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ABSTRACT 

Traditionally, the calibration of safety-critical nuclear instrumentation has been performed at each 
refueling cycle. However, many nuclear plants have expressed a desire to move toward condition-directed 
rather than time-directed calibration. This condition-directed calibration is accomplished through the use 
of on-line monitoring (OLM).  

With a sound OLM system in place, nuclear plants may be able to extend the required calibration 
interval. Only recently have nuclear plants come to the point where they are ready to apply for license 
amendments to extend their calibration frequency. To help support the regulatory review of these 
amendments, researchers from The University of Tennessee’s Nuclear Engineering department were 
contracted to draft a NUREG/CR series. The goal of this entire NUREG/CR series is to provide guidance 
to the regulatory review process of OLM. The volumes present the technical background of OLM and 
explain most of the theory behind the OLM concept. Additionally, they discuss and analyze specific 
issues regarding the application of OLM in a nuclear power plant. The first volume in this series, 
NUREG/CR-6895, entitled Technical Review of On-line Monitoring Techniques for Performance 
Assessment, Volume 1: State-of-the-Art, was completed in March 2005 and published in January 2006. 
Volume 1 offers a general overview of current sensor calibration monitoring technologies and their 
uncertainty analysis, a review of the supporting information necessary for assessing these techniques, and 
a cross-reference between the literature and the requirements listed in the SER. Volume 2: Theoretical 
Issues presents an in-depth theoretical study and independent review of the most widely used OLM 
techniques It includes a presentation of the theory and further explanation of the assumptions inherent in 
the empirical models and the uncertainty quantification techniques. 

This third and final volume summarizes seven case studies investigating the effects of model 
development and assumptions on model performance. Two case studies concern the effect of not meeting 
model assumptions: evaluating query data outside the training region and training with faulty data. 
Recommendations are given for identifying and correcting the problems caused by not meeting these 
important data assumptions. The third and fourth case studies investigate the effects of high noise levels 
on model performance and compare different methods of data denoising, respectively. The remaining 
three case studies examine different features of model development by comparing vector selection 
methods, different numbers of memory vectors, and robust distance measures. Methodologies to 
determine the appropriate model development parameters for each of these cases are outlined. Finally, a 
section is included that highlights the special considerations needed for redundant-sensor model 
architectures. Although this study is not an exhaustive review of the many issues in OLM system 
development, it provides a base set of considerations that must be accounted for and a method for testing 
these considerations with other model architectures 

 
 

Paperwork Reduction Act Statement 
 

This NUREG does not contain information collection requirements and, therefore, is not subject to 
the requirements of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.). 

 

Public Protection Notification 

 

The NRC may not conduct or sponsor and a person is not required to respond to a request for 
information or an information collection requirements unless the requesting document displays a currently 
valid OMB control number 



 

iv 
 

Page intentionally blank 



 

v 
 

FOREWORD 

For the past two decades, the nuclear industry has attempted to move toward condition-based 
maintenance philosophies, using new technologies developed to ascertain the condition 
of plant equipment during operation.  Consequently, in November 1995, the U.S. Nuclear Regulatory 
Commission (NRC) published NUREG/CR-6343, On-Line Testing of Calibration of Process 
Instrumentation Channels in Nuclear Power Plants, which summarized the state-of-the-art in the area of 
OLM.  In that report, the NRC staff concluded that it is possible to monitor the calibration drift of field 
sensors and associated signal electronics, and determine performance of instrument channels in a 
nonintrusive way.  Then, in 1998, the Electric Power Research Institute (EPRI) submitted Topical Report 
(TR) 104965, On-Line Monitoring of Instrument Channel Performance, for NRC review and approval.  
That report demonstrated a nonintrusive method for monitoring the performance of instrument channels 
and extending calibration intervals required by technical specifications (TS).  The NRC subsequently 
issued a related safety evaluation report (SER), dated July 24, 2000, in which the staff concluded that the 
generic concept of OLM is acceptable for use in tracking instrument performance as discussed in EPRI 
TR-104965.  However, the staff also listed 14 requirements that must be addressed in plant-specific 
license amendments if the NRC is to relax the TS-required calibration frequency for safety-related 
instrumentation.  The SER neither reviewed nor endorsed either of the two methods addressed in the 
topical report. 

This contractor-prepared NUREG-series report is the third volume of a three-volume set, 
which will provide an overview of current technologies being applied in the United States to monitor 
sensor calibration.  Volume 1, published in January 2006, provided a general overview of current sensor 
calibration monitoring technologies and their uncertainty analysis, a review of the supporting information 
needed to assess those techniques, and a cross-reference between the literature and the requirements listed 
in the staff’s SER.  To augment that overview, the second volume provides an in-depth theoretical study 
and independent review of the most widely used online sensor calibration monitoring techniques, 
including the underlying theory and an evaluation of the inherent assumptions.  The techniques 
were selected because they were considered by the EPRI OLM working group, were applied in the EPRI 
OLM Implementation Project, or are currently available as commercial products.  This third volume 
by contrast, Volume 3, provides case studies that apply modeling and uncertainty analysis techniques to a 
wide variety of plant data sets to consider the effects of modeling assumptions and limitations. 

The NRC staff anticipates that readers will use this reference to quickly locate the technical 
information required to assess the methods presented in plant-specific applications.  This report 
is intended to provide the technical details that are necessary to conduct an accurate evaluation of each 
technique. This report should not be construed to imply that the NRC endorses any of the methods or 
technologies described herein; that is, a licensee would need to provide a complete description and 
justification for any proposed OLM approach. 

 
 
 
     

Jennifer Uhle, Director 
Division of Engineering 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
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EXECUTIVE SUMMARY 

For the past two decades, the nuclear industry has attempted to move toward a condition-based 
maintenance philosophy using new technologies developed to monitor the condition of plant equipment 
during operation.  Specifically, techniques have been developed to monitor the condition of sensors and 
their associated instrument loops while the plant is operating.  Historically, process instrumentation 
channels have been manually calibrated at each refueling outage.  This strategy is not optimal because 
sensor conditions are only checked periodically; therefore, faulty sensors can continue to operate for 
periods up to the calibration frequency.  In addition, periodic maintenance strategies result in the 
unnecessary calibration of instruments that are operating correctly, which can lead to premature 
equipment aging, damaged equipment, unnecessary plant downtime, and improper calibration under non-
service conditions.  In fact, recent studies have shown that less than 5% of process instrumentation being 
manually calibrated requires any correction at all.  Therefore, plant operators are interested in finding 
ways to monitor sensor performance during operation and manually calibrate only the sensors that require 
correction. 

In 1995, the Nuclear Regulatory Commission (NRC) published a report on the state-of-the-art in the 
area of on-line monitoring.  This report, which was prepared by the Analysis and Measurement Services 
Corporation as NUREG/CR-6343, was entitled On-Line Testing of Calibration of Process 
Instrumentation Channels in Nuclear Power Plants.  This report concluded that it is possible to monitor 
calibration drift of field sensors and associated signal electronics to determine the performance of the 
instrument channels in a nonintrusive way.  

In 1998, the Electric Power Research Institute (EPRI) submitted Topical Report (TR)-104965, On-
Line Monitoring of Instrument Channel Performance for NRC review and approval.  This report 
demonstrated a nonintrusive method for monitoring the performance of instrument channels and 
extending calibration intervals required by technical specifications (TS).  The calibration extension 
method requires an underlying algorithm to estimate the process parameter.  In the topical report, two 
such algorithms were described.  The NRC issued a safety evaluation report (SER) on TR-104965, dated 
July 24, 2000, which concluded that the generic concept of on-line monitoring (OLM) for tracking 
instrument performance as discussed in the topical report is acceptable.  However, it also listed 
14 requirements that must be addressed by plant specific license amendments if the TS-required 
calibration frequency of safety-related instrumentation is to be relaxed.  

When evaluating the proposed methods during development of the SER, the NRC staff did not 
review the two algorithms presented in the topical report and did not limit the application to those two 
methods.  However, during a license review, it is necessary that the technical details of each particular 
technique be understood to determine whether the technique meets the specified functional requirements.  
Thus, this series of reports is meant to provide a basis for these necessary technical details so that an 
accurate evaluation of each technique and its application can be made.  This report should not be 
construed as the NRC’s endorsing any of the described methods or technologies.  A licensee would need 
to have a complete description and justification for any approach proposed for OLM. 

This three-part NUREG/CR series provides an overview of the current OLM technologies.  
Volume 1 provides a general overview of the technologies currently being implemented for sensor 
calibration monitoring and presents the techniques used to quantify the uncertainty inherent in the 
empirical process variable predictions.  It also provides a survey of the relevant information and a cross-
reference between the relevant information and the 14 requirements.  It is expected that readers will use 
this reference to quickly locate the technical information required to assess the methods presented in 
plant-specific license amendments.  Volume 2 of the report presents an in-depth theoretical study and 
independent review of the most widely used on-line sensor calibration monitoring (OLM) techniques.  It 
includes a presentation of the theory and a listing and evaluation of the assumptions inherent in the 
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methods.  This third and final volume further explores some of the modeling assumptions identified in 
Volume 2.  This volume reports the results of a study that applied an auto-associative kernel regression 
(AAKR) model architecture to actual nuclear plant data and determined the effect on an OLM system 
when some of the inherent modeling assumptions are no longer met.  The assumptions examined include 
instances when OLM data that was either being used to develop the model, test, or apply the model to 
determine a sensor’s status is in some way faulted.  The data issues include data that contain outliers, or 
some form of “stuck” or erroneous data, and also data that is no longer represented by the training data.  
The effect of noisy sensors and the impact that the denoising routine has on OLM uncertainty are 
investigated.  The study also evaluates factors from the model that could influence OLM predictions, such 
as implementing different memory vector selection methods, including too few or too many memory 
vectors, and using different distance calculation methods.  Finally, the study considers what, if any, 
additional factors must be taken into account when employing redundant sensor model architecture. 
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1. INTRODUCTION 

1.1 Background 

Traditional approaches to instrument calibration at nuclear power plants are expensive in terms of 
both labor and money.  These calibrations require that the instrument be taken out of service and falsely 
loaded to simulate actual in-service stimuli.  This can lead to damaged equipment and incorrect 
calibrations due to the adjustments being made under nonservice conditions.  While proper adjustment is 
vital to maintaining proper plant operation, a less invasive technique is desirable.  For this reason, there 
has been a major push in the nuclear industry to move toward condition-directed rather than time-directed 
calibration.  For the past 20 years, several nuclear utilities, along with the Electric Power Research 
Institute (EPRI), have investigated methods to monitor the calibration of safety-critical process 
instruments.  The techniques being investigated are given the blanket term of “on-line monitoring” 
(OLM) because they monitor the calibration status of sensors while the plant (and sensors) are operating.  
The purpose of OLM for sensor calibration is to identify drifting or faulted channels.  In empirical model-
based OLM, data collected from plant sensors are sent to software, which uses an empirical model to 
obtain an independent estimate of the fault-free process parameter value.  This estimate is compared to 
the measured value to monitor instrument drift or other faults.  With this technology, continuous or near-
continuous sensor surveillance is possible.  Thus, it is possible for manual sensor calibration to be 
performed based on the sensor’s performance, rather than the sensors simply being recalibrated on a 
frequency-based schedule. 

In 2000, the U.S. Nuclear Regulatory Commission (NRC) issued a safety evaluation report (SER) 
(NRC 2000) on an EPRI-submitted Topical Report (TR) 104965, “On-Line Monitoring of Instrument 
Channel Performance” (EPRI 2000).  This SER concluded that the generic concept of OLM for tracking 
instrument performance is acceptable as discussed in the topical report.  However, the SER also listed 
14 requirements that must be addressed by plant specific license amendments if the Technical 
Specification (TS)-required calibration frequency of safety-related instrumentation is to be relaxed.  
Current OLM techniques propose relaxing the frequency of instrument calibrations required by the U.S. 
nuclear power plant TS to allow sensors to be calibrated based on their calibration condition, rather than 
every safety critical sensor being calibrated at each outage.  With OLM, it is proposed that at least one 
redundant sensor will still be calibrated at each scheduled fuel outage.  For n redundant sensors, all 
sensors will be calibrated at least once every n outages.  Regardless of the number of redundant sensors in 
a group, a sensor cannot go more than 8 years without being recalibrated.  If an instrument is found to 
exceed the drift limits, it must be calibrated, regardless of when it is scheduled for calibration, and its 
calibration cannot replace the scheduled calibration. 

To implement this new OLM calibration strategy, plants must file for a license amendment.  In this 
amendment, plants must detail how OLM is accomplished and provide a technical basis for the technique 
they are planning to employ.  The empirical model, which generally contains data from all or many of the 
sensors in a process, is one of the most critical elements of an OLM system, but its limitations are also 
generally the least understood.   

The two previous volumes in this series have discussed the general theory behind some of the 
commonly employed OLM models.  The quantification of model uncertainty, one of the most difficult 
requirements of an OLM system, was also discussed in these earlier reports.  Volumes 1 and 2 addressed 
some of the modeling and data assumptions (such as coverage of the training vectors, effect of model 
architecture, etc.).  This third volume explores those issues through case studies.   

In Volume 3, an OLM model is applied to special cases where the basic modeling assumptions may 
no longer be met.  The model performance under these limiting cases is then evaluated.  This report 
attempts to gauge how the model handles various real-life scenarios when the underlying assumptions 
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cannot be validated.  This volume offers recommendations as to how such situations should be dealt with 
as well as what safeguards or additional measures need to be in place to help identify or avoid these 
situations.  This volume also recounts some of the “lessons learned” from the experiences of developing 
and implementing OLM models.  These lessons attempt to solve or minimize the effects of common 
problems encountered when implementing or training a new OLM model.  Descriptions of these “lessons 
learned” are embedded in many of the limiting case studies.   

The following chapters describe the limiting cases and also evaluate the performance of the OLM 
model developed with nuclear plant data and subjected to atypical conditions or situations.  An auto-
associative kernel regression (AAKR) model was used in this study.  This model was chosen because it is 
readily available and has an architecture similar to many commercially available OLM models, which are 
proprietary and could not be used in this study.  A description of this model as well as two of the other 
currently used commercial OLM models, namely auto-associative multivariate state estimation technique 
(AAMSET) used by Smart Signal Inc. and auto-associative neural network (AANN) used in the Process 
Evaluation and Analysis by Neural Operators (PEANO) developed by the Halden Reactor Project, can be 
found in Volume 2 of this series, along with an explanation of basic OLM modeling theory.  These 
models are by no means the only models applicable for OLM.  However, they are considered the current 
state of the art in OLM technology. 

All of the aforementioned models are considered nonredundant, meaning that they are able to 
monitor sensors measuring correlated but not necessarily identical process parameters.  In contrast, 
redundant sensors measure the same process variable at nearly the same location in the process.  Models 
classified as redundant, such as EPRI’s Instrument and Calibration Monitoring Program (ICMP), require 
that all inputs come from truly redundant sensors.  For instance, the simplest redundant model is just a 
direct average of the redundant sensor values.  Even models that are classified as nonredundant can, and 
in fact often do, have only a group of redundant sensors as their inputs.  However, these models are still 
called nonredundant simply because they are not limited to having only redundant sensor inputs.  Because 
nuclear plants require that all measurements of safety critical processes come from at least two redundant 
sensors and because, in practice, most redundant sensor sets contain at least three or four sensors, 
redundant-sensor models are particularly applicable to OLM.  However, this type of model comes with its 
own advantages and disadvantages.  Although this report primarily focuses on the non-redundant AAKR 
model, it also briefly describes some of the issues that arise from using redundant sensor models. 

1.2 Organization of the Document 

The same AAKR modeling technique and data sets were used to conduct the studies reported in this 
volume, with the exception of the study that examines redundant-sensor modeling.  For this reason, the 
following sections in this chapter describe AAKR modeling, the metrics used to gauge its performance, 
and the data sets used for the limiting cases.  Before discussing the limiting cases, Chapter 2 provides an 
overview of the methods used for model development and analysis.  Chapter 3 then presents the 
“baseline” results of the AAKR model for the datasets.  These results are those from “ideal” AAKR 
models that have been properly developed and applied to the datasets without any of the common 
complications or problems that can occur during OLM (most of which are described in the limiting case 
studies).  The baseline results are presented so that accurate comparisons can be made between them and 
the limiting case results, so that the effects of each limiting case can be analyzed and better understood. 

Each of the limiting cases has a dedicated chapter.  In these chapters, the corresponding limiting case 
is described in detail, the results of applying this case to the models are presented and discussed, and 
recommendations for preventing the case and correcting or mitigating its effects are provided.  Chapter 4 
presents the results of models trained with data containing sensor faults or outliers.  Chapter 5 focuses on 
models attempting to monitor sensors operating outside of the training region.  Chapter 6 considers the 
impact that noise in the data has on the OLM process.  Chapter 7 explores the impact of the denoising 
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method on OLM uncertainty.  Chapter 8 investigates the different vector selection methods that can be 
used in OLM modeling.  Chapter 9 analyzes models developed using too few or too many training 
vectors.  Chapter 10 examines the effect of a model’s distance calculation method.  Chapter 11 discusses 
some of the additional considerations that must be taken when using redundant models.  Chapter 12 
provides a summary of the research results and reiterates the conclusions that can be drawn from the 
studies.  Finally, the appendixes provide supplemental tables and figures showing additional results from 
the limiting case studies that were too expansive to remain in the body of the document. 

1.3 Model Description 

Fig. 1-1 is a simple block diagram of a basic instrument calibration monitoring system.  In this figure 
a vector of sensor measurements (x), which may be corrupted by noise, drift, or fault, is input to a 
prediction model, which calculates corrected, error-free estimates of the sensors (x’).  The estimates are 
compared to the measured values forming differences called residuals (r).  A decision logic module 
determines if the residuals are statistically different from zero and establishes the health or status (s) of 
each sensor.  This module may also use predictive uncertainty values and drift limits to determine the 
condition of the instrument channel. 

 

Fig. 1-1.  Instrument calibration monitoring system diagram. 

 

The prediction models are empirical models, which, unlike first-principle or physical models, are 
based only on data and are used to predict, not explain, process variable values in a system.  A model may 
be either defined by a set of parameters and functional relationships (parametric) or a set of data and 
algorithmic estimation procedures (nonparametric).  For instance, the following polynomial model is an 
example of a parametric model: 

 

2 2
0 1 1 2 2 3 1 2 4 1 5 2y = b + b x + b x + b x x + b x + b x  , 

 

where y is the variable to be estimated, x1 and x2 are the predictor variables, and bi are the coefficients. 

To completely define this model for a given set of training observations, the polynomial coefficients, 
bi, are optimized to minimize some objective function, usually the sum of the squared error (SSE).  Once 
the optimal polynomial coefficients have been estimated, the model is completely specified by the above 
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equation and the estimated coefficients.  Therefore, a parametric model may be roughly defined as a 
model that can be completely specified by a set of parameters and a functional relationship for applying 
the parameters to new data to estimate the response. 

A nonparametric model, by contrast, stores historical data exemplars in memory and processes them 
each time a new query is made.  For instance, rather than modeling a whole input space with a parametric 
model such as a neural network or linear regression, local nonparametric techniques may be used to 
construct a local model in the immediate region of the query.  These models are constructed “on the fly,” 
not beforehand.  When a new query is made, the algorithm locates historical exemplars in its vicinity and 
performs a weighted regression with the nearby observations.  Kernel regression (KR) is one such type of 
nonparametric model.  

This section discusses the various kernel regression algorithms in detail, beginning with a top-level 
description of the steps used in KR.  Following this discussion, methods for similarity quantification, 
specifically distance measures and kernel functions, are discussed.  This discussion will serve as a 
foundation for the comprehensive descriptions of the different model architectures that are presented in 
the final subsections of this discussion. 

1.3.1 Method overview 

In statistics and empirical modeling, the process of estimating a parameter’s value by calculating a 
weighted average of historical, exemplar observations is known as KR (Atkeson et al., 1997a). Generally, 
KR may be most compactly represented by the so-called Nardaraya (1964)-Watson (1964) estimator.  For 
a simple single-input, single-output (SISO) regression model, where the input x is used to estimate the 
output y, the Nardaraya-Watson estimator is as follows: 

 

 
[ ]

ˆ
∑

∑

−

−
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i i

i=1
n

i
i=1

K(X x)Y
y(x)=

K(X x)
 , (1.1) 

 
where 

 n is the number of exemplar observations in the KR model; 

Xi and Yi are the input and output for the i th  exemplar observation; 
x is a query input; 
K(Xi −x) is a weighting or kernel function, which generates a weight (similarity) for a given 
difference of a query from an exemplar vector; and 
ŷ(x)  is an estimate of y, given x. 

To understand KR, the mechanics of Eq. (1.1) must be understood.  To do this, the steps used in KR 
are enumerated below and then related back to Eq. (1.1). 

For a query observation of the model inputs, the KR estimation process can be structured into three 
steps.  First, the distance of the query from each of the input exemplars is calculated.  Next, the distances 
are supplied as inputs to a kernel function, which converts the distances to weights (similarities).  Finally, 
the weights are used to predict the model output as a weighted average of the output exemplars.  These 
steps are depicted in Fig. 1-2. 
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Fig. 1-2.  Process diagram for the KR prediction algorithm. 

 

For the sake of clarity, the process presented in Fig. 1-2 is further discussed in Table 1-1.  To begin, 
exemplar inputs X and outputs Y are considered.  These observations represent the “memory” of the KR 
model and are therefore often referred to as memory observations or memory vectors.   

The KR prediction process can also be thought of as answering the question:  “Based on observed 
inputs X and outputs Y, what will be the system output for a new query input x?”  Before this question 
can be answered, two additional questions must be considered: 

1. How similar is the query to the known inputs X (Step 1 and Step 2)? 

2. From the similarities of the query to the known inputs X, the most likely model outputs from the 
exemplar set can be identified.  How can these likeliest outputs be aggregated to estimate the 
model output (Step 3)? 
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Table 1-1.  The three-step KR prediction process 

Step 1—Distance Calculation 

The query input, x, is an observation of the inputs to the KR model and will be used to 
predict the output.  To do this, the distance between the query and each exemplar input must 
be determined.  This is accomplished by evaluating a distance measure with each exemplar 
input and the query input as arguments.  The distance calculation for the i th exemplar 
observation is represented by d(Xi,x).  This calculation is repeated for each of the exemplar 

inputs.  This means that the result of this entire operation is a vector of n distances d, 
representing the distance of the query to all of the n input exemplars.  

Step 2—Similarity Quantification 

At this point, the distances of the query to each of the input exemplars have been evaluated 
and must be converted to weights or similarities.  This is accomplished by evaluating a 
similarity or kernel function for each of the distances.  For the vector of n distances d, the 
kernel function results in a vector of n weights w, which represents the similarity of the 
query to each of the input exemplars. 

Step 3—Output Estimation 

In the final step of the prediction process, the similarities of the query to each of the input 
exemplars are combined with the output exemplars to obtain estimates of the output.  For 
KR this is accomplished by calculating a weighted average of the output exemplars using 
the similarities of the query to the input exemplars as weighting parameters.   

 
Now that the general process used in KR has been presented, this process can be related to Eq. (1.1), 

beginning with the distance calculation.  The distance can be seen to be simply the difference of the input 
exemplar and the query: 

 

−i id(x ,x)= x x  . 

 
Finally, the estimated similarities are used to perform a weighted average of the output exemplars.  

The sum of the weighted output exemplars is divided by the sum of the weights.  This operation is simply 
a normalization that allows for the prediction to be represented as a combination of the output exemplars, 
where each exemplar can have an influence of 0 to 1 (i.e., 0–100%). 

In this section, a top-level description of the KR prediction process was presented.  In the next 
section, the methods used to quantify similarity (i.e., calculate the weights) are discussed. 

1.3.2 Distance measures 

A common distance function is the Euclidean distance, which is also known as the L2-norm.  For a 
single input, the Euclidean distance for the ith input exemplar and the query is given by 

 

 .−Li id(X ,x)= (X x)2  (1.2) 
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For p inputs, the Euclidean distance is given by 

 

 − − −i i, i, i,p pd(X ,x)= (X x ) +(X x ) +…+(X x )2 2 2
1 1 2 2 , (1.3) 

 
where Xi is the ith exemplar observation of the p inputs, and Xi,j is the ith exemplar observation of the jth 

input, and 
x is the query observation of the p inputs, where xj is the query observation of the jth input. 

There are alternative distance metrics that can be used instead of the Euclidean.  For instance, the 
adaptive Euclidean distance recently developed at The University of Tennessee (Garvey 2006) drops 
observations that lie outside of the training range (i.e., outside the minimum and maximum input 
exemplars) from the distance calculation.  Chapter 7 explores the different distance metrics and examines 
the impact that they have on model performance.   

Now that methods for calculating the distance of the input query to the input exemplars have been 
introduced, a method to use these distances to infer similarity is presented.  In the next section, the 
different kernel functions that can be used to map distances to similarities are discussed. 

1.3.3 Kernel functions 

To transform the distance into a similarity or weight, a kernel function is used.  In general, a kernel 
function should have large values for small distances and small values for large distances.  In other words, 
when a query point is nearly identical to a reference point, its distance should be small, and, therefore, 
that particular reference point should receive a large weight, and vice versa.  One commonly used 
function that satisfies this criterion is the Gaussian kernel (Fan and Gijbels, 1996), 

 

 
−d

2hK(h) e
πh

2
2

2

1=
2

. (1.4) 

 
Here, h is commonly referred to as the kernel’s bandwidth and is used to control what effective 

distances are deemed similar.  For mean-centered, unit variance scaled data, the bandwidth generally has 
values of 0<h<2.  It can be seen in Fig. 1-3 that the Gaussian kernel with the smaller bandwidth (h = 0.1) 
will only generate large weights when the distance is very close to zero, while the kernel with the larger 
bandwidth is less specific and will assign significant weights for a larger range of distances. 
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Fig. 1-3.  Example Gaussian kernels. 

