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Summary. The currents in magnetic multilayers are spin polarized and can carry
enough angular momentum that they can cause magnetic reversal and induce sta-
ble precession of the magnetization in thin magnetic layers. The flow of spins is
determined by the spin-dependent transport properties, like conductivity, interface
resistance, and spin-flip scattering in the magnetic multilayer. When an electron
spin carried by the current interacts with a magnetic layer, the exchange interaction
leads to torques between the spin and the magnetization. The torque that results
from this interaction excites the magnetization when the current is large enough.
The qualitative features of the dynamics that result from current-induced torques
are captured by a simple model in which the magnetization of the layer is assumed
to be uniform. Even greater agreement results when finite temperature effects are
included and the magnetization is allowed to vary throughout the film.

1 Introduction

Ferromagnets are stable in multiple states, a property that can be used to
store information, as in magnetic tapes, magnetic disk drives, and more re-
cently magnetic random access memory (MRAM). In these magnetic devices,
information is stored by switching the magnetic state to the desired config-
uration. The switching is accomplished by a magnetic field that overcomes
the coercive force of the material. In many cases, in MRAM for example,
the magnetic fields are generated by electrical currents, in which case they
are referred to as Oersted fields. In 1996, Slonczewski [1] and Berger [2] pre-
dicted that the current flowing through magnetic multilayers could have a
more direct effect on the magnetic state. When a current flows through a
ferromagnet, it becomes spin polarized and hence carries angular momentum.
The current remains polarized in neighboring non-magnetic layers so that the
angular momentum carried by the current can interact with the magnetization
in subsequent magnetic layers. The spin current exerts a spin transfer torque
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on the magnetizations in the device. For large enough currents this torque
leads to precession and reversal.

In addition to the intrinsic scientific interest in this phenomena, it has sev-
eral possible applications [3]. As mentioned above, in existing implementations
of MRAM, the bits are switched by Oersted fields. The long range of these
fields means that reduced fields are applied to neighboring bits. The require-
ment that only the correct bits switch, and those bits switch reliably, places
severe manufacturing constraints on the devices. The possibility that this spin
transfer torque could replace the Oersted fields for reversing otherwise stable
magnetic configurations in MRAM has inspired a significant amount of the
research on this effect. In MRAM, the information is stored in lithographi-
cally defined devices. A related technique could be used to store information
in media like a magnetic hard disk. In this case, a probe would write magnetic
bits with current pulses while being scanned over the media. Another possible
application of spin transfer torques comes from the precessional behavior ob-
served in other regimes of operation. Here, the precessional motion converts a
DC input current into an AC output voltage. Such behavior might be useful
for making current-controlled oscillators.

Since the prediction of the effect in 1996, spin transfer induced magnetiza-
tion dynamics have been observed in a number of laboratories [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. These observations have been made in
a number of device geometries, some of which are illustrated in Fig. 1, includ-
ing mechanical point contacts [4, 14], lithographically defined point contacts
[5, 11], electrochemically grown nanowires [6], manganite junctions [7], litho-
graphically defined nanopillars [8, 9, 10, 12, 13, 15, 16, 17], tunnel junctions
[21, 19, 22, 23], and semiconductor structures [20]. These devices all share
two characteristics, magnetoresistive readout of the magnetic state and small
cross sectional area.

In all of these devices, the resistance of the device depends on its magnetic
state, typically through the giant magnetoresistance effect, so that measuring
the resistance of the structure allows the magnetic state to be inferred. Fre-
quently, the layers are fabricated so that one layer, referred to as the free layer,
responds to the current induced torques and another, referred to as the fixed
layer, does not. This layer stays fixed either because it is exchange biased by
being coupled to an antiferromagnet or simply because it is thicker than the
free layer and less susceptible to spin transfer torques. Typical measurements
report the resistance V/I or differential resistance dV/dI as a function of the
current. The signature of a spin transfer effect is a change in the resistance of
the device that is asymmetric in the current. The change in resistance indi-
cates that the magnetic configuration has changed. The asymmetry in current
indicates that the cause is the spin transfer effect rather the the Oersted field.
Any changes in the magnetic configuration due to the Oersted field alone are
expected to be symmetric in the current, where as the spin transfer torque is
explicitly asymmetric.
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Fig. 1. Schematic experimental geometries. In each geometry, copper layers are
tan, cobalt layers are blue, and insulating layers are gray, as labeled in the lower left
panel. Other ferromagnetic materials may be substituted for Co and non-magnetic
materials for Cu.

All of the devices have small cross sectional areas for two reasons. First,
it turns out that fairly high current densities are required to transfer enough
angular momentum to affect the magnetization. The heat generated by the
current would destroy the device if it were not concentrated into a small area
that is in good thermal contact to a large mass. Second, the relative effect
of the Oersted field as compared to the direct spin transfer decreases as the
cross sectional area decreases. For a uniform current density and uniform
magnetization, the spin transfer torque is uniform. The spin transfer torque
then couples strongly to the uniform precession mode. The torque per area
is independent of the area for constant current density. The Oersted fields
on the other hand are non-uniform and do not couple to the uniform preces-
sion of a uniform magnetization. As the cross sectional area decreases, the
magnetization tends to become more uniform and it becomes harder to excite
non-uniform modes. In addition, the maximum Oersted field decreases as the
area decreases for a constant current density. Inside a wire with a circular
cross-section for instance, the Oersted field increases linearly from the origin.
Thus, the smaller the diameter, the smaller the maximum Oersted field.

The simplest way to get a small cross sectional area is through a mechanical
point contact. In these devices, a sharp tip is lightly pressed into a sample.
By monitoring the resistance of the junction while the tip is pressed into
the sample, it is possible to stop when the contact area is small. The first
observation of a spin transfer effect by Tsoi et al. [4] used such a mechanical
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point contact to a magnetic multilayer. They observed peaks in the differential
resistance for only one polarity of the current, see Fig. 2, and interpreted them
as evidence of a spin-transfer-torque induced transition into a precessing state.
The current at which this peak occurred increased linearly with increasing
magnetic field. Subsequent measurements on this system [24], showed that as
the current was increased to values greater than that of the peak, the system
made a transition into a state that coupled strongly to externally applied
microwaves.
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Fig. 2. Differential resistance of a mechanical point contact as a function of current
for various applied magnetic fields. The peak in differential resistance that occurs for
only one current direction indicates a spin transfer effect. The inset shows that the
current at the peak in the differential resistance increases linearly with the applied
field. Used by permission from Tsoi et al. [4].

More controlled devices can be made through nanolithography. Myers et
al. [5] fabricated lithographically defined point contacts and Katine et al. [8]
fabricated nanopillars. In high magnetic fields, both of these systems exhibited
a similar peak in the differential resistance as seen in the mechanical point
contact experiment. However, in lower fields, both showed hysteretic switching
between two stable states, see Fig. 3. The resistivity of these states was equal
to the resistivity of the parallel and antiparallel magnetic alignments mea-
sured in more standard magnetoresistance measurements. These experiments
demonstrated that spin transfer torques could be used to switch the configu-
ration of bistable magnetic devices. Subsequent experiments have shown that
the hysteresis loops can be quite square showing clean switching between fully
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parallel and fully antiparallel alignments. Applied fields greater than the co-
ercive field inhibit a stable antiparallel state and the system switches from a
parallel configuration into more complicated states including precession.
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Fig. 3. Differential resistance. (a) dV/dI of a pillar device exhibits hysteretic jumps
as the current is swept. The current sweeps begin at zero; light and dark lines
indicate increasing and decreasing current, respectively. The traces lie on top of one
another at high bias, so the 120.0 mT trace has been offset vertically. (b) Zero-
bias magnetoresistive hysteresis loop for the same sample. Used by permission from
Katine et al. [8]

Establishing the rest of the phenomenology for the behavior of these de-
vices requires measurement of the time or frequency response of the resistance.
Two processes dominate these measurements, two-level switching and preces-
sion. Hysteresis, as seen in Fig. 3 is always a time dependent phenomenon.
Bistability is observed for a range of currents because the different states of
the system are metastable. A system at finite temperature will find its ground
state over a long enough measurement time. On even longer time scales, the
system would exhibit two level switching between the two states with the
relative time spent in each state dependent on the energy difference between
them compared to the temperature. The rates for two level switching depend
strongly on external parameters, and the switching can be quite prominent
for the right choices of parameters [4, 25, 12, 26, 27].

Two level switching is one possible source for the low frequency noise
frequently observed in these systems [28]. The frequency distribution of the
noise is typically described by the power spectrum density. Sometimes the
noise has a Lorentzian power spectrum density characteristic of true two level
switching, but these systems also exhibit a variety of more general power
spectral densities.

In the magnetic nanopillars, at low applied fields, the switching time is
much longer than the measurement time for a range of currents and the sys-
tem displays hysteresis. The width of the hysteretic region depends on the
measurement time and temperature [25]. As the applied field is increased,
the lifetime of the two states decreases and eventually crosses over with the
measurement time, see Fig. 4. At this point, the hysteretic steps in the re-
sistance combine and become a broadened, reversible transition between the



6 M. D. Stiles and J. Miltat

two states. Urazhdin et al. [12] showed that the derivative of this transition
gives the peak seen in the differential resistance.

µ0H= -11.9 mT

µ0H= -11.7 mT

µ0H= -11.5 mT

Fig. 4. Two-level switching. (a) Time traces of the static resistance R = V/I at
T = 295 K at different applied fields H . Top two curves are offset. (b) Current
dependence of the average telegraph noise period. The applied field along the in-
plane easy axis H was adjusted approximately linearly with current I , so that the
average dwell times in antiparallel and parallel states were equal. Solid circles: T =
295 K, µ0H = 9.3 mT to 12.1 mT; open circles: same sample at 4.2 K, µ0H = 30.0
mT to 31.5 mT; solid squares: different sample at 295 K, µ0H = 11.3 mT to 12.3
mT; open squares: same sample at 4.2 K, µ0H = 30.0 mT to 45.0 mT. Used by
permission from Urazhdin et al. [12]

A topic of significant controversy in the interpretation of the two level
switching is the degree to which there is heating of the magnetic degrees
of freedom above the temperatures of the electronic and lattice degrees of
freedom. Much of the experimental results can be understood using models
based on magnetic heating [12, 26]. However, careful investigations of the
temperature dependence at low temperatures by Krivorotov et al. [29] rule
this out, at least for the system studied in that experiment.

The precessing state was first established through peaks in the power spec-
trum density in frequency dependent measurements by Kiselev et al. [28] and
Rippard et al. [30]. Precession was observed for currents near the peak in the
differential resistance previously attributed to precession, but also for a range
of currents that extended below the peak. In these measurements, a DC input
current generates a high frequency precessing state. Since the magnetization
varies rapidly, the resistance does as well. While the precession is fast on hu-
man time scales, on the order of GHz, it is slow on electronic time scales,
so the time varying resistance leads to a time varying voltage, which is what
is measured, see Fig. 5. In some geometries, the resonance can be extremely
narrow as a function of frequency, Q values as large as 18 000 have been ob-
served [31]. These narrow resonances raise the possibility of using spin transfer
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effects to make current controlled oscillators for use in high speed electronic
applications.
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Fig. 5. Precession. (a) Differential resistance dV/dI vs. current I for µ0H = 0.1T
along the in-plane easy axis. (b) High frequency spectra taken at several different
values of current through the device, corresponding to the symbols in (a). Variation
of frequency f with current (inset). Used by permission from Rippard et al. [30]

A number of experiments have tested the predictions of Slonczewski’s
model for spin transfer torques. Several authors [8, 32, 33] have compared
predictions of macrospin simulations, see Section 4, with measured results,
for example. The computed phase diagrams, the behavior as a function of
applied magnetic field and current, qualitatively agree with those measured
experimentally, see Fig. 6 for a measured phase diagram. Fully quantitative
agreement is still difficult because many of the necessary parameters are not
independently measurable.

Measurements of the thickness dependence [34] show that the critical cur-
rents increase as the thickness of the free layer increases. This behavior is
consistent with the torque being an interface effect as opposed to an effect
that is active throughout the bulk of the free layer. Measurements of the de-
pendence of the critical current on the initial angle between the free and fixed
layers [35] show the expected increase in critical current as the fixed layer
magnetization becomes perpendicular to the easy axis of the free layer. While
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Fig. 6. Phase diagram. (a), Microwave power measured in a nanopillar plotted in
color scale versus current I and applied field H along the in-plane easy axis. Current
is swept from negative to positive values. The dotted white line shows the position
of the antiparallel to parallel transition when current is swept in the opposite direc-
tion. (b), Differential resistance plotted in color scale. A smooth current-dependent,
H-independent background has been subtracted. Resistance changes are measured
relative to the parallel state. The “W” region is discussed in the text. Used by
permission from Kiselev et al. [28]

asymmetry in the current is taken as an indication of spin transfer effects,
such asymmetry only holds if the fixed layer and free layer are inequivalent.
In one experiment [36], a symmetric structure showed symmetric behavior in
current.

Several experiments have studied the changes in behavior due to changes
in material properties. It is established that it is possible for ferromagnetic
layers to polarize the currents with different signs, that is either majority
or minority carriers can dominate the current. Measurements [37] show that
the sign of the current that leads to an instability in the free layer depends
on the spin-dependent conductivity of the fixed layer, but not the free layer.
The model for spin transfer described in Sec. 3 shows that such dependence
is expected for typical geometries. Other experiments [11] showed that the
dependence of the critical current on the saturation magnetization and the
polarization of the current are consistent with this model for spin transfer
torques.

A set of related experiments grew out of the idea of repeating the original
mechanical point contact experiment [4] but with a single film of Co rather
than a multilayer. Ji et al. [14, 38] observed very similar peaks in the differ-
ential resistance as were observed for the multilayer. Nanopillar experiments
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by Özyilmaz et al. [39] also showed peaks that were asymmetric in current
and evolved with magnetic field. These results are somewhat surprising be-
cause the models based on the work by Slonczewski depend on non collinearity
between the magnetizations of the two layers to generate the dynamics. Sec-
tion 3.7 discusses how these experiments might be explained by closely related
models.

The rest of this chapter is organized to give a pedagogical understanding of
spin transfer torques, in particular, the understanding that has evolved from
Slonczewski’s original work. Each section gives a result that forms the basis of
the subsequent section, providing a hierarchical structure for the explanation.
Section 2 addresses the question, “where does the spin transfer torque come
from?” The answer is found in quantum mechanical calculations of the be-
havior of electrons scattering from magnetic interfaces. Given the torque as a
function of the spin current raises the question, addressed in Section 3, “how
big is the spin current?” Determining the spin current for different magnetic
configurations is the domain of semiclassical calculations of the transport. The
results of Section 2 enter these calculations as boundary conditions. Having
found the spin transfer torque as a function of the magnetic configuration
and current, leads to the next question, “how does the system respond?” Mi-
cromagnetic calculations of various types address this question, ranging from
stability analysis of simple models to full micromagnetic simulations. These
are discussed in Section 4.

2 Quantum scattering

In this section, we describe how a spin current incident on an interface with
a ferromagnet exerts a torque on the magnetization. We start by considering
the equations of motion for the spin density in the regions near an interface
between a non-magnetic material and a ferromagnet. A variety of effects lead
to a transfer of angular momentum from the flowing electrons to the mag-
netization. For many systems, there is essentially complete transfer of the
transverse incident spin current. The transferred angular momentum can be
interpreted as a torque.

The ultimate driving force for magnetic effects is the exchange interac-
tion. In atomic physics, the exchange interaction causes most atoms to have
magnetic moments. Hund’s first rule describes the energetic considerations of
arranging the electrons in a partially filled atomic level. It states the electrons
should have as many spins as possible parallel. To understand why this is so,
recall that the electronic wave function of an atom must be antisymmetric.
A consequence of this antisymmetry is that the wave function must go to
zero whenever two parallel spins are close to each other. This Pauli repulsion
means that the Coulomb energy for parallel spins is lower than that for an-
tiparallel spins. Within a partially filled level, where all states have the same
kinetic energy in the absence of interactions, any cost in kinetic energy is
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smaller than the gain in Coulomb energy. In solids, where the electron states
form bands, the situation is more complicated because it always costs kinetic
energy when a minority electron is promoted into a majority electron. In most
solids, the cost is too great for a polarization to develop. Nonetheless, in the
transition metal ferromagnets, Fe, Co, and Ni, this intraatomic exchange is
large enough to cause a ferromagnetic ground state. The resulting net po-
larization of the electronic spins means that majority (spins parallel to the
majority of spins) and minority (spin antiparallel to the majority) electrons
have different properties. These differences drive the effects described in the
rest of this chapter.

In solid state physics, there is an additional consequence of the exchange in-
teraction that is commonly discussed, interatomic (as opposed to intraatomic)
exchange. In transition metal ferromagnets, this is the interaction that drives
the spins on neighboring atoms to be parallel to each other. A common repre-
sentation of this interaction is the Heisenberg form, −JSi · Sj , where Si and
Sj are the net spins on neighboring sites and J is the strength of the inter-
action. In micromagnetics, a mesoscale, continuum model for magnetism, the
interatomic exchange interaction has the form

Aex

M2
S

∫

d3r
[

(∇Mx(r))2 + (∇My(r))
2 + (∇Mz(r))

2
]

, (1)

where Aex is the exchange constant, and Mx is the x component of the vector
magnetization M. This energy has its minimum when all gradients are zero
and the magnetization is uniform. This form of the exchange interaction will
be important in Sec. 4, which discusses the time evolution of the magnetiza-
tion.

A spin current consists of spins moving. Since both spin and velocity are
vectors, the spin current is a tensor quantity. Classically, it is the outer product
of the electron’s spin and its velocity, Q = S ⊗ v. In a quantum mechanical
description of an ensemble of spins, the spin density and the spin current are

s(r) =
∑

iσσ′

ψ∗
iσ(r)Sσ,σ′ ψiσ′ (r)

Q(r) =
∑

iσσ′

Re [ψ∗
iσ(r)Sσ,σ′ ⊗ v̂ψiσ′ (r)] , (2)

where v̂ is the velocity operator, Sσ,σ′ are the spin operators (~/2 times Pauli
spin matrices), and the sum over i is over all occupied states. While the spin
current for a collection of electrons cannot generally be factored into the outer
product of a net spin direction and a net velocity vector, for one dimensional
problems it usually can. In this case it is useful to factor the spin current into
the outer product of a dimensionless spin direction ŝ and the number current
j times a dimensionless, scalar polarization P

Q = (~/2)P ŝ⊗ j. (3)

At various points in this chapter we will discuss the direction associated with
a spin current even though the spin current is a tensor. The direction we
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mean is the direction of the spin taken from this factorization. In addition,
transverse (or perpendicular) spin currents Q⊥ are the components of Q such

that M̂ · Q⊥ = 0, or

Q⊥ = (~/2)P [ŝ− M̂(ŝ · M̂)] ⊗ j, (4)

in terms of the factorization in Eq. (3).
To develop the equation of motion for the spin density, it is useful to

first consider the related expression for the electron number density n. The
equation of motion for the number density is found by taking its commutator
with the Hamiltonian. The number density commutes with each term in the
Hamiltonian except the kinetic energy. The result is the familiar continuity
equation

∂n

∂t
= −∇ · j. (5)

This equation simply states that the time rate of change in the density is
given by the net flow of electrons into a region.

