

207TH MEETING OF THE ELECTROCHEMICAL SOCIETY

All-Oxide "Total NO_x" Sensing Elements

Dave West, Fred Montgomery, Tim Armstrong Oak Ridge National Laboratory

Motivation for NO_x sensor development

Three-way catalyst (TWC) efficiency[†]

[†]Woestman and Logothetis, *The Industrial Physicist*, **1**, (1995). [‡]Menil, Coillard, and Lucat, *Sensors and Actuators B*, **67**, (2000).

- Diesel and lean-burn exhausts are O_2 -rich, TWC cannot remove NO_x .
- Proposed remediation approaches: Lean NO_x traps (LNT) and selective catalytic reduction (SCR).
- Both will require NO_x sensors.
- Operating conditions ("rough"): T ~600°C, ~10–1000 ppm_V NO_x, varying [O₂].[‡]
- "NO_x" is a mixture of NO and NO₂ (primarily NO), but usually cannot assume [NO]/[NO₂].
- May need NO or NO₂-selective, and/or "total NO_x" sensors for [NO_x] characterization.

Experimental approach and methodology

- General approach
 - Sensing elements using YSZ substrates.
 - Co-planar interdigitated oxide electrodes.
 - Electrodes identical in composition.
 - Use applied DC electrical signal ("bias").[†]
- Methodology
 - Electrodes applied by screen printing and thermal treatment.
 - Tube furnace used to simulate elevated temperature service.
 - Typical operating conditions:
 - ✤ 550 °C ≤ T ≤ 650 °C.
 - Mixtures of NO or NO₂, O₂ (7–20 vol%), and N₂.
- Performance metrics
 - ♦ NO_x responses.
 - ♦ Effect of varying [O₂] & T.

[†]Miura *et al.*, *Solid State Ionics*, **65**, pp. 283-90 (1999); Ho *et al.*, *Journ. Cer. Soc. Jpn.*, **104**, pp. 995-9 (1996); Grilli *et al.*, *Journ. Electrochem. Soc.*, **148**, pp. H98-102 (2001).

Sensing element geometry, test fixture schematic

Element geometry

YSZ (Tosoh TZ8YS) substrate

- Tape cast and laminated
- ♦ T_{sinter} = 1400 °C
- ♦ d ~16 mm, t ~1 mm

Screen-printed oxide electrodes

- ♦ Usually La_{0.85}Sr_{0.15}CrO₃ (LSC)[†]
- ♦ T_{fire} = 1200 °C

Schematic of test fixture

^TPraxair Specialty Ceramics. Woodinville, WA

Microstructure, thickness, phases present

Electrode surface

Profilometer trace

XRD of electroded surface

Only small voltages in "mixed-potential" mode input NO₂ input NO

 \Rightarrow 5 min. NO_x pulses (7 vol% O₂) while ramping T at 2 deg./min.

 \Rightarrow Behavior with input NO and NO₂ distinctly different.

Applied current influences NO_x responses

 \Rightarrow T = 600 °C, 7 vol% O₂.

Symmetric response 20 ppm_V \leq [NO_x] \leq 200 ppm_V

 $\Rightarrow 0.8 \text{ ppm}_{V}: \Delta V_{NO} = -0.5\%, \Delta V_{NO2} = -0.7\%.$ $\Rightarrow 1500 \text{ ppm}_{V}: \Delta V_{NO} = -80\%, \Delta V_{NO2} = -68\%.$ **Oak Ridge National Laboratory U. S. Department of Energy**

$[O_2]$ dependence a decreasing function of $[NO_x]$ $V_{meas} = f(t) (0 ppm_V NO_x)$ $V_{meas} = f([O_2])$ 60 15 [O2] (vol%) 55 [NO_x] ↓ 10 V_{meas} (mV) 5 50 0 13 45

 $(V - V_{13 \text{ vol}\% \text{ O}_2}) N_{13 \text{ vol}\% \text{ O}_2}$ (%) -5 [NO,]] -10 10 20 5 15 [O2] (vol%)

 \Rightarrow I_{app} = +2.5 μ A, T = 600 °C. \Rightarrow Fits to V_{meas} = f([O₂]) logarithmic. **OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY**

50

40

20

20

30

t (min.)

10

40

0

Element resistance varies exponentially with T

 \Rightarrow +55 mV applied voltage, 7 vol% O₂.

Oxides other than LSC can yield "total NO_x "

 \Rightarrow La_{0.85}Ba_{0.15}CrO₃ and La_{0.8}Sr_{0.2}FeO₃ could not yield "total NO_x".

Summary and conclusions

- Focus of investigation
 - Sensing elements with compositionally identical oxide electrodes.
- ♦ Observations (550 °C ≤ T ≤ 650 °C, 7% ≤ $[O_2]$ ≤ 20%)
 - Use of applied electrical stimulus (bias) yields:
 - \therefore Equal response to NO and NO₂ in fairly narrow bias range.
 - ✤ Symmetry of response 20-200 ppm_V.
 - $[O_2]$ sensitivity that is a decreasing function of $[NO_x]$.
 - Signal *levels* exponential function of T, *changes* due to NO_x decrease with T.
 - Several different oxides have shown "total NO_x" behavior.
- Conclusion and future outlook
 - Elements may be useful in "total NO_x" sensor.
 - Areas for further investigation:
 - ✤ Selectivity.
 - Stability of response and electrode materials in exhaust environment.

Acknowledgements

- ✤ B. Armstrong and C. Walls (ORNL)
 - YSZ substrates & screen printing inks.
- ✤ L. Maxey and B. Evans (ORNL)
 - Electronics and test automation.
- D. Kubinski, J. Visser, B. Novak and R. Soltis (Ford SRL)
 - Consultation in exhaust sensing requirements.
- ✤ P. Martin, S.-w. Song, and B. Glass (Lawrence Livermore Natl. Lab.)
 - Consultation in experimental techniques.

Oak Ridge National Laboratory is operated by UT-Battelle for the United States Department of Energy under contract DE-AC05-00OR22725.

Merci de votre attention

