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Investigating Resource Allocation in a Standards-based Grid Compute Economy 

 

Christopher Dabrowski  
 

Abstract 

 

This paper investigates the use of emerging web service and grid computing standards to support 

resource allocation in a simulated grid compute economy. In this simulated economy, client 

consumer and service providers, acting independently, employ standards-based software 

components to enter into service-level agreements that assign grid resources to client tasks. To 

investigate whether standards-based components can be used to create viable resource 

allocations in a grid compute economy, a series of trials is conducted using a simulation model. 

In these trials, workload is varied over a simulated workday from moderate to overload levels. 

The results show that a standards-based grid compute economy can adapt to different workload 

levels to produce resource allocations that economically benefits clients, providers, and larger 

community that depends on the grid. Further, standards-based components can be used to 

allocate resources efficiently and consistently, without giving rise to anomalous influences that 

perturb market forces.  
 

 



 3

1. Introduction 
 

Grid computing has been envisioned to offer high-performance computing as a commodity for 

those who require large-scale computing resources for tasks such as drug or engine component 

design, financial risk analyses, and many other commercial compute-intensive activities. To date, 

the benefits of grid computing have been demonstrated in preliminary commercial 

implementations. However, these systems have been largely limited to single enterprises or 

groups of collaborating enterprises, in which resource allocation is centrally controlled and 

allocation decisions are guided by non-market factors. In contrast, the longer-term commercial 

success of grid technology will be linked with the emergence of large-scale grid compute 

economies—distributed systems in which service providers and consumer clients interact 

through a de-centralized electronic marketplace to allocate grid resources. Here, providers and 

consumers, acting in their own self-interest, will enter into service-level agreements (SLAs) [1], 

[2] to purchase grid services for a price which fluctuates on the basis of supply and demand. 

While the realization of a grid compute economy is still years away, continued progress toward 

this goal will depend, in part, on use of standardized software components that enable 

interoperability in a large-scale, dynamic, unrestricted, marketplace. 

In recent years, researchers from industry and academe have produced a set of standard 

specifications [1], [3], [4], [6]-[12] intended to create large-scale, interoperable grids. One 

important question is whether a computing grid can support a large-scale, electronic marketplace 

that is profitable to its participants and benefits the larger community using the grid? Can a grid 

compute economy react and adapt to changes in workload level and composition to maintain 

economic benefits to its participants? These questions are answered affirmatively in [13] and 

here. However, if emerging standards are to be a viable basis for a market-based grid compute 

economy, another important question is whether standards-based components can be used to 

produce coherent and efficient resource allocations in a grid compute economy. Are resource 

allocations consistently explainable in terms of adaptive response to market forces, or does 

operation of standards-based implementations impact resource allocation and hinder response to 

market forces? Worse, do anomalous behaviors arising from standards-based components 

impede resource allocation and influence marketplace decisions? The contribution of this study 

is a detailed investigation that focuses on the use of emerging specifications to support a grid 

compute economy. 

The paper first presents a simulation model [14] in which standards-based components are 

used in a grid compute economy that exhibits economic behaviors motivated by [15]-[21]. In this 

grid economy, clients try to maximize profits by seeking providers that can execute their tasks 

for most profit, while providers allocate grid resources to tasks that are most profitable to them. 

The model contains multiple clients and providers that act independently in their own self-

interest. To investigate the questions posed in this study, the operation of the grid economy is 

analyzed in detail and compared with the operation of the economy when providers allocate grid 

resources on the basis of traditional utilization thresholds. A series of trials is conducted in which 

provider resource allocation methods are varied as the grid compute economy operates over an 8-

hour day under increasing workload. Results are evaluated using time-series analysis, well-

known system efficiency measures, economic metrics, and a new metric for overall system 

welfare. 

The results show that the grid compute economy based on standard specifications, in which 
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providers and consumers use profit as a basis for resource allocation decisions, benefits 

individual participants economically. In overload, profit-based resource allocation adapts to 

excess demand to provide more economic benefit than traditional utilization-based resource 

allocation, while yielding comparable efficiency. Time-series analysis shows that profit-based 

resource allocation forms coherent global schedules consistently in response to changes in 

marketplace conditions during a typical workday and that these schedules contrast in predictable 

and explainable ways with schedules formed through utilization-based allocation. The analysis 

finds no evidence of behaviors arising from standards-based components that interfere with 

operation of the market. The study demonstrates the feasibility of using standards-based 

components in a grid compute economy. 