When this procedure is repeated for the spin density, the kinetic energy
produces a similar term, but there are other terms in the Hamiltonian that
do not commute with the spin density

∂s

∂t
= −∇ · Q + next. (6)

where ∇ · Q = ∂kQik, summing over the repeated index k. The other terms
in the Hamiltonian, which do not commute with the spin density, like the
Zeeman interaction and the magnetocrystalline anisotropy, give rise to next,
the external torque density . The interpretation of Eq. (6) is similar to the
continuity equation. The time rate of change in the spin density is given by
the net flow of spins into a region plus the torques that tend to rotate the
spin density.

There are two contributions to the spin current. One contribution Qex is
the mediator of the exchange interaction and is carried by all of the electrons
contributing to the magnetization. In general, each electronic eigenstate in
a solid carries a spin current. When a ferromagnet has a spatially uniform
magnetization and there is no applied current, the spin current carried by the
right moving states exactly cancels the spin current carried by the left moving
states. However, when the magnetization direction in a ferromagnet is non-
uniform, the spin currents carried by the eigenstates do not cancel, leaving a
net spin current even in the absence of an applied current. The gradient of this
spin current gives a torque that tends to rotate the inhomogeneous magneti-
zation nex = −∇ · Qex. This torque is the microscopic torque corresponding
to the micromagnetic exchange interaction described in Eq. (1).

The contribution to the spin current of interest to this chapter, Qtrans, is
the transport spin current, which is carried by an imbalance in the populations
of the states near the Fermi energy. This strictly non-equilibrium spin current
comes from an imbalance in the populations of the right moving and left
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moving states rather than a net spin current carried by equal populations of
both. For the rest of this article we treat nex as an explicit torque, grouping it
into next and we refer to the transport spin current as Q dropping the “trans”
label. This is the normal description for micromagnetics.

In transition metals, in which the orbital moment only makes a small con-
tribution to the magnetization, multiplying the spin density by geµB/~ gives
the magnetization density. It is unfortunate that since ge ≈ −2.002319, the
electron’s spin and moment are opposite to each other. This leads to confu-
sion when discussing spins in ferromagnets [40]. To minimize confusion in this
discussion of transport, we will typically assume that the magnetization M is
in the −x̂ direction so that the ferromagnetic spin density s = −~M/(|ge|µB)
is in the x̂ direction. Thus, majority electrons have their spins along x̂ and
can be referred to as “spin up”. Their moments are along −x̂, parallel to the
magnetization. The subscript ↑ refers to majority electrons, which have mo-
ments parallel and spins antiparallel to the magnetization. The subscript ↓
refers to minority electrons.

If the spin density is converted to magnetization, Eq. (6) becomes the
Landau-Lifshitz-Gilbert equation without damping [105]. Damping is missing
because Eq. (6) has been written for a single particle Hamiltonian. A more
complete Hamiltonian that included the many body interactions with other
parts of the system would lead to additional terms. Some of these terms can
be combined to give phenomenological contributions to the right hand side

∂s

∂t
= −∇ · Q + next − αŝ× ∂s

∂t
− ŝ

δs

τsf
, (7)

where ŝ is a unit vector in the direction of the spin density and δs is spin den-
sity in excess of the equilibrium value (spin accumulation). The third term on
the right hand side is the phenomenological damping with damping parameter
α. The last term leads to relaxation of any deviation of the ferromagnetic spin
density from its equilibrium value. It is characterized by a spin-flip scattering
time, τsf and is discussed at greater length in Section 3.

It turns out that the spin transfer torque of interest in this article is an
interface effect [1, 41, 42, 43], so we need to consider the equation of motion
for the spin density near the interface. We consider a pillbox of area A that
extends from just inside the non-magnet to just inside the ferromagnet, see
Fig. 7. If we integrate the equation of motion for the spin density, Eq. (6)
over the volume of the pillbox, the divergence of the spin current becomes a
surface integral of the flux. Note that the spin flux is a vector because it is
given by a tensor spin current dotted into the interface normal. For a uniform
spin current incident from the non-magnet, the spin flux through the interface
in the non-magnet has a contribution from the incident and the reflected spin
currents (Qin + Qref) · (−ẑ)A. For this interface, the interface normal is −ẑ.
For the interface in the ferromagnet, the transmitted spin current in Qtr · ẑA.
The total change in spin flux acts like a torque on the magnetization in the
pillbox
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Nc = (Qin − Qtr + Qref) · Aẑ ≈ Qin
⊥ ·Aẑ. (8)

The equality in this expression holds for all systems. In the rest of this section
we show that the approximate form, where Qin

⊥ is the part of Qin with its spin
direction perpendicular to ŝ, holds for transition metal interfaces.
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(a) "Tensor" spin current
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Fig. 7. (a) An electron moving in one direction with its spin in another illustrating
a tensor spin current. (b) A pillbox around interface for computing the interfacial
torque.

To proceed, it is instructive to consider the electronic structure of typical
materials used to study the spin transfer effect. The electronic structure of
transition metal ferromagnets is complicated. Ferromagnetism in transition
metals is driven by atomic-like intraatomic exchange and correlation effects
in the partially filled d-electron shells. The atomic-like effects suggests a lo-
calized description of this part of the electronic structure. However, the d

orbitals are strongly hybridized with both d and s-p orbitals on neighboring
atoms. The strong hybridization suggests an itinerant description of the elec-
tronic structure. Reconciling these aspects of the physics is an ongoing area of
research, and the resulting models are not simple [44]. Here, we adopt the ap-
proach used in most calculations of transition metal electronic structure, the
local spin density approximation (LSDA) [45]. This approximation accurately
describes the itinerant aspects of the electronic structure while treating the
atomic-like exchange and correlation effects in mean field theory. This approx-
imation was derived for computing the ground state properties of materials.
For transition metal ferromagnets, it works quite accurately for properties like
the cohesive energy, equilibrium lattice constant, and the magnetic moment
[46]. Formally, it is not justified for computing the electronic structure, but it
is a good combination of simplicity and accuracy even for this case.

The Fermi surfaces of Cu and face-centered cubic (fcc) Co calculated using
the LSDA are shown in Fig. 8. The Fermi surfaces for the Cu and Co majority
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electrons are close to free electron like, but that of the Co minority electrons is
not. The complicated Fermi surface for the minority electrons is a consequence
of the strong hybridization between the d-levels and also between the d-levels
and the s-p levels. The differences in the Fermi surfaces lead to different
properties for majority and minority electrons. Two important spin-dependent
properties are the conductivity and the interface reflection. The former will
be discussed in the next section and the latter will be of importance below.
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Fig. 8. The Fermi surfaces for Cu and fcc Co. The top three panels show 3-
dimensional representations of the three Fermi surfaces. For the Co minority states,
three bands intersect the Fermi energy, each is indicated in a separate color. Slices
through the Fermi surfaces are indicated for each. The bottom three panels show
these slices and the intersection of the slices with the Fermi surfaces. At (111) inter-
faces, electron states with the same in-plane wave vector, that is, along a horizontal
line in the lower panels, couple across an interface. In Co, the Fermi energy is above
the majority d-bands, but in the middle of the minority d-bands, so the majority
Fermi surface is very similar to that for Cu, but the minority surface is very different.

Other models that are used to describe magnetic multilayers are the s-d
model and the related local moment model. In these models, the d electrons are
responsible for the magnetism and their itinerancy is ignored. The s electrons
are responsible for transport, and they are only weakly spin-dependent. In
these models, the Fermi surfaces are largely spin-independent. However, these
models include spin-dependent scattering rates so they are able to capture
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most of the details of transport in these systems. However, when the details
of the states at the Fermi surface are important, caution is required.

The behavior of spin currents at interfaces is dominated by the spin depen-
dent reflection of electrons. The exchange interaction in the ferromagnet gives
the electrons at the Fermi energy different properties depending on whether
their moments are parallel or antiparallel to the magnetization. As a con-
sequence, the reflection amplitudes for electrons coming from a non-magnet
and scattering from the interface with a ferromagnet depend on whether the
electron’s moment is parallel, R↑, or antiparallel, R↓, to the magnetization.
The transmission amplitudes , T↑ and T↓, are similarly spin dependent. The
spin dependent reflection gives rise to a spin dependent interface resistance
even for ideal interfaces [47]. These resistances will be discussed further in the
next section, which deals with transport.

The reflection and transmission of electrons with moments at arbitrary
angles to the magnetization (along −x̂) determines the torque. The behavior
of these electrons is found with little additional work. Since electrons are
spin-1/2 particles, the state of an electron with a spin at a polar angle θ and
azimuthal angle φ is a coherent superposition of the spin up state and the
spin down state

|θ, φ〉 = cos(θ/2) e−iφ/2 |↑〉 + sin(θ/2) eiφ/2 |↓〉 . (9)

Note that although polar coordinates are usually defined with respect to the
z-axis, here we define them with respect to the x-axis for consistency with the
coordinate choice made in the rest of this chapter. Thus, the reflection ampli-
tudes for majority and minority electrons determine the reflection amplitudes
for spins at arbitrary angles. When an electron starting in the non-magnet in
the state eikz |θ, φ〉 reflects, it comes back in a different state

e−ikz
[

R↑ cos(θ/2) e−iφ/2 |↑〉 +R↓ sin(θ/2) eiφ/2 |↓〉
]

. (10)

The reflected electron is rotated with respect to incident electron. The new
polar angle θ′ is determined by the relative magnitudes of the reflection ampli-
tudes, tan(θ′/2) = |R↓/R↑| tan(θ/2). The new azimuthal angle is determined
by the relative phases of the reflection amplitudes φ′ = φ+Im[ln(R∗

↑R↓)]. For
cartoons of these rotations, see Fig. 9.

Similar considerations apply to the transmitted electrons but with an ad-
ditional complication. When the electrons are in the ferromagnet, the different
spin components have different wave vectors, k↑ and k↓. The differences be-
tween the majority and minority Fermi surfaces seen in Fig. 8 illustrate the
general difference between the wave vector for the two different states. The
consequence of this difference is that the phase between the up spin and down
spin amplitudes, ei(k↑−k↓)z changes as the electron penetrates further into the
ferromagnet. As can be seen from Eq. (9), a change in the relative phase cor-
responds to a change in the azimuthal angle at which the spin is directed.
This changing azimuthal angle is simply precession around the magnetization
[48]. For cartoons of this precession, see Fig. 9.
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Fig. 9. Mechanisms contributing to absorption of incident transverse spin current.
Electrons incident from the non-magnet (lower left) are distributed over a distribu-
tion of states represented by three different incident directions. All of these electrons
are in the same spin state, which is transverse to the ferromagnetic spin density (blue
arrow). The reflected electron spins have predominantly minority character and their
transverse components are distributed over many directions (random spin rotation)
because of the variation over the Fermi surface of the phases of the reflection am-
plitudes. The transmitted electron spins precess as they go into the ferromagnet
because the wave vectors for the majority and minority components are different.
Electrons with different initial conditions precess at different rates, leading to clas-
sical dephasing (differential precession).

To see the consequences of non-collinear spin scattering, it is useful to
consider a simple model first described by Waintal et al. [41] in which the
reflection probability for minority spins is one and for majority spins is zero.
While this situation is not typical, neither is it uncommon [49]. Imagine an
electron with its spin perpendicular (along ẑ) to the ferromagnetic spin density
(along x̂) scattering from this interface. This electron is a coherent superposi-
tion of majority and minority amplitudes. After scattering from the interface,
all of the majority amplitude is transmitted into the ferromagnet and all of
the minority amplitude is reflected back into the non-magnet. The incident,
reflected and transmitted spin currents are

Qin =
~

2
ẑ⊗ vẑ

Qrefl =
~

4
(−x̂) ⊗ (−vẑ)

Qtrans =
~

4
x̂⊗ vẑ (11)

Computing the torque on the ferromagnetic spin density inside the pillbox of
Fig. 7 as in Eq. (8) gives Nc = ẑAv~/2. This simple model illustrates two
key aspects of the scattering process. The first, which holds in all cases, is
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that the spin current along the magnetization is conserved. In this example,
there is no spin current along the magnetization in the incoming state, and no
net spin current along the magnetization in the outgoing states. The torque
is always perpendicular to the magnetization. The second aspect is that the
reflected and transmitted spin currents have no transverse components. This
feature is only approximately true in general as is discussed below. In combi-
nation, these two aspects give the simple result that the spin transfer torque
is approximately given by the absorption of the transverse part of the incident
spin current.

This model simply illustrates one of the ideas behind Slonczewski’s orig-
inal model [1] for this effect. Here, a spin filter effect spatially separates the
majority and minority spin currents from each other. Since the two compo-
nents do not overlap, they no longer interfere with each other so that there is
no transverse spin current in the outgoing states. The transverse part of the
incident spin current has been absorbed by the magnetization. The mecha-
nism for this transfer of angular momentum is the exchange interaction felt
by electrons in the ferromagnet. The exchange interaction exerts a torque on
the electron spins. In turn, there is a reaction torque on the magnetization.

Even though the assumptions of this simple model do not hold for realistic
cases, the conclusion holds approximately for transition metal interfaces like
Co/Cu [42, 43]. Two other effects contribute to its approximate validity; both
are illustrated schematically in Fig. 9. In general, the reflected spins have a
transverse component. However, as shown in Eq. (10), the transverse compo-
nent will be rotated with respect to the incident state. It turns out that the
relative phase of the reflection amplitudes varies widely over the Fermi sur-
face, so the azimuthal rotation does as well. In fact, when the distribution of
electrons carrying the current is summed over the Fermi surface, the reflected
transverse spin largely cancels out and ends up close to zero. This random
spin rotation is an example of classical dephasing.

The same dephasing occurs for transmitted electrons, but it is not as ef-
fective at eliminating the transverse component. However, as discussed above,
the electron spins precess as they penetrate the ferromagnet [1, 50]. Electrons
on different parts of the Fermi surface precess at different rates. So, while
the dephasing was not complete just after transmission in to the ferromagnet,
the differential precession increases the cancellation the greater the distance
into the ferromagnet. For free electron models with different spherical Fermi
surfaces for majority and minority electrons, the magnitude of the transverse
spin current decays as one over this distance into the ferromagnet. For tran-
sition metal interfaces the transverse spin current is reduced to 10 % of its
incident value after a distance of roughly 1 nm [43].

In calculations of spin transfer based on the local moment model, such
as those by Heide et al. [51], the similarity of all the Fermi surfaces greatly
reduces or even eliminates the mechanisms for spin transfer described above.
In this model, the transverse spin current is not transferred to the magneti-
zation at the interface, so that a transverse spin accumulation develops in the
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ferromagnet. This spin accumulation precesses relatively slowly around the
magnetization giving a reaction torque on the magnetization. However, when
scattering is included [52, 53, 54] the spin accumulation decays exponentially
from the interface on a short length scale so that the transverse spin current
is effectively absorbed at the interface.

Finally, it is important to note that the descriptions of spin transfer given
above treat the magnetization of the ferromagnet as a classical quantity. It
can be excited in arbitrarily small increments of energy and angular momen-
tum. In fact, the excitations of the magnetization, spin waves, have a finite
minimum energy and a discrete angular momentum. Urazhdin [55] shows that
a quantum mechanical description of the magnetization changes the transfer
dynamics. However, this model ignores the quantum mechanical aspects of
the electron motion so it is difficult to determine how the changes will survive
in a calculation that includes all of the quantum mechanical details.

Several groups [2, 56, 57, 51, 58] have developed a model originally pro-
posed by Berger in which the current induced torque is due to spin-flip scat-
tering creating a coherent excitation of the uniform spin wave. This model
requires that the critical current for excitation is set by the spin accumulation
(see the next section) being large enough that a spin can flip from minority
to majority and excite a spin wave while conserving energy and angular mo-
mentum. Support for this model comes from the observation that experiments
frequently show a critical voltage. However a critical voltage is equivalent to a
critical current density. Further, Tserkovnyak et al. [59] showed that a model
without direct magnon excitation can give the same critical current density.

3 Semiclassical Transport

The previous section describes how a spin current gives rise to a torque. Here
we address the issue of how the spin current arises in the first place. This
involves solving for the charge and spin transport throughout the whole device.
The results of the previous section enter this section as boundary conditions.

Transport in magnetic multilayers occurs in three different regimes. In
the most perfect samples and at low temperatures, electron transport can
be quantum mechanically coherent. That is, when an electron reflects from
several interfaces, the propagating wave interferes with the incident wave. This
interference can then modify the transport through the structure. This type
of interference is the origin of the oscillatory interlayer exchange coupling that
has been extensively studied in magnetic multilayers [60]. However, even in
multilayers showing interlayer exchange coupling, such effects have not been
identified in the their transport properties. To a large extent, the interference
features of transport get averaged out because electrons from most of the
Fermi surface contribute to the transport. On the other hand, tunnel barriers
can restrict the states that contribute to the transport to a small fraction of
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the Fermi surface. The restriction allows for the observation of interference
effects on transport properties in multilayers with tunnel barriers [61, 62].

Even if the transport is not coherent, it can still be ballistic. In ballistic
transport, the electrons do not scatter when they propagate from one interface
to another. This limit is frequently achieved for thin layers. Finally, electrons
that scatter multiple times when propagating from interface to interface are
in the diffusive limit.

Most magnetic multilayers do not fall cleanly into one limit or the other.
Even in a single structure, some layers may be thin enough to be in the bal-
listic limit while others are thicker or more disordered and in the diffusive
limit. Frequently some layers are of a thickness where neither limit applies.
This range of behaviors has led to a number different approaches to compute
the transport properties; see Bauer et al. [63] for a discussion. Edwards et al.
have treated the coherent limit [64] using the Keldysh formalism. There have
been several calculations using the Boltzmann equation [53, 65] which can
treat both the ballistic limit and the diffusive limit. The Boltzmann equation
describes the evolution of the distribution function for states near the Fermi
energy. It is based on the assumption that the distribution function can be
defined locally. This assumption is consistent with ignoring quantum mechan-
ical coherence between different parts of the device. If the layers are thin, the
distribution function does not change much from one interface to the other,
describing ballistic transport. On the other hand, if the layers are thick, there
is a lot of scattering and the distribution function evolves diffusively. In this
case many of the details of the scattering can be averaged over.

There are several approaches that can be used to derive equations of mo-
tion in which the details of the distribution are averaged over. One such ap-
proach to describe the transport through disordered bulk regions that does not
depend on assuming a well defined distribution function in the disordered re-
gion is random matrix theory as used by Waintal et al. [41] Another approach
is the drift-diffusion equation, which is an approximation to the Boltzmann
equation that is valid in the diffusive limit [66, 9, 67]. This approach has been
used extensively in the context of giant magnetoresistance where it is known
as Valet-Fert theory [68]. Here the behavior of individual electron states is
summed over and the theory is described in terms of currents and densities.
A slightly different approach, which also sums over the behavior of individual
electrons states, is the circuit theory of Brataas et al. [69]. Slonczewski has
used a model that grafted circuit theory to an approximate Boltzmann equa-
tion to generate a simple analytic expression for the torque as a function of
the relative angles of the magnetization [92, 70].

