Evaluation Of EBCs In ORNL's Keiser Rig

Karren L. More and Peter F. Tortorelli

Oak Ridge National Laboratory Oak Ridge, TN

EBC Workshop

Nashville, TN November 7, 2002

ORNL's Keiser Rig Is A High Temperature, High Pressure Exposure Facility

- Temperatures up to 1450°C
- pressures to 500 psi
- 0.05-0.3 cm/s
- two independent gas supply systems
- Combined stress and corrosion possible (Ferber-Keiser Rig)

How Is ORNL's Keiser Rig Relevant To Evaluating EBCs?

While the Keiser Rig CAN'T <u>directly</u> reproduce microturbine operating conditions...

- Keiser Rig exposures (high H₂O pressures, low gas-flow velocities) reproduce the <u>microstructural damage</u> at an <u>accelerated rate</u> comparable to that observed during engine testing of SiC and SiC/SiC composites More, et.al., *J. of Engineering for Gas Turbines and Power*, **122** [2000] More and Tortorelli, *J. Amer. Cer. Soc.*, **83** [2000]
- High sample throughput for <u>first stage</u> screening of prospective Si_3N_4 materials for very long exposure times (>6000 h)
- Test is ideally suited for evaluating damage created <u>below</u> an EBC since gas velocity is <u>not</u> a factor (provided volatilization of EBC is <u>not</u> a factor)

Keiser Rig Is Quite Effective In Evaluating EBCs Since Slow-Flow Conditions Exist At Coating-Substrate Interface

SiC/SiC, 1500 h, 1200°C, 1.5 atm H₂O

To Effectively Protect A Ceramic Substrate, EBCs Must:

- (1) Not interact with underlying substrate
- (2) Be thermally stable at temperatures $>>1100^{\circ}C$
- (3) Provide a sufficient permeation barrier to oxidizing species
- (4) Be volatilization-resistant volatility cannot be evaluated

Typical As-Processed PVD EBC on Si_3N_4

Same EBC After 500 h In Keiser Rig 1315°C and 0.3 atm H₂O

The Silica Thickness Is Nearly Identical

PVD EBC/AS800

Uncoated AS800

In this case, EBC offered no protection Accompanied by a ~10% drop in mechanical strength

Typical Plasma Sprayed EBC Showed Similar Behavior Although Much Denser Coating

UTRC's First Attempt To Put A Standard EBC On AS800 Silicon Nitride

Specimen thermally cycled 100X1h cycles (UTRC) then exposed in Keiser Rig @ 1200°C and 1.5atm H₂O

EBC On AS800 After 2000 h - Defects In Coating Lead To Enhanced Localized Oxidation Of Si Bond Coat

BSAS Coating Surface Recession Was Observed Following A ~14,000 h Engine Test

Definite <u>volatility</u> issue associated with the BSAS which can only be assessed under true engine operating conditions

Aft (cool)

Middle (hot)

The DOE Environmental Test Center (ETC) Will Provide Characterization As Well As Exposure Capabilities

- Exposures
 - High-temperature, high-pressure (Keiser) rigs
 - High-Velocity Rig (Honeywell Engines and Systems)
- Microstructural characterization (ORNL)
- Corrosion analyses (ORNL)
- Mechanical Testing (ORNL)

Coordination/Steering Committee Will Process Requests For Use Of ETC Capabilities And Serve As Conduit For Specimen Submittal/Routing And Results/Analysis Reporting Approach Can Address Many Of The Material Issues Associated With Gas-Turbine Environmental Effects

High temperatures
High pressures
Reactive species
High gas velocities
Mechanical Loading

Mechanical failure
Oxidation
Hot corrosion
Erosion

 Monolithic ceramics
Ceramic composites
Environmental Barrier Coatings

Summary

- ORNL's Keiser Rig can be used for the first-stage evaluation of the protective capability of EBCs in simulated (high H₂O pressure) gas turbine and microturbine environments
- DOE's Environmental Test Center provides a means for ceramic materials and EBCs to be evaluated under simulated (slow-flow) and actual (high gas velocity) engine operating conditions