 

Other kernel functions include the inverse distance, exponential, absolute exponential, uniform 
weighting, triangular, biquadratic, and tricube kernel (Atkeson et al. 1997a), examples of which may be 
seen in Fig. 1-4.  More advanced kernel functions include the Hermite kernel (Zavaljevski and Gross 
2000a, 2000b) and the asymmetric Gaussian kernel (Mackenzie and Tieu 2004).  Although each function 
may have advantages or disadvantages in certain situations (Cleveland and Loader 1994a), the Gaussian 
kernel function is generally an adequate selection.  In fact, the work of Scott (1992) and Cleveland and 
Loader (1994b) show that kernel function selection plays a noncritical role in the performance of locally 
weighted models.  For this reason, all of the AAKR models presented in this report employ the Gaussian 
kernel. 
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Fig. 1-4.  Examples of alternative kernel functions. 

 
Now that the methods for mapping an input query to similarities have been discussed, the different 

model architectures may be examined in more detail.  In the next section, the different KR architectures 
will be defined, and the relevant equations for prediction are presented. 

1.3.4 Model architecture 

There are three different KR architectures, which are characterized by the number and type of inputs 
and outputs.  These model architectures are inferential, hetero-associative, and auto-associative KR.  As 
seen in Fig. 1-5, an inferential model uses multiple inputs to infer an output, while a hetero-associative 
model uses multiple inputs to predict multiple outputs, and an auto-associative model uses inputs to 
predict the “correct” values for the inputs, where “correct” refers to the relationships and behaviors 
contained in the exemplar observations.  Although the auto-associative architecture is the architecture 
most suited for OLM, the KR prediction algorithm for each of the model architectures will be examined, 
because understanding each architecture provides a solid foundation for understanding general KR’s 
extension to the auto-associative case.  The description of each architecture focuses on how the three-step 
process described earlier changes for the different model architectures.  These discussions do not draw 
from a single reference but are an aggregation of the work of Hardle (1989), Wand and Jones (1996), Fan 
and Gijbels (1996), and Atkeson et al. (1997a, 1997b). 
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Fig. 1-5.  Illustration of (a) inferential, (b) hetero-associative, and (c) auto-associative model architectures. 

 
Before examining the different KR architectures, several conventions and notational simplifications 

need to be discussed.  For the remainder of this section the query observation is assumed to be within the 
training range, which allows the distance metric to be represented by Eq. (1.3).  Also, in KR, the weighted 
sum of the outputs is normalized by the sum of the weights.  To simplify the notation, the following 
definition is made: 

 

 ∑
n

i
i=1

a = w . (1.5) 

 
Using this definition and the definition of the weights [Eq. (1.2)], Eq. (1.1) can be rewritten as: 

 

 ( )ˆ ∑
n

i i
i=

y(x)= w X
a 1

1  . (1.6) 

 

1.3.5 Inferential kernel regression 

The first architecture that will be considered is the inferential KR model.  In this architecture, 
p inputs (predictor variables) are used to predict a single output (response variable).  The output may or 
may not be one of the inputs, but in most cases it is not.  Inferential KR models most often use system 
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parameters to infer the value of another, related parameter.  The three step KR prediction process is now 
reviewed. 

Step 1—Distance Calculation 

Equation (1.3) can be directly applied to the p inputs.  For convenience, Eq. (1.3) is reproduced 
below: 

 

 i i, i, i,p pd(X ,x)= (X - x ) +(X - x ) +…+(X - x )2 2 2
1 1 2 2  .  

 
The result of calculating the distances for the n input exemplars is a vector of n distances: 
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Step 2—Similarity Quantification 

Next, the Gaussian kernel [Eq. (1.4)] is evaluated with the calculated distances d.   
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The result is a vector of n weights: 
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Step 3—Output Estimation 

Finally, Eq. (1.6) can be applied directly for prediction of the one output: 

 

 1 1 2 2
1

1 1ˆ( ) ( ) ( )
=

= = + + +∑ K
n

i i n n
i

y x wY w Y w Y w Y
a a

 . (1.9) 

 

1.3.6 Heteroassociative kernel regression 

At this point, the inferential KR model can be modified to handle multiple outputs.  In general, a 
hetero-associative model uses p inputs to predict r outputs.  Again, the outputs may or may not be inputs.   

Because the first two steps of the KR prediction process measure the similarity of the query inputs to 
the input exemplars, the only change occurs in the third step of the prediction process.  The first two steps 
are as previously described. 

Step 3—Output Estimation 

Therefore, for a vector of n weights, the predictions of the hetero-associative KR model are 
calculated for the r outputs according to the following equation, where Yi,j is the i th exemplar of the j th 
output and where ˆ( )y x is a row vector of length r. 

 

 ˆ ⎡ ⎤
⎢ ⎥
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n n n

i i,1 i i,2 i i,r
i= i= i=

y(x)= (w Y ) (w Y )… (w Y )
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1
 . (1.10) 

 

1.3.7 Auto-associative kernel regression 

The final KR formulation is auto-associative KR (AAKR), which estimates the “correct” versions of 
an input vector.  In this case, the dimension of the input vector (p) is the same as the dimension of the 
output vector.  For the sake of clarity, the process diagram for KR prediction (Fig. 1-2) is modified for an 
auto-associative architecture in Fig. 1-6.  The AAKR diagram does not include output exemplars; instead, 
the input exemplars perform the same action as the output exemplars.  
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Fig. 1-6.  Process diagram for the AAKR prediction algorithm. 

 
As with hetero-associative KR, the only difference between AAKR and inferential KR lies in the 

final step of the prediction process.   

Step 3—Output Estimation 

For AAKR, the outputs are predicted as a weighted average of the error-free exemplar vectors.  
Putting this into equation form yields the following equation, where Xi,j is the ith exemplar of the jth 
input: 
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As seen in Eq. (1.11), an auto-associative architecture is able to predict a group of correct sensor 

values even when supplied with a group of sensor values that is usually corrupted with process and 
instrument noise and also contains faults such as sensor drift or complete failure.  As such, AAKR is 
especially suited for OLM and is the model used to carry out each limiting case study.  Each case study 
presented in this report is characterized by the model’s characteristics, the model’s performance metrics, 
and its uncertainty.  The model results for each case study are presented in tables.  Short definitions are 
given below for some of the model metrics reported in the model results tables in the following sections.  
These definitions are grouped according to the table sections shown in Table 1-2. 
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Table 1-2.  Categories of model characterization 

Model 

Data cleaning 

Number of memory vectors 

Optimal kernel width 

Vector selection method 

Metrics 

Accuracy (% of span) 

Auto-sensitivity 

Cross-sensitivity 

EULM detectability (% of span) 

SPRT detectability (% of span) 

Uncertainty 

Analytic (% of span) 

Coverage 

Monte Carlo (% of span) 

Coverage 

 

1.4 Model Characteristics 

As shown in Table 1-2, an AAKR model is characterized by the data cleaning, the number of 
memory vectors, the optimal kernel width, and the vector selection method.  Each of these modeling 
aspects will now be briefly described. 

Data cleaning can be defined as a process that identifies bad data points and then either removes 
them or replaces them, using the estimates of an algorithm.  Many data-cleaning methods exist to detect 
and correct NaNs, stuck data, and outliers; all of which have been found to occur in data extracted from 
power plant data historians (Hines and Davis 2005).  Data cleaning may only be performed if inspection 
of the data suggests it is necessary.  The effect of noise in the data sets is investigated in Chapter 6.  Some 
of these cleaning methods and the effects of not using or improperly applying them are discussed in 
Chapter 7. 

The number of memory vectors or observations that are selected from the training set to be used in 
an empirical model is an important part of model development and optimization.  The number of memory 
vectors retained in a memory based model controls how many operating points are used to represent the 
process or equipment being monitored.  The impact of using too few or too many memory vectors is 
examined in Chapter 9. 

The kernel bandwidth is used to compare query vectors with memory vectors in memory based 
models.  The bandwidth effectively controls how many memory vectors are used to make predictions.  
Large bandwidths produce smoother model predictions, as many memory vectors are used to infer a 
parameter’s value.  Conversely, small bandwidths produce rough and/or inconsistent predictions because 
a limited number, if any, of the memory vectors are used to infer a parameter’s value.  In other words, the 
bandwidth controls how far a query observation may be from a memory vector to be deemed similar.  For 
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the studies reported in this volume, the optimal kernel bandwidth was always used.  The bandwidth was 
optimized by minimizing the error of the test data set.  This is commonly termed cross validation 
optimization. 

The model architecture uses a vector selection method to identify memory vectors for model 
development.  There are several available methods, but the most commonly used ones are vector ordering, 
minimum/maximum selection, and a combination of the two.  The combination selection method is the 
default vector-selection method and is used to develop the models presented in the case studies.  In 
reporting the case studies, the combination selection method is denoted by an x in the table.  The effect on 
model performance of using different vector selection methods is examined in Chapter 8.   

1.5 Performance Metrics 

The performance of auto-associative OLM systems has historically been quantified in terms of 
accuracy, with more recent emphasis on detectability and sensitivity measures.  Accuracy measures the 
ability of a model to correctly and accurately predict sensor values and is normally presented as the mean 
squared error (MSE) between sensor predictions and the measured sensor values.  Two sensitivity 
measures are used to quantify a model’s ability to make correct sensor predictions when an input sensor’s 
value is incorrect due to some sort of fault.  Finally, Error Uncertainty Limit Monitoring (EULM) 
detectability and Sequential Probability Ratio Test (SPRT) detectability quantify the smallest sensor 
calibration fault and anomaly that may be identified by an empirical model, respectively.  An ideal model 
would be accurate, would have sensor predictions that are not appreciably affected by degraded inputs, 
and would be able to detect small sensor faults and anomalies.  As these metrics will be used to determine 
and compare the performance of the models applied to the limiting case studies, the remainder of this 
section provides the mathematical framework of the performance metrics in more detail. 

1.5.1 Accuracy 

The accuracy metric is simply defined as the mean squared error (MSE) between the model’s 
predictions and the desired output.  A model is developed with training data, and then test data are used to 
compute the accuracy.  This metric is a measure of the model’s error for data it has not seen before.  The 
equation for a single variable is simply: 

 

 ˆ∑
N 2

i i
i=

A= (x - x )
N 1

1  , (1.12) 

where  

N is the number of test observations, 
$

ix  is the model prediction of the i th test observation, and 
xi  is the i th observation of the test data. 
 

Although this metric is termed “accuracy,” it is actually a measure of error, and a low value is 
desired.  The accuracy metric is the most commonly cited metric because it represents a model’s 
performance for unfaulted input data.  However, since the purpose of empirical modeling in OLM 
systems is to identify sensor and process faults, model performance under faulted conditions must be 
quantified. 

1.5.2 Sensitivity metrics 

In general terms, sensitivity quantifies the model’s response to faulted inputs.  To calculate the 
sensitivity of a prediction, a model’s response using fault-free input data is first calculated.  Next, each 
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input variable is sequentially artificially faulted, and the model outputs are recorded.  These predictions 
using faulty input data are then used to determine the model’s sensitivity metrics.  

Model sensitivity is a measure of the change in an output prediction $ ix( )  produced by a change in 
an input (xi): 

 

 
ˆi

i
i

xS
x

∆=
∆

 . (1.13) 

 
Auto-sensitivity (Sauto), also occasionally referred to as “robustness,” is a measure of an empirical 

model’s ability to make correct sensor predictions when its respective input sensor value is incorrect due 
to some sort of fault.  Therefore, this metric involves the following values: sensor i’s prediction with no 

fault in the input $ ix( ) , sensor i’s prediction with a faulted input $
drift
i( x )  sensor i’s unfaulted input value 

(xi), and the drifted input value draft
i(x ) .  The measure is averaged over an operating region defined by k 

samples.  Using these definitions, the autosensitivity for sensor i is given by the following: 
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  (1.14) 

 
If a model’s autosensitivity is 1, then the model’s prediction follows the fault, resulting in a residual 

of zero, and the fault cannot be detected.  If a model’s robustness value is nonzero, which is usually the 
case, the residual will underestimate the size of the sensor fault and the OLM system drift limits may need 
to be compensated accordingly. 

The next performance metric is cross-sensitivity, also referred to as spillover.  This value measures 
the effect that a faulty sensor input (i) has on the predictions of sensor (j).  This is illustrated by 
Eq. (1.15), in which j is the index of the unfaulted variable whose cross-sensitivity (SCj) metric is being 
calculated: 
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 . (1.15) 

 
The plots presented in Fig. 1-7 more clearly illustrate the concept of sensitivity.  Two plots are 

included to illustrate the differences between an empirical model with small (upper plot) and large (lower 
plot) sensitivity metrics.  These sensitivity metrics could be either auto- or cross-sensitivity, depending on 
which input fault is causing the deviation.  In both plots, the points indicate the true process parameter 
value.  The blue line drifting to the bottom at the highest rate indicates an artificially drifted sensor value 
that is supplied as an input to the empirical model, and the red upper line represents the model predictions 
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of the process parameter.  The model predictions with a small sensitivity (upper plot) lie very near the 
normal, undrifted data.  This indicates that the model is not significantly affected by the drifted input and 
is able to accurately predict the parameter’s actual value when supplied with faulty input.  This model is 
considered to be a “robust” model because the prediction is robust to measurement errors.  Conversely, 
the plot for the model with a large sensitivity metric (lower plot) shows the model’s predictions lie very 
near the artificially drifted values.  Such a model would be of little use in instrument calibration validation 
because its predictions follow the faulted inputs rather than correcting them. 

Fig. 1-7.  Illustration of sensitivity performance metric. 

 
Note that the accuracy metric is calculated for each variable, that the auto-sensitivity metric is 

calculated for the artificially drifted variable, and that the cross-sensitivity metric is calculated for each 
variable except the artificially drifted variable.  For a model with five variables, if a single variable is 
drifted, then there are five accuracy values, one autosensitivity (robustness) value, and four nonzero 
(cross-sensitivity) spillover metric values.  To quantify the sensitivity values for each variable, the 
algorithm is structured so that all the variables are sequentially perturbed.  The auto-sensitivity metric and 
the mean cross-sensitivity metric are calculated for each variable. 

1.5.3 Detectability metrics 

Detectability metrics measure the smallest fault that can be detected by an empirical model.  Two 
fault detectability metrics are used to evaluate model performance:  Error Uncertainty Limit Monitoring 
(EULM) detectability and Sequential Probability Ratio Testing (SPRT) detectability.  These detectability 
metrics are positive values that indicate the detectability as a percentage of the mean sensor value.  
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Before presenting the details of these detectability metrics, the generic process used in instrument 
calibration monitoring system is presented in Fig. 1-8. 

Fig. 1-8.  Process diagram for generic instrument calibration system. 

 

It can be seen that the first step in developing a calibration monitoring system is to collect training 
data and develop an empirical model.  Next, query data are presented to the developed model, which 
corrects the data.  The actual values are subtracted from the corrected values (where corrected values refer 
to a model’s estimates), providing the model’s prediction error, or bias.  In addition, the 95% uncertainty, 
or variance, of the model’s estimates is calculated and combined with the error to form its 95% 
confidence interval (CI).  This CI is then compared to acceptable calibration limits and may result in one 
of three possible choices:  (1) not to calibrate, (2) to schedule a calibration, or (3) to declare the sensor to 
be inoperable.  From this discussion, it is clear that the empirical model performs the most critical task of 
the calibration monitoring system by computing the process parameter estimate for a given system state.  
In addition, the empirical model performs a correcting action and can effectively employ an auto-
associative architecture. 

From this discussion, it is clear that the extent to which an empirical model can detect a sensor fault 
is affected by two factors:  its predictive uncertainty and its robustness.  This dependency will now be 
used in an example to fully develop the detectability performance metrics. 
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Error uncertainty limit monitoring (EULM) is a method of fault detection that monitors the 
uncertainty of the prediction errors relative to some specified tolerance.  A sensor is identified as 
“faulted” when the drift and model uncertainty exceeds the specified tolerance.  This detection method is 
most generally applied to sensor calibration validation tasks where a sensor is allowed to drift above or 
below its nominal value by a certain percentage.   

To understand EULM, it is necessary to first suppose that an empirical model of a sensor group has 
been developed, whose uncertainty of sensor i (95% CI) is found to be 1% of its nominal value.  In the 
ideal situation, the sensor’s prediction would be insensitive to input faults, and the smallest expected fault 
that the model could detect would be the magnitude of its uncertainty or 1%.  In other words, when the 
residual grew to >1%, one could be 95% certain that it was due to a drift and not due to the uncertainty of 
the prediction.  Since the ideal is rarely a reality, an empirical model’s predictions can be expected to drift 
slightly when an input is faulted.  When the auto-sensitivity is greater than zero, the sensor must drift by 
more than 1% for the residual to have a magnitude of 1%.  In Eq. (1.16), auto-sensitivity for the ith sensor 
is rewritten as the change in the prediction for a drifted input divided by the drift amount.   

 

 
ˆ ˆ ˆ

ˆ

− −drift drift drift drift
i i i i i i

drift
i

Ai drift
i

∆x = x x and ∆x = x x

∆xS = .
∆x

 (1.16) 

 
The residual is the difference between the input and the output with the input being the normal input 

plus the drift, and the output being the normal output plus the portion of the drift (SA) that appears on the 
prediction: 

 

 ˆ ˆ− −drift drift
i i i i i iResidual  = r  = x + ∆x x ∆x   (1.17) 

 
If the model is accurate, the prediction equals the actual value of xi, and Eq. (1.17) further simplifies 

to the following: 

 

 ˆ−drift drift
i i ir = ∆x ∆x  . (1.18) 

 
Using Eq. (1.16), a measure of the residual can be obtained in terms of autosensitivity: 
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Equation (1.19) says that the residual is only equal to a percentage of the actual drift.  For example, 
if the sensitivity is 0.2, then the sensor must drift by 1% /1–0.2) for the residual to equal 1%.  From this 
consideration, the actual EULM detectability metric is derived and shown in Eq. (1.20): 

 −

i

i
EULM i

i

U
SpanD = ( SA )1  , (1.20) 

 
where Ui is the uncertainty in the i th sensor and Spani is the span of the ith sensor. 

The detectability has units of percentage of sensor span and is a function of both model uncertainty 
and model auto-sensitivity.  A greater auto-sensitivity (SA) causes the denominator of Eq. (1.20) to get 
smaller and the detectability (Di) to get bigger; meaning that only larger drifts can be confidently detected.  
An optimal model would have an auto-sensitivity equal to zero. 

The Sequential Probability Ratio Testing (SPRT) fault detection method examines an error 
distribution and detects changes in its mean and variance.  For a detailed explanation of using SPRT for 
sensor surveillance, see Volume 2 of this NUREG or an article by Humenik and Gross (1990).  SPRT 
Detectability measures the smallest process parameter change that can be detected with a given false 
alarm rate.  Stated a more general way, SPRT tests whether the sequence of residuals is being generated 
by a random process with a mean of zero or by a process with a non-zero mean due to some fault 
condition.  This measure is generally used for process monitoring, not instrument calibration verification 
(ICV).  It does not directly take uncertainty into consideration.   

The general procedure for the SPRT is to first calculate the likelihood ratio, which is given by the 
following equation where {xn} is a sequence of n consecutive observations of x: 
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probability of observing x given H is true p x HL
probability of observing x given H is true p x H

 . (1.21) 

 
The likelihood ratio is then compared to a lower limit (A) and an upper limit (B) defined by the false 

alarm probability (α) and missed alarm probability (β) as follows: 

 

 −
−
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α α
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1

 . (1.22) 

 
If the likelihood ratio is less than A, then the system’s normal mode is classified as belonging to H0.  

Conversely, if the likelihood ratio is greater than B, it is classified as belonging to the system’s degraded 
mode H1 and a fault is registered.  If the ratio is between A and B, the state is indeterminate.  For this 
work, the SPRT is applied to the residual between a sensor measurement and an empirical model’s 
prediction of the parameter.  The residuals are assumed to be normally distributed with a mean of 0 and 
variance of σ2, which is an estimate of the random variation of the sensor signal.  Therefore, the 
probability distribution function (pdf) for the normal mode of the residuals is given by the following: 
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From this description, two degradation modes are readily apparent and are shown in Fig. 1-9. In the 

first plot, there is a mean shift up (+M), and the second plot shows a mean shift down (-M). The random 
uncertainty is denoted by the spread of the Gaussian function.  The SPRT simply determines whether the 
residual sequence is more probably generated from the normal or from the faulted distributions.  

 

Fig. 1-9.  Illustration of degraded modes for a normal distribution. 

 
The derivation of the likelihood ratios is beyond the scope of this paper but can be found in Humenik 

(1990).  The natural logarithms of the likelihood ratios are compared to ln A and ln B in most 
implementations of the SPRT algorithm. 

The magnitude of a sensor change caused by an anomaly or fault that can be reliably detected by the 
SPRT is defined as the magnitude of M.  If the observed values consistently lie near ±M, the residual 
sequence is more likely to be generated from the ±M distribution than from the normal distribution 
around 0. 

For this work, the optimal M value is determined numerically by applying the SPRT to unfaulted test 
data and locating the M value that results in a false-alarm probability that is nearest the desired false 
alarm probability .  If the optimal M value is estimated to be M̂ , then the SPRT detection performance 
metric in fraction of sensor span is given by Eq. (1.24):  
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For the case studies presented, the false alarm probability was set to 0.05 or 5%, and the missed 
alarm probability was set to 0.10 or 10%.  The missed alarm value is allowed to be fairly high, because if 
the algorithm does not detect a fault at time t, it will probably detect it at time t+1. 

1.5.4 Uncertainty 

The analytic and Monte Carlo methods for calculating OLM uncertainty are described in the 
previous NUREG volumes and by Hines (2005).  Analytic uncertainty is estimated with the analytic 
equations derived from the model’s mathematical architecture.  This method produces an uncertainty 
estimate with each prediction.  Monte Carlo uncertainty is estimated by applying a Monte Carlo 
resampling technique.  With Monte Carlo techniques, the training data are resampled multiple times, and 
for each of these resampled datasets, a new model is constructed.  The variation between all of these 
models is then taken as a measure of the variance portion of the total uncertainty.  The Monte Carlo 
methods produce an average uncertainty over the operating region.  Because the Monte Carlo methods 
measure the uncertainty of all possible models, rather than just the model at hand, their uncertainty 
estimates are inherently slightly larger than those calculated by the analytic methods.  However, research 
has shown that both techniques generally provide a conservative estimate of model uncertainty 
(Rasmussen 2003). 

In OLM, the uncertainty is calculated for the residuals (the difference between the actual signal and 
the model predictions) of each model.  This uncertainty is used to construct a confidence interval centered 
at zero, the expected value of the denoised residuals.  The residual coverage is then calculated as the 
fraction of denoised residuals contained within the confidence interval.  A 95% confidence interval 
should, on the average, result in 95% coverage.  Denoising is discussed in Chapter 7. 

1.6 Data-Set Description 

Signal selection is a key step in model development.  Several important considerations for this 
process are outlined in EPRI’s On-Line Monitoring of Instrument Channel Performance.  Volume 1:  
Guidelines for Model Development and Implementation (2004).  Most nonparametric modeling 
architectures including AAKR, assume that each signal in a data set is correlated with at least one other 
signal.  Optimal grouping techniques divide a large set of signals to be monitored into smaller, highly 
correlated groups.  These smaller groups may consist of purely redundant signals or may contain several 
sets of redundant signals that are correlated with each other.  In addition to signal correlation, data-set size 
(the number of signals) is an important consideration in signal selection and grouping.  Even if a large 
group of signals can be identified as highly correlated, models with many signals may be computationally 
intensive.  Computer memory and model run-time may become limiting factors for model size.  Models 
typically include between 3 and 30 signals, although models with as many as 80 signals are generally 
acceptable.  Two very different types of data sets are used to monitor nuclear power plant processes: 
small data sets with one set of redundant sensors and large data sets with several distinct sets of redundant 
sensors.  The results using both data set types are presented here:  one small redundant sensor set 
(Pressurizer-Level) and one large nonredundant sensor set (reactor protection system loop A).  The sensor 
models were chosen from Volume 2 of EPRI’s report on modeling guidelines (EPRI 2004). 

The Pressurizer-Level model includes three redundant Pressurizer-Level sensors (Fig. 1-10).  Table 
1-3 includes an estimation of the signal noise (see Chapter 6 for further information) and the correlation 
coefficients of the three sensors.  It can be seen that the correlation coefficients for each pair of sensors 
are extremely high. 
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Fig. 1-10.  Data for the Pressurizer-Level model. 

 
 

Table 1-3.  Data characteristics for Pressurizer-Level model 

Pressurizer-Level 

Signal  
1 

Signal  
2 

Signal  
3 

Data    
Signal noise estimate (%) 0.039 0.0366 0.038 
Correlation coefficients    

Signal 1 1.000 0.987 0.994 
Signal 2 0.987 1.000 0.981 
Signal 3 0.994 0.981 1.000 

 
The reactor protection system (RPS) Loop A models include nine sensors (Fig. 1-11):  two feedwater 

flow sensors (signals 1 and 2), two steam flow sensors (signals 3 and 4), two turbine-pressure sensors 
(signals 5 and 6), and three steam pressure sensors (signals 7, 8, and 9).  The four redundant sensor 
groups have high intercorrelations and are also highly correlated with each other.  Table 1-4 includes an 
estimation of the signal noise and the correlation coefficients of the three sensors.  It can be seen that the 
correlation coefficient between three sets of the redundant sensors is high:  the feedwater flow sensors, 
turbine pressure sensors, and steam pressure sensors.  However, the three steam pressure sensors are only 
moderately correlated with the other three groups.  Additionally, the two steam flow sensors have the 
smallest intercorrelations (0.681).  This is likely due to the high level of noise inherent in steam-flow 
sensors. 
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Fig. 1-11.  Data for RPS Loop A model. 