In each of these approaches, the behavior of the current carrying elec-
trons as they cross interfaces is described by their transmission and reflection
probabilities. In the Boltzmann equation, these probabilities enter directly
into boundary conditions for the distribution functions. For the drift-diffusion
equation, particular combinations of these transmission and reflection proba-
bilities give rise to interface resistances which relate the currents across the in-
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terface to the electrochemical potential differences across them. Circuit theory
is formulated in terms of interface conductances, which are slightly different
combinations of the same transmission and reflection probabilities.

3.1 Boltzmann equation and drift-diffusion approximation

In this section, we describe the Boltzmann equation and how it can be ma-
nipulated to give a drift-diffusion description of the transport. In Sections 3.4
and 3.5, we describe the transport through magnetic multilayers in terms of
the drift-diffusion approach. The variables in the drift-diffusion approach can
be interpreted as sums over the distribution function used in the Boltzmann
equation, so this description applies to most aspects of the latter approach.
The connection to circuit theory is then made in Section 3.3. For a description
of the same physics from the point of view of circuit theory, see [71].

The Boltzmann equation is based on the approximation that the electronic
system can be described by the local occupation probability, fs(r,k, t), of well-
defined bulk states of spin s =↑, ↓. See Ref. [68] for the form of the Boltzmann
equation and a formal reduction of it to the drift-diffusion equation. Strictly
speaking, this form is only valid when the structure is slowly varying, so the
bulk states can be defined. This approximation also ignores any coherence
between states. In metallic systems, only the occupancies of the electrons
close to the Fermi energy are changed due to transport. so it is common to
linearize the distribution function

fs(r,k, t) ≈ f0(ǫs(k)) + gs(r,k
F
s , t)f

′
0(ǫs(k)). (12)

where f0 is the Fermi function, f ′
0 its energy derivative, and kF

s is a wave
vector restricted to the Fermi surface for spin s. In the following discussion,
we use the full form of the distribution function, but the idea that only the
occupancies of the states near the Fermi surface vary plays an important role
in describing the transport.

In a system with non-collinear magnetizations, the distribution function
needs to be modified. In the non-magnet, the electron spin can point in any
direction, so it is necessary to account for the coherence between the up and
down spin components at each point on the Fermi surface. Thus the real dis-
tribution functions are generalized to the 2×2 Hermitian distribution matrices
fs,s′(r,k, t). While this is a generalization of the distribution function used
in the Boltzmann equation, it is a reduction of the full density matrix which
includes the coherence between different parts of the Fermi surface. In the fer-
romagnet, this construction of a distribution matrix could not work because
majority and minority spins have different Fermi surfaces. These surfaces only
intersect along lines. Physically, this picture is consistent with the point made
in the previous section – any transverse magnetization will rapidly dephase
to zero. For a different point of view see [52, 53, 72].

To generate the drift-diffusion equation in the non-magnet, it is useful
to use an equivalent formulation for the distribution matrix, which can be
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generated from the Pauli spin matrices

fs,s′(r,k, t) = f(r,k, t)δs,s′ +
∑

α=x,y,z

fα(r,k, t)[σα]s,s′ , (13)

where σα is a Pauli spin matrix. The Boltzmann equation describes the evo-
lution of f and can be written in terms of either form. The drift-diffusion
equation is generated by taking moments of the Boltzmann equation and ig-
noring some of the details near interfaces. Its basic variables are moments of
the distribution function. In the normal metal, these are the change in density
δn, the number current j, the spin accumulation s, and the spin current Q

n0 + δn =
∑

k

f(k) jβ =
∑

k

f(k)vβ(k)

sα =
~

2

∑

k

fα(k) Qαβ =
~

2

∑

k

fα(k)vβ(k)

(14)

where vβ is a component of the velocity of the state at k, and n0 is the
equilibrium density. The spin-independent moment of the Boltzmann equation
gives the drift-diffusion equation in the non-magnet

jβ = (σ/e)Eβ −D∇βδn. (15)

The first term is the drift term, with conductivity σ, and the second is
the diffusion term, with diffusion constant D. An equivalent formulation is
to use the density of states (∂n/∂µ) to write the number accumulation as
a chemical potential µ = δn/(∂n/∂µ). Then, using the Einstein relation,
e2σ = D∂n/∂µ, the effect of both the local electric field and the diffusion
of the charge accumulation is captured by the local electrochemical potential,
jβ = −(σ/e)∇β(µ + V ). In fact, a local excess charge −eδn creates a local
electric field so that E and δn are related through Poisson’s equation. How-
ever, only the electrochemical potential µ+V couples to the transport so it is
not necessary to actually solve Poisson’s equation and determine the charge
accumulation and the electric field separately.

The spin moments of the Boltzmann equation give

Qαβ = −D∇βsα. (16)

This expression simply states that for non-magnets in the diffusive limit, any
spin current is due to the diffusion of a spatially inhomogeneous spin accumu-
lation. In this equation, the spin current is given by the gradient of the spin
accumulation. In the spin continuity equation, Eq. (7), for time-independent
magnetization, the gradient of the spin current is proportional to the spin ac-
cumulation. Combining these two equations gives a diffusion equation that has
exponential solutions characterized by the spin diffusion length lsf =

√
Dτsf .

This is the length scale over which a steady state spin accumulation decays to
zero, the mean distance a spin diffuses before it flips. The spin accumulation
is frequently written as a spin chemical potential, (~/2)∆µα = sα/(∂n/∂µ).
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In the bulk, the two are equivalent. At the interface between two materials
with different chemical potentials, either formulation can be used, but the
differences in the chemical potentials across the interface are directly related
to the current and the spin currents.

In ferromagnetic materials, it is most natural to adopt the two-current
formulation of the Boltzmann equation as done by Valet and Fert [68] provided
all of the ferromagnet magnetizations are collinear. The majority and minority
electrons are treated as two different species so that the variables in the drift-
diffusion equation are

ns0 + δns =
∑

k

fs(k) jsβ =
∑

k

fs(ks)vβ(k), (17)

where ns0 is the equilibrium spin density for each spin direction. The drift-
diffusion equations are then

js = (σs/e)E−Ds∇δns. (18)

The sum and the difference of the equations for the two spins give the equa-
tions for the total current and the spin current respectively. The relative size
of the conductivities for each spin, σ↑ and σ↓ is complicated. The ratio de-
pends on the relative density of states, the effective velocities of the states and
the scattering rates. In Co, the material principally discussed in this chapter,
the differences in the scattering rates dominate giving a higher conductivity
for majority electrons.

If the magnetization is uniform within each layer, the two current model
can be used with appropriate boundary conditions. If the magnetization
within a layer is is not uniform, the model needs to be generalized to treat a
spatially varying magnetization direction. The simplest approach, which we
will adopt, is to assume that the direction of the ferromagnetic spin density
û (opposite the magnetization) is sufficiently slowly varying that the spin
direction of the spin current and the accumulated spin adiabatically follow
the magnetization direction [73, 74]. In this case, the spin current is simply
(~/2)û ⊗ (j↑ − j↓). When this form is inserted into the continuity equation,
Eq. (7), it is clear that a polarized current flowing through a spatially varying
magnetization direction gives rise to a torque. There is presently a large body
of research on this topic [75], building on the original work by Berger [76]

As the interfaces play important roles in typical spin-transfer structures, so
do the boundary conditions. The longitudinal boundary conditions are most
simply written in terms of spin-dependent electrochemical potentials, rather
than number and spin accumulations. Working in the frame of reference of
the magnetization, the longitudinal current for each spin is conserved across
the interface (ignoring spin-flip scattering localized to the interface) and is
proportional to the difference in the electrochemical potentials across the in-
terface

Rs js · n̂ = µNM
s − µFM

s , (19)
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where n̂ is the interface normal pointing from the non-magnet into the fer-
romagnet. The spin dependent interface resistance Rs is determined by an
appropriate sum over the transmission and reflection probabilities for individ-
ual states.

In the previous section, we argued that there is no transverse spin accu-
mulation or spin current in the ferromagnet. In this case, the transverse spin
current and spin accumulation in the non-magnet must be proportional to
each other

Q⊥ · n̂ = Bs⊥. (20)

B is the constant of proportionality and is defined in Eq. (22). The ⊥ sub-
script indicates the transverse component. This boundary condition is actually
simple to understand given that transverse spin currents get absorbed at the
interface. If there is an accumulation of transverse spins, they diffuse in all
directions. However, if they are absorbed at the interface there is no backflow
of transverse spins giving a net transverse spin current toward the interface.
This form can be derived by detailed consideration of the boundary conditions
in the Boltzmann equation. The boundary conditions, Eqs. (19) and (20) are
used in calculations of the spin transport through an interface in Appendix A.
If the magnetization is time dependent, there is another term in this boundary
condition due to spin pumping.

3.2 Spin pumping

Spin pumping, an effect originally proposed by Berger [2] and developed by
Tserkovnyak et al. [77, 78], comes from the spin-dependence of the reflection
amplitudes. The presence of the ferromagnet induces in the non-magnetic
layer a small, decaying, oscillatory magnetization, which is closely related to
the Friedel oscillations in the charge density near a surface. This magnetization
arises from the partial reflection of electrons as they scatter from the interface.
The incoming and outgoing components of the electron states interfere with
each other. Each such state gives rise to an oscillatory density in the non-
magnet. This density oscillation is also a spin density oscillation because the
reflection amplitudes are spin-dependent. Summing over all electron states
gives rise to a net induced spin density that decays into the non-magnet.

When the magnetization in the ferromagnet rotates, the induced magneti-
zation rotates as well. Since the change in the induced magnetization is driven
by the rotating magnetization in the ferromagnet, it must arise from spin cur-
rents “pumped” through the interface between the two materials. Since the
spin density that rotates is a superposition of contributions from electron
states at all energies below the Fermi energy, the spin current is carried by
all of the electrons, not just those at the Fermi level. The perturbation to
the electronic system, the rotating magnetization, is time dependent, so it
allows for inelastic scattering. However, for the states well below the Fermi
energy, all of the states are occupied and there is no possibility for energy
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transfer. Thus, the spin current carried by the electrons with energies well
below the Fermi level is reversible. That is, if the magnetization returns to
its initial configuration, no energy (or net spin current) has been transferred
to the electronic states in the non-magnet. However, near the Fermi energy,
electrons that interact with the rotating magnetization can be scattered from
just below the Fermi energy to just above it. This inelastic scattering means
that the component of the spin current which is carried by the electrons with
energies near the Fermi energy is irreversible, that is, when the magnetization
returns to its original configuration, there has been a net flow of energy (and
spin current) into the non-magnet. These two components of the spin current,
reversible and irreversible, are conceptually related to the real and imaginary
parts of frequency-dependent susceptibilities.

While the idea that energy is transferred from the magnetic system into
the electronic system of the non-magnet is relatively straightforward, it is not
so obvious that angular momentum is also transferred. However, lowering the
energy of the magnetic system requires increasing the alignment of the mag-
netization with the instantaneous internal field direction. Since the absolute
magnitude of the magnetization is largely fixed, increasing the alignment of
the magnetization with its internal field is equivalent to rotating the magneti-
zation in a direction that is perpendicular both to the magnetization direction
û and to the direction in which the magnetization is precessing ˙̂u. The change
in magnetization in the ferromagnet is pumped into the non-magnet through
a spin current. Thus the boundary condition becomes

Q⊥ · n̂ = Bs⊥ +B′û× ˙̂u. (21)

Since the spin pumping term has exactly the same form as Gilbert damping,
it acts as an additional source of damping that is effective at the interfaces.
This hand-waving argument for Eq. (21) is confirmed by calculations using
several different approaches for different models of the electronic structure
[77, 79, 80].

These same calculations further show that in the approximation that the
transverse spin current is absorbed at the interfaces, the coefficients in Eq. (21)
are simply related to the projected area of the Fermi surface in the non-metal
AFS

B′ =
AFS

(2π)3
~

2
=

~
2

2

∂n

∂µ
B (22)

This contribution to the damping has been studied extensively in ferromag-
netic resonance [81, 82, 83, 84, 85, 86]. The measured behavior of the resonance
linewidth as a function of layer thicknesses and frequency quantitatively con-
firms that spin pumping acts as an additional source of damping. Note that
the pumped spin current only functions as an additional source of damping if
it does not return to the precessing ferromagnet. Thus the angular momentum
carried by the spin current needs to be absorbed by spin flip scattering in the
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bulk, or by scattering from another ferromagnetic layer with a non-collinear
magnetization.

3.3 Circuit theory

The circuit theory of Brataas et al. [69, 71] is based on the approximation that
devices can be divided into nodes and regions that connect them. In the nodes,
the voltages (chemical potentials), and spin accumulation are assumed to be
spatially uniform. The nodes are connected by conducting channels, across
which the chemical potential differences drive charge and spin currents. The
conductances of the channels are determined by the same transmission and
reflection probabilities that enter as boundary conditions in the Boltzmann
equation or determine the interface resistances in the drift-diffusion approx-
imation. Since the spin accumulation in a non-magnetic node need not be
collinear with the magnetization direction in a ferromagnetic node, describing
the transport requires both the conductances for majority g↑ and minority g↓
electrons

gσ =
e2

h

∑

n∈NM

∑

m∈FM

|tnm
σ |2 , (23)

as well as the “mixing conductance”

g↑↓ =
e2

h

∑

n∈NM

[

1 −
∑

m∈NM

rnm
↑

(

rnm
↓

)∗
]

. (24)

The majority and minority conductances describe electrons going from one
material into another and hence involve sums over channels in both mate-
rials. The mixing conductance on the other hand, describes a spin current
that is absorbed by the ferromagnet. Thus, it only depends on a sum over
channels in the non-magnet. The mixing conductance describes the behavior
of spins in the non-magnet that are perpendicular to the magnetization in the
ferromagnet. The real part gives the spin current that is aligned with the per-
pendicular part of the chemical potential. The imaginary part gives the spin
current that is perpendicular both to the magnetization and to the chemical
potential in the non-magnet. Both of these components are absorbed at the
interface giving rise to a torque on the magnetization. As described in the pre-
vious section, the sum over the reflection amplitudes goes to zero because of
spin filtering and dephasing. Thus, in transition metal systems the real part of
the mixing conductance is roughly proportional to the number of conducting
channels and the imaginary part is close to zero.

Circuit theory differs from the drift-diffusion approach in two ways. First,
it is formulated in terms of conductances rather than resistances. This differ-
ence is minor, because the drift diffusion approach could be as well. The larger
difference is the neglect of the spatial dependence of the chemical potential
within the layers (nodes in the language of circuit theory). This approxima-
tion works well in devices in which the total resistance is dominated by the
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interface resistances. However, in devices that are beyond this limit, it is possi-
ble to augment circuit theory with a drift-diffusion calculation within a layer.
Thus, the differences between the two approaches are largely conceptual.

Circuit theory does not naturally apply to structures where the chemical
potentials vary in space, although it can be generalized to treat such sys-
tems. The real strength of circuit theory is that it is quite straightforward to
treat complicated structures in which more than two ferromagnetic regions
are attached to a non-magnetic node. The proposed spin-torque transistor of
Brataas et al. is an example [69]. The Boltzmann equation and drift-diffusion
approaches can also treat such cases, but solving the equations for geometries
that are not essentially one dimensional is much more difficult, see Sec. 3.6.

3.4 Collinear Transport

The transport equations and boundary conditions of the previous section allow
us to determine the current flow through magnetic multilayers. It is useful to
consider the transport through magnetic multilayers in terms of simpler com-
ponents of the structure, starting with a single interface. Early theoretical
studies of the behavior of spin currents and accumulation at interfaces have
been made by Aronov [87], Johnson and Silsbee [88], van Son et al. [89], and
Valet and Fert [68]. Fig. 10 illustrates the spin current and the spin accu-
mulation for electrons flowing into a ferromagnet from a non-magnet and the
reverse. Much of the history of this topic is reviewed in [90]. Far away from the
interface in either material, the spin current just depends on the spin depen-
dence of the conductivity. In the non-magnet, the conductivity is unpolarized,
so there are an equal number of majority and minority spins flowing. In the
ferromagnet on the other hand, the conductivity is spin-dependent, and there
is a finite spin current. For the case of electrons flowing from the non-magnet
on the left, there are equal number of majority and minority electrons flow-
ing toward the interface, but more majority electrons flowing away from it.
This imbalance leads to accumulation of minority spins near the interface.
These minority spins diffuse away from the interface into both materials. A
diffusion of minority spins away from the interface in the −ẑ direction in the
non-magnet gives rise to a positive spin current. On the other hand, the diffu-
sion of minority spins in the ẑ direction into the ferromagnet gives a negative
correction to the spin current flowing into the bulk. Interestingly, the diffu-
sion of minority spins away from the interface means that the current in the
non-magnet is spin polarized before it enters the ferromagnet.

The system reaches a steady state because of spin-flip scattering. As more
non-equilibrium spins accumulate, they relax faster toward equilibrium. Even-
tually, the change in the magnetization due to spin-flip scattering exactly
cancels the net arrival of excess spins. The length scale over which the spin
current recovers its bulk values is the spin diffusion length. Here the spin
diffusion length is shorter in the ferromagnet than the non-magnet. Spin-flip
scattering is a result of the coupling of the electrons to the lattice and so serves
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Fig. 10. Spin accumulation (δsx) and spin current (Qxz) for electron flow from
a non-magnet into a ferromagnet (left side) and vice versa (right side). Qb is the
magnitude of the spin current in the bulk ferromagnet far from any interfaces due to
the spin dependent conductivity. The magnetization in the ferromagnet, M is along
the −x̂-direction so that the ferromagnetic spin density s is along the x̂-direction.

as a source of angular momentum in the electron subsystem. The electrons in
the non magnet carry no angular momentum into the interface region, but the
electrons in the ferromagnet carry some away. Spin flip scattering allows for
this apparent non-conservation. The change in the spin-dependent conductiv-
ities in the structure plus the spin flip scattering leads to a transfer of angular
momentum from the lattice into the flowing electrons.

There is a discontinuity in the spin chemical potential (spin accumula-
tion) across the interface because the interface resistance is spin-dependent.
To see the origin of the discontinuity, note that whenever the polarization
of the current, P (see Eq. (3)), is different than the polarization of the bulk

conductivity Pσ = (σ↑ − σ↓)/(σ↑ + σ↓), there must be a gradient in the spin
accumulation to provide a diffusive component. Similarly, whenever the po-
larization of the current is different than the polarization of the interface

conductivity PΣ = (Σ↑ − Σ↓)/(Σ↑ + Σ↓), there must be a discontinuity in
the spin chemical potential. On the other hand, the spin current is constant
across the interface because there is no spin flip scattering localized to the
interface (in this model).

The detailed forms of the currents and densities in Fig. 10 are found from
the bulk solutions in the leads and the matching conditions at the interface.
The details are given in Appendix A.

