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Motivation

• Drive to increase operating temperatures of turbine 
engines for power generation and propulsion 

• Need for material systems that can be used at 
temperatures of 1200 to 1650°C in combustion 
environments

• Al2O3 is possible component of high temperature 
material systems 
– oxide/oxide composites
– high temperature alumina-containing coatings

• Understand chemical durability of Al2O3 in water 
vapor-containing combustion environments



Background

Primary volatilization reaction for alumina in water vapor:
1/2 Al2O3(s) + 3/2 H2O(g) = Al(OH)3(g)

• Thermochemical data estimated for Al(OH)3(g) using partition 
functions and structures of similar molecules, e.g., AlF3(g),
B(OH)3(g)

– L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamic Properties of 
Individual Substances, Begell House, Inc., New York, 1996.

• Al(OH)3(g) identified as volatile species from a transpiration 
study of a mixture of CaAl2O4(s) and CaAl4O7(s) 

– A. Hashimoto, Geochim. Cosmochim. Acta 56, 511-32 (1992).

• Al2O3(s) recession measured and quantified in combustion 
test rig.  Pressure and temperature dependence consistent 
with Al(OH)3(g) formation.

– I. Yuri, T. Hisamatsu, ASME Turbo Expo, paper GT2003-38886.



Volatile Species in Al-O-H System
Calculated using Gurvich data:  Al2O3 +  1 bar H2O(g) + 1 bar O2(g)
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Objectives

• Experimentally determine temperature and 
water vapor partial pressure dependence of 
alumina volatility directly from alumina

• Confirm identity of volatile aluminum hydroxide 
species

• Identify combustion conditions where alumina 
volatility limits useful component life



Material Description

• sapphire coupons
• 2.5 x 1.25 x 0.2 cm
• flame fusion grown
• <100 ppm impurities
• (0001) basal plane orientation
• General Ruby and Sapphire 

Corp., New Port Richey, FL

1 cm



Experimental Procedure

• Thermogravimetric Analysis Apparatus
– coupon weight measured before and after 

exposure
– TGA only used to monitor weight anomalies 

during experiment
– volatiles condense on cool portion of sample 

hanger 
– TGA apparatus allows laminar flow over coupon

• T=1250 to 1500°C
• P(H2O) = 0.15 to 0.68 atm, balance O2

• Ptotal = 1 atm



Schematic Drawing of TGA Apparatus



Alumina Volatility:  Weight Loss Rates
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Determination of Al(OH)3(g) Partial 
Pressure from Weight Change
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• Measure ∆w, calculate P

• Assumptions:
– volatility is controlled by transport of volatile species 

through gas boundary layer
– laminar flow over flat plate
– D is interdiffusion of Al(OH)3(g) in H2O(g)
– use collision diameter and integral of AlF3(g) as 

approximation for Al(OH)3(g)



Temperature Dependence of Al(OH)3(g) formation
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Pressure Dependence of Al(OH)3(g) formation
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Surface Etching of Sapphire after Exposure 
in High Temperature Water Vapor

typical surface, (0001) basal plane

5 µm

1250°C, 0.5 atm H2O, 240h



Surface Pitting of Sapphire after Exposure 
in High Temperature Water Vapor

Hole put in coupon by grit blasting, (0001) basal plane surface

10 µm 1 µm

1350°C, 0.5 atm H2O, 94h



Etching of Sapphire Coupon Edge after Exposure 
in High Temperature Water Vapor

20 µm

polished surface

ground beveled edge 20 µm

20 µm

1500°C, 235h, O2

1450°C, 72h, 
0.68 atm H2O

as-received



Comparison of Alumina and Silica Volatility in High 
Temperature Water Vapor
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Recession Map for Al2O3 Use in 
Combustion Environments

Calculated with data 
of Gurvich et al.
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Summary and Conclusions

• Alumina volatility in water vapor measured directly by 
weight loss and found to agree with literature values.

• Pressure dependence of volatility consistent with 
Al(OH)3(g) formation.

• Surface etching of sapphire coupons observed in high 
temperature water vapor.

• Recession ∝ P v1/2 exp[-(210 kJ/mol)/RT].

• Alumina volatility will limit lifetimes of components and 
coatings for long term applications in combustion 
environments, e.g.,

250 µm recession in 10,000 h
T=1300°C, P=10 atm, v=50 m/sec 



Possible Future Work

• Transpiration studies on Al2O3 + H2O
– more precise thermochemical data possible
– complement Hashimoto’s study on mixed calcium aluminates
– requires fusion technique to dissolve condensed volatile species

• Free jet sampling mass spectrometry of Al2O3 + H2O
– first mass spectrometric identification of Al(OH)3(g)
– complement study of Vasiliy Smirnov conducted at much higher 

temperatures for other Al-O-H species
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