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ABSTRACT 
A mathematical and numerical model for the 
treatment of conjugate fluid flow and heat transfer 
problems in domains containing pure fluid, porous, 
and pure solid regions has been developed. The 
model is general and physically reasoned, and allows 
for local thermal non-equilibrium in the porous 
region. The model is developed for implementation 
on a simple collocated finite volume grid. Of 
particular novelty are the conditions implemented at 
the interfaces between porous regions, and those 
containing a pure solid or pure fluid.  
 

The model is validated by simulation of a 
three-dimensional porous plug problem for which 
experimental results are available. 
 

1. INTRODUCTION 
Conjugate fluid flow and heat transfer problems 
involving domains consisting of pure fluid regions 
and regions containing saturated porous media are of 
significant practical importance, finding increasing 
application in the field of thermal management. In 
particular, in recent years there has been substantial 
interest in the use of high-porosity, open-celled metal 
foams with high thermal conductivity to provide 
enhanced heat transfer in compact devices. In order 
to effectively simulate the performance of such 
devices, a robust mathematical and numerical model 
of the fluid flow and heat transfer in a conjugate 
domain consisting of pure fluid, porous, and pure 
solid regions is required. Additionally, in the case of 
air flow through high-conductivity metal foams, 
where the difference between the fluid and solid 
constituent thermal conductivities is often two orders 
of magnitude or more, the assumption of local 
thermal equilibrium between the two constituents is 
not generally reasonable [1]. Thus, the case of a two 

equation, local thermal non-equilibrium model in the 
porous region must be considered.  
 
The aim of the present work is to develop a robust 
model and discretization procedure, implemented 
using the finite volume method with a simple 
collocated variables arrangement, which is capable of 
simulating general fluid flow and heat transfer 
problems in a conjugate domain consisting of pure 
fluid, porous, and pure solid regions. In contrast to 
previous approaches [2, 3], the method does not 
require a staggered grid or the location of nodes at 
the interfaces between regions. In particular, a 
physically logical set of conditions to be imposed at 
the interfaces between regions, and a procedure for 
discretizing the governing equations and interface 
conditions which is effective under very general 
conditions, is developed.   

2. MATHEMATICAL MODEL 
In the present work, the problem under consideration 
is that of fluid flow and heat transfer in a conjugate 
domain consisting of pure fluid, porous, and pure 
solid regions. The mathematical model employed to 
investigate this situation consists of a set of 
governing equations for each region, valid in the 
interior of that region, as well as appropriate 
conditions to be enforced at the interfaces between 
regions and the boundaries of the domain. 

2.1 Governing Equations 
The present work is concerned with the laminar, 
incompressible flow of a single-phase fluid with 
constant thermophysical properties. As a result, the 
fluid flow problem in the pure fluid region is 
governed by the familiar continuity and 
Navier-Stokes equations. Under the additional 
assumption that the effects of viscous dissipation and 
heat generation may be neglected, the heat transfer 
portion of the problem is governed by the typical 
single-phase energy equation 



 

In the porous region, the well-known local volume 
averaged forms of the governing equations are used. 
The extrinsically averaged continuity equation may 
be expressed in the form [4, 5]: 

( ) 0=⋅∇ ufρ    (1) 

where u  is the extrinsically averaged velocity and 
the subscript f refers to a fluid property. Assuming a 
constant porosity ε, and subject to appropriate length 
scale constraints, the Navier-Stokes equations may be 
averaged to obtain the extrinsic momentum equation 
in the porous region [15, 17]: 
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In Eq. 2, fP  is the intrinsically averaged fluid 

pressure, f is the body force vector, and µB is the 
effective viscosity in the porous region, which is in 
general allowed to differ from the fluid viscosity µf 
[2, 6], although in the cases considered here it will be 
assumed that µB = µf. The parameters K and cE in the 
third and fourth terms on the right hand side of Eq. 2 
are the permeability and inertia coefficient, 
respectively. These terms represent the pore level 
viscous and form drag. 
 