 
Table 1-4.  Data characteristics for RPS Loop A model 

RPS Loop A data 
 Signal  

1 
Signal 

2 
Signal 

3 
Signal 

4 
Signal 

5 
Signal 

6 
Signal  

7 
Signal  

8 
Signal 

9 
Signal noise estimate (%) 0.558 0.541 0.607 0.608 0.039 0.038 0.028 0.027 0.033

Correlation coefficients      
Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 −0.212 −0.183 −0.273
Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 −0.199 −0.161 −0.264
Signal 3  0.716 0.716 1.000 0.681 0.797 0.788 −0.280 −0.239 −0.328
Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 −0.279 −0.242 −0.372
Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 −0.244 −0.195 −0.302
Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 −0.253 −0.216 −0.297
Signal 7 −0.212 −0.199 −0.280 −0.279 −0.244 −0.253 1.000 0.970 0.956
Signal 8 −0.183 −0.161 −0.239 −0.242 −0.195 −0.216 0.970 1.000 0.947
Signal 9 −0.273 −0.264 −0.328 −0.372 −0.302 −0.297 0.956 0.947 1.000

 
Data were collected for these 12 variables, along with reactor power level data, for the 14-month 

period from March 2001 through April 2002.  The models developed with this data are valid only for 
reactor operation in the “high-power phase,” that is, a power level greater than 960 MW(e).  The “high-
power” data for each model are divided into three sets: training data, test data, and validation data.  The 
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training data are used to develop the model.  Test data are used to optimize the model; the results 
presented here include an optimization of the kernel bandwidth for each model.  Finally, the validation 
data are used to characterize the performance of the model, including performance metrics, model 
uncertainty, and model coverage.  The training data were chosen to be the first 30,000 observations 
shown in Figs. 1-10 and 1-11 above.  This includes “high-power” data from March 2001 to June 2001 
with a 5-minute sampling rate.  The test data were chosen to be the following 22,500 observations.  This 
includes data from July 2001 to mid-August 2001, with a 3-minute sampling rate.  Finally, the validation 
data were chosen to be the remaining 28,500 observations.  This includes data from mid-August 2001 to 
mid-October 2001.  These data ranges were chosen after a visual inspection of the data indicated that no 
significant data faults were present in any of the three ranges.  
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2. MODELING METHODS 

The method used for model development and analysis is outlined in Fig. 2-1.  Three data sets are 
used for each case study:  training data, test data, and validation data.  Before model development begins, 
these data should be visually inspected to determine if any outliers are present.  Automated methods for 
data cleaning have also been developed to identify common data collection and storage problems, but 
only visual inspection is used in this study.  

In the first step of this analysis, training data are used for initial model development.  In this step, 
exemplar observations are chosen from the training data to form the subset of memory vectors; this 
accounts for all the “training” needed by an AAKR model.  The second step involves optimizing the 
model architecture.  This optimization is accomplished using the test data set.  The models presented in 
this research are optimized only for the kernel bandwidth.  Models can also be optimized for other 
parameters, including the number of memory vectors, the vector selection method, and the distance 
measure.  Finally, the validation data set is used to quantify performance measures for the optimized 
model.  This involved evaluating five model metrics: accuracy, auto-sensitivity, cross-sensitivity, EULM 
detectability, and SPRT detectability. The model is also analyzed for both analytic and Monte Carlo 
uncertainty estimates.  

Fig. 2-1.  Method for model development and analysis. 

 

The seven case studies are: 

1. Faulty Training Data (Chapter 4), 
2. Query Data Outside the Training Region (Chapter 5), 
3. Effects of Noisy Data (Chapter 6), 
4. Effects of Denoising (Chapter 7), 
5. Effects of Different Vector Selection Methods (Chapter 8), 
6. Effects of the Number of Memory Vectors (Chapter 9), and 
7. Effects of Distance Calculation Method (Chapter 10). 
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Six of the seven case studies can be evaluated using a similar model development procedure.  The 

first two case studies, evaluating data outside the training region and training with faulty data, involve 
only manipulation of the validation and training data sets, respectively.  The third case study, effects of 
noisy data, also involves only manipulation of the data sets, namely adding additional Gaussian noise to 
the data.  The fourth case study, investigating the effects of data denoising methods, involves an 
additional data preprocessing step: denoising the data sets with different methods.  Case studies 5, 6, and 
7 effects of different vector selection methods, training with different amounts of memory vectors, and 
using a robust distance measure, can be performed with only small changes in the first step above:  model 
initialization and training.  In each of these cases, models are developed under various conditions to test 
the effects on various performance parameters.   
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3. BASELINE MODELS 

This section presents the results of correctly developed or “ideal” AAKR models for both 
Pressurizer-Level data and RPS loop A data.  The data and model architecture used to develop and test 
these models meet the assumptions and requirements discussed in the previous NUREG volumes.  These 
assumptions include having a correctly specified OLM model, which was developed with error-free data 
and only evaluates data that lies within the training range. 

3.1 Baseline Pressurizer-Level Model Results 

The Pressurizer-Level model includes three redundant sensors.  The results of this model are shown 
in Table 3-1.  It is important to note that the accuracy metric, which is characterized by the mean squared 
error of the model, is less than 1% of the sensor span.  This small error value indicates that the model’s 
predictions match the target value well.  Because the data used to train the model are known to be error-
free, this accuracy metric value shows that the model is correctly specified and is well suited for this 
application.  The two detectabilities indicate that EULM and SPRT drift tests can detect a sensor drift or 
anomaly much less than 1%.  In addition, the residual coverage of the model with both analytic and 
Monte Carlo uncertainty estimates is above the nominal 0.95 level, giving additional evidence that the 
uncertainty estimates are correct and are conservative for the test data. 
 

Table 3-1.  “Ideal” Pressurizer-Level model results 

Pressurizer-Level 
 Signal  

1 
Signal  

2 
Signal  

3 

Model    
Data cleaning No No No 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.055 0.0377 0.102 
Autosensitivity 0.466 0.712 0.434 
Cross-sensitivity 0.301 0.274 0.355 
EULM detectability (% span) 0.333 0.401 0.582 
SPRT detectability (% span) 0.00186 0.00185 0.00176 

Uncertainty    
Analytic (% of span) 0.107 0.071 0.203 
Coverage 0.993 0.953 0.995 
Monte Carlo (% of span) 0.121 0.092 0.209 
Coverage 0.997 0.959 0.998 
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3.2 Baseline RPS Loop A Model Results 

The RPS Loop A model includes nine sensors, in four redundant sets.  The results of this model are 
shown in Table 3-2.  It is important to note that the accuracy metric, which is characterized by the mean 
squared error of the model, is less than 1% of the sensor span with the largest being due to high noise 
levels in signal 5.  The EULM detectability values show that a drift in the range of 0.1% to 3.5% can be 
detected, depending on the signal.  The larger EULM detectabilities are due to large auto-sensitivity 
values.  The SPRT detectability values indicate that anomalies on the order of 0.003% can be detected.  
Finally, the residual coverage of the model with both analytic and Monte Carlo uncertainty estimates is 
well above the nominal 0.95 level, again showing the uncertainty prediction methods are conservative for 
this data set. 

Table 3-2.  “Ideal” RPS Loop A model results 

RPS Loop A 
Signal  

1 
Signal 

2 
Signal 

3 
Signal 

4 
Signal 

5 
Signal 

6 
Signal 

7 
Signal 

8 
Signal 

9 

Model          
Data cleaning no no no no no no no no no 
Number of memory vectors 500 500 500 500 500 500 500 500 500 
Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.261 0.246 0.290 0.229 0.919 0.120 0.027 0.037 0.046 
Autosensitivity 0.420 0.451 0.620 0.714 0.160 0.082 0.405 0.370 0.433 
Cross-sensitivity 0.120 0.119 0.098 0.116 0.079 0.046 0.130 0.125 0.150 
EULM detectability (%) 1.620 1.660 2.680 3.580 2.430 0.278 0.089 0.131 0.178 
SPRT detectability (%) 0.0031 0.0031 0.0035 0.0034 0.0018 0.0019 0.0005 0.0006 0.0006 

Uncertainty          
Analytic (% of span) 0.840 0.818 0.897 0.899 1.840 0.235 0.043 0.067 0.083 
Coverage 1.000 1.000 1.000 1.000 1.000 0.987 0.975 0.996 0.991 
Monte Carlo (% of span) 0.550 0.520 0.554 0.544 1.860 0.299 0.075 0.095 0.104 
Coverage 0.999 0.999 0.997 0.999 1.000 0.997 0.997 0.999 0.998 
 

3.3 Conclusions 

This chapter has presented the results of the “ideal” AAKR models.  These models were developed 
with error-free data and only applied to data which fell inside the training region.  The selection of how 
many memory vectors to include, the kernel width, and the vector selection method was also optimized.  
For these baseline cases, it can be seen that the Monte Carlo uncertainty values closely match the analytic 
uncertainty and that both uncertainty calculation methods result in good coverage.  The detectability 
metrics of the models also show that the models are reliable and capable of detecting small drifts.  
However, the largest detectability metrics are for the feedwater and steam flow sensors.  This result is 
expected because flow sensors generally have high noise levels.  Finally, the low accuracy metric values 
for both models indicate that the models provide good predictions of the unfaulted test data.  Because 
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several of the EULM detectability metrics are above a nominal 1%, these signals may not be good 
candidates for OLM-based sensor calibration extension.  Additional research, analysis, and/or 
optimization of the models may be necessary if the OLM techniques are to be used for calibration 
extension.  In many cases, the drift assumption used in the set point analysis is near 1%, and this is a 
general goal for EULM detectability. 
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4. FAULTY TRAINING DATA 

4.1 Introduction  

The inclusion of bad data points in a training set can invalidate a model.  There are many types of 
common data errors in most nuclear power plant sensor data (EPRI 2000).  Random data errors, missing 
data, stuck data, outliers, sensor drifts, loss of significant figures, and interpolation errors are just some of 
the data errors that have been observed in stored historical nuclear plant data that can affect an OLM 
system.  Generally, these errors are simply an artifact of the data historian.  They are not reflective of an 
error in a sensor.  Interpolation errors occur when the data are taken from compression routines normally 
implemented in data archival programs.  For example, the PI Data Historian from OSI Software creates a 
data archive that is a time-series database.  However, typically all of the data are not stored at each 
collection time. Only data values that have changed by more than a given tolerance are stored along with 
their time stamp.  This method requires much less storage but results in a loss of data fidelity.  When data 
are extracted from the historian, the data values between the logged data points are calculated through a 
simple linear interpolation.  For these reasons, data collected for model training should be actual 
measured data values and tolerances should be set to zero.  This may also help in preventing loss of 
significant figures in training data.  

The effects of three types of errors found in training data will be investigated here:  outliers in data, 
stuck data, and data with a sensor drift.  These three types of data faults were simulated in the training 
data sets previously described. 

Random outliers were introduced into the training data set by adding a value up to half the mean 
sensor value to 30 data points (a mere 0.1% of the training set).  The training data with outliers is shown 
in Fig. 4-1 for both the Pressurizer-Level data set and the RPS Loop A data set.  Clearly, many significant 
outliers, which could easily be identified via visual inspection of the data, exist in both these groups. 

 

Fig. 4-1.  Training data contaminated with outliers for (a) Pressurizer-Level and (b) RPS Loop A models. 
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Stuck data sensors were simulated in each data set in three different ways.  First, a sensor was forced 
to take on its mean value for half the length of the training data; second, a sensor was forced to take its 
maximum value for half the length of the training data; and finally, a sensor was forced to take its 
minimum value for half the length of the training data.  The training data for each of these cases is shown 
in Fig. 4-2 for both the Pressurizer-Level data set and the RPS Loop A data set.  The Pressurizer-Level 
data signal 3 was forced to be stuck; the RPS Loop A data signal 7, the first steam pressure sensor, was 
forced to be stuck.  Again, this type of fault could easily be identified through a visual inspection of the 
training data.   

Fig. 4-2.  Pressurizer-Level and RPS Loop A training data with a stuck sensor at (a,d) the mean value, 
(b,e) the maximum value, and (c,f) the minimum value. 

 

The final type of training data fault investigated was sensor drift.  An artificial linearly increasing 
sensor drift ending at a magnitude of 3σ (three times the standard deviation of the sensor signal) was 
introduced beginning at the time equal to one-third of the length of the training set and reaching its 
maximum value at the end.  The training data for each of these cases is shown in Fig. 4-3.  Sensor drifts 
of this size can easily be identified via visual inspection, if a valid prediction of the correct value exists, 
smaller drifts may not be as obvious. 
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Fig. 4-3.  Artificially drifted training data for (a) Pressurizer-Level and (b) RPS Loop A models. 

 

Models were developed using each of the training data sets described above, with the test and 
validation data sets described in Chapter 3.  The model results with each of these types of training data 
faults are summarized in the following section.   

4.2 Results 

Models were developed to investigate the model performance effects of three types of training data 
faults described above:  outliers, stuck sensors, and drifted sensors.  The results of these case studies, 
including possible indicators of each fault, are summarized below. 

4.2.1 Outliers in the training data 

Two models were developed using training data with 0.1% of the training data being outliers.  The 
complete results of these models are in Appendix A.2; the important points are summarized here.  The 
model analysis includes several indicators that the model has not been adequately developed.  Three 
possible indicators are model uncertainty, residual coverage, and sensor signal correlations.   

An important requirement of an OLM system is to minimize model uncertainty while maintaining an 
adequate coverage at or above the nominal 0.95 level.  Often, a trade-off occurs between these two 
metrics.  Adequate model coverage can be ensured by an accurate or conservative estimate of model 
uncertainty.  However, because model uncertainty is a factor in determining the detectable drift limit, an 
optimally useful model would have a low uncertainty; unnecessary conservatism limits the model’s 
applicability.  As can be seen in Table 4-1 for the Pressurizer-Level model, although the residual coverage 
based on the analytic uncertainty is very high, the analytic uncertainty is much larger than that for the 
baseline model described earlier.  In contrast, the Monte Carlo uncertainty estimate is small enough to 
give acceptable allowable drift limits; the coverage, however, does not meet the 95% requirements.  
Clearly, uncertainty and coverage can be used to identify an invalid model in this case, whether using the 
analytic or Monte Carlo uncertainty estimate.   

The results for the RPS Loop A model, shown in Table 4-2, are not as clear.  In this case, the analytic 
uncertainty for signals 7–9 is higher than that for the baseline model, and the Monte Carlo uncertainty 
estimates are similar to the baseline model, and all methods give good residual coverage.  The coverage 
values show the estimates are valid and conservative.  These results show that models with more inputs 
are more robust to outliers in the training data.  This is expected because the additional inputs give 
additional redundant information that can be used to correct errors.  This shows that uncertainty and 
coverage are not always good indicators of outliers in the data.  
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Table 4-1.  Uncertainty and coverage for Pressurizer-Level model  
trained with outliers 

Pressurizer-Level 

Uncertainty Signal 
1 

Signal 
2 

Signal  
3 

Analytic (% of span) 0.367 0.715 0.442 
Coverage 1.000 1.000 1.000 
Monte Carlo (% of span) 0.068 0.072 0.068 
Coverage 0.749 0.952 0.258 

 
 

Table 4-2.  Uncertainty and coverage for RPS Loop A model trained with outliers 

RPS Loop A 

Uncertainty Signal 
 1 

Signal
 2 

Signal
 3 

Signal
 4 

Signal
 5 

Signal
 6 

Signal 
 7 

Signal 
 8 

Signal
 9 

Analytic (% of span) 0.784 0.733 0.957 0.891 1.780 0.628 0.514 0.510 0.052 

Coverage 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 

Monte Carlo (% of span) 0.474 0.447 0.515 0.535 1.680 0.225 0.097 0.100 0.086 

Coverage 0.999 1.000 0.997 1.000 1.000 0.973 0.997 0.985 0.999 

 
Sensor correlation can also be used as an indicator of poor model training data when at least some a 

priori knowledge of the sensor interactions is available.  As was noted in the data description section, the 
sensors in the Pressurizer-Level data set and each of the redundant sensor sets in the RPS Loop A data set 
have strong (> ~0.7) correlation coefficients.  However, outliers in the training data sets degrade the 
correlation coefficients.  In fact, as can be seen in Tables 4-3 and 4-4, the correlation coefficients are 
significantly degraded, despite the fact that each set is of redundant sensors.  This suggests that 
correlation coefficients may be a valid indicator of corrupt data sets. 

 
Table 4-3.  Correlation coefficients for Pressurizer-Level  

training data with artificial outliers 

Pressurizer-Level 

Signal 
1 

Signal 
2 

Signal  
3 

Correlation coefficients   

Signal 1 1.000 0.504 0.639 

Signal 2 0.504 1.000 0.471 

Signal 3 0.639 0.471 1.000 
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Table 4-4.  Correlation coefficients for RPS Loop A training data with artificial outliers 

RPS Loop A 
Signal 

1 
Signal

2 
Signal

3 
Signal

4 
Signal

5 
Signal

6 
Signal 

7 
Signal 

8 
Signal

9 
Correlation coefficients    

Signal 1 1.000 0.959 0.669 0.684 0.742 0.741 −0.096 −0.080 −0.269
Signal 2 0.959 1.000 0.677 0.690 0.753 0.747 −0.091 −0.070 −0.264
Signal 3 0.669 0.677 1.000 0.627 0.693 0.688 −0.122 −0.100 −0.314
Signal 4 0.684 0.690 0.627 1.000 0.708 0.701 −0.123 −0.107 −0.362
Signal 5 0.742 0.753 0.693 0.708 1.000 0.833 −0.103 −0.080 −0.278
Signal 6 0.741 0.747 0.688 0.701 0.833 1.000 −0.106 −0.089 −0.272
Signal 7 −0.096 −0.091 −0.122 −0.123 −0.103 −0.106 1.000 0.213 0.445
Signal 8 −0.080 −0.070 −0.100 −0.107 −0.080 −0.089 0.213 1.000 0.447
Signal 9 −0.269 −0.264 −0.314 −0.362 −0.278 −0.272 0.445 0.447 1.000

 
Two models were developed using training data containing outliers.  Three model metrics could 

indicate corrupted training data: model uncertainty, residual coverage, and training data correlation 
coefficients.  The use of “bootstrap” correlation coefficient probability distributions can be used as a tool 
to identify outliers.  However, none of these metrics are a perfect indicator of outliers in the training data.  
Visual inspection of the training data is imperative to ensure that outliers are not included.  

4.2.2 Stuck sensor in the training data 

Six models were developed using training data with a stuck sensor:  two with a sensor stuck at the 
mean value, two at the maximum value, and two at the minimum value.  The complete results of all of 
these models are in Appendix A.2.  Sensor signal correlation coefficients are the only clear and consistent 
automated indicator that a model may suffer from a stuck sensor in the training data set.  However, 
automated data cleaning routines that specifically look for data values that do not change have been 
developed and can detect this fault type. 

Of the three stuck sensor values investigated, a sensor stuck at the mean value had the least effect on 
model development.  Because only “high-power” data are considered, the sensor signals can be fairly 
steady.  This is true for the Pressurizer-Level data, as can be seen in Fig. 4-2(a), above; in fact, a sensor 
stuck at the mean value is a reasonable approximation to the actual signal.  The RPS Loop A data, 
however, are more variable; a sensor stuck at the mean value in this data set is not a good approximation 
of the actual signal.  Tables 4-5 and 4-6 show the correlation coefficients for the Pressurizer-Level and 
RPS Loop A data sets with stuck sensors Signal 3 and Signal 7, respectively.  The Pressurizer-Level data 
show insignificant degradation in the correlation coefficients, mostly because the data have little 
variation.  The RPS Loop A data, however, have an appreciable decrease in correlation. 
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Table 4-5.  Correlation coefficients for Pressurizer-Level training data  
with signal 3 stuck at mean value 

Pressurizer-Level 
 Signal 

1 
Signal 

2 
Signal  

3 
Correlation coefficients    

Signal 1 1.000 0.987 0.974 
Signal 2 0.987 1.000 0.960 
Signal 3 0.974 0.960 1.000 

 
 

Table 4-6.  Correlation coefficients for RPS Loop A training data  
with signal 7 stuck at mean value 

RPS Loop A 

Signal 
1 

Signal
 2 

Signal
 3 

Signal
 4 

Signal
 5 

Signal
 6 

Signal 
 7 

Signal 
 8 

Signal
 9 

Correlation coefficients    
Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 −0.287 −0.183 −0.273
Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 −0.276 −0.161 −0.264
Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 −0.318 −0.239 −0.328
Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 −0.317 −0.242 −0.372
Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 −0.376 −0.195 −0.302
Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 −0.386 −0.216 −0.297
Signal 7 −0.287 −0.276 −0.318 −0.317 −0.376 −0.386 1.000 0.650 0.684
Signal 8 −0.183 −0.161 −0.239 −0.242 −0.195 −0.216 0.650 1.000 0.947
Signal 9 −0.273 −0.264 −0.328 −0.372 −0.302 −0.297 0.684 0.947 1.000

 
For the more drastic types of stuck sensor, a sensor stuck at the maximum value or at the minimum 

value, correlation coefficients become a much more reliable indicator of faulty data.  As was seen in 
Fig. 4-2, either of these stuck sensor values results in a signal very different from the actual sensor signal.  
Tables 4-7 and 4-8 show the correlation coefficients for Pressurizer-Level and RPS Loop A data, 
respectively, with a sensor stuck at the maximum value.  Significant degradation was seen for the 
correlations in both data sets as a result of these stuck sensors.  Tables 4-9 and 4-10 show the correlation 
coefficients for a sensor stuck at the minimum value.  Similar decreases in correlation coefficients are 
caused by this data fault. 
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Table 4-7.  Correlation coefficients for Pressurizer-Level training data  
with signal 3 stuck at maximum value 

Pressurizer-Level 

Signal 
1 

Signal 
2 

Signal  
3 

Correlation coefficients    

Signal 1 1.000 0.987 0.555 

Signal 2 0.987 1.000 0.539 

Signal 3 0.555 0.539 1.000 

 

 
Table 4-8.  Correlation coefficients for RPS Loop A training data  

with signal 7 stuck at maximum value 

RPS Loop A 
 Signal  

1 
Signal 

2 
Signal 

3 
Signal 

4 
Signal 

5 
Signal 

6 
Signal  

7 
Signal  

8 
Signal 

9 
Correlation coefficients    

Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 0.291 −0.183 −0.273
Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 0.281 −0.161 −0.264
Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 0.292 −0.239 −0.328
Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 0.293 −0.242 −0.372
Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 0.242 −0.195 −0.302
Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 0.210 −0.216 −0.297
Signal 7 0.291 0.281 0.292 0.293 0.242 0.210 1.000 −0.022 −0.116
Signal 8 −0.183 −0.161 −0.239 −0.242 −0.195 −0.216 −0.022 1.000 0.947
Signal 9 −0.273 −0.264 −0.328 −0.372 −0.302 −0.297 −0.116 0.947 1.000

 
 

Table 4-9.  Correlation coefficients for Pressurizer-Level training  
data with signal 3 stuck at the minimum value 

Pressurizer-Level 
Signal 

1 
Signal 

2 
Signal  

3 
Correlation coefficients    

Signal 1 1.000 0.987 0.075 
Signal 2 0.987 1.000 0.098 
Signal 3 0.075 0.098 1.000 
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Table 4-10.  Correlation coefficients for RPS Loop A training data  
with signal 7 stuck at the minimum value 

RPS Loop A 
Signal 

1 
Signal 

2 
Signal 

3 
Signal 

4 
Signal 

5 
Signal 

6 
Signal  

7 
Signal  

8 
Signal 

9 
Correlation 
coefficients 

 

Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 -0.083 -0.183 -0.273
Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 -0.052 -0.161 -0.264
Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 -0.081 -0.239 -0.328
Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 -0.086 -0.242 -0.372
Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 -0.127 -0.195 -0.302
Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 -0.164 -0.216 -0.297
Signal 7 -0.083 -0.052 -0.081 -0.086 -0.127 -0.164  1.000  0.411  0.319
Signal 8 -0.183 -0.161 -0.239 -0.242 -0.195 -0.216  0.411  1.000  0.947
Signal 9 -0.273 -0.264 -0.328 -0.372 -0.302 -0.297  0.319  0.947  1.000

 

Training data correlation coefficients offer a possible indication of stuck data sensors.  As was seen 
with the Pressurizer-Level data with a sensor stuck at the mean value, correlation coefficients cannot 
identify a stuck sensor that is a reasonable approximation of the actual signal that has little variation.  
However, as was seen with the other cases, if the stuck sensor signal is significantly different from the 
actual sensor signal, correlation coefficients can be a valuable tool for identifying stuck sensor data faults.  
Again, visual inspection of the training data should be employed to identify stuck sensor faults.  

4.2.3 Drifted sensor in the training data  
Two models were developed using training data with an artificial sensor drift.  The Pressurizer-Level 

model contains a drift in the third sensor.  The RPS Loop A model contains a drift in the fourth signal, the 
second steam flow sensor.  Again, only one clear indicator of this fault is present in the model analysis:  
signal correlation coefficients. 

Because each signal has at least one redundancy, a priori knowledge is available about the 
correlation coefficients of the sets of redundant signals; that is, these correlations should be high.  Sensor 
drift in any one of these signals will cause a degradation in the correlation coefficients, as can be seen in 
Tables 4-11 and 4-12.  The correlation coefficients in the original Pressurizer-Level data were on the 
order of 0.99.  The drifted Pressurizer-Level sensor, Signal 3, has correlation coefficients on the order of 
0.64 with both redundant sensors Signal 1 and Signal 2.  The original steam flow sensors, Signal 3 and 
Signal 4, had a correlation coefficient of 0.68.  Even this lower correlation showed significant degradation 
due to the sensor drift; the correlation of the drifted signal, Signal 4, with its redundant sensor, Signal 3, is 
0.27.   
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Table 4-11.  Correlation coefficients for Pressurizer-Level training  
data with a drifted sensor 

Pressurizer-Level 
Signal 

1 
Signal 

2 
Signal  

3 
Correlation coefficients    

Signal 1 1.000 0.987 0.637 
Signal 2 0.987 1.000 0.638 
Signal 3 0.637 0.638 1.000 

 
Table 4-12.  Correlation coefficients for RPS Loop A training data with a drifted sensor 

RPS Loop A 
Signal  

1 
Signal 

2 
Signal 

3 
Signal 

4 
Signal 

5 
Signal 

6 
Signal  

7 
Signal  

8 
Signal 

9 
Correlation coefficients    

Signal 1 1.000 0.970 0.716 0.324 0.820 0.815 -0.212 -0.183 -0.273
Signal 2 0.970 1.000 0.716 0.288 0.824 0.815 -0.199 -0.161 -0.264
Signal 3 0.716 0.716 1.000 0.273 0.797 0.788 -0.280 -0.239 -0.328
Signal 4 0.324 0.288 0.273 1.000 0.316 0.404 -0.266 -0.338 -0.206
Signal 5 0.820 0.824 0.797 0.316 1.000 0.990 -0.244 -0.195 -0.302
Signal 6 0.815 0.815 0.788 0.404 0.990 1.000 -0.253 -0.216 -0.297
Signal 7 -0.212 -0.199 -0.280 -0.266 -0.244 -0.253 1.000 0.970 0.956
Signal 8 -0.183 -0.161 -0.239 -0.338 -0.195 -0.216 0.970 1.000 0.947
Signal 9 -0.273 -0.264 -0.328 -0.206 -0.302 -0.297 0.956 0.947 1.000

 
Signal correlation coefficients are a possible indicator of sensor drifts in the training data.  This, 

however, is only valid when groups of redundant sensors are included or when some other a priori 
knowledge of signal correlations is available.  Correlation coefficients may not be effective in identifying 
smaller sensor drifts.  Visual inspection of the training data can identify most drifts when redundant, fault-
free signals are available.   

