Hot Section Materials Development For Advanced Microturbines

Environmental Barrier Coatings Workshop November 6-7, 2002 Nashville, Tennessee

Goddard Road Northboro, MA 01532

CERAMICS & PLASTICS

Outline

- -Perspective
- -Objective
- -Technology Development
- -Summary

OPT DER Advanced Microturbine Systems

Small combustion turbines, 25 kW to 500 kW (some say 1 MW)

Goals:

- Increase efficiency to > 40 %
- Enabling technology: ceramics and EBC
- Less than 7 ppm NOx
- Durability -- 11,000 hours bet major overhaul, 45,000 hour service life
- Cost of Power, \$500/kW (now ~\$1,000)
- Fuel Flexible
- DOE Funding \$60 M FY 2000 2006

Objective

Develop and optimize a high temperature ceramic material and process suitable for microturbine applications up to 1300°C.

Specific Properties

- Fast Fracture
 - RT − σ ≥950 MPa
 - 1300°C σ ≥ 600 MPa
- Fracture Toughness ³ 6.5 MPaÖm
- Weibull Modulues ³ 12
- High Temperature Creep Rate »1.9 x 10-8 @ 1250°C/130 MPa
- Oxidation Resistance up to 1250°C
- Recession Resistance in humid environment up to 1250°C

Hot Section Materials Development For Advanced Turbines (Phase I)

Hot Section Materials Development For Advanced Turbines (Phase II)

Ceramic Microturbine Technology

Ceramic Microturbine Technology

Material Development

- Re-establish NT154/NT164
- **b**-SiAlON Development

Net Shape Forming Development

- Green CNC Machining
- Direct Casting

Material Screening/Selection

CLOSED LOOP PROCESSING

Testing and Failure Analysis

Chronology of Process Improvement Silicon Nitride Net Shape Formed Buttonhead Tensile Test Bars

Injection molded tensile bar failed at 444 MPa due to 200mm metallic inclusion

Fracture surface of pressure cast Tensile bar which fractured at 570 MPa from 65mm agglomerate

Failure origin at surface of 884 MPa Strength tensile bar centered abouta 5mm wide machining groove.

Tensile Strength data illustrating Improvements in materials processing and reliability.

Chronology of Process Improvements

CERAMICS & PLASTICS

Frequency of Failures vs. Strength

Competing risk Weibull Analysis Ti & Machining Damage vs Rest.

Competing-risk Weibull Analysis Target, Weibull 2p and 3p fit to data.

Closed Loop Qualification Flexure Testing

CLM#	R.T. FLEX. Avg. (PSI)	H.T. FLEX. Avg. (PSI)	A.P. R.T. Avg. (PSI)	K _{IC} MPa X M 1/2
X01	157,217	104,428	57,350	6.25
X02	161,110	109,253	84,970	6.33
X03	156,042	103,587	68,300	6.32
X04	154,974	92,748	51,110	6.46
X05	147,785	110,272	56,580	7.11
X06	147,350	107,609		6.91
X07	167,895	104,690	80,240	6.42
X08	152,136	106,646	94,073	5.76

Comparison of MOR and Tensile Strength Database for Competitive Materials

Test Setup

Test Conditions

- 4-Fluted end milling tools
 - High Speed Steel
 - Carbide
 - Carbide coated with TiN
 - Carbide coated with thin diamond film
- Surface speed: 120 m/min
- Table speed: 0.127 m/min
- Depth of cut: 0.6mm (rough)
 - 0.2mm (finish)
- Length of cut: 25mm

Machined Surface (NT154-6B)

CERAMICS & PLASTICS

Direct (Starch) Casting

Develop a high solids shear thinning acqueous suspension

- Solids loading (52-58 v%)
- Pourable (shear thinning, <1 Pa/s @ shear rate 10/5)
- De-airable (no trapper air bubbles)
- Adequate wet green strength (1-2 MPa)
- Minimal shrinkable after drying (<2%)

Direct (Starch) Casting

- Net shape mold fabrication
 - a) Pattern
 - b) Net shape mold fabrication with RTV
- Slurry De-airing at 25 Hg. Of vacuum
- Casting
 - a) Mold Filling by pouring
 - b) Mold Filling under pressure
- Automated Mold Set Up

Direct Casting in RTV Mold

Phase II - Objective:

Investigate various approaches to recession resistance improvements:

APPROACHES

- Composition Adjustment
- Surface Engineering
- Environmental barrier coatings (EBC)

Recession of Silicon Nitride

Phase II: Recession Control Material Selection

Criteria

- Low oxygen permeability
- CTE match with NT154
- Low Young's Modulus
- Good temperature stability
- Does not sacrifice fast fracture and creep properties
- Low partial pressure for high temperature Si gases species for silicate based solutions (ex. Si(OH)₄, SiO)
 - SiO2 (high tridymite), PSiO = 1.29E-10 ATM
 - AI6Si2O13, PSiO = 1.93E-14 ATM

Phase II – Recession Control

Surface Coating

Surface Engineering

Powder Processing Reactivity with Substrate **Oxidation Resistance** Green CIP Near Net Shape **Coefficient of Thermal Expansion** Tiles **Green Part** vs Substrate Influence on Fast Fracture and **Surface Coating Creep Properties Glass Encapsulated** HIP Environmental Evaluation SAINT-GOBAIN

Summary

- NT154 process established and sample delivered to ORNL.
- Material development plan includes:
 - a. Test tiles
 - b. Test coupons from net shape formed components
- Recession control strategy involved surface modification

