

Inland Waterways Spill Response Mapping Project

Risk Assessment of Sensitive Resources to Oil Spills within U.S. EPA Region 5

Inland Waterways Spill Response Mapping Project

- Exxon Valdez oil spill
- 1990 Oil Pollution Act
- Multi-agency collaboration
- Partner since 1994
- Documentation of spill-sensitive resources
 - Threatened and endangered species
- Documentation of spill threats
 - Oil pipelines and storage facilities

Inland Waterways Spill Response Mapping Project

6 states, 35 mapping areas

Interactive maps and GIS data

Oil spill risk assessment

Contingency planning / training

Emergency response

Inland Spill Response Project Partners

- U.S. Environmental Protection Agency, Region 5
- U.S. Geological Survey
 Upper Midwest Environmental Sciences Center
- Great Lakes Commission
- Upper Mississippi River Basin Association

Risk Assessment Overview

- GIS was used to spatially assess the risk of oil spills and their impacts in EPA Region 5
- Why?
 - Extensive regional database
 - Enhance emergency response
- What?
 - Assess sources of risk
 - Assess resources at risk
 - Perform assessment at two spatial scales
 - Examine normalized and non-normalized data

Risk Assessment Procedure

- 1. Determine risks
- 2. Assemble regional database
- 3. Summarize data by county
- 4. Group summary values into four rankings
- 5. Combine county rankings of risk
- 6. Generate final composite ranking of overall risk
- 7. Visually assess data by state

Inland Spill Response Project Data Collection Totals (as of 2-1-02)

Data	Total
Sensitive species	86,559
Managed resource areas	7,020
Special designated resource areas	9,875
Other sensitive resource areas	372
Tribal lands	178
Surface water intakes	1,468
Fixed oil storage facilities	1,353
Oil and oil product pipelines	587
Dams (navigational and non-nav.)	4,430
Marinas and boat access ramps	6,156
Total	117 009

Species at Risk

Species at Risk

Species at Risk (Normalized)

Surface Water Intakes

Resources at Risk (Normalized)

Pipeline Density (Normalized)

High Oil Volume Areas (Sources of Risk)

Overall Risk Assessment

Overall Risk Assessment (Normalized)

Top 10 Areas at Risk

Top 10 Areas at Risk (Normalized)

Top 5 Michigan Counties at Risk

Michigan Sources of Risk

Michigan Resources at Risk

Population Served by Surface Water Intake

- > 30,000
- 20,000 30,000
- o 10,000 20,000
- < 10,000</p>
- Sensitive Species Occurrence
- Tribal Lands and Interests
- Resource Areas

Michigan Overall Risk

Population Served by Surface Water Intake

- > 30,000
- 20,000 30,000
- o 10,000 20,000
- < 10,000</pre>
- Sensitive Species Occurrence
- Tribal Lands and Interests
- Resource Areas

Risk Assessment Conclusion

- Areas of concern were identified
 - Urban areas Minneapolis and Cleveland
 - Rural areas Northern Michigan and Minnesota
- Advantages in assessing risk at two spatial scales
 - Regional multi-state comparative assessment
 - State further refine areas of concern
- Examining two types of data proved useful
 - Non-normalized identify risk in larger rural counties
 - Normalized equally assess counties

Spill Risk Assessment

- Uses of results
 - Identify areas that require increased protection
 - Locate emergency response equipment
 - Select future training sites
 - Improve planning and emergency response
- **Future risk assessment**
 - **Enhanced regional analysis**
 - **Proximity analysis**
 - Routing analysis
 - User assessment tools

