INDUSTRIAL TECHNOLOGIES PROGRAM

High Efficiency Microturbine with Integral Heat Recovery

Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price

This project will develop a clean, cost-effective 370 kilowatt (kW) microturbine with 42% net electrical efficiency and 85% total combined heat and power (CHP) efficiency.

Introduction

The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines.

Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance, high reliability, and excellent durability. These power generation systems are frequently used for aviation, utility power, and remote oil and gas applications.

This project aims to develop a 370 kW gas-fueled microturbine that will attract additional markets because of its increased energy efficiency and reduced capital cost. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels.

The initial target for the C370 microturbine is the distributed generation market using existing fuel infrastructure, including fossil fuels, such as natural gas and diesel, as well as renewable fuels, such as landfill gas, digester gas, and syngas.

Benefits for Our Industry and Our Nation

The C370 CHP system will reduce U.S. industrial energy intensity, natural gas requirements, carbon intensity, and criteria pollutant emissions; provide more secure power; create jobs; maximize competitiveness of industry; and strengthen the economy.

Potential benefits of a C370 CHP system include:

- Energy savings of 44% compared to a traditional system of separate electricity and thermal energy generation
- Use of alternative fuels, including renewables and syngas, to reduce natural gas consumption
- Savings of 59% compared to traditional system carbon dioxide (CO₂) emissions

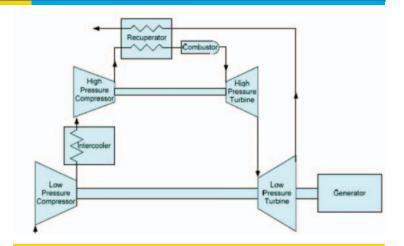


Figure 1. Schematic of the thermodynamic cycle for the C370 *Illustration courtesy of Capstone Turbine Corporation.*

- Savings of 95% compared to traditional system nitrogen oxide (NO_x) emissions
- Payback period equal to about 2.6 years, at an average electric price of \$0.10 per kilowatt hour and average gas rate of \$8.00 per MMBTU

Applications in Our Nation's Industry

This project will target industrial, commercial, and government facilities that currently use the C200 or have the potential to employ the new C370. The C370 is not limited to small scale distributed generation using traditional fuels. Multiple C370 microturbines can be packaged into multi-megawatt systems for larger project sizes. Both dual fuel capability and uninterruptible power supply (UPS) functionality can be added in the future to increase reliability and energy security.

Project Description

The objective of this project is to demonstrate a microturbinebased distributed generation system with increased efficiency, reduced emissions, and improved customer value. The highest risk technical challenges will be addressed early in the project and many components from current Capstone products will be used to accelerate development and ensure commercial success.

The project will use a modified Capstone C200 compressor and turbine assembly to act as the low-pressure section of a two-shaft turbine system. This will result in an electrical output of 250 kW. A new high-temperature, high-pressure compressor and turbine will act as the second assembly. After an intercooler and this high-pressure assembly are added, the electrical output will increase to 370 kW.

Barriers

- Developing a different design concept not currently used by microturbine manufacturers
- Developing new materials, such as ceramics or metal alloys, suitable for higher temperatures
- Designing a more compact and highly effective recuperator to operate at higher pressures
- Optimizing a new combustion chamber to operate at higher temperatures and pressures with reduced pollutants
- Testing the limits of air bearings for microturbine's increased output
- Developing control algorithms for multi-shaft microturbines
- Integrating a high-efficiency exhaust heat recovery system

Pathways

Capstone Turbine Corporation will lead this project. Oak Ridge National Laboratory (ORNL) and the NASA Glenn Research Center will support Capstone on specific project objectives. ORNL will assist with the high-pressure recuperator and high-temperature radial turbine materials. NASA Glenn will evaluate a larger air bearing design for the high-speed generator.

The first phase of the project will be to design and demonstrate the elements of the C370 CHP system that represent the greatest challenges of technical development. Capstone will design and integrate a low-pressure compressor and turbine system using a modified version of the C200, a high-pressure, high-temperature compressor and turbine system, a combustion system, an intercooler, and a high-pressure recuperator to create a two-shaft C370 engine.

Capstone will integrate heat recovery technology to complete the C370 CHP system. This system will be tested and demonstrated in the field to validate performance.

Milestones

- Validation of technology and design
- · Development of low pressure system
- Integration of low- and high-pressure systems
- Completion of C370 engine
- · Integration of heat recovery system
- Testing and field demonstration of CHP system

Commercialization

The C200 was developed in part with support from the U.S. Department of Energy's Advanced Microturbine Systems program. The 200 kW microturbine, which has a net electrical efficiency of 33%, is in production and gathering field experience; therefore, achieving 42% net electrical efficiency for the C370 is certainly feasible.

Capstone will use its current distributor and original equipment manufacturer (OEM) business model to directly market the C370 microturbine CHP system, which will be offered for sale within 12 months after successful demonstration of the project.

The planned level of U.S. sales for 2020 is approximately 500 units. Using this projection, the total C370 U.S. installed base is estimated to be 2,700 units by 2020. This would account for 1 gigawatt (GW) of electric generating capacity.

Project Partners

Capstone Turbine Corporation Chatsworth, CA Principal Investigator: John Nourse E-mail: jnourse@capstoneturbine.com

Oak Ridge National Laboratory Oak Ridge, TN

NASA Glenn Research Center Cleveland, OH

For additional information, please contact

Bob Gemmer Technology Manager U.S. Department of Energy Industrial Technologies Program Phone: (202) 586-5885

E-mail: Bob.Gemmer@ee.doe.gov

