Alloy Additions Change the Thermal Expansion

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nasheville, Tenn.

1200

Life Limiting Phenomena: Thermal Cycling

Thermal cycling of SPPS'd coatings show certain coatings to be robust (and some not).

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nasheville, Tenn.

Life Limiting Phenomena: Thermal Cycling

Summary of results:

Approximately 4000 cycles logged on 30 coated & uncoated samples from limited # of thermal spray trials:
~2000 cycles at 1200C. ~2000 cycles at 1315C

- Spallation on the following samples:

Pure Ta_2O_5

 $Ta_2O_5 + 2w\%Al_2O_3$,

 $Ta_2O_5 + 3w\%Al_2O_3,$

 $Ta_2O_5+5w\%Al_2O_3$ samples

- No Spallation seen on any of the following samples:

 $Ta_{2}O_{5}+1.5w\% Al_{2}O_{3}$ $Ta_{2}O_{5}+1.5w\% Al_{2}O_{3}+1.5w\% La_{2}O_{3}$ $Ta_{2}O_{5}+3w\% Al_{2}O_{3}+3w\% La_{2}O_{3}$

Life Limiting Phenomena: Keiser Rig Testing

Studies conducted to date indicate:

Pure-Ta₂O₅ is not an effective barrier for oxygen or water vapor transport @ 1200 or 1315C.

Initial SPPS Pure- Ta_2O_5 is not thermally stable at 1200C or 1315C. Changes in microstructure with exposure time were seen.

Results indicate that stand-alone SPPS pure Ta_2O_5 will have limited value as a EBC for Si_3N_4 .

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nasheville, Tenn. Life Limiting Phenomena & Performance Testing • Residual Stress Evaluation

X-ray techniques used to assess the changes in the coating residual stress stated before and after thermal cycling.

- Residual stresses present due to:
 - CTE mismatch between substrate and coating
 - Temperature differences between plasma stream and substrate
- Residual stress alters D-spacings, (and the Debye-Scherrer pattern ring shape)

Determine the D-Spacings from the ring pattern shape & determine the stress state assuming Hooke's law.

EXPERIMENTAL PROCEDURE - APS

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nasheville, Tenn.

 $\frac{\frac{For \text{ Biaxial Stress State:}}{d_o}}{\frac{d_{\phi\Psi} - d_o}{E}} = \frac{1 + \nu}{E} \sigma_{\phi} \sin^2 \Psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22})$

Stress State seen to change as a function of Exposure conditions.

Solving for σ gives Residual stress

Composition	Preheat	Heat Treat	Stress (MPa)	+/- Error
Pure	900	As-Sprayed	187.22	16.38
Pure	900	139 Cycles	-258.11	32.31
Pure	900	489 Cycles	-121.1	28.79
Pure	900	986 Cycles	-245.61	34.09
Pure	900	1074 Cycles	-22.83	33.2
Pure	450	139 Cycles	-208.3	28.4
Pure	450	489 Cycles	-240.79	31.73
Pure	900	72 Hours Static	71.58	18.92
Pure	900	168 Hours Static	-152.96	18.92
2% AI2O3	900	As-Sprayed	251.57	13.96
2% AI2O3	900	145 Cycles	372.14	22.35
2% AI2O3	900	489 Cycles	-156.49	127.83
2% AI2O3	900	72 Hours Static	349.3	22.65
2% AI2O3	900	168 Hours Static	-171.32	46.12
3% AI2O3	900	As-Sprayed	227.75	10.26
3% AI2O3	450	As-Sprayed	-18.4	13.17
3% AI2O3	900	72 Hours Static	351.97	<u>39.51</u>
3% AI2O3	900	168 Hours Static	190.01	15.69

 Table II: Residual stresses in various tantalum oxide based EBCs. Heat treatments were at 1200°C in air with cycles of 25 minutes at temperature and 5 minutes fan cooling.
 7

 EBC's for Energy Efficient Heat Engines.
 DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000

Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nasheville, Tenn.

Summary of Current Program Findings

- Methods to successfully plasma spray Ta_2O_5 and Ta_2O_5 -based alloys were developed. SPPS gives dense, adherent coatings.
- Ta_2O_5 alloy compositions that stabilize β - Ta_2O_5 up to 1450C, limit grain growth, and match the CTE of Silicon-based ceramics were developed.
- SPPS coatings are capable of extended thermal cycling to 1200C and 1315C on AS800.
- Residual Stress Changes are seen to occur as a function of exposure time for SPPS'd Ta_2O_5 -based coatings. Additional work is ongoing to understand and explain these observations.

• Keiser Rig testing has shown that stand-alone SPPS Pure- Ta_2O_5 coatings undergo changes during exposure and allow substrate changes to occur. The evaluation of the performance of Ta2O5-based alloys showed similar results under a separate DOE program. Therefore, it seems likely that use of Ta2O5 and Ta2O5-based alloys for EBCs will only be as part of a multilayer coating system.