ASME Internal Combustion Engine Division 2004 Fall Technical Conference

High-T NO_x Sensing Elements using Conductive Oxides and Pt

> David L. West Fred C. Montgomery Timothy R. Armstrong Oak Ridge National Laboratory

Background I – need for NO_x sensors

Three-way catalyst (TWC) efficiency[†]

- \Rightarrow Currently, TWC unable to remove NO_x from O₂-rich (e.g., diesel, lean-burn) exhausts.
- ⇒ These exhausts will require NO_x remediation with NO_x traps (LNT) or reagent injection (SCR).
- ⇒ Both technologies will require compact and robust NO_x sensors.
- ⇒ Sensor controls trap regeneration for LNT, reagent injection for SCR.
- ⇒ Sensor operating conditions: $T \sim 600^{\circ}C, \sim 10-1000 \text{ ppm}_{V} \text{ NO}_{x},$ varying $[O_2]$.[‡]

[†]Woestman and Logothetis, *The Industrial Physicist*, **1**, (1995). [‡]Menil, Coillard, and Lucat, *Sensors and Actuators B*, **67**, (2000).

Background II: NO_x species

 \Rightarrow NO is dominant equilibrium NO_x species above 500 °C.

^TIn mixtures of N₂ and O₂, FactSage (Thermfact Ltd., Quebec) used for calculations.

Experimental approach and methodology

\Rightarrow Experimental approach

- ♦ High-T NO_x sensing elements based on YSZ.
 ⇒ Co-planar sensing elements (conductive oxide / Pt).
- Vary conductive oxide and element geometry.
- Study effects of DC constant current "bias".[†]
- \Rightarrow Methodology
 - Electrodes applied by screen printing and thermal treatment.
 - Tube furnace used to simulate elevated temperature service.
 - Test parameter boundaries:

 \Rightarrow 500 °C \leq T \leq 700 °C.

 $\Rightarrow 20 \text{ ppm}_{V} \le [\text{NO}_{x}] \le 1500 \text{ ppm}_{V}, [\text{O}_{2}] = 7-20 \text{ vol}\%, \text{ bal.} = \text{N}_{2}.$

- \Rightarrow Performance metrics
 - ♦ NO₂ and NO response magnitude, effect of varying [O₂].
 - Response/recovery time.

[†]Miura *et al.*, *Solid State Ionics*, **65**, pp. 283-90 (1999); Ho *et al.*, *Journ. Cer. Soc. Jpn.*, **104**, pp. 995-9 (1996); Grilli *et al.*, *Journ. Electrochem. Soc.*, **148**, pp. H98-102 (2001);

Sensing element geometries, test fixture schematic

Electrode microstructures and thickness

LSC/Pt interdigitated

UT-BATTELLE

No bias: Strong NO₂ response

 $V_{meas} = f([NO_x]) (600 \circ C, 7 \text{ vol}\% O_2)$

 $V_{meas} = f(t) (LSF/Pt, 13 vol\% O_2)$

 \Rightarrow Semicircular (SC) geometries.

 \Rightarrow Mechanism for *in situ* NO_x \rightarrow NO₂[†] required, focus on NO₂ response.

[†]Szabo and Dutta, Sens. Actuators B; Chem., **88**, pp. 168-77 (2002); Kunimoto *et al.*, SAE Tech. Pap. Ser. 1999-01-1280 (1999)

No bias: Logarithmic signal over a wide $[NO_2]$ $V_{meas} = f(t)$ $\Delta V = f([NO_2])$

 \Rightarrow Data collected at 600 °C, 7 vol% O₂.

 \Rightarrow LSC/Pt sensing element, semicircular (SC) geometry.

[O₂] affects response to NO₂

Varying [O₂] with 450 ppm_V NO₂

Varying [O₂] with 0 ppm_V NO₂

 \Rightarrow LSC/Pt sensing element, semicircular (SC) geometry.

T controls signal magnitude, recovery time

Varying [NO₂]

Step response / recovery

 \Rightarrow SC = "semicircular", ID = "interdigitated".

 \Rightarrow LSC / Pt sense elements, data collected in 7 vol% O₂.

Effect of varying I_{bias} on NO_x responses

Pulses of 450 ppm_V NO_x at varying I_{bias}

 $\Delta V = f([I_{bias}])$

⇒ Data collected at 600 °C, 7 vol% O_2 . LSC/Pt, semicircular (SC) geometry. ⇒ "Positive bias": Oxide electrode +, Pt electrode -.

Asymmetry in biased response over wide $[NO_x]$

 $V_{meas} = f(t) (LSC/Pt SC sensing element, 7 vol% O_2)$

- \Rightarrow +1.5 (500 °C) and +14 (600 °C) μ A biases.
- \Rightarrow Focus on NO response with biased elements.

Biased: [O₂] dependence a decreasing function of [NO]

V = f(t) with 0 [NO]

 \Rightarrow LSC /Pt semicircular (SC) sensing element. 700 °C bias = 60 μ A.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Varying [O₂] at 600 °C

T still controls response magnitude, recovery time

Recovery from 450 ppm_v NO

 $\Rightarrow LSC /Pt sensing elements.$ $\Rightarrow Biased to "NO-selective" condition.$ OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

 $\Delta V = f([NO])$

Ferrite behaved differently than chromites with bias

La_{0.85}Ba_{0.15}CrO₃ (LBC)

La_{0.8}Sr_{0.2}FeO₃ (LSF)

 \Rightarrow Data collected at 600 °C in 7 vol% O₂.

 \Rightarrow LSC /Pt semicircular (SC) sensing elements.

Summary and conclusions

- \Rightarrow Experimental approach
 - Sensing elements with co-planar electrodes (oxide /Pt).
- \Rightarrow Observations
 - Strong NO₂ response without bias.
 - \Rightarrow Response logarithmic 20 1500 ppm [NO₂].
 - \Rightarrow Function of [O₂] only in presence of [NO₂].
 - \Rightarrow Magnitude, recovery time decrease with T.
 - Enhanced NO response possible with DC biasing.
 - \Rightarrow Response linear at low [NO].
 - \Rightarrow [O₂] sensitivity inversely proportional to [NO].
 - \Rightarrow Magnitude, recovery time decrease with T.
 - \Rightarrow Not all oxides behave similarly.
- \Rightarrow Conclusion and future outlook
 - ♦ Use of biasing enables sensing of NO as opposed to NO₂.
 - Characterization of stability and selectivity still required.

Acknowledgements

- \Rightarrow B. L. Armstrong and C. A. Walls (ORNL).
 - YSZ substrate fabrication.
 - Screen printing ink formulation and production.
- \Rightarrow L. C. Maxey and B. E. Evans (ORNL).
 - Electronics and automation.
- \Rightarrow D. Kubinski, R. Soltis, and J. Visser (Ford SRL).
 - Consultation in mobile power sensing requirements and technologies.

Oak Ridge National Laboratory is operated by UT-Battelle for the United States Department of Energy under contract DE-AC05-00OR22725.

Thank you for your attention!