As discussed above, in the interest of generality, the 
heat transfer problem in the porous region will be 
treated under the assumption of local thermal 
non-equilibrium; that is, we will not assume that the 
intrinsically averaged fluid and solid constituent 
temperatures f

fT  and s
sT  may be set equal to the 

total average T  a given point. This gives rise to 
extrinsic volume averaged energy equations of the 
form [7]: 
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for the fluid and solid constituents respectively, 
where the subscript s refers to the solid constituent of 
the porous medium. Note that in Eq. 3, the fluid 

phase effective thermal conductivity kfe may include a 
component accounting for the effects of thermal 
dispersion, in addition to the stagnant portion of the 
conductivity which is typically determined from a 
model of the pore geometry. The second term on the 
right hand side of Eqs. 3 and 4 represents the heat 
transfer between the fluid and solid constituents, 
where hsf is the interfacial exchange coefficient and 
Asf is the specific surface area of the porous medium. 
 

In the pure solid region, the heat transfer problem is 
governed by the familiar conduction equation. 

2.2 Interface Conditions 
The interfaces between regions represent 
discontinuities in the governing equations. In 
developing and implementing the conditions at the 
interface, we attempt to match the sets of equations in 
the adjacent domains so that the physical principles 
of conservation of mass, momentum, and energy 
continue to be satisfied in an integral sense. It should 
be understood that, in the following treatment, the 
values of field variables immediately at the pure fluid 
side or pure solid side of a nominal interface with a 
porous region are not strictly the point values, nor 
can a proper volume average be defined immediately 
at the porous side of such an interface due to length 
scale constraints [5]. Rather, such values can be 
considered for the purposes of this treatment as local 
averages over the area of the interface which reduce 
to the point or volume averaged values at short 
distances from the nominal interface. 

2.2.1 Pure Fluid/Porous Interfaces 
Appropriate conditions for the fluid flow problem at 
the interface between a pure fluid region and a porous 
region have been extensively studied in the open 
literature in recent years [2, 3, 6, 8, 9, 10]. In this 
work, the physically reasonable condition of 
continuity of the velocity at the interface is enforced, 
that is: 

porfl uu =     (5) 

where the subscripts fl and por denote conditions on 
the pure fluid and porous sides of the interface, 
respectively. Additionally, we enforce continuity of 
the interfacial stress on the pure fluid side with the 
intrinsically averaged stress on the porous side, 
leading to the conditions [10]: 
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where the stress tensors in Eqs. 10 are given by: 
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where δij is the Kronecker delta function. Physically,  
from the form of Eq. 2, Eqs. 6 imply that a fraction ε 
of the total stress on the pure fluid side of the 
interface is carried in the fluid constituent of the 
porous medium, with the remainder carried by the 
solid constituent. Finally, we will insist that the 
pressure on the pure fluid side of the interface be 
continuous with the intrinsically averaged pressure 
on the porous side, that is:  

f

porfl PP =    (8) 

Note that since the portion of the interface normal 
stress due to pressure is continuous, from Eqs. 7 and 
8 we have also that the viscous portion of the normal 
stress is continuous. Although we enforce the 
condition of Eq. 8 in the sense that we use a single 
value for the pressure at the nominal interface 

f

porfl PP = , it is clear from the differing forms of the 

advected velocity in the porous and pure fluid regions 
that we must in general allow for a rapid change in 
pressure to occur in the pure fluid region near the 
interface, associated with the dynamic pressure 
effects. 
 

For the heat transfer problem, the temperature on the 
pure fluid side of the interface is taken to be 
continuous with the total average temperature on the 
porous side for thermal equilibrium of the interface 
[3, 10]. Based upon this requirement and an energy 
balance on the interface, the interface conditions are 
found to be: 
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where  and  represent respectively heat fluxes 
to or from the fluid and solid constituents of the 
porous region across the interface, with the fluxes 
expressed per unit area of interface with the 
combined medium. 

 fq ′′ sq ′′

2.2.2 Interfaces with Pure Solid Region 
The conditions to be enforced on the velocity and 
pressure fields at an interface with a pure solid region 
are identical to the conditions typically enforced at an 
impermeable boundary. The no-slip and 
no-penetration conditions are employed for the 
velocity at the interface, while the pressure at the 
interface is simply extrapoled. These conditions 

apply equally to interfaces with a fluid region or a 
porous region. 
 

