Characterization of Erosion and Failure Processes of Spark Plugs After Field Service in Natural Gas Engines

> H. T. Lin and M. P. Brady Metals and Ceramics Division

R. K. Richards and T. J. TheissEngineering Science and Technology Division

> Oak Ridge National Laboratory Oak Ridge, TN 37831

Research sponsored by the U.S. Department of Energy, Office of Distributed Energy, ARES Program, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC

Outline

- **•Background**
- **•Spectroscopic Investigations**
- **•Metallurgical Investigations**
- **•Summary of Observations**
- **•New Materials Research**

Background

- The Advanced ignition system is a key technology to achieve cost/performance/emission characteristic goals for lean and stoichiometric engines
- Corrosion/erosion of spark plugs limits the long-term reliability and performance of ignition systems and, thus also ARES
- Increase in cylinder pressures, compression ratios, and ignition voltages will further limit the ignition performance and ARES developments
- Improvement of high-temperature corrosion/erosion resistance of electrodes is a critical issue to maintain the durability of spark plugs

Objective

- Characterize optical spectra of spark plug arcs to evaluate the ignitability and erosion or age characteristics of spark plugs
- Characterize and measure spark plug erosion as a function of fieldtested time
- Provide understanding of corrosion and erosion mechanisms of spark plugs in natural gas engine environments
- Provide design guidelines for ignition systems of Advanced Reciprocating Engine Systems
- Develop advanced alloys to improve the corrosion/erosion resistance and extend the lifetime of electrodes and spark plugs

Integrated Approaches

- Develop diagnostic tool for measuring shot-to-shot erosion
- Optical spectroscopy analysis for field-tested spark plugs acquired from gas engine companies, i.e., Caterpillar, Cummins, and Waukesha
- **I** Identification of erosion/corrosion mechanisms of ground and center electrodes via systematic optical and SEM analysis
- Develop advanced alloys to significantly improve spark plug reliability and extend life performance

NTRC Optical NTRC Optical Spectroscopy Chamber Spectroscopy Chamber

Optical Spectroscopic Analysis Detected Substantial Amount Calcium Present in Field Tested Spark Plugs

•Ca from theengine oil • No detection of Pt or Ir fromelectrode tips

Detection of Ni in new spark plug suggests the erosion of Ni-based electrode due to sputtering process

Variation of Calcium with Hours of Service

FOR 1000 CONSECUTIVE ARCS HALF PRODUCE NO SPECTROSCOPIC SIGNAL

Rel ati ve Light Amplitude

ARC LOCATION IS PREDICTIVE – AFTER 4 CONSECUTIVE BREAKDOWNS AT SAME LOCATION THE ARC MOVES TO THE OTHER SIDE

Spark Variation with Rate

Spark Plug Erosion

New

w Used 4,386 hours

The tips of the spark plugs wear away until the gap distance is too large for the plug to fire.

Polynomial Curve-Fitting of Macro Spark Plug Photos Illustrates Erosion of Engine-Tested Plug

Substantial Oxidation Plus Glassy Phase Formation Observed in Both Pt-Alloy and Ir Electrode Side Surfaces After Field Service

The Ca content in glassy phase is significant, and the presence of Ca could reduce the softening point and viscosity of glass, possibly enhancing the erosion process

Substantial Line-Cracks Observed on Pt-Alloy Electrode Surface After Field Service

Formation of droplet-like morphology likely from local melting of the Pt-W Alloy

Substantial Oxidation With Crack Formation of Ir Electrode Surface Observed After Field Service

Mud-crack morphology of Ir electrode is significantly different from that observed on Pt-W alloy electrode

Substantial Crack Generation and Growth Observed Between Pt-alloy and Ni-based Electrode After Field Service

An oxide-based (Pt-Ni-O) reaction zone, which is brittle in nature, formed between Pt and Ni**based electrode. Crack generation and growth and oxide-based interface could signi ficantly degrade the igni t ability and performance of spark plugs**

Substantial Intergranular Cracking Occurred in Both Pt-alloy and Ir based Electrode After Field Service

C oalescence of intergranular cracks and subsequent material flake-off in Pt and Ir electrodes would further accelerate the erosion process and limit the long-term durability and performance of spark plugs

Interdiffusion of Pt with Ni but not with Ir

Results of EPMA showed that there existed a significant interdiffusion zone of Pt-W tip insert with the Ni-base electrode.The size of interdiffusion zone ranged from 250 to 300 µm and no apparent interdiffusion zone was observed between Ni-base electrode and Ir tip insert

Summary of Observations

- **Pt and Ir tips are eroding but not sputtering**
- **Large amounts of Ca present around the tips**
- Oxide scale containing Pt-W-Ca-O observed on both electrode side surfaces
- Periodic crack-lines formation due to localized material corrosion/erosion observed on Pt-alloy electrode tip surface after field service
- Substantial oxidation plus mud crack formation also observed on the Ir central electrode tip surface region
- There are metallic elements from the sputtered Ni-base electrode that deposit on the Ir and Pt surfaces and react with Ca and O producing a significant glassy phase (Ca-M-O) formation
- Generation and coalescence of intergranular cracks could accelerate the material erosion process of electrodes and further limit the lifetime of spark plugs

The evolution of intergranular cracks and formation of Cacontaining glasses in both Pt and Ir electrode as a function of field test time and engine environments-Are they life limiting?

- The kinetics of crack generation and growth and its relationship to application environments
- **The governing life limiting process of electrode and thus spark** plugs
- A cooperative effort with engine companies has been proposed and will be carried out to systematically evaluate the above stated issues

Provide important guidelines for alloy development efforts

Key Observations for Alloy Design From Worn Plug Characterization Effort

•**Oxidation/Cracking at Ni Electrode/Pt Insert Interface**

-Expect gains via improved electrode alloy selection -Ir attacked less but manufacturability limits use

•**Oxide Formation on Pt/Ir Inserts**

- Pt group alloy inserts not inert in this environment
- Alloy design to control oxide surface chemistry

•**Intergranular cracking of Pt/Ir Inserts**

- Metallurgical variables important
	- i) impurity control
	- ii) microalloying of grain boundaries
- **-**Hydrocarbon grain boundary attack?

i) protective scale-forming additions? **DEPARTMENT OF ENERGY**

Initial Materials Classes of Interest

•**Modification of Existing Pt/Ir Insert Alloys** -Improve manufacturability of Ir to allow use at both

electrodes

•**Dispersed Structures (Introduce Fine Precipitates)** -Well established to improve erosion resistance

•**New Refractory Metal Alloy Bases**

-Initial focus on Cr-base alloys

i) melting points $>1800^{\circ}$ C- (volatility concerns)

ii) corrosion resistant, some ductility

-High melting point refractory metal bases (W, Ta, …)

- i) superior erosion resistance but rapidly oxidized
- ii) gage potential to improve oxidation (500-900°C)

Nano Precipitates Limited Extent of Oxidation in Bench Top Sparking Test "+" Sparking Surface of Stainless Steel Test Rods 2x106 Shots/Air/0.1" Gap (same alloy composition)

No Precipitates Nano Precipitates

OAK RIDGE NATIONAL LABORATORY •Potential use in electrode alloys

Little/No Attack of Modifed Cr-Base Alloy in Bench Top Sparking Test

+ Sparking Surface of Two Developmental Cr-Base Alloys 2x10 6 Shots/Air/0.1" Gap Modifed Baseline

Baseline

Cr-Base Oxide

• Potential replacement for Pt/Ir inserts

No Oxidation