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Abstract 

In light water reactors (LWRs), vessel internal components made of nickel–base alloys are 
susceptible to environmentally assisted cracking.  A better understanding of the causes and mechanisms 
of this cracking may permit less conservative estimates of damage accumulation and requirements on 
inspection intervals.  A program is being conducted at Argonne National Laboratory to evaluate the 
resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant 
environments.  This report presents crack growth rate (CGR) results for Alloy 182 shielded–metal–arc 
weld metal in a simulated pressurized water reactor (PWR) environment at 320°C.  Crack growth tests 
were conducted on 1–T compact tension specimens with different weld orientations from both double-J 
and deep-groove welds.  The results indicate little or no environmental enhancement of fatigue CGRs of 
Alloy 182 weld metal in the PWR environment.  The CGRs of Alloy 182 in the PWR environment are a 
factor of ≈5 higher than those of Alloy 600 in air under the same loading conditions.  The stress corrosion 
cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment.  
The weld orientation was found to have a profound effect on the magnitude of crack growth:  cracking 
was found to propagate faster along the dendrites than across them.  The existing CGR data for Ni–alloy 
weld metals have been compiled and evaluated to establish the effects of key material, loading, and 
environmental parameters on CGRs in PWR environments.  The results from the present study are 
compared with the existing CGR data for Ni–alloy welds to determine the relative susceptibility of the 
specific Ni–alloy weld to environmentally enhanced cracking. 
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Foreword

v

This report presents crack growth rate data and the results of the corresponding fracture surface and
metallographic examinations from cyclic loading and primary water stress-corrosion cracking (PWSCC) tests
of two nickel-base Alloy 182 (A182) weldments, which are typical of those used in vessel penetrations and
piping butt welds in nuclear power plants.  The effect of crack orientation with respect to dendrite orientation
is the most significant variable investigated in this study.  However, this report also includes a review of
data from several laboratories, which describes the effects of material composition, loading
characteristics, and chemistry of the aqueous environment.  The main conclusion is that the PWSCC growth
rates described for A182 specimens in this report are comparable to the crack growth rates that characterize
the performance of Alloy 600 (A600).

This report is the first in a series documenting the results of crack growth rate testing in vessel head
penetration materials, focusing on the weld metals, A182 and A152, and including results of some tests
of the base metals, A600 and (eventually) A690.  The results presented in this report were obtained in
tests of a laboratory-fabricated, shielded metal arc welding deposit of A182.  Testing of A182 weldments
continues at Argonne National Laboratory, and substantially more crack growth rate results are anticipated in
the next two years. 

The impetus for this research on PWSCC comes from User Need Request NRR-2002-018, submitted by
the U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation.  This topic may be an
especially important consideration in the review of license applications, as well as the disposition of relief
requests pertaining to flaw evaluations for vessel penetration and piping butt welds.  The data on cyclic
loading effects are commonly used in the fatigue analyses that are required for flaw evaluations completed
in accordance with the requirements set forth in Section XI, IWB-3660 and Appendix O, of the Boiler and
Pressure Vessel Code promulgated by the American Society of Mechanical Engineers.
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Executive Summary 

The Ni–base alloys used as construction material in light water reactors (LWRs) have experienced 
stress corrosion cracking (SCC).  Such cracking was first observed in steam generator tubes, but it has 
also occurred in Ni alloys used in applications such as instrument nozzles and heater thermal sleeves in 
the pressurizer and penetrations for control–rod drive mechanisms (CRDMs) in the reactor–vessel closure 
heads.  In operating plants, the weld metal Alloys 82 and 182 are used with Alloy 600 and appear to be 
more resistant to environmentally assisted cracking than the wrought alloy.  However, laboratory tests 
indicate that in pressurized water (PWR) coolant environments, the SCC susceptibility of Alloy 182 may 
be greater than Alloy 600, and Alloy 82 may be comparable to Alloy 600.  This apparent inconsistency 
between field and laboratory experience has been an issue that needs further investigation.   

A program is being conducted at Argonne National Laboratory (ANL) to evaluate the resistance of 
Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments.  
This report presents crack growth rate (CGR) results for Alloy 182 weld metal alloys in simulated PWR 
environments at 320°C.  The tests were performed using specimens from both double “J” joint and deep-
groove filled laboratory-prepared welds. The total crack extensions estimated by the DC potential method 
were verified by physical measurements on the fracture surfaces.   

Metallographic examinations were performed to characterize the microstructure of the weld.  The 
weld structure consists of vertically aligned columnar grains and dendrites.  The weld microstructure was 
also examined by orientation imaging microscopy (OIM), a diffraction-based technique, to determine the 
orientations of the grains and the type of grain boundaries present.  The results show that a large 
proportion (70%) of the grains boundaries are random or high-angle boundaries (HABs), which are more 
susceptible to cracking than those in specific orientation relationships, also known as coincident site 
lattice (CSL) boundaries.  In addition, the OIM maps show the presence of clusters of grains that share 
similar orientations. 

