Evaluation of Tantalum Oxide-based Environmental Barrier Coatings

H. Chan, M. Harmer, S. Wu – Lehigh U K. Faber, M. Moldovan, C. Weyant – Northwestern U K. More, M. Ferber – ORNL J. Guiheen, C.-W. Li – Honeywell, Inc.

DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC36-01CH11086-A000

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nashville, Tenn.

1

Examination of Requirements for Environmental Barriers

- Thermal match with the substrate (AS800) (3.2 ppm/K)
- Corrosion resistance (water vapor-containing exhaust)
- Microstructural stability to high temperature (1300-1400C) No phase changes

No ongoing chemical reactions with the substrate

Shows…..

Ta₂O₅ is a candidate coating

DOE Program

Set-up to Investigate performance of Plasma Sprayed Ta $_{2} \mathrm{O}_{5}$

- Processing & Optimization of Tantalum Oxide-based Coatings
	- Optimize plasma spray conditions
- Compositional Tailoring of Tantalum Oxide Coatings
	- Stabilize low temp (β) phase
	- •Limit Grain Growth
	- Match CTE

• Life Limiting Phenomena & Performance Testing

- Thermal Cycling
- Keiser Rig Testing
- Residual Stress Evaluation
- Burner Rig Testing

Testing a waits rig coming on-line

The highlights of these efforts will be reviewed

Processing & Optimization of Tantalum Oxide based Coatings • Optimize plasma spray conditions

Schematic of Small Particle Plama Spray (SPPS) apparatus

2 DOE's (7x2, 5x2+1x3), Yield Optimized Conditions

Table 3. Optimized spraying conditions after second round of design experi ments.

Optimized Plasma Spray Coatings

Figure 2. Scanning electron micrograph of optimized Ta₂O₅ coating demonstrating low porosity and adequate thickness.

Figure 5: X-ray diffraction pattern of tantalum oxide pow der and optimized, as-sprayed coating with β phase peaks labeled showing the location of the absent pri mary ^α phase peak.

Optimized coatings show good adherence and very little α - Ta₂O₅.

Compositional Tailoring of Tantalum Oxide Coatings

∆V= 6-8%

Pure Ta2O5 compact before and after firing at 1400°C

Al_2O_3 Stabilizes β-phase to Higher Temperatures

+1 % Al2O3

$La₂O₃$ Gives Acicular Microstructure while also Stabilizing β-phase to Higher Temperatures

Effect of La, O, (1340°C, 10 hrs)

• 1-2w% La_2O_3 seen as a good compromise between β-stabilization, reinforcement, and lowered density.

Al_2O_3 / La_2O_3 Co-doping Gives Dense, Stable Microstructures without Microcracking at 1450C

Figure 5. Microstructures of Ta₂O₅ doped with 2% γ -Al₂O₃ and 1% La₂O₃ fired at (A) 1350°C, (B) 1400°C and (C) 1450°C for 5 hours.

Nb 2O ⁵-Dopant Work has Begun

Microstructures of (a) 1, (b) 3 and (c) 5% Nb_2O_5 doped Ta₂O₅ fired at 1380 °C for 5 hrs. Note: Microcracking is common in all samples indicating partial β-to-α phase transformation

Microstructures of Ta₂O₅ doped with 3% Al_2O_3 and various amount of Nb_2O_5 : (A) 1%; (B) 3%; (C) 5%. Samples were fired at 1380°C for 5 hrs.

Alloy Additions Change the Thermal Expansion

Temperature, ^o C

Life Limiting Phenomena: Thermal Cycling

Thermal cycling of SPPS'd coatings show certain coatings to be robust (and some not).

Life Limiting Phenomena: Thermal Cycling

Summary of results:

- Approximately 4000 cycles logged on 30 coated & uncoated samples from limited $\#$ of thermal spray trials: \sim 2000 cycles at 1200C. \sim 2000 cycles at 1315C

- Spallation on the following samples:

Pure Ta₂ O_5

 $Ta_2O_5 + 2w\%Al_2O_3$

 $Ta_2O_5 + 3w\%Al_2O_3$,

 ${\rm Ta}_2 {\rm O}_5^+$ 5w%Al $_2 {\rm O}_3$ samples

- No Spallation seen on any of the following samples:

 $Ta_2O_5+1.5w%Al_2O_3$ $\rm Ta_2O_5$ + 1.5w% $\rm Al_2O_3$ + 1.5w% $\rm La_2O_3$ $\operatorname{Ta}_2\mathrm{O}_5$ + 3w% $\operatorname{Al}_2\mathrm{O}_3$ + 3w% $\operatorname{La}_2\mathrm{O}_3$

Life Limiting Phenomena: Keiser Rig Testing

Studies conducted to date indicate:

Pure-Ta₂O₅ is not an effective barrier for oxygen or water vapor transport @ 1200 or 1315C.

Initial SPPS Pure-Ta₂O₅ is not thermally stable at 1200C or 1315C. Changes in microstructure with exposure time were seen.

Results indicate that stand-alone SPPS pure Ta 2O 5will have limited value as a EBC for Si 3N 4.

Life Limiting Phenomena & Performance Testing •Residual Stress Evaluation

X-ray techniques used to assess the changes in the coating residual stress stated before and after thermal cycling.

- Residual stresses present due to:
	- CTE mismatch between substrate and coating
	- Temperature differences between plasma stream and substrate
- Residual stress alters D-spacings, (and the Debye-Scherrer pattern ring shape)

Determine the D-Spacings from the ring pattern shape & determine the stress state assuming Hooke's law.

EXPERIMENTAL PROCEDURE -APS

For Biaxial Stress State: $\frac{d_{\phi\Psi} - d_{0}}{d_{0}} = \frac{1 + \nu}{E} \sigma_{\phi} \sin^{2} \Psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22})$

Stress State seen to change as a function of Exposure conditions.

Solving for σ gives Residual stress

EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 at 1200°C in air with cycles of 25 minutes at temperature and 5 minutes fan cooling.17 Table II: Residual stresses i n various tantalum oxide based EB Cs. Heat treatments were

Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nashville, Tenn.

Summary of Current Program Findings

- Methods to successfully plasma spray Ta_2O_5 and Ta_2O_5 -based alloys were developed. SPPS gives dense, adherent coatings.
- Ta₂O₅alloy compositions that stabilize β -Ta₂O₅ up to 1450C, limit grain growth, and match the CTE of Silicon-based ceramics were developed.
- SPPS coatings are capable of extended thermal cycling to 1200C and 1315C on AS800.
- Residual Stress Changes are seen to occur as a function of exposure time for SPPS'd Ta_2O_5 -based coatings. Additional work is ongoing to underst and and explain these observations.

• Keiser Rig testing has shown that stand-alone SPPS Pure-Ta₂O₅ coatings undergo changes during exposure and allow subst rate changes to occur. The evaluation of the performance of Ta2O5-based alloys showed similar results under a separate DOE program. Therefore, it seems likely that use of Ta2O5 and Ta2 O5-based alloys for EBCs will only be as part of a multilayer coating system.