4.3 Discussion and Recommendations 

A major assumption in the use of empirical model based OLM is that the training data is error free.  
The above results showed the importance of carefully reviewing any acquired data that is going to be used 
in model development to assure its quality.  Visual inspection of the data or focused automated techniques 
would identify each of the three types of faults investigated here.  It is important that any nuclear plant 
using OLM be aware of the threat posed by bad data and have a designated person, in addition to 
automated techniques, to visually inspect any data that will be used for development of their OLM 
system.  If data faults are identified in the training data set, some action must be taken before model 
development.  If data anomalies such as outliers, interpolation errors, random data errors, missing data, or 
loss of significant figures are identified, the data should be processed to remove these faults.  For this 
purpose, automated data cleanup utilities can be used to help remove these types of errors, by either 
removing bad data or replacing it with the most probable data value using some algorithm, such as linear 
interpolation.  It is most common, however, to delete all bad data observations from the training data set.  
Most OLM software systems include automated tools for data cleanup; these tools easily identify outlying 
data but may be insensitive to data errors that occur within the expected region of operation, such as small 
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data drifts and stuck sensors if not specifically designed to detect them.  If visual inspection of the data 
indicates errors that cannot be corrected by a data cleaning utility, a new training data set should be 
identified and evaluated for model development.   
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5. QUERY DATA OUTSIDE THE TRAINING REGION 

5.1 Introduction 

The next limiting case examined occurs when an OLM model attempts to predict values for data that 
do not fall within the training range.  Almost all of the models currently being used for OLM are 
developed using training data.  Even the nonparametric models are considered to use “training data,” 
although they require no training.  In such cases, “training data” refers to the data stored in memory which 
is recalled and processed each time a query is made.  The predictions of the “true” sensor value from 
autoassociative kernel regression (AAKR) are in this way dependent upon the training data used to 
develop the model.   

A basic assumption of nonredundant models is that the model is operating within its training range.  
In other words, it is always assumed that the data being predicted come from the same operating state as 
the training data.  Unfortunately, several circumstances, including seasonal variations, equipment repair 
or failure, and system-operating changes can cause a change in operating conditions.  When the operating 
conditions change, the training data and model may no longer be representative of the true operating state 
of the plant.  If the training data are no longer valid, the model must be retrained, or in the case of most 
nonparametric models, the memory matrix must either be appended or replaced with new data that 
accurately represent the plant’s current operating state.  If the model is operating outside of its training 
range, no confidence can be given to the model’s prediction, and the uncertainty estimates should increase 
to indicate that this fault is occurring; in addition, a reliability assessment module should be used.  The 
term “reliability assessment module” was introduced by the Halden group and has become an industry 
standard.  A reliability assessment module is a method that produces a metric related to the reliability of a 
prediction.  This metric is usually partially dependent on whether the query is within the training data 
range. 

This section examines and quantifies how operating outside the training region will affect three 
model metrics:  accuracy, uncertainty, and detectability.  The accuracy metric is characterized by the 
mean squared error of the model predictions.  The objective in model development and evaluation is to 
keep this value small, indicating a small error.  When models are evaluated on query data outside the 
training space, analytic uncertainty estimates should increase beyond what is acceptable for an OLM 
system.  Monte Carlo uncertainty estimates are not considered an indicator for this type of data problem 
because those estimates are made prior to model implementation and are an average value not dependent 
on the query.  Conversely, analytic uncertainty can be estimated for each model prediction.  Finally, 
model detectability, the model’s ability to correctly identify sensor drift, should be impacted by query 
data outside the training range.  In theory, the accuracy metric value, analytic uncertainty, and 
detectability should inflate to a point at which the model can no longer be used for OLM when the query 
data are not contained within the training region.  

Data can be considered to be outside the training region for two reasons.  First and easiest to identify, 
data may lie outside the maximum and minimum range of the training data.  Second, data collected during 
different operating modes may have different relationships among the non-redundant sensors.  Because 
the models developed here are applicable only to “high-power” data, data that have been collected in 
lower power regions were identified as data outside the training region.  Figures 5-1 and 5-2 show the 
training and query data for the Pressurizer-Level model and RPS Loop A model, respectively.  Clearly, 
the query data sets contain regions that are well outside the training region.  Models will be developed 
using the same training data and test data described in Chapter 3.  These models will be evaluated using 
the query data shown below to assess the effect of such data on model performance.   
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Fig. 5-1.  (a) Training data and (b) query data for the Pressurizer-Level model. 

 

 

 

 
Fig. 5-2.  (a) Training data and (b) query data for the RPS Loop A model. 
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5.2 Results 

Models were developed using the training and test data sets described in Chapter 3.  They were then 
evaluated using the query data sets shown above.  As was expected, the three model metrics—accuracy, 
uncertainty, and detectability—showed significant degradation over the baseline models described.  A 
comparison of each of these metrics for the baseline model and the current model are shown in Tables 5-1 
and 5-2 for the Pressurizer-Level model and the RPS Loop A model, respectively.  Full model results are 
included in Appendix A.3. 

 
Table 5-1.  Pressurizer-Level model performance with query data  

outside the training region 
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Table 5-2.  RPS Loop A Model performance with query data outside the training region 

 

The three metrics described above, accuracy, analytic uncertainty, and detectability, all increase 
significantly for models evaluated with query data outside the training region.  Any of these three metrics 
can be used as indicators that this type of data fault might be occurring.  OLM systems should also 
include a reliability assessment module for evaluating the reliability of model predictions and alerting 
operators not to trust the OLM results. 

5.3 Discussion and Recommendations 

This section demonstrated that an AAKR model cannot effectively be used to evaluate query data 
outside the training region.  In fact, no nonlinear models have the ability to correctly extrapolate beyond 
their training region.  Linear models will extrapolate linearly and may be valid if the relationships are 
strictly linear.  When plant operating conditions change, a nonlinear model, using training data from a 
different operating mode, is no longer effective for predicting the current operating state of the plant.  
When this occurs, a new model must be developed; however, validated fault-free data may not be readily 
available.  For parametric models, this means model retraining or derivation of a new first-principles 
model.  For most nonparametric models, the training data memory matrix may be either replaced or 
simply supplemented with new data that are characteristic of the plant’s current operating state.  Caution 
should always be used when adapting a model to new conditions.  The new data used to adapt the model 
must be validated as fault-free data. 

Three metrics were identified that can indicate that query data has moved outside the training data 
region:  accuracy, analytic uncertainty, and detectability.  When these metrics increase beyond acceptable 
limits for OLM systems, query data should be evaluated to determine if the data are still in the model’s 
training region. 

In addition to monitoring these three metrics, OLM systems should include a reliability assessment 
module to evaluate the reliability of a model prediction.  A typical reliability metric would range from 0 
to 1, with a metric of zero indicating that the model prediction is not reliable and a metric of 1 indicating 
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that it is reliable.  Reliability assessment should be performed in two steps.  First, the assessment should 
determine whether the query vector is within the training data range.  If the vector is not, the prediction 
reliability should immediately be set to 0.0.  However, if the query is within the training range, the 
reliability metric should be a function of the similarity between the query and memory vectors.  Typically, 
this function relies only on the greatest similarity value between the query vector and the memory vectors; 
that is, the reliability is related to the distance between a query vector and the closest memory vector.  
High reliability occurs when the query is very similar to the training data.  With this type of construction, 
a reliability assessment measure can identify when query data do not fall within the training region and 
OLM operation should not be trusted.   
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6. EFFECTS OF NOISY DATA 

6.1 Introduction 

Another important data quality issue is the level of noise present in each sensor.  This noise can 
include any random variable such as process noise, measurement noise, and electronic noise.  Process 
noise is the natural perturbation of a parameter about its true or expected value.  This type of noise is 
particularly evident in flow and level sensors that have natural fluctuations due to “pressure waves” about 
the intended value.  Measurement noise refers to the noise inherent in the sensor.  Electronic noise 
includes the noise resulting from data transfer from the sensor to a central processor.  These three noise 
contributors combine to cause random errors in the data that cannot be determistically modeled.  This 
case study investigates the effect of increasing noise levels in the data by adding Gaussian noise to the 
already noisy plant data described earlier.  The general expectation is that as the noise level in a sensor set 
increases, model performance is degraded.  

The noise level in each sensor is characterized by the signal-to-noise (SNR) ratio.  This ratio is 
estimated by smoothing the signals with a median filter.  The ratio is then given as the variance of the 
smoothed signals divided by the variance of the noise that was removed.  A high signal-to-noise ratio 
indicates a low level of noise, while a low signal-to-noise ratio indicates a high level of noise.  Very 
complicated methods can be developed to give more exact estimates of the signal noise (such as wavelets 
filtering), but a simple SNR estimate is sufficient for this analysis.   

6.2 Results 

As expected, as the level of noise increases, model performance is degraded.  Figure 6-1 shows the 
average EULM detectability of the three PZRL sensors as a function of the average signal-to-noise ratio.  
Low signal-to-noise ratios (high levels of noise) result in high EULM detectabilities; while low signal-to-
noise ratios result in acceptable detectability metrics.  For these data, acceptable EULM detectability 
metrics correspond to signal-to-noise ratios of approximately 3 or greater.   

 
 

 
Fig. 6-1.  Signal to noise ratio vs EULM detectability for the Pressurizer-Level model. 
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6.3 Discussion and Recommendations 

This type of study can easily be performed with other data sets to determine the level of noise that 
will not degrade model performance beyond acceptable limits.  If high noise levels are unavoidable, the 
effects on model performance can be reduced by denoising the data prior to model development and 
implementation.  Several methods exist for data denoising; the next case study examines these methods in 
more detail. 
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7. EFFECTS OF DENOISING 

7.1 Introduction 

An important component of OLM uncertainty analysis is signal denoising.  A sensor signal is 
considered to have both a deterministic component and a random component.  The deterministic 
component is the information-carrying part of the signal and contains the process dynamics.  The random 
component is the random part of the signal and is believed to be made up of sources such as the process, 
measurement, and electronic noise.  In general, the deterministic component is considered to be the 
information-carrying part of the input, and the random component is considered any additional, 
noninformation part.  However, this definition of the random component does not always hold true.  As 
discussed later in this chapter, estimating the noise (or random component) is a complicated, yet critical 
task in any OLM system, particularly when the noise component adds a significant proportion of variance 
to the signal such as during steady state operation. 

In denoising, a signal is smoothed so that the contaminating noise is removed and only an estimate of 
the “true” signal remains.  Denoising is an important step in estimating the bias.  It is also needed to 
estimate the value of σε2, which is commonly termed the “irreducible error” because it cannot be 
controlled through the modeling process and is due to random disturbances in the measurement process.  
In this study related to nuclear power, noise is assumed to be normally distributed with a mean of 0 and 
variance of σε2.  Therefore, the only term that describes noise is σε2.  σε2 is used in calculating the analytic 
variance, the squared bias, and in the estimate of the total uncertainty when prediction intervals are used.  
At first, estimating σε2 may seem rather straightforward, but unfortunately, many problems arise when 
using actual data to make this determination.  

Many previous analyses have simply employed a filtering technique to determine the noise level in a 
set of data.  The filtered signal is subtracted from the unfiltered signal to produce a noise estimate.  
Although this method is often valid, several factors must be considered. The first is the sampling rate.  If 
the data are not sampled at a rate faster than the process dynamics, then filtering may remove process 
dynamics that should not be considered to be noise.  To elaborate, consider Fig. 7-1, which presents 
temperature data from the secondary side of the nuclear power plant.  In the figure, the units of time are 
not specified.  If the time on the x-axis is in units of seconds, and the plant is in normal steady state 
operation, then it would not be physically possible for the temperature to change quickly enough to create 
the large fluctuations exhibited by the data.  In this case, low pass filtering could be performed without 
losing information about the actual process.  However, if the time is in days, or perhaps even hours, the 
process variable might vary at the rate shown in the data.  Thus, filtering would not be allowed.  
Engineering judgment must always be used before applying a standard filtering technique to data since 
filtering requires foreknowledge about the data and the underlying process.  Filtering should, therefore, 
only be used when there is certainty that the process dynamics will not be lost. 
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Fig. 7-1.  Plot of temperature data. 

 
Another problem with using standard filtering to estimate noise is that it cannot distinguish between 

common process noise and independent instrument noise.  As depicted in Fig. 7-2, redundant sensor 
groups in nuclear plants contain common as well as independent noise sources.  As shown in the figure, 
each redundant sensor contains a source signal indicative of the actual process, such as a steam generator 
level (denoted by P in the figure).  However, redundant sensors will not generally produce exactly 
identical readings, even though they are measuring the same process because the sensors are 
contaminated with noise.  In Fig. 7-2, the measured signals are shown as being corrupted with both 
common and independent noise. Although it is given the term “noise,” common noise is actually 
reflective of the process.  Some examples of common noise are water-level fluctuations due to turbulent 
flow or possibly the high-frequency boiling component of a signal measured by a steam generator level 
detector, if the detector can respond in that range.  Each sensor also contains some unique independent 
noise. Independent noise is frequently caused by electrical noise contamination of the specific sensor 
signal.  Because common process noise is indicative of a process variable’s state, it then is apparent that 
irreducible error should only include independent noise and not common process noise.  The figure shows 
each sensor as having only a single common and independent noise source.  In actuality, however, a 
sensor can be contaminated by multiple common and independent noise sources.  It is this reason that 
noise is commonly modeled by a Gaussian distribution.  The central limit theorem states that as 
independent noise sources are added, regardless of their distributions, the resulting distribution tends 
toward Gaussian. 
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Fig. 7-2.  Diagram of real world signals containing both common and independent noise. 

 
When conventional frequency-based filtering is being performed, there is no guarantee that only 

independent noise is removed.  Frequently, common process noise, which should not be filtered, is also 
removed because it may contain frequency content similar to independent noise. Because there is usually 
little prior knowledge that is useful in differentiating between common and independent noise, it is 
difficult to select proper window sizes or filtering criteria.  Generally, the small addition of common 
process noise in the error term is considered negligible.  However, in situations where the common 
process noise is exceedingly large, such as flow or steam generator level sensors, the predictive 
uncertainty may be inflated to the point where the OLM drift limits are exceeded.  Therefore, standard 
smoothing methods may be unsuited for OLM applications.  To deal with this problem, an optimization 
algorithm may be used to determine the best filtering parameters. 

In this study, a genetic algorithm (GA) is used to determine optimal smoothing parameters for 
several filtering techniques, including median filtering, wavelet denoising, kernel smoothing, and infinite 
impulse response filtering.  GAs are a valuable function optimizer because they are less susceptible to 
getting “stuck” at local optima than gradient search methods.  GAs are inspired by Darwin’s theory of 
evolution.  GAs solve optimization problems by an evolutionary process that finds the best, or fittest, 
solution (survivor) out of many populations.  

A GA starts with a set of solutions, represented by chromosomes, called a population.  Solutions 
from one population are allowed to reproduce, either asexually where the entire chromosome remains the 
same, or two chromosomes can mate, where the two parents trade genes (features) that are to the right of 
the crossover point to form a whole new chromosome, or mutate and are combined with random 
chromosomes to form the next generation population.  During mutation, small elements of DNA, also 
referred to as bits in the chromosomes, are changed.  It is hoped that the next generation population will 
better meet the objective function than the previous population.  Chromosomes that are allowed to 
crossover are selected according to their fitness; the more suitable they are, the more chance they have to 
reproduce and have their features survive to the next generation.  This process is repeated until the 
stopping criterion (i.e., number of iterations or improvement of the best solution) is satisfied.  Overall, 
GAs provide an alternative method to traditional gradient descent techniques for solving optimization 
problems.  Many real world problems involve finding optimal parameters, a process that might prove 
difficult for traditional methods but is ideal for GAs [Leung 1996].  However, it is important to realize 
that GAs are simply a search technique, not function optimizers.  A GA promises convergence but not 
optimality, and like all tractable optimization techniques, cannot be guaranteed to find a local minimum 
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[Chung 1994] for general nonlinear problems.  A more complete discussion of GA optimization can be 
found in Haupt and Haupt [2004]. 

In this study, the aforementioned filtering methods were applied to different types of data (for both 
real and simulated redundant nuclear sensors) to evaluate the GA performance for this application and 
also to see if any method consistently outperformed the others.  Redundant signals were used because 
safety requirements make them common in the nuclear industry and also because they provide more 
information regarding the true noise statistics.  The results obtained with the GA were compared to those 
obtained using default settings for the MATLAB functions: 

1. median filtering:  window size of 5, 
2. kernel filtering:  window size of 10 and bandwidth of 0.5, and 
3. wavelet filtering:  maximum decomposition level of 10. 

The total analytical uncertainty was also computed for each smoothing method to determine what (if 
any) impact the different denoising techniques would have on the estimation of OLM uncertainty. 

To obtain an estimate of the total uncertainty, an autoassociative kernel regression (AAKR) model 
was developed.  To develop the model, the data were first divided into training and test sets using the 
Venetian blind method in which the data are divided into alternating blocks.  The training data were used 
to develop the model and were also denoised to obtain an estimate of σε2.  The test data were then input to 
the model and used to obtain an estimate of uncertainty.  Although σε2 was calculated using denoised 
training data, analysis showed that for the data sets used in this study it was still applicable for the test 
data.  When the test and training data were switched, it was found that the results were not statistically 
different.  The measure of the total uncertainty was obtained by computing the 95% prediction interval for 
the model using the following equation: 

 

  ( ) ( )ˆ ˆ⎡ ⎤⎣ ⎦n-p,α/2 εPI = t σ +Var x + Bias x
2295% , (7.1) 

 

where , / 2n pt α−  is the t-statistic which approximates the normal distribution for n-p degrees  freedom and 

confidence level 1-α, ˆVar( )x  is the variance of the model predictions x̂ , and [ ]2ˆ( )Bias x  is the squared 
bias (the model’s systematic error), which is computed using the direct calculation method [NUREG/CR-
6895 Volume 2]. 

The fitness function attempts to maximize the amount of noise removed from each signal while 
minimizing the correlations between the removed noise, the correlation between the noise and its 
corresponding denoised signal, and the autocorrelation of the noise.  It is obvious that the amount of noise 
removed should be maximized, but the other criteria require explanation.  If the noise removed form each 
signal were correlated with the noise removed from other signals, it is probable that the correlated 
components were from common, process sources.  If the noise and denoised signals were correlated, it is 
probable that the noise also contained process dynamics. Lastly, it is assumed that the instrument noise is 
uncorrelated with itself through time.  The fitness function is given by: 
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The weights in the fitness function were set so that all terms were given equal importance.  This was 

done because the magnitude of each term was found to be similar when denoising the data set using the 
default smoothing parameters.  The equation was then normalized and the weights set so that the 
optimized fitness function equaled zero. 

The GA was run using the Matlab genetic algorithm tool.  The population size was set based upon 
the number of filtering parameters being optimized.  In general, it was set to a larger value so that the 
filtering techniques that had tendencies to become unstable would have a greater chance of finding an 
actual solution with each generation.  The number of iterations was determined by running the GA at least 
once with 100 iterations; if it appeared that the solution had not yet converged, the iterations were 
increased until the solution seemed stable.  For all of the filtering techniques, the GA selected the 
smoothing parameters for each signal individually, rather than assuming universal smoothing parameters 
for all signals in a redundant group. 

Because some of these denoising techniques were not described in the earlier two volumes of this 
series, a brief description of each technique is provided in the following sections. 

7.1.1 Median filtering 

For median filtering, the GA determined the optimal window size.  Median filtering is a nonlinear 
digital filtering technique.  A median filter is based upon moving a window over a signal.  The values in 
the window are sorted into numerical order, and the output is selected as the median value within the 
input window [Terrell 1988].   

7.1.2 Wavelet denoising 

For wavelet denoising, the GA was used to determine the optimal thresholding selection method, the 
threshold rescaling method, the threshold type (hard or soft), and the decomposition level.  The wavelet 
denoising technique investigated in this work was developed by Miron [2001] and was initially used to 
produce artificial data sets that closely resemble raw nuclear plant data.  This approach decomposes a 
signal, S, into an approximation, A, and set of detail components, D.  If the decomposition level is L, then 
this approximation may be written as follows: 

 

 .∑
L

L L i
i=

S = A + D
1

 (7.3) 

 
The approximation component represents the low-frequency or system behavior portion of data, 

while the detail components represent the high-frequency or noise portions of the decomposed 
approximations.  As a signal is decomposed, at first only the high-frequency portions are removed.  
However, as the decomposition level increases, the lower-frequency portions of the signal begin to be 
filtered along with the noise.  Noise is removed by applying different denoising settings, such as wavelet 
type, thresholding strategy, re-scaling, etc., to the decomposition [Miron 2001].  Only when these criteria 
are considered optimal by the GA, is it assumed that none of the process dynamic is included in the noise 
estimate.  At this point, denoising is stopped, and the noise-free signal is reconstructed with this set of 
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optimal coefficients.  Volumes 1 and 2 of this report describe the wavelet denoising process in greater 
detail. 

7.1.3 Kernel smoothing 

Kernel smoothing smoothes data estimates using a weighted average of points that are within the 
specified window size for the training set and that are local to the query point.  The estimate is calculated 
as follows: 
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where  

h is the bandwidth,  
K is the kernel, and  
n is the window size [Wand 1995]. 

 
For this application, a Gaussian kernel and fixed window size were used.  The kernel bandwidth (h) 

controls the smoothness or roughness of a density estimate.  A larger bandwidth results in a higher bias, 
while a smaller bandwidth increases the variance.  The constant window size keeps the bias constant, but 
the variance becomes inversely proportional to local density.  In kernel smoothing techniques that employ 
a nearest neighbor or adaptive window size, the variance is kept constant, but the bias varies inversely 
with local density [Wand 1995].  This case is not investigated here. 

7.2 Results 

In this section, the results comparing the filtering capabilities of GA-optimized techniques are 
presented.  First, both techniques were used to filter a simulated data set.  By using a simulated data set, 
the true noise statistics were known and used as a baseline in evaluating the performance of each 
technique.   

For the simulated data set, a source, s, was considered that is described by the following equation: 

 

 πs t t2=.8×sin(2 )+.2×  , (7.5) 

 
where t is uniformly distributed on the interval [0,3].   

Three redundant sensors were simulated by introducing a small bias to the actual signal (s) and then 
adding both a common and an independent noise source.  In actual plant operations, common noise could 
result from the high-frequency boiling of a steam generator, while independent noise could be caused by 
the electrical contamination of an individual sensor.  Here the common process noise, Nc(0,0.1), is 
modeled by drawing random numbers from the Gaussian distribution with a mean 0 and variance 0.1.  
The independent noise, Li(0,vi) is drawn from the Laplacian distribution with the variable-specific 
variance vi.  These noise sources are added to each channel with differing weights to model a 
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contaminated signal measured by a process sensor.  Also, by varying the variance of the noise, we can 
determine if any of the techniques performances change with the different noise levels.  Thus, the three 
simulated redundant channels are constructed with the following equations: 

 

 

⎡
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⎢
⎢

−⎢⎣

π

π

π

c i

c i

c i
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.8×sin(2 )+.2× + (0,0.1)+ (0,0.2)+1.5

= .8×sin(2 )+.2× + (0,0.1)+ (0,0.04)+ 0.0

.8×sin(2 )+.2× + (0,0.1)+ (0,0.4) 1.3

 . (7.6) 

 
The simulated signals are shown in Fig. 7-3; the “true” signals include the base signal and the 

common, process noise. 
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Fig. 7-3.  Simulated signals. 

 
The parameters used to evaluate denoising performance were   

• the average autocorrelation of the noise estimates,  
• the average absolute correlation of each noise estimate with the other noise estimates,   
• the expected correlation of each noise estimate with its smoothed signal,   
• the fractional variance reduction, and 
• the variance of the estimated noise. 

 
The first three parameters (the autocorrelation of the noise, the noise estimates’ correlations with 

themselves, and the smoothed variables) measure the method’s ability to remove noise that is not 
correlated with other noise estimates or with the process itself.  The fractional variance reduction 
measures the extent of the smoothing.  The final parameter (noise variance) shows the accuracy of each 
method’s ability to estimate the true amount of noise in the signal.   
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Table 7-1 reports the results for the median filtering techniques.  The results indicate that GA 
optimization did improve the filtering.  The correlation parameters appeared not to have changed 
significantly between the techniques.  However, the GA-selected window sizes allowed a greater 
fractional variance reduction, and the estimated noise variance was closer to the true variance.  Although 
the GA did improve the median filtering techniques, the improvement was not all that substantial.  In this 
case, the default window size of 5 appeared to provide adequate smoothing. However, the default settings 
cannot always be trusted, and this GA-based optimization provides a method for ensuring that the 
smoothing parameters are correctly set for whichever data set is at hand. 

