Evaluation of Tantalum Oxide-based Environmental Barrier Coatings

H. Chan, M. Harmer, S. Wu – Lehigh U
K. Faber, M. Moldovan, C. Weyant – Northwestern U
K. More, M. Ferber – ORNL
J. Guiheen, C.-W. Li – Honeywell, Inc.

DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC36-01CH11086-A000

## Examination of Requirements for Environmental Barriers

- Thermal match with the substrate (AS800) (3.2 ppm/K)
- Corrosion resistance (water vapor- containing exhaust)
- Microstructural stability to high temperature (1300-1400C) No phase changes
   No engoing abamical reactions with the substrate

No ongoing chemical reactions with the substrate

Shows.....

 $Ta_2O_5$  is a candidate coating

#### DOE Program

Set-up to Investigate performance of Plasma Sprayed Ta<sub>2</sub>O<sub>5</sub>

- Processing & Optimization of Tantalum Oxide-based Coatings
  - Optimize plasma spray conditions
- Compositional Tailoring of Tantalum Oxide Coatings
  - Stabilize low temp ( $\beta$ ) phase
  - Limit Grain Growth
  - Match CTE
- Life Limiting Phenomena & Performance Testing
  - Thermal Cycling
  - Keiser Rig Testing
  - Residual Stress Evaluation

Testing awaits rig coming on-line

### The highlights of these efforts will be reviewed

# Processing & Optimization of Tantalum Oxide based CoatingsOptimize plasma spray conditions

#### Schematic of Small Particle Plama Spray (SPPS) apparatus



#### 2 DOE's (7x2, 5x2+1x3), Yield Optimized Conditions

| Robot scan rate (R)           | 315 mm/min |
|-------------------------------|------------|
| Injector angle (A)            | 0°         |
| Injector offset (O)           | 5 mm       |
| Carrier gas flow (CF)         | 3 slm      |
| Power feeder disc speed (DS)  | 0.4 rpm    |
| Plasma gun power (P)          | 40 kW      |
| Total gas flow (TF)           | 44 slm     |
| % Hydrogen in plasma gas (%H) | 25%        |

*Table 3. Optimized spraying conditions after second round of design experiments.* 

#### **Optimized Plasma Spray Coatings**



Figure 2. Scanning electron micrograph of optimized  $Ta_2O_5$  coating demonstrating low porosity and adequate thickness.



Figure 5: X-ray diffraction pattern of tantalum oxide powder and optimized, as-sprayed coating with  $\beta$  phase peaks labeled showing the location of the absent primary  $\alpha$  phase peak.

#### Optimized coatings show good adherence and very little $\alpha$ - Ta<sub>2</sub>O<sub>5</sub>.



### Compositional Tailoring of Tantalum Oxide Coatings



∆V= 6-8%

#### Pure Ta2O5 compact before and after firing at 1400°C



#### Al<sub>2</sub>O<sub>3</sub> Stabilizes $\beta$ -phase to Higher Temperatures



+1 % Al2O3

# $La_2O_3$ Gives Acicular Microstructure while also Stabilizing $\beta$ -phase to Higher Temperatures

Effect of La2O3 (1340°C, 10 hrs)



• 1-2w% La<sub>2</sub>O<sub>3</sub> seen as a good compromise between  $\beta$ -stabilization, reinforcement, and lowered density.



#### Al<sub>2</sub>O<sub>3</sub> / La<sub>2</sub>O<sub>3</sub> Co-doping Gives Dense, Stable Microstructures without Microcracking at 1450C



Figure 5. Microstructures of  $Ta_2O_5$  doped with 2%  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and 1% La<sub>2</sub>O<sub>3</sub> fired at (A) 1350°C, (B) 1400°C and (C) 1450°C for 5 hours.

#### Nb<sub>2</sub>O<sub>5</sub>-Dopant Work has Begun



Microstructures of (a) 1, (b) 3 and (c) 5%  $Nb_2O_5$  doped  $Ta_2O_5$  fired at 1380°C for 5 hrs. Note: Microcracking is common in all samples indicating partial  $\beta$ -to- $\alpha$  phase transformation



Microstructures of  $Ta_2O_5$  doped with 3%  $Al_2O_3$  and various amount of  $Nb_2O_5$ : (A) 1%; (B) 3%; (C) 5%. Samples were fired at 1380°C for 5 hrs.

