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Abstract

Rapid growth of the amount of genome sequence data
requires enhancing exploratory analysis tools, with anal-
ysis being performed in a fast and robust manner. Users
need data representations serving different purposes: from
seeing overall structure and data coverage to evolutionary
processes during a particular season. Our approach to the
problem is in constructing hierarchies of data representa-
tions, and providing users with representations adaptable to
specific goals. It can be done efficiently because the struc-
ture of a typical influenza dataset is characterized by low
estimated values of the Kolmogorov (box) dimension. Multi-
scale methodologies allow interactive visual representation
of the dataset and accelerate computations by importance
sampling.

Our tree visualization approach is based on a subtree ag-
gregation with subscale resolution. It allows interactive re-
finements and coarsening of subtree views. For importance
sampling large influenza datasets, we construct sets of well-
scattered points (ε-nets). While a tree build for a global
sample provides a coarse-level representation of the whole
dataset, it can be complemented by trees showing more de-
tails in chosen areas. To reflect both global dataset struc-
ture and local details correctly, we perform local refinement
gradually, using a multiscale hierarchy of ε-nets.

Our hierarchical representations allow fast metadata
searching.

1. Introduction

The number of influenza virus sequences available in
public databases is rapidly growing due to collaborative
genome sequencing efforts by the National Institute of Al-
lergy and Infectional Diseases, the Centers for Desease
Control and Prevention, St. Jude Children’s Research Hos-
pital, and many others [6], [7]. The National Center for
Biotechnology Information (NCBI) has developed the In-
fluenza Virus Resource [10] providing a public access to
influenza sequence data and convenient interface for con-
structing and viewing multiple sequence alignments and
trees, as well as performing other kinds of data analysis.

Dealing with large amounts of data requires more so-
phisticated exploratory analysis to be available through
web resources. An interactive web tool should provide a
fast performance and represent the results in an easy-to-
comprehend form that allows convenient manipulation of
the data. The approaches based on manipulation of individ-
ual sequences are not very useful for large datasets for two
reasons: first, representation of the whole dataset with a fine
level of detail, such as shown in Figure 1, is very difficult to
comprehend [9], [1]. Second, building large phylogenetic
trees with all details resolved requires excessive computa-
tional resources. In the case of preliminary data analysis,
this formulation leads to a problem that is much more com-
plex than required to serve most of the user’s exploratory
needs.

Our approach is to offer a hierarchy of data represen-



Figure 1. An full-resolution tree built using the neighbor-joining method for 380 HA protein se-
quences for Influenza A H3N2 viruses extracted from human hosts during 1968-1998. The top of
the tree is enlarged in the small window.



Figure 2. An aggregated tree built for the same dataset as in Figure 1 (from the same full tree calcu-
lated using the neighbor-joining method).

tations with different data coverages and resolutions. This
can be done efficiently because the structure of a typical in-
fluenza dataset is characterized by low estimated values of
the Kolmogorov (box) dimension (between 1 and 2 for typ-
ical HA protein datasets, as demonstrated below).

In [11], the authors introduced a visualization methodol-
ogy based on the adaptive tree aggregation. This approach
is discussed in section 2.

In section 3 we discuss the advantages of importance
sampling for exploratory data analysis of influenza se-
quence datasets: while a tree build for a global sample pro-
vides a coarse-level representation of the whole dataset, it
can be complemented by trees showing more detail in cho-
sen areas. A hierarchy of sets of well-scattered points (ε-
nets) is constructed. We show how to perform a local re-
finement gradually, using a multiscale hierarchy of ε-nets.
It allows to take into account both global dataset structure
and local details.

2. Adaptive tree visualization

In [11], we proposed an adaptive approach to visual-
ize the dataset in an aggregated form adapted to the user’s
screen. It allows the user, depending on the task and need
for details, to interactively refine or aggregate visualization

of different parts of the dataset. The essential parts of our
technique are the follows:

- Representation of a large tree by a smaller tree having
aggregated groups as terminal nodes;

- Placing a specially constructed tree to show the struc-
ture of each aggregated group at the sub-scale resolu-
tion level.

- Creating metadata description for each aggregated
group from the original metadata.

