Alumina Volatility in Water Vapor at Elevated Temperatures

Elizabeth Opila, NASA Glenn Research Center Dwight M yers, East Central University, Ada, OK

Environmental Barrier Coatings for Microturbine and Industrial Gas Turbine Ceramics Workshop November 18–19, 2003 Nashville, TN

Motivation

- Drive to increase operating temperatures of turbine engines for power generation and propulsion
- Need for material systems that can be used at temperatures of 1200 to 1650°C in combustion environments
- Al₂O₃ is possible component of high temperature material systems
	- –- oxide/oxide composites
	- –– high temperature alumina-containing coatings
- Understand chemical durability of Al₂O₃ in water vapor-containing combustion environments

Background

Primary volatilization reaction for alumina in water vapor: $1/2$ Al₂O₃(s) + 3/2 H₂O(g) = Al(OH)₃(g)

- \bullet Thermochemical data estimated for $AI(OH)_{3}(g)$ using partition functions and structures of similar molecules, e.g., $AIF_3(g)$, $B(OH)$ ₃(g)
	- L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamic Properties of Individual Substances, Begell House, Inc., New York, 1996.
- Al(OH)₃(g) identified as volatile species from a transpiration study of a mixture of $CaAl₂O₄(s)$ and $CaAl₄O₇(s)$

– A. Hashimoto, Geochim. Cosmochim. Acta 56, 511-32 (1992).

- Al**2**O**3**(s) recession measured and quantified in combustion test rig. Pressure and temperature dependence consistent with $AI(OH)_{3}(g)$ formation.
	- I. Yuri, T. Hisamatsu, ASME Turbo Expo, paper GT2003-38886.

Volatile Species in Al-O-H System

Calculated using Gurvich data: $\mathsf{Al}_2\mathsf{O}_3+$ 1 bar $\mathsf{H}_2\mathsf{O}(\mathsf{g})$ + 1 bar $\mathsf{O}_2(\mathsf{g})$

- Experimentally determine temperature and water vapor partial pressure dependence of alumina volatility directly from alumina
- Confirm identity of volatile aluminum hydroxide species
- \bullet Identify combustion conditions where alumina volatility limits useful component life

Material Description

- •sapphire coupons
- •2.5 x 1.25 x 0.2 cm
- •flame fusion grown
- \bullet <100 ppm impurities
- \bullet (0001) basal plane orientation
- •General Ruby and Sapphire Corp., New Port Richey, FL

1 cm

Experimental Procedure

- Thermogravimetric Analysis Apparatus
	- coupon weight measured before and after exposure
	- TGA only used to monitor weight anomalies during experiment
	- volatiles condense on cool portion of sample hanger
	- TGA apparatus allows laminar flow over coupon
- T=1250 to 1500°C
- $P(H_2O) = 0.15$ to 0.68 atm, balance O_2
- $\bullet\;\; {\mathsf P}_{\sf total} = {\mathsf 1}\; {\sf atm}$

Schematic Drawing of TGA Apparatus

Alumina Volatility: Weight Loss Rates

Determination of Al(OH) **³**(g) Partial Pressure from Weight Change

• Measure <u>∆w,</u> calculate P

$$
\frac{\Delta w}{At} = 0.664 \left(\frac{\rho' v L}{\eta}\right)^{1/2} \left(\frac{\eta}{\rho' D}\right)^{1/3} \frac{D P M}{L R T}
$$

- Assumptions:
	- volatility is controlled by transport of volatile species through gas boundary layer
	- –– laminar flow over flat plate
	- D is interdiffusion of Al(OH) **³**(g) in H **²**O(g)
	- use collision diameter and integral of AlF **³**(g) as approximation for Al(OH) **3**(g)

Temperature Dependence of Al(OH) **³**(g) formation

Pressure Dependence of Al(OH) **³**(g) formation

Surface Etching of Sapphire after Exposure in High Temperature Water Vapor

typical surface, (0001) basal plane

1250°C, 0.5 atm H₂O, 240h

Surface Pitting of Sapphire after Exposure in High Temperature Water Vapor

Hole put in coupon by grit blasting, (0001) basal plane surface

1350°C, 0.5 atm H₂O, 94h

Etching of Sapphire Coupon Edge after Exposure in High Temperature Water Vapor

as-received

1450 °C, 72h, 0.68 atm ${\sf H_2O}$

Comparison of Alumina and Silica Volatility in High Temperature Water Vapor

T emperature, °C

Volatile species in 1 atm water vapor

Recession Map for Al **2**O **3** Use in Combustion Environments

Summary and Conclusions

- Alumina volatility in water vapor measured directly by weight loss and found to agree with literature values.
- Pressure dependence of volatility consistent with Al(OH) **³**(g) formation.
- Surface etching of sapphire coupons observed in high temperature water vapor.
- \bullet Recession ∝ P v**1/2** exp[-(210 kJ/mol)/RT].
- Alumina volatility will limit lifetimes of components and coatings for long term applications in combustion environments, e.g.,

250 µm recession in 10,000 h T=1300°C, P=10 atm, v=50 m/sec

Possible Future Work

- Transpiration studies on Al **2**O **3** + H **2**O
	- more precise thermochemical data possible
	- complement Hashimoto's study on mixed calcium aluminates
	- requires fusion technique to dissolve condensed volatile species
- \bullet Free jet sampling mass spectrometry of Al **2**O **3** + H **2**O
	- first mass spectrometric identification of Al(OH) **³**(g)
	- complement study of Vasiliy Smirnov conducted at much higher temperatures for other Al-O-H species

Ralph Garlick, Nathan Jacobson, Serene Farmer, all from NASA Glenn Research Center

This work was funded by the Aeropropulsion and Power Program at NASA Glenn Research Center