In the right side set of panels in Fig. 10, we see that for current flowing in
the opposite direction, more majority electrons flow into the interface region
than flow out, so there is an accumulation of majority spins near the interface,
changing the sign of the spin accumulation. These majority electrons diffuse
away from the interface changing the sign of the spin current.
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The behavior of a current flowing through a finite thickness ferromagnetic
layer embedded in a non-magnet can roughly be constructed by superposing
the accumulation and spin current for single interfaces. The result is shown in
Fig. 11. An equal number of majority and minority electrons flow into and out
of the region near the interface, but more majority electrons flow through the
ferromagnet. This leads to an accumulation of minority electrons before the
ferromagnetic layer and an accumulation of majority electrons after the layer.
These diffuse away from the interface giving rise to a current that is equally
spin polarized before and after the layer. For this system, angular momentum
is coupled into the electron system from the lattice in the left lead, is carried
through the ferromagnetic layer and deposited in the lattice in the right lead.
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Fig. 11. Spin accumulation (δsx) and spin current (Qxz) for electron flow through
a ferromagnetic layer embedded in a non-magnetic host. The current flow is in
the positive ẑ direction on the left hand side and in the negative direction on the
right. Qb is the magnitude of the spin current in the bulk ferromagnet far from any
interfaces due to the spin dependent conductivity. The ferromagnetic spin density in
the ferromagnet, M is along the −x̂-direction so that the ferromagnetic spin density
s is along the x̂-direction.

The spin current and spin accumulation for two ferromagnetic layers with
a thin spacer layer can be seen as a superposition of the values for two single
layers provided the two magnetizations are collinear with each other. Figure 12
illustrates this superposition for the cases of parallel and antiparallel align-
ment of the magnetizations. The case of parallel alignment looks very much
like a single ferromagnetic layer. There is accumulation of minority spins be-
fore the layers, majority spins after the layers, and almost none in the spacer
layer. A substantial spin current flows through the whole trilayer. The case
of antiparallel alignment is just the opposite. There is almost no spin current
and almost no spin accumulation in the leads. There is a large majority spin
accumulation in the spacer layer. The spacer layer spin accumulation is a com-
bination of majority spin accumulation after the first layer and minority (with
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respect to the reversed magnetization) accumulation before the second layer.
This spatially varying spin accumulation provides the diffusive contribution
necessary to cancel the natural bulk spin current in each ferromagnetic layer,
Qb.
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Fig. 12. Spin accumulation (δsx) and spin current (Qxz) for electron flow through
two ferromagnetic layers embedded in a non-magnetic host and separated by a thin
non-magnetic spacer layer. The magnetizations of the two layers are parallel along
the x̂ direction on the left side and antiparallel on the right. Qb is the magnitude
of the spin current in the bulk ferromagnet far from any interfaces due to the spin
dependent conductivity.

The difference in the spin current between the cases of parallel and an-
tiparallel alignment is the origin of the giant magnetoresistance. In the case
of parallel alignment, more of the current flows through the lower resistance
majority channel, lowering the average resistance of the multilayer.

One of the important points of this section is that the polarization of the
current and the spin polarization are not local properties. They depend on
everything in the device within a few spin diffusion lengths in both directions.
In Section 2, we showed that the torque depends on the transverse spin cur-
rent. The arguments in this section show that the spin current depends on
the properties of the whole device, not simply the materials in the immediate
vicinity of the interface. Finding the torque will also require solving for the
transport throughout the whole device.

3.5 Non-Collinear Transport and Torque

When the magnetizations of the two layers are not collinear, the direction
of the spin accumulation and spin direction of the spin current, see Eq. (3),
vary throughout the structure. Still, the transport can be understood in very
much the same terms as the transport for collinear magnetizations with the
addition of the absorption of the transverse component of the spin current
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at the interfaces. For example, consider the spins along x̂, collinear with the
magnetization of the left layer, see Fig. 13. More majority electrons go through
the layer, so there is an accumulation of minority electrons in the left lead.
The majority electrons going through the layer go through the thin spacer
relatively unchanged. However, when they reach the interface with the right
ferromagnet, they are transverse and the transverse spin current goes to zero
inside the ferromagnet. This gives a torque on the right ferromagnet that
tends to rotate it into parallel alignment with the left ferromagnet. Note that
while it is more natural to have the spins lie in the y-z plane, it is more
difficult to illustrate in a figure. For this reason, we have chosen to have the
magnetizations and spins lie in the x-z plane. Now consider the spins polarized
along the ẑ-direction, parallel to the right magnetization. When the transverse
spin current hits the right ferromagnet and gets absorbed, primarily minority
electrons get reflected and majority get transmitted, giving a positive spin
current for a spin direction along ẑ. The reflected minority electrons diffuse
back to the interface with the left ferromagnet (note that minority electrons
diffusing backwards also give a positive spin current along ẑ), where they
are transverse to the magnetization and get absorbed. Here, the absorption
of the transverse spin current gives a torque that tends to rotate the left
magnetization to be antiparallel to the right magnetization. The directions of
the spin currents can be difficult to visualize from these graphs, so a cartoon
of the spin currents is given at the bottom.

The torques described above tend to make the magnetizations “pinwheel”
after each other rather than rotate toward or away from each other or even pre-
cess around each other. This apparent violation of the conservation of angular
momentum derives from the fact that angular momentum is being provided
by the coupling to the lattice through spin-flip scattering. The angular mo-
mentum coupled into the right magnetization comes from the lattice in the
left lead and the magnetization coupled into the left ferromagnet comes from
the right lead. As can be seen from the right side panels of Fig. 13, the cur-
rent direction determines the direction of the pinwheeling. In most systems of
experimental interest, in which the magnetization of one of the layers is held
fixed, electrons flowing from the fixed layer into the other layer tend to bring
the second layer magnetization into alignment with that of the fixed layer and
electron flow from the second layer into the fixed layer tends to anti-align the
magnetization of the second layer with that of the fixed layer.

The calculation illustrated in Fig. 13 can be repeated as a function of
the angle between the magnetizations. This calculation gives two results: the
torque as a function of angle and the magnetoresistance as a function of angle.
Both have been studied by a number of authors [91, 92, 65, 93, 94, 95, 70].
The torque per unit area has the form

Nc

A
=

~

2
(j · ẑ) P [ŝ× (ŝ0 × ŝ)] , (25)
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Fig. 13. Spin accumulation (δsx and δsz) and spin current (Qxz and Qzz) for
electron flow through two ferromagnetic layers embedded in a non-magnetic host
and separated by a thin non-magnetic spacer layer. The magnetizations of the two
layers are perpendicular to each other, for purposes of illustration both are in the
plane of the figure. On the left side the current flows in the ẑ direction and on
the right in the −ẑ direction. Qb is the magnitude of the spin current in the bulk
ferromagnet far from any interfaces. The transverse component of the spin current is
discontinuous at each interior interface giving rise to torques on the magnetizations
of each layer. The directions of the torques are indicated for each of the interfaces.
The bottom panel gives a cartoon of the spin current in the spacer layer. The blue
arrows give the direction of the electron spins for electrons moving in the directions
given by the black arrows (recall that the spin current for an electron with a spin in
one direction moving to the left is the same as the spin current from an oppositely
directed spin moving to the right). The purple arrows repeat the torques from above.
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where ŝ and ŝ0 are the free and fixed layer ferromagnetic spin density di-
rections respectively. If the spin current reaching the free layer were inde-
pendent of the of the relative orientation of these directions, P would be a
constant. The double cross product is the part of ŝ0 that is transverse to ŝ,
i.e. ŝ0 − (ŝ0 · ŝ)ŝ. This equation is simply the absorption of the transverse
spin current, which has been assumed to be fixed. This form has been used in
a number of micromagnetic simulations for the torque. However, one of the
main points of this section is that the spin current is not independent of the
relative orientations of the two magnetizations. The dependence of the spin
current on the orientations of the magnetization has a substantial effect on
the torque as seen in Fig. 14.

0 90 180

0.0

1.0

0 90 180
0.0

0.5

θ θ

N

j h/2

R(θ)-R(0)

R(180)-R(0)

Fig. 14. The angular dependence of the torque and magnetoresistance as a function
of the relative angle of the two magnetizations. The blue curves show the simple
forms frequently used in micromagnetic simulations, sin2(θ/2) and P0 sin θ for the
relative magnetoresistance and the torque respectively. Here P0 is a constant

In general, it is necessary to solve a transport equation (Boltzmann, drift-
diffusion, circuit theory) to compute the angular dependence of the torque.
However, Slonczewski [92] has derived an analytic formula based on a calcu-
lation that combines a density matrix description of the spacer layer with a
circuit theory [69] description of the remainder of the structure. This formula
has been extended by several authors [96, 70, 97, 95]. Xiao et al. [70] have
tested it by comparing it with the results of calculations using the Boltzmann
equation. In general, the torque is given by Eq. (25) with

P =

[

q+
B0 +B1 cos θ

+
q−

B0 −B1 cos θ

]

(26)

where cos θ = ŝ0 · ŝ. The parameters B0, B1, q+, and q− depend on the
geometry of the device and the physical properties of the layers and interfaces.
In particular, they depend on effective spin-dependent resistances from the
spacer layer in each direction over a cumulative spin diffusion length. A similar
expression can be written for the angular dependence of the magnetoresistance
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[95]. Fits to the curves in Fig. 14 with these formulae are indistinguishable
from the full calculations.

Calculated values of q−/q+ and B1/B0 capture some of the important
results of the various transport calculations that have been done. The ratio
q−/q+ depends on the asymmetry of the structure. If the device is symmet-
ric, the ratio goes to zero, giving the limit originally derived by Slonczewski
[92]. Calculations show that this ratio becomes important when lead lengths
become comparable to spin diffusion lengths, a situation not normally found
in actual devices. The ratio B1/B0 describes the asymmetry of the slope of
the torque between angles close to parallel and those close to antiparallel. All
transport calculations find a substantial asymmetry. The ratio only becomes
small when the spin current scattering from the free layer is independent of
the direction of the free layer magnetization. This current is only independent
of the free magnetization direction when the effective resistances approach
the Sharvin resistance. Unfortunately, the torque vanishes in this limit. For
some geometries, there are simple analytic formulas for the various parameters
[92, 96, 70, 97, 95].

All transport calculations done to date give results consistent with Eq. (26).
However, there is only limited experimental confirmation of this form. In most
cases there is enough uncertainty about important aspects of the samples, as
indicated by large sample-to-sample variation, that it is difficult to make a
compelling test of the angular dependence of the torque. However, Smith et
al. [98] have recently shown that critical currents they measured are best de-
scribed when the angular dependence of the polarization and hence torque is
described as in the first term of Eq. (26). For samples with short leads, q−
and hence the second term in that equation is generally negligible. There have
been a few tests of the angular dependence of the magnetoresistance [99, 100].
These show clear deviation from simple sin2(θ/2) behavior, but less deviation
than would be expected from the theories that lead to Eq. (26).

The spin-transfer torque is effective near the interface. In most simulations
that treat the torque, the practitioners assume that the ferromagnetic layer
is thin enough that the magnetization is constant throughout the thickness
of the layer and so treat the spin transfer torque as spread out through the
layer. In fact, it is an interfacial torque and needs to be balanced by another
interfacial torque. In micromagnetic calculations, interfacial exchange torque
is zero when the normal derivative of the magnetization is zero (n̂·∇)s(r) = 0.
In the presence of an interfacial spin transfer torque, this normal derivative
becomes non-zero so that the exchange interaction gives rise to an interfacial
torque that compensates the spin transfer torque. The finite derivative at
the interface means that the magnetization direction is spatially varying as a
function of position in the ferromagnet. The spatially varying magnetization
is subject to an exchange torque that effectively spreads out the interfacial
spin transfer torque. In other words, even though the spin transfer torque is
an interfacial torque, the spin transfer torque plus the exchange interaction
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together act as though the spin transfer torque is uniformly spread out over
layers provided those layers are thin enough.

These balancing torques have an interesting physical understanding. Recall
from Section 2 that the micromagnetic exchange torque can be written as a
divergence of a spin current that is carried by all of the electrons. In the
non-magnet, the spin current is carried by the non-equilibrium electrons at
the Fermi surface. In the ferromagnet, there is no transverse spin current,
but there is an exchange torque, which is a spin current carried by all of the
electrons. At the interface, these two spin currents are converted into each
other.

3.6 Leads/reservoirs

The entire preceding discussion was based on a one dimensional approximation
for the transport. However, as can be seen in Fig. 1, this is far from the actual
situation. Possibly the most important difference is that leads become very
wide close to the sample. In fact, this widening is important experimentally to
remove the heat generated by the large current densities through the sample.

The simplest treatment of the leads is to treat them as reservoirs. In this
context, a reservoir has an infinite density of states, so that the spin chemical
potential is zero. This boundary condition is natural in circuit theory and
is readily implemented into a drift-diffusion approach. In both of these ap-
proximations, the incoming and outgoing electrons are lumped together into
a single spin density and a single spin current. In a Boltzmann equation, it
is more complicated and the equivalent boundary condition is harder to im-
plement. In this case, the boundary conditions is that the electrons leaving
the reservoir must have a bulk-like distribution, but the electrons entering the
reservoir can be in whatever state is dictated by the sample. This implemen-
tation can give very different results from the drift diffusion approach.

Even more meaningful results are given by calculations of the transport
that treat all three dimensions [101, 102]. These calculations show that ac-
counting for the geometry is important and not as simple as is assumed in
treating them as reservoirs. These papers show that the variation of the spin
chemical potential in the transition region is quite important. This can be
understood from the argument that the effective width of the lead does not
go abruptly from small to large, but rather the current spreads out into the
leads. These calculations imply that care should be taken in interpreting any
one dimensional calculations for which the results depend sensitively on the
length of the leads.

3.7 Lateral Inhomogeneity

If the magnetization in the interface is not uniform, diffusion of spins parallel
to the interface will lead to spin-transfer torques [103, 67]. Consider the case
of electron flow from the non-magnet into the ferromagnet. The electrons that
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are reflected into the non-magnet and which accumulate there, are on average

antiparallel to the magnetization direction.
If the magnetization is uniform across the interface, the accumulated spins

are aligned. On average, these electrons diffuse away from the interface, but
since their motion is diffusive, there is a significant probability that they return
and scatter from the interface in a different location. One such trajectory is
illustrated in Fig. 15. The Fermi velocity of the electrons is sufficiently high
that the magnetization does not significantly rotate when the electron scatters
from the interface. Even if the electron diffuses laterally, it is still antiparallel
to the magnetization when it scatters from the interface.

Electron flow Electron flowElectron flow

Cu Co Cu Co Cu Co

No torque Destabilizing torque Stabilizing torque

λ λ
Magnetization

Fig. 15. Spin transfer torque due to lateral diffusion. Each panel shows an electron
diffusing in a non-magnet and reflecting twice from the interface with a ferromag-
net. After it scatters, it is oriented on average either parallel or antiparallel to the
magnetization depending on the direction of the electron flow, see Fig. 10. In the
first panel, the ferromagnetic magnetization is uniform laterally so that when the
electron scatters the second time, it is aligned with the magnetization and there is
no reorientation of either. The electron flow is from the non-magnet into the ferro-
magnet, so the accumulated spins are minority spins. In the second panel, there is a
non-uniform magnetization, and the diffusing minority spin is not aligned with the
magnetization the second time it scatters. The magnetization exerts a torque on it
and it exerts a torque on the magnetization which tends to amplify the spin wave.
In the third panel, the electron flow is in the opposite direction so the diffusing spins
are majority spins. In this case, the torque in the second scattering event tends to
reduce the amplitude of the non-uniform spin wave.

If, on the other hand, the magnetization varies slowly across the interface,
the electron spins locally are antiparallel to the local magnetization direction
after they reflect. When they diffuse laterally, they are no longer antiparallel
to the local magnetization direction when they rescatter from the interface.
Since they tend to be antiparallel to the average magnetization after they
scatter, they are rotated by this scattering event, exerting a reaction torque
on the ferromagnet.

When the net electron flow is from the non-magnet into the ferromagnet,
this lateral diffusion and rescattering tends to amplify deviations away from
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the average magnetization direction. On the other hand, when the electron
flow is from the ferromagnet into the non-magnet, the diffusing spins are now
parallel to the magnetization on average, and the torque due to rescattering
tends to suppress fluctuations away from the average direction.

Polianski and Brouwer [103] and Stiles et al. [67] have shown that these
torques can be large enough to lead to instabilities in the magnetization of
single thin films or single interfaces when the current is large enough. For a
single interface, the instability only occurs for one direction of current flow.
For finite thickness ferromagnetic layers embedded in a non-magnetic host, the
lateral diffusion at one interface is destabilizing, but that at the other interface
is stabilizing. Instabilities therefore require an asymmetry in the system either
the details of the leads or a non-uniform (along the current direction) response
in the ferromagnet. Point contact experiments by Ji et al. [14] and Chen et al.
[38] and single film nanopillar experiments by Özyilmaz et al. [39] both show
instabilities that are at least qualitatively similar to what is expected from
the models.

4 Micromagnetics

Ideally, the models described in the previous sections could be tested directly.
Unfortunately the probes available to investigate these systems are rather
limited. Generally, only the current and voltage through the structure are
measured. This provides a check on the transport calculations, but the test is
stringent only when enough of the system parameters are known accurately,
which is not generally the case. The torque cannot be directly investigated
at all. Only the resulting behavior of the magnetization can be inferred from
measurements of the resistance. However, the behavior can be measured as a
function of current, applied field, and the geometry of the device. The agree-
ment between calculations and measurements can be quite compelling, albeit
not without a few free parameters. In this section we describe the tools used
to model the magnetization dynamics and give some results found for these
systems.

We start this section with a consideration of the geometry of the devices of
interest and their static energetics. Then, we introduce the equation of motion
that describes the dynamics of the system – the Landau-Lifshitz-Gilbert equa-
tion (see e.g. [105]). Before considering the full dynamics of the system that
results from this equation, we consider the macrospin approximation, a sim-
ple limit that illustrates much of the essential physics. In this approximation,
the magnetization of the layer undergoing dynamical evolution is considered
to remain uniform throughout its motion. This approximation illustrates the
way in which these systems exhibit precessional instability for large enough
current flows. Further, it allows analytic determination of the regimes of sta-
bility of different states. After determination of the zero temperature “phase
diagram” of such systems, we consider the effect of temperature on the dy-
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namics through the introduction of thermally driven fluctuating fields into
the equation of motion and finish with some examples of full micromagnetic
simulations.

4.1 Geometry and Energetics

A typical GMR pillar geometry for the study of spin transfer effects is sketched
in Fig. 16. It contains a soft thin layer (the top layer in Fig. 16) and a thick,
ideally hard, uniformly magnetized layer, often referred to as the fixed or
reference layer (bottom layer in Fig. 16). Most authors assume the current
density J to be positive for electrons flowing along the −z direction. Under
steady current, the soft, thin layer is thus flooded with electrons that become
spin polarized through transmission across (reflection from) the thick layer
for J < 0 (J > 0). Without loss of generality, one may safely assume that the
magnetization of the fixed layer points along the +x direction. Starting from a
parallel (P ) magnetization configuration (both magnetization directions close
to +x), the spin transfer torque (28) tends to move the magnetization of the
soft layer away from its initial direction for J > 0. Conversely, starting from
an antiparallel (AP ) configuration, spin transfer promotes parallel alignment
for J < 0.