 
Table 7-1.  Comparison of median filtering results 

 Default parameter = 5 
 Noise  

correlation 
w/itself 

Average noise 
correlation 

w/other noise 

Noise  
correlation 

w/denoised sig 

Fractional 
variance 
reduction

True  
noise 

variance 

Estimated 
noise 

variance 
Channel 1 0.0195 0.0292 0.0611 0.2365 0.1743 0.1579 
Channel 2 0.0196 0.0408 0.0636 0.0704 0.038 0.0438 
Channel 3 0.02 0.0469 0.0774 0.3929 0.386 0.3718 

 Genetic algorithm parameters = [7, 4, 10] 
Channel 1 0.0196 0.0294 −0.0442 0.2448 0.1743 0.1719 
Channel 2 0.019 0.0494 −0.0159 0.0752 0.038 0.0399 
Channel 3 0.0188 0.0552 −0.0133 0.4393 0.386 0.3813 

 
Figures 7-4, 7-5, and 7-6 also display plots comparing the GA optimization to the default settings for 

all the techniques.  Examination of the graphs for wavelet denoising (Fig. 7-6) shows that high-frequency 
artifacts remain even when a GA is used to select the parameters.  Although these artifacts do not appear 
to affect the estimation of σ2

ε , their presence is still notable and may dissuade the techniques use in OLM 
applications.  
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Fig. 7-4.  Median filtering results on the simulated data set for (a) GA-optimized window sizes and 

(b) default window sizes. 
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Fig. 7-5.  Kernel smoothing results on the simulated data set for (a) GA-optimized bandwidths and window 

sizes and (b) default bandwidths and window sizes. 
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Fig. 7-6.  Wavelet denoising results on the simulated data set for (a) GA-optimized smoothing parameters and 

(b) default smoothing parameters. 

 
Tables 7-2 and 7-3 show the results for the kernel smoothing and wavelet denoising, respectively.  

The tables show that the amount of noise removed using the GA technique proved to be closer to ideal.  
For this simulated study, kernel smoothing showed the best performance. 
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Table 7-2.  Comparison of kernel smoothing results for simulated data set 

 Default parameter = 9 

  

Noise 
correlation  

w/itself 

Average noise 
correlation 

w/other noise 

Noise 
correlation  

w/denoised sig 

Fractional 
variance 
reduction 

True  
noise 

variance 

Estimated 
noise 

variance 

Channel 1 −0.0031 0.1249 0.0177 0.2791 0.1743 0.1694 
Channel 2 −0.0034 0.1309 0.0188 0.0976 0.038 0.0461 
Channel 3 −0.0117 0.1066 0.0189 0.4378 0.386 0.3785 

 Genetic algorithm parameter = [992 15; 630 4; 820 25] 

Channel 1 0.0177 0.1085 −0.0024 0.2842 0.1743 0.1721 
Channel 2 0.0221 0.1248 −0.0033 0.0805 0.038 0.0381 
Channel 3 0.0179 0.0772 0.0067 0.4605 0.386 0.3822 
 

 

Table 7-3.  Comparison of wavelet denoising results for simulated data set 

 Default results 

 
Noise  
auto-

correlation 

Average noise 
correlation 

w/other noise 

Noise 
correlation  

w/denoised sig 

Fractional 
variance 
reduction 

True  
noise 

variance 

Estimated 
noise 

variance 

Channel 1 0.0182 0.007 0.1549 0.1972 0.1743 0.1188 
Channel 2 0.0178 0.0044 0.1146 0.0795 0.038 0.0369 
Channel 3 0.0177 0.0066 0.1092 0.3197 0.386 0.2711 

 Genetic algorithm results 

Channel 1 0.0217 0.0006 0.1617 0.2792 0.1743 0.1641 
Channel 2 0.0206 0.0003 0.0723 0.1082 0.038 0.0489 
Channel 3 0.0204 0.0023 0.0999 0.4306 0.386 0.3572 

 
Because there was not a great variation between the GA-optimized and default smoothing methods, 

it is not surprising that the improvement from the GA had little impact on the overall OLM uncertainty 
estimate.  Table 7-4 reports the computed uncertainty (using analytical variance and directly calculated 
bias) for the channels in the simulated set.  The table shows that the uncertainty using the GA-optimized 
kernel smoothing technique most closely matches the true uncertainty.  However, the other techniques 
(even those using default parameters) still come within 0.05% of the true value. 
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Table 7-4.  Calculated analytic uncertainty estimates for each denoising technique 

 Channel 1 Channel 2 Channel 3 

Kernel smoothing w/default 
smoothing pars 0.2012 0.1063 0.3096 

Kernel smoothing w/GA smoothing 
pars 0.21 0.101 0.3123 

Default wavelet denoising 0.236 0.102 0.413 
Wavelet denoising w/GA smoothing 

pars 0.2037 0.1 0.3077 

True noise 0.212 0.099 0.3154 

 
Next, all the techniques were used to filter actual data from a nuclear power plant.  Although there is 

no definite gauge of each technique’s performance when using genuine data because the true signal is 
unknown, it is still useful to apply the techniques to a real-world problem.  The data (shown in Fig, 7-7) 
come from three redundant steam pressure sensors in a nuclear power plant.  This data set was chosen 
because these sensors have been found to be some of the noisiest sensors in most OLM models.   
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Fig. 7-7.  Redundant steam pressure sensors. 

 
Tables 7-5, 7-6, and 7-7 present the results of the techniques applied to the steam pressure signals.  

For all of the techniques, the correlations between the noise estimates are extremely high.  This leads one 
to believe that some of the filtered noise is process noise and instrument noise.  However, although the 
GA-optimized smoothing methods have high correlations, they are still lower than the same correlations 
for the smoothing methods using the default parameters.  The plots of the techniques’ performances on 
the real data set (Figs. 7-8, 7-9, and 7-10) show that the wavelet denoising methods still produce artifacts.  
Median filtering and kernel smoothing both performed well.  Kernel smoothing seemed to perform 
slightly better, perhaps due to the extra degree of freedom given by its selection of both window size and 
bandwidth.   
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Table 7-5.  Kernel smoothing results for steam pressure data 

 Default parameter 

 
Noise 
auto- 

correlation 

Average noise 
correlation  

w/other noise 

Noise  
correlation  

w/denoised sig 

Fractional 
variance 
reduction 

Estimated 
noise 

variance 

Channel 1 0.0244 1 −0.0486 0.2034 0.0519 
Channel 2 0.0244 1 −0.0486 0.2034 0.0337 
Channel 3 0.0244 1 −0.0486 0.2034 0.0582 

 Genetic algorithm parameter 

Channel 1 0.0183 0.6794 −0.0439 0.0545 0.0329 
Channel 2 0.0173 0.4431 −0.052 0.0707 0.0279 
Channel 3 0.0178 0.4369 −0.0871 0.1823 0.0434 

 
 

Table 7-6.  Median filtering results for steam pressure data 

 Default parameter 

 
Noise  
auto- 

correlation 

Average noise 
correlation  

w/other noise 

Noise  
correlation  

w/denoised sig 

Fractional 
variance 
reduction 

Estimated 
noise 

variance 

Channel 1 0.0205 1 −0.0627 0.1246 0.0325 
Channel 2 0.0205 1 −0.0627 0.1246 0.0217 
Channel 3 0.0205 1 −0.0627 0.1246 0.0365 

 Genetic algorithm parameter 

Channel 1 0.0243 0.7788 −0.0425 0.1043 0.0281 
Channel 2 0.0227 0.899 −0.0015 0.0914 0.0126 
Channel 3 0.0208 0.7785 −0.0216 0.1295 0.0342 

 
 

Table 7-7.  Wavelet denoising results for steam pressure data 

 Default results 

 
Noise  
auto- 

correlation 

Average noise 
correlation  

w/other noise 

Noise  
correlation  

w/denoised sig 

Fractional 
variance 
reduction 

Estimated 
noise  

variance 

Channel 1 0.0176 1 0.0089 0.1609 0.0365 
Channel 2 0.0176 1 0.0089 0.1609 0.0231 
Channel 3 0.0176 1 0.0089 0.1609 0.0515 

 Genetic algorithm results 

Channel 1 −0.0018 0.8511 0.0196 0.0824 0.0196 

Channel 2 −0.0018 0.682 0.0197 0.1146 0.0185 

Channel 3 −0.0016 0.6415 0.021 0.2099 0.0411 
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Fig. 7-8.  Median filtering results on the steam pressure data set for (a) GA-optimized window size 

and (b) default window size. 
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Fig. 7-9.  Kernel smoothing results on the steam pressure data set for (a) GA-optimized parameters 

and (b) default parameters. 
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Fig. 7-10.  Wavelet denoising results on the nuclear data set for (a) GA-optimized parameters 

and (b) default parameters. 

 
Table 7-8 presents the calculated analytic uncertainty (%) for the channels in the steam pressure set.  

For this data set, the default settings consistently yielded larger uncertainties than using the GA-optimized 
parameters.  However, the actual impact on uncertainty is fairly negligible, as the greatest difference in 
uncertainty for Channel 1 is 0.09%, for Channel 2, 0.17%, and for Channel 3, only 0.02%. 

 
Table 7-8.  Calculated analytic uncertainty estimates  

for nuclear steam pressure sensors 

 Channel 1 Channel 2 Channel 3 

Kernel smoothing w/default smoothing pars 0.3665 0.2949 0.1157 

Kernel smoothing w/GA smoothing pars 0.298 0.123 0.1042 
Default wavelet denoising 0.3901 0.2413 0.1155 
Wavelet de-noising w/GA smoothing pars 0.3181 0.2252 0.0936 
Default median filtering 0.3423 0.1818 0.1022 
Median filtering w/GA smoothing pars 0.3341 0.1783 0.1070 

 

7.3 Discussion and Recommendations 

Overall, this study introduced an optimization method to improve signal denoising and evaluated the 
effect on estimated uncertainty.  The method used a genetic algorithm (GA) to determine optimal 
smoothing parameters for the various filtering techniques.  By correctly choosing these smoothing 
parameters, the removed noise had maximum variance, while still having a low autocorrelation, a low 
correlation to its corresponding signal, and a low correlation to the other removed noise signals.  
Although the noise removed using the GA technique proved to be more ideal, it had no significant impact 
on OLM uncertainty estimates.  The main concern in OLM is the correct calculation of the OLM 
uncertainty, because this value is used to set the drift limit.  However, the results of this study showed that 
the improved filtering had little influence on the uncertainty.  They also showed that the wavelet 
denoising technique may be unsuitable for OLM.  Even when optimized by a GA, wavelet denoising still 
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produced unwanted artifacts.  Overall, each method gave acceptable denoising results.  Median filtering 
performed well, but is limited in its filtering capabilities by only having window size as its single 
controllable parameter.  Finally, kernel smoothing seemed the most suited to this application and 
conveniently lent itself to GA optimization.  

Although the results of this study favor kernel smoothing, this report does not intend to imply that 
other techniques are less acceptable for OLM denoising.  As shown by these results, denoising does not 
have a significant an impact on OLM uncertainty estimates.  However, to guarantee that this fact holds 
true for a specific OLM denoising technique, it is strongly recommended that the de-noising technique is 
run with simulated data that have had artificial noise added so that the true noise value is known.  By 
using these simulated data, one can verify that the denoising technique gives a fairly accurate estimate of 
the noise variance.  One can also calculate the OLM uncertainty estimate using the “true” noise variance 
and the denoised noise variance estimate.  This test will show the impact that the specific denoising 
technique has on overall OLM uncertainty.  If the uncertainty is seen to vary greatly between the 
uncertainty calculated with the “true” noise variance and the estimated noise variance obtained through 
denoising, then a different, more accurate denoising technique is needed. 
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8. EFFECTS OF DIFFERENT VECTOR SELECTION METHODS 

8.1 Introduction 

Vector selection, also called instance selection, performs a critical role in nonparametric model 
development.  Predictions are made by comparing a query observation with historical observations called 
memory vectors.  Because a query vector must be compared to each memory vector, large training data 
sets (commonly on the order of 50,000 observations) can easily lead to unacceptable computational loads.  
To lessen the computational burden, a subset of exemplar observations from the training set is chosen to 
be the full set of memory vectors.  This subset selection poses two questions: first, how are the exemplar 
observations chosen, and, second, how many observations should be chosen?  This chapter addresses the 
first of these questions by comparing three common methods of vector selection.  The question of how 
many memory vectors to choose is addressed in the following chapter. 

Several methods exist for memory vector selection.  The most common of these methods include 
min-max selection, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, 
and Adeli-Hung clustering [Hines and Garvey 2006].  The two clustering methods, fuzzy c-means 
clustering and Adeli-Hung clustering, are in the research phase and have not been integrated into 
commercial OLM systems.  The remaining three methods, min-max selection, vector ordering, and a 
combination of the two, are less computationally intensive and are used in commercially available 
systems.  The following sections describe min-max vector selection, vector-ordering vector selection, and 
the combination of min-max and vector ordering.   

8.1.1 Min-max vector selection 

In min-max vector selection, exemplar or prototype vectors are selected according to the following 
procedure.  First, the data are broken into a series of bands whose number is defined by the following 
ratio: 

 

 m
b

nn =
p2

 . (8.1) 

 
Here, nm is the number of vectors to be selected, p is the number of signals in the data, and nb is the 

number of bands.  In the next and final step, the minimum and maximum values for each signal are 
selected from each band. 

This selection method was initially developed to facilitate the use of nonparametric modeling for 
industrial process surveillance.  At that time computers were not powerful enough to evaluate a memory 
matrix containing thousands of training points, so a reduced set was needed.  This reduced set was 
constructed by selecting the optimal exemplar vectors as described by Gross [Gross et al., 1998]; 

“… [min-max selection] is optimal in the sense that [it] contains, at most, 2N vectors, 
where N is the number of signals or data points in the system; and these vectors span the 
full range that all sensors or data sources have noted during the available training period.  
Whenever two or more sensors or data sources simultaneously attain maxima or minima, 
the resulting number of training vectors will be less than 2N.” 
 

The selection method discussed in this section is an adapted form of the aforementioned method.  In 
essence, min-max vector selection examines the p signals as being a collection of nb operating regions and 
then selects the minimum number of memory vectors from each of the nb bands [Liu and Zhang 2001]. 
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For the sake of clarity, a schematic of the min-max vector selection algorithm is presented in 
Fig. 8-1.  This example demonstrates the min-max vector selection procedure for selecting eight vectors 
from two signals (i.e., nm = 8 and p = 2).  Using this information, the appropriate number of sequential 
data bands is 

 

 bn 8= = 2
2×2

 . (8.2) 

 
This indicates that the data should be divided at its midpoint; specifically, Band I is the first half of 

the data, and Band II is the second half.  Finally, the minimum and maximum values of the signals are 
selected from those two bands.   

 

 
Fig. 8-1.  Illustration of min-max vector selection method. 
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Before continuing, it is important to note that, in min-max vector selection, the selected vectors are 
guaranteed to bound the training data’s operating range, but there is no such guarantee that the selected 
vectors will sufficiently cover the intermediate values between local minima and maxima.  

8.1.2 Vector ordering 

Vector ordering selection chooses vectors by first ordering the vectors according to some criteria and 
then periodically sampling the ordered vectors to yield a specified number of vectors (nm) [Zavaljevski 
and Gross 2000], [Gross et al., 2002].  Traditionally this selection method has been applied following the 
selection of the minimum and maximum vectors over the data’s operating range [Herzog et al., 1998].  
For this work, the vectors are ordered according to their Euclidean norm (N) in ascending order (i.e., 
smallest value first).  If the vectors contain p signals, then the Euclidean norm of the ith vector is defined 
as: 

 i i, i, i,pN = X + X + ...+ X2 2 2
1 2  . (8.3) 

 
Here, Xi,j is the ith observation of the jth signal, and Ni is the Euclidean norm for the ith vector or 

observation of the p signals. 

The Euclidean norm can also be interpreted as the distance of the ith vector from the origin.  
Therefore, this vector-selection method is inherently related to the location of the origin, and it is 
suggested that the data be mean-centered and unit-variance scaled prior to selecting vectors to control this 
effect. 

To determine the size of the sequential sampling steps (ns), simply divide the total number of vectors 
(n) by the number of vectors to be selected (nm), that is, 

 

 .∆ s
m

nn =
n

 (8.4) 

 

After ordering, the exemplar vectors are selected by sampling every ns-sorted vector.  

For the sake of clarity, a schematic of the vector-ordering selection algorithm is presented in 
Fig. 8-2.  This example demonstrates the vector-ordering selection procedure for selecting eight vectors 
from two signals (i.e., nm = 8 and p = 2).  The first step in the selection procedure is to calculate the 
Euclidean norms.  Next, the Euclidean norms are sorted and, finally, periodically sampled to select eight 
memory vectors.  Notice that for n observations of the two signals, the step size or the number of points 
between the selected observations, sn∆  is equal to n/8.   
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Fig. 8-2.  Illustration of vector ordering vector selection method. 

 

8.1.3 Combination of Min-max and vector ordering 

The combination of these two methods to identify nm memory vectors involves first extracting the 
minimum and maximum observations for each of the p signals, which results in at most 2p chosen 
observations.  If one observation contains the minimum or maximum value for more than one signal, that 
observation is chosen only once.  The remaining memory vectors are then chosen through the vector-
ordering method, without replacement of the previously chosen vectors. 

8.2 Results 

Three models were constructed for each data set, one with each of the three vector selection methods 
described above.  The results of these models are summarized below; full model results are contained in 
Appendix A.4. 

8.2.1 Pressurizer-level model results 

Models were developed using each of the three vector selection methods: min-max, vector ordering, 
and combination min-max/vector ordering.  The subset of memory vectors chosen using each of these 
methods is shown in Fig. 8-3.  It is clear from Fig. 8-3(a) that the min-max method does not choose 
memory vectors that cover the entire training region well.  The memory vectors cover the maximum and 
minimum values, but do not include intermediate points in each signal.  In contrast, Fig. 8-3(b) shows that 
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the vector-ordering method does a good job of choosing memory vectors in the intermediate range of the 
signals.  However it does not fully enclose the range of the data; the early maximum and minimum points 
are not well represented in the memory vector subset.  The final vector selection method, a combination 
of min-max and vector ordering shown in Fig. 8-3(c), strikes a balance between these two extremes.  
Several observations are chosen in the initial spikes of minima and maxima, but several intermediate 
values are also chosen.  Based on these graphical representations, the combination vector selection 
method appears to best cover the training region, both in range and in intermediate observations. 

 
 

 
Fig. 8-3.  Memory vectors for the Pressurizer-Level model selected by (a) min-max, 

(b) vector ordering, and (c) combination vector selection methods. 

 

Table 8-1 summarizes the model metrics and uncertainty analysis for each model.  As can be seen, 
with the exception of the Monte Carlo estimate of the model uncertainty, the three models have 
effectively equivalent performance.  The Monte Carlo uncertainty estimate for the min-max selection 
method is much larger than the same estimate for the other two methods.  This is likely due to the nature 
of Monte Carlo sampling that would have a greater effect on the minimum and maximum values in each 
signal range, but less effect on the intermediate values.  The min-max method should be expected to give 
a larger uncertainty estimate with the Monte Carlo method.  Despite this, each of these three vector 
selection methods would be adequate for model development.  However, the combination selection 
method is considered a better choice for the reason stated above: it is most effective in choosing memory 
vectors that span the entire training region.  This will result in more accurate predictions and better 
reliability assessment values, as discussed in Chapter 5. 
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Table 8-1.  Results of Pressurizer-Level models with different  
vector selection methods 

 Pressurizer-Level 

 
 Min-Max Vector 

ordering Combination 

Metrics    
Accuracy (% of span) 0.061 0.064 0.065 
Autosensitivity 0.595 0.539 0.537 
Cross-sensitivity 0.322 0.310 0.310 
EULM detectability (%) 0.316 0.260 0.439 
SPRT detectability (%) 0.00046 0.00051 0.00182 

Uncertainty    
Analytic (% of span) 0.115 0.124 0.127 
Coverage 0.975 0.979 0.977 
Monte Carlo (% of span) 0.404 0.134 0.141 
Coverage 1.000 0.984 0.981 

 

8.2.2 RPS Loop A model Results 

Again, models were developed using each of the three vector selection methods: min-max, vector 
ordering, and combination min-max/vector ordering.  The subset of memory vectors chosen using each of 
these methods is shown in Fig. 8-4.  For clarity, the data are shown for only one set of redundant sensors, 
the first-stage turbine pressure.  Similar results were seen in the other seven sensors.  These plots lead to 
the same conclusions as the Pressurizer-Level data plots.  The memory vectors chosen by the min-max 
vector selection method cover the maximum and minimum values very well but do not include as many 
intermediate points in each signal.  Conversely, the vector-ordering method chooses memory vectors in 
the intermediate range of the signals, but does not cover the extrema of the data.  The combination of 
min-max and vector ordering gives a good balance between these two extremes.  Several observations are 
chosen in the initial spikes of minima and maxima, but several intermediate values are also chosen.  As 
before, the plots below indicate that the combination vector selection method covers the training region, 
both in range and in intermediate observations, better than either min-max or vector ordering methods 
alone. 
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Fig. 8-4.  Memory vectors for RPS Loop A first state turbine pressure sensors selected with (a) min-max, 

(b) vector ordering, and (c) combination vector selection methods. 

 

The model metrics and uncertainty analysis for each model are summarized in Table 8-2.  The results 
for the RPS Loop A models are very similar to those for the Pressurizer-Level models.  Again, with the 
exception of the Monte Carlo estimate of the model uncertainty, the three models have effectively 
equivalent performance.  Any of these three vector selection methods would be adequate for model 
development.  However, the combination selection method is considered a better choice for the same 
reason stated above:  it is most effective in choosing memory vectors that span the entire training region, 
resulting in more accurate predictions and greater reliability assessment values. 

 
Table 8-2.  Results for RPS Loop A models with 

different vector selection methods 

 RPS Loop A 
 Min-Max Vector ordering Combination 

Metrics    
Accuracy (% of span) 0.246 0.243 0.242 
Autosensitivity 0.471 0.387 0.406 
Cross-sensitivity 0.144 0.098 0.109 
EULM detectability (%) 1.481 1.149 1.405 
SPRT detectability (%) 0.00223 0.00185 0.00206 

Uncertainty    
Analytic (% of span) 0.648 0.629 0.636 
Coverage 0.994 0.993 0.994 
Monte Carlo (% of span) 0.846 0.521 0.511 
Coverage 1.000 0.999 0.998 
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8.3 Discussion and Recommendations 

The three vector selection methods investigated, min-max, vector ordering, and combination, were 
able to develop models with comparable performance.  Any of these selection methods would likely be 
acceptable in an OLM system.  However, the combination method is chosen as the best vector selection 
method.  This method was shown to choose memory vectors that more completely covered the training 
region, including both maximum and minimum signal observations as well as intermediate observations 
for each signal.  This full coverage of the operating region will result in more accurate predictions and 
better reliability assessment values for future queries. 
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9. EFFECTS OF THE NUMBER OF MEMORY VECTORS 

9.1 Introduction 

Similarity based modeling methods, such as AAKR, are nonparametric modeling techniques that 
utilize the similarity of a query vector to historical observations to infer the model’s response.  For large 
data sets, the creation of local models may become cumbersome, because each training vector must be 
compared to the query vector.  To alleviate this computational burden, vector sampling may be employed 
in order to identify a subset of the training data that is representative of the underlying process.  In 
addition to reducing run time and computational complexity, an appropriate subset of the training space 
can improve model accuracy by avoiding excessive noise and over-fitting [Wilson and Martinez, 2000].  
Model development involves identifying the appropriate number of memory vectors.  Too few memory 
vectors will give a fast run time, but poor model performance.  Too many memory vectors will give 
improved model performance, but at the expense of computational speed.  A balance must be struck 
between model performance and model run time.  The appropriate balance here depends on the specific 
needs of the OLM system.   

Models were developed using the combination vector selection method described in the previous 
chapter to choose subsets of exemplar vectors of different sizes.  Models were developed with 10, 25, 50, 
100, 500, 3,750, 7,500, and 15,000 memory vectors from a total of 30,000 observations in the training set.  
The results of these models are summarized in the following section.  

9.2 Results 

One objective of an OLM system is to minimize the accuracy metric value, characterized by the 
mean squared error of error-free test data.  Model uncertainty must also be minimized, while maintaining 
an acceptable residual coverage.  These two objectives should be balanced with minimizing model run 
time.  An overly complex model could require both storage capacity and run time large enough to make it 
unsuitable for OLM systems.  The following sections summarize results of Pressurizer-Level and RPS 
Loop A models developed to investigate the effect of memory vector subset size on these metrics.  Eight 
models were developed for each set of sensors.  The training data sets described earlier include 30,000 
observations.  These observations were sampled using the combination min-max/vector-ordering vector 
selection method to identify memory vector subsets with 10, 25, 50, 100, 500, 3,750 (an eighth of the 
training observations), 7,500 (a quarter of the training observations), and 15,000 (half of the training 
observations).  For each subset of memory vectors, the accuracy metric was evaluated.  In addition, 
analytic uncertainty values were estimated.  Model run time needed for each of these estimates was also 
measured.  Full results for each model are tabulated in Appendix A.5. 

9.2.1 Results of the Pressurizer-Level models 

Eight models were developed with the memory vector subsets described above.  These models were 
evaluated for accuracy, uncertainty, and run time.  The objective of this analysis is to identify a memory 
vector subset that gives a balance between minimizing the accuracy metric value or uncertainty, while 
also minimizing model run time.   

Figure 9-1 gives a plot of total run time vs the model’s value of the accuracy metric for the eight 
models.  The total run time includes the time needed to develop, train, and test the model as well as 
evaluate both the analytic and Monte Carlo uncertainty estimates.  In an actual OLM system, only one 
uncertainty method need be employed, and model run time will be reduced accordingly.  In addition, the 
run time of interest would be the prediction time for a new query observation.  For continuous 
monitoring, this time is constrained by the data sampling rate.  As can be seen, this analysis gives a strong 
L-shaped curve, which facilitates identifying the optimum number of memory vectors.  The optimum 
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value corresponds to the point that gives the elbow of the curve: 500 memory vectors, as indicated on the 
plot.  It is clear to see from this plot that fewer memory vectors give decreased performance, and more 
memory vectors result in increased run time with only a small improvement in performance.  A subset of 
500 memory vectors gives an appropriate balance between the two. 

 
 

 
Fig. 9-1.  Run time vs accuracy for the Pressurizer-Level models. 

 
Figure 9-2 shows a plot of the run time needed to evaluate the analytic uncertainty estimate vs that 

same uncertainty.  Monte Carlo uncertainty estimate time would also increase with the number of 
memory vectors; however, run time for these estimates is not considered because these estimates are 
computed beforehand, offline and would not contribute to online model run time.  Again, this plot makes 
a clear L-curve with elbow corresponding to the model with 500 memory vectors.  It is obvious that fewer 
memory vectors give higher model uncertainty, which degrades the applicability of an OLM system.  
Conversely, more memory vectors give longer model run times with only minimal improvement in model 
performance.  Again, 500 memory vectors give a good balance between uncertainty and run time. 
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Fig. 9-2.  Run time vs analytic uncertainty for Pressurizer-Level models. 