The conditions for the heat transfer problem at an 
interface between pure fluid and pure solid regions 
are fairly straightforward. From the continuity of the 
temperature distribution and an energy balance on the 
interface, these conditions are given as: 
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where sol indicates the solid side of the interface, and 
n is taken as the direction normal to the interface. 
Similarly to Eqs. 9, the conditions employed at an 
interface between pure solid and porous regions are 
of the form: 
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3. DISCRETIZATION AND 
IMPLEMENTATION 

In this section, the discretized forms of the model 
equations for the heat transfer and fluid flow 
problems in the conjugate domain are presented. The 
discretized governing equations for the interiors of 
each region are considered first, followed by the 
discretized interface conditions. 

3.1 Discrete Governing Equations 
In order to obtain the discretized form of the 
governing equations outlined above for solution in a 
collocated finite volume framework, these equations 
must be integrated over a typical control volume. 
This typical volume V will in general be bounded by 
N faces and centered about a node P, as per the 
standard terminology. The fully implicit, discretized 
forms of the pure fluid and pure solid governing 
equations are well-known, and may be found in the 
classic text of Patankar [11]. For the porous region, 
we have: 

0=∑
i

im&     (12) 

( )

( )

PPf

PP

EPf

P

fP

i i

BP

f

P

i

Pi
i

o

PPPf

V
K

cV
u

K
µV

n
APV

m
t

V

f

uu

u

uuuu

ρ

ερε

µε

εε
ρ

+

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∆
−

∑

∑

         

         

         

&

 (13) 

  



( )

( )

( )f

Pf

s

PsPsfsf

i
i

f

f
fe

i

f

Pf

f

iffpi

of

Pf

f

PffpPf

TTVAh

n
T

Ak

TTcm
t

TTcV

−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

−+

∆

−

∑

∑

             

             

,

,

,

&

ερ

  (14) 

( ) ( )

( )f

Pf

s

PsPsfsf

i
i

s

s
se

os

Ps

s

PssPs

TTVAh

n
T

Ak

t
TTcV

−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

∆

−−

∑

        

        

1 ,ρε

 (15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The semi-discrete Eqs. 12-15 are obtained by 
applying the typical finite volume discretization 
procedure to Eqs. 1-4. Note that terms with the 
subscript i, i = 1, 2,…, N, are evaluated at the 
integration point lying at the centroid of face i, and 
that the superscript o refers to the previous time level. 
The values of the advected variables at control 
volume faces may be determined in the interiors of 
the regions from any convenient numerical scheme, 
as may the face temperature and velocity gradients 
and the cell-centered pressure gradients. The mass 
flow rate in the pure fluid region given is by: 

( nu ⋅= iifi Am ˆ )ρ&    (16) 

where the advecting velocity  is found in 
accordance with the collocated variable method of 
Rhie and Chow [12]. In the porous region, the 
advecting velocity  of Eq. 16 is replaced with 

nu ⋅iˆ

iû

i
û , and the Rhie and Chow coupling scheme may 

again be implemented in a straighforward manner. 

3.2 Pure Fluid/Porous Interfaces 
To obtain accurate estimates of the terms in the 
discretized governing equations for volumes adjacent 
to an interface, the interface conditions given 
previously are employed. First, it should be noted 
that on a volume immediately on the fluid side of an 
interface between pure fluid and porous regions, a 
modification must be made to the advective terms in 
pure fluid governing equations. Physically, the 
discretized advected momentum and energy transfer 
terms should be continuous at a face which coincides 
with a pure fluid/porous interface, and it must be the 
intrinsic fluid velocity and temperature that are 
advected. Then, considering the example of the 
volume (I, J) of Figure 1, the discretized advected 
momentum and energy transfer corresponding to the 
east face integration point e of that volume should be 
given respectively as ε