This paper is organized as follows. Section 2 overviews the basic grid compute model. Section 

3 describes the grid compute economy based on this model while section 4 describes provider 

resource allocation behaviors. Section 5 defines the experiment design. Section 6 then discusses 

overall experiment results followed by detailed analysis of time series results in section 7. 

Section 8 concludes. Additional scenarios are reported in an appendix; related work is described 

in [13]. 
 

2. Basic Grid Model and Implemented Standard Specifications 
 

The executable grid model, described more fully in [14], consists of a simulated internet site 

topology with realistic message delays. As in well-known grid models, e.g., [5], this model 

contains two types of sites: service providers and client consumers. Service providers manage a 

single cluster processor, capable of parallel execution. Clusters are of two sizes: 80% are small 

(500 processors) and 20% are large (5500 processors), all operating at the same speed. Each 

execution of the model simulates an 8-hour workday. Each client is initially given a set of tasks 

to complete during the workday; each task is assigned a start time when it enters the system, an 

execution duration, dtask, and target and maximum deadlines, ttaskTrg and ttaskMax respectively that 

are chosen from distributions defined in Table 1. A distribution of values for dtask, with a mean of 

4320 s, is defined on the basis of workload studies [22], [23]. Each task has a cluster processor 

requirement, stask, selected from a distribution in which 50% of tasks require 250 processors, 

30% require 500, 10% require 750, and 10% require 1500, resulting in a mean of 500 for all 

tasks in the system. Knowing dtask, and stask allows derivation of cyclestask, the number of CPU 

cycles needed for the task. 

Providers and clients communicate using components that simulate standard web-service 

specifications for messaging [5], addressing [6], and stateful resources [7]. Each client discovers 

available grid cluster resources using a monitoring and discovery service that employs a two-

level hierarchy of directories, linked together through simulated query aggregators modeled on 

the index service in Globus Toolkit 4. The directory hierarchy employs simulated information 

and index servers specified by WS service group [8]. To advertise availability of a cluster 

resource, each provider periodically registers a service description for its cluster processor with a 

local information server. Meanwhile, clients periodically execute a discovery cycle in which they 

query the directory hierarchy to retrieve relevant service descriptions for their assigned tasks. If 

the capabilities in the retrieved description fulfill task requirements, a client may offer to enter 

into an SLA with the provider for execution of the task. An SLA identifies relevant parties 

involved in the agreement and describes the terms that each party is expected to fulfill. The 

agreement also specifies monetary rewards each party is to receive upon fulfilling terms and 
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penalties incurred in the event of failure to do so. As described in the WS-Agreement 

specification [1], the client first contacts the provider and downloads an agreement template that 

provides an outline of an SLA. The template contains creation constraints which specify bounds 

that term values can take on. A client may then complete the template with specific term values 

and send the completed template to the provider as an offer. Following the protocol [1], a 

provider acknowledges receipt of the offer and then determines whether to accept or reject, using 

economic criteria described below. The provider sends the client an acceptance or rejection 

notice, which ends negotiation. Tasks accepted by a provider are placed on a pending queue and 

managed using the distributed resource management specification [10]. Queued tasks remain in a 

waiting state until executing task(s) finish. More than one task can run in parallel if their 

combined processor requirements do not exceed cluster capacity. The model allows no 

preemption, however providers backfill using a first-fit procedure. Upon completion, providers 

transmit execution results to clients. Each client periodically repeats discovery and negotiation 

until all assigned tasks are complete or the simulated workday ends. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Grid Compute Economy 
 

The executable grid model is extended to add simulated marketplace behavior, in which clients 

seek providers that can execute their tasks for most profits, while providers also accept offers 

that increase their profits. Each client and provider acts independently, without external 

direction. An accepted offer creates an SLA that establishes the price for completing a task.  

Over the simulated 8-hour day, d=28800 s, market price fluctuates in response to supply and 

demand, where supply depends on cluster processor availability and demand on the number and 

value of client tasks in the system. 

At the start of a simulated day, each provider is assigned an operating cost for a single compute 

cycle ccycle from a distribution in Table 1. Knowing the number of processors in the provider’s 

cluster, scluster, the processor speed given as the global constant Gspeed, and a duration d, the total 

provider operating cost over d can be calculated by 

 

coper = ccycle • scluster  • Gspeed  • d.                                                                                                (1)    

 

Each provider is also assigned a minimum profit margin, mmin from the distribution shown in 

Table 1. Key statistical distributions for experiment. 