 

Analysis of both model accuracy and model uncertainty vs model run time indicates that 500 
memory vectors is an appropriate number to give greatest model performance with least model run time 
for this Pressurizer-Level data set.   

9.2.2 RPS Loop A models 

Again, eight models were developed using the memory vector subsets described above.  These 
models were evaluated for the same three metrics: accuracy, uncertainty, and run time.  Analysis of these 
three metrics was performed in order to identify a memory vector subset that gives a balance between 
minimizing accuracy or uncertainty, while also minimizing model run time. 

Figure 9-3 gives a plot of total run time versus model accuracy for the eight models.  The total run 
time includes the time needed to develop, train, and test the model as well as evaluate both the analytic 
and Monte Carlo uncertainty estimates.  In an actual OLM system, only one uncertainty method need be 
employed, and model run time will be reduced accordingly.  Although this analysis does not give as clear 
an optimum point as the Pressurizer-Level models, 500 memory vectors has been identified as the 
optimum number of memory vectors.  This is because the next model (that with 3750 memory vectors) 
gives only ~14% (0.20% vs 0.24%) improvement in model accuracy with an increase of ~460% in model 
run time (4.7 h vs 0.83 h).  There may exist a more optimum number of memory vectors between 500 and 
3750.  However, for the memory vector subsets tested, a subset of 500 memory vectors gives an 
appropriate balance between the two. It is clear in the plot that fewer memory vectors give decreased 
performance, and more memory vectors result in increased run time with contrastingly small 
improvements in model performance.  
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Fig. 9-3.  Run time vs accuracy for the RPS Loop A models. 

 
Figure 9-4 shows a plot of the run time needed to evaluate the analytic uncertainty estimate vs that 

same uncertainty.  Again, this plot does not make as clear L-curves as in the Pressurizer-Level models.  
However, the optimum model performance is associated with models developed with 500 memory 
vectors, as indicated.  It is clear that fewer memory vectors result in degraded model performance due to 
higher model uncertainty estimates.  The next subset of memory vectors evaluated contained 3750 
observations.  This model results in 20% improvement for analytic uncertainty estimates.  These 
improvements, however, come with a 500% increase in model run time.  Another subset of memory 
vectors, with a number of observations between 500 and 3750 could give a more optimum result.  
However, for the models evaluated, 500 memory vectors give a good balance between uncertainty and 
run time for this data set. 

 

Fig. 9-4.  Run time vs analytic uncertainty for RPS Loop A models. 
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Analysis of both model accuracy and model uncertainty vs model run time indicates that, for the 
cases considered here, 500 memory vectors is an appropriate number to give greatest model performance 
with least model run time for the RPS Loop A data set considered here.   

9.3 Discussion and Recommendations 

The analysis presented in this section has highlighted the importance of using an appropriate number 
of memory vectors in model development.  A model with too few memory vectors results in degraded 
model performance; model accuracy and uncertainty estimates can be high enough to preclude use in an 
OLM system.  A model with more memory vectors than needed, however, results in increased model run 
time.  These models can be too computationally intensive for practical applications.  For continuous 
monitoring, the run time for one query vector, including prediction and uncertainty estimation, is 
constrained by the data sampling rate.  It was seen for the two data sets investigated here that 500 memory 
vectors was an appropriate number for adequate model development.  This is generally considered to be 
true.  For data sets with more than 1000 observations in the training data set, 500 memory vectors is an 
appropriate amount for model development.  For training data sets with less than 1000 observations, a 
subset of memory vectors with half the number of training observations should be adequate.  However, 
care should be taken when developing a model with any amount of training data to ensure that the vector 
selection method results in a subset of memory vectors that spans the entire operating region, including 
sensor maxima, minima, and intermediate ranges.  In cases in which accuracy is extremely important and 
run time is not limited, larger memory matrices will probably be beneficial.  
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10.  EFFECT OF DISTANCE CALCULTION METHOD 

10.1 Introduction 

The applicability of an OLM system is directly related to the ability of an empirical model to 
correctly predict sensor values when it is supplied with faulty query data.  For this reason methods should 
be developed to ensure that robust empirical models can be developed.  The use of robust distance 
measures is one possible solution to this problem.  Two robust distance functions are presented here for 
use in nonparametric, similarity based models, such as auto-associative kernel regression.  The 
performance of auto-associative OLM systems is measured in terms of its accuracy, auto-sensitivity, and 
cross-sensitivity.  The accuracy metric measures the ability of the model to correctly predict sensor values 
and is normally presented as the mean squared error (MSE) between the prediction and the correct sensor 
value.  Auto-sensitivity measures the ability of the model to make correct sensor predictions when the 
respective sensor value is incorrect due to some sort of fault.  Cross-sensitivity measures the effect a 
faulty sensor input has on the other sensor predictions in the model.  An ideal system would be accurate 
and would not have sensor predictions affected by degraded inputs.   

The most basic form of the AAKR modeling technique makes use of the Euclidean distance or L2-
norm given by Eq. (10.1): 
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= −∑  (10.1) 

where  

uj  is the distance between the query vector (x) and jth memory vector (mj), 
n  is the number of variables in the data set,  
xq

i  is the ith variable of the query vector, 
mj

i  is the ith variable of the jth memory vector.   
 

Because this distance function squares the individual differences, the effects of a faulty input may be 
amplified, resulting in parameter predictions that are more affected by input variations and are therefore 
less robust.  To improve robustness, distance measures that are not affected by errant sensor readings are 
desired, and two robust distance functions have accordingly been investigated.   

The first robust distance function is the L1-norm, which is defined by Eq. (10.2): 
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Notice that rather than the squares of the individual differences, the L1-norm sums the absolute 

values of these distances.  This alteration will be shown to provide a modest improvement in robustness, 
but the distance measure can still be affected by faulty input.  The next robust distance function attempts 
to dynamically remove faulty input from the distance calculation and therefore should provide the largest 
improvement to model robustness. 

The second robust distance function is called the robust Euclidean distance and is defined by the 
following equation: 
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1,...,
max  [ ]  is the maximum squared difference of the query vector from the jth 

memory vector.  Simply speaking, one “bad performer” is assumed to exist, and its influence is removed 
from the calculation.  The following example, with the query vector having a fault in sensor 2, can more 
clearly illustrate use of the robust distance measure: 

 

 
[ ]
[ ]

q

j

x

m

= 0.9501    0.2311    0.6068    0.4860

= 0.8913    1.7621    0.4565    0.0185
 . 

 
The squared differences are calculated in Eq. (10.4): 

 

  ( ) [ ]−q jx m
 2

= 0.0035    2.3438    0.0226    0.2185  . (10.4) 

 
The largest squared difference is 2.34 due to the faulty sensor.  The robust Euclidean distance is 

defined to be the square root of the sum of the squared distances minus the largest squared difference: 

 

  .−ju = 2.5884 2.3438 = 0.4946  (10.5) 

 
The robust Euclidean distance is simply the Euclidean distance with the largest distance or worst 

performer removed.   

10.2 Results 

As the specific model results below show, the use of a robust distance measure can improve model 
performance for both cross- and auto-sensitivity.  This means that models developed with a robust 
distance measure are less affected by faulty query values; these models are considered to be more robust.  
Marginal degradations were shown for the accuracy metric and uncertainty of the robust models.  
Development of more robust models often results in a trade-off between sensitivity and model accuracy 
and uncertainty.  The specific OLM application must be considered to determine if the degradation in 
accuracy and uncertainty is acceptable in light of the improved robustness.  The uncertainty and coverage 
results given for both the Pressurizer-Level and RPS Loop A models are for the analytic uncertainty 
estimation.  The Monte Carlo uncertainty estimation gave similar results.  A full results table for all the 
models using a robust distance measure can be found in the Appendix A.6.  
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10.2.1 Pressurizer-Level model results 

The use of either robust distance measure in developing the Pressurizer-Level model gives some 
model performance improvement on two model metrics: cross-sensitivity, and auto-sensitivity.  As can be 
seen in Table 10-1, use of the L1-norm showed a modest improvement for each of these metrics, as well 
as a slight reduction in the accuracy metric and a reduction in the model uncertainty without a significant 
reduction in the model coverage.  The Robust Euclidean distance, however, showed a significant 
improvement for cross- and auto-sensitivity, with only small degradations in accuracy and model 
uncertainty.  The use of the Robust Euclidean distance results in a model that is much more robust to 
faulty data queries.  This model would be expected to more correctly predict the actual sensor values 
given a query observation with a drift, an outlier value, or any other fault. 

 
Table 10-1.  Comparison Pressurizer-Level model performance using  

different distance calculation methods 

 

 
 

10.2.2 RPS Loop A model results 

The effects of using a robust distance measure are very different for the nonredundant sensor model, 
as can be seen in Table 10-2.  The L1-norm distance measure resulted in a model with a slightly improved 
auto-sensitivity.  However, the cross-sensitivity and accuracy metrics showed that performance was 
slightly degraded in these areas.  The model uncertainty also increased slightly with the use of the L1-
norm.  These changes, however, are very small and are unlikely to be statistically significant.  Overall, 
performance of this model with the L1-norm distance is equivalent to that with the Euclidean distance. 

The Robust Euclidean distance showed more significant changes in model performance.  This model 
showed improvement in both cross- and auto-sensitivity.  Again, the use of the Robust Euclidean distance 
resulted in a model that was more robust to faulty data queries.  In addition, the model uncertainty was 



 

 
 84

reduced without a significant change in the model coverage.  Conversely, the model accuracy was slightly 
degraded due to the robust Euclidean distance. 

 

Table 10-2.  Comparison of RPS Loop A model performance using  
different distance calculation methods 

 

 

10.3 Discussion and Recommendations 

It was seen above that the use of a robust distance measure has performance advantages for the task 
of sensor drift detection.  The L1-norm showed small improvements in the model performance metrics 
cross-sensitivity and auto-sensitivity; the robust Euclidean distance measure gave larger improvement in 
these metrics.  When robust distance measures are used, a trade-off can occur between model accuracy 
and model sensitivity.  Often this degradation in accuracy is only slight compared to the improvement in 
model sensitivity.  The acceptability of this trade-off depends on the specific OLM application.  In the 
case of sensor condition monitoring, a small degradation in accuracy and uncertainty is an acceptable 
trade for greater model sensitivity.  
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11.  CONSIDERATIONS FOR REDUNDANT SENSOR MODELS 

Due to the common use of redundant sensors in nuclear power plants, the uncertainty estimation 
methods used for nonredundant models should be validated for redundant models.  In this section, the 
term redundant models will be used for averaging techniques such as the Instrumentation and Calibration 
Monitoring Program (ICMP) algorithm developed by EPRI [1993], and the term nonredundant models 
will be used for models such as auto-associative kernel regression.  Research has shown that redundant 
sensor models respond much differently to Monte Carlo uncertainty analysis methods and thus require 
additional investigation.  This section will review redundant sensor model architectures, provide a 
detailed description of the ICMP algorithm, explore the use of both confidence intervals and prediction 
intervals, and conclude with a case study. 

11.1 Generic Redundant Sensor Model Architectures 

Empirical models designed for redundant sensors include simple averaging, the Instrumentation and 
Calibration Monitoring Program (ICMP) [EPRI 1993], and the parity space algorithm (PSA), also known 
as the generalized consistency check (GCC) [Upadhyaya et al., 1988].  Even though there are subtle 
differences in the model architectures, all perform a weighted average of the redundant sensors to 
estimate a single or multiple outputs.  To begin this discussion, consider the multiple-input, single-output 
(MISO) model as presented in Fig. 11-1, where mi is the ith redundant sensor measurement, n is the 
number of redundant sensors, and x̂  is the estimate of the parameter being measured by the n redundant 
sensors. 

 
Fig. 11-1.  Diagram of a generic MISO redundant sensor model. 

 

In such a model, the parameter prediction for time t is a weighted average of the n redundant sensor 
measurements at time t. 
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Here, the weights wi(t) are determined by evaluating the consistency of the measured value relative 

to the measurements of the other redundant sensors.  
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In a multiple-input, multiple-output (MIMO) redundant sensor model (Fig. 11-2), rather than assume 
that there are no inherent biases in the redundant sensors (training data), the model is trained to replicate 
these biases in its predictions.  The trained model is then used to monitor the sensor outputs for future 
drifts.  It is important to note that in MIMO models, the biases of the individual sensors are estimated 
from the training data, which may not be able to reconcile biases in the training data.  In other words, if 
the model is trained with drifted sensors, the model will be able to detect a progression of the drift and 
will interpret the initial drifted bias as being its normal, undrifted state.  As seen in Chapter 4, 
investigation of the training data is particularly important for any OLM model development. 

 

 
Fig. 11-2.  Diagram of generic MIMO redundant sensor model. 

 

If îb  is an estimate of the initial bias for the ith sensor, the model predictions for the ith sensor are 
the sum of the weighted average of the centered observations (i.e., observations minus the bias) and the 
sensor bias: 
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Comparing Eq. (11.2) to Eq. (11.1), it is clear that the MIMO model depends more on the training 

data since the sensor biases must be estimated during model development.  For the sake of convenience, 
the description of ICMP presented in Vol. 2 is reproduced in the next section.  The intent of this inclusion 
is to provide a description of a specific redundant sensor model architecture. 

11.2 ICMP Review 

The Instrumentation and Calibration Monitoring Program (ICMP) algorithm is a redundant algorithm 
used for OLM.  It was developed by EPRI in the early 1990s and essentially was the original method used 
to perform OLM [EPRI 1993].  In ICMP, a weighted averaging algorithm is used to determine an 
estimate of the true process parameter.  The ICMP algorithm assigns a consistency value, Ci, to each of 
the signals for each data sample evaluated.  This consistency value denotes how much of the signal’s 
measured value contributes to the process estimate.  The value is based on the absolute difference 
between a given sensor and other sensors in the group.  Thus, inconsistent signals contribute less to the 
process estimate.  For example, for a group of three redundant sensors, the consistency value compares 
the output of each instrument to the output of the other two instruments.  If the ith instrument’s output is 
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sufficiently close to the output of both of the other instruments, its consistency value, Ci, will be 2.  
However, if the irh instrument’s output is only sufficiently close to one of the other instruments, then Ci 
will be 1.  If the ith instrument’s output is not close to either of the two remaining instruments, then the 
consistency value, Ci, will be 0.  Overall, if a signal agrees within a tolerance to another signal in the 
group, they are declared to be consistent, and the consistency value for that signal, Ci, is found with Eq. 
(11.3). 

 

 If − ≤ δ δi j i jm m + , then Ci = Ci + 1 , (11.3) 

 

where 

Ci  =  the consistency value of the ith signal, 
mi  = the output for signal i,   
mj  = the output for signal j,  
δ i  = the consistency check allowance for instrument i,  
δ j  = the consistency check allowance for instrument j. 
 

The values for the consistency check allowances are dependent on the uncertainty present in the 
signals, such as  

 

 ≤ δi jm - m 2  . (11.4) 

 
After the consistency values are calculated, the ICMP parameter estimate can be calculated as 
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where  

$x  = the ICMP parameter estimate for the given data sample, and 
wi = the weight associated with the i th signal. 
 

The weight values are included to allow the user to apply a greater weighting to more accurate or 
reliable sensors within a redundant group.  If there is no preference within the group, all weight values 
can be set to 1, reducing the equation to 
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The consistency check factor controls the influence of an individual signal on the ICMP parameter 

estimate.  If all sensors are considered equally consistent, the ICMP estimate is just the simple average of 
the redundant sensors.  If a sensor’s consistency value is zero, it will not influence the parameter estimate.  
If all sensors are inconsistent, the parameter estimate is undefined. 

Once the parameter estimate is calculated, the ICMP algorithm evaluates the performance of each 
individual sensor relative to the parameter estimate.  This is done through the use of an acceptance 
criterion. 

 

 If ˆ i ix m α− ≥ ,  (11.7) 

 
then mi has potentially drifted beyond desired limits, where αi is the acceptance criterion for the i th 
signal. 

When the deviation between a sensor’s measurement and the current parameter estimate exceeds the 
acceptance criterion, that sensor is considered to have drifted out of calibration.  At this point the sensor is 
assumed to have failed.  Note that failing the acceptance criterion does not necessarily disallow the failed 
sensor’s value to influence the ICMP estimate.  The consistency check factor must also be exceeded, and 
it is not necessarily related to the acceptance criterion.  The 2002 paper, Monte Carlo Analysis and 
Evaluation of the Instrumentation and Calibration Monitoring Program, further details the relationship 
between the acceptance criteria and the consistency check factor and also provides numerical examples of 
the ICMP algorithm for varying sensor groups [Rasmussen et al., 2002]. 

ICMP software was successfully installed at the Catawba and V.C. Summer Nuclear Stations [EPRI 
2000].  Although these plants were using ICMP only as a performance monitoring and troubleshooting 
tool, they obtained positive results.  These results helped to verify ICMP’s diagnostic capabilities.  The 
plants did note some of ICMP’s inherent shortcomings.  For instance, ICMP performed poorly when there 
was limited instrumentation, as is normally found on the secondary side of a nuclear plant.  ICMP also is 
unable to detect common-mode drift failure (where all redundant instruments drift in the same direction at 
the same rate).  However, as current calibration practices offer limited protection against common-mode 
failure, ICMP’s inability to detect common-mode failure should not invalidate the technique.  Still, due to 
some of ICMP’s limitations, most plants (including V.C. Summer and Catawba) have migrated to the 
more advanced OLM modeling techniques, such as AANN, AAKR, and AAMSET.  For more 
information about the algorithm and how to quantify its associated uncertainty, the interested reader is 
referred to Monte Carlo Simulation and Uncertainty Analysis of the Instrument Calibration and 
Monitoring Program [EPRI 1995] and Monte Carlo Analysis and Evaluation of the Instrumentation and 
Calibration Monitoring Program [Rasmussen 2002]. 

11.3 Confidence Intervals for Empirical Models 

Recall that for nonredundant sensor models, the uncertainty is quantified by the 95% confidence 
interval, specifically: 
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 ( ) ( ) 2
, 2ˆ ˆ −= +n pU x t Var x Biasα , (11.8) 

 

where n is the number of training observations; p is the number of variables used to infer y; n-p,α 2t     is 
the t-statistic that approximates the normal distribution for n-p degrees freedom and confidence level 1-α.  

Additionally, ˆVar( )x  is the variance of the model predictions x̂  and Bias is the model bias.  Furthermore, 
the bias is estimated by applying the bias-variance decomposition equations of the error (Chapter 4 of 
Vol. 2).  Specifically, the squared bias is the difference of the mean squared error (MSE) and the sum of 

the prediction and noise variance, 
2ˆεσ . 

 

 ( ) ( )2 2ˆ ˆ ˆ= − − εx xBias MSE Var σ  . (11.9) 

 
When using this equation, if the squared bias is less than zero (i.e., the prediction and noise variance 

more than compensate for the MSE), the bias is set to zero. 
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In this case, the confidence interval coverage is calculated as the fraction of denoised residuals 

contained in the confidence interval centered about zero.  To use the confidence interval, several 
assumptions are made.  The two most important assumptions for the discussion at hand are: 

1. The model predictions are sensitive to the training data (i.e., the variance of the model 
predictions is nonzero). 

2. The noise variance can be estimated to a sufficient degree of accuracy to produce the 
theoretical 95% coverage. 

11.4 Redundant Model Case Studies 

Recent redundant sensor model case studies have shown that the first assumption, that the 
predictions are sensitive to training data, is not met.  This means that the redundant sensor model 
architecture is “fixed” beforehand and is only marginally affected by the data used to train the model.  
This causes model prediction variances that are often very near zero.  For example, one case showed that 
the redundant sensor model variance is on the order of 100 times smaller than the variance of a 
nonredundant model, whose inputs are the same.  The end result is that the model variance x̂(Var( ))  is 
very small and the sensitivity of the uncertainty prediction to the noise variance estimates increases.  For 
nonredundant models, the prediction variance is large enough to “dampen” the effects of imprecision in 
the estimates of the noise variance, but this is not the case for redundant sensor architectures.   

In nonredundant models the prediction variance is nearly equal to zero and the imprecision in the 
estimates of the noise variance begins to degrade the validity of the uncertainty estimates.  The end result 
is unreasonably small redundant sensor model uncertainties, which produce coverages significantly below 
the theoretical 95%. 
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Example case 

To demonstrate the conclusions presented in this section, data collected from three redundant 
Pressurizer-Level sensors of an operating nuclear power plant is analyzed.  The training and test data are 
presented in Fig. 11-3 below.  The training data were used to create the empirical models, while the test 
data was used to simulate the models. 

 

 
Fig. 11-3.  (a) Training and (b) test data for the redundant Pressurizer-Level sensors. 

 
The first step in this case study is to test the uncertainty estimation process presented earlier for 

redundant and nonredundant models.  To do this, both a redundant and nonredundant model were trained 
with the training data.  Next, the uncertainty was estimated for each model and their respective confidence 
interval coverages calculated.  The results are presented in Table 11-1.   

 
Table 11-1.  Uncertainty and coverage results for nonredundant and redundant sensor models 

  Sensor 1 Sensor 2 Sensor 3 Mean 

Variance 0.0738 0.0522 0.0867 0.0709 

Bias 0.0000 0.0000 0.0000 0.0000 

95% CI 0.5433 0.4570 0.5891 0.5298 

N
on

re
du

nd
an

t 

Coverage 0.9374 0.9723 0.8667 0.9255 

Variance 0.0003 0.0001 0.0003 0.0002 

Bias 0.1033 0.0000 0.2463 0.1165 

95% CI 0.2092 0.0225 0.4939 0.2419 

R
ed

un
da

nt
 

Coverage 0.4814 0.1951 0.8446 0.5070 
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As described earlier, the redundant sensor model variance is nearly equal to zero.  Changing the data 
used to develop the model does not change the model predictions.  This increases the predicted bias for 
two of the three sensors in the redundant sensor model.  Finally, it can be seen that the resulting 
uncertainties for the redundant sensor model are significantly smaller than the uncertainties of the 
nonredundant sensor model.  This difference results in coverages that are well below the theoretical 95% 
for the nonredundant sensor model.   

To validate the recommendations of the previous section, the prediction interval (PI) was used for 
the redundant sensor model.  The PI describes the uncertainty in the parameter estimates in terms of the 
measured values, whereas the confidence interval describes the uncertainty in terms of the expected or 
true value.  The equation for the 95% prediction interval is given below: 

 

 ( ) ( ) 2 2
, 2ˆ ˆ−= + + εx xn pU t Var Biasα σ  , (11. 9) 

 
Comparing Eq. (11.9) to Eq. (11.8), it is clear that the PI is, by definition, larger than the confidence 

interval and should be a valid uncertainty measure for redundant sensor models.  The coverage in this 
case is calculated as the fraction of (not denoised) residuals contained in the PI centered about zero.   

PIs are not used in nonredundant sensor models to cover the measured values; instead, confidence 
intervals are used to cover the residuals.  As stated above, the confidence intervals result in smaller 
uncertainties because they do not contain the irreducable error. 

The resulting uncertainties and coverages are presented in Table 11-2.  The uncertainty is larger for 
the PI, and the mean coverage is near its theoretical 0.95.   

 
Table 11-2.  Confidence and prediction intervals and coverages of redundant sensor model 

 Sensor 1 Sensor 2 Sensor 3 Mean 
95% CI 0.2092 0.0225 0.4939 0.2419 
CI coverage 0.4814 0.1951 0.8446 0.5070 
95% PI 1.3143 0.2728 0.7154 0.7675 
PI coverage 1.0000 0.9130 0.8580 0.9237 

 

11.5 Correlation Analysis for Redundant Models 

An additional concern may arise for some redundant models.  Redundant models are usually 
comprised of fewer sensors and generally rely on the fact that all of the sensor inputs are highly 
correlated.  However, under certain circumstances this high correlation is no longer present, causing many 
of the model assumptions to no longer be met, and the model accuracy and performance to degrade.  
When sensor data are highly steady state, as is the case with most nuclear power data, the independent 
random noise may become the dominating factor.  Because the data are steady-state and the process is so 
stable, the only fluctuation between the redundant sensors is due to the noise.  In this case, the correlation 
coefficients between the redundant sensors are low (often less than 0.5) because the independent noise is 
the prevalent component of each signal, causing each individual signal (or sensor) to be uncorrelated with 
the other signals.  This low signal-to-noise ratio causes the model’s performance to deteriorate because 
the model’s inputs do not contain much information about the underlying process, and the model’s 
predictions become less reliable.  A way to combat this unconformity is to increase the sample size of the 
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data used to develop the model.  With more observations, especially with observations gathered over a 
longer time period, it is likely that the dynamics of the process will overpower the noise, and the 
correlation between the sensors will increase.  However, until this correlation is shown to improve, the 
model’s predictions may not be trusted. 

11.6 Recommendations 

Because recent research with the redundant sensor models has indicated that the confidence interval 
may not be an appropriate uncertainty measure, alternatives must be considered.  One such alternative is 
the PI that does not require the error to be smoothed and implements an additive relationship with the 
estimated noise variance, as opposed to the differential used by the confidence interval. 