#### Alloy Additions Change the Thermal Expansion







Temperature, °C

# Life Limiting Phenomena: Thermal Cycling



# Thermal cycling of SPPS'd coatings show certain coatings to be robust (and some not).

## Life Limiting Phenomena: Thermal Cycling

#### Summary of results:

Approximately 4000 cycles logged on 30 coated & uncoated samples from limited # of thermal spray trials:
~2000 cycles at 1200C. ~2000 cycles at 1315C

- Spallation on the following samples:

Pure  $Ta_2O_5$ 

 $Ta_2O_5 + 2w\%Al_2O_3$ ,

 $Ta_2O_5 + 3w\%Al_2O_3,$ 

 $Ta_2O_5+5w\%Al_2O_3$  samples

- No Spallation seen on any of the following samples:

 $Ta_{2}O_{5}+1.5w\%Al_{2}O_{3}$   $Ta_{2}O_{5}+1.5w\%Al_{2}O_{3}+1.5w\%La_{2}O_{3}$   $Ta_{2}O_{5}+3w\%Al_{2}O_{3}+3w\%La_{2}O_{3}$ 

Life Limiting Phenomena: Keiser Rig Testing

Studies conducted to date indicate:

Pure-Ta<sub>2</sub>O<sub>5</sub> is not an effective barrier for oxygen or water vapor transport @ 1200 or 1315C.

Initial SPPS Pure-Ta<sub>2</sub>O<sub>5</sub> is not thermally stable at 1200C or 1315C. Changes in microstructure with exposure time were seen.

### Results indicate that stand-alone SPPS pure $Ta_2O_5$ will have limited value as a EBC for $Si_3N_4$ .

Life Limiting Phenomena & Performance Testing • Residual Stress Evaluation

X-ray techniques used to assess the changes in the coating residual stress stated before and after thermal cycling.

- Residual stresses present due to:
  - CTE mismatch between substrate and coating
  - Temperature differences between plasma stream and substrate
- Residual stress alters D-spacings, (and the Debye-Scherrer pattern ring shape)

**Determine the D-Spacings from the ring pattern shape & determine the stress state assuming Hooke's law.** 

#### **EXPERIMENTAL PROCEDURE - APS**



 $\frac{\frac{For \text{ Biaxial Stress State:}}{d_o}}{\frac{d_{\phi\Psi} - d_o}{E}} = \frac{1 + \nu}{E} \sigma_{\phi} \sin^2 \Psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22})$ 



Stress State seen to change as a function of Exposure conditions.

#### Solving for $\sigma$ gives Residual stress

| Composition | Preheat | Heat Treat       | Stress (MPa) | +/- Error |
|-------------|---------|------------------|--------------|-----------|
| Pure        | 900     | As-Sprayed       | 187.22       | 16.38     |
| Pure        | 900     | 139 Cycles       | -258.11      | 32.31     |
| Pure        | 900     | 489 Cycles       | -121.1       | 28.79     |
| Pure        | 900     | 986 Cycles       | -245.61      | 34.09     |
| Pure        | 900     | 1074 Cycles      | -22.83       | 33.2      |
| Pure        | 450     | 139 Cycles       | -208.3       | 28.4      |
| Pure        | 450     | 489 Cycles       | -240.79      | 31.73     |
| Pure        | 900     | 72 Hours Static  | 71.58        | 18.92     |
| Pure        | 900     | 168 Hours Static | -152.96      | 18.92     |
| 2% AI2O3    | 900     | As-Sprayed       | 251.57       | 13.96     |
| 2% AI2O3    | 900     | 145 Cycles       | 372.14       | 22.35     |
| 2% AI2O3    | 900     | 489 Cycles       | -156.49      | 127.83    |
| 2% AI2O3    | 900     | 72 Hours Static  | 349.3        | 22.65     |
| 2% AI2O3    | 900     | 168 Hours Static | -171.32      | 46.12     |
| 3% AI2O3    | 900     | As-Sprayed       | 227.75       | 10.26     |
| 3% AI2O3    | 450     | As-Sprayed       | -18.4        | 13.17     |
| 3% AI2O3    | 900     | 72 Hours Static  | 351.97       | 39.51     |
| 3% AI2O3    | 900     | 168 Hours Static | 190.01       | 15.69     |

Table II: Residual stresses in various tantalum oxide based EBCs. Heat treatments were at 1200°C in air with cycles of 25 minutes at temperature and 5 minutes fan cooling.**17** EBC's for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000

Presented at EBC's for Microturbine and Industrial Gas Turbine Ceramics Workshop. November 18&19, 2003, Nashville, Tenn.

# **Summary of Current Program Findings**

- Methods to successfully plasma spray  $Ta_2O_5$  and  $Ta_2O_5$ -based alloys were developed. SPPS gives dense, adherent coatings.
- $Ta_2O_5$  alloy compositions that stabilize  $\beta$ - $Ta_2O_5$  up to 1450C, limit grain growth, and match the CTE of Silicon-based ceramics were developed.
- SPPS coatings are capable of extended thermal cycling to 1200C and 1315C on AS800.
- Residual Stress Changes are seen to occur as a function of exposure time for SPPS'd  $Ta_2O_5$ -based coatings. Additional work is ongoing to understand and explain these observations.

• Keiser Rig testing has shown that stand-alone SPPS Pure- $Ta_2O_5$  coatings undergo changes during exposure and allow substrate changes to occur. The evaluation of the performance of Ta2O5-based alloys showed similar results under a separate DOE program. Therefore, it seems likely that use of Ta2O5 and Ta2O5-based alloys for EBCs will only be as part of a multilayer coating system.