µ = (0.3 – mmin)/2, ρ = (0.3 – mmin)/4,

(0.3 – mmin)/2 ≤ mtrg ≤ 0.3
uniformMaximum profit marginmmax

µ = tsysEnd ρ = 1710 s, 

(tsysEnd – tglobalTD)/4.

normalTask maximum deadlinettaskMax

µ =4320 s, ρ = 1500 snormalTask durationdtask

µ =3600 s, ttaskStart < 6221 sexponentialTask start timettaskStart

µ = tglobalTD ρ = 3420 s, (tsysEnd – tglobalTD)/2, 

tglobalTD =21960 s, tsysEnd =28800 s
normalTask target deadlinettaskTrg

mmin

ccycle

Symbol

µ =0.175, ρ =0.0875,

0.15 ≤ mmin ≤ 0.2
uniformMinimum profit margin

µ =0.001, ρ =0.001,

0.0009 ≤ ccycle ≤ 0.0011
normalCycle cost (¢)

DistributionName Parameters and constraints

µ = (0.3 – mmin)/2, ρ = (0.3 – mmin)/4,

(0.3 – mmin)/2 ≤ mtrg ≤ 0.3
uniformMaximum profit marginmmax

µ = tsysEnd ρ = 1710 s, 

(tsysEnd – tglobalTD)/4.

normalTask maximum deadlinettaskMax

µ =4320 s, ρ = 1500 snormalTask durationdtask

µ =3600 s, ttaskStart < 6221 sexponentialTask start timettaskStart

µ = tglobalTD ρ = 3420 s, (tsysEnd – tglobalTD)/2, 

tglobalTD =21960 s, tsysEnd =28800 s
normalTask target deadlinettaskTrg

mmin

ccycle

Symbol

µ =0.175, ρ =0.0875,

0.15 ≤ mmin ≤ 0.2
uniformMinimum profit margin

µ =0.001, ρ =0.001,

0.0009 ≤ ccycle ≤ 0.0011
normalCycle cost (¢)

DistributionName Parameters and constraints
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Table 1 and initially assumes an expected processor utilization, uexpected = 0.75. The provider then 

calculates a base price for a single compute cycle, bbase, as 

 

bbase = ccycle / uexpected • (1 + mmin),                                                                                             (2)    

 

which is the least amount the provider can charge to make a minimum profit during d, given 

uexpected. 

Each provider maintains a price schedule divided into i = 1...n time intervals, which is posted 

in the agreement template downloaded by clients. The schedule is periodically updated (every 

120 s) as follows. For each interval i, each provider independently calculates the utilization ui 

based on previously admitted tasks expected to run on its cluster during interval i, computes their 

average per-cycle price i

avgb for i, and updates the posted asking price for i, i

askb , using the formula 

 
i

askb = i

avgb  + (ui/uexpected - 1)
1/2.                                                                                                          (3)                            

 

As the provider accepts tasks, i

askb  rises for intervals that are heavily utilized. If demand wanes, 

i

askb  correspondingly falls. Providers allow unlimited rise in i

askb  but never allow it to fall below 

bbase. As the provider completes tasks, it accumulates revenue, rtask for each task and can 

calculate its profit by∑ −
W

opertask cr  for the set of tasks completed W, given its operating cost coper 

computed by (1). 

On the client side, in addition to its set of tasks, each client is initially assigned a minimum and 

maximum profit margin, mmin and mmax, from Table 1. To allow clients to initially estimate task 

cost, the model assumes clients have some foreknowledge of prevailing market prices, as might 

occur in an actual market. To simulate this, the average provider per cycle base price,
base

b , is 

calculated for all providers and initially made available to clients, which allows clients to 

compute the expected cost of each task, cexpect, as 
base

b • cyclestask. The maximum task revenue, 

rtask, is then calculated as 

 

                                                                                                                                                   (4) 

 

Note by (4), rtask depends on cyclestask, so more valuable tasks require more compute cycles, 

more resources, and run longer a factor in the analysis to come. 

