EFFECT OF NITRATE AND PHOSPHATE CONCENTRATION ON SIMULTANEOUS PHENANTHRENE AND OCTADECANE BIODEGRADATION

Susana Garcia-Blanco, Suvid Surendran, Makram T. Suidan, Daniel B. Oerther

Department of Civil and Environmental Engineering, University of Cincinnati, USA

Albert D. Venosa

National Risk Management Research Laboratory, US EPA, USA

OUTLINE

- Background
- Objectives
- Experimental Design
- Some experimental results
- Future work

BACKGROUND

- 1. Bioremediation of oil contaminated sites
 - Oil spills
 - Biostimulation ⇒ optimal nutrient supply?
- 2. Resource Ratio Theory
- 3. Development of molecular tools and their application to environmental engineering
 - Fingerprinting techniques ⇒ study of population dynamics (Macnaughton et al., 1999)
 - Detection and identification of bacterial populations in environmental samples

More than 99% of the organisms present in the environment cannot be cultivated by standard culturing-techniques (Amann *et al.*, 1995)

RESOURCE RATIO THEORY

Theoretical framework in Microbial Ecology to predict the outcome of competitive interactions

RESOURCE: any substance or factor that can increase microorganism growth rate and, that is consumed by the microorganisms (Tillman, 1982)

Nutrients \Rightarrow N and P are resources

Two hypothesis:

- Changes in the relative N:P supply ratio will cause significant changes in the microbial community structure, ⇒ rate and extent of biodegradation
- 2. Changes in absolute nutrient supply levels, at a constant supply ratio, will alter the total hydrocarbon biodegrading biomass, and consequently, the rates of degradation.

OBJECTIVES

To test the applicability of the resource ratio theory to the biodegradation of oil hydrocarbons

- To study effect of initial N:P ratios and absolute nutrient supply levels on:
 - rate and extent of biodegradation of selected alkanes and PAHs
 - microbiological community structure
- To investigate relationships between rates and extent of degradation and shifts in the active microbial community.
- To develop a bioremediation strategy within the theoretical framework of the resource-ratio theory.

DESIGN PARAMETERS

- Tested Variables:
 - Initial N:P ratio
 - Absolute initial N and P supply
- N and P sources: KNO₃ and K₂HPO₄
- C sources:
 - C₁₈ + Phenanthrene (Experiment B)
 - 14 alkanes + 14 PAH (Experiment C)
- 360 serum bottles
 - 6 N:P ratios with 3 concentrations each
 - An sterile control and a no nutrients control
 - 12 sampling times over 60 days
 (6 for biological analysis)
- Mixed culture from EPA's culture collection

N:P CONCENTRATIONS AND RATIOS

EXPERIMENTAL DESIGN

160 mL serum bottles

ANALYTICAL METHODS

- OIL CHEMISTRY
 - GC/MS analysis of targeted alkanes and PAHs (Method 8270C)
- NITRATE AND PHOSPHATE ANALYSIS
 - Ion Exchange Chromatography (Dionex DX 500 with an IonPacR AS14)
- MICROBIOLOGY
 - Most Probable Number (MPN) (Wrenn, B.A. and Venosa, A.D., 1996)
 - Phospholipids (Findlay, R. et al., 1989)
- MOLECULAR METHODS
 - Terminal Restriction Fragment Length Polymorphism (T-RFLP) (Liu, W.T. et al., 1997; Marsh, T. L., 1999)

T-RFLP

V. Grüntzig, B. Stres, H. L. Ayala del Río, and J. M. Tiedje, 2002 (http://rdp.cme.msu.edu/html/t-rflp_jul02.html)

PHENANTHRENE

There is an effect of N and P on the biodegradation rate of phenanthrene

OCTADECANE

There is more pronounced effect of N and P on the biodegradation rate of octadecane

HYPOTHESIS # 1

Changes in the relative N:P supply ratio will cause significant changes in the microbial community structure ⇒ rate and extent of biodegradation

PHENANTHRENE

Constant N / Variable P

For 100, 20 or 10 mg/L of N, P does not have a significant effect on phenanthrene biodegradation

PHENANTHRENE

At lower values of N, phenanthrene degradation slows down even if the concentration of P is high

OCTADECANE

Constant N/ Variable P

- •When N is highest (100 mg/L) or lowest (0.4 to 1 mg/L), no effect of P
- Octadecane is not degraded for N < 2 mg/L

OCTADECANE

Constant N/ Variable P

At intermediate concentrations of N,

- •Octadecane degradation I NCREASES with decreasing ratio (or with increasing P concentration)
- •No C₁₈ degradation when P < 0.5 mg/L

HYPOTHESIS # 1

Changes in the relative N:P supply ratio for a constant concentration of N...

- ... did not affect phenanthrene degradation that seems independent on P concentration
- ... had some effect on C₁₈ degradation at intermediate N concentrations

Further study: T-RFLP ⇒ community structure

• Degradation rate coefficients were in most cases higher for phenanthrene than for C_{18} .

HYPOTHESIS # 2

Changes in absolute nutrient supply levels, at a constant supply ratio, will alter the total hydrocarbon biodegrading biomass, and consequently, the rates of degradation

PHENANTHRENE

Effect of absolute nutrient supply for the same N:P ratios

As predicted, for a N:P ratio, degradation rate INCREASES with absolute concentrations

Differences are not significant for high ratios

OCTADECANE

Same N:P ratios different absolute amounts

As predicted,
for a same N:P ratio,
degradation rate
INCREASES
with absolute concentrations

Differences are more dramatic than for phenanthrene

HYPOTHESIS # 2

- Changes in absolute nutrient supply levels, at a constant supply ratio...
 - ... affected hydrocarbon biodegrading biomass not strong correlation (data not shown)
 - ... influenced degradation rate
 - No significant for high ratios and phenanthrene
 - More dramatic for C₁₈
- No octadecane degradation for N<2 mg/L (C:N 150:1) and P<0.5 mg/L (C:P 600:1)

CONCLUSIONS

- 1. Faster degradation rate for phenanthrene than C_{18} (Jackson and Pardue, 1997; 1999)
 - Cultures richer in PAH degraders
 - Phenanthrene solubility in water is higher than for C₁₈
- 2. Best treatment for simultaneous degradation (more than 95% gone after 6 days)
 - 100 mg/L N, 10 mg/L P C:N:P 30:10:1
- 3. Same degradation extend could be achieved after
 - 16 days: 100 mg/L N, 1 mg/L P 300:100:1
 - 20 days: 20 mg/L N, 2 of mg/L P 150:100:1
 - even 60 days: 10 mg/L N, 10 mg/L P 30:1:1

CONCLUSIONS

- 4. Background P could be enough to support phenanthrene degradation, if N is supplied to C:N 30:1
- 5. For C₁₈ degradation N and P must be at least in the ratios C:N 150:1 and C:P 600:1
- 6. By varying N and P concentrations we can select for simultaneous degradation or for degradation of only phenanthrene first
- 7. Data suggest different microbial community structures ⇒ Molecular tools

relationship: rate - microbial community structure

PRESENT AND FUTURE WORK

- Study of effect of N and P on microbial community structure ⇒ T-RFLP
- 2. Second parametric study with a more complex carbon source:

14 n-alkanes + 14 PAHs

AKNOWLEGDEMENTS

- Dr. Makram T. Suidan
- Dr. Daniel B. Oerther
- Dr. Albert D. Venosa
- Dr. George Sorial
- Suvid Surendran