Characterization of Microturbine Materials

Mechanical Property Characterization of EBCs

M. K. Ferber and H. T. Lin Structural Ceramics Group Oak Ridge National Laboratory

J. P. Singh Argonne National Laboratory

Characterization of Microturbine Materials

Mechanical Property Characterization of EBCs

The Recession Challenge

There is Currently Much Emphasis on the Development of Environmental Barrier Coatings (EBCs) for Monolithics

- Evaluate Environmental Barrier Coatings (EBCs)
 - Effectiveness of EBC as a Diffusion Barrier
 - Influence of Environment on the Stability of the EBC
 - Influence of EBC on Mechanical Behavior of Silicon Nitride Substrate
 - Influence of Substrate Deformation of Reliability of EBC
- Explore Several Methods for Evaluating Long-Term Mechanical Reliability of Structural Ceramics in the Presence of High-Pressure Water Vapor

Characterization of Microturbine Materials

Mechanical Property Characterization of EBCs

Micro-Mechanical Characterization Has Been Used to Evaluate Effect of EBC on Fracture Toughness

Influence of EBC Upon Strength Has Been Examined Using Room-Temperature Four-Point and Biaxial Flexure

As Coated Flexure Specimens

Keiser Rig Coupon

Ceramic Nozzle

Current Efforts Have Focused on Measurement of High-Temperature Behavior is a Steam Environment

Direct Injection Onto the Gage Section Has Been Quite Effective

Relatively High Water Vapor Velocities are Possible with Approach 3

This Approach Yields Extensive Recession in Contact Region

SA SiC- 291 1200°C & 500 h with Water Vapor (250 μm)

NT154-1 1200°C & 500 h with Water Vapor

NT164-81 1288°C, 150 MPa, & 2000 h with Water Vapor (500 µm recession)

Surface Subjected to Direct Steam Injection Typically Exhibits Little or No Silica Formation

SA SiC 1200°C 500 h with Water Vapor Specimen 291

 $5\,\mu m$

Recession Results are In Agreement with Data Obtained in Other Programs

Surface Subjected to Direct Steam Injection Exhibits Extensive Degradation of SN Grains

These Surface Characteristics are Similar to Those Exhibited During Field Tests

Exposed surface of NT164 BH specimens after ~2000h test @ 1288°C, 150 MPa, H2O

Trailing Edge surface of Allison AS800 vane (#152) after 624h engine test

The Affect of Water Vapor on Creep of NT164 Appears to Be Negligible

Water Injection System Has Also Been Used to Evaluate EBCs on Flexure Bars

EBC Morphology Is Affected By Steam Injection

Measurement of EBC Recession is Hindered by Variability in As-Coated Thickness

The Side Surfaces of the SiC Also Experience Recession

EBC on SA SiC 1200°C & 260 h with Water Vapor

- EBCs may be Required to Insure Reliability for Microtubine Components
- The Deposition of the EBC may Adversely Affect the Mechanical Behavior
 - Micro and Macro-Mechanical Testing Coupled with Microstructural Characterization is being used to Evaluate Changes in Mechanical Performance
- The Steam Injection System Developed Shows Promise for the Study of Several Key Characteristics of EBC/SN Systems
 - Recession Behavior of Uncoated Ceramics
 - Effectiveness of the EBC as a Barrier to Water Vapor (Simple Flexure Bars)
 - Impact of EBC on Mechanical Performance of the Silicon Nitride (Focus on Creep and Stress Rupture)