Fig. 16. Axes and sign conventions: note that the axes definition now conforms
with the convention adopted by most experimentalists

Pillars like those used in the pioneering experiments of Albert et al. [104]
have typical lateral dimensions in the 100 nm range with an in-plane aspect
ratio close to 2:1 and soft layers with a thickness of a few nanometers. Because
these stacks are nanofabricated from multilayers, we assume that the thickness
of those elements remains constant across the element. Such elements are
thus best described as flat cylinders with a close to elliptical cross-section.
As a first approximation, it is convenient to think of the samples as pure
ellipsoids because ellipsoids have uniform magnetizations and demagnetizing
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fields in equilibrium. However, the nanopillars do not behave entirely as pure
ellipsoids. Even though the magnetization distribution only weakly departs
from a uniform magnetization distribution at rest, the effective field is not
uniform as as seen in Fig. 17.

Figure 17a displays the typical magnetization distribution within such an
isolated thin element as a result of the competition between exchange and
magnetostatic interactions. Due to demagnetizing effects, the effective easy
magnetization axis coincides with the long ellipse principal axis. The color
scheme highlights the weak deviations from uniformity close to the apices of
this elliptical element. Clearly, these deviations help in reducing boundary
magnetic charges at the expense of more distributed volume charges and ex-
change interactions. At equilibrium, there should be no torque acting on the
magnetization [105, 106]:

M × Heff = M ×
[

− 1

µ0

δǫ

δM

]

≡ 0 , (27)

where Heff is the so-called effective field and ǫ the energy density, here includ-
ing just exchange and demagnetizing field contributions. Fig. 17b displays a
map of the effective field corresponding to the magnetization distribution in
Fig. 17a, exhibiting large variations of the modulus of the demagnetizing field
with a predictable influence on magnetization dynamics, be it under the action
of an applied field or a current induced spin transfer torque. These variations
lead to non-uniform behavior in the dynamics of such systems, limiting the
validity of the macrospin approximation considered in Sec. 4.3.

The difference in energy between elliptical cylinders uniformly magnetized
either along the long or the short ellipse axis is a good indicator of the thermal
stability of such elements. The energy of the magnetization in either direction
(+x and −x) along the long axis is close to the ground state energy and that
along the short axis is a first approximation to the energy barrier between the
two equivalent ground states. An example of the results of such calculations
is shown in Fig. 18. Assuming that a 40 kBT barrier height is sufficient for
long term stability, micromagnetics predicts that elliptical pillars should be
stable at room temperature down to L ≈ 100nm for the typical thicknesses
and magnetic parameters of Ni80Fe20. Coming back to Fig. 16, it is clear
that dipolar coupling between the thick and the thin layers does favor an
antiparallel alignment of the magnetization directions (AP state).

4.2 Landau-Lifshitz-Gilbert Equation

We start by converting the spin densities s and number current densities j
describing the torque Eq. (25) into magnetizations M and charge current
densities J. The magnetization and spin density are related through M =
−(|g|µB/~)s, where µB is the Bohr magneton (µB > 0). By convention, ge

is negative for free electrons. Since the orbital moment in transition metals
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a)

b)

x

Fig. 17. Magnetization (a) and effective field (b) distributions typical of flat ellip-
tical elements with long axis in the 130 nm range and 2:1 aspect ratio. Ni80Fe20,
thickness d = 2.5 nm.
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Fig. 18. Energy barrier between long and short axis uniformly magnetized elliptical
elements (Ni80Fe20, d = 2.5 nm; room temperature, TR = 300 K). The shape induced
anisotropy Q = 2K/(µ0M
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S) = HK/MS is also plotted.
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is small, the g-factor for transition metals is close to −2. We assume that
the current flows normal to the interfaces of any of those devices sketched in
Fig. 1, then, j · ẑ = −J/e, J being the current density and e the charge of
the electron (e < 0). Lastly, because the free layers of spin-injection devices
need to remain ultra-thin for an optimized sensitivity to spin transfer torques
(see above), it is assumed that the spin transfer torque is distributed over the
thickness d of the soft element within the stack. The spin transfer torque is
then

dM

dt

∣

∣

∣

∣

st

= −|g|
2

µB

M2
S

1

d

J

e
P [M × (M × p)] , (28)

where J is the current per unit area, M the magnetization, p a unit vector in
the direction of the fixed layer magnetization, P a polarization function that
contains all the information stemming from the stack geometry and materials
properties within the stack and depends on the relative orientations of the
magnetizations. In most samples studied to date, P is generally positive, but
it can be made negative by judicious choice of materials [12].

Starting with a magnetization distribution close to equilibrium under zero
current, switching on the current allows the spin transfer torque to shift the
magnetization away from its initial distribution. A new pattern of magnetic
charges will appear that generates a new map of the demagnetizing field.
Since there is no reason for the latter to be uniform, exchange interactions
will also be modified. Summing-up, the magnetization will be subject to the
micromagnetic effective field giving rise to a torque proportional to M × Heff

and the spin transfer torque. Both are anticipated to be a function of position
within the soft element. The total torque reads:

dM(r)

dt
= −γ0 [M(r) × Heff(r)] − |g|

2

µB

M2
S

1

d

J

e
P(r) [M(r) × (M(r) × p)]

+ α

(

M(r) × dM(r)

dt

)

, (29)

where γ0 is the gyromagnetic ratio. The last term is the phenomenological
Gilbert damping , which we assume without further proof may still be applied
to magnetization dynamics in the presence of a spin-polarized current. The
Gilbert damping constant α is typically of the order of 0.01. Eq. (29) is the
Landau-Lifshitz-Gilbert (LLG) equation of magnetization motion augmented
with the spin transfer torque term Eq. (28).

For the rest of the discussion, we ignore the spatial variation of the polar-
ization function P and that of the magnetization direction of the nominally
fixed layer p. In reality, both of these vary. In a first approximation, the spatial
variation of the polarization function could be treated using a laterally varying
one-dimensional transport theory as outlined in Sec. 3. A better approxima-
tion would include lateral transport building on the discussion in Sec. 3.7. The
spatial variation of the fixed layer magnetization could be treated explicitly
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through an equation like Eq. (29). However these effects are complications
that should be added to an understanding built on simpler models. For in-
stance, the inclusion of the dependence of the polarization function P on the
magnetization direction, illustrated in Fig. 14, significantly complicates the
use of generalized perturbation techniques, see Appendix B. For pedagogi-
cal purposes, the ability to use such techniques outweighs the quantitative
differences in the results.

Up to this point, all equations in Sec. 4 have been written in the SI system
of units. We can derive concise expressions for the LLG equation of magne-
tization motion with the appropriate variable reductions. Reduced variables
include fields, magnetization, energy density and time, i.e. H, M, ǫ, t. Defining
MS as the saturation magnetization, SI and cgs units transform in dimension-
less units as

SI : m = M/MS h = H/MS w = ǫ/(µ0M
2
S) τ = γ0MSt (30)

cgs : m = M/MS h = H/(4πMS) w = ǫ/(4πM2
S) τ = 4πγMSt.

(31)

The dimensionless LLG equation then reads:

dm

dτ
= − (m × h) − χ [m × (m × p)] + α

(

m × dm

dτ

)

, (32)

where we have suppressed the spatial dependence of all the quantities. The
pre-factor of the spin transfer term

χ =
~

2

1

µ0M2
S

1

d

J

e
P : [Js]

[

1

Jm−3

] [

1

m

] [

Cs−1m−2

C

]

[1] (33)

is dimensionless as verified to the right of this equation by the units of each
factor. This equation describes the magnetization dynamics in spin torque
systems.

Manipulating Eq. (32) further gives an expression that characterizes the
energy flow within these system. We take the cross product of the left and
right hand sides of this equation with dm/dτ , use the triple cross product
formula and factor out a common factor of m to give

(

h · dm
dτ

)

+ χ

(

(m × p) · dm
dτ

)

= +α

(

dm

dτ

)2

. (34)

Eq. 34 underlies the whole of magnetization dynamics, including spin torque,
in the classical limit. It expresses the trade-off between dissipation , the work
per unit time (power) of the effective field, and power of the spin torque for
which the (dimensionless) equivalent field is χ (m × p). In the next section,
we consider the macrospin approximation in detail. Before we do, it is worth-
while to examine Eq. 34 in this limit. We see that when χ = 0 (J = 0), the
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magnetization may not precess along a closed orbit in the absence of any time-
periodic driving field, unless the damping is also zero. On the other hand, when
χ 6= 0, closed magnetization orbits are allowed even for non-zero damping. In-
tegrating Eq. 34 around a closed path expresses this point mathematically.
Micromagnetic fields are conservative so that integrating them along a closed
path gives zero, that is

∮

hµMag · dm ≡ 0. For a stable trajectory, the dissi-
pated energy must equal the work due to the spin transfer over one period.
Mathematically, this amounts to saying that for any closed magnetization
trajectory Γ, the following relation should (cf Eq. 34) be satisfied:

∫

Γ

[

χ

(

(m × p) · dm
dτ

)

− α

(

dm

dτ

)2
]

dτ = 0 (35)

Trajectories that satisfy this condition are called precessional states. The ex-
istence of such closed magnetization orbits is a key prediction of spin transfer
induced magnetization dynamics.

4.3 The single or macro-spin approximation

Despite the words of caution above, the macro-spin approximation remains
essential in deciphering the main features of magnetization dynamics under
the action of the spin transfer torque. One needs first to define an energy
functional for the system under study. In a minimal approach, due to the
large lateral dimension/thickness ratio, the demagnetizing field may be ap-
proximated by that of a thin elliptical cylinder. Since the thickness is so small
compared to the in-plane dimensions, the dominant term is approximately
the demagnetizing field of a uniformly magnetized thin film with infinite lat-
eral dimensions, namely HD = [0, 0,−MSmz]. The associated energy density
amounts to ǫ = − (1/2)µ0M · HD = − (1/2)µ0M

2
Sm

2
z. The remaining terms

describe demagnetizing effects linked to the shape of the soft element and are
equivalent to a shape anisotropy of type K

(

1 −m2
x

)

. Including the Zeeman
energy, the overall energy density reads:

ǫ = K
(

1 −m2
x

)

+
1

2
µ0M

2
Sm

2
z − µ0 M ·Ha , (36)

where Ha is the applied field. In the following, we assume that the applied field
has a non-zero component only along x, the in-plane easy axis (see Fig. 16).
When pulled out of equilibrium, the magnetization is subject to an effective
field

Heff = − 1

µ0MS

δǫ

δm
= [Ha

x +HKmx, 0, −MSmz] , (37)

where HK = 2K/(µ0MS) is the anisotropy field.
In dimensionless form, Eqs. 36 and 37 become:
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w =
1

2
Q

(

1 −m2
x

)

+
1

2
m2

z − m · ha

heff = − δw

δm
= [ha

x +Qmx, 0, −mz] ,

(38)

with Q = 2K/(µ0M
2
S) = HK/MS. Q provides a measure of the strength of the

shape anisotropy versus stray field energy.

x
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φ

ˆ e r
ˆ e φ
ˆ e θM

Fig. 19. Spherical coordinates: definition of angles. The usual Cartesian magneti-
zation components read: mx = cos φ sin θ, my = sin φ sin θ, mz = cos θ.

The magnetization vector m has a fixed length, which suggests that we
convert the equations of motion into spherical coordinates, namely:

dθ

dτ
= hφ − α sin θ

dφ

dτ

sin θ
dφ

dτ
= −hθ + α

dθ

dτ

(39)

where θ and φ are the polar and azimuthal angles, as defined in Fig. 19, and
hθ, hφ the reduced field components stemming both from the micromagnetic
response of the system and spin transfer

hθ = hµMag
θ + hST

θ ; hµMag
θ = −∂w

dθ
; hST

θ = −χpφ (40)

hφ = hµMag
φ + hST

φ ; hµMag
φ = − 1

sinθ

∂w

dφ
; hST

φ = +χpθ (41)

pθ and pφ being the components of the fixed layer magnetization direction in
spherical coordinates. It is also convenient to convert the LLG equation from
the Gilbert form, in which the damping depends explicitly on dm/dτ to the
Landau-Lifshitz form in which it depends on the effective field. The vector
LLG equation, Eq. (32) becomes a set of two first order differential equations
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(

1 + α2
) dθ

dτ
= hφ + αhθ

(

1 + α2
)

sin θ
dφ

dτ
= −hθ + αhφ ,

(42)

Onset of precessional states

Numerical integration of an equation similar to Eq. 29, or, preferably, Eq. 42
gives stable precessional states, as first demonstrated by Sun [107]. Within
the macro-spin approximation, the current threshold for the establishment
of a stable magnetization trajectory may be simply derived from standard
perturbation theory. Clearly, in the absence of current and under the action
of any applied field ha

x > 0, the stable magnetization direction satisfies mx =
1, or, θ = π/2, φ = 0. The damping constant α is generally small. In the
trajectories we are interested in, the spin-transfer torque roughly balances
the damping so that χ is of the same order of magnitude as α and both can
be treated as small parameters. To investigate the onset of stable precessional
states, we focus on trajectories in which the magnetization is close to its
equilibrium direction. This suggests the replacement θ = π/2 + ξ, so that
ξ and φ can be treated as small. Taking 1 + α2 ∼= 1 leads to the following
linearized equations of magnetization motion

dξ

dτ
= hφ + αhθ

dφ

dτ
= −hθ + αhφ

(43)

with

hθ = − (1 +Q+ ha
x) ξ − χφ

hφ = +χξ − (Q+ ha
x)φ.

(44)

IfD is the differential operatorD = d/dτ and u = Q+ha
x, the characteristic

equation for the set of linear differential equations (43, 44) becomes:

D2 + [α+ 2 (αu− χ)]D + u (1 + u) = 0 (45)

Its determinant proves to be strictly negative to the lowest order in α and
χ implying complex conjugate eigenvalues, µ. The focus mx = 1 is stable
when Reµ > 0, unstable in the opposite case. Converting to real time units,
equations (43, 44) lead to elliptical precession proportional to

exp(−t/t0) cos(ωt+ Φ0) (46)

where

t0 =
1

γ0MS(χcrit − χ)

ω = γ0MS

√

u (1 + u) − [χcrit − χ]
2

(47)



Spin Transfer Torque and Dynamics 45

with,

χcrit = α

(

1

2
+Q+ ha

x

)

∼= α

2
if Q, ha

x ≪ 1 (48)

Therefore, magnetization motion is expected to be exponentially damped out
for χ less χcrit (low currents) and exponentially amplified as the current in-
creases to the point where χ > χcrit.. As is usual, the characteristic time t0
goes to infinity when χ = χcrit. On the other hand, the angular precession
frequency ω goes through a maximum equal to Kittel’s resonance frequency
ωK = γ0MS

√

Q+ ha
x

√

1 +Q+ ha
x at the transition.

In first approximation (Q, ha
x ≪ 1), the critical current is proportional

to the damping parameter , the soft layer thickness and to the square of the
saturation magnetization. It is represented by the line labeled χ1 in Fig. 22
that displays the phase diagram of the magnetization states in the ha

x > 0
half space. 1 As anticipated, direct numerical estimates of the critical current
for the onset of precessional motion as a function of applied field are in per-
fect agreement with Eq. 48. Stability calculations such as these can be used
to determine the stability ranges of the different configurations for different
anisotropies and applied fields. Bazaliy et al. [108, 109] and Xi et al. [110] have
carried out a variety of such calculations for various magnetic configurations.

As an illustration, using typical parameters for Ni80Fe20 (µ0MS = 1 T, α =
0.01, d = 2.5 nm), one arrives at a critical current density Jc1 ≈ 3×1010 A/m2

or 30 mA/µm2 for a 100 % polarization in zero field. For a typical elliptical
element with lateral dimensions 130 × 70 nm2, this would correspond to a
current ≈ 0.2 mA. A three times higher current would be required for a more
realistic electron polarization of 1/3.

Precessional states: stability range

In the previous section, we have shown that for current greater than the
critical current, the static state becomes unstable to precession. However, this
calculation does not address the issue of how large the precession becomes
because the precession amplitude is determined by the non-linearities of the
system. For currents just above the critical current, we compute numerically
the finite precession amplitude that occurs. Concentrating first on the case
with no applied field, ha

x = 0, simulations do show that stable magnetization
trajectories may be found over a finite current range. Trajectories open up
with increasing current beyond Jc1 as shown in Figs. 20 and 21. This opening
up can be monitored by the minimal and maximal φ values. In the immediate
vicinity of Jc1, φMax increases with an infinite slope, a characteristic signature
of a simple Hopf bifurcation (Fig. 21). Note that we use a double x scale in

1 Unless otherwise stated, all simulations in sections 4.3 and 4.4 use parame-
ters mimicking a 130 × 65 × 2.5 nm3 Ni80Fe20 elliptical platelet, namely MS =
800 kA/m, HK = 29.05 kA/m (Q = 0.0365), γ0 = 2.21 105 (sA/m)−1, α = 0.01 .
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Fig. 21: the top scale refers to the current density (A/µm2), the lower to the
corresponding χ/α value. As shown in Appendix B, χ/α is the true reduced
current density and damping-related variable in this non-linear magnetization
dynamics problem.

 Γ Jc1  Jc2

x y

z

Fig. 20. Closed orbits characteristic of precessional states for current densities
J = 0.11− 0.13 in steps of 0.0025 A/µm2 and J = 0.13175 A/µm2 in the single spin
approximation. hx = 0. The locus of the extrema of φ materialized by the light green
line is slightly inclined with respect to the equatorial plane. See text for details

Soon after the onset of precessional states, the precession frequency de-
creases almost linearly with increasing current density (Fig. 21). Close to a
second threshold, Jc2, trajectories pile up against a typical eye-shaped curve
(Fig. 20), that is later going to be identified with a homoclinic cycle (see Ap-
pendix B). Whilst doing so, the velocity of the magnetization direction along
a given trajectory, Γ , on the surface of the unit sphere, namely

ds

dτ
=

√

(

dθ

dτ

)2

+ sin2 θ

(

dφ

dτ

)2

(49)

is seen to drop to almost zero at the apices of the trajectory (Fig. 25a). The
spin torque is however largest there. From a static point of view, it has to be
compensated by another torque: the latter derives from the demagnetization
field, hence a slight slanting of the trajectory that, in first approximation,
obeys
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mApex
z + χmApex

y = 0

or,
π

2
− θApex = χ sin

(

φApex
)

(50)

It also ought to be noted that the velocity distribution is not symmetrical (see
Fig. 25a), another result of magnetization trajectories slanting. Lastly, close
to Jc2, the precession frequency collapses to zero (Fig. 21).