A key feature of this model is the concept of revenue decay, as used in [19]-[21]. A client can 

fully realize rtask by completing the task by its assigned target deadline, ttaskTrg. A task that 

completes after ttaskTrg decays in value up until its maximum deadline, ttaskMax, after which it has 

no value. The decay rate, ktask, is ktask=  rtask /( ttaskMax- ttaskTrg). The actual revenue r’task earned for 

a task ending at ttaskEnd is given by  

 

          
( )





−•−

≤
=

otherwisettkr

ttifr
r

taskTrgtaskEndtasktask

taskTrgtaskEndtask

task

'                                                               (5)     

 

The concept of revenue decay is shown in fig. 1. 

rtask = cexpect / (1 – mmax)
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        Each task is given a budget based on minimum and maximum profit margins. The task 

maximum budget (i.e., the most a client is willing to pay) is set to rtask – (rtask • mmin), while the 

minimum budget is set to rtask – (rtask • mmax). In this way, revenue and budget values exceed the 

expected task cost by a reasonable amount, as typically occurs in an actual market. Following 

previous studies of grid compute economies, 20% of tasks are randomly designated to be high 

revenue tasks where their maximum revenues and budgets are increased by a factor of 5. The 

remaining 80% are considered low-revenue tasks. This allows clients to offer more money for 

high-revenue tasks in hopes of completing them sooner. 

 

 

 

 

 

 

 

 

 
Fig. 1. Schematic of linear decay in task value over time 

 

Once a client has found a set of providers that meets processor requirements for a task using 

the monitoring and discovery service, the client downloads each provider agreement template, in 

which the current provider utilization and price schedule information serve as agreement 

template creation constraints. For each provider template, the client iterates over its price 

schedule and, using utilization information to estimate task completion times, finds the interval i 

yielding the estimated highest profit, r’task - ctask, where r’task is computed by (5) and the client’s 

cost, ctask by i

askb  • cyclestask. The client prepares an offer for each provider in which the offered 

fee is a minimum of i

askb  and the task maximum budget, but not less than the task minimum 

budget. Each offer contains proposed agreement with terms for task fee, dtask, cyclestask, ttaskTrg, 

ttaskMax, ktask, and network addresses where input data can be retrieved and output can be sent. A 

client orders offers by decreasing profit and submits them to each provider. The client waits for a 

response before sending the next offer, as required by the [1]. Acceptance of an offer creates an 

SLA that precludes negotiation with lower-ordered providers. Once task execution completes, 

the actual fee is computed using (5) and sent by the client. A cancellation fee of 5% of the fee is 

assessed if either client or provider cancels the agreement. 
 

4. Provider Strategies for Admission 
 

Providers determine whether to accept or reject offers using an admission strategy and then 

respond to clients using the protocol in [1]. Admission strategies are the means by which 

providers allocate their resources. This study considered 3 classes of admission strategies, those 

that use: (a) profit maximization as the admission criterion; (b) utilization thresholds as the 

admission criteria; and (c) random or no control. Each class had 2 strategies. In the profit-based 

strategies class, a task, jnew, is admitted if its estimated profit exceeds the profit lost by delaying 

previously admitted tasks to complete jnew. Here, task profit is estimated as r’task – cprv, where 

r’task is calculated by (5) and cprv, which estimates the cost to the provider, by cyclestask • ccycle. In 

ttaskTarg ttaskMax

r’task

ktask

Time

T
a

s
k
 v

a
lu

e
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one variant, netProfit, {j1…jn} previously admitted tasks are ordered by estimated profit and jnew 

is then placed into a new proposed schedule {j1… jk, jnew, jl,…jn}. If jnew is delayed by being 

placed behind {j1… jk} other tasks, its profit may be reduced by the resulting decay as per (5). 

Similarly, if {jl ,…jn} previously admitted tasks are further delayed by being ranked behind jnew, 

in the proposed schedule, their decay is computed and referred to as deferred cost. If the adjusted 

profit of jnew exceeds deferred cost, jnew is admitted; otherwise it is rejected. The second variant, 

netProfitR, uses the same procedure, but tasks are ordered by revenue, r’task instead of profit. In 

this way, profit-based admission estimates the impact of a new task on the provider’s 

profitability. Admitted tasks execute in the order determined by their respective ranking.  

In contrast with profit-based strategies, utilization-based strategies take the more traditional 

systems management approach of attempting to maximize the number of tasks scheduled and 

completed and to ensure no cluster is over-utilized. In deciding whether to admit a task, 

utilization-based admission first identifies previously admitted tasks that are likely to execute 

during an interval I, bounded by the current time and the maximum end time of the incoming 

task, jnew. Utilization of a single task is measured by multiplying its estimated duration, dtask, by 

the number of cluster processors needed, stask. If the combined utilization of jnew and the other 

tasks co-scheduled during I is less than 95% of total cluster capacity, the task is admitted. 

