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UTC Membrane Applications for Energy & Environment

Polymer membranes significantly enhance the efficiency & safety of multiple products
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Polymeric Membrane Challenges

Materials:

Reliability/Durability

Cost

Performance

Effective dialogue between membrane developers and system integrators/end users
* Incorporation of emerging smart materials & scale up

* Applications enabled by stimuli responsive nanomaterials

Module / System:
* Reliability

* Design & system integration for performance, footprint and cost
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O,/N, Separation Membranes

Applications safety-focused but membrane challenges application-specific
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Challenges | Challenges
= Volume & Weight = Durability / Reliability
= Pressure Drop = Selectivity
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O,/Fuel Separation for Aircraft Application

Challenges: No fuel leakage, volume & weight, durability, system integration
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Dehumidification for Energy Efficient Buildings

ClilpGire

Challenges: Durability, cost, performance, pressure drop

Liquid Desiccant Membrane-Based Air Conditioning
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Benefits

= 30% system efficiency vs. traditional
system hot and humid climates

» Independent temperature and humidity
control

= No liquid desiccant carry-over

Membrane performance & durability
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PEM Fuel Cells for Transportation & Flow Batteries

Challenges: Durability, performance, cost

PEM Fuel Cells for Transportation
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Function

" Transport protons
= Separate the reactants

Desired attributes (va)
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® High proton conductivity
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= Low gas cross-over
= High durability
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Flow Batteries for Energy Storage
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" Low Ohmic resistance

= No ion cross-over

= Good proton conductivity
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New Materials for N, / CH, Separations

Challenges: Durability & performance degradation in real environment; Scale-up and
manufacturing cost for emerging materials
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Figure 1: N»/CHj tradeoff plot for TR polymers.
fluoropolymers (Cytop, AF 2400) and stiff-chain, aromatic
polyimides. The line in this graph is the upper bound.” The
data in this figure represent pure gas measurements at near
ambient temperature and at relatively low pressure (<10 bar).
There are no data available yet for gas mixtures. The
information we have, which is not extensive. suggests that
permeability exhibits sensitivity to fugacity as one would
"“' expect from dual mode model considerations.*” which should
ll!ﬁ Dr. Anita Hill not be extremely strong for the case of N> and CHa.
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