Switching and out-of-plane precessional states

Increasing the current density beyond Jc2 leads to one of two possible events.
As long as ha

x < Q, the system switches to a configuration with the magneti-
zation opposite to the ground state, in the −x̂ direction. As shown in Fig. 23a,
switching takes place when magnetization trajectories bifurcate close to one
of the saddle points S1 and S2 [111]. Then, depending on the exact current
density, switching takes place via either a clockwise or a counterclockwise mo-
tion. As first noticed by Sun [107], as soon as the magnetization has moved
from one attraction basin (say F1) into the next (say F2) the spin transfer
torque acts as an effective additional damping term as evidenced by the small
number of ringing oscillations before reaching equilibrium despite the small
Gilbert damping constant. Switching in the single spin approximation at 0 K
is therefore to be viewed as a three stage event (Fig. 23a): during the initial
phase, the magnetization creeps out of its initial equilibrium position through
precession around the demagnetizing field that is parametrically amplified un-
der the action of the spin transfer torque. It is indeed a parametric excitation
because the spin transfer torque is a function of the magnetization orientation.
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Fig. 22. Phase diagram in the hx > 0 half space as a function of χ/α, a dimensionless
quantity proportional to the current density. The line hx/Q ∼= 1 schematically sepa-
rates regions where switching may take place (i.e. between neighboring shaded areas)
from regions where only a positive current may upset the parallel alignment enforced
by the applied field. Curves labelled χ1 correspond to transitions between stable (P
or AP) states and precessional states of type shown in Fig. 20 (In-plane Prec. States).
Open square symbols delineate the transition between an In-plane Prec. State and
a reversed state (hx/Q < 1) or an Out-of-plane Prec. State (hx/Q > 1) according
to numerical micromagnetics in the single-spin approximation. Curves labelled χ2

correspond to the critical switching current vs. field according to Melnikov’s method.
When hx > Q, the critical current χ2/α for transition between an In-plane and an
Out-of-plane Prec. State may not be estimated directly, although bounds to χ2/α
may be defined (curves labelled χLower

2 and χUpper
2

: see Appendix B for details).
The faint line between χ1 and χ2-χ

Lower
2 is the locus for In-plane Prec. States with

π span in the equatorial (sample) plane.

Following bifurcation (second phase), a more highly damped precession type
motion (third stage) drives the magnetization into its new equilibrium state.
Spin transfer induced switching therefore appears to qualitatively mirror a
field induced precessional switching event [105, 112, 113] where the initial
phase proves ringing-free whereas relaxation within the new potential well
may imply a large number of ringing oscillations. Critical currents vs. ap-
plied field for bifurcation into a reversed state (hx < Q) are shown as square
symbols in Fig. 22.
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Fig. 23. Top : example of switching trajectory (ha
x = Q/2, χ/α = 0.77); F1 and

F2 are fixed points owing to sample energetics whereas S1 and S2 are saddle points
that correspond to a velocity minimum along the switching trajectory. Bottom :
bifurcation to an out-of-plane precessional state (ha

x = 2Q, χ/α = 1.75)
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Fig. 24. a) Switching time vs. current density at zero temperature and field. In this
example, the switching time behaves roughly as (J−Jc1)

η with η ≈ −0.9, i.e. a value
close to expectation based on perturbation theory (η = −1 [107]); b) Frequency of
precessional states (in-plane to the left, out-of-plane to the right) for hx = 2Q at
zero temperature

In the previous section, the onset of precessional states could be de-
rived from elementary perturbation theory. However, the switching current
is distinctly different than the critical current for the onset of precessional
states, as seen in numerical simulations. However, no closed form could be
established for the switching current starting from simple perturbation the-
ory. As shown in Appendix B, such a result may be derived from Mel-
nikov’s method [114, 115], a method applying to weakly perturbed time
periodic Hamiltonian systems for which unperturbed trajectories in space
may be derived from the energy landscape. Within the relevant field inter-
val −Q ≤ hx ≤ Q and within the framework of our simple energetics, the
critical current for switching is found to be equal to:

χ2

α
= r2

√

1 +Q





h ξS +
√
Q

√

1 − h2
x

Q2

h
√

1 − h2
x

Q2 + r2
√
QξS



 (51)

with h = hx

Q

√

Q
1+Q , r2 = 1 − h2, ξS = cos−1(− h√

Q
√

1−h2
) (see Appendix B

for details). Notable switching currents values include χ2

α = 1
2 ,

2
π

√
1 +Q and

1 for hx = −Q, 0,+Q, respectively. The reduced critical current density for
switching in the interval −Q ≤ hx ≤ Q (−HK ≤ Hx ≤ HK) is displayed as
line labelled χ2 in Fig. 22. Clearly, the agreement with numerical simulations
in the single-spin approximation proves excellent. Lastly, the time necessary
for switching is very close to the time necessary to reach the bifurcation point
and depends sharply on the current density as shown in Fig. 24a.
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When ha
x > Q, switching in the conventional sense does not occur because

the field exceeds the effective anisotropy field. Instead, a bifurcation takes
place between a closed orbit that is essentially symmetrical with respect to to
the equatorial plane (z = 0) and another closed orbit either above or below
the equatorial plane as shown in Fig. 23b. Similarly to “in-plane” precessional
trajectories, the velocity along “out-of-plane” trajectories also proves to be
highly non-uniform as shown in Fig. 25b.

Lastly, the case ha
x = Q (Ha

x = HK) proves singular. Mathematically,
the switching time diverges to ∞. However, such a situation is not robust
against thermal fluctuations and leads to intermittency as shown in Fig. 4.
Here also, critical currents vs. applied field for bifurcation into an “out-of-
plane” precessional state are shown as square symbols in Fig. 22. Note that
precessional states are expected to be precursor states to both the “P” to
“AP” and “AP” to “P” transitions, as confirmed by experiments [116]. At
zero temperature, the frequency of precessional states follows trends indicated
in Fig. 24b for a given value of the applied field. Essentially, the frequency
decreases with increasing current for “in-plane” precessional states whereas
the opposite behavior characterizes “out-of-plane” precessional states.
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Fig. 25. Velocity along closed orbits. a) ha

x = 0, J = 0.1150, 0.1225, 0.13175 A/µm2,
i.e. χ/α = 0.5647, 0.60155, 0.64697; b) ha

x = 2Q, mz > 0 (upper branch), J =
0.256 A/µm2, i.e. χ/α = 1.2571. Motion is counterclockwise and clockwise for the
upper and lower branches, respectively.

4.4 Langevin dynamics

The results in the previous sections were computed at zero temperature. They
provide a reasonably accurate description of measurements made at low (liq-
uid He) temperatures. However, most experiments are done at room tempera-
ture where thermal effects become much more important. Finite temperatures
cause the system to fluctuate between states. For the most part, these states
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are close-by to the zero temperature state, but large fluctuations can cause
transitions over barriers into other stable or metastable states. Thus, finite
temperatures change the transition between states from deterministic to sta-
tistical. Thermal effects can be modelled through statistical descriptions in
Fokker-Planck approaches [117, 118] or barrier crossing models [25, 33]. Al-
ternatively, thermal effects can be included in dynamical simulations through
the addition of a random field, HRd, to the effective field. Each component
of HRd is uncorrelated both in space and time and obeys a purely Gaussian
distribution with zero average value and variance µ:

〈HRd〉 = 0

〈Hi
Rd (t)Hj

Rd (t′)〉 = µ δij δ (t− t′)

µ =
2kBT

µ0γ0MSV
α

(52)

as derived from the application of the fluctuation dissipation theorem [119].
Here V is the volume of the sample for macrospin simulations and the volume
of the simulation cells for micromagnetic simulations (see next section).

Several authors have studied the effect of thermal fluctuations in macrospin
models and simulations [25, 33, 117, 120, 118, 121]. The main effect is that
thermal fluctuations promote transitions between metastable (or stable) zero
temperature configurations. These fluctuations move the phase boundaries
shown in Fig. 22 and give them a degree of indeterminacy. Figure 26 illustrates
the stochastic nature of finite temperature switching. It shows the distribution
of switching times for two pairs of fields and currents. For one pair, the system
is stable (and would never switch) at zero temperature, and for the other it is
unstable and would switch with a unique switching time at zero temperature.
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Fig. 26. Switching time distribution at 300 K for Hx = 0. Average over 4096 trajec-
tories. a) J = 0.15 A/µm2 : current density slightly above the switching threshold
at 0K; b) J = 0.1315 A/µm2 : current density just below the switching threshold at
0K.



Spin Transfer Torque and Dynamics 53

Generally speaking, switching time distributions appear to be pseudo-log-
normal, with a rapidly increasing distribution width as soon as the current
density falls below the switching threshold at 0 K. Experiments do not yield
switching time distributions for preset current densities but rather switching
probabilities vs. current density for preset waiting times or current ramp rates
[25, 34, 116]. Measured distributions of switching currents are substantially
skewed on the side of the small current densities (absolute value). Unfortu-
nately, typical experimental waiting times (ramp rates) prove far too long
(too slow) for direct comparisons to be made between experimental data and
Langevin dynamics predictions, even in the single spin regime. An important
conclusion of [34] is that the barrier height appears mostly independent of the
free layer thickness, a disproof of any thermal activation model over a single
barrier. Indeed, as shown below, full scale micromagnetic simulations lead to
genuinely complex representations of spin-transfer induced switching.
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Fig. 27. Dynamic phase diagrams for a 130 nm by 70 nm elliptical Co free layer
of thickness 3 nm. Left panel: T = 3 K; middle panel: T = 300 K; Right panel:
T = 3000 K. For fixed H , a bistable region labelled A/B exhibits the A state when
J is scanned from left to right and the B state when J is scanned from right to left.
The correspondence needed to compare with Fig. 6 is 108 A/cm2 ↔ 10 mA. “F”
refers to a configuration with a fixed magnetization direction that is not along the
easy axis.

Russek et al. [120] and Xiao et al. [121] have computed the effect of tem-
perature on phase diagrams like that shown in Fig. 22. The evolution of the
phase boundaries with temperature in illustrated in Fig. 27. These phase di-
agrams were computed by sweeping the current at fixed field as done in the
experiment in Fig. 6. However, as noted above, the field sweep rates in the
calculation are orders of magnitude faster than those in the experiment. The
effect of the slower sweep rate can be qualitatively captured by considering
higher temperatures, hence the calculation at the unphysical temperature of
3000 K. The 3000 K simulation gives some indication of how the 300 K simu-
lation might look if the sweep rate was comparable to that of the experiment.
This indication is only approximate because the trade off between sweep rate
and temperature depends on the energy barrier between the competing config-
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urations and this energy barrier varies throughout the phase diagram. These
finite temperature simulations show trends toward better agreement with the
results in Fig. 6. Two differences are apparent. The simulation does not show
the “W” phase, in which there is no apparent precessional peak, but which
has a resistance distinctly different than the antiparallel state. On the other
hand, there is no indication of the high current, high field fixed phase “F” in
the experimental data.

Temperature also affects the details of the precessional dynamics [120].
In the single spin and zero temperature limit, precessional states are charac-
terized by a frequency that is just a function of current density, in-plane
anisotropy and damping parameter. In the frequency domain precessional
states are thus defined by a pure Dirac delta function. Raising the tempera-
ture introduces stochasticity in the magnetization trajectories. As a result of
the action of the stochastic field, magnetization motion also displays fluctu-
ations when compared to the 0K limit. Of major interest here is a quantity
that measures the influence of a value of the function m at time t on the value
at time t + ξ, a quantity called the autocorrelation function (see e.g. [122]).
The Power Spectrum Density (PSD) of a scalar quantity x (t) is the Fourier
transform of the autocorrelation function (Wiener-Khinchin theorem). It is
the “power” emitted within the interval [f, f + df ] (natural units W/Hz).
Physically, a long correlation time corresponds to nicely peaked power spec-
tra whereas short correlation times yield flat spectra. Lastly, it ought to be
stressed that care is necessary when estimating PSD’s from data x (t) extend-
ing over finite times (see e.g. [123] for an outlook at windowing and averaging
methods).

Figs. 28 and 29 (Hx = 2HK) display the main results to be expected from
the single spin model at low temperature in a current regime allowing for pre-
cessional states of the first kind (see Fig. 20). Due to symmetry of the closed
magnetization trajectories with respect to x, the easy magnetization axis, the
fundamental frequency for a given current density is given by the power spec-
trum density of the my magnetization component, whereas the PSD deduced
from mx corresponds to twice the fundamental frequency. Thus, depending on
the observable, PSD’s may reveal either the fundamental frequency, its first
harmonics or a mixture of both, as well as higher harmonics. Hopefully, how-
ever, ambiguity in the spectral response should in most cases be lifted due to
the fact that, at the onset of sustained precession, the fundamental frequency
is equal to Kittel’s resonance frequency, which only depends on materials pa-
rameters and applied field (see section 4.3). Figs. 28 and 29 show that the
peak in the PSD initially grows with rising current density as the frequency
decreases (the so-called “redshift” regime owing to [30]). Further increases of
the current density lead to a decrease of the peak in the PSD and power is
gradually transferred into higher harmonics, namely 3, 5..., (2n+ 1) f for the
my PSD, 2, 4..., (2n) f for the PSD stemming from mx. In this precessional
regime, in agreement with the phase diagram in Fig. 22 and general perturba-
tion theory (Appendix B), closed magnetization orbits gradually open up up



Spin Transfer Torque and Dynamics 55

Fig. 28. my power spectrum density (PSD) vs. current density at 4.2K for
Hx = 2HK. Current density step: 0.01 A/µm2. “Low” current density regime: preces-
sional states essentially symmetrical with respect to the sample plane. a) fundamen-
tal frequency f(J)). The frequency decreases with increasing current (redshift), as
symbolized by the elongated red triangle. Inset: PSD very close to Kittel’s resonance
frequency; b) 3rd harmonics. Pollution from higher harmonics has been removed.

Fig. 29. mx Power spectrum density vs. current density at 4.2K for Hx = 2HK.
Current density step: 0.01 A/µm2. “Low” current density regime: precessional states
essentially symmetrical with respect to the sample plane. a) lowest frequency. Inset:
PSD in the immediate vicinity of twice Kittel’s resonance frequency; b) harmonics.
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to extremely wide excursion angles (from typically ±π/3 for J = 0.13 A/µm2

to ±π for J = 0.24 A/µm2). A plot of the log of the power spectrum den-
sity vs. frequency (not shown) indicates the presence of higher harmonics to
orders up to about 20 with a close to exponential decay of the PSD maxi-
mum with increasing frequency (typically 30 dB per octave). Note also that
at these very low temperatures and usual damping parameter (α = 0.01 in
these simulations), the line width remains extremely narrow with full width
at half maximum in the 70 MHz to 80 MHz range.

Fig. 30. Power spectrum density vs. current density at 4.2K for Hx = 2HK. “High”
current density regime: out-of-plane precessional states. The frequency increases
with increasing current (blueshift), as symbolized by the elongated blue triangle.
The mx and my spectra are indistinguishable in this regime. Current density ranging
from 0.27 to 0.45 A/µm2 in steps of 0.1 A/µm2.

As explained above, a further increase of the current density leads to the
onset of a new precessional regime characterized by out-of-plane precessional
states (see Figs. 23, bottom). The power spectrum density in this regime is dis-
played in Fig. 30. As expected from 0K simulations, out-of-plane precessional
states are characterized by a blueshift in frequency with increasing current
density with, roughly speaking, a 1

2 power law dependence of the frequency
vs. current density. It is noteworthy that in this regime the PSD’s associated
with mx or my are indistinguishable, a property that might help in estab-
lishing a clear separation between precessional states in the “low” and “high”
current regimes (in other words, the PSD should remain essentially indepen-
dent from the exact orientation of the applied field in the vicinity of the easy
magnetization axis).

Remarkably enough, many of the predictions of the simple single spin ap-
proximation have clear transcriptions in the room temperature point-contact
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experiments of Rippard et al. [30]. The existence of a redshift and a blueshift
regime has been clearly identified, although the latter has only been observed
under high perpendicular applied field (> 0.6 T). Similarly, precessional states
in the redshift regime have been observed only for easy axis fields exceeding a
threshold (50 mT) well above any estimated effective anisotropy field in these
systems. At large applied fields, frequency domain measurements of the mag-
netoresistance (reported in units of V/Hz1/2) show extremely narrow magne-
toresistance peaks that behave at least qualitatively similarly to PSD’s shown
in Figs. 28-29. MR spectra do imply some mixing between f and 2f contri-
butions, the source of which has been attributed to misalignment between
the magnetization directions at equilibrium under field within the reference
and free layers. It is generally estimated that a misalignment of less than
10◦ proves sufficient to restore PSD’s of comparable magnitude for the fun-
damental frequency and its first harmonics. Higher harmonics have not been
observed but, clearly, theoretical expectations ought to be convoluted with the
experimental spectral bandwidth and take into account detailed features of
the magnetoresistance response such as shown in Fig. 14. On the other hand,
a major discrepancy between experimental data and theoretical expectations
appears as soon the temperature is raised in the simulations: the line width
grows with roughly the square root of the temperature reaching typical values
around 300 MHz at 77 K and some 700 MHz at 300 K for a damping parameter
still equal to its nominal value as extracted from e.g. an FMR experiment.
Now, raising the anisotropy will mainly affect the resonance frequency at the
onset of precessional states, but not so much the line width that remains es-
sentially controlled by the damping parameter. It thus turns out that a few
tens of MHz full width at half maximum at room temperature requires an
effective damping parameter in the 10−4 range, the origin of which remains
mysterious at this stage.

The experiments of Rippard et al. [30] use a lithographically defined point
contact with continuous magnetic films (see Fig. 1). The exchange coupling of
the dynamic part of the system to an extended magnetic film raises doubts on
the applicability of the macrospin approximation. The experiments of Kiselev
et al. [28, 124], on the other hand, use a nanopillar geometry with a finite free
layer. We expect the macrospin model to be a better approximation for these
samples. Unfortunately, the results complexity extends far beyond macrospin
predictions, calling for full micromagnetic simulations.

4.5 The micromagnetic regime

In contrast to the single spin approximation, micromagnetics allows for non
uniform magnetization distributions across the area (and thickness) of both
the free and hard layers elements. As stressed in section 4.1, the magnetization
now becomes a function of position within a given element and is subject to
the spin transfer torque as well as to the action of an effective field, itself a
function of the magnetization distribution. Both the spin transfer torque and
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the effective field are thus position dependent within the considered element
(see Eqs. 29 or 32). Excitations such as spin- or magnetization waves are now
allowed within the elements of the stack. Moreover, the effect of the Oersted
field may now be taken into account.

There have been a number of calculations using this approach [125, 126,
127, 15, 128, 129, 130, 131, 132]. These have clarified some of the discrepan-
cies between measurements and macrospin simulations. In particular, Lee et
al. [15] have shown that in the region where experiments show the “W” phase,
the magnetization is far from uniform. Vortices enter and leave the system re-
ducing the resistance from the full antiparallel value without exhibiting well
defined precession. Berkov and Gorn [132], have shown that a postulated dis-
tribution of local anisotropies qualitatively reproduces the current dependence
of the precession frequency and linewidth seen in experiments of Kiselev et
al. [28]. While full micromagnetic simulations do a better job describing the
behavior of the system, they do it with a greater degree of uncertainty because
many unmeasured details of the system are important, included among these
are the exchange stiffness and saturation magnetization, the distribution of
anisotropies, the details of the shape, particularly the edges of the sample,
etc.