Otherwise, the task is rejected and must seek a less-utilized provider. The two utilization-based 

strategies are distinguished by the ordering criteria used to form execution schedules: Shortest- 

job-first, or SJF, and First-Come-First-Serve, or FCFS.  In the third strategy class, the random 

strategy uses a coin flip to determine admission and to order tasks for execution, while noControl 

strategy admits all tasks and executes them in FCFS order. 
 

5. Experiment and Metrics 
 

The experiment compared the effect on global resource allocation of the six provider strategies 

as load was increased. The experimental topology consisted of 30 provider sites and 10 client 

sites, which operated over a simulated 8-hour workday. Load level was varied from 5% to 200% 

in 5% increments by generating varying numbers of tasks for each client (over 1100 for all 

clients at 200%). Variables for client tasks, and providers were assigned values from 

distributions described in Table 1. Task start times were distributed so that most tasks arrived in 

the early in the day. For each provider strategy, 100 repetitions were conducted at each load 

level. 

To assess results, the analysis relied on well-known system metrics, including queue length, 

service time, and processor utilization. These metrics were supplemented by a system welfare 

metric, which combines measures of direct monetary benefit to all clients in the set of clients L 

and all providers in the set of providers P, together with the indirect benefit to a larger user 

community. Client benefit, Bclient, is measured by summing proportion of maximum revenue 

realized (r’task/rtask) and profit margin realized (r’task- ctask)/r’task over V, the set of all client tasks, 

and multiplying these terms in (6). Provider benefit, Bprovider, is computed similarly over W, the 

set of tasks admitted by providers, in (7).  However, to compute proportion of revenue realized, 

(7) sums the price stated in the SLA for the task over the maximum possible task price, where 

the latter is estimated using mmin, the minimum client profit margin for each task. To compute 

provider cost, (7) sums the operational cost, coper, for all providers in P. Note that (6) and (7) are 

left in un-simplified form for explanatory purposes. 

 



 9

 
                                                    

                                                                                                     

          (6)                                           

                                                       

                                   

 

 

 

 

 

(7)                                           

 

 

 

 

 

 

Larger community benefit is measured by the ratio of V completed, Pcomplete. System welfare, S, 

is given by 
 

          S = (Bclient + Bprovider) • Pcomplete.                                                                                                                  (8) 

 

The analysis also measured communication cost, C, which is defined as the sum of the averaged 

ratios of the total number of messages sent by clients and providers to discover resources and to 

negotiate an SLA for a task versus the minimum number of messages needed for these 

operations.. The formula for communication cost is provided in Appendix A.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 2. System welfare for 6 strategies over load ranging from 0-200% (100 repetitions)  

 

 

6. General Observations 

 

Fig. 2 and Table 2 show that in moderately-loaded range (50%-100% load), the simulated grid 

compute economy exhibited comparable system welfare for both profit-based and utilization-

based strategies. Within this range, sufficient provider capacity exists to handle all client tasks; 

therefore, the ability to prioritize tasks by profit (or revenue) provides less advantage. Further, 
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utilization strategies incurred less communication cost, making them a potentially viable option 

when workload is at moderate levels. The random and no-control strategies performed more 

poorly as expected, because these strategies caused providers to become over utilized. As a 

result, tasks were delayed, leading to greater decay in task revenue and more cancellations. 

In overload (≥ 105%), use of profit-based strategies resulted in higher system welfare. 

Decomposing the system welfare metric (8) in Table 2 shows that in overload, use of profit-

based strategies resulted in higher proportion of potential revenue realized and higher profit 

margins for providers and clients. Table 2 shows that use of profit-based strategies resulted in 

completion of a higher proportion of high-revenue tasks than occurs with utilization-based 

strategies. On the surface, this is attributable to the operation of the profit-based admission 

strategy that prioritizes high-profit, or high-revenue, tasks for assignment to increasingly limited 

resources. By the same argument, the relative decline in system welfare for utilization-based 

strategies in overload is attributable to their inability to prioritize high-profit tasks and ensure 

that they run on scarce resources, which reduces revenue realized for both clients and providers. 

Near 200%, the decline in system welfare in the FCFS and SJF strategies in fig. 2 shows they are 

no more effective in completing high-revenue tasks than are random and no-control strategies. 

