Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers

Philip J. Maziasz, J.P. Shingledecker, B.A. Pint, N.D. Evans, K.L. More, and E. Lara-Curzio

Metals and Ceramics Division Oak Ridge National Laboratory

Fuel Cells: Materials, Processing & Manufacturing Technologies Symposium ASM Materials Solutions 2004, 18-20 October, Columbus, OH

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Power Technologies, Microturbine Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC

Recuperators Are Compact Heat Exchanges that Boost the Efficiency of Microturbines

Primary Surface Recuperator (PSR)

Recuperators Are Compact Heat Exchanges that Boost the Efficiency of Microturbines

Brazed Plate and Fin Recuperator (PFR)

Background

Main parameters to consider for the selection of materials for microturbine recuperators

- Temperature
- Environment (combustion gases can lead to corrosion)
- Mechanical Stress (pressure differential can induce creep deformation)

Materials Selection is Determined by the Recuperator Hot-Gas Inlet Temperature and by the Alloy Capabilities

UT-BATTEL

D0000254a

Alloy Compositions (wt.%)

- 347 steel Fe -18Cr-9.5Ni-1.5Mn-0.25Mo-0.04C-0.63Nb
- ORNL mod 347 steel 347 + Mn + N + Cu
- HR120 Fe -25Cr-33Ni-1Mn-1Mo-0.05C-0.7Nb-0.2N
- NF709 Fe 20.5Cr-25Ni-1Mn-1.5Mo-0.07C-0.26Nb-0.15N
- Alloy 625 Ni-22Cr-3.2Fe-9Mo-3.6Nb-0.02C-0.23Ti-0.16Al
- HR230 Ni -22Cr -3Fe-2Mo-5Co-14W-0.1C-0.3AI

Alloy Selection for Advanced Microturbine Recuperators is Based on Balancing Relative Cost and Performance

The cost of Ni has risen, adding more cost to higher performance, heat-resistant alloys

Nickel (LME), US\$/lb.

ORNL Characterizes the Properties of Commercial Foil and Sheet Stainless Steels and Alloys Used To Make Recuperators

Materials R&D Capabilities and Expertise

Several commercial heat-resistant alloys have better creep-rupture resistance than 347 steel

Alloy Selection for Recuperators is Complicated by Grain Size/Processing Effects That Make Foils and Sheets Much Weaker than Plate or Tubing

UT-BA

D0000254a

Several commercial heat-resistant alloys have better creep-rupture resistance than 347 steel

Alloy 625 Has Finer Precipitation of M₆C Instead of the FeCr σ-phase for Better Creep Resistance

SE SEM image

BSE SEM image

T347 crept 704°C, 152 MPa t_r=51.4 h

Alloy 625 crept 750°C, 100 MPa t_r=4510 h

SEM images of electropolished TEM Disks, 4 mil foils

Grain Boundary Phases and Distributions Develop Differently in Alloy 625 and HR120 During Creep

D0000254a UT-BATTEL

Subtle Difference in Grain Boundary and Matrix Carbides and Distributions Affect the Creep Differences Between NF709 and HR120

SEM BSE Images

Alloy HR120 crept 750°C, 100 MPa, t_r=3319 h

Alloy NF709 crept 750°C, 100 MPa, t_r=5015 h

HR120 Foil Develops M₂₃C₆ Within Grains and Along Grain Boundaries and Finely Dispersed NbC Within the Grains During Creep at 750°C

SE SEM Image

TEM Image

Creep Tested 750°C 100mPa; t_r = 3320 h

NF709 Foil Contains Finely Dispersed NbC Within the Grains and M₂₃C₆ and M₆C Along Grain Boundaries After Creep at 750°C/100 MPa for 5015h

ORNL has developed new, modified 347 stainless steels with much better creep resistance at 750°C

Several more heat resistant alloy also show much better resistant to moisture enhanced oxidation than 347 steel

TEI

As part of the Advanced Materials for Recuperators Program, ORNL established a microturbine test facility to screen and evaluate candidate materials for advanced microturbine recuperators

ORNL's Microturbine Test Facility (cont.)

- Modified Capstone C60 microturbine
- Higher TET (850°C)
- Placement of test specimens at the entrance of recuperator.

Temperature distribution along sample holder

347-stainless steel after 500-hr exposure (TET=800°C)

60 psi internal pressure -> 50 MPa hoop stress

347-stainless steel after 500-hr exposure

347-stainless steel after 500-hr exposure

Foil exposed at 758°C

- Multilayered oxide scale:
 - Ni-Cr-O
 - Fe-O
- Depletion of Cr at GBs
- Carbide formation

HR230® after 500-hr exposure (TET=800°C)

HR230® after 500-hr exposure (TET=800°C)

Foil exposed at 752°C

- Limited corrosion products found on surface
- Significant cracking along grain boundaries
- •Grain boundaries near surface are poor in Cr but rich in W and C.

HR120® after 500-hr exposure (TET=800°C)

cross-sectional analysis

D0000254a UT-BATTELLE

HR120® after 500-hr exposure (TET=800°C)

Foil exposed at 745°C

- Limited corrosion (oxides of Cr, Si and and Fe)
- Grain boundaries near surface are poor in Cr but rich in Ni

Summary

- ORNL has characterized commercial foils and sheet of stainless steels and alloys used to make recuperator air cells
- HR120 and alloy 625 (and the new AL20-25+Nb) are all commercial high-performance alternatives to 347 stainless steel at 650-750°C
- ORNL is working with OEMs to make recuperators from advanced alloys that are also cost effective
- ORNL is extending characterization of commercial sheet and foil alloys to test their capabilities at 800°C and above.

