Slurry Based Environmental Barrier Coating (EBC) Concepts

B.L. Armstrong, K.M. Cooley, J.A. Haynes, and H-T. Lin Oak Ridge National Laboratory,

Oak Ridge, TN 37831

Environmental Barrier Coatings Workshop Nashville, Tennessee November 6, 2002

Research sponsored by the Microturbine Materials Program, DOE Office of Distributed Energy & Electricity Reliability

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

1

Outline

- **Background: Advanced ceramics for microturbines**
- **Problem: Rapid recession of silica-formers in water vapor**
- **Objective: Develop & fabricate low-cost protective coatings**
- **Slurry processing of protective coating materials**
	- − **Approaches**
	- − **Results**

Problem: Degradation of Protective Silica Scales

- \cdot $Si₃N₄$ is a candidate high temperature structural material for hot section components within high-efficiency microturbines.
- Protective $SiO₂$ scales are the basis for the corrosion resistance of $Si₃N₄$.
- Silica scales can be rapidly degraded in combustion environments.
	- –Hot corrosion by molten alkali species (Strangman)
	- $-H_2O$ vapor $\&$ impurities accelerate $\rm SiO_2$ growth (Deal, Opila, More et al.)
	- $-SiO₂$ is volatile in $H₂O$ (Venable, Opila)
	- –Oxidation/volatilization increase w/ gas pressure & velocity (Robinson)

500-h, 1200°C, 10 atm, 15% H2O

- **Protective coatings will be necessary in order to provide adequate ceramic component lifetimes.**
- **Coatings must be adherent, impermeable, stable and/or protective in high temperature water vapor and/or O² , thermal expansion matched with Si3N⁴ , relatively easy to manufacture, and cost effective.**

Candidate Materials Have Varied Properties

(Eaton, H.E., and Linsey, G.D, "Accelerated Oxidation of SiC CMC's by Water Vapor and Protection via Environmental Barrier Coating Approach" EuroConference, Seville, Spain, Oct, 2001)

Slurry-Based Coating Processes

Slurry Processing Issues

- **Rheology of the Slurry**
	- − **Particle size (Needs to be submicron to assist densification, but decreasing size leads to increasing viscosity and lower solids loadings)**
	- − **Viscosity (Optimum level needed. Too thin, not enough coverage. Too high, too high surface tension and too thick resulting coat)**
	- − **Shear Thinning (Maintain uniform coating thickness and level across height and width)**
	- − **Stability (Little or No settling or flocculation with time = Charge Balance)**

Material Versus Process

- **What Affects the Success of the Coating?**
	- − **Density**
	- − **Microstructure**
	- − **Macrostructure (Thickness, Morphology)**
	- − **Chemical Interaction at Interface (Substrate Contributions)**
	- − **Mechanical Interaction at Interface (Surface Roughness)**
	- − **Chemistry of Coating Material**
		- **Material Properties: CTE, O₂ permeability, oxidation/corrosion…**
	- − **Environment (Is more than one layer necessary?)**

Density and Thickness of Coating Resulted from Process Changes

Mullite deposited by screen printing. Sintered at 1600°C in air for 2 hours.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mullite deposited by spraying. Sintered at 1600°C in air for 2 hours.

Screen Pattern Visible After Exposure Polished Cross Section of Mullite Coating on SASiC After 500h Exposure at 1204°C, 100% H2O

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Effect of Substrate Interaction BSAS Coatings on Substrate Additions

Sintered in argon (1400°C /2 hours) and in air (1000°C/2 hours)

Dip Coated Mullite Layer Adherent on SASiC Substrate after Heat Treatment

- Sintered at 1600°C/2hrs in N_2
- 1.0 wt% binder
- 33 vol% mullite
- Subsequent heat treatment in ambient air at 1300C/0.5 hr resulted in delamination
- High temperature X-ray in process

Dip Coated BSAS on NT154

- Sintered at 1400°C/2hrs in N_2
- 1.0 wt% binder
- 26 vol% BSAS
- Subsequent heat treatment in ambient air at 1300C/0.5 hr resulted in delamination
- High temperature X-ray in process

Yttrium Silicate Coatings by Reactive Processing

- **1:1 molar ratio**
- **Yttrium nitrate/colloidal silica**
- **Dipped or painted on to AS800 or NT164**
- **Sintered in N² at 1550°C for 6 hours**
- **Subsequent heat treatment in ambient air planned after high temperature x-ray run completed**

Painted and sintered/NT164

Conclusions

- **Processing will affect success of coating material**
- **Preliminary results show dip coating and reactive processing is a viable route to protective coating systems**

Acknowledgements

• **Oak Ridge National Laboratory**

- − **Paul Becher**
- − **Bob Carneim**
- − **Matt Ferber**
- − **Shirley Waters**
- **United Technologies Research Center**
	- − **John Holowczak**
	- − **Ellen Sun**

Phase Diagram of Mullite

Phase Diagram of Barium Strontium Alumino-Silicate (BSAS)

Phase Diagram of RE₂Si₂O₇