The environmental enhancement of CGRs under cyclic loading was determined relative to the 
CGRs that would be expected under the same loading conditions for Alloy 600 in air.  In general, the 
CGRs of Alloy 182 in the PWR environment are a factor of ≈5 higher than those of Alloy 600 in air under 
the same loading conditions.  This result is independent of rise time or frequency in the test conditions 
and indicates little or no environmental enhancement of CGRs of the Alloy 182 weld metal in the PWR 
environment under this type of loading condition.  The experimental CGR for the laboratory–prepared 
Alloy 182 weld under trapezoidal loading (i.e., essentially a constant load with periodic unload/reload) is 
close to the mean value of CGR for Alloy 600 for the corresponding value of stress intensity factor (K) in 
a PWR environment.  Most of the existing CGR data for Alloy 182 and 82 welds are a factor of 1–10 
greater than the median value for Alloy 600.   

Crack growth tests were conducted on 1–T compact tension specimens in TS, LS, and TL 
orientations, i.e., crack plane along or perpendicular on the columnar grains.  The results show that the 
effect of sample orientation on the crack growth rate can be as high as a factor of four. 

Metallographic examination of the fracture surface revealed relatively straight crack fronts.  The 
fracture modes correlated well with the test conditions.  High rise times or long hold periods favor 
intergranular (IG) SCC.  Also, IG cracking apparently advanced more readily along some grain 
orientations than others, resulting in crack fronts with occasional unbroken ligaments and few regions of 
transgranular (TG) cracking. 
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The effects of grain boundary type and grain orientation on the cracking behavior of Alloy 182 
weldments were examined.  It was hypothesized that a boundary with a weak Taylor-factor mismatch, as 
would be the case for two neighboring grains that share a similar orientation, would be less susceptible to 
deformation and, ultimately, to cracking.  By contrast, a strong mismatch in the Taylor factor across a 
grain boundary would tend to result in a strain incompatibility at that boundary, making it susceptible to 
cracking.  To test the hypothesis, OIM maps were obtained along the crack paths in two compact tension 
specimens of Alloy 182.  Comparison of scanning electron microscopy photomicrographs of the cracks 
with the OIM maps of the same areas enabled the identification of the types of cracked grain boundaries, 
as well as the relative orientation of the neighboring grains.  The results showed that, on average, 90% of 
the cracked boundaries are HAB, and 87% of the cracks occurred along grain boundaries that separated 
dissimilarly oriented grains. 

The existing CGR data for Ni–alloy weld metals (i.e., Alloys 82, 182, 52, 152, and 132) have been 
compiled and evaluated to establish the effects of material, loading, and environmental parameters on 
CGRs in PWR environments.  The results from the present tests were compared with the existing CGR 
data.   

The data in the literature, while limited, and the results from the present study indicate very little 
dependence of the environmental enhancement of CGRs on frequency and strain rate under cyclic loading 
in PWR environments for Alloy 182 and 82 welds.  Under similar loading and environmental conditions, 
strain–rate–dependent environmental enhancement is observed in CGRs for Alloy 600.   

In general, the CGRs of Alloy 182 are higher than those of Alloy 82.  Although the results have 
substantial scatter, it is clear that weld orientation has a strong effect on CGRs.  Crack growth rates along 
the plane of the columnar grains are higher in directions parallel to to the columnar grains than in 
directions perpendicular to the columnar grains.  The activation energy for the temperature dependence of 
SCC CGRs for Alloy 182 and 82 weld metals may be slightly higher than that for Alloy 600.  Individual 
data sets yield activation energies of 120–250 kJ/mol (28.5–59.5 kcal/mol).  Studies on the effect of 
dissolved hydrogen content indicate that CGRs in Alloy 182 and 82 welds are highest at dissolved 
hydrogen contents that result in electrochemical potentials close to the Ni/NiO phase transition.  

The dependence of SCC growth rates of Ni–alloy welds on the stress intensity factor K can be 
represented by the Scott model.  Material heat–to–heat variations of the CGR are considered and 
represented in terms of variability in the parameter A in the Scott model.  The available data was used to 
estimate the cumulative distribution of A for the population of Alloy 182 and 82 welds.  Values of the 
parameter A as a function of the percentage of the population bounded and the confidence level are 
presented.  The results suggest that under similar loading and environmental conditions, the mean CGRs 
for Ni–alloy welds appear to be a factor of ≈2 higher than the mean CGRs for Alloy 600.   
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