eem u&  and 
f

effpe Tcm ,& , 

where e corresponds to the east face integration point.  
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3.2.1 Advecting Velocities 
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Porous  A control volume face coinciding with a pure 
fluid/porous interface presents a special case in terms 
of the formulation of the advecting velocity. 
Following the general premise of the collocated 
variable approach, an estimate is sought for the 
advecting velocity based upon the formulation of an 
approximate momentum equation about the face. 
Consider the advecting velocity ee

uu ˆˆ =  at the east 
face of the volume (I, J) of Figure 1, denoting node 
(I, J) as the P node and node (I + 1, J) as the E node. 
The form of the momentum equation for the pure 
fluid nodes is: 
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where nb refers to all neighboring volumes, while for 
porous nodes we have the slightly modified form: 
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 (18) 
Then, an approximate momentum equation is 
formulated for the volume ( ) 2EPe VVV += , 

introducing the assumptions ( ) 2EPe aaa +≈  and 

( ) 2~~~
EPe

uuu +≈ , leading to an estimate of 
the form: 

Pure Solid   
 
 
 
 
       

                                                           • 
             (I, J-1) 

Figure 1 – Discretization of an illustrative interface 
region on a simple two-dimensional structured 

orthogonal grid.  
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At the interface, the typical assumption aP ≈ aE ≈ aE 
is not made, since obviously aP and aE may be 
substantially different due to the potentially large 
source terms present in Eq. 13. Note also that in Eqs. 
19, the subscript P+ denotes the average value 
between P and e, and similarly E– denotes an average 
between e and E. As shall be seen when the 
approximation for the interface pressure is developed, 
the use of estimates to the pressure gradient over only 
half of the volume in calculating the advecting 
velocities at the faces of volumes adjacent to the 
interface is important, since the behavior over the two 
halves of the volume may be substantially different. 
Note that the second and third pressure gradient 
terms in the first of Eqs. 19 are deferred. The 
development of Eqs. 19 reflects a realistic estimate of 
a momentum balance over a control volume 
containing the east half of VP and the west half of VE, 
and the modifications employed in Eqs. 19 have been 
found by the authors to be necessary for maintaining 
a strong coupling of pressure and velocity.  

3.2.2 Diffusive and Advective Terms 
In the present formulation, only the portions of the 
viscous stresses involving the face-normal 
components of the gradients of the velocity 
components appear explicitly in the formulation of 
the governing equations for an incompressible fluid. 
Then, for ease of implementation, we modify slightly 
the conditions of Eq. 6 to require that these portions 
of the viscous stress balance individually on either 
side of the interface, that is: 
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Now, a method of approximating the viscous terms 
based upon the requirements of Eqs. 5 and 20 is 
needed. First, consider a more general diffusive 

balance for an independent variable continuous at the 
interface between two regions of the form: 
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where Γ1 and Γ2 are diffusion coefficients. Using 
one-sided estimates to the derivatives at the interface, 
the requirement of Eq. 21 may be discretized for the 
east face of volume (I, J) as follows: 

eE

eE

Pe

Pe

xx ∆
−

Γ=
∆
−

Γ
φφφφ

21
  (22) 

where ∆xAB is the distance in x from point A to point 
B. An estimate for the interface value of the 
dependent variable φ is found in the form: 
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Inserting Eq. 23 in either side of Eq. 20, the estimate 
to the diffusive flux is found to be the harmonic mean 
formulation of Patankar [23]. This formulation is 
used to approximate the terms of Eq. 20 for the east 
face of volume (I, J) as: 
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Note, however, that the viscous flux at the west face 
of volume (I + 1, J) is, according to Eq. 13, only a 
fraction ε of the result of Eq. 24. As mentioned 
above, this is because only part of the interface stress 
is carried by the fluid constituent of the porous 
medium, with the remainder carried by the solid 
constituent. This formulation also provides a 
convenient and physically based estimate of the 
advective momentum transfer at the interface. This 
approximation has been implemented by the authors 
using a deferred correction scheme, and is employed 
in all test cases presented in this work. 
 

