Cr, Ta, and Zr diborides and oxides and BN was studied as a function of the composition and structure of the oxidized surface layer.

• Baseline ceramics exhibited phase separation in the surface melt with the formation of yttria-rich matrix phase and silica-rich droplets.

• Only the introduction of CrB_2 or Cr_2O_3 led to an increase in the oxidation resistance of Si_3N_4 ceramics in air up to 1550°C.

• A change in the CrB_2 content affected significantly the structure the protective layer. The highest oxidation resistance was shown by the ceramics containing below 5 vol. % CrB_2 .

• The presence of Cr_2O_3 in the surface melt induced its extensive immiscibility and catalyzed in-situ crystallization of $Y_2O_3 \cdot 2SiO_2$ with melting (decomposition) temperature of 1775°C, which provided effective oxidation protection.