Even for a perfectly characterized sample, however, micromagnetics alone
does not provide a fully consistent model of spin transfer induced excitations
and switching since, up to this date, it has not been twinned with a truly 3D
transport model [101, 102]. So far, micromagnetics calculations have relied on
1D transport theory for the evaluation of the spin transfer torque. Additional
approximations are often made. In most instances, micromagnetic simulations
rely on the assumption of a uniform and static magnetization distribution
within the hard (pinned) layer as well as a uniform current density across the
element. It is often further assumed that the polarization P(r) is constant,
irrespective of the relative orientations of the magnetization within the hard
and soft elements . According to the results of section 3.7, lateral diffusion and
rescattering are anticipated to have a stabilizing effect for a net electron flow
from the free layer into the adjacent non-magnet and a destabilizing effect
in the reverse geometry. Owing to prevailing conventions, lateral diffusion
and rescattering would thus be anticipated to improve and degrade spatial
coherence for the P-AP and AP-P transitions, respectively.

We start this section by considering the fate of precessional states (Hx >
HK) within small elements when shifting from the single spin approxima-
tion to the full micromagnetic regime [131]. These states are substantially
the same but there are important differences between the two descriptions.
At low current densities and room temperature, power is emitted at basically
constant frequency within a well defined current density span. Two peaks in
the power spectrum density extracted from the time variation of 〈my〉, i.e.
the my magnetization component averaged over the volume of the element,
are observed. They correspond to two vibration eigenmodes of elliptical ele-
ments [133] as depicted in Fig. 31a. The largest emitted power corresponds
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Fig. 31. Micromagnetic regime: 〈my〉 power spectrum density vs. cur-
rent density at 300 K for Hx = 3 HK. a) Low current density regime
(J = 0.025, 0.05, 0.06, 0.075, 0.085, 0.09 A/µm2); Insets: eigenmodes at 8.2
and 11.2 GHz. b) Redshift regime at higher current densities (J =
0.1, 0.125, 0.150, 0.175, 0.2, 0.25, 0.3, 0.4 A/µm2); Inset: spatial PSD distribution at
5.4 GHz (J = 0.125 A/µm2). Ni80Fe20 like materials parameters (Exchange constant:
A = 1.0 10−11 J/m, saturation magnetization MS = 800 kA/m, damping parameter
α = 0.01). Elliptical free element: thickness d = 2.5 nm, long and short axes 115 nm
and 70 nm, respectively. For this set of material parameters and dimensions, the
shape induced anisotropy field amounts to ≈ 19.5 kA/m (≈ 245 Oe). After [131]

to a mode characterized by enhanced in-phase magnetization precession in
the vicinity of the apices of the elliptical element . For this mode, the emit-
ted power first grows with increasing current density, then decreases. Worth
noticing is the fact that the characteristic frequencies of these eigenmodes
differ from Kittel’s frequency (8.2 and 11.2 GHz for the former vs. 9.18 GHz
for the latter for the dimensions and material parameters considered). Over
a large current density range beyond a second current threshold, (Fig. 31b),
the PSD vs. current density exhibits the redshift behavior also characteristic
of the single spin approximation for χ > χcrit. (cf Eq. 48). In the redshift
regime, precessional states correspond to an essentially coherent precession
of the magnetization within the central zone of the element as illustrated in
the inset of Fig. 31b. Results contained in Fig. 31 are, qualitatively at least,
consistent with the experimental results of Kiselev et al. (notably Figs. 1c and
d in [28]). The results above differ from the simulation data of Lee et al. [129]
who found that precessional states could only be maintained over a very nar-
row current density range for fields typically equal to 3HK in Co elements.
Actually, in their respective attempts to fit Kiselev’s et al. experiments, Lee
et al. [129] and Berkov and Gorn [132] rely on markedly different assumptions
with respect to material parameters (exchange stiffness, existence or not of a
depressed saturation magnetization) and microstructure. These analyses also
differ in the conversion of the time dependent micromagnetic magnetization
distributions into a measurable GMR signal (Berkov and Gorn apply the field
along a rather skewed direction with respect to the ellipse long axis, Lee et
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al. do not). Altogether, assuming that all of the simulations referred to above
are technically sound, it seems clear that simulation results prove extremely
sensitive to a wide range of parameters that remain only poorly known in
these tiny magnetic elements.
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Fig. 32. Switching event in a 170 × 80 × 2.5 nm3 elliptical element at 0K owing to
numerical micromagnetics. Left: average magnetization components 〈mx〉 and 〈my〉
vs time. Right: Torque spike linked to vortex pair annihilation. Current density: J =
−0.4 A/µm2, polarization P = 0.3 . Co/CoFe like material parameters (Exchange
constant: A = 1.3 10−11 J/m, saturation magnetization MS = 1500 kA/m, damping
parameter α = 0.006).

We turn now to a micromagnetic switching event. For simplicity, we keep
the fixed layer frozen and fix the spin current coming from it to the free layer,
thus, the free layer is treated as a soft element flooded with a uniform density
of spin-polarized electrons. The Oersted field is assumed to originate from
an elliptical cross-section cylinder with height 50 nm meant to represent the
pillar height with the soft layer located at half-height across the pillar. We
further assume that the hard layer is left unpatterned so that the soft element
is only subject to its self demagnetizing field, exchange interactions and the
spin transfer torque with P(r) constant. Symmetry in the spin torque is lifted
through the application of a minute constant field along y. The current is
assumed to start flowing at time t = 0 and follow a simple step function.
The current density is chosen to stand slightly above the switching threshold
current density at zero temperature.

Three phases characterize the switching event. During the first phase, last-
ing about 1.5 ns, the average value of the transverse magnetization component
〈my〉 remains almost zero, as shown in Fig. 32. So does the 〈mz〉 component.
Due to the inhomogeneous magnetization and effective field distribution , in-
cluding the Oersted field, the spin torque proves most efficient close to the
apices of the elliptical element, leading to a beating between two mirror-
symmetric C-type states (Fig. 33) with a period of ≈ 160 ps. Magnetization
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Fig. 33. Magnetization distribution vs time corresponding to Fig. 32 (T = 0 K).
Color map extending from red (−1) to blue (+1) for the mx and my magnetization
components (the left and right image of each images pair, respectively). The surface
of the element distorts according to the sign and amplitude of the mz magnetization
component. See text for details.
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Fig. 34. Vortex nucleation t = 1.496 ns and pair annihilation (starting at t =
3.243 ns) during the switching event described in Fig. 33. Color representation and
surface distortion according to the sign and amplitude of the mz magnetization
component. Note the extremely sharp transition between the blue and red colors
within the grey circle for t = 3.25 ns, followed by the emission of a magnetization
wave for t = 3.255 ns.

waves develop smoothly (t = 1.0 − 1.5 ns). When t reaches 1.496 ns, the first
vortex pair is nucleated along the lower rim of the element (see Figs. 33
and 34).

During the second phase, the magnetization motion becomes complicated
with extreme excursions of both the my and mz components between −1 and
+1, as displayed in Fig. 33 (t = 2.5 − 4.4 ns). However, the average trans-
verse magnetization component 〈my〉 undergoes globally increasing oscilla-
tions away from its ground state. This phase is equivalent to the parametric
pumping phase characteristic of the single spin model.

Switching, the third phase, only occurs if partial resynchronization takes
place (t = 4.45 ns, Fig. 33). This feature is quite general. With increasing
current density, sub-ns switching speeds may be achieved in simulations, in
agreement with experiments [134]. However, prior to switching, the element
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still contains winding vortex-antivortex pairs indicated e.g. by the grey circles
in Figs. 33 and 34 for t = 3.243 ns that are seen to decay through the emission
of magnetization waves (t = 3.255 ns in Figs. 33 and 34). In most instances,
the annihilation process manifests itself through a sharp peak in the maximum
torque recorded across the simulation area (see Fig. 32, right). Vortex pairs
are termed winding if both the circulation of the magnetization and the core
magnetization [135] change sign between the elements of the pair so that the
magnetization would rotate by 360◦ along a line joining the vortex cores. The
annihilation of such a vortex pair would normally imply the nucleation and
propagation of a Bloch point.

Although numerical micromagnetics can be done in a sophisticated enough
manner to treat Bloch points rather satisfactorily [136], annihilation of wind-
ing vortex-pairs is usually a numerical artifact [137], especially when the sim-
ulation mesh implies a single plane of nodes in these very thin elements. If
such structures in the magnetization do occur, the fine details of the simu-
lation become unreliable as the results become strongly mesh and time-step
dependent, even at zero temperature. Readers are in this respect cautioned
to examine all simulations of spin transfer induced dynamics critically.

“P”

“AP”
EB

Fig. 35. “P” and “AP” states of a fully patterned elliptical pillar exchange biased
at a skewed angle. Soft and hard elements dimensions: 130 × 65 × 2.5 nm3; spacer
thickness: 5 nm. Biasing direction EB at 45◦. Ni80Fe20 type material parameters. The
background color coding follows the mz magnetization component and is determined
solely by the demagnetization field from the biased fixed layer, and hence does
not differ much between the two states. Note however, that in the “AP” state the
magnetization is largely antiparallel to the fixed layer while in the “P” it is almost
perpendicular.
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Fig. 36. Typical switching event in a 130× 65× 2.5 nm3 elliptical element with the
hard layer fully patterned and biased at a skewed angle. Micromagnetic simulations
at 20 K. Ni80Fe20 like material parameters (damping parameter α = 0.01). Same
representation conventions as in Fig. 33. Switching at t = 0.265 ns. Subsequent
〈my〉 maxima and minima at t = 0.398, 0.603 and t = 0.5, 0.702 ns, respectively.
Note that thermal fluctuations at time t = 0 and t = 1ns appear dissimilar: the
current still flows at t = 1ns and enhances damping

Fortunately, a markedly different picture emerges from exchange-biased
stacks whereby the biasing direction is set at an angle with respect to the shape
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Fig. 37. a) Switching trajectories as a function of current density at 0K owing to
numerical micromagnetics. Dimensions and material parameters identical to those
in Fig. 36. The thick lines show trajectories across the current density bifurcation
threshold 0.2425 > J > 0.24 A/µm2. b) Switching time vs. current density. The
switching time is defined as the time for which 〈mx〉 = 0. Current densities: J =
0.4, 0.3, 0.25, 0.245, 0.2425, 0.24 A/µm2.

induced easy magnetization axis. We therefore now consider a fully patterned
stack composed of an exchange-biased “hard” layer, a normal metal spacer
and a free layer, all with an identical elliptical cross section. In our model
calculations, the biasing direction is set at an angle of +45◦ with respect to
the long axis of the elliptical hard layer element, the magnetization of which
we assume to be uniform. The free element is now subject to a rather large
demagnetizing field that enforces two noticeably asymmetrical magnetization
distributions at equilibrium: for the dimensions considered, the magnetization
distribution within the free element is oriented at a mean angle close to −155◦

(almost opposite) for the “AP” configuration, but at −45◦ (almost perpen-
dicular rather than parallel) for the “P” configuration (see Fig. 35). Due to
biasing at a skewed angle, the potential wells for the “P” and “AP” states
are also strongly asymmetrical giving a much easier “P” to “AP” transition
as compared to the “AP” to “P” transition. Also due to the shallow potential
well of the “P” state, spontaneous “P” to “AP” transitions are observed in
numerical simulations for temperatures as low as 40 K. At 20 K on the other
hand, 〈my〉 undergoes ≈ 6◦ to 7◦ peak to peak thermal fluctuations that do
not prove large enough to jeopardize the long term stability of the “P” state.
A typical “P” to “AP” switching event is depicted in Fig. 36.

The skewed biasing causes the greater simplicity of the switching event in
Fig. 36 as compared to that in Fig. 33. The large angle between the fixed layer
and free layer magnetizations provides a substantial spin transfer torque the
instant the current is switched on. This shortens or eliminates the growing
oscillation phase illustrated in Fig. 32. The major features of the reversal
process are, i) the existence of weak thermal fluctuations at the temperature
considered, ii) an essentially coherent magnetization rotation that takes place
within less than 1 ns, iii) the existence of post-switching oscillations that decay
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Fig. 38. Full scale micromagnetics for a hard layer biased at a skewed angle: a)
time domain averages of “P” to “AP” switching trajectories at 20 K for current
density J = 0.24 (thin lines) and 0.25 A/µm2 (full symbols). Over 400 simulated
trajectories, 19 (14) failed to display switching within the maximum allowed time
for switching in the simulations, namely 10 ns, for J = 0.24 (0.25) A/µm2; b and c)
corresponding switching time histograms; d) selected 〈my〉 vs. time trajectories in
the sub-critical regime at 4.2K; e) time domain average over 100 trajectories such
as shown in d).
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over times also less than 1 ns. Similar features may be observed in Fig. 37
depicting 〈mx,y〉 vs. time at zero temperature with the current density as a
parameter.

Coherence in the time domain is emphasized in Fig. 38a that displays an
average over 400 trajectories of 〈mx,y〉 vs. time for two values of the current
density. Very remarkably, the essential characters of a switching trajectory at
zero temperature are preserved. The corresponding switching time histogram
is shown in Fig. 38b-c; unsurprisingly, the histograms prove rather narrow.
It may also be shown that coherence in the time domain is similarly pre-
served for low current density excitations (Fig. 38d-e), in particular in the
sub-critical regime, i.e. for current densities below the onset of precessional
states. Although no attempt was made to reproduce the experimental data of
Krivorotov et al [138], micromagnetic simulations permit a qualitative under-
standing of these results. Still, a proper description of correlated data in the
time and frequency domains owing to conventional micromagnetics appears
almost out of reach because of the extremely narrow line widths extracted
from the experiments.

Two additional remarks deserve to be made, namely i) fully patterned
pillars with skewed exchange-biasing do, when viewed from a micromagnetic
perspective, allow for extremely coherent magnetization rotation, at least for
a “P” to “AP” transition, in a way that is conceptually very similar to spin-
transfer induced switching in systems with a fourfold shape anisotropy [125],
ii) precessional states may in such systems be excited for fast rising currents
with both positive or negative current densities whether starting from the “P”
or the “AP” state, a fact directly linked to the non-collinearity between the
mean magnetization direction and the electrons spin-polarization.

Altogether, this section shows that the behaviors observed in experiment
can be qualitatively explained by the torque originally proposed by Slon-
czewski. However, all of the calculations described here have ignored many of
the features of the spin transport calculations, that is, the polarization P in
Eq. (28) has been treated as a constant, and the angular dependence described
in Eq. (26) has been ignored. So far, the comparison between experiments and
simulations appears to be somewhat insensitive to the details of the polariza-
tion, at least given the other uncertainties about the systems. Only the size of
the polarization has been important, and that can only be determined from
experiment if the size of the damping is accurately known. It appears that
the best possibility for testing the results of calculations like those in Sec. 3 is
in measurements of biased samples with Ni80Fe20 free layers. Ni80Fe20 layers
have smaller fluctuations in local anisotropies and biased samples appear to
behave like macrospins in micromagnetic simulations. The recent measure-
ments of Smith et al. [98] are significant progress in this direction.
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5 Summary

Since the concept of spin transfer torques was first proposed by Slonczewski
and Berger, there has been remarkable experimental and theoretical progress.
Experiments have observed and characterized a variety of different behaviors
including hysteretic switching, precession, and two level fluctuations. In this
chapter we have tried to review the physical picture that has been developed
to explain this variety of behaviors.

A generally accepted description of these systems has evolved from a hi-
erarchy of models based on a separation of time and length scales. At the
most basic level, quantum mechanical calculations describe the behavior of
electrons spins close to the interface between ferromagnetic and non-magnetic
layers. The exchange interaction in the ferromagnet rotates non-collinear spins
in complicated ways. Calculations of this effect show that the component of
the spin current along the magnetization is conserved as electrons transmit
through and reflect from the interface. However, the transverse component
of the incident spin current is effectively absorbed close to the interface and
transferred to the magnetization. This absorption of the transverse spin cur-
rent is the origin of the torque that drives the magnetization dynamics mea-
sured in these systems.

In such systems, any quantum mechanical coherence due to multiple scat-
tering from interfaces tends to be washed out. The lack of coherence allows the
results of the quantum mechanical calculations calculations to enter as bound-
ary conditions into semiclassical transport calculations, which is the next level
in the hierarchy of models. The semiclassical calculations give the spin currents
flowing through the different layers and the torques on the magnetizations.
A variety of semiclassical transport equations, the Boltzmann equation, the
drift-diffusion equation, and circuit theory all give qualitatively the same re-
sult. The magnitude of the torque depends on the polarization of the current
flowing from the fixed layer to the free layer, and the polarization of the cur-
rent depends on everything in the sample within a few spin diffusion lengths,
both upstream and downstream. This dependence leads to the result that
the torque for small deviations away from antiparallel alignment is generally
much stronger than the torque for equivalent deviations away from parallel
alignment. These two consequences are the important observable predictions
of the transport calculations.

The electron velocities are high enough and spin flip scattering lifetimes
short enough that from the point of view of transport, the magnetization can
be thought of as fixed. This separation of time scales allows the torques to
be computed for fixed magnetic configurations and the resulting torques then
used to describe the magnetization dynamics. Macrospin or micromagnetic
simulations of the dynamics are the final level of model in the hierarchy.
Macrospin models accurately describe the system when the magnetization
remains uniform throughout the sample. The resulting behavior separates
naturally into two regimes depending on the size of the applied field.
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For applied fields less than the coercive field of the free layer the system is
stable in either a parallel or antiparallel alignment. For large electron flow from
the fixed layer to the free layer, the stable alignment is parallel and for electron
flow in the opposite direction it is antiparallel. There is a region of bistability
for small currents. The transitions from one stable region to the other are
preceded by a small region of in-plane precession. In-plane precession describes
a state in which the magnetization precesses around the easy axis, which
lies in-plane. As the transition to the opposite configuration is approached,
the amplitude of the precession gets large, with a substantial out-of-plane
component. For applied fields larger than the coercive field, the applied field
inhibits switching because the antiparallel state is never stable. Instead, with
increasing electron flow from the free into the fixed layer, the system goes from
parallel through the in-plane precession region into an out-of-plane precession
configuration.

At finite temperature, the transitions between the different configurations
become statistical rather than deterministic. The transitions can be modelled
either through direct integration of the Landau-Lifshitz-Gilbert equation in-
cluding a term to generate thermal fluctuations or through modified barrier
crossing models. In this chapter we briefly described transition time distribu-
tions for cases in which the switching time is not impractically long. In some
regimes, particularly for high fields, the effective barrier in both directions is
sufficiently small that the systems can make thermally driven transitions in
both directions. Then the magnetization exhibits two level fluctuations with
the associated low frequency noise in the resistivity.

Full micromagnetic simulations, in which the magnetization is allowed to
become non-uniform, show that the magnetization does indeed become non-
uniform. These simulations show that non-uniform dynamics may explain
some of the discrepancies between the predictions of the macrospin model
and experiment. Unfortunately, the results of the simulations are sensitive to
many unmeasured details of the sample, so that such simulations are simply
suggestive rather than rigorously conclusive.