The conditions required to match the energy equation 
in the pure fluid region to the two non-equilibrium 
equations in the porous region have not been heavily 
investigated [3, 10]. Although it is clear that an 
energy balance must exist at the interface as per the 
second of Eqs. 13, what is not obvious is how the 
total heat conducted into or out of the interface on the 
pure fluid side is distributed between the fluid and 
solid constituents on the porous side. Some 
investigators have suggested a uniform distribution 
based upon surface area fraction [10]. However, 

  



when dealing with a solid constituent of extremely 
high thermal conductivity, this approximation is 
somewhat unsatisfying. Instead, we here relax 
slightly the common idealization of the interface 
effects as essentially one-dimensional, modeling the 
conduction between the pure fluid region and the 
fluid and solid constituents of the porous medium as 
a parallel conduction process. The thermal circuit for 
is illustrated in Figure 2 for the heat transfer across 
the east face of volume (I, J) in Figure 1. This leads 
to discrete energy balances of the form: 
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The sum of both of Eqs. 25 gives the total heat flux 
for use in the pure fluid energy equation. Note that 
clearly Eqs. 25 still satisfy the thermal equilibrium  
 
 
 
 
 
 
 
 
 
 
requirement of the first of Eqs. 9 in an average sense, 
as well as satisfying the energy balance. Obviously, 
Eqs. 25 each have the form of Eq. 22 and may be 
easily implemented by employing the methodology 
discussed above. 

3.2.3 Interface Pressure 
In order to estimate the average pressure gradient 
terms, an approximation to the pressure at the 
interface must be determined. However, the pressure 
gradient at the interface is not generally expected to 
be continuous due to the discontinuity in governing 
equations. This task is complicated by the fact that, as 
described above, the advected velocity rapidly 
changes in the vicinity of the interface. In order to 
derive a suitable estimate for the pressure at the 
interface, consider the simple grid of Figure 3, and 
the control volume illustrated by the dotted lines, 
whose east face is coincident with the interface. 
Assume that the horizontal extent δ of the control 

volume is an indeterminate small distance much less 
than the height of the control volume, and much less 
than the distance ∆xPe, but large enough so that the 
advected velocity at the west face is not yet affected 
by the abrupt change in flow area at the interface. 
Then, the momentum flux from the surfaces normal 
to the vertical direction may be neglected, the viscous 
stresses may be assumed to balance separately, and 
the advected velocity at the west face may be 
assumed to be 

ee uuu =≈1
. Then, a momentum 

balance on the control volume yields: 
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Or, for an arbitrarily oriented interface i: 
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Assuming that location 1 is nearly coincident with 
the interface due to the assumption Pex∆<<δ , and, 
assuming that similar conditions prevail over the 
majority of the control volume, an estimate of P1 may 
be obtained from simple extrapolation to the interface 
from the interior of the pure fluid region. Then, Eq. 
27 constitutes an estimate to the interface pressure 
based upon the conditions in the pure fluid region. 
This estimate is then averaged with an estimate based 
upon the conditions in the porous region, obtained 
directly from extrapolation, to arrive at the final 
estimate to the interface pressure. Finally, notice that 
the estimate of the interface pressure depends on the 
mass flow rate at the interface, which in turn depends 
on the interface pressure as a consequence of the 
form of the advecting velocity. Thus, at the end of 
each iteration of the linearization loop, when new 
values of the interface pressure and mass flow rate 
are calculated based upon the most recent pressure 
and velocity field, a small number of iterations is 
required to ensure accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Interfaces with Pure Solid Region 
The discretization of the conditions for the fluid flow 
problem at an interface with a solid region is identical 
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Figure 2 – Thermal resistance network for parallel 
model of interface conduction. 
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Figure 3 – Control volume for interface pressure. 

  



to the implementation of boundary conditions at an 
impermeable boundary. The conduction heat flux at 
the interface between a pure solid and a pure fluid 
region may be simply discretized using the harmonic 
mean formulation to implement the conditions of 
Eqs. 14. Based upon the same argument outlined 
above for a pure fluid/porous interface, the 
conduction heat flux at a pure solid/porous interface 
may be discretized using the parallel conduction 
model. 