Table 2 also shows profit-based strategies exhibited task completion rates, Pcomp, and 

communication cost that were more comparable to utilization-based strategies in overload. 

In both moderately-loaded and overload conditions, the performance of profit-based strategies, 

in which providers and clients act independently to maximize their profits, evidences the 

feasibility of grid compute economies implemented using standard specifications. The results 

also show that use of profit-based strategies results in decidedly better performance in overload. 

However, these results do not fully answer questions about whether standards- based 

components can be used to support a coherent resource allocation process. Ideally, if the 

standards-based components are working properly, resource allocation decisions should be 

consistently explainable by the profit motive and by adaptive response to market conditions and 

workload composition. The resulting global schedules should be similarly explainable in terms 

of economic factors. There should be no influence on decision making arising from operation of 

standards-based components. 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Summary statistics for 4 provider strategies averaged over indicated load ranges. 
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7. Analysis of underlying dynamics 
 

These questions motivated a more in-depth investigation into the resource allocation process 

underlying use of profit-based strategies. To gain insight into this process, it is useful to compare 

profit-based resource allocation with traditional allocation methods where utilization thresholds 

are used as decision criteria, since the latter do not involve profit or monetary factors. This 

comparison could be expected to more clearly reveal the impact of economic factors in the 

profit-based allocation process. By focusing on the overload range (≥ 105%), it is possible to 

examine the system as it undergoes greatest stress and performance of strategies differentiates.  

 

Selection of Time Series.  Time-series analysis provides a good tool to compare characteristics of 

tasks that were accepted or rejected using profit- and utilization-based strategies, as well as to 

examine characteristics of resulting global schedules formed using the different strategies. To 

determine which task variables to generate time series for, recall that in profit-based admission, a 

new task is ordered in relation to previously admitted tasks on the basis of profit (netProfit) and 

revenue (netProfitR) to form a new proposed schedule. The new task is admitted if its profit 

exceeds the deferred cost of tasks delayed to complete the new task, where delay causes task 

value to decay according to (5). The extent that a lower-ranked task is delayed depends on the 

execution duration, or task length, and number of processors used, or task width, of task(s) 

ranked in front of it. Since task length and width is also used by utilization-based strategies to 

determine system utilization, these variables provide a good basis for comparison of the 

strategies. Time series data was therefore generated for task length and width over the 28,800 s 

experimental time period in 500 s intervals. To learn when tasks were admitted during the 

experimental period and how price varied over time, time series were generated for average 

frequency of admission and average price. The resulting analysis below is limited to netProfit 

and FCFS; netProfitR and SJF had very similar plots and are omitted. 

 

Analysis of Resource Allocation. Fig. 3 shows the time series for tasks accepted by the netProfit 

and FCFS provider strategies in the overload range. Table 3 shows summary statistics for the 

variables plotted in fig. 3. Fig. 3a shows nearly all tasks submitted early in the day were admitted 

by 8500 s. However, netProfit providers accepted more high-revenue tasks than FCFS prior to 

8500 s, while FCFS providers accepted a higher proportion of low-revenue tasks before 8500 s, 

consistent with the general observations and Table 2 statistics. In addition, fig. 3a shows 

netProfit providers admit some low-revenue tasks later, as evidenced by the slightly larger tail 

for netProfit. Table 3 confirms the general observation that netProfit and netProfitR providers 

accept tasks having higher average value, while in utilization-based strategies, values of accepted 

and never accepted tasks are similar. 

In fig. 3b, price of high-revenue tasks rises for both strategies until 8500 s, reflecting strong 

demand early in the day. After 8500 s, price evens out as admission falls. After 5000 s, it also 

appears that netProfit accepts high-revenue tasks that are slightly higher in value. However, the 

price curve for low-revenue tasks in fig. 3b shows a different pattern. Here, netProfit providers 

accept low-revenue tasks of lesser value than FCFS providers before 8500 s; afterwards, 

netProfit providers accept low-revenue tasks of higher value. Why does this happen? This result 

at first seems contrary for a strategy that seeks to increase profit. 
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Figure 3. Time series for selected variables of tasks admitted by netProfit and FCFS utilization admission 

strategies over interval 0-20,800 s, combining results of all repetitions for loads ≥ 105%. In each diagram (a-

d), horizontal axis represents time, while the vertical axis represents values of variables in diagram titles. 