Additionally, before implementing a redundant model into an OLM system, a correlation analysis 
should be performed.  As mentioned above, a correlation analysis will show if the model has a poor signal 
to noise ratio, which will degrade model performance.  Poor correlations will usually be remedied by 
expanding the training data set. 
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12. CONCLUSIONS 

This report investigates the effects of several assumptions and development parameters on auto-
associative kernel regression models.  The discussions included also provide some recommendations for 
identifying, preventing, or correcting these problems in applied OLM systems.  The results of seven case 
studies have been summarized, which investigate the effects of model development and assumptions on 
model performance.  Two case studies concern the effect of not meeting model assumptions: evaluating 
query data outside the training region and training with faulty data.  Recommendations are given for 
identifying and correcting the problems caused by not meeting these important data assumptions.  Both of 
these assumptions can be validated via inspection of the data.  Data that may fall outside the training 
region can be identified through a two-step reliability metric, which first identifies query vectors outside 
the range of the training data and then characterizes the similarity to the training data of remaining query 
vectors.  Faults within training data can be identified through either visual inspection or through analysis 
of the correlation coefficients if some prior knowledge of the training correlations is available.  The third 
and fourth case studies investigate the effects of high noise levels on model performance and compare 
different methods of data denoising, respectively.  The third case study outlines a method to determine the 
highest acceptable noise level for adequate OLM performance.  For data sets with higher than acceptable 
noise levels, the effects of data denoising were investigated.  The results of this study indicate that most 
well-applied data denoising methods produce equally acceptable results.  A genetic algorithm 
optimization method was described for specifying the appropriate parameters for a specific data denoising 
technique.  The remaining three case studies examine different features of model development by 
comparing vector selection methods, different amounts of memory vectors, and robust distance measures.  
Methodologies are outlined to determine the appropriate model development parameters for each of these 
cases.  Finally, a section is included that highlights the special considerations needed for redundant sensor 
model architectures, including the use of prediction intervals instead of confidence intervals for 
estimating model uncertainty and the importance of correlation and signal to noise analysis for proper 
redundant model development.   

Although this study is not an exhaustive review of the many issues in OLM system development, it 
provides a base set of considerations that should be examined and a method for testing these 
considerations with other model architectures.  These common OLM data and modeling issues should be 
evaluated when developing and assessing an OLM system. Additionally, a method for identifying and 
correcting, or at least reducing the effects of each contingency, should be implemented before fielding an 
OLM system. 

 

 



 

 94

Page intentionally blank



 

 95

13. REFERENCES 

Atkeson, C. G., A. W. Moore, and S. Schaal (1997a), “Locally Weighted Learning,” Artificial 
Intelligence Review, 11, 11–73. 

Atkeson, C. G., A. W. Moore, and S. Schaal (1997b), “Locally Weighted Learning for Control,” Artificial 
Intelligence Review, 11, 75–113. 

Cleveland, W. S., and C. Loader (1994a), Computational Methods for Local Regression, Technical 
Report 11, AT&T Bell Laboratories, Statistics Department, Murray Hill, NJ: 

Cleveland, W. S., and C. Loader (1994b), Smoothing by Local Regression:  Principles and Methods, 
Technical Report 95.3, AT&T Bell Laboratories, Statistics Department, Murray Hill, NJ: 

Chung, C. Y., S. H. Leung, and Andrew Luk (1994), “An Evolutionary Search Algorithm for Adaptive 
IIR Equalizer,” Proc. ZEEE International Symposium on Circuits and Systems, London, UK, May 
1994, 2, 53–56. 

Diaz, I., A. B. Diez, and A. A. Cuadrado Vega (2001), “Complex Process Visualization Through 
Continuous Feature Maps Using Radial Basis Functions,” Proc. of the International Conference on 
Artificial Neural Networks, Vienna, Austria: August 21–25, 2001. 

EPRI (1993), TR-103436-V1, Instrument Calibration and Monitoring Program, Volume 1:  Basis for the 
Method, EPRI, Palo Alto, CA. 

EPRI (1995), Monte Carlo Simulation and Uncertainty Analysis of the Instrument Calibration and 
Monitoring Program, WO3785-02, EPRI, Palo Alto, CA. 

EPRI (2000), On-Line Monitoring of Instrument Channel Performance, Topical Report 104965-R1, 
EPRI, Palo Alto, CA. 

EPRI (2004), On-Line Monitoring of Instrument Channel Performance Volume 1:  Guidelines for Model 
Development and Implementation, Final Report 1003361, Palo Alto, CA. 

EPRI (2004), On-Line Monitoring of Instrument Channel Performance Volume 2:  Model Examples, 
Algorithm Descriptions, & Additional Results, Topical Report 1003579, Palo Alto, CA. 

Etter, D. M., M. J. Hicks, and K. H. Cho (1982), “Recursive Adaptive Filter Design using an Adaptive 
Genetic Algorithm,” Proc. IEEE Int. Conf on ASSP, pp. 635–638. 

Fan, J., and I. Gijbels (1996), Local Polynomial Modeling and Its Applications, Chapman & Hall/CRC, 
New York. 

Garvey, D. R., and J. W. Hines (2006), “Robust Distance Measures for On-Line Monitoring: Why Use 
Euclidean?”, 7th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear 
Science (FLINS), Genoa, Italy:  August 29–31, 2006. 

Gross, K., S. Wegerich, R. Singer, and J. Mott (1998), “Industrial Process Surveillance System,” 
U.S. Patent 5,764,509. 

Hardle, W. (1989), Applied Nonparametric Regression, Cambridge University Press, New York. 

Haupt, R. L., and S. E. Haupt (2004), Practical Genetic Algorithms, 2nd ed. Hoboken, John Wiley & 
Sons, Inc:  

Hines, J. W., and B. Rasmussen (2005), “On-Line Sensor Calibration Monitoring Uncertainty 
Estimation,” Nuclear Technology,151(3). 

Hines, J.W. and E. Davis, “Lessons Learned From the U.S. Nuclear Power Plant On-Line Monitoring 
Programs,” Progress in Nuclear Energy, 46(3–4), 176–189. 



 

 96

Hines, J. W. and D. Garvey (2006), “Traditional and Robust Vector Selection Methods for Use with 
Similarity Based Models,” 5th International Topical Meeting on Nuclear Plant Instrumentation, 
Control and Human-Machine Interface Technologies, Albuquerque, NM.  

Humenik, K. E. and K. C. Gross (1990), “Sequential Probability Ratio Tests for Reactor Signal 
Validation and Sensor Surveillance Applications,” Nucl. Sci. and Eng., 105, 383–390. 

Leung S. H., C. Y. Chung, A. Luk and W. H. Lau (1996), “The Genetic Search Approach—A New 
Learning Algorithm for Adaptive IIR Filtering,” IEEE Signal Proc. Mag., Nov. 1996, pp. 38–46.  

Mackenzie, M. and A. Kiet Tieu (2004), “Asymmetric Kernel Regression,” IEEE Transactions on Neural 
Networks, 15(2) (March 2004). 

Miron, A. (2001), “A Wavelet Approach for Development and Application of a Stochastic Parameter 
Simulation System,” Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH. 

Nadaraya E. A. (1964), “On Estimating Regression,” Theory of Probability and Its Applications, 10,  
186–190 (1964). 

Hines, J. W., and R. M. Seibert, (2006), Technical Review of On-line Monitoring Techniques for 
Performance Assessment:  Volume 1—State-of-the-Art, NUREG/CR-6895, U.S. Nuclear Regulatory 
Commission, Washington, D.C. 

NRC Project No. 669 (2000), “Safety Evaluation by the Office of Nuclear Reactor Regulation: 
Application of On-Line Performance Monitoring to Extend Calibration Intervals of Instrument 
Channel Calibrations Required by the Technical Specifications—EPRI Topical Report (TR) 104965 
On-Line Monitoring of Instrument Channel Performance,” U.S. Nuclear Regulatory Commission: 
Washington, D.C. (July, 2000). 

Rasmussen, B., E. Davis, and J. W. Hines (2002), “Monte Carlo Analysis and Evaluation of the 
Instrumentation and Calibration Monitoring Program,” Proc. Maintenance and Reliability Conference 
(MARCON 2002), Knoxville, TN, May 7–10. 

Rasmussen, B. (2003), “Prediction Interval Estimation Techniques for Empirical Modeling Strategies and 
their Applications to Signal Validation Tasks,” Ph.D. Dissertation, Nuclear Engineering Department, 
The University of Tennessee, Knoxville, TN. 

Scott, D. W. (1992), Multivariate Density Estimation, Wiley, New York. 

Terrell, T. J. (1988), Introduction to Digital Filters, Halsted Press/John Wiley & Sons, 2nd Ed.  

Upadhyaya, B. R., O. Glockler, and F. P. Wolvaardt (1988), “An Integrated Approach for Signal 
Validation in Dynamic Systems,” Progress in Nuclear Energy, 21, 605–611. 

Wand, M., and M. Jones (1995), Kernel Smoothing, Monographs on Statistics and Applied Probability, 
Chapman & Hall, London. 

Watson, G. S. (1964), “Smooth Regression Analysis,” The Indian Journal of Statistics, Series A, Vol. 26, 
pp. 359–372: 1964. 

Wilson, D. R. and T. Martinez (2000), “Reduction Techniques for Exemplar-Based Learning 
Algorithms,” Machine Learning 38(3): 257–286. 

Zavaljevski, N., and K. C. Gross (2000a), “Support Vector Machines for Nuclear Reactor State 
Estimation,” Proc. of the International Topical Meeting on Advances in Reactor Physics and 
Mathematics and Computation (PHYSOR 2000), Pittsburgh, Pennsylvania, USA. 



 

 97

Zavaljevski, N., and K. C. Gross (2000b), “Sensor Fault Detection in Nuclear Power Plants Using 
Multivariate State Estimation Technique and Support Vector Machines,” Proc. of the Third 
International Conference of the Yugoslav Nuclear Society (YUNSC 2000), Belgrade, Yugoslavia: 
October 2–5, 2000. 



 

 98

Page intentionally blank 



 

A-1 

APPENDIX A  

Because the results for each case study were so expansive, not all of them were necessarily displayed 
in the document body.  Rather, for some case studies, only the significant results were shown.  As such, 
this appendix shows the complete results for the case studies which only presented the condensed results.   

Section A.1 of the appendix gives the uncondensed results for the baseline or “ideal” Pressurizer-
Level model and RPS Loop A model.  Section A.2 presents the results of the faulty training data case 
study.  This includes the full results for both models trained with outliers, drifted data, and stuck data.  
Section A.3 provides the results for both models when they attempt to predict values for data that no 
longer fall within the training range.  Section A.4 displays the results of the models using different vector 
selection methods.  Section A.5 gives the results of the models developed with varying numbers of 
memory vectors.  The final section of this appendix, A.6, presents the results of the models developed 
using the Robust Euclidean and the L-1 Norm distance metrics. 

A.1 Baseline Model Results 

Table A1-1.  Baseline Pressurizer-Level model results 

Signal 1 Signal 2 Signal 3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.055 0.038 0.102 
Auto-sensitivity 0.466 0.712 0.434 
Cross-sensitivity 0.301 0.274 0.355 
EULM detectability (% of span) 0.200 0.248 0.357 
SPRT detectability (% of span) 0.00112 0.00114 0.00108 

Uncertainty    
Analytic (% of span) 0.107 0.071 0.203 
Coverage 0.993 0.943 0.995 
Monte Carlo (% of span) 0.121 0.092 0.209 
Coverage 0.997 0.949 0.998 
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Table A1-2.  Baseline RPS Loop A model results 

 Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal  
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection 
method 

x x x x x x x x x 

Metrics          
Accuracy  

(% of span) 
0.261 0.246 0.290 0.229 0.919 0.120 0.027 0.037 0.046 

Auto-sensitivity 0.420 0.451 0.620 0.714 0.160 0.082 0.405 0.370 0.433 
Cross-sensitivity 0.120 0.119 0.098 0.116 0.079 0.046 0.130 0.125 0.150 
EULM detectability  

(% of span) 
1.440 1.480 2.340 3.130 2.210 0.255 0.073 0.107 0.146 

SPRT detectability  
(% of span) 

0.00276 0.0028 0.00308 0.00294 0.00166 0.00178 0.000449 0.000454 0.000454

Uncertainty          
Analytic (% of span) 0.840 0.818 0.897 0.899 1.840 0.235 0.043 0.067 0.083 
Coverage 1.000 1.000 1.000 1.000 1.000 0.987 0.975 0.996 0.991 
Monte Carlo  

(% of span) 
0.550 0.520 0.554 0.544 1.860 0.299 0.075 0.095 0.104 

Coverage 0.999 0.999 0.997 0.999 1.000 0.997 0.997 0.999 0.998 
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A.2 Faulted Training Data Results 

Table A2-1.  Results of Pressurizer-Level model 
trained with outliers 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.209 0.407 0.252 
Correlation coefficients    
    Signal 1 1.000 0.504 0.639 
    Signal 2 0.504 1.000 0.471 
    Signal 3 0.639 0.471 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.055 0.039 0.107 
Auto-sensitivity 0.481 0.697 0.411 
Cross-sensitivity 0.362 0.240 0.370 
EULM detectability (% of span) 0.707 2.360 0.748 
SPRT detectability (% of span) 0.0204 0.0428 0.0212 

Uncertainty    
Analytic (% of span) 0.367 0.715 0.442 
Coverage 1.000 1.000 1.000 
Monte Carlo (% of span) 0.068 0.072 0.068 
Coverage 0.749 0.952 0.258 
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Table A2-2.  Results of RPS Loop A model trained with outliers 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal 
8 

Signal
9 

Data          
Signal noise estimate  

(% of span) 
0.519 0.486 0.634 0.590 0.430 0.416 0.341 0.338 0.027 

Correlation coefficients          
    Signal 1 1.000 0.959 0.669 0.684 0.742 0.741 –0.096 –0.080 –0.269
    Signal 2 0.959 1.000 0.677 0.690 0.753 0.747 –0.091 –0.070 –0.264
    Signal 3 0.669 0.677 1.000 0.627 0.693 0.688 –0.122 –0.100 –0.314
    Signal 4 0.684 0.690 0.627 1.000 0.708 0.701 –0.123 –0.107 –0.362
    Signal 5 0.742 0.753 0.693 0.708 1.000 0.833 –0.103 –0.080 –0.278
    Signal 6 0.741 0.747 0.688 0.701 0.833 1.000 –0.106 –0.089 –0.272
    Signal 7 –0.096 –0.091 –0.122 –0.123 –0.103 –0.106 1.000 0.213 0.445 
    Signal 8 –0.080 –0.070 –0.100 –0.107 –0.080 –0.089 0.213 1.000 0.447 
    Signal 9 –0.269 –0.264 –0.314 –0.362 –0.278 –0.272 0.445 0.447 1.000 

Model:  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500
Data cleaning no no no no no no no no no 
Number of memory vectors 500 500 500 500 500 500 500 500 500 
Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics:          
Accuracy (% of span) 0.255 0.252 0.235 0.238 0.946 0.120 0.038 0.055 0.033 
Auto-sensitivity 0.452 0.435 0.674 0.657 0.168 0.080 0.209 0.178 0.576 
Cross-sensitivity 0.097 0.100 0.079 0.086 0.062 0.038 0.087 0.088 0.128 
EULM detectability  

(% of span) 
1.420 1.290 2.920 2.580 2.160 0.681 0.651 0.621 0.123 

SPRT detectability  
(% of span) 

1.490 1.370 2.410 1.910 2.510 2.270 1.600 1.700 0.233 

Uncertainty:          
Analytic (% of span) 0.784 0.733 0.957 0.891 1.780 0.628 0.514 0.510 0.052 
Coverage 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 
Monte Carlo (% of span) 0.474 0.447 0.515 0.535 1.680 0.225 0.097 0.100 0.086 
Coverage 0.999 1.000 0.997 1.000 1.000 0.973 0.997 0.985 0.999 
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Table A2-3.  Results of Pressurizer-Level model 
trained with drifted data 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.637 
    Signal 2 0.987 1.000 0.638 
    Signal 3 0.637 0.638 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.032 0.030 0.078 
Auto-sensitivity 0.539 0.538 0.438 
Cross-sensitivity 0.261 0.305 0.294 
EULM detectability (% of span) 0.122 0.114 0.274 
SPRT detectability (% of span) 0.00289 0.00274 0.00336 

Uncertainty    
Analytic (% of span) 0.056 0.053 0.153 
Coverage 0.922 0.942 0.939 
Monte Carlo (% of span) 0.060 0.060 0.162 
Coverage 0.943 0.954 0.940 
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Table A2-4.  Results of RPS-Loop A model trained with drifted data 

 Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 Signal 9

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.324 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.288 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.273 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.324 0.288 0.273 1.000 0.316 0.404 –0.266 –0.338 –0.206 
    Signal 5 0.820 0.824 0.797 0.316 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.404 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.266 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.338 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.206 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection 

method 
x x x x x x x x x 

Metrics          
Accuracy  

(% of span) 
0.278 0.245 0.253 0.276 1.020 0.114 0.029 0.050 0.054 

Auto-sensitivity 0.425 0.472 0.718 0.698 0.051 0.080 0.365 0.353 0.265 
Cross-sensitivity 0.094 0.097 0.096 0.106 0.041 0.047 0.119 0.120 0.103 
EULM detectability 

(% of span) 
1.410 1.490 3.060 2.900 2.160 0.242 0.076 0.147 0.136 

SPRT detectability 
(% of span) 

0.00219 0.00217 0.00225 0.00249 0.00124 0.00127 0.000343 0.000339 0.00034

Uncertainty          
Analytic  

(% of span) 
0.813 0.792 0.868 0.871 2.030 0.223 0.048 0.095 0.100 

Coverage 1.000 1.000 1.000 0.996 1.000 0.979 0.985 0.997 0.997 
Monte Carlo  

(% of span) 
0.552 0.529 0.576 0.677 2.050 0.315 0.079 0.115 0.112 

Coverage 0.998 0.999 0.998 0.994 1.000 0.999 0.998 0.999 0.999 
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Table A2-5.  Results of Pressurizer-Level model trained with data 
with a signal stuck at the maximum 

 Signal 
1 

Signal 
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.015 
Correlation coefficients    
    Signal 1 1.000 0.987 0.627 
    Signal 2 0.987 1.000 0.612 
    Signal 3 0.627 0.612 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 1 1 1 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.111 0.049 0.080 
Auto-sensitivity 0.177 0.149 0.633 
Cross-sensitivity 0.226 0.214 0.272 
EULM detectability (% of span) 0.264 0.104 0.422 
SPRT detectability (% of span) 0.00218 0.00226 0.00084 

Uncertainty    
Analytic (% of span) 0.217 0.089 0.157 
Coverage 1.000 0.967 0.993 
Monte Carlo (% of span) 0.332 0.260 0.298 
Coverage 1.000 1.000 1.000 
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Table A2-6.  Results of Pressurizer-Level model trained  
with data with a signal stuck at the mean 

 Signal
1 

Signal
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.020 
Correlation coefficients    
    Signal 1 1.000 0.987 0.974 
    Signal 2 0.987 1.000 0.960 
    Signal 3 0.974 0.960 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.061 0.033 0.095 
Auto-sensitivity 0.655 0.554 0.519 
Cross-sensitivity 0.356 0.306 0.393 
EULM detectability (% of span) 0.342 0.134 0.391 
SPRT detectability (% of span) 0.00111 0.00114 0.00106 

Uncertainty    
Analytic (% of span) 0.118 0.060 0.188 
Coverage 0.997 0.941 0.989 
Monte Carlo (% of span) 0.138 0.100 0.201 
Coverage 0.998 0.957 0.994 
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Table A2-7.  Results of Pressurizer-Level model trained 
with data with a signal stuck at the minimum 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.016 
Correlation coefficients    
    Signal 1 1.000 0.987 0.857 
    Signal 2 0.987 1.000 0.877 
    Signal 3 0.857 0.877 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.069 0.051 0.132 
Auto-sensitivity 0.506 0.538 0.234 
Cross-sensitivity 0.440 0.413 0.596 
EULM detectability (% of span) 0.273 0.211 0.348 
SPRT detectability (% of span) 0.000798 0.000827 0.000632 

Uncertainty    
Analytic (% of span) 0.135 0.097 0.264 
Coverage 0.997 0.994 0.998 
Monte Carlo (% of span) 0.188 0.161 0.300 
Coverage 1.000 1.000 0.999 
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Table A2-8.  Results of RPS Loop A model trained 
with data with a signal stuck at the maximum 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal 
8 

Signal
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.019 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 0.291 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 0.281 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 0.292 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 0.293 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 0.242 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 0.210 –0.216 –0.297 
    Signal 7 0.291 0.281 0.292 0.293 0.242 0.210 1.000 –0.022 –0.116 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 –0.022 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 –0.116 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.269 0.293 0.301 0.335 0.874 0.151 0.048 0.056 0.060 
Auto-sensitivity 0.403 0.408 0.612 0.707 0.183 0.211 0.019 0.340 0.366 
Cross-sensitivity 0.120 0.129 0.119 0.140 0.110 0.080 0.036 0.142 0.112 
EULM detectability  

(% of span) 
1.460 1.440 2.400 3.190 2.160 0.375 0.094 0.160 0.175 

SPRT detectability  
(% of span) 

0.0035 0.00346 0.00375 0.00383 0.00219 0.00211 0.000908 0.000556 0.000558

Uncertainty          
Analytic (% of span) 0.877 0.854 0.936 0.939 1.750 0.297 0.091 0.105 0.111 
Coverage 1.000 1.000 1.000 1.000 1.000 0.983 0.978 0.978 0.982 
Monte Carlo 

(% of span) 
0.634 0.648 0.679 0.680 1.790 0.440 0.131 0.143 0.134 

Coverage 0.999 0.999 0.999 1.000 1.000 0.996 0.994 0.995 0.995 
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Table A2-9.  Results of RPS Loop A model trained 
with data with a signal stuck at the mean 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal
8 

Signal
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.017 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.287 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.276 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.318 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.317 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.376 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.386 –0.216 –0.297 
    Signal 7 –0.287 –0.276 –0.318 –0.317 –0.376 –0.386 1.000 0.650 0.684 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.650 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.684 0.947 1.000 
Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory vectors 500 500 500 500 500 500 500 500 500 
Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.303 0.316 0.298 0.344 0.836 0.134 0.041 0.056 0.054 
Auto-sensitivity 0.368 0.297 0.554 0.468 0.091 0.043 0.268 0.223 0.543 
Cross-sensitivity 0.111 0.098 0.112 0.102 0.073 0.045 0.141 0.086 0.119 
EULM detectability 

(% of span) 
1.490 1.310 2.250 1.890 1.860 0.274 0.108 0.139 0.219 

SPRT detectability 
(% of span) 

0.00379 0.00378 0.00402 0.00436 0.0021 0.00228 0.000434 0.000601 0.000551

Uncertainty          
Analytic (% of span) 0.946 0.921 1.010 1.010 1.670 0.263 0.079 0.108 0.100 
Coverage 1.000 0.999 1.000 1.000 1.000 0.985 0.957 0.978 0.972 
Monte Carlo (% of span) 0.656 0.655 0.734 0.726 1.710 0.485 0.104 0.133 0.131 
Coverage 0.999 0.997 0.999 0.998 1.000 0.998 0.995 0.999 0.999 
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Table A2-10.  Results of RPS Loop A model trained  
with data with a signal stuck at the minimum 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal
8 

Signal
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.015 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.083 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.052 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.081 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.086 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.127 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.164 –0.216 –0.297 
    Signal 7 –0.083 –0.052 –0.081 –0.086 –0.127 –0.164 1.000 0.411 0.319 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.411 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.319 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.276 0.287 0.281 0.334 0.868 0.121 0.055 0.054 0.052 
Auto-sensitivity 0.460 0.434 0.621 0.451 0.128 0.040 0.040 0.195 0.487 
Cross-sensitivity 0.106 0.104 0.113 0.091 0.075 0.033 0.028 0.092 0.098 
EULM detectability  

(% of span) 
1.690 1.570 2.570 1.780 2.010 0.246 0.111 0.127 0.187 

SPRT detectability  
(% of span) 

0.00274 0.0026 0.00308 0.00314 0.00152 0.00161 0.000678 0.000498 0.000491

Uncertainty          
Analytic (% of span) 0.920 0.895 0.981 0.984 1.740 0.236 0.107 0.102 0.096 
Coverage 1.000 1.000 1.000 1.000 1.000 0.978 0.986 0.974 0.968 
Monte Carlo (% of span) 0.611 0.565 0.636 0.601 1.770 0.313 0.131 0.129 0.125 
Coverage 0.999 0.999 0.998 0.996 1.000 0.998 0.994 0.993 0.996 
 



 

A-13 

Table A2-11.  Results of Pressurizer-Level model 
trained with drifted data 

 Signal
1 

Signal
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.637 
    Signal 2 0.987 1.000 0.638 
    Signal 3 0.637 0.638 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.032 0.030 0.078 
Auto-sensitivity 0.539 0.538 0.438 
Cross-sensitivity 0.261 0.305 0.294 
EULM detectability (% of span) 0.122 0.114 0.274 
SPRT detectability (% of span) 0.00289 0.00274 0.00336 

Uncertainty    
Analytic (% of span) 0.056 0.053 0.153 
Coverage 0.922 0.942 0.939 
Monte Carlo (% of span) 0.060 0.060 0.162 
Coverage 0.943 0.954 0.940 
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Table A2-12.  Results of RPS Loop A model 
trained with drifted data 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal 
8 

Signal
9 

Data          
Signal noise estimate 

 (% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.324 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.288 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.273 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.324 0.288 0.273 1.000 0.316 0.404 –0.266 –0.338 –0.206 
    Signal 5 0.820 0.824 0.797 0.316 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.404 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.266 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.338 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.206 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.278 0.245 0.253 0.276 1.020 0.114 0.029 0.050 0.054 
Auto-sensitivity 0.425 0.472 0.718 0.698 0.051 0.080 0.365 0.353 0.265 
Cross-sensitivity 0.094 0.097 0.096 0.106 0.041 0.047 0.119 0.120 0.103 
EULM detectability  

(% of span) 
1.410 1.490 3.060 2.900 2.160 0.242 0.076 0.147 0.136 

SPRT detectability  
(% of span) 

0.00219 0.00217 0.00225 0.00249 0.00124 0.00127 0.000343 0.000339 0.00034

Uncertainty          
Analytic (% of span) 0.813 0.792 0.868 0.871 2.030 0.223 0.048 0.095 0.100 
Coverage 1.000 1.000 1.000 0.996 1.000 0.979 0.985 0.997 0.997 
Monte Carlo  

(% of span) 
0.552 0.529 0.576 0.677 2.050 0.315 0.079 0.115 0.112 

Coverage 0.998 0.999 0.998 0.994 1.000 0.999 0.998 0.999 0.999 
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A.3 Model Results with Data Outside the Training Range 

Table A3-1.  Results of Pressurizer-Level model trained 
with query data outside the training region 

 Signal 
1 

Signal 
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 15,000 15,000 15,000 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 12.4 12.2 12.2 
Auto-sensitivity 0.003 0.004 0.011 
Cross-sensitivity 0.007 0.006 0.003 
EULM detectability (% of span) 30.2 29.8 29.8 
SPRT detectability (% of span) 8.04E-06 8.22E-06 7.78E-06