4. VALIDATION CASE 
To demonstrate the accuracy and utility of the 
conjugate formulation presented in the previous 
sections, the case of channel flow through a heated 
carbon foam block, for which a limited set of 
experimental results are available, was considered 
using a three-dimensional, structured, orthogonal 
finite volume code implementing the model. The 
problem was run with water as the fluid, at Reynolds    
numbers of  and , where 630=

hDRe 262=
hDRe

fhfD UDRe
h

µρ= , U is the average velocity in 
the x-direction and Dh is the hydraulic diameter of the 
channel.  
 

The geometry of the porous plug case is illustrated in 
Figure 4. To be consistent with the experiments, the 
channel was taken to be H = 2.54 cm high and         
w = 5.08 cm wide. The block length was       
L

 
           

2 = 5.08 cm, while the upstream and downstream 
lengths L1 and L3 were chosen so that the inlet and 
outlet boundary conditions did not impact the overall 
results. Taking L1 = L2 = L3 was found to be 
sufficient to ensure consistent results. For the heat 
transfer problem, the inlet fluid temperature Ti and 
the temperature at the base of the block Tb were 
specified consistent with the experiments, while zero 
normal derivative conditions were employed at all 
other faces. For the  case, T630=

hDRe i = 11 °C and 

Tb = 26 °C, while for , T262=
hDRe i = 12 °C and   

Tb = 62 °C. The solid and fluid temperatures at the 
base of the block were assumed to be equal. 

 
 
 
 

The material under consideration is a high thermal 
conductivity carbon foam with a porosity of ε = 0.9 
and a pore diameter of 500 µm. The permeability K, 
the inertia coefficient cE, and a correlation for the 
interfacial exchange coefficient hsf were calibrated 
based upon the experimental results at 630=

hDRe , 
while the specific surface area and effective thermal 
conductivities were calculated from an idealized 
model of the pore-level geometry. The relevant 
values of the permeability and inertia coefficient for 
this foam are K = 2.018 × 10-10 m2 and cE = 0.09825, 
respectively, yielding a Darcy number Da = K/H2 on 
the order of 10-7. The effective viscosity µB was 
assumed equal to the fluid viscosity. The correlation 
for hsf was developed by undertaking a procedure 
similar to that detail by Calmidi and Mahajan [1]. 
 
For all simulations presented in this section, the 
advection scheme used in the interior of each domain 
was the typical TVD-MUSCL scheme, implemented 
by a deferred correction procedure. This scheme was 
used to ensure stability and second-order accuracy of 
the estimates of advective fluxes. At the interface, the 
corrections discussed previously were implemented 
for advective fluxes. The normalized residual 
tolerance for all runs was taken to be 10-6. A grid 
density of 30 volumes in each direction in each of the 
subsections L1, L2, and L3, lightly refined towards the 
interfaces and channel walls, was found to produce 
converged results. 
 

The overall heat transfer results obtained from the 
calibrated model are compared with the experimental 
results in Table 1. Clearly, the model produces 
accurate results for the validation case at 

262=
hDRe  when utilizing parameter values 

obtained from calibration to the  case. 
Figures 6 and 7 give respectively the x-direction 
velocity and pressure distributions at the plane           
y = w/2. It is important to note that these profiles do 
not exhibit any sort of spurious numerical oscillations 
despite the presence of a perpendicular interface with 
a porous region possessing an extremely low Darcy 
number. That these distributions remain physically 
realistic despite the large discontinuity in flow 
properties demonstrates the robustness of the 
modified pressure-velocity coupling scheme and of 
the interface conditions and implementation in 
general. Finally, Figure 8 gives the percent local 
thermal non-equilibrium, defined as: 

630=
hDRe

s
s

f

f TT
LTNE

−
= 100   (28) 

 

Figure 5 – Geometry of porous plug case.

ib TT −

 



for the case at . The effects of 
non-equilibrium are very evident in this case, and 
indeed, preliminary simulations by the authors 
indicate an error of over 100% in the predicted heat 
transfer rate, in comparison with experimental 
results, when the assumption of local thermal 
equilibrium was made. Thus, the need for a conjugate 
model which considers local thermal non-equilibrium 
in the porous region is also demonstrated for this 
material. 
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