An example of aggregated tree is shown in Figure 2.
Sub-scale resolution. An aggregated tree represents

groups of sequences as named terminal groups, with name
of the group shown on the screen. Each named group occu-
pies vertical space that determined by the height of the font
used in annotation. Available vertical space, usually 10-
12 px, can be used to show the structure the named group
as a small subtree that we call sub-scale resolution subtree.
Figure 3 illustrates transformation of a subtree in its sub-
scale resolution representation. When aggregated groups of
sequences are created, they form an abstracted description
of the group to annotate the tree. We can summarize the
group using descriptive characteristics: virus type, subtype,
year of extraction; season of extraction, geographical loca-
tion, etc.



Figure 3. A subtree of the full tree(top) and
its sub-scale resolution representation in the
aggregated tree (bottom).

In addition to generating group names based on the meta-
data, datasets represented by trees to be searched using both
structured and unstructured metadata, including sequence
names. The search results are shown as individual se-
quences, where resolved, or number of sequences in named
groups satisfying the search criteria.

3. Adaptive focusing using importance sam-
pling from the dataset

While the adaptive aggregation technique described in
section 2 addresses the visual representation issues, it does
not address the issue of computational complexity. When
this approach is applied straightforwardly, a full tree is cal-
culated and then aggregated. In many situations, a signifi-
cant part of the computational work would be unnecessary
and wasteful: refinements of most of the subtrees of the ag-
gregated tree will never be requested by the users and the
details hidden there will never be seen. The approach we
are exploring for large datasets is to provide an overview of
the whole dataset first, and the ability to focus on details as
needed.

Of course, the ability to focus efficiently requires a
dataset to have a certain structure. This is the case for a typ-
ical influenza dataset, when either protein sequences or nu-
cleotide sequences for the coding regions for the same seg-
ment are considered for viruses of the same serotype, and
sequences are full length or almost full length. The prop-
erty we are interested in is the Kolmogorov dimension of
the dataset, also known as a box-dimension, box-counting
dimension and metric dimension [3], [5].

For a non-empty bounded subset F in Rn, let Nδ(F ) be
the smallest number of sets of diameter δ which can cover
F . The lower and upper box-counting dimensions are de-

fined in [5] as

dimBF = lim δ→0

log Nδ(F )
− log δ

,

dimBF = lim δ→0
log Nδ(F )
− log δ

,

If these are equal, the common value is called box-counting
dimension of F .

When these mathematical constructions are applied to
real life examples, only relevant diapason of scales can be
considered and the limits are not defined. Still, one can use
the formula

dimB(F, Λδ) =
log Nδ(F, Λδ)

− log δ
, (1)

to estimate box-counting dimension using δ-cover Λδ of
a compact set F in a metric space (with Nδ(F, Λδ) be-
ing number of δ-balls in that cover). Figure 4 shows esti-

Figure 4. Estimated box dimension

mates of the box-counting dimension for a typical Influenza
A dataset from 1968-2006 containing 1006 hemagglutinin
protein sequences. Box-counting dimension estimates are
between 1 and 2 for a variety of scales.

This result can be interpreted in a more pracrical way:
the amount of d-balls required to cover set F is roughly

Nd ≈ (D/d)α,

where 0 < α ≤ 2, D is the diameter of the dataset (we used
the value δ = d/D in (1)). This mathematical description
of a typical influenza dataset structure corresponds to a bio-
logical description of influenza evolution as having mostly
directed evolution with small lineages branching out and
dying. A more attentive observer will find even smaller lin-
eages branching out from minor branches and dying faster.

The multiscale structure of the influenza datasets can be
used to focus on the area of interest by refining an initial
coarse-level representation.



Let us introduce neccessary mathematical constructions.
In mathematics [8], [3], [5], a subset Mε of a set F in a
metric space is called ε-net, if ε-balls with centers in ele-
ments of Mε cover F . Of course, we are interested to find a
minimal ε-net or at least a small one.

In a case of set F in a finite metric space with distance
function d(·, ·), it is possible to find a finite ε-net Mε whose
elements are separated by from each other at least by
distance ε using the following algorithm:

Algorithm 1. Building an ε-net

Set Λ = F and Mε = ∅.
While ( Λ 6= ∅ ) {

Select an arbitrary ζ ∈ Λ and move it to Mε;
Exclude from Λ all η ∈ Λ such that d(η, ζ) ≤ ε
and create set Ωε(ζ) containing these points.

}

As a result, ε-net Me is built and ε-neighnborhood Ωε(ζ)
is defined for each ζ ∈ Mε. Define γε(x) as a center
of ε-neighborhood the point x is assigned to (e.g., x ∈
Ωε(γε(x))).