Uncertainty    
Analytic (% of span) 24.7 24.5 24.4 
Coverage 0.946 0.947 0.947 
Monte Carlo (% of span) 24.7 24.5 24.4 
Coverage 0.947 0.947 0.947 
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Table A3-2.  Results of RPS Loop A model with query data outside of the training region 

 Signal 
1 

Signal 
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal
8 

Signal
9 

Data          
Signal noise estimate 

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 28.0 27.5 26.9 27.0 27.4 27.3 1.06 1.04 1.05 
Auto-sensitivity 0.001 0.001 0.006 0.001 0.000 0.000 0.154 0.146 0.171 
Cross-sensitivity 0.060 0.061 0.061 0.060 0.060 0.064 0.034 0.035 0.033 
EULM detectability 

(% of span) 
75.7 73.6 72.7 72.7 73.5 72.7 2.48 2.40 2.50 

SPRT detectability 
(% of span) 

0.000103 0.000104 0.000115 0.00011 6.19E-05 6.62E-05 1.67E-05 1.69E-05 1.69E-05

Uncertainty          
Analytic (% of span) 56.0 55.0 53.8 53.9 54.7 54.5 2.12 2.08 2.10 
Coverage 0.933 0.933 0.933 0.933 0.933 0.933 0.880 0.878 0.886 
Monte Carlo 

(% of span) 
56.1 55.0 53.9 54.0 54.8 54.6 2.19 2.15 2.17 

Coverage 0.933 0.933 0.933 0.933 0.933 0.933 0.894 0.887 0.902 
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A.4 Model Results for Vector Selection Methods 

Table A4-1.  Results of Pressurizer-Level model using min-max  
vector selection method 

 Signal 
1 

Signal 
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method m m m 

Metrics    
Accuracy (% of span) 0.001 0.001 0.001 
Auto-sensitivity 0.479 0.820 0.487 
Cross-sensitivity 0.291 0.297 0.379 
EULM detectability (% of span) 0.203 0.424 0.320 
SPRT detectability (% of span) 0.00041 0.000527 0.000432 

Uncertainty    
Analytic (% of span) 0.106 0.076 0.164 
Coverage 0.985 0.961 0.978 
Monte Carlo (% of span) 0.389 0.350 0.474 
Coverage 1.000 1.000 1.000 
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Table A4-2.  Results of Pressurizer-Level model using 
sort-select vector selection method 

 Signal 
1 

Signal 
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method s s s 

Metrics    
Accuracy (% of span) 0.001 0.001 0.002 
Auto-sensitivity 0.466 0.717 0.432 
Cross-sensitivity 0.301 0.275 0.355 
EULM detectability (% of span) 0.198 0.225 0.358 
SPRT detectability (% of span) 0.000512 0.00052 0.000493 

Uncertainty    
Analytic (% of span) 0.106 0.064 0.203 
Coverage 0.995 0.947 0.994 
Monte Carlo (% of span) 0.114 0.081 0.208 
Coverage 0.996 0.960 0.996 
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Table A4-3.  Results of RPS Loop A model using min-max vector selection method 

 Signal 
1 

Signal 
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal 
8 

Signal
9 

Data          
Signal noise estimate 

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel 
width 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Vector selection 
method 

m m m m m m m m m 

Metrics          
Accuracy (% of 

span) 
0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

Auto–sensitivity 0.487 0.399 0.728 0.732 0.391 0.273 0.468 0.360 0.404 
Cross–sensitivity 0.154 0.145 0.153 0.136 0.135 0.131 0.153 0.141 0.151 
EULM detectability 

(% of span) 
1.590 1.320 3.190 3.260 3.050 0.544 0.085 0.115 0.175 

SPRT detectability 
(% of span) 

0.00321 0.00316 0.00352 0.00373 0.00243 0.00252 0.00049 0.000508 0.000501

Uncertainty          
Analytic  

(% of span) 
0.816 0.794 0.871 0.873 1.860 0.396 0.045 0.074 0.104 

Coverage 1.000 1.000 1.000 0.999 1.000 0.997 0.954 0.996 0.999 
Monte Carlo  

(% of span) 
1.060 1.120 1.290 1.350 1.890 0.484 0.122 0.143 0.154 

Coverage 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
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Table A4-4.  Results of RPS Loop A model using sort-select vector selection method 

 Signal 
1 

Signal
2 

Signal
3 

Signal
4 

Signal
5 

Signal
6 

Signal 
7 

Signal 
8 

Signal
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method s s s s s s s s s 

Metrics          
Accuracy (% of span) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
Auto–sensitivity 0.412 0.468 0.652 0.610 0.131 0.074 0.390 0.359 0.383 
Cross–sensitivity 0.105 0.110 0.108 0.092 0.065 0.043 0.114 0.119 0.130 
EULM detectability  

(% of span) 
1.390 1.490 2.500 2.240 2.160 0.251 0.072 0.112 0.126 

SPRT detectability  
(% of span) 

0.00273 0.00261 0.0031 0.00307 0.0019 0.00186 0.00046 0.00049 0.000474

Uncertainty          
Analytic (% of span) 0.816 0.794 0.871 0.873 1.880 0.232 0.044 0.072 0.077 
Coverage 1.000 1.000 1.000 0.999 1.000 0.988 0.970 0.992 0.987 
Monte Carlo  

(% of span) 
0.538 0.544 0.558 0.561 1.900 0.301 0.080 0.102 0.103 

Coverage 0.999 1.000 0.999 0.996 1.000 0.998 0.998 1.000 0.997 
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A.5 Model Results for Number of Memory Vectors 

Table A5-1.  Results of Pressurizer-Level model 
using ten memory vectors 

 Signal
1 

Signal
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 10 10 10 
Optimal kernel width 0.5 0.5 0.5 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.004 0.004 0.003 
Auto–sensitivity 0.171 0.068 0.419 
Cross–sensitivity 0.136 0.116 0.176 
EULM detectability (% of span) 0.586 0.585 0.663 
SPRT detectability (% of span) 0.036 0.036 0.036 

Uncertainty    
Analytic (% of span) 0.485 0.545 0.385 
Coverage 0.942 0.943 0.943 
Monte Carlo (% of span) 0.500 0.557 0.408 
Coverage 0.943 0.944 0.944 
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Table A5-2.  Results of Pressurizer-Level model 
using 25 memory vectors 

 Signal
1 

Signal
2 

Signal 
3 

Data:    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 25 25 25 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.003 0.003 0.003 
Auto–sensitivity 0.294 0.448 0.377 
Cross–sensitivity 0.248 0.219 0.241 
EULM detectability (% of span) 0.574 0.753 0.549 
SPRT detectability (% of span) 0.060 0.061 0.060 

Uncertainty    
Analytic (% of span) 0.405 0.416 0.342 
Coverage 0.943 0.944 0.944 
Monte Carlo (% of span) 0.435 0.459 0.384 
Coverage 0.944 0.945 0.946 
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Table A5-3.  Results of Pressurizer-Level model 
using 50 memory vectors 

 Signal
1 

Signal
2 

Signal 
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 50 50 50 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.003 0.003 0.003 
Auto–sensitivity 0.417 0.528 0.480 
Cross–sensitivity 0.326 0.240 0.360 
EULM detectability (% of span) 0.560 0.745 0.621 
SPRT detectability (% of span) 0.00651 0.00677 0.00642 

Uncertainty    
Analytic (% of span) 0.326 0.352 0.323 
Coverage 0.962 0.962 0.945 
Monte Carlo (% of span) 0.418 0.467 0.419 
Coverage 0.966 0.966 0.951 
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Table A5-4.  Results of Pressurizer-Level model 
using 100 memory vectors 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 100 100 100 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.001 0.001 0.002 
Auto–sensitivity 0.454 0.705 0.393 
Cross–sensitivity 0.321 0.296 0.381 
EULM detectability (% of span) 0.222 0.344 0.410 
SPRT detectability (% of span) 0.0013 0.00127 0.00131 

Uncertainty    
Analytic (% of span) 0.121 0.101 0.248 
Coverage 0.972 0.968 0.955 
Monte Carlo (% of span) 0.164 0.158 0.272 
Coverage 0.986 0.985 0.959 
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Table A5-5.  Results of Pressurizer-Level model 
using 3750 memory vectors 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 3750 3750 3750 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.001 0.001 0.002 
Auto–sensitivity 0.443 0.701 0.456 
Cross–sensitivity 0.303 0.288 0.333 
EULM detectability (% of span) 0.169 0.200 0.344 
SPRT detectability (% of span) 0.00031 0.000314 0.000291 

Uncertainty    
Analytic (% of span) 0.094 0.060 0.187 
Coverage 0.989 0.944 0.996 
Monte Carlo (% of span) 0.095 0.061 0.187 
Coverage 0.990 0.944 0.996 
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Table A5-6.  Results of Pressurizer-Level model 
using 7000 memory vectors 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 7500 7500 7500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.001 0.001 0.002 
Auto–sensitivity 0.439 0.735 0.458 
Cross–sensitivity 0.305 0.285 0.340 
EULM detectability (% of span) 0.167 0.201 0.340 
SPRT detectability (% of span) 0.000172 0.000181 0.000153 

Uncertainty    
Analytic (% of span) 0.094 0.053 0.184 
Coverage 0.990 0.944 0.996 
Monte Carlo (% of span) 0.093 0.053 0.184 
Coverage 0.989 0.944 0.996 
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Table A5-7.  Results of Pressurizer-Level model 
using 15,000 memory vectors 

Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 15000 15000 15000 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.001 0.001 0.002 
Auto–sensitivity 0.435 0.738 0.460 
Cross–sensitivity 0.292 0.285 0.339 
EULM detectability (% of span) 0.164 0.203 0.338 
SPRT detectability (% of span) 0.000167 0.000178 0.000147 

Uncertainty    
Analytic (% of span) 0.093 0.053 0.182 
Coverage 0.988 0.944 0.998 
Monte Carlo (% of span) 0.092 0.053 0.182 
Coverage 0.987 0.944 0.998 
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Table A5-8.  Results of RPS Loop A model using ten memory vectors 

Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal  
8 

Signal 
9 

Data          
Signal noise estimate 

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
10 10 10 10 10 10 10 10 10 

Optimal kernel width 2 2 2 2 2 2 2 2 2 
Vector selection 

method 
x x x x x x x x x 

Metrics          
Accuracy (% of 

span) 
0.00017 0.00016 0.00032 0.00023 0.00123 0.00030 0.00009 0.00010 0.00008

Auto–sensitivity 0.103 0.072 1.320 0.539 0.016 0.003 0.092 0.106 0.014 
Cross–sensitivity 0.082 0.036 0.247 0.213 0.042 0.004 0.097 0.104 0.022 
EULM detectability  

(% of span) 
1.270 1.200 –7.880 3.640 1.810 0.435 0.197 0.212 0.159 

SPRT detectability  
(% of span) 

0.0439 0.0423 0.0628 0.0736 0.0476 0.043 0.00818 0.00815 0.00852

Uncertainty          
Analytic (% of span) 1.140 1.110 2.490 1.680 1.780 0.434 0.179 0.190 0.157 
Coverage 0.992 0.990 1.000 0.980 0.992 0.988 0.989 0.993 0.950 
Monte Carlo (% of 

span) 
0.890 1.000 2.910 1.780 1.810 0.459 0.266 0.301 0.227 

Coverage 0.933 0.975 1.000 0.986 0.993 0.988 1.000 1.000 1.000 
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Table A5-9.  Results of RPS Loop A model using 25 memory vectors 

 Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
25 25 25 25 25 25 25 25 25 

Optimal kernel width 1 1 1 1 1 1 1 1 1 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.000112 0.0001270.000117 0.000134 0.00145 0.000273 4.77E–05 4.97E–05 5.00E–05
Auto–sensitivity 0.261 0.156 0.245 0.094 0.017 0.013 0.309 0.355 0.237 
Cross–sensitivity 0.090 0.075 0.076 0.068 0.023 0.022 0.130 0.135 0.117 
EULM detectability  

(% of span) 
1.140 0.968 1.190 0.991 2.140 0.402 0.123 0.140 0.114 

SPRT detectability  
(% of span) 

2.270 2.330 2.830 3.390 2.370 2.210 0.249 0.233 0.289 

Uncertainty          
Analytic (% of span) 0.839 0.817 0.895 0.898 2.110 0.397 0.085 0.090 0.087 
Coverage 0.991 0.988 0.991 0.988 0.995 0.988 0.990 0.980 0.992 
Monte Carlo (% of span) 0.669 0.700 0.950 0.810 2.130 0.515 0.150 0.149 0.129 
Coverage 0.987 0.978 0.992 0.982 0.995 0.989 0.995 0.996 0.995 
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Table A5-10.  Results of RPS Loop A model using 50 memory vectors 

 Signal  
1 

Signal  
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise 

estimate  
(% of span) 

0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
50 50 50 50 50 50 50 50 50 

Optimal kernel 
width 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Vector selection 
method 

x x x x x x x x x 

Metrics          
Accuracy 

(% of span) 
9.32E–05 8.40E–05 9.85E–05 0.000102 0.00143 0.000193 4.44E–05 5.24E–05 6.18E–05

Auto–sensitivity 0.300 0.412 0.559 0.524 0.065 0.069 0.330 0.343 0.253 
Cross–sensitivity 0.147 0.168 0.171 0.136 0.068 0.061 0.138 0.147 0.140 
EULM detectability 

(% of span) 
1.410 1.640 2.390 2.220 2.220 0.298 0.119 0.147 0.152 

SPRT detectability  
(% of span) 

0.00576 0.00516 0.00678 0.00659 0.00319 0.00347 0.000968 0.00097 0.00102 

Uncertainty          
Analytic 

(% of span) 
0.988 0.962 1.050 1.060 2.070 0.278 0.079 0.097 0.114 

Coverage 0.999 1.000 0.999 0.999 1.000 0.985 0.993 0.990 0.991 
Monte Carlo 

(% of span) 
0.804 0.787 0.856 0.839 2.100 0.416 0.139 0.151 0.146 

Coverage 0.999 0.999 0.997 0.999 1.000 0.999 0.995 0.993 0.994 
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Table A5-11.  Results of RPS Loop A model using 100 memory vectors 

 Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 
vectors 

100 100 100 100 100 100 100 100 100 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 9.72E–05 9.10E–05 7.62E–05 7.32E–05 0.00147 0.000213 3.90E–05 5.73E–05 5.45E–05
Auto–sensitivity 0.304 0.374 0.661 0.592 0.039 0.054 0.385 0.325 0.216 
Cross–sensitivity 0.124 0.122 0.120 0.133 0.040 0.050 0.125 0.133 0.113 
EULM detectability  

(% of span) 
1.330 1.440 2.930 2.440 2.210 0.326 0.112 0.160 0.127 

SPRT detectability  
(% of span) 

0.00526 0.0053 0.00534 0.00535 0.00293 0.00307 0.000809 0.000844 0.000805

Uncertainty          
Analytic (% of span) 0.929 0.905 0.992 0.995 2.130 0.308 0.069 0.108 0.100 
Coverage 0.999 1.000 0.999 0.999 1.000 0.988 0.990 0.993 0.992 
Monte Carlo (% of span) 0.700 0.683 0.772 0.746 2.150 0.420 0.118 0.146 0.134 
Coverage 0.999 0.999 0.998 0.997 1.000 0.993 0.993 0.994 0.994 
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Table A5-12.  Results of RPS Loop A model using 10 memory vectors 

Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 
vectors 

3750 3750 3750 3750 3750 3750 3750 3750 3750 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 4.43E–05 4.18E–05 5.14E–05 5.06E–05 0.0012 0.000154 2.27E–05 3.10E–05 3.50E–05
Auto–sensitivity 0.456 0.472 0.672 0.667 0.232 0.093 0.391 0.360 0.492 
Cross–sensitivity 0.085 0.089 0.071 0.066 0.077 0.043 0.102 0.107 0.119 
EULM detectability  

(% of span) 
1.110 1.110 1.960 1.940 2.260 0.241 0.045 0.076 0.102 

SPRT detectability  
(% of span) 

0.00159 0.00155 0.00176 0.00176 0.00103 0.00104 0.000215 0.000218 0.000233

Uncertainty          
Analytic (% of span) 0.602 0.586 0.643 0.645 1.740 0.219 0.028 0.049 0.052 
Coverage 1.000 1.000 1.000 1.000 1.000 0.979 0.850 0.976 0.891 
Monte Carlo (% of span) 0.304 0.298 0.337 0.359 1.750 0.245 0.038 0.058 0.061 
Coverage 0.995 0.997 0.996 0.997 1.000 0.991 0.963 0.997 0.956 
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Table A5-13.  Results of RPS Loop A model using 7500 memory vectors 

 Signal  
1 

Signal  
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise 

estimate  
(% of span) 

0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation 
coefficients 

         

    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
7500 7500 7500 7500 7500 7500 7500 7500 7500 

Optimal kernel 
width 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Vector selection 
method 

x x x x x x x x x 

Metrics          
Accuracy 

(% of span) 
4.40E–05 4.22E–05 4.64E–05 4.78E–05 0.00121 0.000149 2.11E–05 3.09E–05 3.45E–05 

Auto–sensitivity 0.456 0.461 0.692 0.680 0.219 0.085 0.406 0.369 0.495 
Cross–sensitivity 0.074 0.076 0.056 0.053 0.064 0.037 0.097 0.101 0.116 
EULM detectability 

(% of span) 
0.935 0.918 1.760 1.700 2.250 0.230 0.039 0.074 0.095 

SPRT detectability  
(% of span) 

0.00149 0.00143 0.00167 0.00165 0.00095 0.000951 0.000181 0.000179 0.000198 

Uncertainty          
Analytic 

(% of span) 
0.509 0.495 0.543 0.545 1.760 0.210 0.023 0.047 0.048 

Coverage 1.000 1.000 1.000 1.000 1.000 0.975 0.796 0.966 0.866 
Monte Carlo 

(% of span) 
0.235 0.218 0.261 0.265 1.770 0.228 0.029 0.052 0.052 

Coverage 0.979 0.985 0.991 0.988 1.000 0.985 0.890 0.989 0.892 
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Table A5-14.  Results of RPS Loop A model using 10 memory vectors 

Signal  
1 

Signal  
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
15000 15000 15000 15000 15000 15000 15000 15000 15000 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection 

method 
x x x x x x x x x 

Metrics          
Accuracy (% of span) 4.05E–05 3.87E–05 4.69E–05 4.43E–05 0.0012 0.000145 2.14E–05 3.05E–05 3.34E–05
Auto–sensitivity 0.459 0.468 0.675 0.691 0.207 0.088 0.400 0.351 0.510 
Cross–sensitivity 0.064 0.067 0.042 0.043 0.059 0.031 0.091 0.092 0.108 
EULM detectability 

(% of span) 
0.760 0.754 1.350 1.430 2.190 0.222 0.032 0.068 0.086 

SPRT detectability 
(% of span) 

0.00143 0.00138 0.00161 0.00159 0.000913 0.000917 0.000172 0.000171 0.000188

Uncertainty          
Analytic (% of span) 0.412 0.401 0.439 0.441 1.740 0.203 0.019 0.044 0.042 
Coverage 1.000 1.000 1.000 1.000 1.000 0.969 0.676 0.935 0.818 
Monte Carlo 

(% of span) 
0.170 0.153 0.189 0.195 1.740 0.212 0.021 0.046 0.043 

Coverage 0.922 0.927 0.920 0.942 1.000 0.978 0.719 0.959 0.825 
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A.6 Results for Models Using Various Distance Calculation Methods 

Table A6-1.  Results for Pressurizer-Level model 
using L-1 norm distance metric 

Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.052 0.026 0.113 
Auto–sensitivity 0.418 0.723 0.348 
Cross–sensitivity 0.240 0.275 0.352 
EULM detectability (% of span) 0.173 0.163 0.342 
SPRT detectability (% of span) 0.00119 0.0012 0.00117 

Uncertainty    
Analytic (% of span) 0.101 0.045 0.224 
Coverage 0.901 0.948 0.958 
Monte Carlo (% of span) 0.113 0.077 0.236 
Coverage 0.947 0.987 0.966 
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Table A6-2.  Results for Pressurizer-Level model using 
Robust Eucledian distance metric 

 Signal 
1 

Signal 
2 

Signal  
3 

Data    
Signal noise estimate (% of span) 0.024 0.023 0.023 
Correlation coefficients    
    Signal 1 1.000 0.987 0.994 
    Signal 2 0.987 1.000 0.981 
    Signal 3 0.994 0.981 1.000 

Model  aakr    
Training range 30,000 30,000 30,000 
Test range 22,501 22,501 22,501 
Validation range 28,500 28,500 28,500 
Data cleaning no no no 
Number of memory vectors 500 500 500 
Optimal kernel width 0.2 0.2 0.2 
Vector selection method x x x 

Metrics    
Accuracy (% of span) 0.043 0.019 0.168 
Auto–sensitivity 0.218 0.264 0.068 
Cross–sensitivity 0.099 0.075 0.245 
EULM detectability (% of span) 0.103 0.045 0.357 
SPRT detectability (% of span) 0.000571 0.000777 0.000573 

Uncertainty    
Analytic (% of span) 0.081 0.033 0.334 
Coverage 0.938 0.954 1.000 
Monte Carlo (% of span) 0.081 0.038 0.335 
Coverage 0.938 0.968 1.000 
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Table A6-3.  Results for RPS Loop A model using L-1 norm metric 

 Signal  
1 

Signal 
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate 

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 –0.212 –0.183 –0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 –0.199 –0.161 –0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 –0.280 –0.239 –0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 –0.279 –0.242 –0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 –0.244 –0.195 –0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 –0.253 –0.216 –0.297 
    Signal 7 –0.212 –0.199 –0.280 –0.279 –0.244 –0.253 1.000 0.970 0.956 
    Signal 8 –0.183 –0.161 –0.239 –0.242 –0.195 –0.216 0.970 1.000 0.947 
    Signal 9 –0.273 –0.264 –0.328 –0.372 –0.302 –0.297 0.956 0.947 1.000 

Model  aakr          
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory vectors 500 500 500 500 500 500 500 500 500 
Optimal kernel width 1 1 1 1 1 1 1 1 1 
Vector selection method x x x x x x x x x 

Metrics          
Accuracy (% of span) 0.272 0.260 0.298 0.252 0.972 0.117 0.026 0.041 0.047 
Auto–sensitivity 0.417 0.445 0.645 0.727 0.032 0.171 0.454 0.271 0.411 
Cross–sensitivity 0.132 0.133 0.134 0.138 0.099 0.056 0.117 0.143 0.141 
EULM detectability 

(% of span) 
1.610 1.650 2.820 3.670 2.020 0.275 0.080 0.103 0.146 

SPRT detectability 
(% of span) 

0.00235 0.00236 0.0028 0.00269 0.00133 0.00135 0.000404 0.000405 0.000401

Uncertainty          
Analytic (% of span) 0.943 0.918 1.010 1.010 1.940 0.229 0.043 0.075 0.086 
Coverage 1.000 1.000 1.000 1.000 1.000 0.989 0.981 0.996 0.983 
Monte Carlo (% of span) 0.600 0.575 0.676 0.658 1.970 0.334 0.072 0.100 0.104 
Coverage 1.000 1.000 0.998 1.000 1.000 0.997 0.998 1.000 0.997 
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Table A6-4.  Results for RPS Loop A model using Robust Eucledian distance metric 

 Signal  
1 

Signal  
2 

Signal 
3 

Signal 
4 

Signal 
5 

Signal 
6 

Signal  
7 

Signal 
8 

Signal 
9 

Data          
Signal noise estimate  

(% of span) 
0.496 0.483 0.530 0.531 0.035 0.035 0.023 0.022 0.027 

Correlation coefficients          
    Signal 1 1.000 0.970 0.716 0.711 0.820 0.815 −0.212 −0.183 −0.273 
    Signal 2 0.970 1.000 0.716 0.711 0.824 0.815 −0.199 −0.161 −0.264 
    Signal 3 0.716 0.716 1.000 0.681 0.797 0.788 −0.280 −0.239 −0.328 
    Signal 4 0.711 0.711 0.681 1.000 0.797 0.789 −0.279 −0.242 −0.372 
    Signal 5 0.820 0.824 0.797 0.797 1.000 0.990 −0.244 −0.195 −0.302 
    Signal 6 0.815 0.815 0.788 0.789 0.990 1.000 −0.253 −0.216 −0.297 
    Signal 7 −0.212 −0.199 −0.280 −0.279 −0.244 −0.253 1.000 0.970 0.956 
    Signal 8 −0.183 −0.161 −0.239 −0.242 −0.195 −0.216 0.970 1.000 0.947 
    Signal 9 −0.273 −0.264 −0.328 −0.372 −0.302 −0.297 0.956 0.947 1.000 
Model  aakr        
Training range 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 
Test range 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 
Validation range 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 28,500 
Data cleaning no no no no no no no no no 
Number of memory 

vectors 
500 500 500 500 500 500 500 500 500 

Optimal kernel width 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Vector selection 

method 
x x x x x x x x x 

Metrics         
Accuracy (% of span) 0.234 0.232 0.317 0.290 1.050 0.124 0.022 0.041 0.045 
Auto–sensitivity 0.393 0.378 0.584 0.636 0.047 0.140 0.421 0.442 0.342 
Cross–sensitivity 0.086 0.092 0.099 0.091 0.070 0.050 0.104 0.120 0.099 
EULM detectability  

(% of span) 
1.040 0.989 1.620 1.860 2.220 0.279 0.050 0.133 0.117 

SPRT detectability  
(% of span) 

0.00229 0.00231 0.00407 0.00405 0.00127 0.00139 0.000316 0.000312 0.000315

Uncertainty         
Analytic (% of span) 0.635 0.618 0.677 0.680 2.090 0.241 0.029 0.074 0.077 
Coverage 1.000 1.000 0.999 1.000 1.000 0.983 0.892 0.998 0.973 
Monte Carlo 

(% of span) 
0.458 0.453 0.608 0.579 2.110 0.301 0.057 0.092 0.089 

Coverage 0.999 0.999 0.998 1.000 1.000 0.996 0.997 0.999 0.995 
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