 

The answer to this question lies in the time series for task length and width. Fig. 3c and fig. 3d 

show that in the critical period prior to 8500 s, length and width of both high and low-revenue 

tasks accepted by netProfit providers is below average (recall average width is 500; average 

length is 4320 s). Above 8500 s, length and width of high and low-revenue tasks accepted by 

netProfit providers rises. In contrast length and width of tasks accepted by FCFS providers 

remains closer to the average during the entire 28800 s interval. (The 95% utilization limit 

caused FCFS providers to select tasks of lower length and width over time, but the effect is 

weaker.) Table 3 shows that, overall, average length and width of all tasks accepted by profit-

based providers is less than that of tasks never accepted, while in utilization-based strategies, 

task length and width is comparable for accepted and never accepted tasks. The preference of 

netProfit providers for tasks of smaller length and width is attributable to the operation of the 

profit-based admission algorithm. Tasks with smaller length and width are more likely to be 

admitted because they are less likely to displace and delay previously scheduled tasks in a 

proposed schedule, thus reducing deferred cost. Similarly, previously admitted tasks with smaller 

lengths and widths are less likely to be displaced and delayed, also reducing deferred cost. 

(These same patterns are also observed for netProfit and FCFS tasks rejected in overload and for 

accepted and rejected tasks in the moderately-loaded range. See Appendix B.) 
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The in-depth analysis confirms the general observations. However, the analysis also reveals 

that profit-based admission selects tasks that have smaller lengths and widths, e.g., consume 

fewer grid resources. This consistently results in formation of global schedules that yield more 

profit for the amount of computing resource used. The analysis also reveals profit-based resource 

allocation behavior coherently adapts to changes in workload level and task composition 

throughout the workday. As figs. 3c and 3d show, this behavior leads netProfit providers to 

admit more high-revenue tasks that use fewer resources than FCFS prior to 8500 s and to defer 

high-revenue tasks that consume more resources until later. The same behavior also leads 

netProfit providers to defer low-revenue tasks that consume more resources until after 8500 s, 

which explains the low-revenue netProfit price curve in fig. 3b. Recall in sec. 3, by (4) task value 

depends on the amount of resources, or ccycles, used by the task. Low-revenue tasks with higher 

value are delayed, because the netProfit strategy is willing to sacrifice profit in all low-revenue 

tasks in order to allocate resources to more profitable high-revenue tasks early in the day. This 

causes the netProfit low-revenue price curve to be below the FCFS low-revenue curve before 

8500 s in fig. 3b. 

Globally, the operation of netProfit (and netProfitR) in overload incurs communication cost 

comparable to utilization-based admission (Table 2). Overall, as Table 4 shows, netProfit (and 

netProfitR) complete a higher proportion of tasks that do not decay in value (e.g., complete by 

their respective ttaskTrg). Because they admit tasks of smaller length and width, profit-based 

strategies also have smaller average processor queue lengths and lower processor utilization in 

comparison with FCFS, and also have a lower average task service time, expressed as a 

proportion of the 28,800 s experimental period needed to complete discovery, negotiation, and 

task execution. The SJF strategy achieves better efficiency by some measures because it 

prioritizes shorter tasks for execution, but still suffers reduced system welfare for reasons given 

above. Overall, profit-based resource allocation provides comparable, or slightly better, 

efficiency to utilization-based allocation in overload.  
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Table 3. Task length, width, and client revenue for admitted tasks versus 

tasks never admitted for four provider strategies over indicated load ranges. 
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Impact of Standards-Based Components. The preceding analysis showed that the behavior of the 

grid compute economy as a whole could be ascribed to causal factors arising from the economy 

itself, while differences in performance of systems using profit- and utilization-based provider 

strategies are also attributable to the strategies themselves. In no case did analysis of system or 

component behavior reveal adverse behavior traceable to specifications [1], [3], [4], [6]-[12]. In 

particular, there was no evidence that the service directory lookup and retrieval procedure based 

on [8], [9] or SLA negotiation protocol [1] inhibited operation of the grid compute economy or 

that it introduced aberrant behavior. This is supported by Table 4 which shows the average 

observed latency (or delay) to retrieve one provider service description from the two-tier 

directory structure is consistent with the expected delay that would be incurred by the number of 

messages needed for the operation (2 pairs of request-response messages, or 4 messages), given 

the Transmission Control Protocol (TCP) message sequence delays programmed into the model 

