Tailoring the Next Generation Si₃N₄ Ceramics to Enhance Performance

Paul F. Becher, Hua-Tay Lin, Andrew A. Wereszczak, Mattison K. Ferber and Shirley B. Waters Ceramic Science and Technology Group Metals and Ceramics Division Oak Ridge National Laboratory

Research supported by the U. S. DOE, Office of Basic Energy Science, Division of Materials Sciences and Engineering

> **2003 Environmental Barrier Coating Workshop Nashville, TN**

Supported by The Important Contributions by the Following

Sample fabrication:

M. J. Hoffmann & R. Satet, University of Karlsrühe

D.-S. Park, Korean Institute of Machinery and Materials

K. Hirao & M. Brito, Synergy Ceramics Center, AIST, Japan

Characterization:

 HREM, STEM

 S. J. Pennycook and N. Shibata (JSPS Research Fellow),

 Oak Ridge National Laboratory

 Y. Ikuhara, University of Tokyo,

 Raman spectroscopy

 M. J. Lance, Oak Ridge National Laboratory

Theoretical studies:

G. S. Painter and W. A. Shelton, Jr., Oak Ridge National Laboratory

Different Length-Scale Approaches to Enhance the Mechanical Performance of Ceramics (e.g., Si₃N₄)

Enhanced toughness: Self-reinforced Si₃N₄-based ceramics

- • **Micro-scale composite: large elongated grains-- well documented**
	- • **Seeding concept (Hirao et al.)**
	- •a-**SiAlONs: I-Wei Chen et al.**
- • **Atomic-scale: Microstructure & interface characteristics**
	- • **Adsorption versus preferential segregation of additives**
	- • **Interfacial debonding & role of Intergranular films (IGF)**
		- •b-**SiAlON: Influence of Al:Y ratios in additives**
		- \cdot β -Si₃N₄: Influence of rare earths

USE PROCESSING TO DEVELOP AND CONTROL THE FORMATION **OF A TOUGH/STRONG MICROCOMPOSITE MICROSTRUCTURE**

A COMBINATION OF MECHANISMS AT ALL LENGTH SCALES INVOLVED IN TOUGHENING CERAMICS

Elongated Grains Act as Reinforcements, Which Toughen the Ceramics When They Debond and Bridge the Crack

Toughness Increased Toughness Increased By Formation Of: By Formation Of:

Strong Elastic Bridges !!Thin Single Crystals !!Can Exhibit Very High !!Strengths

Frictional Bridges and Frictional Bridges and Pull-Out Pull-Out

!!Friction Effectively !!Dissipates Applied !!Strain Energy

Grains are surrounded by a continuous amorphous intergranular film (IGF) as a result of liquid phase sintering

Large Elongated Grains in Fine Grained Silicon Nitride Matrix: *S***trong R-Curve, K_{IC} > 10 MPa√m, σ_f > 1 GPa & m > 30**

b**–particles are nuclei for the formation of large reinforcing grains. Rice-like** b**–seeds used to control microstructure.**

**Size and Shape of Reinforcing Grains Altered by
Sintering Additives**

- • **c-axis growth is fast diffusion controlled**
- • **diametrical growth is slow interface !!!!!reaction controlled on smooth !!!!!prism planes**
-
- • **Same behavior: RE + Me oxide !!!!!additives where Me = Al or Mg**
- • **So what's behind the effects of RE !!!!!elements?**

RE Segregation to Si₃N₄ Prism Surface Is a Critical Factor in the Anisotropy of Grain Growth -- Formation of Elongated Reinforcements

Now can predict effects rather than trial and error.

Painter, Becher and Shelton, 2003

Why?

• **Diametrical growth is controlled etrical growth is controlled !!by reaction rate at prism surface. Theoretical calculations show:** • **RE form strong bonds with N on RE form strong bonds with N on !!terminal surfaces & most do.** • **RE with strongest attraction RE with strongest attraction vs. Si !!for prism surface limit diametrical !!growth most effectively. growth**

Thus, Lu predicted to avoid prism surfaces and have little effect on have little effect on grain growth. growth. La should prefer Si₃N₄ surface and limit diametrical growth.

La Not Only Present Within IGF But Prefers $Si₃N₄$ Terminal Surface **As Predicted by Theory**

HAADF STEM Image $\beta - Si_3N_4 (7.0 \text{ wt\%} La_2O_3 + 2.0 \text{ wt\%} MgO)$

La (arrows note La locations) prefer Si₃N₄ terminal surface. **Representative line scan across IGF illustrating maximum !!!La content at each interface and minimum within IGF.**

Shibata & Pennycook, 2003

More Than a Reinforced Microstructure Is Required -The Reinforcing Grains Must Also Debond from the Matrix

1 to 2 nanometer thick eter thick intergranular film (IGF) surrounds Si₃N₄ grains. grains.

IGF plays a critical IGF plays a critical role in the debonding role in the debonding of the interfaces and of the interfaces and in grain growth. in grain growth.

Arrows highlight the end of debonded interfaces s highlight the end of debonded interfaces of a bridging grain in the crack-tip wake.

IGF Composition Dominates Interface Debonding & Toughness (e.g., Y2O3 + Al2O3 Additive Additive System) System)

Many RE Have High Binding Energies at Si₃N₄ Prism Plane; Stronger Tendency to Segregate \blacktriangleright **Weaker Interface**

Increasing Weakness of Interface: Lu → Sc → Y → La

Rare Earths Predicted to Alter Interfacial Debonding Behavior

RE to N bonding at Si₃N₄ surface weakens interface, especially effective with increasing RE segregation to the interface.

Tailored Si₃N₄ Surfaces to Improved EBC Performance

Surface Region of Si3N4 Ceramic with High RE Silicate Content Has Greater Thermal Expansion Expansion Coefficient

As-sinter-forged $Si₃N₄$ with **8 wt.% Lu₂O₃ + 2 wt.% SiO₂with ~ 200 µm surface layer.**

b**-Si3N4 grains (dark) in a matrix consisting of possibly two phases. Two shades of gray indicate two Lu** levels (e.g., Lu₂SiO₅ vs. Lu₂Si₂O₇?) as **confirmed by EDS.**

Linear Thermal Expansion Coefficient, ppm/°C $Si₃N₄$ 2.9 **- 3.1** RE Silicates 3.8 **- 7+** Surface region \sim 4

Reducing Residual Stress Fields in EBC-Si₃N₄ System by Surface Modification

100 µm

 $\sin 2$ 200 *u*m

 $Si₃N₄ - 1$

Without tailored surface region

~ 240 MPa

 $\begin{matrix} \texttt{OCT} & \texttt{31} & \texttt{2003} \\ \texttt{11:20:37} \end{matrix}$

µ-FEA Reconstructed Model

Y

 \blacktriangleright X

Wereszczak & Ferber - 03Nov03

Summary

• **Can tailor the microstructure andmechanical properties of !!!!!!silicon nitride ceramics by selection of additives.**

- • **Seeding used to control self-reinforced microstructure**
- • **Additives influence grain growth and fracture properties**
	- $Si₆₋₇Al₂O₂N₈₋₇$ formation with $Al₂O₃$ additions increase interface **!!!!strength and reduce toughness as z increases.**
	- Increasing RE segregation to Si₃N₄ surface sites: Lu **•** La
		- **Limits diametrical grain growth, which combined with**
		- **High Ead leads to decrease in interface strength &**
		- **Increased toughness.**

• Tailoring the composition of surface region of $Si₃N₄$ component **!!!!!may offer approach to improving EBC performance.**