We build a hierarchy of ε-nets with increasing resolu-
tion, starting with ε0 = D/2, where D is an estimate of
the diameter of the dataset, and taking εk+1 = εk/2 for
k = 0, 1, 2, ... . The diameter of the dataset, D(F ), can be
estimated by

Dx(F ) = max
y∈F

d(x, y).

In a metric space, D(F )/2 ≤ Dx(F ) ≤ D(Ω)). We will
obtain an estimate using an arbitrary x ∈ Ω and refer to that
estimate as D.

If a 2ε-net is known, one can perform a local search
while building Mε. It is obvious that for any x, y ∈ F
such that d(x, y) ≤ ε, there are ζx, ζy ∈ M2ε such that
x ∈ Ω2ε(ζx), y ∈ Ω2ε(ζy), and d(ζx, ζy) ≤ 5ε.

Algorithm 2. Building an ε-net when a 2ε-net is known

Set Λ = F and Mε = ∅.
For ( all ζ ∈ M2ε ){

Move ζ from Λ to Mε;
Set Θ = {ς ∈ M2ε|d(ς, γ2ε(ζ)) ≤ 5ε};
Exclude from Λ all η ∈ Λ ∩ (∪ς∈ΘΩ2ε(ς))
and create set Ωε(ζ) containing these points.

}
While ( Λ 6= ∅ ) {

Select an arbitrary ζ ∈ Λ and move it to Mε;
Set Θ = {ς ∈ M2ε|d(ς, γ2ε(ζ)) ≤ 5ε};
Exclude from Λ all η ∈ Λ ∩ (∪ς∈ΘΩ2ε(ς))
and create set Ωε(ζ) containing these points.

}

We are not discussing the data structures allowing the
fast local search. These are described in computer science
literature (see [3], [4] and references there).

Importance sampling. The immediate application of
the created hierarchy of ε-nets is systematic importance
sampling. One can use a coarse ε-net to sample over-
all dataset and a local part of an ε-net with smaller value
of ε to represent a local structure in a selected neighbor-
hood. While a tree built from a global sample will provide a
coarse-level representation of the dataset, there is a problem
with trees built from a local sample: it may show incorrect
relationships for sequences near the boundary of the local
neighborhood and fail to reflect the global dataset structure.

Gradual local refinement. This problem is well-known
in finite-difference and finite-element computational meth-
ods, especially in relation to multigrid approaches [2].
When a grid is refined locally, the transition from coarse- to

Figure 5. Grid refinement

fine-level descriptions is done gradually, with the local re-
finement area covered by multiple grids, and coarser grids
extending to a wider area (see Figure 5).

We propose to use the gradual refinement technique for
systematic sampling providing a good sample for building
a tree: start with a coarse global sample (ε-net) and refine
it gradually by adding sequences from ε-nets with smaller
values of ε and in smaller areas around the point of focus.

Let x ∈ F be a point of focus, R0
fine be the size of the

area around x from where all elements are taken, εfine be
a resolution of the fine-level ε-net, Rfine be a a size of the
fine-level resolution area around x (0 ≤ R0

fine ≤ Rfine).
From each of ε-nets in the hierarchy, we include an
area around x with size R = Rfine(ε/εfine). If
εk = 2N−kεfine, than Rk = 2N−kRfine.

Algorithm 3. Locally-refined systematic sampling

Set Υ = ∅.
Include in Υ all η ∈ F such that d(η, x) ≤ R0

k.
For ( k = 1, ..., N ) {

Calculate Rk = Rfine(εk/εfine);
Include in Υ all η ∈ Mεk such that d(η, x) ≤ Rk.

}

As a result, we construct a set of sequences Υ that can
serve as an input for a tree algorithm to build a focused tree.
Note that while a gradual refinement is used to calculate a
correct focused tree, we are not under obligation to show



the whole focused tree including poorly resolved areas. Of
course, we can visually represent the part we are focused on
and leave poorly resolved areas behind the screen.

4. Discussion

Adaptive aggregative visualization provides the user
with a convenient way to view and manipulate the data hi-
erarchy. This approach has been implemented and demon-
strated to be efficient and useful. In addition, the progress
towards larger datasets requires more advanced computa-
tional approaches to avoid excessive computation at the ex-
ploratory analysis stage. In section 3 we described our on-
going work on multiresolution tree algorithms facilitating
efficient local refinement and allowing efficient facilitation
of user requests to focus tree representation on a selected
part of the data.
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