(an average 1.85 s delay for request followed by response). The same is true of average observed 

latencies incurred to negotiate a single agreement (one request-response to retrieve the agreement 

template followed by a client offer with 2 concurrent responses for 5 messages). The reduction of 

latency for all strategies in overload in Table 4 occurs because of increased sharing of 

established connections by multiple transmissions in overload, an efficiency feature of TCP 

simulated by the model [14]. The latency to retrieve a resource service description from the 

directory is similar for both profit-based and utilization-based strategies as is the average latency 

to negotiate an agreement. The increase in communication cost in Table 2 that accompanies 

increasing load is due to continued search by clients seeking contracts for the corresponding 

increasing number of uncompleted tasks that remain. In the case of the remote task management 

protocol [10], the command set proved adequate to support basic simulated task execution 

management and output data transfer functions, while [11], [12] provided sufficient basis for 

timely notification to clients of status of contracted tasks on remote clusters.  

 

8. Summary and conclusions 

 

The results show that independent use of profit-based resource allocation by many consumers 

and providers, based on standard specifications benefits both parties economically while also 

benefiting the larger grid community. Under overload situations, when the system was most 
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Table 4. Task processing statistics for four provider strategies over indicated load ranges. 
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stressed, the global schedules formed through profit-based admission yielded decidedly better 

system welfare and better profits for clients and providers. The in-depth time-series analysis 

shows that, in overload, use of profit-based strategies by providers produced coherent resource 

allocations that were explainable in terms of adaptive response to market forces and workload 

characteristics, leading providers to consistently choose more profitable tasks that consumed 

fewer resources. Moreover, providers consistently allocated resources to tasks that were more 

profitable, required fewer processors, and had shorter execution times throughout the simulated 

day. In overload, use of profit-based strategies led to resource allocations that appeared to be 

slightly more efficient than those of traditional system utilization strategies. Finally, the analysis 

showed that there was no interference with the operation of the electronic marketplace from 

extraneous factors related to the specifications. In conclusion, computing grids that use 

standards-based components can support a large-scale, open-ended, electronic marketplace, in 

which resource allocation coherently responds and adapts to market forces and economic 

characteristics of the workload. 
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Appendix A. Measurement of Communication Cost 
 

This appendix describes measurement of communication cost, which is the sum of the communication cost of 

discovery and the communication cost of negotiation. Discovery communication cost is measured in terms of 

messages transmitted to complete discovery. There is an expected number, Xdis = 48, of query and response 

messages needed for a one task to retrieve service descriptions from the two-tier directory server for an average 

number of relevant providers. During one repetition of the simulation, the actual number of discovery messages 

(Mdis) for each task was measured. The ratio of Mdis over Xdis defines relative discovery communication cost (in units 

of Xdis) for one task. The average discovery overhead ( disC ) across all tasks in the set of tasks V is calculated as 

 

                                                    
V

XM

C V
disdis

dis

∑
=

)/(

                                                             (A1) 

 

The variable 
dis

C  denotes disC  averaged over all experiment repetitions for a given load. 

Similarly, negotiation communication cost is measured in terms of messages transmitted to complete 

negotiation. There is an expected number, Xngt = 24, of offer, acknowledgment and response messages exchanged 

between a client and an average number of providers for one task to conclude a successful negotiation. During one 

repetition of the simulation, the actual number of negotiation messages (Mngt) for each task in V was recorded. The 

ratio of Mngt over Xngt defines relative negotiation communication cost (in units of Xngt) for a task. The average 

negotiation overhead ( ngtC ) across all tasks in V is calculated as 
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ngt
C denotes ngtC  averaged over all experiment repetitions for a given load. Summing discovery and negotiation 

communication cost (
dis

C +
ngt

C ) provides a measure of total communication cost incurred. 
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Appendix B 
 

This appendix shows additional time series for tasks rejected for load values ranging from 105-200% (figure A.1), 

and for tasks accepted and rejected for loads ranging from 50-100% (figure A.2 and A.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Time series over interval 0-20,500 s combining results of all repetitions at load 105%, for selected 

variables of tasks rejected by netProfit and FCFS utilization admission functions. 
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Figure B2. Time series over interval 0-20,800 s combining results of all repetitions at load 50 - 100%, for 

selected variables of tasks admitted by netProfit and FCFS utilization admission functions. 
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Figure B3. Time series over interval 0-20,800 s combining results of all repetitions at load 50 - 100%, for 

selected variables of tasks rejected by netProfit and FCFS utilization admission functions. 
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