Taken together, the theoretical work described in this review suggests that
the form of the torque originally envisioned by Slonczewski is capable of ex-
plaining the experimentally observed phenomena. However, the confirmation
is not yet quantitative. There is only limited experimental observations that
confirm the detailed angular dependence of the torque as predicted by a series
of transport calculations. In fact, all of the micromagnetic simulations to date
ignore these details. One reason it is difficult to quantitatively test the model
is the variability from sample to sample. Samples are still difficult enough to
fabricate that the results from nominally identical samples differ substantially
in detail. Detailed testing of models will probably depend on experimental de-
velopments that allow sufficient characterization of the samples to constrain
the theoretical models.

Additional theoretical developments may be necessary. For example, it may
be necessary to integrate a fully three dimensional transport calculation with
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the micromagnetics in order to describe the non-uniform dynamics. The stan-
dard form used to describe damping in all of the calculations is phenomeno-
logical. A more accurate form may be necessary to describe the precessing
states in these systems. Finally, when the models are quantitatively tested,
they may not be consistent with the measured results, necessitating and driv-
ing a deeper understanding of the behavior of spins in magnetic multilayers.
2
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Thiaville and Andrew Zangwill for critical readings of the manuscript.

A Drift-Diffusion Solution for a Single Interface

In the non-magnet, the spin accumulation decays away from the interface with
a length given by the spin accumulation length

sz(x) = s(0) exp[x/lNM
sf ]. (53)

According to Eq. (16), the gradient of this spin accumulation determines the
spin current in the non-magnet. In the ferromagnet, the spin accumulation
also decays away from the interface

δs(x) = δs(0) exp[−x/lFM
sf ]. (54)

However,the spin current also depends on the total current because the con-
ductivity is spin dependent. Using Eq. (18) and adjusting the internal electric
field so that the total current is constant and there is no charge accumulation,
the spin accumulation and the spin current satisfy

Qzx(x) = Pσ
~

2
j −Dz∇zδs(x), (55)

where Dz = (D↑σ↓+D↓σ↑)/(σ↑+σ↓). See Ref. [67] for more details. The bulk
equations give relations between the spin accumulation and the spin current
at the interface

0 = −Qzx(0) − D

lNM
sf

sz(0)

0 = Pσ
~

2
j −Qzx(0) +

Dz

lFM
sf

δs(0). (56)

2 Completed on June 15, 2005 .
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In the absence of spin flip scattering, the longitudinal spin current is conserved
across the interface.

Equation (19) gives the boundary conditions for the spin currents and spin
electrochemical potentials. The latter are related to the spin accumulation
through the densities of states

δs =
~

2
(N↑µ↑ −N↓µ↓), (57)

where N↑ = (∂n/∂µ)↑. In the bulk, the internal electric field adjusts itself so
there is no charge accumulation. However, we must include the dipole layer
that develops across the interface when a current is flowing. We do this by
allowing for charge accumulation in the ferromagnet just at the interface, but
then ignore this charge accumulation for the behavior away from the interface.
The interface dipole is specified through

δn(0) = N↑µ↑ + N↓µ↓. (58)

The boundary conditions in terms of densities and currents are then

~

2
jx = C1

~

2
δn(0) + C2δs(0) − C3sz(0)

Qzx(0) = C2
~

2
δn(0) + C1δs(0) − C4sz(0) (59)

The coefficients are

C1 =
1

2

(

1

R↑N↑
+

1

R↓N↓

)

C3 =
1

2

(

1

R↑N
− 1

R↓N

)

C2 =
1

2

(

1

R↑N↑
− 1

R↓N↓

)

C4 =
1

2

(

1

R↑N
+

1

R↓N

) (60)

N is the per-spin density of states in the non-magnet. The two boundary
conditions, Eq. (59) together with the boundary values of the bulk solutions,
Eq. (56) give four equations in four unknowns which can be determined in
terms of the specified current jx. Then using the bulk solutions, Eq. (53) and
Eq. (54) gives curves like those in Fig. 10.

The same procedure is used for collinear transport in more complicated
structures. However, in each finite thickness layer the spin accumulation is a
superposition of exponentials decaying in opposite directions. The same pro-
cedure is used for non-collinear transport as well, but needs to be augmented
by the non-collinear boundary conditions, Eq. (20). Values for the parameters
that enter such calculations are given in Ref. [67].

B Precession and spin transfer in phase space:

Melnikov’s method

Melnikov’s method [114, 115] applies to weakly perturbed time periodic
Hamiltonian systems for which unperturbed trajectories may be derived from
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the energy landscape. Material below owes much to the work of Valet, Serpico,
Bertotti et al. [139, 140, 141, 142] although the following results have been de-
rived independently. We first establish the nature of unperturbed trajectories
with the energy as a parameter in the simple case of a zero applied field and
show that the switching current is well described as the current that satisfies
Eq. 35 for a specific trajectory of the unperturbed system. We then extend
results obtained for ha

x = 0 to the ha
x 6= 0 case.

Eq. 38 together with the conservation of the modulus of m define stable
magnetization orbits in the absence of damping, namely,

Q
(

1 −m2
x

)

− 2mxh
a
x +m2

z = 2w

m2
x +m2

y +m2
z = 1

(61)

The velocity field reads:

dm

dτ
= −









mx

my

mz



 ×





Qmx + ha
x

0
−mz







 =





mymz

− [(1 +Q)mx + ha
x]mz

(Qmx + ha
x)my



 .

(62)

Magnetization directions where the torque vanishes define the fixed points for
this problem. These are the parallel state, mx = 1, labeled F1; the antiparallel
state, mx = −1, labelled F2; two points with my = 0 and (1+Q)mx +ha

x = 0
(mz can be positive or negative); and two points S1 and S2 with mz = 0 and
Qmx + ha

x = 0 (my can be positive or negative). Depending on the applied
field ha

x, these points can be stable, unstable or saddle points. For zero applied
field, F1 and F2 are both stable, S1 and S2 are saddle points, and the other
two points are unstable.

Let us first look at unperturbed trajectories in the ha
x = 0 case. The energy

relationship then simply reads

m2
z −Qm2

x = 2w −Q , (63)

indicating that unperturbed trajectories are defined through the intersection
of hyperbolic cylinders (63) with the unit sphere. The saddle points are now
located at my = ±1 and all possible trajectories within the attraction basin
of F1 span the (0, Q/2) energy range. Variables can easily be separated, and,
e.g. one finds that dmy/dτ may be expressed as:

dmy

dτ
=

√

2w (1 +Q− 2w)

√

1 − 1

1 +Q− 2w
m2

y

√

1 − Q

2w
m2

y

mz > 0

(64)

Letting u =
√

Q/2w my, one obtains readily:

du√
1 − u2

√
1 − k2u2

=
√

Q (1 +Q− 2w)dτ , (65)
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with k2(w) = 2w/Q (1 +Q− 2w). Thus,

τ − τ0 =
1

√

Q (1 +Q− 2w)

∫ u

0

du√
1 − u2

√
1 − k2u2

=
1

√

Q (1 +Q− 2w)
F (ψ, k (w))

, (66)

where u = sin (ψ); k ∈ [0, 1] and F (ψ, k) is the Elliptic integral of the First
Kind. The period for any unperturbed trajectory within the specified energy
span amounts to four times the time necessary for my to move from 0 to

mMax
y =

√

2w/Q, namely,

T (w) =
1

γ0MS

4
√

Q (1 +Q− 2w)

∫ 1

0

du√
1 − u2

√
1 − k2u2

=
1

γ0MS

4
√

Q (1 +Q− 2w)
K (k)

, (67)

whereK (k) is the Complete Elliptic Integral of the First Kind. Periodic orbits
obeying (65, 66) (unperturbed system) in the vicinity of fixed point F1 are
shown in Fig. 39 (top). The velocity along such trajectories as deduced from
Eq. 66 proves highly non-uniform in agreement with the results of numerical
simulations (see Fig. 25a). When w increases towards Q/2, orbits pile-up
against the heteroclinic orbits (they link two separate saddle points) forming
an homoclinic cycle Γ 0 displayed as a red line in Fig. 39 (top) similar to
the numerical results of Fig. 20. In addition, the period increases with w and
diverges (the frequency drops to 0) when w = Q/2 as shown in Fig. 40.
Conditions for the application of Melnikov’s theory, a general perturbation
theory, are now met, namely, the existence of a homoclinic orbit to a saddle
point for α = χ = 0, the existence of a continuous family of periodic orbits
within Γ 0 and the fact that the period is a differentiable function of the
energy of the Hamiltonian system. Then, to order O (α), there exist closed
orbits of the perturbed system, the proximity of which to unperturbed orbits
is governed by Melnikov’s function G. In order to estimate the latter, it proves
first convenient to rewrite Eq. 39 according to

dθ

dτ
= − 1

sin θ

dw

dφ
− α sin θ

dφ

dτ
+ χpθ

sin θ
dφ

dτ
=
dw

dθ
+ α

dθ

dτ
+ χpφ

(68)

Since we are interested in Hamiltonian trajectories, Eq. 68 readily transforms
into

dθ

dτ
= − 1

sin θ

dw

dφ
+ α(−dw

dθ
+
χ

α
pθ) = f1 + αg1

sin θ
dφ

dτ
=
dw

dθ
+ α(− 1

sin θ

dw

dφ
+
χ

α
pφ) = f2 + αg2

(69)
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Fig. 39. Top: unperturbed trajectories for w ∈ [0, Q/2[; Bottom: homoclinic cycles
(ha

x ∈ [0, Q]) and limit cycles (ha
x > Q) vs. reduced field ha

x = 0, Q

2
, Q, 3Q. Eq.73 de-

fines the corresponding reduced energies. S1 and S2 are the saddle points pertaining
to the ha

x = Q

2
homoclinic cycle.
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Fig. 40. Frequency for unperturbed orbits in the w ∈ [0, Q/2] range in zero applied
field. Also shown is the frequency of precessional states in the single spin approxi-
mation as a function of χ/α (open symbols) as determined by numerical simulation
(single spin approximation).

Melnikov’s function would, in the (θ, φ) plane, classically be built from Eq. 69

owing to G
(

w, χ
α

)

=
∫ T

0 (f1g2 − f2g1) dτ , or

G
(

w,
χ

α

)

=

∫ T (w)

0

[

(

dm

dτ

)2

− χ

α

[

dm

dτ
· (m × p)

]

]

dτ , (70)

if a static variable could be associated with sin θ dφ
dτ . In the limit sin θ → 1,

a condition easily fulfilled due to the strong ellipticity of the Hamiltonian
trajectories, G

(

w, χ
α

)

is cleanly approximated by (70), a relation equivalent
to (35), but now evaluated along an unperturbed trajectory with period T (w).

It follows directly from the definitions above that the onset of precessional
states should coincide with the current density that zeroes Melnikov’s function
for an infinitesimal unperturbed trajectory around F1 whereas the critical
current density for switching in zero applied field should coincide with the
current that zeroes Melnikov’s function for the unperturbed homoclinic cycle.
Note that, for w = Q/2, one gets mz = ±√

Qmx, an equation defining planes
in space, indicating that the homoclinic cycle is the locus of the intersection
of the unit sphere with the above mentioned planes.

Although we have completely characterized the Hamiltonian trajectories in
the case ha

x = 0, it actually proves unnecessary. Indeed, as noticed earlier [115,
140], the time integral in (70) may be written as a line integral owing to:

G
(

w,
χ

α

)

=

∮

Γ

[(

dm

dτ

)

− χ

α
(m × p)

]

· dm (71)
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Extension to the ha
x 6= 0 case is straightforward. With increasing ha

x the saddle
points S1 and S2 gradually move (Fig. 39, bottom) in the equatorial plane in
the direction of the fixed point F2, according to :

cos (φmax) = −h
a
x

Q
(72)

Rewriting the energy expression yields 2w = Q
(

1 +m2
x

)

+m2
z, or:

2w = Q+
h2

x

Q
, (73)

where hx ≡ ha
x. Eq. 73 defines the relation between the applied field and the

energy level for the homoclinic bifurcation. When w reaches Q (or, equiva-
lently, hx reaches Q), φmax reaches π, so that the two saddle points S1 and S2

merge at mx = −1 (Fig. 39, bottom). Similar arguments hold true for hx < 0
(−Q ≤ hx ≤ 0) with the two saddle points S1 and S2 merging at mx = +1
for hx = −Q.

In summary, in the whole interval −Q ≤ hx ≤ Q, the homoclinic cycle as
a function of parameter w (hx) is defined as the intersection of the unit sphere
with planes defined by

mz = ±
(

hx√
Q

+
√

Qmx

)

, (74)

and the critical current density for switching vs. hx is defined as the current
density that zeroes Melnikov’s function (71) for the corresponding homoclinic
trajectory. Proper parameterization of the homoclinic cycles allows for an
analytical expression for the switching threshold (Eq. 51) in which ξS is a
measure of the opening of the homoclinic cycle in the equatorial plane.

Altogether, Melnikov’s method both establishes a clear distinction between
the critical currents for the onset of precessional states and switching, and
expresses the critical current for switching vs. applied field as the ratio of
line integrals that may be evaluated analytically for the present simple energy
ansatz. It also emphasizes the fact that χ

α is the fundamental parameter of this
particular non-linear dynamical system. Ultimately, within the framework of
our simple energetics, Q stands as the only remaining free parameter in the
reduced units of Fig. 22.

As hx keeps growing beyond Q, the unique saddle point forces Hamiltonian
trajectories to split into two subsets still satisfying relation (74), one above,
the second under the equatorial plane (Fig. 39, bottom). For hx > Q, however,
Melnikov’s theory may not be directly applied anymore, although it is still
possible to look for solutions satisfying (71). The critical current density χ/α
deduced from this approach is proportional to ∼= hx

Q in the limit Q ≪ 1, a
result easily reached through application of Stoke’s theorem to unperturbed
out-of-plane orbits. It turns out that, for hx > Q, the critical current density
necessary to the onset of out-of-plane precessional states appears to be bound
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on the one hand by the current density that zeroes the Melnikov function G
for the last homocline cycle w = Q (curve labelled χLower

2 in Fig. 22) and
on the other hand by the current density that zeroes G for the unperturbed
out-of-plane orbit (curve labelled χUpper

2 ).
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angular momentum, 28
conservation of, 27, 30

bifurcation
homoclinic, 48
Hopf, 45

bistability, see switching, hysteretic
Bloch point, 63
Boltzmann equation, 19–23
boundary conditions, 22–23

spin pumping, 24

chemical potential, 21, 22, 25, 27
circuit theory, 19, 20, 25–26
coherent excitation, 18
conductance, 25
conductivity, 21, 22
continuity equation, 11
Coulomb energy, 9
critical current (density)

angular dependence, 7
material dependence, 8
onset of precessional states, 45
switching, 50
thickness dependence, 7

damping, 12, 24, 40–42, 45, 46, 50
density of states, 21
dephasing, 17, 25
differential resistance, 2, 4, 5
diffusion constant, 21
dissipation, see damping
distribution function, 20
distribution matrix, 20, 21

drift-diffusion, 19–23

effective field, 38, 39, 42, 43, 58
Einstein relation, 21
exchange, 9

bias, 63–67
coupling, interlayer, 18
interatomic, 10, 11
intraatomic, 10, 13
micromagnetic, see exchange,

interatomic

Fermi surface, 13, 14, 17, 20, 24
ferromagnetic resonance (FMR), 24
frequency domain, 54–60

g-factor, 12
giant magnetoresistance, 2, 29

angular dependence, 33

heating
magnetic, 6

Hund’s rules, 9
hybridization, 13, 14

inhomogeneity, lateral, 34–36, 59, 60
interface resistance, 19, 23, 27

Keldysh formalism, 19
Kittel’s resonance frequency, 45

Landau-Lifshitz equation
in spherical coordinates, 44

Landau-Lifshitz-Gilbert equation, 12,
38–42

in spherical coordinates, 43
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incl. spin torque, 40
Langevin dynamics, 51–57

dynamic phase diagram, 53
precessional states, 53–57

blueshift, 56
redshift, 54, 55

switching time distribution, 52, 53
lateral diffusion, 35
leads, 34
local moment model, 14, 17
local spin density approximation

(LSDA), 13

macro-spin approximation, see single
spin model

Magnetic Random Access Memory
(MRAM), 1

magnetization dynamics, see Landau-
Lifshitz-Gilbert equation

magnetoresistance
angular dependence, 30

Melnikov’s method, 48, 50, 71–77
micromagnetic regime, 57–67

precessional states, 58–60
eigenmodes, 59
redshift, 59

switching trajectories, 60, 65, 66
time domain, 66, 67

micromagnetics, 36–67
mixing conductance, 25

nanopillars, 2, 4, 5, 36
cross sectional area, 3
current sign convention, 37
geometry, 37–38

axes conventions, 37
noise, low frequency, 5
number current, 21, 22
number density, 21, 22

Oersted field, 1–3, 60

parametric pumping, 47, 62
Pauli repulsion, 9
phase diagram, 7, 8, see single spin

model, Langevin dynamics
phase difference, 15
pillbox, 12, 13, 16
pinwheel, 30

point contacts
lithographic, 2, 4
mechanical, 2, 3
single ferromagnetic layer, 8, 36

polarization
conductivity, 27
current, 10
density, 10
interface resistance, 27

power spectrum, 5, 6
power spectrum density, 54–56
precession

magnetic, 2, 4–8
spin, 15–17

precessional states, see single spin
model, Langevin dynamics,
micromagnetic regime

random matrix theory, 19
reduced units, 41
reflection, 25

spin dependent, 15, 19, 30
reflection amplitudes, 15, 23
reservoirs, 34
resistance, interface, 15
resonance, narrow, 6
resynchronization, 62
rotation, spin, 15–17

s-d model, see local moment model
scattering, spin flip, 12, 26
single spin model at 0K, 42–51

phase diagram, 48
precessional states, 44–51

fundamental equation, 42
in-plane, 44–47
onset of, 44–45
out-of-plane, 47–51
stability range, 45–47

switching, 47–51
critical current density, 50
switching trajectories, 49

spin
accumulation, 12, 18, 21, 25–30, 35
current, 10–13, 21, 22, 25–30, 34

transverse, 11, 13, 16, 17, 23
density, 11, 12, 21, 22
diffusion length, 21, 26
direction, 10
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filter, 25
filter effect, 17
pumping, 23–25

thickness dependence, 24
spin torque

double cross product, 32
lateral inhomogeneity, 35
micromagnetics, 40

switching, see critical current,
micromagnetic regime

hysteretic, 4, 5, 8
two-level, 5, 6

symmetric structure, 8

thin film energetics, 42
time domain, 66–67

torque
angular dependence, 30–33, 58
exchange, 11, 33
external, 11
spin transfer, 2, 3, 9, 12, 15–18, 30, 33

transmission amplitudes, 15
transport

ballistic, 19
coherent, 18–19
diffusive, 19

transport, three dimensional, 34
transverse spin current, see spin current,

transverse
absorption, 24, 30, 32

vortex-creation/annihilation, 63




