Tantalum Oxide-Based Environmental Barrier Coatings

J. Guiheen, C.-W. Li – Honeywell, Inc.

H. Chan, M. Harmer, S. Wu – Lehigh U

K. Faber, M. Moldovan, C. Weyant – Northwestern U

M. Ferber, K. Moore – ORNL

DOE/Energy Efficiency Sciences Program under Cooperative

Agreement No. DE-FC20-01CH11086-A000

Requirements for Environmental Barriers

- Thermal match with the substrate (AS800)
- Corrosion resistance
- Microstructural stability
- Phase stability
- Chemical compatibility with the substrate

 \Rightarrow Ta₂O₅ is a possible candidate

Thermal Expansion of Ta₂O₅ and AS800

Honeywell/NU/Lehigh/ORNL Program on EBC's

- Processing Methods for Ta₂O₅ and Ta₂O₅ Alloy Coatings/Plasma Spray Optimization
- Compositional Tailoring of a Family of Ta₂O₅
 Coatings
- Life Limiting Phenomena:
 - Oxidation/Recession
 - Residual Stress
 - Thermal Cycling

Optimized Coating

Used Design of Experiments methodology to optimize coating.

Round 1: Seven factors; two levels

Round 2: Five factors; two levels and one factor; three levels

Minimize offset, injector angle, distance, carrier gas flow. Maximize power, total gas flow and % hydrogen.

Microstructural Stability of Ta₂O₅

Ta₂O₅ as-sprayed

After 105 hours at 1200°C

Microstructural Stability

X-Ray Residual Stress Results

Residual Stress in Ta₂O₅ on AS 800

Ta₂O₅ Alloys and Composites

Use oxide additions for

- limiting grain growth
- stabilizing B-Ta₂O₅

Size mismatch is critical

- Choices: Al₂O₃ and La₂O₃
 - monitor solid solubility
 - monitor second phase formation

Ref: C.-W. Li, D. Raybould, L. Xue (Honeywell Inc.) Patent Pending

Al₂O₃ Stabilizes Grain Size

Al₂O₃ Stabilizes β-Ta₂O₅

La₂O₃ Stabilizes β-Ta₂O₅

No traces of α -Ta₂O₅ at concentrations > 3% dopant.

Co-doping of Ta_2O_5 with Al_2O_3 and La_2O_3

• 2% γ -Al₂O₃ and 1% La₂O₃ • 95% Dense • Needle-like grains: LaTa₇O₁₉ • Dark, equiaxed grains: AlTaO₄

Alloys/Composites Translated to Plasma-Sprayed Coatings

3% Al₂O₃ Addition

3% La₂O₃ Addition

Summary

 Ta₂O₅ shows promise as an interlayer in Honeywell's next generation EBC system for AS800 from thermal mismatch and compatibility considerations.

Plasma-sprayed Ta₂O₅ has been optimized for density for EBC applications.

